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Zusammenfassung 

Unser Alltag wird maßgeblich durch die Produkte industriell katalysierter Prozesse geprägt. Der Fortschritt 

des letzten Jahrhunderts hängt somit maßgeblich mit den Meilensteinen, die im Bereich der Katalyse und der 

Polymerwissenschaften erreicht wurden, zusammen. Vor diesem Hintergrund liegt der Schwerpunkt dieser 

Arbeit auf der Untersuchung verschiedener industriell relevanter katalytischer Prozesse, der Hydrosilylierung, 

Epoxidierung und Umvinylierung. Im Fokus steht dabei zum einen die mechanistische Untersuchung dieser 

Reaktionen, zum anderen werden neue Katalysatorstrukturmotive und Komplexe vorgestellt. 

Hydrosilylierung zählt zu den wichtigsten homogenkatalytisch geführten Verfahren unserer Zeit. Die Reaktion 

wird industriell vor allem mit Platinkatalysatoren realisiert, die seit etwa 50 Jahren bekannt sind. Trotz dieser 

langen Zeit der Anwendung hinkte das Verständnis der Reaktion in der Vergangenheit den enormen 

synthetischen Möglichkeiten hinterher. In dieser Arbeit wird eine fundamentale mechanistische 

Untersuchung der platinkatalysierten Hydrosilylierung vorgestellt, die seit dem ursprünglich vorgeschlagenen 

Modell im Jahr 1965 erstmals eine Weiterentwicklung des etablierten Katalysezyklus beinhaltet. Daneben 

werden neue Strukturmotive von Pt(0) NHC Komplexen präsentiert. Die Analyse der bemerkenswerten 

katalytischen Leistungsfähigkeit dieser Verbindungen mit Hilfe von Methoden der Elektrochemie 

(Cylovoltammetrie) und der Dichtefunktionaltheorie (DFT) erlaubt die Ableitung von Gesetzmäßigkeiten 

für die Vorhersage der Aktivität potentieller, strukturell verwandter Zielstrukturen. Zudem wird die erste 

mechanistische Untersuchung der iridiumkatalysierten Hydrosilylierung von Allylverbindungen vorgestellt, 

die in den letzten Jahren aufgrund der erhöhten Selektivität gegenüber der Platinkatalyse Anwendung findet. 

Die stöchiometrische Reaktion eines der bekanntesten Iridiumkatalysatoren, [{IrCl(cod)}2], führt zu einem 

strukturchemischen Kuriosum, einem allylverbrückten Iridiumdimer, dessen strukturelle und analytische 

Besonderheiten ebenfalls berichtet werden.  

Die katalytische Epoxidierung erlangt vor allem durch die Bereitstellung industriell relevanter Intermediate 

kommerzielle Bedeutung, allen voran Ethylen- und Propylenoxid. Daneben macht man sich die 

Zugänglichkeit hochfunktionalisierter Produkte über intermediär auftretende Epoxide in der 

pharmazeutischen Industrie zu Nutze. Vor diesem Hintergrund widmet sich ein Teil dieser Arbeit der 

Fortentwicklung etablierter Strukturmotive von Molybdänkatalysatoren zur Olefinepoxidierung.  

Die rutheniumkatalysierte Umvinylierung bietet einen einfachen synthetischen Zugang zu Vinylestern, die als 

Monomerbausteine zu vielfältigen Endproduktpolymeren umgesetzt werden können. In dieser Arbeit wird 

eine mechanistische Untersuchung dieses katalytischen Prozesses und ein wahrscheinliches Strukturmotiv der 

aktiven Spezies vorgestellt. Mit diesem Themenkomplex eng verknüpft ist die Synthese und Charakterisierung 

einiger mehrkerniger Rutheniumcarbonylcarboxylate. Strukturell verwandte Molybdändimere sind von 

konzeptionellem Interesse für die Herstellung funktioneller Materialien zur Anwendung in der 

Molekularelektronik.  
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Abstract  

Industrial catalysis shapes many aspects of modern life. Numerous advances of the past century are closely tied 

to milestones in the fields of catalysis and polymer science. In this context, this work focuses on the 

investigation of several industrially relevant, catalytic processes, namely hydrosilylation, epoxidation and 

transvinylation. In particular, the mechanistic aspects of these reactions as well as novel catalyst structural 

motifs and related complexes are examined. 

Today, hydrosilylation ranks among the most important homogeneously catalyzed industrial processes. The 

reaction is executed using mainly platinum catalysts which were developed about half a century ago. 

Regardless of its well established application, the understanding of this reaction lags significantly behind the 

vast synthetic possibilities. This work presents a fundamental mechanistic study of platinum-catalyzed 

hydrosilylation, providing a further development of the catalytic cycle for the first time since the original 

model in 1965. In addition, new structural motifs of Pt(0) NHC complexes are reported. Their remarkable 

catalytic performance can be rationalized by means of electrochemistry (cyclic voltammetry) and density 

functional theory (DFT). The ensuing principles can be used for the prediction of catalytic activity of 

potential structurally analogous target structures. Furthermore, the first mechanistic investigation of iridium-

catalyzed hydrosilylation of allyl compounds is presented in view of its increasing importance over the last 

years due to the significantly enhanced selectivity compared to platinum catalysts. The stoichiometric reaction 

of one of the most common iridium catalysts, [{IrCl(cod)}2], yields a structurally intriguing allyl-bridged 

iridium dimer, which is also subject of this work.  

The commercial relevance of catalytic epoxidation stems from the production of industrially relevant 

intermediates such as ethylene and propylene oxide. In addition, the accessibility of highly functionalized 

products via epoxide intermediates is harnessed by the pharmaceutical industry. Bearing this in mind, part of 

this work is dedicated to the further development of established structural motifs of molybdenum epoxidation 

catalysts.  

Ruthenium-catalyzed epoxidation offers a facile synthetic access to vinylesters, which are commonly used 

monomers for the production of a variety of end-use polymers. A mechanistic study of the principles 

governing this reaction in conjunction with the determination of the probable structural motif of the 

catalytically active species is presented in this work. The synthesis and characterization of several novel 

multinuclear ruthenium carbonyl carboxylates is closely related to this topic. Structurally related molybdenum 

dimers are of conceptional interest for the production of functional materials for molecular electronics, 

particularly molecular wires.  
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List  of  Abbreviat ions 

 

aq.  aqueous 

B3LYP  Becke, three parameter, Lee-Yang-Parr exchange-correlation fuctional 

BP  British Petroleum, plc 

cod  cycloocta-1,5-diene 

Cp  η5-cyclopentadienyl 

CV  cyclic voltammetry 

DAniF  N,N’-di(p-anisyl)formamidinate 

DArF  N,N’-diarylformamidinate 

DFT  density functional theory 

DMSO  dimethylsulfoxide 

DPV  differential pulse voltammetry 

dvtms  1,1,3,3-tetramethyl-1,3-divinyldisiloxane 

∆E1/2  half-cell potential 

equiv.  equivalents 

ESI  electrospray ionization 

Fc  ferrocene 

Fc+  ferrocenium 

Fc–CO2
– ferrocene carboxylate 

GC  gas chromatography 

HOMO  highest occupied molecular orbital 

IFP  Institut Français du Pétrole 

IL  ionic liquid 

IVCT  intervalence charge transfer 

iPrOH  iso-propanol 

IR  infrared 

LLDPE  linear low-density polyethylene 

LUMO  lowest unoccupied molecular orbital 

Mes  mesityl 

MO  molecular orbital 

MS  mass spectrometry 

NHC  N-heterocyclic carbene 
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NMR  nuclear magnetic resonance 

oz  ounce (28.3 g) 

Ph  phenyl 

PO  propylene oxide 

Py  pyridine 

R–CO2
–  carboxylate 

RTIL  room temperature ionic liquid 

SAc  thioacetate 

sBu  sec-butyl 

tBu  tert-butyl 

TBHP  tert-butylhydroperoxide 

THF  tetrahydrofuran 

TOF  turnover frequency 

Tol  toluene, para-tolyl 

TON  turnover number 

UV-Vis  ultraviolet-visible 
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1 .1  Industrial  Catalysis  

The energy and chemical industries have thrived on the economic developments of the past century, fuelled by 

a surge in world population, soaring demand for products, major breakthroughs in the fields of catalysis and 

polymer sciences, and finally the transition from coal to oil and gas as feedstock.1 In this context, catalysis can 

be considered the enabling science and technology for the sustainability challenge, being the most important 

technology in environmental protection, with applications including e.g. emission prevention with the 

paramount example of the catalytic converter in automobiles.2 Traditional domains of industrial catalysis 

comprise the fine chemical industry as well as the production of fuels and chemical raw materials from fossil 

resources such as coal, oil and gas,3 with its commercial relevance increasing with the rising demand for new 

products and improvements in engineering technology.2,4-6 The rapid, innovative development and efficiency 

enhancement of refining technologies and industrial processes in the past can largely be attributed to 

advancements made in the field of catalysis, a term which originates from the Old Greek word for “activate” or 

“unleash”.7 It constitutes the most important value-added process in chemical industry with a 100-400% rate 

of value increase,8 accounting for a worldwide catalyst market of $ 16.3 billion.3,9 Estimates indicate that 90% 

of chemical products are manufactured using catalytic processes,2,3,10 including many everyday amenities such 

as pharmaceuticals, construction materials, cosmetics, synthetic fibres and fluid containers.11-13 In addition, the 

nutrition of a large proportion of the world’s population depends on the Haber-Bosch process for the 

production of fertilizers (Figure 1).14  

 

 

F igure  1 .  Trends in human population and nitrogen use throughout the twentieth century. Of the total world 
population (solid line), an estimate is made of the number of people that could be sustained without reactive nitrogen 
from the Haber-Bosch process.14 Reprinted with permission from Nat. Geosci. 2008, 1, 636-639. Copyright 2008 Nature 
Publishing Group. 
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wealth was built on the development of 
safe methods for using nitroglycerine, 
and his patents for dynamite and gelignite 
eventually fi nanced the Nobel Foundation. 
As a German patriot, Haber was keen to 
develop explosives and other chemical 
weapons, which to his mind were more 
humane, because they “would shorten the 
war”4. Th e need to improve munitions 
supplies was in reality a central motivation 
for industrial ammonia production.

With the blockade of Chilean saltpeter 
supplies during the First World War, the 
Haber–Bosch process provided Germany 
with a home supply of ammonia. 
Th is was oxidized to nitric acid and 
used to produce ammonium nitrate, 
nitroglycerine, TNT (trinitrotoluene) and 
other nitrogen-containing explosives. 
Haber’s discovery therefore fuelled the 
First World War, and, ironically, prevented 
what might have been a swift  victory for 
the Allied Forces. Since then, reactive 
nitrogen produced by the Haber–Bosch 
process has become the central foundation 
of the world’s ammunition supplies. As 
such, its use can be directly linked to 
100–150 million deaths in armed confl icts 
throughout the twentieth century5.

FERTILIZERS

At the same time, the Haber–Bosch 
process has facilitated the production of 
agricultural fertilizers on an industrial 
scale, dramatically increasing global 
agricultural productivity in most regions 
of the world7 (Fig. 1). We estimate that the 
number of humans supported per hectare 
of arable land has increased from 1.9 to 
4.3 persons between 1908 and 2008. Th is 
increase was mainly possible because of 
Haber–Bosch nitrogen.

Smil estimated that at the end of 
the twentieth century, about 40% of 
the world’s population depended on 
fertilizer inputs to produce food2,6. 
It is diffi  cult to quantify this number 
precisely because of changes in cropping 
methods, mechanization, plant breeding 
and genetic modifi cation, and so on. 
However, an independent analysis, based 
on long-term experiments and national 
statistics, concluded that about 30–50% of 
the crop yield increase was due to nitrogen 
application through mineral fertilizer7.

It is important to note that these 
estimates are based on global averages, 
which hide major regional diff erences. 
In Europe and North America, increases 
in agricultural productivity have been 
matched by luxury levels of nitrogen 
consumption owing to an increase in the 
consumption of meat and dairy products, 
which require more fertilizer nitrogen 

to produce — this is partly refl ected in 
the global increase in per capita meat 
consumption (Fig. 1). In contrast, the 
latest Food and Agriculture Organization 
report shows that approximately 850 
million people remain undernourished8.

Overall, we suggest that nitrogen 
fertilizer has supported approximately 
27% of the world’s population over 
the past century, equivalent to around 
4 billion people born (or 42% of the 
estimated total births) since 1908 (Fig. 1). 
For these calculations, we assumed 
that, in the absence of additional 
nitrogen, other improvements would 
have accounted for a 20% increase in 
productivity between 1950 and 2000. 
Consistent with Smil6, we estimate, 
that by 2000, nitrogen fertilizers were 
responsible for feeding 44% of the world’s 
population. Our updated estimate for 
2008 is 48% — so the lives of around 
half of humanity are made possible by 
Haber–Bosch nitrogen.

In addition, fertilizer is required 
for bioenergy and biofuel production. 
Currently, bioenergy contributes 10% 
of the global energy requirement, 
whereas biofuels contribute 1.5%. Th ese 
energy sources do not therefore have a 
large infl uence on global fertilizer use9. 
However, with biofuel production set to 
increase, the infl uence of Haber–Bosch 
nitrogen will only grow.

Together with the role of reactive 
nitrogen in ammunition supplies, these 
fi gures provide an illustration of the 
huge importance of industrial ammonia 
production for society, although, on 
balance, it remains questionable to what 
extent the consequences can be considered 
as benefi cial.

UNINTENDED CONSEQUENCES

Of the total nitrogen manufactured by 
the Haber–Bosch process, approximately 
80% is used in the production of 
agricultural fertilizers10. However, a large 
proportion of this nitrogen is lost to the 
environment: in 2005, approximately 
100 Tg N from the Haber–Bosch 
process was used in global agriculture, 
whereas only 17 Tg N was consumed 
by humans in crop, dairy and meat 
products11. Even recognizing the other 
non-food benefits of livestock (for 
example, transport, hides, wool and so 
on), this highlights an extremely low 
nitrogen-use efficiency in agriculture 
(the amount of nitrogen retrieved in 
food produced per unit of nitrogen 
applied). In fact, the global nitrogen-
use efficiency of cereals decreased 
from ~80% in 1960 to ~30% in 200012,13. 
The smaller fraction of Haber–Bosch 
nitrogen used in the manufacture of 
other chemical compounds (~20%) has 
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Figure 1 Trends in human population and nitrogen use throughout the twentieth century. Of the total world 
population (solid line), an estimate is made of the number of people that could be sustained without reactive 
nitrogen from the Haber–Bosch process (long dashed line), also expressed as a percentage of the global 
population (short dashed line). The recorded increase in average fertilizer use per hectare of agricultural land 
(blue symbols) and the increase in per capita meat production (green symbols) is also shown.
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The art of catalysis lies in the efficient and selective transformation of raw materials into useful base and fine 

chemicals with robust and highly active catalysts. A number of indispensable catalytic processes have been 

developed in the past century, shaping modern life.9 Apart from ammonia production (vide supra), important 

milestones include for instance methanol synthesis from syngas, catalytic cracking, the Fischer-Tropsch 

process, acetaldehyde production via ethylene oxidation (Wacker process) and the Shell higher olefin process 

(SHOP, Figure 2).3 

 

Figure  2 .  Development of selected industrially important catalytic processes in the past century.3 

 

From an industrial point of view, heterogeneous catalysis is the predominant technology, accounting for 80% 

of catalytically manufactured products, followed by homogeneous catalysis (15%) and biocatalysis (5%).3,15 In 

analogy to its historical development, heterogeneous catalysis was the first to be applied commercially to a 

large extent, while biocatalysis constitutes the most recent discipline.16 Homogeneous catalysis lies in between, 

accounting for a considerable amount (109 tons) of bulk chemicals produced in processes such as 

hydroformylation, carbonylation, oxidation, hydrogenation, metathesis and hydrocyanation on the one hand, 

and providing access to fine chemicals with high atom efficiencies and enantiomeric excess (ee) on the other 

hand.16-19  

Recent research efforts in industrial chemistry are often directed towards the incorporation of the principles of 

Green Chemistry, i.e., among others, waste prevention, atom economy, energy efficiency, renewable 

feedstocks and catalysis.20-25 These characteristics are typically showcased by biological reactions, which are 

generally extremely efficient and selective; moreover, they operate under mild conditions through inherently 

1913 
Ammonia Synthesis  
from the Elements  

(Haber-Bosch Process)

1915 
Oxidation of Ammonia 

 to Nitric Oxide 
 (Ostwald Process)

~1990 
Removal of Organic  
Components from  

Exhaust Fumes  
via Catalytic Combustion

~1986 
Removal of Nitric Oxides  
from Power Plant Exhaust  

Fumes via Reduction 
 with Ammonia

~1985 
Enantioselective  

Catalysis

1977 
Production of Linear Alpha 

Olefins via Ethylene 
Oligomerization and Olefin 

Metathesis  
(Shell Higher Olefin 

Process, SHOP)

1975 
Catalytic Converter  

in Cars for the  
Conversion of  

Toxic Exhaust Gases

1923 
Methanol Synthesis  

from Carbon Monoxide and  
Hydrogen (Syngas)

1938 
Liquid Fuels from  
Carbon Monoxide  

and Hydrogen  
(Fischer-Tropsch Process)

1936 
Fluid Catalytic Cracking (FCC) 
 of high-boiling Hydrocarbon 

 Fractions of Petroleum  
Crude Oil to Gasoline

1939 
Hydroformylation of Alkenes  

to Aldehydes

1955 
Ziegler-Natta 

Polymerization 

1962 
Production of Syngas via 

Steamreforming of 
Natural Gas or Light 

Gasoline

Use of Zeolithe Catalysts 
in Fluid Catalytic 

Cracking

Alkene Metathesis

1960 
Acetaldehyde Production 
via Ethylene Oxidation 

(Wacker Process)

1957 
Hydrosilylation 



1 Introduction 
 

Page | 4  

‘green’ processes.26,27 Many scientific endeavors aim to understand and exploit the elegant catalytic principles 

found in nature. Such biomimetic or bioinspired catalyst systems serve as models for innovative approaches to 

the utilization of alternative raw materials, e.g. methane,26,27 lignin28,29 and carbon dioxide.27,30  

 

1 .2  Homogeneous Industrial  Catalysis  

Considering that nearly all biological reactions are based on catalysis,15 the concept of defined metal sites 

facilitating a specific type of reaction has been used in an enzymatic environment in nature for millions of 

years, for example in methane monooxygenases or carbonic anhydrases.8,31 In a strictly chemical context, the 

enormous interest in organometallic chemistry since the discovery of ferrocene in the early 1950s is closely 

related to the advance of homogeneously catalyzed processes for the production of commodity and fine 

chemicals, coinciding with a marked increase of the volume and value of such products.32 Most advances in 

homogeneous industrial catalysis are based on the development of transition metal and organometallic 

complexes15 rather than homogeneous acid-base catalysts (Figure 3).16  

In general, homogeneous catalysts do not suffer from the typical drawbacks of heterogeneous catalysts such as 

the pressure gapI and the lack of a deeper understanding of mechanistic processes due to the difficulty of in situ 

characterization of relevant species.33,34 The major disadvantage of homogeneously catalyzed reactions is the 

difficult separation of the products from the reaction mixture, since all components of the reaction are, by 

definition, present in the same phase.8,31,32,35 Their key benefit is that their behavior during catalysis is dictated 

by their molecular architecture; therefore, reaction mechanisms can be rationalized and tuned in a controlled 

and predictable fashion by specific modification of the catalyst.36,37 By virtue of the characteristic selectivity 

and efficacy of homogeneous catalyst systems, the objectives of Green Chemistry are predominantly pursued 

by means of homogeneous catalysis,16 which has revolutionized synthetic organic chemistry in both academia 

and industry.35,II Consequently, the importance of homogeneous catalysis for the production of fine and 

specialty chemicals such as pharmaceuticals, agrochemicals, flavors and fragrances has been increasing 

tremendously in recent years.18 This is illustrated by three Nobel Prizes, which were awarded for merits in this 

field in the 21st century: (I) the first in 2001 to KNOWLES, NOYORI and SHARPLESS for their work related to 

asymmetric catalysis,38 (II) the second in 2005 to CHAUVIN, GRUBBS and SCHROCK for their research in the 

                                                                    
I The famous pressure gap problem stems from the fact that industrial catalytic processes are carried out at pressures in 
the range of 1 to 100 bar, while classical surface science has been restricted to analytical methods applicable between 10–4 
to 10–10 bar. 
II It should be noted that the waste production per kg product is much higher in the fine chemicals and pharmaceuticals 
sector due to the required purity and more complex synthesis of these products in addition to the profit margin structure. 
This can be illustrated by the E factor, which is defined as the amount of by-products produced per kg of product. Typical 
E factors are as follows: bulk chemicals, <1-5; fine chemicals, 5-50; pharmaceuticals, 25-100. However, in absolute 
numbers, fine chemical and pharmaceutical industry account for only a fraction (<1%) of the total waste production.19 
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field of metathesis,39 and (III) the third in 2010 to HECK, SUZUKI and NEGISHI for their investigations of 

palladium-catalyzed C–C cross-coupling reactions.40  

 

 

F igure  3 .  Milestones in homogeneous transition metal catalysis from 1985 to present.8 IFP = Institut Français du 
Pétrole; BP = British Petroleum plc; IL = ionic liquid; LLDPE = linear low density polyethylene. 

 

The evaluation of the importance of specific catalytic processes can be carried out based on quantity (mass, 

bulk chemicals) or economic value of the manufactured goods (fine chemicals). With regard to the annual 

output in tons, the most important industrial applications of homogeneous catalysis include oxidation 

processes (18 Mt a–1), hydroformylation of alkenes (>7.5 Mt a–1), carbonylation of methanol/methyl acetate 

(>7.0 Mt a–1), hydroformylation of isooctenes/ethylene oxide (>2.0 Mt a–1) as well as hydrogenations, 

oligomerization of ethane and hydrocyanations (<2 Mt a–1 each).8 All of the above are used for the production 

of commodity chemicals, which in turn account for roughly 40%41 of worldwide chemical42 and 

pharmaceutical43 sales of € 3.9 trillion in 2014. When considering the generated value, fine (4%) and specialty 

chemicals including pharmaceuticals (55%) make up the remaining 60% of the global market, even though the 

product amount is by far inferior to bulk chemicals.41 Figure 4 illustrates the segments of the chemical 

production in Europe in 2013.42  

Year Inventor Milestone Metal 

2010 R. F. Heck, A. Suzuki, E. Negishi Nobel Prize (C–C coupling) Pd 

2005 Y. Chauvin, R. H. Grubbs, R. R. Schrock Nobel Prize (Metathesis) Ru, Mo 

2004 Sasol, Ltd Selective Ethene Tetramerization Cr 

2003 R. R. Schrock Homogeneous N2 Activation Mo 

2002 BP Selective Ethene Trimerization Cr 

2001 W. S. Knowles, R. Noyori, K. B. Sharpless Nobel Prize (Asymmetric Catalysis) Rh, Ru, Ti, Os 

D. J. Cole-Hamilton Hydroformylation in supercritical CO2/IL Rh 

1998 G. C. Bazan LLDPE by Tandem Catalysis Ti+Zr 

IFP, Y. Chauvin Difasol Process (IL) 

1997 J.-M. Basset Alkane Metathesis Ta 

1996 BP Cativa Process: Acetic Acid Ir/Ru 

1995 S. L. Buchwald, J. F. Hartwig Amination of Aromatics Pd 

1994 R. Noyori Supercritical CO2 as solvent 

1993 H.  U. Blaser Metolachlor synthesis Ir 

1992 W. A. Herrmann Carbene Ligands in Catalysis 

1991 Kuraray Company, Ltd. Telomerization of butadiene/water Pd 

J.-M. Basset Surface Organometallic Chemistry 

1986 B. Cornils  Ruhrchemie/Rhône-Poulenc Process Rh 
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F igure  4 .  Important areas of production in the chemical industry in Europe in 2013 (excluding pharmaceuticals), which 
amount to a total of € 527 billion.42 Pharmaceutical sales in Europe account for a revenue of € 218 billion.44 Reprinted 
with permission from Cefic Chemdata International 2014. Copyright 2014 Cefic. 

 

Important catalytic reactions employed for the production of fine and specialty chemicals include cross-

coupling, hydroformylation, hydrosilylation, epoxidation, asymmetric hydrogenation, and cyanation.18 

Examples for important products are menthol, citral, metolachlor, ibuprofen, propanolol as well as vitamins C 

and E.8 

The tremendous economic significance of hydrosilylation, epoxidation and transvinylation provides the 

rationale for the focus of this work. These reactions are industrially relevant, homogeneously catalyzed 

chemical processes, which will be examined in more detail in the following chapters. In addition, the concept 

of rational design will be explored with respect to the development of new catalyst structural motifs and 

functional redox-active materials for molecular wires.   
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1 .3  Hydrosi lylat ion 

Hydrosilylation is the largest-cost application45 and a prime example of industrial catalysis.46-56 It typically 

comprises the addition of a hydrosilane to a C–C multiple bond, providing access to organofunctional 

sil(ox)anes and silicones, which are commonly used for the production of a variety of commercially relevant 

products such as adhesives, crosslinkers and polymers (Scheme 1).46-56  

 

 

Schem e 1.  Transition metal-catalyzed hydrosilylation (M = e.g. Pt, Ir, Pd, Rh).45-59 

 

Consequently, it has emerged as one of the largest-scale applications of homogeneous catalysis.57-59 Depending 

on the desired utilization, several catalysts based on platinum, palladium, rhodium and iridium are currently 

employed in industry, with platinum dominating the hydrosilylation catalyst market.45,56 These metals are 

comparatively expensive at an average price of € 495 (Ir), € 630 (Pd), € 870 (Rh) and € 965 (Pt) per oz 

(1 oz = 29.3 g) in 2015.60  

 

 

F igure  5 .  Monthly average metal prices between January 2011 and January 2016 in €/oz (1 oz = 29.3 g). 
Average Prices: Pt, € 1305, Pd, € 655, Rh, € 1172, Ir, € 728.61 

 

Owing to the superior properties of these metals, and particularly of platinum in hydrosilylation catalysis, 

industry tolerates their high cost, which is expected to gradually increase even further due to the difficult 

separation of catalyst and reaction product in many hydrosilylation processes. As a result, the staggering 
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amount of 4-6 t of platinum are “lost” annually in the product stream of the catalytic process for the 

manufacture of cured silicones,45 which corresponds to almost the entire platinum demand of the silicones 

industry59 and 23-35% of the platinum demand of the chemical industry,62,63 highlighting the profound 

importance of metal-catalyzed hydrosilylation in chemical industry. 

 

1 .3.1 Platinum-catalyzed Hydrosi lylation 

The key characteristics of hydrosilylation catalysis  include its high atom-efficiency, broad substrate scope and 

widespread application, which allow for a variety of synthetic pathways.46-56,64 Even though recent research 

efforts have been directed towards the design of new commercially viable ignoble metal catalysts,56,59,65-67 no 

match for the traditional platinum catalysts has been developed so far, rendering industrial hydrosilylation still 

dependent on platinum (Scheme 2).56,68-72 

 

 

Schem e 2.  Platinum-catalyzed hydrosilylation and molecular structures of the industrially relevant Speier’s,70,71 
Karstedt’s,68,69,73 and Markó’s catalyst.72,74-76 iPrOH = iso-propanol, dvtms = 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 
NHC = N-heterocyclic carbene. For Speier’s catalyst, the species formed in solution in situ is drawn.77 

 

Being the most versatile and established catalyst of these, Karstedt’s catalyst [Pt2(dvtms)3] (dvtms = 1,3-

divinyl-1,1,3,3-tetramethyldisiloxane) continues to serve as benchmark system for newly developed 

hydrosilylation catalysts.56,65,78,79  

 

M echanist ic  C onsiderat ions  

In light of the fact that this reaction has been commonly practiced for over half a century, the progress in 

understanding the associated catalytic cycle has been arduous and slow. This can be attributed to the elusive 

nature of highly reactive intermediates formed by extremely active catalysts such as the ones typically used in 
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hydrosilylation catalysis.57 The current understanding of the reaction still dates back to 1965, when CHALK 

and HARROD introduced a simple, yet very elegant mechanistic model that remains the widely accepted 

mechanism for platinum-catalyzed hydrosilylation in the literature even today (Scheme 3).80  

 

 

Schem e 3.  Chalk-Harrod (CH) mechanism for the platinum-catalyzed hydrosilylation of alkenes.54,79,81 The reaction 
proceeds along the following steps: ICH, oxidative addition of HSiR3; IICH, coordination of olefin; IIICH, insertion of the 
olefin into the Pt–H bond; IVCH, reductive elimination of alkylsilane. Steps ICH-IIICH are believed to be reversible. 

 

The Chalk-Harrod mechanism proceeds along four basic steps: ICH, oxidative addition of the hydrosilane; IICH, 

coordination of the olefin; IIICH, migratory insertion of the olefin into the Pt–H bond, and IVCH, reductive 

elimination of the hydrosilylation product (CH = Chalk-Harrod). Step IVCH is considered to be the rate 

determining, irreversible step, while steps ICH-IIICH are assumed to be reversible.54,79,81 The formation of Pt0 

particles has been attributed to catalyst deactivation.47,56,79  

Mechanistic studies in this field79,81-85 typically focus on the identification of the active catalyst species [Pt], 

which has been shrouded for a long time. Stein, Lewis et al.79 and Roy et al.81 concluded that it contains Pt–Si 

and Pt–C bonds, while no evidence for Pt–H bonds has been detected so far. It is believed to resemble the 

molecular structure depicted in Figure 6:  

 

 

F igure  6 .  Proposed (generic) structure of the active catalyst species in platinum-catalyzed hydrosilylation according to 
literature.79,81 
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The Chalk-Harrod mechanism is in agreement with the mechanistic insights gained by Lewis and Stein,79 

Roy,81 and others,82-85 which provide evidence for the prevalence of the classical Chalk-Harrod mechanism 

rather than the modified variant86,87 comprising the insertion of the olefin into the Pt–Si bond. Several 

theoretical investigations reach the same conclusion and support the notion that step IVCH is rate limiting.88-90  

While the catalytic mechanism of less active transition metals has been the subject of a number of 

investigations, platinum-based systems have been largely omitted due to their tremendous activity and the 

related highly sensitive nature of the intermediate species.57 The inconvenient characteristics of the 

industrially most relevant catalyst, Karstedt’s catalyst, have contributed further to this negligence. Owing to its 

tendency to form platinum black without excess olefin ligand, it is usually distributed as a highly diluted 

solution rather than a solid,69,73 typically containing roughly 2 wt% of Pt. This impedes many common 

laboratory techniques of mechanistic studies such as isolation and characterization of intermediates and 

renders them painstakingly difficult, if not altogether impossible. As a result, only one recent report employs 

Karstedt’s catalyst as platinum source.79 In addition, no in-depth kinetic study of the properties of this pivotal 

industrial catalyst has been put forth to date, notwithstanding that unraveling the intrinsic rate laws might 

prove highly advantageous for a better understanding of the catalytic cycle.  

Moreover, little attention has been paid to internals alkenes as substrates for hydrosilylation catalysis, which 

are known to be less prone to undergo hydrosilylation than terminal olefins.46,47,56 Previous reports have 

unanimously ascribed this solely to steric aspects, which does not adequately account for the widely varying 

reactivity of structurally closely related alkenes. For example, norbornene is prone to hydrosilylation under 

comparatively mild conditions,91 while cyclohexene is challenging to hydrosilylate.92 This demonstrates that 

not the internal position of the double bond per se is decisive and that other factors such as coordination 

ability and electron density at the double bond must exert an influence.  

In this context, a detailed mechanistic study of the reaction mechanism of hydrosilylation is presented as part 

of this work. It comprises both kinetic and isotope labeling experiments and reveals several new principles 

governing platinum-catalyzed hydrosilylation. The Chalk-Harrod mechanism can be further developed based 

on the presented results.  
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Structural  M oti fs  

In addition to the endeavor for novel catalyst systems based on ignoble metals, several new structural motifs of 

platinum complexes applicable to hydrosilylation catalysis have been presented recently (Figure 7).64,65,72,74,76,93-

106 

 

 

F igure  7 .  Selected structural motifs of recently reported Pt(0) hydrosilylation catalysts.64,65,72,74,76,95,96,99-105 

 

The underlying idea is to exploit the exceptional reactivity of platinum in hydrosilylation catalysis and develop 

more stable, hence reusable catalysts at the same time to reduce the enormous platinum consumption. One 

established way to increase complex stability is the introduction of N-heterocyclic carbene (NHC) ligands as 

spectator ligands, which typically form very strong metal-carbon bonds by virtue of their strong σ-donating 

and poor π-accepting character.74,107 In addition, variation of the NHC allows for stereoelectronic tuning at the 

metal center.107-109  

Consequently, the use of NHC ligands has greatly extended the scope of Pt(0) complexes in hydrosilylation 

catalysis.64,72,76,93 Complexes of the type [Pt(dvtms)(NHC)] (Markó’s catalyst, Scheme 2) are easily 

synthesized, stable towards both air and moisture, and show remarkable selectivity and efficiency in 

hydrosilylation of alkenes and alkynes.64,72,76,94 Several structurally derived Pt(0) NHC complexes have been 

reported in recent years,93-97 all of which venture to exploit the strong Pt–CCarbene bond while maintaining a 

high reactivity in hydrosilylation catalysis at the same time. It has been established that steric encumbrance 

caused by bulky aryl substituents is instrumental for achieving high selectivity and catalytic activity.74 

Imidazo[1,5-a]pyridine-3-ylidenes (ImPy–R) are structurally related to 1,3-disubstituted NHCs (Figure 8). 
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F igure  8 .  Generic molecular structure of imidazo[1,5-a]pyridine-3-ylidene complexes. 

 

They are among the strongest heteratomic σ-donors and match 1,3-disubstituted imidazolylidenes with 

regard to steric demand.110-112 Their bicyclic structure facilitates a unique stereoelectronic environment at the 

metal center, which may easily be manipulated by varying the substituent R on the free wingtip of the 

integrated NHC ligand.110-112 These characteristics render imidazo[1,5-a]pyridine-3-ylidenes (ImPy–R) 

promising candidates for the development of derived catalytically active transition metal complexes.60,110-114 

Their application in novel Pt(0) hydrosilylation catalysts is presented in this work.  

 

1 .3.2 Iridium-catalyzed Hydrosi lylation 

In the context of hydrosilylation, iridium complexes are predominantly employed in the conversion of allyl 

compounds to yield γ-substituted propylsilanes. These are commercially relevant products due to the multiple 

functionalities of the obtained products, although their efficient synthesis remains one of the current 

challenges in hydrosilylation catalysis (Scheme 4).56,65,115  

 

 

Schem e 4.  Ir- and Pt-catalyzed hydrosilylation of allyl compounds.56,65,115 

 

The application of typical platinum-based hydrosilylation catalysts in these transformations initiates several 

competing reaction pathways associated with considerable byproduct formation and consequently low 

selectivities.115-121 Particularly the conversion of allyl chloride, the most widely used allyl compound in 

industry, is prone to byproduct formation.56,65 The use of iridium catalysts has emerged and grown explosively 

in the past decade to circumvent the selectivity issues inherent to platinum catalysis, with the most prominent 

catalyst precursor being [{IrCl(cod)}2] (cod = cycloocta-1,5-diene).122-134 The major drawback of these 

catalyst systems is their short lifetime, resulting in low yields and the necessity for high metal loadings.56,65 
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Catalyst loadings can be significantly reduced by the use of additivesIII such as cycloocta-1,5-diene (cod); 

however, a deep mechanistic understanding of the catalytic system on a molecular level has not been 

established to date, with patent literature constituting the main source of information.122-134 Thus, part of this 

work has been dedicated to the in-depth mechanistic study of the iridium-catalyzed hydrosilylation of allyl 

compounds. It features the results of both stoichiometric and catalytic experiments and also reveals the main 

deactivation pathways, paving the way toward the design and implementation of more efficient catalyst 

systems. In addition, the extension of the substrate scope to include allyl acetate has led to the successful direct 

synthesis of the first µ2-η2,η2-allyl bridged diiridium complex showcasing unique structural features.  

  

                                                                    
III In the literature on hydrosilylation, cod is often termed a co-catalyst, which is misleading since it constitutes merely a 
replacement for the degenerated (via hydrogenation) cod ligand (vide infra). 
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1 .4  Epoxidation 

Epoxidation is an important process in the chemical industry, since epoxides offer a facile access to many 

functionalizations by ring-opening reactions and thus constitute important building blocks for a variety of 

polymers such as polyglycols, polyamides and polyurethanes.135,136 In addition, the production of various fine 

chemicals, including e.g. pharmceuticals, agrochemicals, food additives, flavor and fragrance compounds, 

depends on epoxide intermediates.137-139 The relevance of asymmetric epoxidation catalysis for the production 

of enantiomerically pure, biologically active compounds is highlighted by the Nobel prize to B. SHARPLESS in 

2001 (vide supra).140 The most commonly used olefins in epoxidation catalysis are short-chained alkenes 

extracted from mineral oil, such as ethylene and propylene.136,141 Of these, the most important commodity is 

propylene oxide,135 while alternative olefin substrates extracted from sustainable vegetable resources become 

increasingly important in light of the diminishing fossil resources.142 

Industrially, the epoxidation of ethene to ethylene oxide is carried out using molecular oxygen as oxidant in the 

presence of heterogenous silver contacts. On account of the excessive byproduct formation associated with 

oxidation of methyl groups by O2, the strategy of “direct oxidation” has failed for larger substrates such as 

propene or even longer alkenes to date.IV Instead, an indirect process utilizing alkyl hydroperoxides such as 

tert-butylhydroperoxide (TBHP), the oxirane process, is applied (Scheme 5).8  

 

 

Schem e 5.  Selected industrial epoxidation processes.8 (a) Industrial production of ethylene oxide, (b) oxirane process 
for the production of propylene oxide (PO). [M] = Ti(IV)/SiO2 (heterogeneous, Shell) or Mo (homogeneous catalyst, 
Halcon/ARCO). The production of PO is also carried out via several other industrial processes, including the 
chlorohydrin route and the cumene hydroperoxide process according to Sumitomo.144  

 

The significance of PO as base chemical is illustrated by its worldwide annual supply of just shy of 8 million 

tonnes in 2012, which is expected to grow even further to beyond 9 million tonnes in 2017.145 Roughly two 

thirds of this amount is used for the production of polyether polyols, which are an important intermediate in 

the production of polyurethanes. The subsequent outlets of PO production include propylene glycols (20%), 

glycol ethers (5%), isopropanolamines, alkoxylates, cellulose ethers, propylene carbonate, allyl alcohol and 

                                                                    
IV The best selectivities reported are in the range of 50-60% at 9% propene conversion.143 
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1,4-butanediol.143 The oxirane process as developed by Halcon and ARCO in the 1960s was based on Mo, W, 

V and Ti catalysts. Metals with low oxidation potentials and high Lewis acidity are superior in epoxidation 

catalysis, hence reactivity decreases along Mo(VI) > W(VI) > V(V) > Ti(IV).146 In agreement with this trend, 

established benchmark systems in homogeneous epoxidation catalysis include molybdenum and rhenium 

complexes.135 Recent research efforts have been directed towards the development of facile syntheses of high 

valent molybdenum complexes that are active in epoxidation catalysis.139 Particularly η5-cyclopentadienyl 

molybdenum complexes have attracted interest in recent years135,136,139,147-149 by virtue of the possibility of 

haptotropic shifts of the Cp moiety in the transition state and the inert behavior of Cp during epoxidation 

catalysis.150-156 Two main structural motifs and variations thereof prevail in the literature, namely 

[MoCp(CO)3X] and [MoCpO2X] (X = e.g. halide, alkyl; Figure 9).139 

 

 

F igure  9 .  Structural motifs of cyclopentadienyl molybdenum complexes in olefin epoxidation catalysis. X = e.g. halide, 
alkyl.139 Note that substituted Cp derivatives C5R’5, including chiral residues and ansa bridges to X are also in use,139 but 
are omitted here for clarity. 

 

The tricarbonyl compounds [MoCp(CO)3X] can be viewed as pre-catalysts, since they are known to oxidize 

in situ to the active dioxo and oxo-peroxo Mo(VI) species by the hydroperoxide used (Scheme 6).139,157-162 

Bearing this in mind, the stability and robustness of the ligand X towards oxidative conditions is of particular 

importance with respect to recyclability and catalyst lifetime (TON), which is a major aspect in the 

development of industrially relevant catalysts.15,161 Ideally, the formation of the catalytically active Mo(VI) 

species should be facilitated by the Cp and X ligands by stabilization of the corresponding dioxo and oxo-

peroxo species.  

 

 

Schem e 6.  Oxidation of [MoCp(CO)3X] precatalysts with TBHP.162 TBHP = tert-butylhydroperoxide, tBuOH = tert-
butanol. 
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In recent years, several ligand spheres have been investigated as part of the η5-cyclopentadienyl tricarbonyl 

molybdenum structural motif.139,163-169 In this subclass of molybdenum precatalysts for olefin epoxidation, the 

ansa-bridged cyclopentadienyl Mo complex [{η5-C5H4[CH(CH2)3]-η1-CH}Mo(CO)3]170 demonstrates the 

highest activity with a TOF of 11800 h–1 in organic solvents171 and TOFs up to 44000 h–1 in room temperature 

ionic liquids (RTILs).172 

N-heterocyclic carbene (NHC) ligands are often employed as spectator ligands in homogeneous catalysis 

(vide supra).107-109 As a consequence of the robust metal-carbon bond originating from their strong σ-donating 

and poor π-accepting character, their implementation in the complex coordination sphere often facilitates 

higher complex stability, particularly where high oxidation states of the metal are involved, as is the case in 

epoxidation catalysis.107 In addition, variation of the NHC allows for stereoelectronic tuning at the metal 

center.107-109 Several complexes with the general formula [MoCp(CO)2(NHC)X] (X= halide, alkyl) have been 

reported, which can be viewed as structural analogues to [MoCp(CO)3X] with one carbonyl ligand replaced 

by the NHC .173-175 These complexes exhibit indeed longer catalyst lifetimes compared to their tricarbonyl 

congeners due to their enhanced stability under oxidative conditions, allowing for higher conversions. 

However, long induction periods and comparatively low turnover frequencies (TOFs) indicate that the 

stereoelectronic features of the NHC ligand are beneficial for catalyst stability, but detrimental to catalytic 

activity.173-175 

 

 

F igure  10.  Selected previously reported cyclopentadienyl NHC molybdenum complexes A,175 B,173 C,174 and D174 with 
similar structural motifs. Tol = para-tolyl, Ph = phenyl, Mes = mesityl. 

 

Imidazo[1,5-a]pyridine-3-ylidenes (ImPy–R) are structurally related to 1,3-disubstituted imidazolylidenes 

(Figure 8). Owing to their bicyclic structure, they facilitate a unique stereoelectronic environment at the metal 

center, which may easily be manipulated by varying the substituent R on the free wingtip of the integrated 

NHC ligand.110-112  

This type of ligand has attracted interest since the synthetic route has been significantly simplified by the 

group of ARON,111 and consequently several imidazo[1,5-a]pyridine-3-ylidene transition metal complexes 

based on Rh,60,113,114 Ir,110,113 and Pd60,110 have been reported for various applications such as allylic 

substitution,60 Suzuki-Miyaura cross-coupling,110 and other cross-coupling reactions.112 They can be 

IMoOC
OC

BrMoOC
OC

ClMoOC
OC

B CA

Ph BF4NCCH3MoOC
OC

D

N
N
N N

N
N

N
Mes

Mes N
N

Mes

Mes
Tol

Ph



1 Introduction 
 

Page | 17  

considered promising candidates for the further development of [MoCp(CO)2(NHC)X] type epoxidation 

catalysts bearing in mind their unique steric and electronic characteristics. Hence, the report of two novel 

NHC molybdenum complexes, [CpMo(CO)2(ImPyMes)Cl] (7) (ImPyMes = 2-mesitylimidazo[1,5-

a]pyridine-3-ylidene) and [CpMo(CO)2(ImPyMes)(NCCH3)]BF4 (8), and their application as precatalysts 

in olefin epoxidation is part of this work. 

 

1 .5  Transvinylation 

Vinyl ester monomers can be used in a wide range of applications and can be converted into a plethora of end 

product polymers.176 The industrial applications of vinyl esters include paint synthesis,177 medical products,178 

paper coatings,179 and construction materials,180 as well as organic synthesis and pharmaceutical  

chemistry.181-183 In addition, vinyl ester resins are used for the preparation of polymer matrix composites in 

both military and commercial applications due to their high modulus, high impact strength, high glass 

transition temperature, low weight and low cost.184 Owing to the economic interest in vinyl ester monomers, 

several synthetic strategies have been established for their synthesis (Scheme 7). These include the reaction of 

carboxylic acids and acetylene,185,186 direct addition of carboxylic acids to terminal alkynes catalyzed by 

mercury salts,187 Ru-,188-192 Rh-,193 Pd-,194 or Ir-195 complexes, and allylic oxidation of olefins196-198 using 

Pd(OAc)2. The synthetic approach via transvinylation of carboxylic acids with vinyl donors has been reported 

using Hg(II)-199 and Pd(II)-200-203 materials as well as a series of ruthenium precursors such as ruthenium 

carbonyls, ruthenocene or ruthenium trichloride hydrate.204-206  

 

 

Schem e 7.  Catalytic synthetic pathways to vinyl ester monomers.207 (a) Reaction of carboxylic acids and 
acetylene,185,186,208 (b) addition of carboxylic acids to alkynes,187-193,195 (c) allylic oxidation of olefins using palladium 
acetate,196,197 (d) transvinylation. 199-206  

 

The advantages of catalytic transvinylation compared to the formerly prevalent acetylene route include a 

significantly increased selectivity and mild reaction conditions. Ruthenium catalyst precursors have proven 
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particularly useful by virtue of their lower toxicity compared to mercury-based reactions, their higher stability 

compared to Pd(II) systems as well as the accessibility of thermally labile vinyl esters and functionalized vinyl 

ester building blocks.176,200,202,204-206  

 

1 .5.1 Mechanistic  Considerations 

Despite the industrial utilization of catalytic transvinylation processes, reports on the mechanistic aspects of 

this type of reaction are scarce. Previously published studies focus on the mechanism adopted by Pd(II) 

catalyst precursors, for which – in analogy to olefin oxidation – an intermediate π-complex is proposed.200-202 A 

report by SABEL et al. deduces that Pd(II)-catalyzed transvinylation is best described as an equilibrium 

reaction (1) and comprises the transfer of a vinyl rather than a vinyloxy group (2). In addition, it could be 

demonstrated that bond formation and bond cleavage take place at the same carbon atom (3) and 

transvinylation of cis/trans-isomers leads to inversion of the stereoconfiguration (4). Based on these 

experimental findings, the reaction mechanism illustrated in Scheme 8 was proposed by the group of SABEL.  

 

 

Schem e 8.  Mechansim of Pd(II)-catalyzed transvinylation according to SABEL et al.202 

 

Notwithstanding the publication of several patents reporting the application of a variety of ruthenium 

precursors for ruthenium-catalyzed transvinylation,204-206 mechanistic details have been largely disregarded in 

the literature prior to this work. Thus, part of this study and the preceding Master’s Thesis207 has been devoted 

to a thorough mechanistic investigation of this process.  
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1 .5.2 Structural  Motifs  

The structural chemistry of ruthenium carbonyl carboxylates is closely related to transvinylation catalysis due 

to the nature of the catalytically active ruthenium species, which can be described as a mixture of the mono- 

and dinculear species [Ru(CO)3(η2-O2C–R)(η1-O2C–R)] and [Ru2(CO)4(µ-η2-O2C–R)2(L)2] (R–CO2
– = 

carboxylate, L = two-electron donor).167 Ruthenium complexes of this type have first been described in the 

literature by CROOKS et al.209 and in the course of the past five decades, several catalytic applications apart 

from transvinylation including isomerization,210 hydrogenation,211,212 and C–C–bond formation reactions213 

have been established. This class of compounds is structurally diverse, comprising mono-,214,215 di-,216 and 

tetranuclear213,217-227 as well as polymeric structures.216 If dicarboxylic acids are used, tetra-,228 hexa-,228-230 and 

octanuclear231 cage structures are accessible (Figure 11). 

 

 

 

F igure  11.  Structural motifs of ruthenium carbonyl carboxylates.213-227 For a detailed review on dinuclear ruthenium 
sawhorse type complexes see SÜSS-FINK et al.216  
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techniques. In general, they are composed of two dimeric “Ru2(CO)4(µ-O2C–R)2L” fragments linked via Ru–

O213,217-225  or Ru–Ru217,226,227 interactions (vide supra). On the other hand, trinuclear ruthenium carbonyl 

carboxylates have not been reported at all to date. Structurally related complexes typically involve other ligand 

systems such as thiolates,232 amino acids,233 and formyl234 in complexes of the general formula  

[(µ2-H)Ru3(CO)10(µ2-L)] or bridging ligands like para-ethinylaniline235 and alkynoate acetyl salicylic acid 

esters236 in [HRu3(CO)9(µ3-L)] type complexes. In addition, a number of complexes comprising a  

“(µ3-O)(µ-H)Ru3” core have been reported;237-245 however, µ3-bridging OH groups connecting three Ru 

centers are not known in ruthenium carbonyl carboxylates.V Owing to the rich structural diversity of 

multinuclear ruthenium carbonyl carboxylates, one component of this work is the report of new complexes of 

this type.  

 

1 .6  Ligand Fine Tuning:  Structural  Motifs  for  Molecular  Wires  

The rich structural chemistry of multinuclear ruthenium compounds not only offers access to numerous 

catalytic applications, but has also been exploited for the development of functional materials for molecular 

electronic devices.247-249 Even though R. FEYNMAN envisioned the ultimate integrated circuits to be 

constructed at the molecular or atomic level as early as 1959,250,251 molecular electronics is a relatively young 

area of research.252,253 It can be defined as technology using single molecules, small groups of molecules, carbon 

nanotubes, or nanoscale metallic or semiconductor wires to perform electronic functions.252 More specifically, 

molecular wires are one-dimensional molecules (i.e. chains) with two redox-active termini, which allow for  

(1) electron transport along the chain and (2) electron exchange with the outside world.254 Much of the early 

work in this field has been focused on materials based on organic molecules,255 the majority of which feature 

HOMO-LUMO gaps (Eg) ranging from 2.4 to 5.4 eV, leaving plenty of room for Eg reduction which in turn 

should lead to higher conductivities (Figure 12).256  

 

                                                                    
V There has been one report of a complex comprising a similar structural fragment by the group of SÜSS-FINK. It was 
found that in the tetranuclear cluster [Ru4(µ3-OH)(µ2-H)3(η6-C6H6)4], three of four Ru atoms are connected by a µ3-
bridging OH.246 
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F igure  12.  (a-b)  Examples of synthetic organic molecular wires (SAc = thioacetate).257,258 (c)  DNA has also been 
shown to be a functional molecular wire.255,259-261 

 

One approach is to incorporate metal complex units into the backbone of conjugated organic molecules in 

such a way that optimum orbital mixings between metal and organic fragments may result in a reduced Eg.247 In 

this context, diruthenium handles [Ru2]n+ have been used to cap alkynyl polymer chains, facilitating electron 

transfer along the chain.247,248,262 Contrary to the previously employed mononuclear piano-stool motif 

employed in organometallic wire termini (see Figure 13a), such dinuclear units [M2]n+ facilitate the 

development of oligomers consisting of alternating metal and polymer units (Figure 13d).248 

 

 

F igure  13.  Structural motifs of simple (a , b) and oligomeric (c ,d) metallayne wires.248 

 

The trans ditopic nature of [M2]n+ implied by the realization of such a structural motif is highly beneficial to 

accomplish the key features of scalability and connectivity to external building blocks.252,253 In addition, the 

concept of ligand fine tuning can be exploited in order to tailor the redox properties of the [M2]n+ for the 

desired application. 
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While [Ru2]n+ moieties were used in the pioneering work by the groups of REN and others,247,248,262 a similar 

structural chemistry has been established for several other transition metals, including Re, Cr, Mo and W.263-272 

The properties of these complexes have been studied extensively in relation to the development of 

supramolecular structures and intrinsic informative electrochemical properties.264-266,268,273-282 Apart from 

research efforts regarding their electronic and photophysical properties283-290 in order to examine potential 

applications in catalysis291-293 and biochemistry,294  synthetic work for the development of molecular  

wires269,295-301 has also been presented. Recent research efforts are focused on the isolated molecular building 

blocks in order to foster a deep understanding of the electrochemical properties of the [M2]n+ entities, 

including the specific influence of the employed ligands and identification of any potential sweet spots for their 

fine-tuning.302,303 When redox-active equatorial ligands such as ferrocenecarboxylate (Fc–CO2
–) are employed, 

the mediating effect of the [M2]n+ core and possible coupling effects can be observed. A number of studies 

concentrate on [Mo2]4+ systems,274,287,289,296,304-312 which show great structural diversity when different 

precursors such as cis-[Mo2(DAniF)2(NCCH3)4][BF4]2
270,280,313-315 and its congener trans-

[Mo2(DAniF)2(NCCH3)4][BF4]2 (DAniF– = N,N’-di(p-anisyl)formamidinate) are used.298,316 

 

 

F igure  14.  Metal-metal bonded units used in the formation of extended structures (N∩N = N,N’-di(p-
anisyl)formamidinate; Leq = equatorial ligand, Lax = axial ligand).317 

 

Equatorial and axial ligation can be utilized to attain specifically designed molecular geometries, such as wires, 

ladders and cyclic structures.317 Controllable equatorial ligation offers many advantages with respect to 

synthesis and application of these redox-active entities. The outcome of the related synthetic routes is largely 

affected by ligand basicity, which has been found to be proportional to the trans effect, hence decreasing in the 

order DArF– > R–CO2
– > CH3CN (DArF– = N,N’-diarylformamidinate).318 Several series of dinuclear 

complexes coordinated by two mixed-ligands, [Ru2(DArF)n(O2CCH3)4–nCl] (n = 4–0),319-322 

[Mo2(DArF)n(NCCH3)8–2n][BF4]4–n (n = 4–0),318,323-325 and [Mo2(DAniF)n(O2CCH3)4–n] (n = 4–0)318,325-327 

have been reported,280,282,309,326,328-330 which might be applicable as building blocks for supramolecular structures 

such as molecular wires. Generally speaking, six configurations of [Mo2]4+ complexes coordinated by two 

different bridging ligands are feasible (Figure 15).  

 

Mo Mo

Leq Leq

N N
NN

Leq Leq
LaxLax Mo Mo

N N

Leq Leq
NN

Leq Leq
LaxLax



1 Introduction 
 

Page | 23  

 

F igure  15.  Full series of dinuclear molybdenum complexes with mixed-ligands (O∩O = carboxylate and N∩N = N,N’-
diarylformamidinate). The terminologies Tetra, Tris, Bis, Mono, and Non are based on the number of formamidinate 
ligands.  

 

While there are many examples of the Tetra,325 Bis,295,296,298,318 and Non327,331 species, the synthetic accessibility 

of the Tris and Mono species is limited. Only a few tris-substituted Mo2 complexes  

[Mo2(DArF)3(O2C–R)]326,332-336 and one mono-substituted example of the composition  

[Mo2(o-DMophF)(O2C–Me)3] (o-DMophF = N,N’-di(2-methoxyphenyl)formamidinate)337 have been 

reported to date. However, a full series is required to quantitatively grasp the relative ligand basicity of the 

ligands involved, particularly DArF– and Fc–CO2
–. Therefore, part of this work has been dedicated to the 

investigation of the structural and electrochemical characteristics of representatives of the 

[Mo2(DArF)n(O2C–Fc)4–n] (n = 4–0)295,325,331 series. By virtue of the different redox activities of these 

otherwise closely related compounds, they are promising candidates for the synthesis of molecular wires. 

 

 

 

 

Mo

O

O

O

O
Mo

O

O

O

O
Mo

N

O

O

O
Mo

N

O

O

O
Mo

N

O

N

O
Mo

N

O

N

O
Mo

N

N

O

O
Mo

N

N

O

O
Mo

N

N

N

O
Mo

N

N

N

O
Mo

N

N

N

N
Mo

N

N

N

N

Non Mono trans-Bis cis-Bis Tris Tetra



 

 
 

 

2 OBJECTIVE 

 

 



   2 Objective 
 

Page | 25  

Platinum-catalyzed hydrosilylation ranks among the most important industrial applications of homogeneous 

catalysis in terms of both cost and scale of this process. Even though this reaction has been established for over 

half a century, the development of an understanding for the reaction pathway on a molecular level has been 

arduous and slow. Bearing this in mind, the prime objective of this thesis is the in-depth mechanistic 

investigation of platinum-catalyzed hydrosilylation. Owing to its industrial significance, Karstedt’s catalyst will 

be used as platinum source, even though this choice entails several preparative challenges. A combination of 

isotope labelling, stoichiometric and kinetic experiments will be utilized to reach a deeper understanding of 

the catalytic cycle. In addition, new structural motifs of Pt(0) NHC complexes will be presented utilizing the 

ImPy–R ligands, which have only recently become easily accessible (Scheme 9). 

 

 

Schem e 9.  Left :  Types of reactions investigated in this work. (a) Hydrosilylation, (b) Epoxidation, (c) 
Transvinylation. The denoted transition metals indicate the focus of the respective study. The prime area of research of 
this work was the investigation of platinum-catalyzed hydrosilylation. Right:  Generic molecular structure of 
imidazo[1,5-a]pyridine-3-ylidene (ImPy–R) complexes. 

 

Considering the recent development to employ iridium catalysts for the hydrosilylation of allyl compounds 

due to their high selectivity compared to conventional catalysts, a mechanistic study of this process will also be 

presented. In addition, the structural and electronic properties of the first allyl-bridged iridium dimer, which is 

formed in the stoichiometric reaction of one of the most common iridium catalysts, [{IrCl(cod)}2], and allyl 

acetate will be discussed.  

On account of the industrial relevance of epoxidation catalysis, new catalyst structural motifs using 

molybdenum as central metal will be described. To this end, the relatively new ImPy–R ligands will be 

employed for the further development of complexes of the type [MoCp(CO)2(NHC)]. Their applicability in 

epoxidation catalysis will be evaluated.  

Ruthenium-catalyzed transvinylation offers a facile synthetic pathway to vinyl ester monomers, which are 

frequently used for the production of a plethora of end-use polymers. This process will be examined with 

respect to the underlying mechanistic principles, and structural motifs of related ruthenium carbonyl 

carboxylates will be presented. Furthermore, structurally related molybdenum dimers will be reported as 

potential candidates for the synthesis of functional materials for the manufacture of molecular wires.  
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The individual contributions of T. K. Meister to each of the following publications have been collected in 

Table A1 (Appendix).  
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3 .1  Molecular  Catalysts  for  Bond Activation – Paving the Way for  

Alternative Resources  

O riginal  T it le:  Molekulare Katalysatoren zur Bindungsaktivierung – Auf dem Weg zu alternativen 

Rohstoffquellen 

T ERESA K .  Z IM M ERM ANN AND FRITZ E. KÜHN 

CHEMIE IN UNSERER ZEIT  2015 , 49, 248-259 

 

This front page review article is directed at a broad audience including interested laymen and students on the 

high school level. It focuses on the concept of catalysis as one of the most important value-added processes in 

chemical industry and provides a short overview of the most important principles and parameters. The 

importance of the industrial Haber-Bosch Process for the global food production is illustrated. Regardless of 

the economic and geopolitical significance of catalysis, naturally catalyzed processes remain by far superior to 

synthetic chemistry with respect to a number of aspects. This is particularly true for the activation of small 

molecules, which are typically abundant on earth but chemically almost inert. Prominent examples include 

dinitrogen (N2) or carbon dioxide (CO2). The conversion of such molecules to useful building blocks and 

fuels remains one of the key challenges of catalytic research to date. Consequently, this review describes 

several biological processes which are currently subject to investigation in the field of biomimetic and 

bioinspired catalysis by virtue of their high efficiency and efficacy. Special attention is paid to the utilization of 

alternative resources, since the design of artificial catalysts modeled after natural systems may prove to be a 

viable approach to solve the global energy problem. In particular, concepts for the exploitation of the following 

abundant raw materials are presented: methane (1), carbon dioxide (2) and lignin (3).  

Methane is the main component of natural gas and is the largest fossil energy source alongside coal. In light of 

its vast reserves and the high hydrogen to carbon ratio, it is an interesting alternative to oil as main carbon 

supply. Methane is most notably converted in biological archetypes, i.e. enzymes such as 

methanemonooxygenases and cytochromes P450. The latter typically comprise a Fe(II) core in a porphyrinic 

ring structure, which has served as inspiration for numerous innovative catalyst designs aiming for alkane 

oxidation. The ultimate dream reaction would be the direct oxidation of methane to methanol, hence 

providing a versatile fuel and carbon feedstock that is both liquid and comprises a high energy density. Carbon 

dioxide on the other hand is the building block used in nature for the production of carbohydrates and derived 

products in photosynthesis. If this process could be appropriated by chemical industry, a nearly unlimited 

carbon source would be unleashed. Similar considerations apply for the utilization of lignin, a natural polymer 

occurring mainly in plants. This review provides an overview on concepts and current methodologies for the 

employment of these potential raw materials, giving a perspective view on each resource candidate.   
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3 .2  Platinum Catalysis  Revisited – Unravel ing Principles  of  Catalyt ic  

Olefin Hydrosi lylat ion 

T ERESA K .  M EISTER, KORBINIAN RIENER, PETER GIGLER, JÜRGEN STOHRER, WOLFGANG A. 

HERRMANN, AND FRITZ E. KÜHN 

ACS CATALYSIS  2016, 6, 1274-1284 

 

Platinum-catalyzed hydrosilylation ranks among the most important applications of homogeneous catalysis 

today, with respect to both cost and scale of this process. This industrial process has been established for over 

half a century and provides access to a number of useful products such as adhesives, crosslinkers, surfactants 

and molding products via the manufacture of organofunctional sil(ox)anes and silicones. Taking into account 

that this reaction has been commonly practiced for over 50 years, the development of an understanding of the 

molecular processes governing this reaction has been arduous and slow. The original model proposed by 

CHALK and HARROD in 1965 continues to be widely accepted in the literature, providing an elegant yet simple 

mechanistic approach to this process, yet structural features of the active catalyst species still remain elusive. In 

addition, the industrially pivotal Karstedt’s catalyst has been omitted in past mechanistic studies owing to its 

disadvantageous features detrimental to common experiments for the elucidation of reaction mechanisms. 

Furthermore, internal olefins have been largely disregarded as substrates in this process in the past. However, 

their reactivity cannot be adequately rationalized based on the Chalk-Harrod mechanism.  

This paper provides an in-depth mechanistic study of platinum-catalyzed hydrosilylation. To account for its 

industrial relevance, Karstedt’s catalyst was used as platinum source regardless of the ensuing experimental 

challenges. Based on 195Pt NMR data, 2H labelling experiments as well as a kinetic study, new insights into this 

fundamentally important industrial process are provided (Scheme 10).  

 

 

Schem e 10.  Proposed revised mechanism for platinum-catalyzed hydrosilylation using Karstedt's catalyst as platinum 
source (HS = hydrosilylation, IS = isomerization).  
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The proposed revised mechanism comprises the following steps (HS = hydrosilylation, IS = isomerization): 

IHS, oxidative hydrosilane addition, IIHS, migratory olefin insertion, IIIHS, reductive product elimination and 

recoordination of the olefin. The side reaction leading to olefin isomerization proceeds via IHS, oxidative 

hydrosilane addition, IIIS, migratory olefin insertion, IIIIS, β-H elimination, and IVIS, loss of the isomerization 

product and recoordination of olefin. The rate limiting nature of the olefin insertion step IIHS was evidenced 

via the determination of a  primary kinetic isotope effect (KIE), characteristic product distributions in labelling 

experiments, the observation of Pt–2H species as well as the coherence of experimentally determined rate laws 

and the mechanistic model. In addition to the advances with respect to the catalytic cycle, the dependence of 

structural features of the catalytically active species on the coordination strength of the chosen olefin substrate 

could be demonstrated in a 195Pt NMR study and a series of kinetic experiments.   
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3 .3  Decoding Catalytic  Activity  of  Plat inum Carbene Hydrosi lylat ion 

Catalysts  

T ERESA K .  M EISTER, JENS W. KÜCK, KORBINIAN RIENER, ALEXANDER PÖTHIG, WOLFGANG A. 

HERRMANN, AND FRITZ E. KÜHN 

JOURNAL OF CATALYSIS  2016, 337, 157–166 

 

The application of NHC ligands has extended the scope of platinum hydrosilylation catalysts. By virtue of the 

strong Pt–C bond, platinum(0) carbene complexes are stable towards air and moisture and feature superior 

stability and selectivity compared to classical catalysts such as Karstedt’s and Speier’s catalyst. Imidazo[1,5-

a]pyridine-3-ylidenes (ImPy–R) provide access to an entire class of NHC complexes featuring a heteroatomic 

bicyclic ligand structure. They are susceptible to stereoelectronic tuning by variation of the wingtip substituent 

R. This report endeavors to exploit the unique characteristics of ImPy–R ligands in hydrosilylation catalysis, 

presenting seven novel complexes [Pt(dvtms)(ImPy–R)] (R = 4-cyanophenyl (4a), 4-trifluoromethylphenyl 

(4b), phenyl (4c), 4-methoxyphenyl (4d), mesityl (4e), pentafluorophenyl (4f), tert-butyl (4g),  

Scheme 11). 

 

 

Schem e 11.  Synthesis of 4a-g . 1  = [Pt2(dvtms)3] (Karstedt’s catalyst, see Scheme 2). 

 

The accepted mechanism associated with catalytic hydrosilylation utilizing Pt NHC complexes proceeds in a 

different manner compared to classical platinum catalysts. The slowest step of the reaction is believed to be the 

loss of the dvtms ligand, resulting in the formation of a reactive Pt–NHC fragment. The results of detailed 

investigations of spectroscopic and electrochemical properties of 4a-g  as well as a theoretical study on the 

B3LYP/6-31G** level of theory suggest that [Pt(ImPy–R)L] complexes follow an analogous reaction 

pathway. Several parameters influencing catalytic activity could be established in this report. According to 

Koopman’s Theorem, a distinct correlation of HOMO energy levels EHOMO and the oxidation potential EOx is 

revealed (Figure 16, left). In addition, the reactivity of 4a-g  can be interpreted by means of the electronics of 
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the respective substituent R provided that sterics are comparable. More specifically, an increasing electron 

withdrawing character of the substituent R appears to augment the rate of hydrosilylation, which can be 

attributed to (1) facilitated loss of the dvtms ligand due to reduced π-backbonding of Pt to dvtms and 

(2) expedited reductive elimination of the hydrosilylation product by virtue of the corresponding rising EOx. 

This can be illustrated by the linear Hammet correlation depicted in Figure 16.  

 

F igure  16.  Left :  Linear relationship of the experimental oxidation potential EOx as determined via cyclic voltammetry 
and HOMO energy levels EHOMO derived from a theroretical investigation of the B3LYP/6-31G** level of theroy. Right:  
Hammet plot illustrating the interdependence of electronics and catalytic activity in hydrosilylation of 4a-d. 

 

In general, 4a-d  are more efficient hydrosilylation catalysts than 4e-g , suggesting that the steric bulk at the 

imidazole-N obstructs reaction progress.  4a-g  show remarkable reactivity in hydrosilylation, yielding 

competitive results to Markó’s catalyst in the model hydrosilylation of oct-1-ene with HSi3O2Me7.   
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3 .4  Mechanist ic  Insights  into the Ir idium-Catalyzed Hydrosi lylat ion 

of  Allyl  Compounds 

KORBINIAN RIENER, T ERESA K .  M EISTER, PETER GIGLER, WOLFGANG A. HERRMANN, AND  

FRITZ E. KÜHN 

JOURNAL OF CATALYSIS  2015, 331, 203-209 

 

Iridium catalysis has become increasingly important in industrial hydrosilylation of allyl compounds in recent 

years owing to the economic significance of the resulting γ-substituted propylsilanes on the one hand, and the 

remarkable selectivity of Ir catalysts compared to established platinum systems on the other hand. While there 

are several reports on different aspects of platinum-based procedures, this is the first mechanistic investigation 

of the more recently developed iridium-variant, which has previously been treated in patent literature only. 

These feature superior selectivities while generally suffering from short catalyst lifetimes.  

A series of stoichiometric and isotope labeling experiments allows for the identification of crucial parameters 

determining catalytic performance and elucidation of deactivation pathways. The hydrosilylation of allyl 

chloride, the most widely used allyl compound in industry, with Me2SiHCl was chosen as model system with 

[{IrCl(cod)}2] as catalyst. The developed mechanistic picture is shown in Scheme 12. 

 

 

Schem e 12.  Proposed catalytic pathway of hydrosilylation of allyl compounds using [{IrCl(cod)}2] as iridium source. 
AE = activation via allyl ether; AC = activation via allyl chloride; IH = iridium catalyzed hydrosilylation.  
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The activation pathway and the corresponding entry point into the catalytic cycle depends on the chosen allyl 

substrate (IAC and IAE). Starting from the reactive [IrCl(cod)] fragment (Scheme 12, bottom), the reaction 

proceeds via IIIIH, allyl substrate coordination, IVIH, oxidative addition of hydrosilane, VIH, migratory insertion 

of the allyl substrate into the Ir–H bond and VIIH, reductive product elimination. The formation of iridium 

nanoparticles at high silane concentrations and the hydrogenation of the cod ligand were identified as major 

deactivation pathways. Their impact can be diminished by continuous silane addition and the employment of 

cod as additive. In view of these results, new catalyst structural motifs impeding particle formation and ligand 

hydrogenation can be developed.   
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3 .5  Direct  Sythesis  and Bonding Properties  of  the First  µ 2-η 2,η 2-Allyl  

Bridged Diir idium Complex  

KORBINIAN RIENER, T ERESA K .  Z IM M ERM ANN, ALEXANDER PÖTHIG, WOLFGANG A. HERRMANN, 

AND FRITZ E. KÜHN 

INORGANIC CHEMISTRY  2015, 54, 4600-4602 

 

This report describes the one-step synthesis of the first allyl-bridged diiridium complex [5]+ bearing the 

uncommon counterion [6]+ and the investigation of the unusual and electronic features of this compound. 

The reaction proceeds upon treatment of the established hydrosilylation catalyst [{IrCl(cod)}2] with a 

potential allyl substrate, allyl acetate (Scheme 13).  

 

 

Schem e 13.  Synthesis and molecular structure (ORTEP plot) of [5][6]. Ellipsoids are drawn at the 50% probability 
level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Ir1–Ir2 2.8736(3), C1–C2 1.441(8), C2–C3 
1.454(7), Ir1…C1 2.105(6), Ir1…C2 2.489(5), Ir2…C3 2.111(6), Ir2…C2 2.454(6). 

 

Allyl acetate undergoes C–O bond cleavage, thereby providing the bridging allyl and acetate fragments that 

are subsequently incorporated into the title compound [5]+. These replace one of the bridging chloride 

anions, while the other one is retained. The cleaved Cl– recombines with a [IrCl(cod)] fragment, yielding the 

anionic [6]–. The intriguing structural motif can be unequivocally confirmed by single crystal XRD analysis 

(Scheme 13). [5][6] has been reported to be the first contribution to multinuclear iridium complex chemistry 

comprising a symmetrically allyl bridged iridium dimer. It features comparatively long Ir–Ir and C–Callyl bonds 

while showcasing Ir–Cmethylene bonds that are among the shortest in any Ir–allyl compound reported to date. 

These structural characteristics are indicative of significant π-backbonding from Ir to the allyl ligand, which 

could be further evidenced via DFT calculations of the B3LYP/6-311++G** level of theory. The orbital 

interactions that could be deduced from frontier molecular orbital analysis of [5]+ indicate a  σ-like 

interaction between the iridium centers (Ir–Ir bond) as well as the metal and the allyl ligand (Ir–Callyl). 

Weakening and elongation of both the C–Callyl and the Ir–Ir bonds results from the population of antibonding 
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Å.2 However, there are examples for diiridium compounds with
similar values, which suggest the existence of M−M bonding
interactions.8 Regarding the Ir−Cl bond lengths, a slight
elongation can be observed from 2.399(5) and 2.400(5) Å to
2.4558(14) and 2.4669(13) Å, respectively, compared to those in
1.9 The Ir1−Cl1−Ir2 bond angle of 71.43(4)° is compressed
relative to 74.5(1)/74.7(1)° in the starting complex, while the
average Ir···CCOD distances are prolonged from 2.09 to 2.15 Å
(trans to the Ir−Ir bond) and 2.19 Å (trans to acetate). For the
acetate ligand, the Ir1−O1 bond length of 2.082(4) Å and the
Ir2−O2 bond length of 2.083(4) Å correspond to reported
values.7 Similar to the bridging acetate ligand, the allyl ligand is
almost symmetrically disposed about both iridium centers with
Ir1···C1/Ir1···C2 and Ir2···C3/Ir2···C2 distances of 2.105(6)/
2.489(5) Å and 2.111(6)/2.454(6) Å, respectively, suggesting η2

coordination to both metal centers.10 Notably, the Ir−Cmethylene
bond lengths are among the shortest for any Ir−Callyl bond
reported so far, while the bond lengths in the allyl ligand of
1.441(8) Å for C1−C2 and 1.454(7) Å for C2−C3 are elongated
compared to the average bond length of 1.41 Å.11 The prolonged
Ir−Ir and C−Callyl bonds in combination with short Ir−Callyl
bonds indicate pronounced M−allyl π-back-bonding.
In order to gain further insights into the bonding properties of

[2][3], DFT calculat ions were performed at the
B3LYP/6-311++G** level of theory with good agreement of
the experimental and computed structural data (Table S1 in the
Supporting Information, SI), similar to a report on dimolybde-
num compounds.5c A frontier molecular orbital analysis of [2]+ is
shown in Figure 3 (for [3]−, see Figure S7 in the SI). In the
lowest unoccupied molecular orbital (LUMO), the dx2−y2 orbitals
of the diiridium unit interact in an antibonding (σ*) fashion. The
same is observed for interaction of the M−M unit and the
nonbonding π-allyl ligand orbitals. For the highest occupied
molecular orbital (HOMO), both M−M interaction and the
interplay with the allyl ligand are of σ-binding nature. However,
as can be seen in the orbital representation (Figure 3, bottom),
there is significant back-bonding from the M−M σ-bonding
orbital into the π* orbitals of the allyl ligand. The population of
the antibonding ligand orbitals leads to a weakening and
elongation of both the C−C and M−M bonds and to stronger
Ir−ligand bonding. All of these features are reflected in the
crystallographic data (vide supra).

Considering 1H NMR spectroscopy, it seems worth noting
that the allyl methylene protons show highly diastereotopic
resonances with a chemical shift difference of more than 3 ppm,
most probably caused by C−H···O hydrogen bonding to the
acetate ligand (Figure S12 in the SI).12 The computed IR
absorption patterns of [2]+ and [3]− correspond well to the
experimental solid-state IR spectrum of the title compound,
supporting the accuracy of the calculated data (Figure S9 in the
SI). The relative positions of the symmetric and asymmetric
carboxylate absorption bands vs̃ym and vãsym at 1553 and 1445
cm−1 illustrate the bridging μ2-coordination mode of the acetate
ligand.13 [2][3] exhibits two strong absorption bands at 228 and
260 nm in the UV−vis spectrum, while emission spectroscopy
reveals that the associated excited states may relax into
photoluminescent states with corresponding emission bands at
437 and 473 nm (λStokes = 209 nm; Figure S10 in the SI). In cyclic
voltammetry experiments, multiple redox processes were
observed because of the number of redox active sites in [2][3],
all of which appear to be irreversible (E1/2 = −2.10, −0.20, and
+0.36 V vs Fc/Fc+; Figure S11 in the SI). This is in accordance
with a report on the electrochemical behavior of an iridium(I)
complex with [3]− as the counterion.6a

In summary, the direct synthesis of the first symmetrically allyl-
bridged diiridium complex ([2][3]) has been achieved. Besides
high yield (83%) and the introduction of two bridging moieties
in a single reaction step, the title compound bears the uncommon
counterion [3]−. Detailed characterization, especially the
combination of X-ray crystallography and DFT calculations,
reveals pronounced M−ligand back-bonding. This is evidenced
by a long Ir−Ir bond [2.8736(3) Å], elongated C−Callyl bonds
[1.441(8)/1.454(7) Å], and exceptionally short Ir−Cmethylene
bonds to the allyl ligand [2.105(6)/2.111(6) Å] and is further
underpinned by a computational frontier molecular orbital
analysis. Current work is focused on the synthesis and
characterization of similar allyl-bridged compounds bearing
other d-block elements, which will enable a systematic

Figure 2.ORTEP style view of [2][3] with thermal ellipsoids shown at a
50% probability level. Hydrogen atoms are omitted for clarity. Selected
bond lengths [Å]: Ir1−Ir2 2.8736(3), Ir1−C1 2.105(6), Ir1−C2
2.489(5), Ir2−C3 2.111(6), Ir2−C2 2.454(6), C1−C2 1.441(8), C2−
C3 1.454(7).

Figure 3. Illustration of perspective (top) as well as LUMO (middle)
and HOMO (bottom) representations of [2]+ including a depiction of
the contributing orbitals as obtained from DFT calculations (for further
details, see Figure S8 in the SI).

Inorganic Chemistry Communication

DOI: 10.1021/acs.inorgchem.5b00671
Inorg. Chem. 2015, 54, 4600−4602
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ligand orbitals while strengthening the metal-ligand interactions. This report constitutes a significant 

contribution to multinuclear iridium chemistry. Future perspectives in this area include the systematic 

synthesis, characterization and comparison of analogous allyl-bridged compounds bearing other d-block 

elements. 
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3 .6  Synthesis  and Characterization of  Novel  Cyclopentadienyl  

Molybdenum Imidazo[1,5-a]pyridine-3-yl idene Complexes  and 

their  Application in Olef in Epoxidation Catalysis  

ANDREA SCHMIDT,# NIDHI GROVER,# T ERESA K .  Z IM M ERM ANN,# LILIAN GRASER, MIRZA COKOJA, 

ALEXANDER PÖTHIG, FRITZ E. KÜHN 
#A. Schmidt, N. Grover and T. K. Zimmermann contributed equally to this work. 

JOURNAL OF CATALYSIS  2014 , 319, 119-126 

 

Epoxidation catalysis using molybdenum complexes such as [MoCp(CO)3X] (X = e.g. Cl–, Br–) involves high-

valent active species. The stability of such intermediates can often be enhanced by the use of NHC ligands by 

virtue of their strong σ-donating and poor π-accepting character. Consequently, NHCs have extended the 

scope of cyclopentadienyl molybdenum complexes in epoxidation catalysis. ImPy–R ligands are an interesting 

source of NHC moieties comprising a unique annulated bicyclic structure prone to stereoelectronic tuning by 

variation of the wingtip substituent R. This report presents the synthesis and characterization of two novel 

complexes 7  and 8  bearing both cyclopentadienyl and ImPy–R spectator ligands as well as their application in 

epoxidation catalysis (Figure 17).  

 

 

F igure  17.  Epoxidation catalysts 7  and 8 . 

 

Synthesis of 7  and 8  proceeds via the silver transmetallation route using the molybdenum precursor 

[MoClCp(CO)3]. IR spectroscopic analysis was used to evaluate the degree of π-backbonding of 

molybdenum to the carbonyl ligands, which can be a useful indicator of the Lewis acidity at the metal. The 

experimental evidence suggests that electron density at Mo in 8  is higher compared to 7 , which could be 

further substantiated by a theoretical investigation at the B3LYP/6-31G** level of theory. In addition, 95Mo 

shiedling tensors were calculated for improved analysis of unexpected 95Mo NMR shifts of 7  and 8 . Both 7  and 

8  are efficient and selective pre-catalysts in epoxidation of cyclooctene using TBHP (TBHP = tert-

butylhydroperoxide) as oxidant, outperforming previously reported molybdenum-based epoxidation catalysts 
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and yielding high TOFs of up to 40,900 h–1 (7) and 53,100 h–1 (8). This report concludes that the 

stereoelectronic characteristics of ImPy–R ligands facilitate catalyst stability and activity in epoxidation 

catalysts. The electronic situation at Mo is decisive for catalytic performance of the respective pre-catalyst, 

with enhanced Lewis acidity promoting higher activity. Hence, the higher reactivity of 8  over 7  can be 

rationalized in terms of augmented electron density at Mo. 
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3 .7  Ruthenium-Catalyzed Transvinylat ion – New Insights  

JENNIFER ZIRIAKUS,# T ERESA K .  Z IM M ERM ANN,# ALEXANDER PÖTHIG, MARKUS DREES, STEFAN 

HASLINGER, DOMINIK JANTKE, AND FRITZ E. KÜHN 
#J. Ziriakus and T. K. Zimmermann contributed equally to this work. 

ADVANCED SYNTHESIS & CATALYSIS  2013, 355, 2845-2859 

 

Vinyl ester monomers are important building blocks for numerous end-use polymers such as medical 

products, paper coatings and construction materials. They can be produced via ruthenium-catalyzed 

transvinylation, which has been established since the 1980s. However, the active catalyst species as well as the 

reaction mechanism has remained elusive in the past. This study presents experimental evidence for the nature 

of the catalytically active species comprising ruthenium carbonyl carboxylate structural motifs. A combination 

of IR, ESI-MS and NMR data indicates the presence of both mononuclear and dinuclear ruthenium species in 

situ (Scheme 14). 

 

 

Schem e 14.  Proposed catalytically active dinuclear Ru(I) (left) and mononuclear Ru(II) (right) species in the active 
reaction mixture and proposed catalytic cycle of ruthenium-catalyzed hydrosilylation. L = H2O, Cl–, CH3COOH; R = 
CH2CH3, CH3. 

 

It should be noted that the experimental work related to this paper has been carried out during the Master’s 

Thesis preceding this dissertation207 and in cooperation with J. ZIRIAKUS.338 The evaluation of the catalytic 

performance of several mono- and dinuclear ruthenium carbonyl carboxylates indicates that the mononuclear 

species present in solution accounts for the lion’s share of catalytic activity using simple precursors such as 

RuCl3. Hence, a mechanistic model was developed, which was verified and further developed utilizing isotope 
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labeling exerperiments, investigation of stereo- and regioselectivity as well as a theoretical study on the 

B3LYP/6-31G* level of theory. The resulting proposed cycle is depicted in Scheme 14 and comprises the 

following steps: ITV, coordination of vinylester, IITV, formation of a six-membered ruthenacycle, IIITV, vinyl 

transfer, and IVTV, loss of product and recoordination of vinyldonor (e.g. vinyl acetate, TV = transvinylation). 

Based on these results, rational design of new transvinylation catalysts mimicking the structural motifs of the 

active catalyst species is feasible. In addition, replacement of the carbonyl ligands with suitable anchors might 

allow for catalyst immobilization.  
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3 .8   [Ru 4(CO) 8(µ -OOCCH 2CH 3) 4(THF) 2] and [Ru 3(µ 3-

OH)(CO) 6(µ -OOC tBu) 4(OOC tBu)]:  Novel  Multinuclear  

Ruthenium Carbonyl  Carboxylates   

T ERESA K .  Z IM M ERM ANN, JENNIFER ZIRIAKUS, EBERHARDT HERDTWECK, ALEXANDER PÖTHIG, 

AND FRITZ E. KÜHN 

ORGANOMETALLICS  2014, 33, 2667-2670 

 

This paper describes the synthesis of two novel multinuclear ruthenium complexes by reaction of triruthenium 

dodecacarbonyl [Ru3(CO)12] with propionic and pivalic acid, forming [Ru4(CO)8(µ-

OOCCH2CH3)4(THF)2] (9) and [Ru3(µ3-OH)(CO)6(µ-OOCtBu)4(OOCtBu)] (10, Scheme 15).  

Ruthenium carbonyl carboxylates have been known since the late 1960s, and particularly dinuclear 

compounds of the composition [Ru2(CO)4(µ–OOCR)2L2] (R = alkyl, L = donor ligand, e.g. THF, py) have 

attracted research interest in the past. Tetranuclear complexes bearing similar building blocks are scarce, while 

trinuclear complexes of this type have not been reported at all previously. Hence, this report contributes to the 

structural diversity of ruthenium carbonyl carboxylate chemistry.  

 

 

Schem e 15.  Left :  Synthesis of 9  and 10.  Right:  Graphical representation of frontier molecular orbitals of 9  and 10 
as determined by a computational study on the B3LYP/LANL2DZ level of theory.  

 

It was found that a dynamic equilibrium exists in solution between 9  and ist dimeric and oligomeric analogues, 

[Ru2(CO)4(µ-OOCCH2CH3)2(THF)2] and [{Ru2(CO)4(µ-OOCCH2CH3)2}6(THF)2], indicating that 9  is 

prone to cleavage of the tetranuclear Ru4 core structure by donor ligands such as THF or pyridine. This is also 

illustrated by the geometry of this complex’ frontier molecular orbitals, which show the localization of the 

LUMO between the Ru2 fragments, facilitating a fracture at the weaker axial Ru…OOC–R interactions. The 
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molecular structure of 10  is quite unique, featuring a µ3-bridging hydroxyl group, whose identity could be 

unequivocally confirmed by refinement of the OH proton in XRD analysis as well as the characteristic low 

field 1H NMR shift at δ = 14.37 in CDCl3. It is synthesized in an excess of pivaliv acid with no additional 

solvent. Both 9  and 10 reveal remarkable structural characteristics, extending the scope of ruthenium carbonyl 

carboxylate chemistry.   
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3 .9  Structure and Catalytic  Activity  of  the Ruthenium(I) Sawhorse-

Type Complex [Ru 2{µ,η 2-CF 3(CF 2) 5COO} 2(DMSO) 2(CO) 4]  

T ERESA K .  Z IM M ERM ANN, STEFAN HASLINGER, ALEXANDER PÖTHIG, AND FRITZ E. KÜHN 

ACTA CRYSTALLOGRAPHICA SECTION C  2014, C70, 384-387 

 

The title compound [Ru2{µ,η2-CF3(CF2)5COO}2(DMSO)2(CO)4] (11) was synthesized using heptanoic 

acid and [Ru3(CO)12] as ruthenium precursor. It is an archetype of ruthenium carbonyl sawhorse type 

complexes and features the typical µ-bridging coordination mode of the carboxylate ligands (Figure 18). 

 

Figure  18.  Left :  ORTEP-Plot of the molecular structure of 11. Hydrogen atoms have been omitted for clarity. 
Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å) and angles (deg): Ru1–Ru2 
2.6907(4), Ru1–S1 2.4164(8), Ru2–S2 2.4095(7), Ru1–O1 2.1476(17), Ru1–O3 2.1256(18), Ru2–O2 2.1364(18), 
Ru2–O4 2.1515(17), Ru2–Ru1–S1 165.14(3), Ru1–Ru2–S2 164.70(3), O1–Ru1–O3 81.58(7), O2–Ru2–O4 81.56(7). 
Right:  Crystal packing of 11, highlighting the layered arrangement in the crystal (view along a axis).  

Both Ru atoms are coordinated in a distorted octahedral manner, with two DMSO molecules occupying the 

axial positions along the Ru–Ru axis. The DMSO atoms are tilted with respect to one another and oriented 

away from the carbonyl groups, thus accounting for the Ru1–Ru2–S2 (164.70(4) deg) and Ru2–Ru1–S1 

(165.14(3) deg) torsion angles well below the ideal 180 deg. The examination of the crystal packing reveals a 

multilamellar structure of bilayers, where sheets of lipophilic fluorinated alkyl chains are intersected by more 

hydrophilic layers of “Ru2(DMSO)2(CO)4” fragments.  The application of 11  in a model vinyl transfer 

reaction of propionic acid and vinyl acetate to evaluate its reactivity in transvinylation catalysis illustrates that 

the catalytic performance of 11  compares well with that of structurally similar dinuclear ruthenium carbonyl 

sawhorse complexes. The obtained data further indicates that the perfluorinated bridging heptanoate exerts a 

beneficial effect compared to propionate, but overall 11  is still outperformed by mononuclear catalysts. 

However, it may prove useful to employ perfluorinated carboxylate ligands in the synthesis of mononuclear 

ruthenium transvinylation catalysts.   
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3 .10  Synthesis  and Electrochemical  Properties  of  cis-  and trans-

[Mo 2(O 2C–Fc) 2(DArF) 2]  (O 2C–Fc = Ferrocenecarboxylate,  DArF 

= N,N’-Diarylformamidinate) 

XU-MIN CAI, T ERESA K .  Z IM M ERM ANN, ALEXANDER PÖTHIG, AND FRITZ E. KÜHN 

INORGANIC CHEMISTRY  2015, 54, 6631-6640 

 

The synthesis of three complexes of the composition [Mo2(O2C-Fc)2(DArF)2] by reaction of the precursor 

cis-[Mo2(O2C-Fc)2(NCCH3)4][BF4]2 with three electronically different N,N’-diarylformamidinate (DArF) 

ligands [DArF = N,N′-diphenylformamidinate (DPhF), N,N′-di(p-trifluoromethylphenyl)formamidinate 

(DTfmpF), and N,N′-di(p-anisyl)formamidinate (DAniF)] is described. The reaction is performed as a one-

pot reaction and generally leads to a mixture of the cis and trans complexes in the crude product. The 

preferentially crystallized isomer could be identified unambiguously via single crystal X-ray diffraction in all 

cases, showcasing the typical molybdenum paddlewheel structures.  

 

 

F igure  19.  ORTEP plot of the molecular structures of 12,  13  and 14.  Hydrogen atoms are omitted for clarity. 
Displacement ellipsoids are shown at the 50% probability level.  

 

The new complexes cis-[Mo2(O2C-Fc)2(DPhF)2] (cis-12), cis-[Mo2(O2C-Fc)2(DTfmpF)2] (cis-13), and 

trans-[Mo2(O2C-Fc)2(DAniF)2] (trans-14) were subjected to electrochemical analysis in order to elucidate 

their redox properties. On account of the electron-donating character of these DArF ligands, the oxidation of 

the [Mo2]4+ occurs prior Fc oxidation, hence inversing the redox sequence previously reported with ligands 

such as acetonitrile or phosphines. Evidence for the electronic interaction of the redox-active ferrocene 

carboxylate ligands was found for trans-[Mo2(O2C-Fc)2(DAniF)2], while the [Mo2]5+/[Mo2]6+ oxidation was 

observed exclusively with DAniF– as ligand, which can be attributed to the electron-donating character of the 

12 13 14
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methoxyphenyl substituent. The resemblance of the absorption patterns in UV-vis spectroscopy illustrates the 

similarity of structural and electronic features of 12-14. Based on the basicity of the ferrocenecarboxylate and 

DArF ligands employed in this work, a mechanism for the isomerization of intermediate species during 

synthesis is presented. This work constitutes an important contribution to the concept of controllable design 

of structural motifs applicable to the synthesis of molecular wires. Ultimately, this could pave the way for the 

development of redox-active supramolecular structures. In this context, the directed conversion of the 

precursor trans-[Mo2(DAniF)2(NCCH3)4][BF4]2 to obtain multi redox-active ladder type oligomers utilizing 

the principles established in this study is of particular interest.  

 

  



   3 Results – Paper Outlines 

Page | 46  

3 .11  Fil l ing a  Gap:  Electrochemical  Property Comparison of  the 

Completed Compound Series  [Mo 2(DArF) n(O 2C–Fc) 4–n]  (DArF = 

N,N’-Diarylformamidinate;  O 2C–Fc = Ferrocenecarboxylate)  

XU-MIN CAI, T ERESA K .  M EISTER, ALEXANDER PÖTHIG, AND FRITZ E. KÜHN 

INORGANIC CHEMISTRY   2015, 55, 858-864 

 

The substitution pattern in complexes of the series [Mo2(DArF)n(O2C-Fc)4–n] (n = 4–0) is demonstrated to 

be influenced by the electronic properties of the DArF ligand employed for the reaction with the precursor, 

cis-[Mo2(O2C-Fc)2(NCCH3)4][BF4]2. In particular, when two electronically different N,N’-

diarylformamidinate (DArF) ligands [DArF = N,N′-di(p-trifluoromethylphenyl)formamidinate (DTfmpF) 

and N,N′-di(p-anisyl)formamidinate (DAniF)] are employed, the respective tris- and mono-substituted 

complexes [Mo2(DTfmpF)3(O2C-Fc)] (15) and [Mo2(DAniF)(O2C-Fc)3] (16) are isolated.  

 

 

F igure  20.  ORTEP plots of the molecular structures of 15  and 16.  Displacement ellipsoids are shown at the 50% 
probability level. Aryl groups are shown as wireframes, and hydrogen atoms (except for the ones on the DArF bridge) are 
omitted for clarity.  

 

15  and 16 complete the series of [Mo2(DArF)n(O2C-Fc)4–n] (n = 4–0) type compounds, thus offering the 

opportunity of a comprehensive study of the electrochemical properties. Using the characteristic and well-

observable oxidation potential E1/2([Mo2]4+/[Mo2]5+), ligand basicity can be quantified and compared in 

detail. It is concluded that ligand basicity decreases along the series DAniF– > DTfmpF– > Fc–CO2
– >> 

CH3CN, providing a useful tool for future synthetic approaches aimed at the design of multi redox-active 

complex building blocks intended for the synthesis of molecular wires. 
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This work addresses several aspects of homogeneous industrial catalysis. The following three key 

transformations were selected and examined in more detail on account of their industrial significance: 

hydrosilylation, epoxidation and transvinylation (Scheme 16).  

 

 

Schem e 16.  Key transformations examined in this work. (a) Hydrosilylation, (b) epoxidation, (c) transvinylation. The 
denoted transition metals indicate the focus of the respective study. The prime area of research of this work was the 
investigation of platinum-catalyzed hydrosilylation. 

 

This thesis can be broadly divided into mechanistic studies on the aforementioned reaction types (part I) and 

the development of novel structural motifs (part II). Most of the experimental work associated with this thesis 

has been dedicated to the investigation of platinum-catalyzed hydrosilylation (Scheme 16a). As a result of an 

extensive study comprising isotope labelling experiments, comprehensive NMR investigations and kinetic 

approaches, an important contribution to the mechanistic understanding of this fundamentally important 

industrial process using the most widely applied Karstedt’s catalyst as platinum source was provided. It was 

demonstrated that not only reductive elimination, but also olefin insertion is part of the rate limiting step, 

thereby refining the established Chalk-Harrod mechanism (Chapter 3.2).  

 

Schem e 17.  Simplified representation of the revised catalytic cycle of platinum-catalyzed hydrosilylation developed in 
this work (Chapter 3.2). Contrary to previous reports, it has been proposed that the olefin insertion step is rate limiting.  

 

Furthermore, the first investigation of iridium-catalyzed hydrosilylation of allyl compounds was presented, 

providing valuable insights into the associated decomposition pathways which account for the observed short 

catalyst lifetimes (Chapter 3.4). Ruthenium-catalyzed transvinylation (Scheme 16c) was examined in detail 
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with respect to relevant mechanistic aspects and a likely pathway for the course of the reaction suggested 

(Chapter 3.7).  

The mechanistic investigations of this thesis demonstrate that many reaction mechanisms remain shrouded 

even in well-established industrial reactions. Their elucidation can provide results that are valuable not only in 

scientific terms, but can also be utilized for the development and improvement of novel catalyst systems that 

may actually be put to use.  

In addition, new catalyst structural motifs were presented. These can be grouped into (1) carbene complexes 

comprising ImPy–R ligands and (2) multinuclear structures. Both hydrosilylation and epoxidation catalysts 

utilizing the newly developed bicyclic ImPy–R ligands were synthesized and tested in model catalytic reactions 

(Figure 21, Chapter 3.3 and 3.6). The introduction of these ligands proved to be a valuable synthetic strategy 

with beneficial effects on catalysis in both cases. Furthermore, the investigation of redox properties, HOMO 

energy levels and TOFs of 4a-g  revealed a distinct correlation of these parameters, illustrating the relevance of 

electrochemical characteristics for hydrosilylation catalysis. The DFT investigation of 7  and 8  illustrated an 

increased electron density at Mo compared to previously reported systems, accounting for their remarkable 

performance in catalysis. 

Hence, the application of ImPy–R ligands in catalysts where classical NHC ligands had been established 

proved to be a worthwhile endeavor. This approach could be extended to other catalyst systems in the future, 

possibly utilizing the bicyclic ImPy–R structure for asymmetric catalysis. 

 

F igure  21.  Structural motifs of novel hydrosilylation (top, 4a-g) and epoxidation (bottom, 7  and 8) catalysts 
employing ImPy–R ligands (for more details, see Chapters 3.3 and 3.6).  
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Novel multinuclear compounds reported in this work include complexes bearing [Ru2], [Ru3], [Ru4], [Ir2] and 

[Mo2] cores. These are associated with transvinylation ([Ru2], [Ru3], [Ru4], Chapter 3.8 and 3.9) or 

hydrosilylation ([Ir2], Chapter 3.5) catalysis, respectively, or are of conceptual interest for the synthesis of 

molecular wires ([Mo2], Chapter 3.10 and 3.11). The complexes in this thesis typically bear µ2-bridging 

carboxylate ligands, often feature a paddlewheel or sawhorse type structure and could all be characterized by 

single crystal XRD (Figure 22) 

 

Figure  22.  Single crystal structures of multinuclear complexes presented in this work comprising [Ir2] (5), [Ru2] (11), 
[Ru3] (10), [Ru4] (9) and [Mo2] (12-16) core structures. Hydrogen atoms are omitted for clarity except on the N,N-
diarylformamidinate bridges and the µ3-bridging hydroxyl group in 10. Ellipsoids are shown at the 50% proability level; 
bulky ligand residues are depicted as wireframes.  

These complexes contribute to the rich structural chemistry of multinuclear iridium, ruthenium and 

molybdenum compounds. The combination of DFT studies, electrochemical investigation and 

characterization demonstrates different ways to rationalize their composition and reactivity.  
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