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ABSTRACT 1 

In this paper models are developed, calibrated and evaluated to describe the acceleration and deceleration 2 

processes of bicyclists in three states; while accelerating from a stop, decelerating to a stop and while 3 

fluctuating around the desired traveling speed. Such models are necessary to reliably simulate the speed 4 

profiles of bicyclists in microscopic traffic simulations. To accomplish this aim, a sample of 1030 5 

processed trajectories from bicyclists at four intersections in Munich, Germany is used to analyze the 6 

dynamic characteristics of bicyclists. The average crossing speed, the fluctuation in crossing speed as well 7 

as the minimum and the maximum speeds of uninfluenced bicyclists who cross at a green light are 8 

analyzed and correlations between these variables are investigated. The acceleration and deceleration 9 

profiles of bicyclists who stop at a red light, but are uninfluenced by other bicyclists, are used to evaluate 10 

four acceleration/deceleration models; the constant model, linear decreasing model, two term sinusoidal 11 

model and polynomial model. Two adaptions of the models are developed and evaluated, one to derive 12 

acceleration and deceleration as a function of speed rather than time and the other to account for the 13 

observed fluctuation in bicyclist traveling speed. The polynomial model is found to be the most flexible 14 

and produces the overall best estimates of the acceleration profiles. The constant model was found to best 15 

estimate deceleration as well as acceleration and deceleration while fluctuation around the desired speed.  16 

 17 

Keywords: Microscopic Traffic Simulation, Bicycle Modeling, Bicycle Dynamics   18 
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INTRODUCTION 1 
Microscopic simulation of road traffic is frequently used to analyze the efficiency of road traffic and to 2 

forecast the effects of future transportation measures before implementation. More recently, traffic 3 

simulation tools have been used to analyze traffic safety. This is done by calculating surrogate traffic 4 

safety indicators such as Time to Collision (TTC), Post Encroachment Time (PET) and Deceleration Rate 5 

ensuing from interactions between simulated road users (1). In both types of assessment, the soundness of 6 

the analysis depends on the validity of the mathematical models used to recreate the movements of road 7 

users (2). However, the calculation of surrogate safety indicators is much more sensitive to the finite 8 

accuracy of the road user trajectories than are efficiency analyses. Even seemly small divergences 9 

between the trajectories followed by road users in reality and those of the simulated vehicles, pedestrians 10 

and bicyclists can cause significant errors in the resulting surrogate safety measures.  11 

 The desired speed of a motorized road user is typically modeled in a microscopic traffic 12 

simulation by taking the speed limit of the road segment. The desired speed of a bicyclist in contrast does 13 

not depend on the speed limit of the roadway, but rather on the personal preferences, physical capabilities 14 

and tactical maneuvers of the bicyclist, as well as the type and quality of the infrastructure, the traffic 15 

control and the given traffic situation (3). In the microscopic simulation, the speed of all road users is 16 

controlled in each time step by an acceleration input that is calculated from an acceleration model. The 17 

ability of acceleration models to deliver accurate speeds depending on the situation and the current state 18 

of the bicyclist are essential in creating realistic trajectories of bicyclists in microscopic traffic 19 

simulations, particularly for safety analyses.  20 

 A number of studies have been carried out to measure the speed of bicyclists as they cross 21 

signalized intersections, with mean speed estimates ranging between 3.2 m/s and 6.9 m/s (4–10). In most 22 

cases where acceleration is examined, constant acceleration is assumed and the mean acceleration is 23 

estimated from video data. Estimates of mean acceleration range between 0.23 m/s2 and 1.07 m/s2 (6, 9, 24 

11, 12).  25 

 Although a number of models have been proposed in the literature to describe the acceleration 26 

process of motorized vehicles, very few examinations of acceleration and deceleration profiles of 27 

bicyclists were found in the literature. The most common and simplistic approach for modeling 28 

acceleration is the constant acceleration model a = ta )( , where the acceleration at any point during the 29 

acceleration process  ta )( is equal to the mean acceleration. In many applications, such as in the 30 

estimation of crossing times for calculating inter-green times at signalized intersections, the constant 31 

model provides sufficient level of detail. However, if the aim is to model dynamic behavior with enough 32 

accuracy to evaluate traffic safety, this approach lacks crucial details of the acceleration profile (13, 14). 33 

 Another approach commonly used for modeling acceleration with more detail than the constant 34 

model is the linear decreasing acceleration model. In this model, the maximum acceleration is exerted 35 

when the acceleration maneuver is begun and decreases linearly until the desired speed is reached. Such 36 

an approach is used in the Necessary Deceleration Model for the modeling of bicyclist dynamics by (14), 37 

as described in equation 1.  38 

 39 

 
t

ss
 = sa

a

o )(  

 

where:  sa )( = acceleration at speed s     (1) 

os = desired speed 

at = total acceleration time 

40 

 Haifeng et al. (15) proposed a non-linear decreasing model of acceleration as a function of time to 41 

model acceleration and deceleration of bicyclists. The maximum acceleration thus occurs at 𝑡 = 0 and 42 

rapidly decreases during the acceleration process. Linear and non-linear decreasing acceleration models 43 

are expected to produce more realisitc results than constant acceleration approaches but do not reflect S-44 

shaped acceleration curves that have been observed for motorized road users (13). Such curves are 45 
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characterised by low acceleration at the beginning of the acceleration maneuver, maximum acceleration at 1 

some mid-point during the maneuver and decreasing acceleration until the desired speed is reached.   2 

 Akçelik & Biggs (1987) proposed and tested three models that all reflect the observed S-shaped 3 

speed curves measured by the researchers as well as the constraint of zero acceleration and jerk at the 4 

beginning and end of the acceleration process; the polynomial model, the two-term sinusoidal model and 5 

the three-term sinusoidal model. For motorized vehicles, the polynomial model of acceleration was found 6 

to outperform the other models. The equations proposed by Akçelik & Biggs (1987) are given in 7 

equations 2-4. Luo (2014) used GPS tracking data with a frequency of one observation per second from 8 

bicyclists to fit an adapted polynomial acceleration model. The model preformance was deemed 9 

satisfactory for acceleration but not deceleration. 10 

 11 

 ra = ta mn
m

2)1()(        Polynomial Model          (2) 12 

 13 

 BCa = ta m )2sin(sin)(       Two-Term Sinusoidal Model         (3) 14 

 15 

 PPRa = ta m )3cos2cos5.0cos5.0()(    Three-Term Sinusoidal Model         (4) 16 

  17 

where: )(ta = acceleration at time t  18 

  ma = maximum acceleration 19 

  at = total acceleration time 20 

  PRBCmnr ,,,,,, = model parameters 21 

   = 
at

t
 = time ratio 22 

 23 

 In this paper, trajectory data from a sample of 1030 bicyclists who are uninfluenced by other 24 

bicyclists are used to calibrate and evaluate four of the acceleration models found in the literature. A new 25 

method for modelling acceleration as a function of speed, which is understood in this paper as the 26 

momentary speed, or the speed of a given road user at a specific point in time, rather than time is defined 27 

based on the   ratio proposed by Akçelik & Biggs (1987). This method has two advantages; first the 28 

trajectory data can be analysed without prior determination of the start time of a given acceleration 29 

maneuver and, second, the resulting acceleration profile can be used within a microscopic simulation to 30 

directly derive an acceleration value based on the given speed and maneuver of a bicyclist. In addition, an 31 

approach for including the fluctuation in the riding speed of bicyclists directly in the acceleration model is 32 

developed and evaluated. The research methodology is discussed in detail in the following section. The 33 

results of the model fitting are presented and discussed subsequently. Conclusions and outlooks for future 34 

work are included at the end of the paper. 35 

 36 

METHODOLOGY 37 

 38 

Data analysis  39 
Video data analysis allows for the automated extraction of trajectories (position and velocity in each 40 

video frame) at a high temporal resolution for a large sample of road users. Dynamic situational variables, 41 

including the position and velocity of other road users and the phase of the traffic signal, can be easily 42 

extracted or appended.  43 

 Video data was collected at four intersections in Munich, Germany, for two to four days per 44 

intersection during the summer months. The study intersections were selected to ensure a wide variety in 45 

the type of bicycle infrastructure and traffic volume at the intersection. However, all intersections are 46 

located within the city center of Munich, less than 1.5 km from Marienplatz, the central square of 47 
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Munich, in mixed use areas. The layouts of the four intersections are shown in Figure 1 (frames extracted 1 

from the video data). Videos were recorded using a GoPro Hero3 Black Edition with a full HD resolution 2 

(frame size: 1920x1080 pixels) at 25 frames per second. A wide angle lens was used to collect trajectory 3 

and situation data from a larger area. This, however, introduced distortion issues in the automated video 4 

analysis that were later rectified. Two hours of video data from each intersection were selected from the 5 

total video footage for trajectory extraction. For all of the intersections, two hour continuous video 6 

segments were selected during the morning peak hour (from about 7:30 am to 9:30 am), with favorable 7 

lighting conditions (few shadows) and as little disturbance from wind as possible.  8 

a)

 

b) 

 
c) 

 

d) 

 
FIGURE 1 Camera view of the intersections a) Arcisstrasse-Theresienstrasse b) Arnulfstrasse-9 

Seidlstrasse c) Karlstrasse-Luisenstrasse d) Marsstrasse-Seidlstrasse.  10 
 11 

 The open source software Traffic Intelligence (17) was used to extract trajectory data from the 12 

selected video segments. The software is based on a two-step process in which all moving features in the 13 

video are tracked in the first step and grouped into road user hypotheses based on proximity and similarity 14 

in the second step. Both steps are regulated by a number of parameters that are calibrated depending on 15 

the image quality and the size and speed of the road users. A dual calibration method was developed and 16 

implemented that categorizes the features based on their location in the video frame as probable cars or 17 

pedestrians/bicyclists in the first step (18). The grouping parameters were independently adjusted to the 18 

respective speed and size of the specific road users for the second step. Thus the road users were 19 

classified as cars, bicyclists or pedestrians based on their speed and location.  20 

 The calibration parameters were intentionally set to be over sensitive and to over-segment rather 21 

than over-group road users. This ensured that trajectory data was extracted for a maximized portion of 22 

bicyclists. However, this made it necessary to invest a considerable amount of work in manually post-23 

processing the trajectory databases. Erroneous or superfluous trajectories were removed, disjointed 24 

trajectories belonging to the same road user were combined and falsly classified objects were corrected. 25 

The distortion that was introduced through the wide angle lens was corrected by post-processing the 26 

SQLite trajectory databases produced by Traffic Intelligence (the current version of Traffic Intelligence 27 
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includes a method for rectifying video data before processing). OpenCV (opencv.org) was used to 1 

determine the intrinsic camera parameters and the distortion coefficients of the GoPro Hero3 camera with 2 

the waterproof housing. The position points of the trajectories were remapped based on the resulting 3 

matrices and the velocites were recalculated in each frame.  4 

 The high resolution of the video images as well as the height and angle of the camera during 5 

recording allowed for the extraction of high quality trajectory data. The relative accuracy of the positions 6 

recorded in each time step is estimated to be between 5-10 cm. However, position values are calculated 7 

by Traffic Intelligence for a single road user by finding the mean of the positions of all features that are 8 

grouped into that road user in each frame. As a result, the position data can jump slightly from frame to 9 

frame as new features are detected and others are lost. The resulting noise in the data becomes more 10 

pronounced as the position values are differentiated once to get velocities and twice to obtain 11 

accelerations. In order to reduce this effect, the data was aggregated from a frequency of 25 observations 12 

per second to 5 observations per second for the velocity values and 2.5 observation per second for the 13 

acceleration values. At both differentiation steps, the data was filtered using the Savitzky-Golay method 14 

(19) with the window size of 15 and an order of two. This aggregation and filtering method proved to 15 

produce valid distance-time, speed-distance and acceleration-distance plots of the road user trajectories 16 

when compared to manually calculated values.  17 

 The City of Munich provided data from the traffic signals at three of the four research 18 

intersections for the data collection period. Each of these signals is traffic actuated and information 19 

regarding the time of each phase change is automatically catalouged (1 second precision). Intersection 4 is 20 

controlled by a fixed-time signal control and therefore the phase change time data is not recorded. This 21 

information was extracted manually from the video data with slightly less precision.   22 

 The resulting trajectory data was filtered to include only uninfluenced bicyclists. The behavior of 23 

a bicyclist can be hindered at urban intersection by two main factors; the presence and actions of other 24 

road users and the traffic signal control. In order to isolate the uninfluenced (or desired) behavior of the 25 

bicyclist as well as the non-confounded response to both the signal control and the actions of other road 26 

users, the bicyclists were divided into four groups, as shown in Table 1. Bicyclists in Group A arrive at 27 

the stop line of the intersection while the traffic signal is green and have more than a two second time gap 28 

to any leading bicyclists (uninfluenced). Group B bicyclists arrive while the traffic signal is red and there 29 

are no other bicyclists stopped at the intersection (traffic signal influence).  30 

 31 

TABLE 1 Classification of Bicyclist Groups 32 

 Interference from other bicyclists 

 (following 𝑡𝑔𝑎𝑝 < 2 𝑠) 

No Yes 

Interference from signal control  

(red signal upon approach) 

No Group A (N=704) Not analyzed 

Yes Group B (N=326) Not analyzed 

 33 

 The qualitatively verified trajectory data from the 1030 bicyclists in Group A and Group B are 34 

used to investigate the crossing speed, acceleration and deceleration of bicyclists at signalized 35 

intersections. The average crossing speed, the variation in crossing speed as well as the minimum and the 36 

maximum speeds of bicyclists in Group A are analyzed and correlations between the analysis variables 37 

are investigated. The acceleration, deceleration and speed observations from the trajectories of bicyclists 38 

in Group B are used to examine the acceleration models presented in the introduction.  39 

 40 

Modeling acceleration and deceleration 41 
Acceleration is typically modeled as a function of time. However, in reality, a bicyclist does not 42 

accelerate depending upon time, but rather depending upon his or her given speed, desired speed and the 43 

situational restraints. While processing the data, the acceleration and speed can be directly extracted from 44 
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the trajectory. The identification of a starting time for the maneuver, on the other hand, is more 1 

challenging and in some situations not possible. Similarly, for the purpose of traffic simulation, modeling 2 

acceleration as a function of speed is more practical because time, as measured from the start of an 3 

acceleration process, is not readily available from the traffic simulation. Speed, however, is available in 4 

each simulation time step. Indeed, simulation software such as VISSIM allow users to set acceleration-5 

speed curves, which are used to define the acceleration based on speed (20). To account for this aspect of 6 

traffic simulation, a new s ratio is proposed in equation 5 based on the  concept introduced by (13). 7 

 8 

  
if

i
s

ss

ss




  

where: s = speed ratio          (5) 

 s  = speed 

 is = initial speed 

fs = final speed

1 

 A similar parameter   is used by Akçelik & Biggs (1987) to evaluate the acceleration models 2 

developed in that paper. This parameter is adapted and used here to develop the acceleration curves. 3 

However, given the proposed definition of s  in equation 5, an acceleration of zero at  0s  would lead 4 

to a situation in which a bicyclist would never accelerate from the initial speed of 0is . To resolve this 5 

issue, equations with an s -intercept at 0s must be altered to ensure an )( sa  -intercept that is greater 6 

than zero. This is done by adding a shifted 
2

1

s
function with an s -intercept at 1s  and an adjustable 7 

)( sa  -intercept that can be calibrated to fit the observed data.  8 

 The four acceleration models shown in equations 6-9 were assessed using the observed trajectory 9 

data. Initial testing of the three term sinusoidal model proved it to be similar to, but less accurate and 10 

more complex, than the two term sinusoidal. For this reason it was excluded from further examination. 11 

Similarly, initial testing of a new model, the square root model, indicated that this approach was not 12 

suitable for modeling acceleration or deceleration and was excluded from further analysis.  13 

 14 

aa s )(        Constant Model           (6) 15 

 16 

smms aaa  )(       Linear Decreasing Model         (7) 17 

 18 

)
1

()1()(
2

2

c
ara = a

s

m
s

n
sms





    Polynomial Model          (8) 19 

 
c

aBCa = a
s

ssms )
1

()2sin(sin)(
2 




   Two Term Sinusoidal Model         (9) 20 

 21 

 where: )( sa  = acceleration at speed ratio v   22 

  a = mean acceleration 23 

ma = maximum acceleration 24 

  s  = speed ratio (equation 5) 25 

  BCcamnr ,,,,,, = model parameters (
c

a





1

1
) 26 

  27 
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State definition 1 

Two approaches are developed and evaluated using the observed trajectory data; a simplified approach 2 

that does not include fluctuation around the desired traveling speed and an oscillating approach that 3 

includes this fluctuation. While both approaches use the ratio 
s  introduced in equation 5, the definition 4 

of 
is and fs differ in the two approaches. 5 

 6 

Simplified approach 7 

In the simplified approach, bicyclists accelerate with a given acceleration profile until they reach their 8 

desired crossing speed 
ds . They continue at this speed without fluctuation until it becomes necessary to 9 

stop or slow down. In this approach, bicyclists are in one of three states: 10 

 11 

State 1: Acceleration:      
di ss   and  df ss   12 

State 2: Deceleration:     0is and 0fs   13 

State 3: Traveling steadily at desired speed:   dfi sss   14 

 15 

Oscillating approach 16 

In reality, bicyclists are unable to maintain a constant speed while riding (11). An approach for 17 

incorporating this fluctuation into the acceleration model and hence into traffic simulations, is given using 18 

the following four states. The parameters dsmin and dsmax  represent the lower and upper speed 19 

threshold observed in the trajectories of a bicyclist riding normally. These values are subsequently used to 20 

calculate 
s : 21 

 22 

State 1: Acceleration from a stop (or a low speed):   di ss min  and df ss max  23 

State 2: Deceleration to a stop (or a low speed):  fi ss   and df ss min  24 

State 3: Acceleration as part of normal speed fluctuation: di ss min  and dss
f

max  25 

State 4: Deceleration as part of normal speed fluctuation: di ss max  and dss
f

min  26 

 27 

Model calibration and evaluation 28 

The acceleration data derived from the trajectories was plotted using the newly defined s , both using the 29 

simplified and oscillating approach. To produce the observation points, the acceleration data from all 30 

bicyclists with equal crossing speeds ds  when rounded to the nearest 1 m/s were aggregated. The s31 

values were rounded to the nearest 0.05 and aggregated to build large groups of observations. The plotted 32 

points in Figure 2 indicate the median of the observed accelerations for each aggregated s  group. The 33 

parameters were calibrated to an accuracy of 0.1 using the average root mean square error (RMSE) as a 34 

measure of good fit. 35 

 36 

RESULTS 37 
 38 

Speed analysis 39 

The trajectories of bicyclists riding straight across the intersection on a bicycle lane in the intended 40 

direction of travel were taken as the reference group for the crossing speed analysis (Group A). The 41 

dynamic characteristics of this group are summarized in Table 2. The speed of the observed cyclists is 42 

found to vary as the cyclist crosses the intersection, which supports the hypothesis that bicyclists do not 43 

normally maintain a constant speed as they ride (11).  44 

In order to incorporate the speed fluctuation into the acceleration model, it is necessary to 45 

investigate the range of traveling speeds observed for bicyclists riding unhindered though the intersection. 46 
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As shown in Table 2, an average fluctuation of 1.82 m/s was observed. However, when taking the average 1 

maximum and minimum speeds of the bicyclists in Group A into account, 4.20 m/s and 6.02 m/s 2 

respectively, the range of normal riding velocities can be approximated as dd svs 15.18.0  . It is 3 

assumed that all bicyclists in Group A and Group B are part of the same population of bicyclists because 4 

arrival at a red light is distributed randomly amongst bicyclists. The results in Table 2 are therefore used 5 

as a reference for the desired riding speed of all bicyclists in the following analyses.  6 

 7 

TABLE 2 Dynamic Characteristics of Bicyclists in Group A 8 

Group A ( stgap 2  and Signal 

Phase: Green, N=466) 
Mean Std. 

Correlation Coefficient R2 (p value) 

Speed range 

(m/s) 

Min. speed 

(m/s) 

Max. speed 

(m/s) 

Crossing speed (m/s) 5.23 1.25 
-0.128 

(p=0.006) 

Direct 

correlation 

Direct 

correlation 

Crossing speed range (m/s) 1.82 1.11  
-0.535 

(p=0.000) 

0.250 

(p=0.000) 

Minimum speed (m/s)  4.20 1.48   
0.684 

(p=0.000) 

Maximum speed (m/s) 6.02 1.29    

 9 

Acceleration  10 

The trajectory data from Group B was used to test and calibrate the acceleration and deceleration models 11 

for State 1 and State 2, for both the simplified and the oscillating method. Data from the bicycles at all 12 

four research intersections was aggregated to attain a suitably large dataset. In order to estimate the 13 

desired crossing speed ds  of each bicyclist, an exit line was drawn between the two edges of the sidewalk 14 

pavement on the opposite side of the intersecting road. The distance between the stop line and the exit 15 

line ranged from 13m to 40m, depending on the intersection and approach. According to (11), the 16 

majority of bicyclists complete an acceleration process in less than 11m. It was therefore assumed that the 17 

observed bicyclists reached their desired crossing speed before crossing the exit line and ds  was defined 18 

as the mean speed of the bicyclist after crossing this line. It should be noted that the desired crossing 19 

speed is the desired speed while crossing an intersection and the desired speed on segments between 20 

intersections maybe greater or less.  21 

 The calculated s  and corresponding acceleration values of bicyclists accelerating from a stop 22 

are shown in Figure 2. As the oscillating approach was found to produce better estimations of the 23 

observed acceleration data, only results from this approach are shown below. The resulting RMSE values 24 

for all the tested models are included in Table 3.  25 

 As seen in Figure 2, the maximum acceleration of the observed trajectories increases with the 26 

desired speed ds . The calibrated parameters for the models for each desired speed group are included in 27 

the top left corner of the chart. The small range of the parameters r and C, which control the amplitude of 28 

the polynomial and two term sinusoidal models, indicates that the differences between the curves of the 29 

different desired speed groups is largely accounted for by the different ma  values associated with the 30 

desired speed group.  31 

 The maximum acceleration is reached in all cases at 4.0s . In theory, )( sa  should equal 0 at 32 

1s . However, the observed data tends towards zero but does not reach zero for any of the desired 33 

speed groups. This is because ds  is defined as the average observed speed of a specific bicyclist. The 34 

speed range on the other hand is defined for all bicyclist as dd svs 15.18.0  , which reflects the average 35 

values. Per definition, many observed trajectories include maximum speeds larger than this value. The 36 
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acceleration values measured at these high speeds, however ranged between zero and 0.2 m/s, which is 1 

consistent with the acceleration values observed for bicyclists fluctuating during normal riding (Figure 4).  2 

 3 

a)  

 

b)  

 

c) 

 

 

 

 

 

 

 

 

 

 

d) 

 

 

FIGURE 2 Acceleration profiles of bicycles in State 1: acceleration from a stop using the oscillating 4 

approach a,b,c) clustered according to the desired speed 𝒔𝒅 and d) aggregated.  5 
 6 

Deceleration 7 
The simplified and the oscillating approach are identical when considering the deceleration of bicyclists 8 

in Group B because all of the bicyclists have a ds  value of 0, or in other words decelerate to a complete 9 

stop. The s and deceleration values of bicyclists in State 2 for three desired speed groups (a-c) and 10 

aggregated (d) are shown in Figure 3.  11 

 The portion of trajectories from bicyclists in Group B that included the deceleration phase was 12 

relatively small compared to the acceleration phase. This is because a number of the approaches were not 13 

clearly visible over a sufficiently long segment in the video data. As a result, the deceleration profiles are 14 

noisier than the acceleration profiles. The evaluation of the different models suggests that the best fit to 15 

the observed data is achieved by the constant model. Although a slight curve with a maximum 16 

deceleration occurring at about 3.0s  can be observed in three of the plotted profiles, the noise in the 17 

data could have prevented an accurate fitting of the other tested models. The best approximation of the 18 
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maximum deceleration was attained by the two term sinusoidal modal, but these results were inconsistent 1 

between the 
ds  groups.   2 

a) b)  

 

c) 

 

d)  

 

 

FIGURE 3 Deceleration profiles of bicycles in State 2: deceleration to a stop a,b,c) clustered 3 

according to the desired speed 𝒔𝒅 and d) aggregated. 4 
 5 

Speed fluctuation 6 
Data from bicyclists who passed unhindered through a green light (Group A) were used to investigate 7 

States 3 and State 4, accelerating and decelerating respectively during normal riding as a result of 8 

fluctuating traveling speed. The plotted acceleration and deceleration data from the observed trajectories 9 

and the tested mathematical models are shown in Figure 4. Only the aggregated curves of all bicyclists in 10 

Group A are shown because no discernable difference based on the desired speed ds  was observed. The 11 

resulting curves suggest that acceleration and deceleration values that lead to the fluctuation in riding 12 

speed are uniform across s  values and tend to be around ±0.2 m/s2. 13 
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a)  

 

 

 

 

 

 

 

 

 

  

 

b)  

 

FIGURE 4 Acceleration and deceleration profiles of bicycles in a) State 3 and b) State 4: 1 

accelerating and decelerating as part of normal speed fluctuation, respectively. 2 
 3 

Evaluation 4 
The average root mean square error (RMSE) and the percentage error in the predicted maximum 5 

acceleration attained using the simplified and the oscillating approaches are given in Table 3. The RSME 6 

values given in the table are the average RMSE value for all the clustered desired speed groups (4.0-6.0 7 

m/s) for State 1: acceleration from stop and State 2: decelerating to a stop. For State 3 and 4: accelerating 8 

and decelerating while fluctuating around the desired speed, respectively, only the RMSE value for the 9 

aggregated case is given as no difference in profiles of the clustered desired speed groups could be 10 

discerned. In each of the states examined, the lowest RMSE value, or the best model fit, as well as the 11 

lowest percentage error in the maximum speed estimation are bolded. The following conclusions were 12 

reached for each of the investigated models: 13 

 The constant acceleration model does not produce good approximations of the 14 

acceleration profiles of bicyclists accelerating from a stop or a very low speed (State 1). This model, 15 

however, proved to best match the deceleration profiles of bicyclists decelerating to a stop or very low 16 

speed (State 2). This was also the case for bicyclists fluctuating around the desired traveling speed (State 17 

3 and State 4). While this model by definition meets the requirement that 0)( sa   when 0s , it does 18 

not meet the requirement that 0)( sa   when 1s . This will lead to discontinuous jumps between 19 

acceleration and deceleration, which does not reflect the smooth transitions observed in reality. Another 20 

disadvantage of this model is the inherent poor estimation of maximum acceleration or deceleration, 21 

which can be vital in some cases, such as the investigation of surrogate safety indicators.  22 

 The linear decreasing model was found to produce very poor approximations of the 23 

acceleration and deceleration profiles of bicyclists in State 1 and State 2. The approximation of the 24 

profiles of bicyclists in State 3 and State 4 were better, but were still outperformed by the constant model. 25 

 The polynomial model is found to be the most adaptable of the models tested and was 26 

found to deliver the best approximation of the observed trajectory data in State 1 and State 3. The RMSE 27 

values for the other cases were very near to the constant model. This model, however, was found to 28 

consistently underestimate the maximum acceleration and deceleration values. Another disadvantage of 29 

this model is the comparatively large number of parameters that must be calibrated to produce precise 30 

results.  31 

 The two term sinusoidal model produces good estimations of the acceleration profiles in 32 

all the examined states. The attained maximum acceleration and deceleration were also very consistent 33 
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when compared to the other models. Because this model has one less parameter than the polynomial 1 

model, it is slightly easier to calibrate.   2 

 3 

TABLE 3 Root Square Mean Error (RMSE) and the Percent Error in the Maximum 4 

Acceleration/Deceleration of the Tested Models  5 

State 
Constant 

Linear 

Decreasing 
Polynomial Two Term Sinusoidal 

RMSE %𝒆𝒂𝒎 RMSE RMSE %𝒆𝒂𝒎 RMSE %𝒆𝒂𝒎 

S
im

p
li

fi
ed

 

a
p

p
ro

a
ch

 

1 0.039 -33% 0.092 0.010 -9% 0.009 4% 

2 0.022 -36% 0.079 0.026 -26% 0.032 -15% 

O
sc

il
la

ti
n

g
 a

p
p

ro
a

ch
 1 0.043 -42% 0.053 0.005 -6% 0.006 -8% 

2 0.022 -36% 0.079 0.026 -26% 0.032 -15% 

3 0.003 -34% 0.006 0.004 -4% 0.003 -4% 

4 0.001 -22% 0.010 0.005 -15% 0.005 -16% 

 6 

The slightly lower RMSE values derived using the oscillating approach suggest that the observed 7 

acceleration data can be better fit if the speed fluctuation around the average riding speed are taken into 8 

account. The method introduced in this paper provides a valid possibility for including this fluctuation in 9 

the acceleration and deceleration model. There are however other methods that could be used to define s , 10 

such as the usage of the maximum observed speed for ds  instead of the average speed. 11 

 12 

CONCLUSIONS AND OUTLOOK 13 

In this paper the acceleration-speed profiles from a sample of 1030 bicyclists who were uninfluenced by 14 

other bicyclists are used to evaluate four acceleration and deceleration models; constant, linear 15 

decreasing, two term sinusoidal and polynomial. The bicyclists are separated into two groups, one group 16 

that rode unhindered through an intersection at a green light, and another that stopped at a red light, A 17 

new ratio s  is defined and implemented based on the  as a time ratio concept introduced by Akçelik & 18 

Biggs (1987). The new concept uses the acceleration state as well as the speed rather than the start time 19 

and duration of a process as a basis for deriving acceleration. This allows for the direct analysis of the 20 

trajectory data without first needing to extract the start and end time of an acceleration or deceleration 21 

process. A further benefit of this definition is that the speed is readily available in microscopic 22 

simulations, making direct implementation of the the adapted models possible.  23 

 The evaluation of the four models indicates that the polynomial model provides the most 24 

flexibility and obtains the most consistently low RMSE values for all the acceleration states. The 25 

maximum acceleration and deceleration values were, however, underestimated by this model. The 26 

constant model slightly outperforms the polynomial model in State 2: deceleration to a stop and in States 27 

3 and 4, accelerating and decelerating as part of normal speed fluctuation, respectively. The two term 28 

sinusoidal model produces good estimations of the acceleration and deceleration profiles while also 29 

providing accurate estimates of the maximum acceleration and deceleration. The selection between these 30 

three acceleration models therefore depends on the application and whether an overall good fit, the 31 
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maximum acceleration or deceleration or the ease of implementation are priority. The linear decreasing 1 

model was found to produce the poorest estimations of the acceleration profiles.  2 

 Finally, a method for including the fluctuation in riding speed directly in the acceleration model is 3 

developed. A comparison between the RMSE values derived using the simplified approach, which does 4 

not include speed fluctuation, and the oscillating approach, which does include speed fluctuations 5 

indicates that oscillating approach better fits the observed acceleration data. The simplified approach, 6 

however, is less complicated to implement in microscopic simulations and still adequately matches the 7 

observed acceleration and deceleration profiles.  8 

 The results of this paper can be used by traffic engineers and researchers to more accuratly model 9 

the acceleration and deceleration profiles of bicyclists as they cross signalized intersections. This will 10 

enable a more realistic simulation of bicycle traffic, which will in turn increase the accuracy and 11 

reliability of efficiency and safety analyses carried out using simulated or modelled traffic scenarios.  12 

 In future work, the developed acceleration and deceleration curves in combination with the 13 

regression model for estimating the desired speed based on the driving maneuver, direction of travel and 14 

type of infrastructure can be implemented in microscopic traffic simulation software to model the 15 

dynamic characteristics of bicyclists with increased detail. Subsequent analyses of traffic efficiency and 16 

safety in urban areas that include significant levels of bicycle traffic will produce more reliable results.    17 

 18 
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