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Visual Servoing for Constrained Planar Robots
Subject to Complex Friction

Emmanuel C. Dean-León, Vicente Parra-Vega, Member, IEEE, and Arturo Espinosa-Romero

Abstract—The theoretical framework and the experimental
validation of a new image-based position-force control for
planar robots are presented in this paper. This scheme produces
simultaneous convergence of the constrained visual position and
the contact force between the end effector and the constraint
surface. Camera, robot, and the visual jacobian parameters
are considered unknown. This approach is based on a new
formulation of the orthogonalization principle used in the robot
force control, termed the visual orthogonalization principle. This
allows, under the framework of passivity, to yield a synergetic
closed-loop system that fuses accordingly camera, encoder, and
the force sensor signals. Furthermore, due to the technological
limitations, it can be noticed that the visual servoing contact tasks
are characterized by slow motion, typically with frequent velocity
reversals along the constraint surface, thus, important friction
problems arise at the joints and the contact points. Therefore,
visual compensation of the complex dynamic joint friction and
the viscous contact friction are also studied. A Linux real-time
operating-system-based experimental system is implemented to
visually drive a constrained direct-drive planar robot manipulator,
equipped with six-axes JR3 force sensor and a digital fixed camera,
thus proving the effectiveness of the proposed scheme.

Index Terms—Dynamic friction compensation, force control, un-
calibrated visual servoing.

I. INTRODUCTION

ROBOT tasks that involve the generalized sensors (sensors
that measure the state of the system), and the nongeneral-

ized sensors (measuring any other signal) impose a challenging
problem in robotics due to the nonlinear dynamics of robots
along with multisensor fusion and sensor redundancy problems.
For instance, consider visual servoing for the constrained robot
tasks, where the generalized joint encoders, the tachometers, and
the generalized momentum and force sensors are implemented
along with the nongeneralized charge-coupled device (CCD)
camera sensors or proximity sensors as well. However, it is well
known that the multisensor-based robot control approaches may
offer a solution to relevant, but complex, problems in robotics, in
particular, for the unstructured tasks. Moreover, since in practice
physical parameters are uncertain, the robustness to parametric
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Fig. 1. Visual servoing contact task.

uncertainties is an integral part in the force-position control of
a robot driven by uncalibrated visual information, where the
force and joint encoder signals have to be fused along with the
visual information. In our case, the task under study is that of a
nonredundant robot end effector that tracks a visual trajectory
along the surface of an object while it simultaneously exerts a
desired force in the normal direction of the constraint surface.
The desired visual trajectory is designed using the information
provided by the fixed camera (see Fig. 1). Taking into account
the fact that when two rigid surfaces are in contact, friction is al-
ways present, therefore uncertainties in the friction at the joints
and tangential friction at the contact point should be considered
for any practical application. In addition, for these sorts of tasks
there are important open problems mainly because; from the
theoretical viewpoint, these systems use redundant sensors and
it is not evident how to handle the sensor fusion in a complex
constrained nonlinear dynamical system, let alone visual-based
compensation of friction; from the experimental viewpoint, we
are dealing with a multirate system where the camera, the joint
encoders, and the force sensors have all very different latencies,
and whose performance is also hampered by the dynamic fric-
tion at the joints and the viscous contact friction. Therefore, a
theoretical constrained visual servoing scheme must be accom-
panied by its real-time-based experimental validation.1 These
tasks are very relevant in many robotic applications because
the camera allows us to structure the environment in contact
tasks, e.g., in the textile and shoes industry, as well as in cutting,

1Notice that the static state of the camera is not a generalized coordinate of
the dynamical system, thus its slow latency is not an issue, and the system can
be treated in the time domain, when generalized coordinates are sampled very
fast, in comparison to its natural frequency, even though its implementation is
carried out in the digital/discrete domain.
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and deburring robotic-task applications. Therefore, in order to
achieve a sensor-fusion-based controller, a careful and judicious
analysis of the nonlinear dynamics, the sensor behavior, and the
contact tasks is required. As can be seen, the robotic tasks men-
tioned before imply significant difficulties and stand as a robot
control paradigm that surpasses the traditional schemes in robot
control and sensor fusion, thus requiring new theoretical frame-
works.

A. Passivity-Based Design

Despite the availability of separate control schemes of vision
or force, vision force servoing has been elusive mainly because
it is not evident how to deal—into a unique framework—with
vision and force signals, since these two schemes in terms of pas-
sivity were considered seemingly contradictory. On one hand, it
is well known that passivity is established from the torque input
to the joint velocity output, and since the contact torque input is
orthogonal to the joint velocity, apparently for the contact tasks,
the contact torque input did not provide power to the passiv-
ity inequality. Thus, it was hard to handle the contact torque.
This force control problem was solved by Arimoto [1] with the
orthogonalization principle (OP) that provides unobtrusively a
harmonious unique signal from the generalized sensors (the en-
coders, the tachometers, and the force sensors) that combines
the position and the contact force errors. However, when the
camera is introduced to design image-based desired trajecto-
ries, a nongeneralized sensor arises that measures redundantly
the generalized joint position. In this case, it was difficult to
deliver a Visual Passivity inequality, where the passivity was
enforced from the joint torque input to visual-based error ve-
locity output. This conveyed the idea that there was no sense
in mixing visual servoing in force control because, previously,
we did not understand that the visual position-velocity and the
force-momentum signals could blend into a unique joint output
error signal to establish a Visual Passivity inequality, essentially
because the dot product of the visual-based error velocity output
and the torque input is zero.

To combine visual servoing and force control into an inte-
grated whole, and with this, enforce passivity from a torque
input to the visual joint output, the visual orthogonalization
principle (VOP) is derived. With this result in hand, we could
blend both approaches into a unique position-force robot control
scheme.

B. Contribution

In this paper, a new formal solution is presented for the prob-
lem of the uncalibrated image-based robot force control un-
der the parametric uncertainties without the singularities in the
camera orientation angle. It is based on the second-order sliding-
mode adaptive controller driven by the constrained image errors
that solves by first time the problem posed earlier. The underly-
ing reason that allows us to obtain this result is the new orthog-
onalized image-based error manifold derived by means of the
VOP that is introduced in this article. Thus, results similar to the
case of the non-visual-based orthogonalization principle are ob-
tained. The closed-loop system guarantees exponential tracking

of the position and the force trajectories subject to parametric
uncertainties under the formal stability proofs. Moreover, its ex-
perimental validation is presented on a two degree of freedom
(2 DOF) direct-drive manipulator, equipped with a high-end
force sensor, interacting with a highly rigid surface. The con-
trol system is running on Linux-real-time application interface
(RTAI) operating system. We further extend our proposal to
include the visual compensation of the dynamic friction. The
simplicity of the controller enhances its practical applications
since the desired task is designed in image space,2 i.e., the user
defines the desired task right from the image that she or he sees,3

wherein a fixed camera supplies a perspective of the desired task
(see Fig. 1).

C. Organization

Section II provides a review on several aspects of visual
position-force robot control, while Section III introduces the
nonlinear differential algebraic equations of robot dynamics in
the error coordinates. Section IV presents a well-known camera-
robot model, while Section V proposes the VOP, and the open-
loop error equation is given in Section VI. Section VII presents
the control design without friction, while the joint dynamic fric-
tion and the viscous contact friction compensation are given in
Section VIII. Experimental validation is presented in Section IX,
and finally conclusions are stated in Section X.

II. PREVIOUS WORKS

A variety of sensor fusion schemes for robot manipulators
have been proposed recently. Some of the most important works
in the related areas of visual servoing and force control are the
following.

A. Visual Servoing

Visual servoing for free motion has been the subject of re-
search for four decades. So far, a few visual-servo controllers
have been proposed that take into account the nonlinear robot
dynamics. However, some of them model the vision system as a
simple rotation matrix [2], while some others proposed a variety
of techniques for off-line camera calibration [3]. Thus, only a
few approaches were aimed at the more important problem of
the on-line calibration under the closed-loop control. Specifi-
cally, for the fixed camera configuration, [4] considered a more
representative model of the camera-robot system (than previ-
ous works [2]) to design a control law for regulation task that
compensates for the unknown intrinsic camera parameters, but
requires exact knowledge of the camera orientation. Later, [5]
presents a redesigned control law that also takes into account
the uncertainties in the camera orientation and produces local
asymptotic stability results, but requires the perfect knowledge

2In this paper, we refer to the image space as the numerical representation
of the image captured by the camera that is stored on the computer memory as
a matrix. The origin of the image space corresponds to the first element of the
matrix, which also corresponds to the upper-left corner of a computer monitor
when imaged.

3Provided that the fixed position of the camera is set to cover the robot
workspace, in this way a task free of singularities can be designed.



DEAN-LEÓN et al.: VISUAL SERVOING FOR CONSTRAINED PLANAR ROBOTS 391

of the robot gravitational term wherein the error of the estima-
tion of the camera orientation is restricted to [−90◦, 90◦]. In [3],
a position tracking control scheme is developed with the online
adaptive camera calibration that guarantees the global asymp-
totic position tracking under the persistent excitation condition.
Recently, in [6], an adaptive camera calibration control law that
compensates for the uncertain robot-camera parameters with
the global asymptotic position tracking is presented. Finally, [8]
presents a control law that deals with the image-based compen-
sation of the joint dynamic friction on the uncalibrated robot-
camera systems. Additionally, it does not present any limitation
on camera orientation (in comparison to the approaches consid-
ered earlier). Despite the availability of approaches mentioned
before, none of them use the contact force information for an
image-based tracking of a constrained robot system that still had
remained as an open problem.

B. Force Control

Even when several methodologies have been proposed in the
robot force control area, the work that provides important bases
for the development of this area can be found in the pioneer ar-
ticles [1], [9]–[12], which introduced the simultaneous control
of position and force, using the full nonlinear dynamics subject
to the parametric uncertainties with and without coordinate par-
titioning. However, the work [1] provided the orthogonalization
principle that allows us to build a unique error signal based on
the physical principle that the joint velocity arises orthogonal
to the contact force. This helped establish the guidelines for the
powerful passivity-based force control, with some advantages
over the other approaches such as the adaptation to parametric
uncertainties, the robustness for a class of bounded unmodeled
dynamics, and even the exponential and the global stability.
Afterwards, several schemes were proposed using these ideas;
however the orthogonalization principle has not been extended,
or combined, beyond the joint control of the constrained robots.

C. Visual Force Servoing

Few approaches focus on the hybrid vision/force control [13],
[14]. Also, these works are not robust to the uncertainties on
the robot and the camera parameters. In a different path, [15]
presents an adaptive robot controller to achieve the contact tasks
in an unknown environment, but this scheme requires exact
knowledge of the kinematic mapping. Along similar develop-
ments, [16] introduces an interesting but inconvenient com-
puted torque scheme for an uncalibrated environment, but their
approach does not deal with the uncertainties of the robot pa-
rameters. None of the approaches mentioned before fully satisfy
the statement of the problem.

D. Visual Friction Compensation

It is quite important to compensate friction because it is a
dominant dynamical force in the slow motion and the velocity-
reversal regimes, which are typical in the visual servoing tasks,
let alone the contact tasks. Nevertheless, in general, the joint dy-
namic and the contact frictions are usually neglected in motion

control, and unfortunately, it is not the exception in the visual
servoing literature. To consider the joint friction compensation
in a visual servoing scheme, the LuGre model [17] is imple-
mented, which reproduces the presliding regime at very small
displacements and hard nonlinearities, including the limit cy-
cles. The problem becomes more complicated as even though
the dynamic joint friction depends on the joint coordinates, in
the image-based control the contact friction will depend on the
image coordinates. Therefore, it requires a visual compensator
for the joint and the contact friction. No previous reference to
this topic is available thus far. Finally, we point out that for com-
pensation of the friction in an image-based visual servoing task,
the friction compensation algorithm should be image-based,
otherwise it will be prone to instability from the uncertainties
of the camera parameters.

III. NONLINEAR ROBOT DYNAMICS

The constrained robot dynamics arises when its end effector
is in contact with an infinitely rigid surface. Based on [1] and
including the friction dynamics, this system can be modeled by
the nonlinear differential algebraic equations as follows:

H(q)q̈ + C(q, q̇) + g(q) = τ − JT
ϕ+(q)λ − F (q̇, ω̇, ω)

− JT (q)BtJ(q)q̇ (1)

ϕ(q) = 0 (2)

In this paper, a fixed camera configuration is considered,
where the camera plane is parallel to the robot workspace. Since
a nonredundant robot manipulator is assumed, then the general-
ized joint position and the joint velocity coordinates are denoted
by q ∈ �2 and q̇ ∈ �2, respectively, i.e., a 2 DOF robot manip-
ulator. Matrix H(q) ∈ �2×2 stands for the robot inertia matrix,
C(q, q̇) ∈ �2×2 stands for the vector of the centripetal and the
Coriolis torques, g(q) ∈ �2 is the vector of the gravitational
torques, F (q̇, ω̇, ω) ∈ �2 is the dynamic friction,4 Bt ∈ �2×2

+ ,
is the viscous friction matrix, possibly not a diagonal matrix,
JT (q)BtJ(q)q̇ ∈ �2 represents the tangential viscous friction

at the contact point, JT
ϕ+(q) = J T

ϕ (q)

Jϕ (q)J T
ϕ (q)

∈ �2×m is the con-

strained normalized jacobian of the kinematic constraint ϕ(q) =
0, or a rigid surface with a continuous gradient, and λ ∈ �m

is the contact force, for a single contact point m = 1, and fi-
nally τ ∈ �2 stands for the vector of the joint torque control.

Two important properties of the robot dynamics, useful for
stability analysis, are the following:

Property I: With a proper definition of C(q, q̇) [2], Ḣ(q) −
2C(q, q̇) is skew-symmetric. Then

XT [Ḣ(q) − 2C(q, q̇)]X = 0 ∀X ∈ �2. (3)

Property II: Robot dynamics are linearly parameterizable
in terms of a known regressor Y = Y (q, q̇, q̈) ∈ �2×p and an

4For a clear exposition, firstly, we developed the controller without the
dynamic joint friction F (q̇, ω̇, ω) = 0; afterwards, Section VIII deals with
F (q̇, ω̇, ω).
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unknown vector θb ∈ �p of robot parameters as follows:

H(q)q̈ + C(q, q̇)q̇ + g(q) + JT (q)BtJ(q)q̇ = Y θb (4)

Adding and subtracting the linear parameterization equation
(4) to (1), produces the open-loop error equation

H(q)Ṡq = −C(q, q̇)Sq − JT (q)BtJ(q)Sq

+ τ + JT
ϕ+(q)λ − Yrθb

with joint error surface Sq defined as

Sq = q̇ − q̇r (5)

where q̇r represents the nominal reference of joint velocities.

IV. CAMERA-ROBOT MODEL

Monocular visual servoing is considered, where both the im-
age plane and the robot workspace are parallel; this is important
since the transformation that produces the image captured by
the camera is a similarity; i.e., ratios of lengths and angles are
preserved, thus both the robot workspace and the desired visual
task are defined in �2. In order to design a proper nominal ref-
erence of the joint velocities q̇r , the direct and the inverse robot
kinematics, as well as a static pinhole camera model are used.

Let robot direct kinematics be

xb = f(q) (6)

where xb ∈ �2 represents the two-dimensional position of robot
end effector in the robot workspace and f(·) : �2 → �2. The
differential kinematics of the robot manipulator is then defined
as follows:

ẋb = J(q)q̇ (7)

which relates the Cartesian velocities ẋb ∈ �2 to joint space
velocities q̇ ∈ �2. The visual position xv = [u, v]T ∈ �2 of the
robot end effector in image space5 is given as in [18]

xv = αh(z)R(θv )xb + β (8)

where α = diag[αu , αv ] ∈ �2×2
+ is the scale factor; h(z) =

λv

λv −z <0, z � λv , where λv is known as the focal distance and
z is the depth of the field, θv is the rotation angle over the optical
axis, i.e., the z axis (see Fig. 1), and R(θv ) ∈ SO(2) is the up-
per 2 × 2 matrix of R3(θv ) ∈ SO(3);β ∈ �2, which depends
on the intrinsic and extrinsic camera parameters.6 In this way,
the differential camera model becomes

ẋv = αh(z)R(θv )ẋb (9)

where ẋv ∈ �2 determines the visual robot end-effector veloc-
ity, i.e., the visual flow. Notice that the constant transformation
αh(z)R(θv ) maps statically robot Cartesian velocities ẋb into
the visual flow ẋv . Using (7), (9) becomes

ẋv = αh(z)R(θv )J(q)q̇ (10)

5The subscript “v” of xv denotes visual from visual servoing notation.
6Focal distance, the depth of the field, the translation of the camera center to

the image center, and the distance between the optical axis to the robot base.

which relates the visual flow ẋv to the joint velocity vector q̇.
Thus, the inverse differential kinematics of (10), in terms of the
visual velocities,7 becomes

q̇ = JR invẋv (11)

where JR inv = J(q)−1R(θv )−1h(z)−1α−1 . This relation is
useful for designing the nominal reference of the joint velocities
q̇r based on the VOP that we describe in Section V.

V. VOP

According to (2)

d

dt
ϕ(q) = 0 → ∂ϕ(q)

∂q

dq

dt
= 0 ⇒ Jϕ (q)q̇ ≡ 0.

This means that Jϕ (q) is orthogonal to q̇, i.e., q̇ lies in the
span of the orthogonal projection Q of Jϕ (q), which arises on
the tangent space at the contact point between the end effec-
tor and the surface ϕ(q) = 0 [1]. Thus, Q = I − JT

ϕ+(q)Jϕ (q)
from which we obtain that QQq̇ = Qq̇ ≡ q̇. As can be seen,
QJT

ϕ (q) = 0. From the above implications, (11) becomes

q̇ = QJR invẋv . (12)

Naturally (12) leads us to propose the nominal reference of the
joint velocity q̇r in terms of the visual and the force references
as follows:

q̇r = QJR invẋr + ΓF2J
T
ϕ (q)q̇rf (13)

where

ẋr = ẋvd − Ψ∆xv + Svd − Γv1

∫ t

t0

Svδ (ζ)dζ

− Γv2

∫ t

t0

sign[Svδ (ζ)]dζ (14)

Svδ = (∆ẋv + Ψ∆xv )︸ ︷︷ ︸
Sv

−Sv (t0)e−κv t︸ ︷︷ ︸
sv d

(15)

q̇rf = ∆F − SF d + ΓF1

∫ t

t0

SF δ (ζ)dζ

+ ΓF2

∫ t

t0

sign[SF δ (ζ)]dζ (16)

SF δ = ∆F︸︷︷︸
SF

−SF (t0)e−κF t︸ ︷︷ ︸
SF d

(17)

∆F =
∫ t

t0

∆λ(ζ) dζ, ∆λ = λ − λd (18)

where ẋvd stands for the desired visual velocity trajec-
tory; ∆xv = xv − xvd is the visual position error,Ψ = ΨT ∈
�2×2

+ ;∆ẋv = ẋv − ẋvd defines the visual velocity error;
κv>0; Γvi

= ΓT
vi

∈ �2×2
+ , i = 1, 2 with ∆λ as the force track-

ing error and λd as the desired contact force; κF >0, and
ΓFi

= ΓT
Fi

∈ �+, i = 1, 2. Notice that ẋr is the nominal vi-
sual reference, q̇rf is the nominal force reference, Svδ is the

7With JR inv ∈ �2×2, i.e., a function of the robot and the camera parameters.
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visual error surface, and SF δ is the force error surface. Using
(12)–(16) into (5), the joint error surface Sq is

Sq = QJR invẋv − QJR invẋr − ΓF2J
T
ϕ (q)q̇rf

= QJR invSvv − ΓF2J
T
ϕ (q)SvF (19)

with

Svv = Svδ + Γv1

∫ t

t0

Svδ (ζ)dζ + Γv2

∫ t

t0

sign[Svδ (ζ)]dζ

SvF = SF δ + ΓF1

∫ t

t0

SF δ (ζ)dζ + ΓF2

∫ t

t0

sign[SF δ (ζ)]dζ

where Svv represents the extended visual manifold and SvF

stands for the extended force manifold.
Remark 1: Notice that Sq is composed of two orthogonal

complements,QJR invSvv that depends on the image coordinate
error, and ΓF2J

T
ϕ (q)SvF that depends on the integral of contact

force errors. Since tracking errors (∆xv ,∆ẋv ) and ∆F are
mapped into the orthogonal complements, they can be controlled
independently.

Remark 2: The above definition assumes exact knowledge of
JR inv, i.e., calibrated camera. However, in practice, it stands
as a very restricted assumption. Therefore, in Section IV-A,
the uncalibrated camera case is considered, which gives rise
to the uncertain manifold Ŝq that takes into consideration the
uncertainty of JR inv.

A. Uncalibrated Camera

Consider that αh(z) and θv are unknown, then (13) becomes

ˆ̇qr = QĴR invẋr − ΓF2J
T
ϕ (q)q̇rf (20)

with ĴR inv as an estimation of JR inv, such that ĴR inv is full rank

∀q ∈ Ωq , where the robot workspace free of the singularities
is defined by Ωq = {q|rank(J(q)) = 2,∀q ∈ �2}. Thus, using
(20) into (5), we have the uncalibrated joint error surface

Ŝq = q̇−
�
q̇ r

= QJR invẋv − QĴR invẋr − ΓF2J
T
ϕ (q)q̇rf (21)

where Ŝq is available because q̇ and ˆ̇qr are available. Adding

and subtracting QJR invẋr to (21), we obtain

Ŝq = QJR invSvv − ΓF2J
T
ϕ (q)SvF − Q∆JR invẋr

= Sq − Q∆JR invẋr (22)

for ∆JR inv = ĴR inv − JR inv, which arises from the uncali-
brated camera.

VI. OPEN-LOOP ERROR EQUATION

Using the uncertainties of nominal references (ˆ̇qr , ˆ̈qr ) into
the parameterization of Property II yields

H(q)ˆ̈qr + C(q, q̇)ˆ̇qr + g(q) + JT (q)BtJ(q)ˆ̇qr = Ŷr θb

(23)

where ˆ̈qr = f(ẍr , q̈rf ), with

ẍr = ẍvd − ψ∆ẋv + Ṡvd − Γv1Svδ − Γv2sign(Svδ ) (24)

q̈rf = ∆F̈ − ṠF d + ΓF1SF δ + ΓF2sign(SF δ ) (25)

which introduces discontinuous terms. To avoid introducing
high-frequency discontinuous signals, it was decided to add and
subtract tanh(µvSvδ ) and tanh(µF SF δ ) to ˆ̈qr , for (µv , µF )>0,
in order to separate continuous and discontinuous signals as fol-
lows:

ˆ̈qr = ˆ̈qc + QΓv2zv − JT
ϕ (q)ΓF2zF (26)

with zv = tanh(µvSvδ ) − sign(Svδ ) and zF = tanh(µF SF δ )
−sign(SF δ ).

Therefore, (23) becomes

H(q)ˆ̈qr + C(q, q̇)ˆ̇qr + g(q) + JT (q)BtJ(q)ˆ̇qr

= Ŷcθb + H(QΓv2zv − JT
ϕ (q)ΓF2zF ). (27)

In this way, Ŷc = Yr (q, q̇, ˆ̇qr , ˆ̈qrc) is continuous since
(ˆ̇qr , ˆ̈qrc) are continuous, where

ˆ̈qrc = QĴR invẍrc + Q̇ĴR invẋrc + Q ̂J̇R invẋrc

+ ΓF2J
T
ϕ (q)q̈rc + ΓF2 J̇

T
ϕ (q)q̇rc (28)

with

ẍrc = ẍvd − ψ∆ẋv + Ṡvd − Γv1Svδ − Γv2 tanh(µvSvδ )

(29)

q̈rf c = ∆F − ṠF d − ΓF1SF δ − ΓF2 tanh(µF SF δ ). (30)

Adding and subtracting (27) to (1), we finally obtain the
following uncalibrated open-loop error equation

H(q)ˆ̇Sq = τ − [C(q, q̇) + JT (q)BtJ(q)]Ŝq + JT
ϕ+(q)λ

− Ŷcθb + H
(
QΓv2zv − JT

ϕ (q)ΓF2zF

)
. (31)

VII. CONTROL DESIGN

Assuming that (xv , ẋv ) are measurable by the camera, (q, q̇)
are measurable by the encoder and the tachometer respectively,
as well as (λ, F ) by a force sensor and the task is designed such
that (xvd, ẋvd) ∈ Ωx , for Ωx = {xv |rank(JR inv) = 2,∀xv},
and λd(t) = G(·), where G(·) is a differentiable function up
to the first order, then we have the following theorem.

Theorem 1: Assume that the initial conditions and the desired
trajectories belong to Ω = [Ωq ,Ωx ], and consider the robot dy-
namics (1), (2) in closed loop with the following visual adaptive
force-position control law

τ = −KdŜq + Ŷc θ̂b + JT
ϕ+(q)[−λd + η∆F ]

+ ΓF2J
T
ϕ+(q)[tanh(µf SF δ )

+ η

∫ t

t0

sign[SF δ (ζ)]dζ] (32)

˙̂
θb = −ΓŶ T

c Ŝq (33)
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where θ̂b is the online estimation of the constant robot parameter
vector, η>0 and Γ = ΓT ∈ �p×p

+ ,Kd = KT
d ∈ �2×2

+ . If Kd is
large enough, the error of initial conditions is small enough,
and if

Γv2 ≥
∥∥∥∥ d

dt
{RJ [Ŝq + (∆JR inv)ẋr ]}

∥∥∥∥
ΓF2 ≥

∥∥∥∥ d

dt
[J#

ϕ (q)Ŝq ]
∥∥∥∥

with, RJ = αh(z)R(θv )J(q), and J#
ϕ (q) = (−ΓF2Jϕ (q)JT

ϕ

(q))−1 Jϕ (q), then the exponential convergence of visual and
force tracking errors is guaranteed.

Proof: The proof is based on the Lyapunov stability cri-
teria, and the second-order sliding modes to finally guarantee
local exponential simultaneous tracking of the visual position
and the velocities, as well as the contact force. A brief outline
of the proof can be stated as follows.

� Part I: Boundedness of the closed loop trajectories. In this
part, the passivity from the joint velocity error Ŝq input to
the torque τ output is established. If the dynamical friction
is considered, then the dissipativity is established. This
implies that the boundedness of all the closed-loop signals
of the closed-loop system is proved.

� Part II: Second-order sliding modes. Once the boundedness
of the input signals is proved, the regime of the sliding
modes for the visual and the force subspaces needs to be
induced. Then, the proper gains Γv2 ,ΓF2 , are settled down
in this part.

� Part III: Exponential convergence of tracking errors. The
proper gain selection guarantees the sliding mode for each
subspace for all time. Then, we prove that each sliding
mode induces the exponential convergence of the visual
tracking errors as well as the force tracking errors for all
time.

The full details of the proof are given in Appendix A. �
Remark 3: Apparently, there is a problem with J(q(t))−1 be-

cause the visual position converges to the desired visual position
exponentially without overshoot, i.e., xv (t) → xvd(t), xvd(t) ∈
Ωx ⇒ xv (t) ∈ Ωx . However, this is no guarantee that J(q(t))−1

is always well posed, because the joint position q converges
to the desired joint position qd with an exponential envelope
q(t) → qd(t), not with exponential convergence. Thus q may
experience a short transient and as a consequence J(q) may
loose rank. However, q(t) → qd(t) locally, which means that
J(q(t)) → J(qd(t)) within Ωq . Consequently J(q(t))−1 is lo-
cally well posed, i.e., rank(Jϕ (q(t))−1) = 2, ∀t. In addition, it
is customary that in the visual servoing tasks, the desired tra-
jectories are designed well within Ωx therefore well within Ωq ,
i.e., away from the singular joint configurations.

Remark 4: The continuous function tanh(·) is used instead
of sign(·) in the control law without jeopardizing the second-
order sliding mode, i.e., a signum function is not needed to
induce sliding modes in contrast to the first-order sliding modes
theory.

Remark 5: The control law is easy to implement and presents
low computational cost, even though the proof—however
straightforward—is quite involved to follow.

VIII. VISUAL DYNAMIC FRICTION COMPENSATION

Let us consider the joint dynamic friction, which represents
a very realistic behavior when the robot is moving along a rigid
surface, in particular, driven by visual servoing. In this case, the
following LuGre [17] dynamic friction model is suitable

F (q̇, ω̇, ω) = σ0ω + σ1ω̇ + σ2q̇

ω̇ = −σ0k(q̇)ω + q̇,

k(q̇) =
|q̇|

α0 + α1e−(q̇ /q̇s )2
(34)

where the diagonal matrix parameters (σ1, σ2, σ3) ∈ �2×2
+ ,

the state (ω, ω̇) ∈ �2 stands for the position of the bristles,
(α0, α1)>0, and q̇s ∈ �2

+. This model displays outwardly a
very complex dynamics around the trivial equilibrium, for the
bidirectional motion and for the very small displacements. The
forces that come out of this model makes it impossible to reach
the origin due to the limit cycles that may induce an unstable
behavior. Substituting (34) into (1) yields

H(q)q̈ = −C(q, q̇)q̇ − J(q)T BtJ(q)q̇ + τ + JT
ϕ (q)λ

− σ12q̇ − g(q) − σ0ω + σ01k(q̇)ω (35)

where σ01 = σ0σ1 and σ12 = σ1 + σ2. Now, we need to reor-
ganize the parameterization in terms of two regressors

H(q)ˆ̈qrc + [C(q, q̇) + J(q)T BtJ(q) + σ12]ˆ̇qrc + g(q) = Ŷcθb

σ01α01

α0
|q̇| tanh(ξf Ŝq ) + σ0α01 tanh(ξf Ŝq ) = Ŷf θf

where Ŷf θf stands as a virtual continuous regressor, with α01 =
α0 + α1, and ξf >0. Now adding and subtracting the above
regressors to (35) yields the following uncalibrated open-loop
error dynamics with dynamic friction

H(q)ˆ̇Sq = −[C(q, q̇) + J(q)T BtJ(q) + σ12]Ŝq

+ τ − F − Y Θ + JT
ϕ+(q)λ + σ01k(q̇)ω

− σ0ω + H(QΓv2zv − JT
ϕ (q)ΓF2zF ) (36)

with

F = σ0

{
ω +

(
α01 + α−1

0 σ1α01|q̇|
)
tanh(ξf Ŝq )

+ σ1|q̇|ω
(
α0 + α1e

−(q̇ /q̇s )2
)−1

}

where Y = [Ŷc , Ŷf ] and Θ = [θT
b , θT

f ]T . Finally, consider the
following control law

τ = −KdŜq + Y Θ̂ + JT
ϕ+(q)[−λd + η∆F ]

+ ΓF2J
T
ϕ+(q)

[
tanh(µf SF δ ) + η

∫ t

t0

sign[SF δ (ζ)]dζ

]
(37)

˙̂Θ = −ΓY T Ŝq (38)
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with Θ̂ as an estimation of Θ, where η>0 and Γ ∈ �p×p
+ ,Kd ∈

�2×2
+ . We now have the following result.
Theorem 2: Assume that the initial conditions and the desired

trajectories belong to Ω = [Ωq ,Ωx ], and consider the controller
(37), (38). If Kd is large enough and the error of the initial
conditions is small enough, and if

Γv ≥
∥∥∥∥ d

dt
{RJ [Ŝq + (∆JR inv)ẋr ]}

∥∥∥∥
ΓF2 ≥

∥∥∥∥ d

dt
[J#

ϕ (q)Ŝq ]
∥∥∥∥

then the exponential convergence of the visual and the force
tracking errors is guaranteed.

Proof: The proof is based on Lyapunov stability criteria,
as in the Theorem 1. Full details of the proof are given in
Appendix B. �

Remark 6: Theorem 2 yields an image-based dynamical con-
trol scheme for the constrained robots that fuses the visual, the
encoder and the force signals with the compensation of dynamic
friction by means of the visual feedback.

Remark 7: When no friction is considered at all, Theorems
1 and 2 deliver similar control structures, however with less
conservative stability domains and with smaller feedback
control gains.

Remark 8: Joint friction compensation schemes, e.g., [17],
[19], and [20], which are based on joint errors, are faster and ac-
curate in comparison to visual (image based) friction compensa-
tion, because typically the joint sensor attains higher resolution
than the camera. However, it is not possible to implement the
joint friction compensation into an uncalibrated image-based
controller because: 1) joint errors are not available in an uncal-
ibrated visual servoing scheme and 2) passivity inequality of
a feedback system is established for an unique pair of torque
input to error output [21]. Therefore, it cannot be introduced as
an inner joint friction control loop with one output signal and
an outer visual friction control loop with another output signal
for a unique energy storage function.

IX. EXPERIMENTAL STATION

A planar robot system is integrated (see Fig. 2). The robot
parameters and the camera parameters are shown in Tables I
and II, respectively. Control feedback gains and dynamic friction
parameters are depicted in Tables III and IV, respectively.

A. Hardware

Direct-drive Yaskawa ac servomotors SGM-08A314 and
SGM-04U3B4L with 2048 pulse encoders are directly coupled
to the links of the 2-DOF arm. Digital drives Yaskawa ser-
vopacks (SGD-08AS and SGDA-04AS) are integrated. A six-
axes force-moment sensor 67M25A-I40-200N12 by JR3 Inc.,
provided with a DSP- based interface system for the PCI bus is
mounted at the end effector of the robot. A rigid aluminum 6101
probe with a bearing SKF R8-2Z in its tip is attached at the en-
deffector to validate only the contact viscous friction, as shown
in Fig. 2. The robot task is to move its tool-tip along a specified

Fig. 2. Experimental setup.

TABLE I
ROBOT PARAMETERS

TABLE II
CAMERA PARAMETERS

TABLE III
FEEDBACK GAINS

TABLE IV
DYNAMIC FRICTION PARAMETERS

trajectory over the steel surface while exerting a specified profile
of force normal to the surface. A fixed SONY DFW-V500 CCD
camera was used. The robot is initialized with a high-gain PD.
The inertial frame of the whole system is at the base of the
robot and the contact surface is at y = 136 pixel rendering a
XZ plane.
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Fig. 3. Experimental phases. (a) Free motion and constrained motion. (b) Free
motion. (c) Constrained motion.

B. Software

A 2.2-GHz personal computer (PC), running on the Debian
GNU/Linux 3.1 “Sarge” (kernel 2.4-27) with the RTAI patch
operating system (RTAI 3.1.0-4) is used. This PC implements
two real-time concurrent processes. The first one sets communi-
cation with the SONY DFW-V500 camera via IEEE1394 proto-
col and controls the acquisition of the robot end-effector position
in the image space, with a sampling rate of 30 Hz. The second
process, computes the torque output for the servopacks and
runs with a sampling rate of 1 kHz. Communication between
processes is done by shared memory allocation. Low-level pro-
gramming provides the interface to a Sensoray 626 I/O card,
which contains: an internal analog quadrature encoder interface,
14-b analog resolution outputs, and digital I/O ports. This data
acquisition card is used to communicate with the Yaskawa ser-
vopacks. Special Linux drivers provide interface to a JR3 DSP-
based force sensor receiver used to communicate with the JR3
6DOF force sensor. Velocity is computed using a dirty Euler nu-
merical differentiation formula filtered with a low-pass second-
order Butterworth filter, with a cutoff frequency of 20 Hz.

C. Task

In Fig. 3(a), all the experimental faces are depicted (free
motion and constrained motion). The experiment is performed
as follows.

1) From t = [0 3] s [see Fig. 3(b)], the end effector is re-
quested to move, in free motion, from its initial condition
until it makes contact with the surface. The end effector
lasts 2 s to establish stable contact.

2) From t = [5 8] s [see Fig. 3(c)], the tool tip exerts a
desired profile of force normal to the surface (0–5 N)

Fig. 4. Force tracking. Different stages of the experiment are depicted.

Fig. 5. End-effector tracking in image space (pixels), “X” axis.

Fig. 6. End-effector tracking in image space (pixels), “Y” axis.

while moving forward, along X axis, from 410 to 341
pixels.

3) From t = [8 12] s [see Fig. 3(c)], the exerted force is
incremented (5–7.5 N), while moving backward, along X
axis, from 341 to 410 pixels, as can be seen in Figs. 4–6.

Both the desired position and the force are designed with
Φ(t) = P (ti) = [XF − Xi ] + Xi , where P (t) is a fifth-order
polynomial that satisfies P (ti) = 0, P (tf ) = 1, and Ṗ (ti) =
Ṗ (tf ) = 0. The subscripts “i” and “f” denote the initial and the
final stages, respectively. At the first stage of the experiment,
the control law (37)–(38) is used with the force part set to zero,
i.e., JT

ϕ (q) = 0 and Q = I . In [7] and [8], it is proved that this
scheme is stable for unconstrained motion. Once the tool-tip
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Fig. 7. Camera point of view of the robot task. The white marks are the on-line
visual tracking of the robot end-effector.

Fig. 8. Cartesian robot task errors (m).

is in stable contact with the surface, the control force term is
switched on.

X. RESULTS

Fig. 9 shows the joint torques. It can be observed that the
control output without saturation is obtained. The torque noise
present in the free motion segment shown in Fig. 9 occurs be-
cause the control gains are tuned for position-force control task,
i.e., these are high gains for a simple free motion, which causes
the very high response of the system. Fig. 8 depicts the track-
ing errors in the Cartesian robot space (m). The seemingly high
frequency is because this task requires very precise control, but
the sensor resolution is limited to 1 pixel and JR3 force sensor
noise is ±2N .8 In Fig. 4, the exerted force profile is shown. As
can be seen, from [1 3] s the robot end effector performs free
motion (near to 0N ) until it makes contact with the surface (an
overshoot in the contact force is presented due to contact tran-
sition), then it remains in that state for two more seconds and
from [5 8] s, increases the applied force smoothly from [0 5]N ,
while it moves forward over the x axis, and finally from [8 12] s
once again increases the exerted force [5 7.5] N , while it moves
backward. The noisy signal is caused by the high precision of

8Better plots can easily be obtained simply by reducing the desired visual
velocity, increasing λd (t) or using subpixel resolution.

Fig. 9. Joint torques without saturation. Better plots can easily be obtained
simply reducing the desired visual velocity or increasing λd (t).

the JR3 sensor. In Figs. 5 and 6, the robot end-effector motion in
the image space (pixels) is shown, the image-coordinated sys-
tem is rotated by θv degrees (in this case 90◦), the maximum
error is 2 pixels, and the performance of the robot (see Fig. 7)
can be improved using subpixel resolution.

A. Conclusion

A novel scheme for adaptive image-based visual servoing of
the constrained dynamical planar robots under friction is pro-
posed. The main feature is the ability to fuse uncalibrated image
coordinates into an orthogonal complement of joint velocities,
and integral of contact forces. This allows to yield exponen-
tial convergence for image-based position velocity and contact
forces even when the robot parameters, the camera parameters,
and the contact viscous friction are considered unknown. Ad-
ditionally, a compensator of uncertain joint dynamic friction is
presented, which is usually neglected in visual servoing, but it is
of particularly concern in visual motion tasks because the mo-
tion regime is slow with velocity reversals. Experimental results
comply with the theoretical stability properties.

APPENDIX A

PROOF OF THEOREM 1

The closed-loop dynamics between (32), (33), and (31) yields

H(q)ˆ̇Sq = −{Kd + C(q, q̇)}Ŝq − Ŷc∆θb

+ JT
ϕ+(q)[∆λ + ΓF2 tanh(µF SF δ )]

+ ηJT
ϕ+(q)[∆F + ΓF2

∫ t

t0

sign[SF δ (ζ)] dζ]

(39)

∆θ̇b = ΓŶ T
c Ŝq (40)

with ∆θb = θb − θ̂b . The proof is organized in three parts.
Part I: Boundedness of closed-loop trajectories. Consider the

time derivative of the following Lyapunov candidate function

V =
1
2

[
ŜT

q H(q)Ŝq + ΓF2S
T
vF SvF + ∆θT

b Γ−1∆θb

]
(41)
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along the solutions of (39)–(40) as

V̇ ≤ −Kd‖Ŝq‖2
2 − ηΓF2‖SvF ‖ + ‖Ŝq‖ψ (42)

where Property I has been used, ψ is a functional depending
on the state and error manifolds, similar to [22]. Now if Kd

and ΓF2 are large enough and errors of initial conditions are
small enough, we conclude the seminegative definiteness of
(42) outside of the hyperball ε0 = {Ŝq | V̇ <0} centered at the
origin, such that the following properties of the state of closed-
loop system arise

(Ŝq , SvF ) ∈ L∞ → (‖Svv‖, ‖SvF ‖) ∈ L∞. (43)

Then,(Svδ ,
∫ t

t0
sign[Svδ (ζ)] dζ) ∈ L∞ and since the desired

trajectories are differentiable functions and feedback gains are
bounded, we have that (ˆ̇qr , ˆ̈qr ) ∈ L∞. The right-hand side of

(39) shows that there exists ε1>0 such that ‖ ˆ̇Sq‖ ≤ ε1. This

result shows only the local stability of (Ŝq ,
ˆ̇Sq ). Now we prove

that the sliding modes arise. Rewriting (22) in terms of two
orthogonal vectors, we obtain

Ŝq = Q{JR invSvv − ∆JR invẋr} − JT
ϕ (q){ΓF2SvF }.

(44)

Since Ŝq ∈ L2, and JR inv and Q are bounded, then
QJR invSvv is bounded and as ϕ(q) is smooth and lies in the
reachable robot space and SvF → 0, then JT

ϕ (q)ΓF2SvF →
0. Now, taking into account that ˆ̇Sq is bounded, then
d
dt (JR invQSvv ) and d

dt (J
T
ϕ (q)ΓF2SvF ) are bounded [this is

possible because (J̇T
ϕ (q), Q̇) are bounded]. All this chain of

conclusions prove that there exist constants ε2>0 and ε3>0
such that |Ṡvv |<ε2, |ṠvF |<ε3.

Now we have to prove that for a proper selection of feedback
gains Γv2 and ΓF2 , the trajectories of visual position and force
converge to zero. This is possible if we can prove that the slid-
ing modes are established in the visual subspace Q and in the
force subspace JT

ϕ (q). Considering that operators QJR inv and

JT
ϕ (q)ΓF2 span the vector Ŝq as the direct sum of its image

im{QJR inv(Svv )} ≡ Sim
vv and im{JT

ϕ (q)ΓF2(SvF )} ≡ Sim
vF ,

respectively [see (44)]. This implies that

Ŝq = Q{JR invSvv − ∆JR invẋr} − JT
ϕ (q){ΓF2SvF }

= (Sim
vv − im{∆JR inv}) − Sim

vF (45)

where Sim
vv − im{∆JR inv} and Sim

vF belong to orthogonal com-
plements, thus, Sim

vF belongs to the kernel of Q. This is verified
if we multiply (45) by QT , i.e.,

QT Ŝq = QT Q{JR invSvv − ∆JR invẋr} − QT JT
ϕ (q)ΓF2SvF︸ ︷︷ ︸

zero

= Sim
vv − im{∆JR invẋr} (46)

since Q is idempotent. It is important to notice that if Ax = Ay
for any square nonsingular matrix A and any couple of vectors
x, y, then x ≡ y. Thus, (46) means that the image subspace
Ŝq = Q{JR invSvv − ∆JR invẋr} is valid within span Q. Now

if we multiply Ŝq by J#
ϕ (q), we obtain

J#
ϕ (q)Ŝq = J#

ϕ (q)Q{JR invSvv − ∆JR invẋr}︸ ︷︷ ︸
zero

− ΓF2J
#
ϕ (q)JT

ϕ (q)SvF

J#
ϕ (q)Ŝq = SvF (47)

which is the force subspace, orthogonal to (46).
Part II: Second-order sliding modes.
Part II.a: Sliding modes for the velocity subspace. According

to (46), we have

QT Ŝq = Q{JR invSvv − ∆JR invẋr}

then

Ŝq ≡ JR invSvv − ∆JR invẋr (48)

in the image subspace of Q. However, notice that when Q is not
full rank, then this equivalence is valid locally, not globally. In
this local neighborhood, if we multiply (48) by RJ ,9 we have

RJ Ŝq = Svδ + Γv1

∫ t

t0

Svδ (ζ) dζ + Γv2

∫ t

t0

sign[Svδ (ζ)] dζ

− RJ {∆JR invẋr} (49)

Taking the time derivative of (49), and multiplying it by ST
vδ ,

it produces

ST
vδ Ṡvδ = −Γv2S

T
vδ sign(Svδ ) − Γv1S

T
vδSvδ

+ ST
vδ

d

dt
[RJ (Ŝq + ∆JR invẋr )]

≤ −µv |Svδ | − Γv1‖Svδ‖2
2

where ε4 ≥ | d
dt [RJ (Ŝq + ∆JR invẋr )]|, and µv = Γv2 − ε4.

Thus, we obtain the sliding condition if Γv2>ε4. This guar-
antees the sliding mode at Svδ = 0 at tv = |Sv δ (t0)|

µv
. However,

notice that for any initial condition Svδ (t0) = 0, then tv = 0,
which implies that the sliding mode at Svδ (t) = 0 is guaranteed
for all time.

Part II.b: Sliding modes for the force subspace. Equation (47)
leads to

J#
ϕ (q)Ŝq = SF δ + ΓF1

∫ t

t0

SF δ (ζ) dζ

+ ΓF2

∫ t

t0

sign[SF δ (ζ)] dζ (50)

Taking the time derivative of (50) and multiplying it by ST
F δ ,

(50) becomes

ST
F δ ṠF δ ≤ −ΓF1‖SF δ‖2

2 − ΓF2 |SF δ | + |SF δ |
d

dt
(J#

ϕ (q)Ŝq )

≤ −µF |SF δ | − ΓF1‖SF δ‖2
2

9Remember the equality [JR inv = J(q)−1R(θv )−1h(z)−1α−1.
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where ε5 ≥ | d
dt [J

#
ϕ (q)Ŝq ]| and µF = ΓF2 − ε5. If ΓF2>ε5,

then a sliding mode at Svδ = 0 is induced at tF = |SF δ (t0)|
µF

,
but SF δ (t0) = 0, thus SF δ (t) = 0 is guaranteed for all time.

Part III: Exponential convergence of tracking errors.
Part III.a: Visual tracking errors. Since a sliding mode exists

for all time at Svδ (t) = 0, then we have

Sv = Svd∀t → ∆ẋv = −Ψ∆xv + Sv (t0)e−κv t∀t

which implies that the visual tracking errors locally tend to zero
exponentially fast, i.e., xv → xvd, ẋv → ẋvd , implying that the
robot end effector converges to the desired image xvd , with
given velocity ẋvd . �

Part III.b: Force tracking errors. Since a sliding mode at
SF δ (t) = 0 is induced for all time, this means that ∆F =
∆F (t0) e−κF t . Moreover, in [22], it is shown that the conver-
gence of force tracking errors arises, thus λ → λd exponentially
fast. �

APPENDIX B

PROOF OF THEOREM 2

With the very same Lyapunov function of Theorem 1, we
obtain the following time derivative, along trajectories of the
closed loop of (37), (38), and (36)

V̇ ≤ −Kd‖Ŝq‖2
2 − ηΓF2‖SvF ‖ + ‖Ŝq‖ψ − V̇f (51)

where

V̇f = σ0Ŝ
T
q [ω + σ01 tanh(ξf Ŝq )]

− σ01Ŝq [−ωk(q̇) + α−1
0 α01|q̇| tanh(ξf Ŝq )].

In [20], we proved that V̇f >0, and |V̇f |<ε6, ε6>0. Then, V̇f is
positive definite outside the hyperball ρ0 = ρ0(Ŝq ) = {Ŝq |Vf ≤
0} with ‖ρ0‖ ≤ ρ, for ρ>0. Then, (55) becomes

V̇ ≤ −Kd‖Ŝq‖2
2 − ηΓF2‖SvF ‖ + ‖Ŝq‖ψ + ρ0. (52)

Afterwards, we proceed similar to proof of Theorem 1, and it
is therefore omitted.
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