
TU Dortmund University and TU München University
Computational Intelligence Research Group
Dynamic Human Robot Interaction Group

Prof. Dr. Günter Rudolph
Prof. Dongheui Lee

Master Thesis

Robotic Calligraphy: Learning From Character Images

by

Omair Ali

Supervisors: Affan Pervez, M.Sc.

Internal Examiner: Prof. Dr. Günter Rudolph

External Examiner: Prof. Dongheui Lee

Dortmund, October 06, 2015





DECLARATION

I hereby declare and confirm that the master thesis

Robotic Calligraphy: Learning From Character Images

is entirely the result of my own work except where otherwise indicated.

On the next page of this document, I have acknowledged the supervision,
guidance and help I received from Prof. Dongheui Lee, Ph.D, M.Sc. Affan
Pervez and Prof. Dr. Günter Rudolph.

Dortmund, October 06, 2015

Omair Ali





ACKNOWLEDGMENTS

This work was done in the department of Dynamische Mensch-Roboter-
Interaktion für Automatisierungstechnik, Technische Universität München and
Computational Intelligence Research Group, Technische Universität Dortmund
.

I would like to thank Prof. Dongheui Lee, Ph.D. for giving me the op-
portunity to work in this field of research. A special thanks to M.Sc. Affan
Pervez, without whom, this work would not have been possible. His constant
help and guidance was vital in completion of this work. I would further like
to thank Prof. Dr. Günter Rudolph for his constant support and suggestions
of improvement. Their recommendations and ideas helped me to compile the
work in the best possible way.

In the end, I would like to thank my family for their constant support and
encouragement.

Dortmund, October 06, 2015

Omair Ali





ABSTRACT

Known as the ”art of combining strokes to form complex letters”, Chi-
nese and Korean Calligraphy has always been of vital significance through-
out the history of these ancient civilizations. Its exquisite epitome of ele-
gance is depicted through the strokes. A calligrapher assimilates the skill
of drawing these strokes. Once this dexterity is mastered, it can be used to
compose a calligraphic letter afterwards. The very notion of calligraphy is
endeavored to be implemented on robots in this research. Korean calligra-
phy is the nucleus of this research work and the image of the calligraphic
character is used as an input. Unlike humans or calligraphers, the robots
are unacquainted with combination of various strokes used to draw a calli-
graphic letter. Hence it is quite cardinal and arduous to fragment the calli-
graphic letter into diverse strokes used to draw it. A novel approach ensu-
ing the concept of Gaussian Mixture Model (GMM) is proposed to segregate
the input image into assorted strokes. Once the image is partitioned into dif-
ferent strokes, the character is reproduced by blending the strokes in right
order and right position using Gaussian Mixture Regression (GMR). When
character is redrawn, Dynamic Movement Primitive (DMP) is applied to ac-
quire the scale and temporal in-variance in the stroke trajectory. The param-
eters learned through DMP are iteratively streamlined using Reinforcement
Learning until they converge or don’t revamp any further.
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1

CHAPTER

ONE

INTRODUCTION

In the contemporary era, extensive research work in field of robotics is ma-
terializing to give birth to an artificial being, intelligent enough to compete
with human counterparts. Without the aptitude of learning and transform-
ing, no artificial entity is entitled to be intelligent. To inculcate these two
basic traits of intelligent agent in artificial body, the outlook must be in-
spired from the most intelligent network on the face of the earth, the hu-
man’s. Studies reveal that three strategies opted in Organic world to learn
and transform are; Unsupervised Learning, Supervised Learning and Re-
inforcement Learning. The abstract ideas of all these three schemes are ex-
ploited in this research work for it is intrinsically quite captivating.

Unsupervised Learning pivots on retrieving some useful information
from the data under observation rather than us explicitly stipulating the
source or use of the data. It strives for finding pattern and structure in the in-
complete data. Where as in Supervised Learning, labeled data is employed
for learning. Reinforcement learning can be defined as optimizing the per-
formance of a system by trial and error

The cornerstone of this research work is to traverse the idea of Korean
Calligraphy on robots. Korean Calligraphy is an art of combining strokes
to form complex letters. A calligrapher learns the skill of drawing these
strokes rather than explicitly drawing the complete letter itself. The learned
strokes can be used to draw complex letters afterwards.

The idea is to use the image of the calligraphic character and segregate
it into different strokes used to form the letter. As stroke is the basic unit
of a symbolic language, thus the basis of character analysis is stroke extrac-
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tion. But unlike humans or calligraphers, the robots are unacquainted with
combination of various strokes used to draw a calligraphic letter. As it is
quite predominant, fundamental and strenuous in calligraphy to identify
the strokes, it has been the area of interest for many researchers in recent
time.

Existing stroke extraction approaches can be classified into two cate-
gories. Bottom Up Approach and Top Down Approach. Former extracts the
strokes directly from binary image while the latter one exploits the skele-
ton of the image to extract the strokes. In bottom up approach Y.Sun et al.
[17] used geometric properties of the contour of the character to extract the
stroke. It extracts sub-contours first and then combine them to retrieve the
strokes. This approach is dependent on the definition of basic strokes in Chi-
nese Calligraphy. Considering the existing five basic strokes, this approach
produces many failed cases of wrong stroke extraction which is shown in
Figure 1.1. Y. M. Su et al. [15] [16] implemented Gabor filters and SOGD
filters respectively to extract strokes in four directions (i.e. 0◦, 45◦, 90◦ and
135◦). However, this approach is unable to extract the strokes beyond these
directions.

Figure 1.1.: (a)Input character and (b)Extraction result [17]

L. Wang et al. [20] used grey scale image to extract the strokes based
on grey-scale surface features like peak, pit, saddle and ridge etc. There
implies quite a high computational cost for this method. Another contour
based approach is applied by K. YU et al. [22] in which they used fast-CPDA
to identify the corners from the contour. Afterwards the half-edge coloring
graph is introduced to connect the contours that reside on the same side of a
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stroke. Matching contours on both sides of stroke finally results in complete
stroke.

In this research work we have proposed a novel idea of extracting strokes
from Korean Calligraphic letters based on the Gaussian Mixture Model (GMM).
Given the image of calligraphic letter as an input, it is first thinned and then
converted into data points. Afterwards, GMM is applied to cluster the data
points. Expectation Maximization algorithm is then implemented to learn
the parameters of GMM. Bayesian information criteria (BIC) is employed to
determine the number of components required by GMM to represent the
data. Once GMM is learned, the strokes are retrieved by combining respec-
tive components(gaussians) based on proposed algorithm that represent the
stroke and then Gaussian Mixture Regression (GMR) is applied to get the
smooth trajectory for the extracted strokes. As soon as strokes are retrieved,
the trajectories encoded by GMM are re-encoded using Dynamic movement
primitives (DMPs) to reduce the number of parameters to learn during rein-
forcement learning. The calligraphic brush is modeled as droplet to redraw
the character as a proof of concept. Then the learned dexterity is imple-
mented on KUKA LWR robot. The reinforcement learning is brought into
service to improve iteratively the reproduction of the drawn letter.

1.1. Highlights and Layout of the Report

Chapter 2 spans the theoretical prerequisites required to follow the proceed-
ings of the report. In Chapter 3 the proposed idea for extracting strokes is
briefly described. Chapter 4 elaborates the complete work with help of ex-
amples and results. The conclusion is presented in last chapter 5.
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CHAPTER

TWO

THEORETICAL PREREQUISITES

In this chapter, the theoretical framework needed to fully understand this
research work are elaborated. First, a general summary of basic concepts
coupled with the modeling of Gaussian Mixture Model (GMM) is provided.
The abstraction which entails to fully comprehend the modeling of GMM
are:

1. Gaussian Mixture Model (GMM)

2. Expectation Maximization Algorithm (EM Algorithm)

3. Gaussian Mixture Regression (GMR)

Afterwards, an insight regarding Dynamic Movement Primitives is given.
Then basics of Reinforcement Learning are briefly touched at the end of this
chapter.

2.1. Gaussian Mixture Model (GMM)

A Gaussian Mixture Model [12], [4] is considered to be a simple linear su-
perposition of K Gaussian components, which are combined to provide a
multimodal density. It is quite beneficial for modeling data that is obtained
from one of several groups e.g. they can be utilized to implement a color
based segmentation of an image or for clustering purpose. It is assumed to
be like kernel density estimates with components much less than total num-
ber of data points



6 Chapter 2. Theoretical Prerequisites

A GMM is a probability based model. It presumes that all the data
points are originated from a mixture of a finite number of Gaussian dis-
tributions with known parameters. A GMM can be written as a linear su-
perposition of these finite number of Gaussian distributions as:

p(y) =
K∑
k=1

πkN (y|µk,Σk) (2.1)

Where:
K = fixed number of components
πk = probability of kth component
µk = mean of the kth component
Σk = variance of the kth component

The parameters πk, µk and Σk of the Equation (2.1) are approximated
by maximizing the expected value of incomplete data log-likelihood. To
acquire the estimation of these parameters, first Latent Variables Z are pre-
sented which is quite significant in providing the deeper insight into the
distribution and EM algorithm. Assume Z to be a K dimensional variable
with one of the K representations in which a particular element zk is one
and rest of the elements are equal to zero. The value of zk therefore fulfills∑K

k=1 zk = 1 and zk ∈ {0, 1}. Hence, the total number of representations of
the latent variable are K where each representation relates to a certain class
or basis function in the GMM. Mixing probabilities πk specify the marginal
distribution over Z such that:

p(z) =
K∏
k=1

πzk
k

The conditional probability of data point x provided a particular value
of Z is Gaussian distributed and is given by:

p(y|z) =
K∏
k=1

(N (y|µk,Σk))zk (2.2)

The joint probability distribution is obtained by p(Z)p(y|Z), and the
marginal distribution of x is then evaluated by adding the joint probabil-
ity distribution over all possible states of Z which is written as:
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p(y) =
∑
Z

p(Z)p(y|Z) =
K∑
k=1

πkN (y|µk,Σk) (2.3)

The equation achieved in (2.3) is the equivalent representation of a GMM
by explicitly involving a latent variable Z. Let y = {y1, y2, ...yn} be the given
set of observations and data is to be modeled using a mixture of K Gaussian
components. The log-likelihood function of the data on the approximated
model is acquired as:

lnL(π, µ,Σ|y) = lnp(y|π, µ,Σ) =
n∑

i=1

ln

{
K∑
k=1

πkN (yi|µk,Σk)

}
(2.4)

The model corresponding to the values of parameters π,µ and Σ that
maximize the function (2.4) for i.i.d dataset y best represents the data. The
maximization of (2.4) is very arduous because of the involvement of addi-
tion terms inside the function of log. In fact, no closed form solution of the
above equation can be found if its gradient is put equal to zero. Hence a
substitute view of the likelihood, known as the completed log likelihood of
the data is introduced. Assume that in addition to the observed data y, la-
tent variables also known as hidden variables Z or the class labels are also
given. Considering the likelihood of the complete dataset {y, Z}, the likeli-
hood function can be written as:

lnp(y, Z|π, µ,Σ) =
n∑

i=1

K∑
k=1

zki {lnπk + lnN (yi|µk,Σk)} (2.5)

Where, zki shows the responsibility of the kthcomponent in producing
the ithdata. Its value is known before hand in case of completed data. While
comparing the Equation (2.5) with Equation (2.4), it can be seen that sum-
mation over K term is interchanged with logarithmic term, making the equa-
tion a viable closed form solution. The completed likelihood and the incom-
plete data likelihood can be related using the following identity:

L(π, µ,Σ|y, Z) = L(π, µ,Σ|y) +
n∑

i=1

K∑
k=1

zkilog
wki

πk
(2.6)
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2.2. Expectation Maximization (EM)

Expectation Maximization (EM) [7] is a strong tool that, with the help of
latent variables, is employed to find the maximum likelihood solution for
models. It is purely an iteration based method for finding the maximum
likelihood, which implies that the means, co-variances and mixing coeffi-
cients of the model are initialized with some appropriate initial values and
then iteratively refined through two steps namely:

1. Expectation Step (E-Step)

2. Maximization Step (M-Step)

E Step
In this step, the most recent values of parameters are used to calculate the
Posterior probabilities for the data. Posterior probability or responsibility
can be considered as the probability of ith data produced by kth component
i.e. p(zki = 1). It is mathematically formulated as:

wki =
πkN (yi|µk,Σk)∑K
j=1 πjN (yi|µj,Σj)

(2.7)

M Step
In M step, the parameters that include mean, mixing coefficient and co-
variance are updated or re-estimated based on Posterior probabilities cal-
culated in E-Step by using:

µk =
1

Nk

n∑
i=1

wkiyi (2.8)

Σk =
1

Nk

n∑
i=1

wki(yi − µk)(yi − µk)T (2.9)

πk =
Nk

n
(2.10)

where

Nk =
n∑

i=1

wki
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The above mentioned two steps are repeated until the Likelihood func-
tion converges or there is not further significant change.

2.3. Learning GMM Using EM

Approximation and estimation of unknown parameters and the number of
components that best fit the data are required in unsupervised learning of
mixture models for a given set of observations. Expectation Maximization
is an iteration based algorithm which ensures to reach local maximum for
Maximum likelihood estimate of the parameters. To estimate the optimal
number of componentsK in mixture model that best represent the data is of
great significance due to following reasons. Number of components greater
than the optimal number results into over-fitting of the data which leads to
poor performance of the model. To get the low bias, accurate estimation and
low variance, optimal number of components are important to be known as
shown in Figure 2.1

Figure 2.1.: Exemplification of the Bias and Variance. The higher the Bias is, the
lower the accuracy from target is. With high variance, the target might be acquired
but it can increase the variance in the data resulting in over-fitting of the model.
The best model has low unexplained variance and the bias. [onl]

Components lower than the optimal number results in less accuracy
which can be improved by enhancing the number of components. Increas-
ing the number of components increases the variance in the estimated model
which should also be circumvented. Hence optimal number of components
are required to get this trade-off which is shown in Figure 2.2



10 Chapter 2. Theoretical Prerequisites

Figure 2.2.: Trade-off between bias and variance [onl]

2.3.1. Estimating the Optimal Number of Components

The information regarding the number of clusters and the clustering method
[9] is always an important concern, for it plays a vital role in estimating the
performance of a model. There are numerous methods for estimating the
performance of the model against the number of components used to esti-
mate the data. Few are mentioned as:

1. Silhouette score

2. Akaike information criterion (AIC)

3. Bayesian information criterion (BIC)

4. Minimum Description Length and Minimum Message Length (MML/MDL)
[8], [19]

Silhouette This technique first explained by Peter J. Rousseeuw in 1986
[10], [13? ] uses the average Silhouette to interpret and validate the consis-
tency of the clusters of the data. It represents graphically that how perfect
the data in a cluster is clustered.

In this research work, BIC is employed to estimate the optimal number
of components in a Gaussian Mixture Model

Bayesian Information Criterion (BIC) The BIC [14] selects the model among
the finite set of models. Like Akaike Information Criterion (AIC) [3], it is de-
pendent on the likelihood of the data and possess a term that penalizes the
estimate in case of unwanted components which causes over-fitting of the



2.4. Gaussian Mixture Regression (GMR) 11

data. The penalty term is non-linear and take into consideration the sample
size and total number of observations that estimated the model. It is math-
ematically written as:

BIC = Dkln(n)− 2lnL (2.11)

where,

Dk = number of parameters in K-component model L = likelihood of the
data on estimated model

In other words, it is a trade-off between complexity and the likelihood
of the model. For number of components K for which BIC is lowest, are the
optimal number of components.

2.4. Gaussian Mixture Regression (GMR)

Linear combination of Gaussian and conditional Gaussian densities are the
basis of GMR [5]. Once, the input data is modeled by GMM, Gaussian Mix-
ture Regression gives a quick and analytic way to get smooth output tra-
jectories in addition to covariance matrices that explain the change and cor-
relation among various variables. At the time of fitting GMM on dataset,
there is no difference between input and output variables. In a special case
of trajectory learning, time can be referred to as an Input variable yI and po-
sition can be considered as output variable yO and the goal is to reproduce
the trajectory (yO) or part of it provided a time step yI . The data y modeled
using GMM can be segregated into input yI and output variables yO.

The probability of a data point y = [yI , yO] that corresponds to GMM dis-
tribution is shown as.

p(y) =
K∑
k=1

πkN (y|µk,Σk) (2.12)

where the parameters: means µk and co-variance matrices Σk are com-
posed of input and output components and are represented as:

µk =

[
µI
k

µO
k

]
,

[
ΣI

k ΣIO
k

ΣOI
k ΣI

k

]
(2.13)
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The distribution of output variable yO given the corresponding input
variable yI and Component k is written as:

p
(
yO|yI , k

)
= N (ζk, ςk)

where

ζk = µO
k + ΣOI

k

(
ΣI

k

)−1 (
yI − µI

k

)
ς = ΣO

k − ΣOI
k

(
ΣI

k

)−1
ΣIO

k

(2.14)

Taking into consideration the whole Gaussian Mixture model, the prob-
ability distribution of yO given yI is written as:

p
(
yO|yI

)
≈ ΣK

k=1hkN (ζk, ςk)

where :

hk =
πkp(y

I |k)

ΣK
j=1πjp(y

I |j)

(2.15)

Hence, Gaussian Mixture Regression can be used to regenerate the skill,
once an optimal Gaussian Mixture Model is at hand.

2.5. Dynamic Moment Primitives (DMPs)

Dynamic Movement Primitives [11] are utilized to encode a trajectory. They
were first proposed by Stefan Schaal’s Lab in 2002. Trajectories encoded us-
ing GMM have high number of free parameters to update in reinforcement
learning. So to reduce the number of free parameters while applying rein-
forcement learning, DMPs are introduced and the trajectories encoded us-
ing GMM are now encoded using DMPs. The motion generated using them
are highly stable and it can be used to encode both discrete and rhythmic
motions. In this research work, DMPs were used only for discrete move-
ments.

It has a hidden system known as canonical system

ż = u(z)

which drives the transformed system

ẋ = v(x, z, g, θ)
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for all degrees of freedom (DoFs) i, where θ is the parameter to be learned.
Desired positions x1 and the velocities q̇ = τx2 of the robot either in joint
space or in the task space are used as the states x = [x1,x2] of the transformed
system. Accelerations are calculated by q̈ = τ ẋ2. These are converted into
torques or forces required by the robot using a controller. It ensures the sta-
bility of the movement. As only discrete movements are considered in this
research work hence only the corresponding policies of DMPs are provided.
In case of only single discrete movement the canonical form u can be rep-
resented as: ż = −ταzz. Here τ = 1/T time constant where T is the total
duration of a MP. The value of the parameter αz is selected such that it en-
sures the safe termination of the movement. It is chosen such that value of
z approaches zero at T. The transformed function v is shown in the form:

ẋ2 = ταx(βx(g − x1)− x2) + τAf(z)

ẋ1 = τx2

Here the value of τ is same as that of the canonical system. The values of
the parameters αx and βx are chosen so that the system is critically damped
at A = 0. g is goal and f is a transformation function and A is a diagonal
matrix that modify the amplitude. The matrix A ensures linear re-scaling
when the the goal is varied. The transformation function varies the output
of the transformed system and is given by:

f(z) =
N∑

n=1

ψn(z)θnz

Here θn contains the nth set of adjustable parameters for all DoFs. N is the
number of parameters per DoF. z is the value of canonical system. ψn(z) are
the corresponding weights which are given by:

f(z) =
exp(−h−2

n (z − cn)2)∑N
m=1 exp(−h−2

m (z − cm)2)

Each DoF has a separate DMP and the parameters for each DoF are
learned separately. The cost function that needs to be minimized for all pa-
rameters θn is given in form of weighted squared error: e2n =

∑T
t=1 ψ

n
t (f ref

t −
ztθ

n)2.
The error written in matrix form is given as:

e2n = (f ref − Zθn)Tψ(f ref − Zθn)

Here θn is given by:
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θn = (ZTψZ)−1ZTψf ref

Here f ref contains the values of f ref
t for all samples.

2.6. Reinforcement Learning (RL)

Reinforcement learning can be defined as optimizing the performance of a
system by trial and error. In this research EM based RL mentioned in [6] is
employed. In this RL the update policy is given by:

θ(n) = θ(n−1) +

∑M
m r(θm)[θm − θ(n−1)]∑M

m r(θm)
(2.16)

where:
θ(n) = Learned parameters of DMP.
θ(n−1) = Old parameters of DMP.
r(θm) = Reward.
θm = Perturbed parameters of DMP.
The difference between perturbed and old parameters of DMP [11] θm −
θ(n−1) are Exploration terms and give relative exploration between parame-
ters in mth iteration and current parameters. In this research, reward (r(θm))
is the correlation between original image and image produced by robot.
The exploration terms are weighted by the respective correlation r(θm) and
normalized by the sum of other correlations. They are sampled from normal
distribution. It is expressed as co-variance matrix and updated as:

∑n
=

∑M
m r(θm)[θm − θ(n−1)][θm − θ(n−1)]T∑M

m r(θm)
+
∑

0
(2.17)

where:∑
0 = is a regularization term corresponding to a minimum exploration

noise used to avoid premature convergence to poor local optima.
The equations mentioned form a multivariate normal distribution at each
iteration. The covariance can guide the exploration and it also provides in-
formation about the neighborhood of the policy solutions.
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CHAPTER

THREE

STROKE EXTRACTION

This chapter is the nucleus of this research, for it endeavors to develop an
approach to segment the input calligraphic image into the strokes that are
required to draw that image. The focus of the work is primarily on parti-
tioning the Korean Calligraphic Letters into respective strokes.

Segregating the image into correct strokes is the most important and the
arduous part of Robotic calligraphy. Without accomplishing it, robot is un-
aware of the stroke combinations used for a particular character. Retrieving
correct strokes from character images have following different phases:

1. Thinning

2. Image to Data Points

3. Gaussian Mixture Model on data set

4. Extracting End points of the Stroke

5. Stroke Retrieval

3.1. Thinning

Thinning is a morphological operation. It is usually applied on the image to
thin it by reducing the number of pixels in it.
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Figure 3.1.: It has two parallel overlapping Gaussian Components on extreme left
side of the character.

In this phase, the image is thinned or in other words the data points are
reduced to get a thinned image. This is quite an important phase in the pro-
cess because it ensures in the later stage that when Gaussian Mixture Model
is applied on the data points, it does not model the thickness of the charac-
ter and there are no parallel or random Gaussian Components. Presence of
parallel Gaussian components as shown in Figure 3.1 make it quite difficult
to extract the strokes and also the thinning is helpful in reducing the com-
putation time because it does not contain all the data points.

Hence thinning is required to extract the strokes with less computational
power. After thinning the image obtained is as shown in fig 3.2

There is an established function for thinning operation in Matlab. It is
available in its image processing toolbox therefore it is not required to write
a new algorithm for thinning operation. The new data set obtained after
thinning is used in processes to follow.
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Figure 3.2.: It has no parallel Gaussian Components

3.2. Image to Data Points

This is the second phase in stroke extraction process. In this phase the input
image is converted into data points so as to make the image compatible for
applying Gaussian Mixture Model later on.

It is the most basic step in the process and is shown in fig3.3

The algorithm for converting image to data points is given in 1

Algorithm 1 Image to Data Points

1: procedure Image 2 Datapoints
2: Input Image
3: for Each row of the image do
4: for Each column of the image do
5: if The value of pixel is <threshold then
6: Store its coordinates in matrix
7: else
8: Ignore the pixel
9: end if

10: end for
11: end for
12: end procedure
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(a) Input Image
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(b) Data Points

Figure 3.3.: It shows the conversion of input image into data points

3.3. Gaussian Mixture Model on Data set

Once the input image is under gone the first two phases of the process, it
is all set to apply Gaussian Mixture Model to represent the complete data
set. Then GMM is applied on the data points by using Equation (2.1). While
applying GMM on the data set, its parameters are learned using E and M-
steps of EM-Algorithm as shown in Equations (2.7),(2.8),(2.9),(2.10).

The optimal number of components that best represent the data are cal-
culated using Bayesian Information Criteria which is shown in Equation
(2.11). The algorithm starts with some fixed high number of Gaussian com-
ponents K representing the data as shown in Figure 3.4 and runs for K
times.

In each iteration, it calculates the BIC number using Equation (2.11) and
merges one Gaussian component to other to reduce the number of compo-
nents by 1. By the end of last iteration there is only one Gaussian Compo-
nent left which is shown in Figure 3.5.

BICs of all these iterations are compared and the one with least value is
selected to represent the data, for it has the optimal number of components
to best represent the data which is shown in Figure 3.6
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Figure 3.4.: GMM starting with high number of components
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Figure 3.5.: GMM with only one component
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Figure 3.6.: GMM with optimal number of components. For this character it is 9.

After the GMM is employed and learned, the image is ready for the main
and the most important phase of this process, the stroke extraction phase

3.4. Extracting End points of Stroke

This phase deals with extracting the end points of the stroke. Once the
GMM is learned for a character, next phase is to connect the respective com-
ponents that represent a stroke. This is the most significant phase of the
process because once the end points of a stroke are retrieved, then its com-
plete trajectory can be extracted using GMR.

To continue with the procedure, first the major-axes of the Gaussian
components are calculated using the co-variance matrix of the components.
The co-variance matrix Σk of the kth component whose major-axis is to be
determined can be shown using Singular Value Decomposition (SVD) as:

Σk = V DV T

where,

V = [v1, v2]
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Matrix whose columns are eigenvectors of Σk and it satisfies Σ*V = D*V

D = Diagonal matrix that contains the eigenvalues of Σk along the main
diagonal and for 2x2 square matrix, it is written as:

[
λ211 0
0 λ222

]
Here values of λ are calculated by solving det(Σk − λI) = 0

For each eigenvalue, its corresponding eigenvector is calculated by solving
the following equation:

Σk ∗ v1 = λ11 ∗ v1,Σk ∗ v2 = λ22 ∗ v2
Once the eigenvalues matrix D and eigenvectors matrix V are calculated,

arrange them in such an order that vector v1 is major eigenvector and λ11 is
the corresponding biggest eigenvalue. Then the two end points of the major
axes of the Gaussian components are calculated by using the Equation (3.1)

endpoint1 = µk + 2 ∗ λ11 ∗ v1
endpoint2 = µk − 2 ∗ λ11 ∗ v1

(3.1)

Here µk is the mean of gaussian component k whose major axis is being
determined. As most of the points lie in 2σ standard deviation, therefore
factor of 2 is multiplied with eigenvalues and eigenvectors in the Equation
(3.1). Now by joining the two endpoints calculated above, major axis of the
gaussian component is obtained. This procedure is done as many time as
number of components K in GMM are and store the endpoints of all the
major-axes . Once the major axes of all the components are found, they are
drawn on the GMM as shown in Figure 3.7

After the major axes have been retrieved, their slopes are calculated us-
ing the basic slope formula. Intersection of major axes of two components
(say major-axes 1 and 2) are calculated using the Equation 3.2. After calcu-
lating all the intersection points, they are also drawn on the GMM as shown
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Figure 3.7.: GMM with major axes of all the Gaussian Components, shown in
blue color

in the image 3.8

xintersect =
b2 − b1
m2 −m1

yintersect = (m1) ∗ (xintersect) + b1

(3.2)

where:

b1 = y-intercept for major-axis 1
b2 = y-intercept for major-axis 2
m1 = slope of major-axis 1
m2 = slope of major-axis 2

Till this point, the major-axes of all Gaussian Components, their end
points, their slopes and their intersections with major-axes of other gaus-
sian components have been determined. From now on-wards, ”algorithm”
is referred to as an ”agent” that is searching for a path or trajectory to travel
from a start point to the end point that in the end represent a stroke. Now
the agent is fully prepared to begin its search process for the end points of
the stroke.

To begin the search process, there must a starting point for an agent to
start its search. So in this case the start point is the point among all the end
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Figure 3.8.: GMM with major axes of all the Gaussian Components, their inter-
sections and their mean points

points of major-axes that has the biggest y-coordinate. Hence it starts by
looking for the point with largest y-coordinate among all end points of the
major-axes as shown in Figure 3.9

After the starting point is determined, it is considered as the current-
point (the point where the agent is) and the axis is considered as the current-
axis (the axis where the agent is) and now the agent must find the next-point
to jump or to reach to in order to carry on its search process. When the
agent reaches one of the end points of a major-axis whose flag is not high, it
must jump to its other end point as next search step or next current-point.
Once both the end points of a major-axis are visited, its flag is turned high
indicating that this major-axis has been visited and not be included in fur-
ther search process. As for now the agent is at one of the end points of the
current-axis and as it is the beginning of the search process, the flag of that
major-axis is not high, so the agent must jump to the its other end point
making it the new current-point as shown in Figure 3.10 and turn its flag
high.

Now for the next current-point or step, the agent considers all the major-
axes whose flags are not high or which are not visited before. To jump from
one major-axis to the next in search of new current-point, the agent takes
into consideration a lot of aspects. It considers all the major-axes that in-
tersect with the current-axis and all those major-axes which do not intersect
but one of the their end points lie in the Gaussian distribution of current-
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Figure 3.9.: Starting point of the agent is point with biggest y-coordinate. In this
case it is the point with value of y = 130.9

component (Gaussian component corresponding to current-axis) as the po-
tential candidate for jumping to get new current-point. These aspects are
explained in detail in form of the following cases:

Case 1: One Intersecting Major-axis and no end-points in Gaussian
Distribution
Consider a case when there is only one major axis that is intersecting with
the current-axis and there are no other major-axes whose end points lie in
the Gaussian Distribution of the current-component. In this case the agent
first inspects whether the flag of the intersecting axes is high or low. If it is
high then the current-point is one end-point of the stroke.

If the flag is low then the agent calculates the distance between intersec-
tion point of both axes and the current-point and also the difference of
their slopes. If both the entities lie below some threshold (1/4)*length of
current-axis and 60degrees respectively, then one of the end points of in-
tersecting axis is to be chosen as new current-point. The nearest end point
to the current-point is considered to be the new current-point. If the dis-
tance is greater than the threshold but below (1/2)*length of current-axis
and the slope difference is below the 30degree then the new current-point
is the nearest end point of the intersecting axis to the current-point. If even
this level of threshold is not met then the current-point is one end-point of
the stroke.
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Figure 3.10.: Agent jumps to the other end point of same major-axis whose flag
is not high. In this case the next current-point is one with values X = 91.71 and Y
= 95.74

Case 2: More Intersecting Major-axes and no end-points in Gaussian
Distribution
Consider a case where there are more than one intersecting major-axes and
no end points in the Gaussian Distribution of current-component like shown
in Figure 3.11

The agent scans the flags of all the major-axes intersecting with current-
axis. If flags of all the intersecting axes are high, then the current-point is
one end-point of the stroke.

If all the flags of intersecting-axes are high except one, it means that only
one axis is of interest to be checked for new current-point, then solve it us-
ing case 1 as it now is similar to case 1.

If there are more than one axes whose flags are not high, and distance be-
tween their intersecting point and current-point and their slope difference
with slope of current-axis are less than the thresholds mentioned in Case 1
respectively, then the agent chooses the axes with least difference between
its slope and slope of the current-axis. Then the end point of the intersecting
axis which is nearest to the current-point is chosen as the new current-point.
If the thresholds are not fulfilled, then the current-point is one end-point of
the stroke.
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Figure 3.11.: A figure indicating more than one intersecting major-axes

Case 3: Intersecting Major-axes and end-points in Gaussian Distribu-
tion
Consider the case where there are major-axes that are intersecting with the
current-axis and there are few major-axes which are not intersecting but
have one of their end points in the Gaussian distribution of current-component.

In this case the agent scans the flags of all major-axes that intersect with
current-point and all those whose end points are in Gaussian distribution
current-component. If the flags are all high, then the current-point is one
end-point of the stroke.

If all the flags are high except one, it means that only one axis is of in-
terest to check for new current-point. In case that the axis of interest is the
one whose one of the end points is in the Gaussian distribution of current-
axis, the agent checks if its slope difference with the slope of current-axis is
less than 60degrees and also checks if its end point lies in the (1/4)*length
of current-axis from the current-point. If both the thresholds are satisfied,
the new current-point is the end point that lies in the Gaussian distribution
of current-component. If the above thresholds are not satisfied, both these
parameters are checked with new threshold values as explained in Case 1.
If even these threshold values are not fulfilled, then the current-point is one
end-point of the stroke.
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If there are more than one axes whose flags are not high, use the concept
mentioned in Case 2 to determine the new current-point or one end-point
of the stroke. The agent repeats the above method based on the case en-
countered till one of the end points of the stroke are determined.

By now one of the end points of the stroke has been found by the agent.
Agent uses this determined end point of the stroke as a starting point or
starting current-point to find the other end point of the same stroke by em-
ploying the same method (the flags are reset) as mentioned above based on
the case encountered by it during its search policy. It also stores the order in
which the major-axes are visited to get the trajectory of the stroke.

Once both end points of the same stroke are determined, these are stored
and the flags of major-axes used in this process are permanently turned high
and not used in finding the end points of other stroke. This process is re-
peated till end points of all the strokes are determined.

3.5. Stroke Retrieval

In this phase complete stroke is retrieved by getting its trajectory.

After getting the end points of the stroke, each of the Gaussian compo-
nents involved in representing the stroke are linearly divided into samples
and an increasing variable is attached with them having value in this case
between 0 and 1. Then GMM is applied on these linearly divided samples
along with their increasing variable. Once the GMM is learned, the increas-
ing variable is used as an input to the Gaussian Mixture Regression(GMR)
which in return generates the trajectory as output based on the linearly di-
vided samples which is shown in the Figure 3.12

Above mentioned procedure for generating the complete trajectory is
employed till all the strokes are full retrieved which is represented in Figure
3.13
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Figure 3.12.: (a) A fully extracted Stroke in two strokes Character , (b) Trajectory
generated by GMR
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Figure 3.13.: Extracted Strokes of two stroke character

Once all the strokes are extracted, the character can be reproduced by
the robot by drawing the extracted strokes in order. A stroke encoded us-
ing GMM has a high number of free parameters which become problematic
when applying RL. Hence, to reduce the number of parameters, the trajecto-
ries extracted using GMR are re-encoded using DMPs before reproduction.
The reproduction phase is discussed in following chapter.
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CHAPTER

FOUR

CHARACTER REPRODUCTION

This chapter describes the reproduction phase of the character. Accurate re-
production of the character is possible only when its thickness information
is known before hand.

4.1. Thickness of Character

In this step the thickness information of the character is restored using the
original image. Once the stroke trajectory is retrieved, it is sub-sampled
and circles [21] are drawn on the original image with center at each sam-
pled point and the radius equal to the thickness of the original character
corresponding to that point. Interpolation is done to get the thickness at
points in between sub-sampled points. It is well represented in Figure 4.1
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Figure 4.1.: Thickness of the stroke by drawing circles.
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The thickness information is quite crucial in correct reproduction of the
character.

The reproduction phase can further be partitioned into following parts
namely:

1. Trajectory encoding by DMPs

2. Reproduction of Trajectory

3. Iterative Improvement of trajectory using Reinforcement Learning

Trajectory encoding by DMPs In order to improve the learned skill, the
parameters of the extracted trajectory must be updated iteratively. A stroke
encoded using GMM has high number of free parameters which become
problematic when applying reinforcement learning because the number of
free parameters to update increase tremendously which results in high com-
putational cost and time to converge to better result. Hence, to reduce the
number of parameters, the trajectories extracted using GMR are re-encoded
using DMPs. Each stroke in the character has an individual DMP.

Reproduction of Trajectory The DMP encoded trajectory is then imple-
mented on KUKA robot. As a proof of concept, the learned skill is verified
in simulation as well. In simulation the paint brush is modeled as droplet.
The drawn character using droplet model [dro] is shown in Figure 4.2.

20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Figure 4.2.: Calligraphy letter drawn using drop model.
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Iterative Improvement of trajectory using Reinforcement Learning Af-
ter the character has been reproduced by the robot, its correlation with the
original image is used as reward for RL and employed to update the param-
eters of DMP individually for each stroke. The update policy is shown by
the Equation 4.1

θnew = θold +

∑K
j=1 γjεj∑K
j=1 γj

(4.1)

where:

θnew = learned parameters of DMP
θold = old parameters of DMP
γj = Correlation between original image and image reproduced by robot
εj = exploration terms

The writing sequence of the strokes [18] is also very important in writing
a character of Korean or Chinese language.
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CHAPTER

FIVE

RESULTS

This chapter includes all the results of the research. The hardware used
to acquire the results is KUKA Light weight robot which is operated using
Robot Operating System. The software used in this research is MATLAB.

As a proof of concept the extracted strokes are also drawn in simulation.
The paint brush is modeled as droplet [dro] which is given as:

x = thicknessi(1− cos(2πt))sin(2πt)

y = thicknessicos(2πt)

where:
0≤ t ≤1
and employed to draw the character. The original images of the characters
and example of same characters drawn using drop model in simulation are
shown in Figure 5.1 and 5.2

Later to verify the result, the learned skill is then implemented on KUKA
robot. The result of KUKA robot drawing the characters are shown in Fig-
ures 5.3 and 5.7.

These drawn characters are then used to find the correlation with their
respective original images and the calculated correlation is employed as a
reward in Equation 4.1 to update the parameters of DMP which encodes
the trajectory of these characters. The Figure 5.5 shows the graph of correla-
tion between drawn character and its original image. With each increasing
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Figure 5.1.: (a),(b),(c),(d) Show the original images of the calligraphic characters.

number of iteration of reinforcement learning, the correlation is increasing
which shows the improvement in learned dexterity by the robot.

The Figure 5.6 gives the complete overview of the process.
The whole procedure of extracting strokes and reproduction of the char-

acter is shown in Figure 5.7
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Figure 5.2.: (a) Shows the character before reinforcement learning, (b) Shows the
character after 3 iterations, (c) Shows the character after 7 iterations

(a) (b) (c)

(d)

Figure 5.3.: (a) Shows the original Character, (b) Shows the character before
reinforcement learning, (c) Shows the character after 3 iterations, (d) Shows the
character after 7 iterations
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Figure 5.4.: (a) Shows the original Character, (b) Shows the character before
reinforcement learning, (c) Shows the character after 3 iterations, (d) Shows the
character after 7 iterations.
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Figure 5.5.: Reward against number of iterations. It improves with each iteration
of reinforcement learning.
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Figure 5.6.: Flow chart giving brief overview of the complete process.
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Figure 5.7.: Complete overview of the stroke extraction and reproduction of a
character.
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Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5 

Hochschulgesetz - HG - )  

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren 

oder mit Geldstrafe bestraft.  

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die 

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen. 

Die oben stehende Belehrung habe ich zur Kenntnis genommen: 

 

_____________________________ _________________________ 
Ort, Datum       Unterschrift 
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