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Abstract

Fuzzy quantifiers, i.e. operators intended to provide
a numerical interpretation of natural language (NL)
quantifiers like ‘almost all’, are valuable tools for image
processing, in particular to express accumulative (second
order) properties of fuzzy image regions. However,
approaches to fuzzy quantification will unfold their full
potential only if the proposed operators capture the
meaning of NL quantifiers. We present an exemplary
evaluation of one of the most prominent approaches to
fuzzy quantification, Yager’'s OWA approach [7], with
respect to its suitability to model NL quantification over

fuzzy image regions.

1 Introduction

In developing a system for the content-based retrieval
of meteorological documents [5], we have faced the
problem of ranking satellite images according to accumu-
lative criteria such as “almost all of Southern Germany
is cloudy” . In this image ranking task, we have a set £
of pixel coordinates. Each pixel e € E has an associated
relevance ux, (e) € I = [0, 1] with respect to the ranking
task, which in this case expresses the degree to which
pixel e € FE belongs to Southern Germany, and each
pixel has an associated evaluation ux,(e) € I which
expresses the degree to which the pixel is classified as
cloudy (see Fig. 1). The mappings ux,,ux, : £ — I
can be viewed as membership functions representing
fuzzy subsets X, X, € P(E) of E, where P(E) is the
fuzzy powerset of E. Our goal is to determine a mapping
Q : P(E) x P(E) — I which, for each considered
satellite image, combines these data to a numerical result
Q (X1, X») € Iasrequested by the NL expression “almost
all”. The images are then presented in decreasing order of
relevance with respect to the search criterion.

Apparently, an operator which implements “almost all”
yields adequate results only if it captures the meaning
of “amost all”. We have therefore decided to base our

Figure 1: Images for ranking task. (a) A possible definition
of X1 = southern_germany; pixels with px, (¢) = 1 depicted
white. (b) Fuzzy image region X» = cloudy; cloudiness depicted
white. The contours of Germany, split in southern, intermediate
and northern part, have been added to facilitate interpretation.

solution to the image ranking problem on (a) the Theory of
Generalized Quantifiers (TGQ [1]), which has developed
important concepts for describing the meaning of NL
quantifiers; and (b), methods from fuzzy set theory, known
as fuzzy linguistic quantifiers [8, 6], which are concerned
with the use of concepts without sharply defined bound-

aries (“Southern Germany”, “cloudy”, “almost all”).

2 Two-Valued Generalized Quantifiers

Following TGQ, an n-ary generalized quantifier on a
base set E # & is a mapping Q : P(E)" — 2 = {0,1}
which to each n-tuple of crisp subsets Xy,...,X,, €
P(E) of E assigns a two-valued quantification result
Q(Xy,...,X,) € 2. Well-known examples are

Ve(X)=1 X=FE

X)) =1l X #£0

dlg(X, Xo) =1 X; C X,

someg (X1, Xo) =1 X1NXy #92
atleast kg (X1, X5) =1 < | X1 N Xs| > k.



Whenever the base set is clear from the context, we drop
the subscript E; |.| is cardinality. For finite E, we can
define proportional quantifiers

[ratez T](Xl,XQ) =1¢& |X1 ﬂX2| > 7“|X1|
[rate> T](Xl,XQ) =1¢& |X1 ﬂX2| > 7“|X1|.

forr € I, X1, Xo € P(E). By the scope of an NL quanti-
fier we denote the argument occupied by the verbal phrase
(e.g. “sleep” in “all men sleep™); by convention, the scope
is the last argument of a quantifier. The first argument of a
two-place quantifier is called restriction, the two-place use
of a two-place quantifier restricted use, and the one-place
use (relative to the whole domain E) unrestricted use.
E.g., the unrestricted use of all : P(E)” — 2 is modeled
byV:P(E) — 2,whichhasV(X) = al(E, X).

3 Fuzzy Generalized Quantifiers

An n-ary fuzzy quantifier @ on a base set £ # @ is
a mapping Q : P(E)" — T which to each n-tuple of
fuzzy subsets X,,...,X,, of E assigns a gradual result
Q(X1,...,X,) € L' Anexample is

V(X) = inf pux(e), Xe€ P(E).

How can we justify which fuzzy quantifier corresponds to
a given NL quantifier? Fuzzy quantifiers are possibly too
rich a set of operators to investigate this question directly,
and all approaches to fuzzy quantification have introduced
some kind of simplified representation.

4 Fuzzy Linguistic Quantifiers

Following Zadeh [8, 9], most approaches to fuzzy
quantification have chosen to define fuzzy linguistic
quantifiers as fuzzy subsets of the nonnegative reals
(absolute type like some, with membership functions
po € IR+), or of the unit interval (proportional type like
most with ug € I%).2 These “fuzzy numbers” provide the
desired simplified representation. For example, we can
define a proportional fuzzy linguistic quantifier almost all
by paimost all(z) = S(z,0.7,0.9) for all z € I, using
Zadeh’s S-function (see Fig. 2). The 1 are not directly
applicable to fuzzy sets for quantification purposes. We
need a mechanism Z which maps each p¢ to fuzzy quan-

tifiers Z,(;)(MQ) . P(E) — 1, to model the unrestricted

. ~ 2
use relative to £, and z}? (ng) : P(E) — 1, to model
the restricted use, relative to the first argument.® Several

LThis definition closely resembles Zadeh’s [9, pp.756] alternative view
of fuzzy quantifiers as fuzzy second-order predicates.

2 AB denotes the set of mappings f : B —» A.

3We will use the superscripts only when necessary to discern the un-
restricted and restricted use, and usually drop the subscript E.

Figure 2: A possible definition of almost all

definitions of Z have been described in the literature (a
survey is given in [6]).

5 The OWA approach

Yager [7] models fuzzy quantifiers as Ordered
Weighted Averaging (OWA) operators, an approach
which has become popular in several applications
(see e.g. [2]). Only the proportional type pg € It
of fuzzy linguistic quantifiers is considered. In ad-
dition, pg is assumed to be regular nondecreasing,
ie pe(0) = 0, po(l) = 1, and po(z) < pe(y) if
xz < y. Given a finite base set E # @, m = |E| and

po € I let us define pg.p {0,...,m} — I by
1o,e(i) = po(L), fori = 0,...,m. Given X € P(E),
we denote by ﬂ[z]( ) € I, = 1,...,m, the i-th

largest membership value of X (including duplicates).
OWA'L (ug) : P(E) — Tis defined by

prp

m

> (ne.u(i) — pe,e(i—1)) - pp(X),

i=1

OWAL, (1g)(X) =

(where pg is regular nondecreasing). In order to
model two-place quantifiers, Yager introduces a weight-
ing formula parametrised by the so-called degree of orness,
nQ.p(t—1)).

orues (i) = 7 Ym = (1)~

In other words, orness(ug.r) = —=5 S uo,r ).
The weighting function g, : I x I — I corresponding
to a regular nondecreasing pg with @ = orness(ug,r),
is defined by go(z1,22) = (21 V (1 — @)) - 22"V,
for all zy,z, € L% For X;,X, € P(E), we de-
fine go (X1, X2) € P(E) pointwise by p,. (x,,x,)(e) =

4We shall assume that 0° = 1, i.e. go(0,0) = 1, in order to have

OWAR) (uy ) (2, @) = 1, where puy (1) = 1, py (z) = 0 else.



ga(:U‘Xl (6), Hnx, (6)), foralle € E.
OWAR), (1) : P(E)’ — Tis then defined by

OWAE)%);)(HQ) = OWAgr)p(/"Q)(ga (X1,X3)),
for all X;,X, € 75(E). Let us note that the degree of
orness, and hence OWA ), is undefined if | E| = 1.

prp’
6 An Evaluation Framework Based on TGQ

How can we evaluate the linguistic adequacy of the

OWA approach? We first need a simplified representation
of fuzzy quantifying operators in which all two-valued
quantifiers of TGQ can be embedded, and which allows for
a straightforward generalisation of the concepts developed
by TGQ to describe the meaning of quantifiers.
An n-ary semi-fuzzy quantifier on a base set £ # @ is a
mapping @ : P(E)" — I which to each n-tuple of crisp
subsets of E assigns a gradual result Q(X1,...,X,) € L
Semi-fuzzy quantifiers are half-way between two-valued
quantifiers and fuzzy quantifiers because they have crisp
input, fuzzy (gradual) output. Every two-valued quantifier
of TGQ is a semi-fuzzy quantifier by definition. We shall
call @ : P(E) x P(E) — I proportional if defined by

c : else

)

where f : T — T and ¢ € 1. For almost all we can have
f = Bamost all @ad ¢ = 1. It is relatively easy to un-
derstand the input-output behavior of a semi-fuzzy quanti-
fier, which is stated in terms of crisp argument sets. How-
ever, semi-fuzzy quantifiers do not accept fuzzy input, and
we have to make use of a fuzzification mechanism which
transports these to fuzzy quantifiers.

A quantifier fuzzfication mechanism (QFM) F assigns
to each semi-fuzzy quantifier Q : P(E)" — I a corre-
sponding fuzzy quantifier 7(Q) : P(E)" —s I of the
same arity n and on the same base set E. Existing ap-
proaches like OWA cannot be directly viewed as QFMs
because they are not applicable to semi-fuzzy quantifiers.
However, given such a mechanism Z, we can often recon-
struct a partially defined QFM F as follows. The underly-
ing semi-fuzzy quantifier 24(Q) : P(E)" — 1 of a given
fuzzy quantifier Q : P(E)" — T is defined 2(Q) =
Q|1)(E)n, i.e. U(Q)(Xl, Ce

, Xn) = Q(X4,...,X,) for
all crisp arguments Xy,...,X,, € P(E). Provided the
membership function pg of a fuzzy linguistic quantifier,
we obtain the corresponding semi-fuzzy quantifier (rela-
tive to Z) as Q = U(Z(ug)), and use this to define
F(Q) = Z(pg). The construction of F succeeds only

if U(Z(ng)) — Z(pg) is functional. We shall call this

the quantifier framework assumption (QFA). We say that
Z can represent a semi-fuzzy quantifier () if there exists
pg such that Q@ = U(Z(pg)), i.e. F is defined on Q.

By viewing approaches to fuzzy quantification as
instances of (partially defined) QFMs, we can now judge
the adequacy of these approaches by investigating preser-
vation properties of the corresponding partial QFMs. A
comprehensive account of such adequacy conditions is
given in [3, 4]. The most basic requirement on F is correct
generalisation: for all Q : P(E)" —» I on which F is
defined, U(F(Q)) = Q, i.e. F(Q) coincides with ) on
crisp arguments. This is ensured by our construction of F
from Z.

The negation - and antonym )— of () are defined by

-Q(X1,. ..
Q-(X1,. ..

, Xp)=1-Q(X4,...,Xy)
7XTL) = Q(Xla" '7Xn*17ﬂX”)

(=X is complementation); the dual of @ is -Q—-. We
say that F preserves negation, antonymy, and duali-
sation, if F(-Q) = -F(Q), F(@-) = F(Q)— and
F(-Q-) = ~F(Q)—, respectively.

One of the pervasive properties of NL quantifiers is con-
servativity. We shall call Q : P(E)> —s I conservative if
Q(Xl,Xz) = Q(Xl,Xl N XZ) for all X1,X2 S P(E)
Conservativity expresses that an element of the domain
which is irrelevant to the restriction of the quantifier
does not influence the quantification result at all. A

corresponding fuzzy quantifier § : P(E)° —s T should
at least have Q (X1, X») = Q(X1,5pp(X1) N X,), where
spp(X) = {z € E : ux(e) > 0}. In our image ranking
task, then, a pixel e € FE which does not belong to
Southern Germany, i.e. ux, (e) = 0, will not affect the
result of “almost all X, are X5”, as is highly desirable.

7 Evaluation of the OWA Approach

It is easily observed that the OWA approach fulfills
the QFA. But there is negative evidence as regards its
adequacy. Firstly, if o = orness(ug g) € (0,1),° then

OWAL), (10)(2,2) = 0 # (1 — @) = OWAL), (10)(2, E)

which shows that, except all and some, no semi-fuzzy
quantifier Q : 7?(E)2 — T which can be represented
by OWA is conservative. In particular, the OWA approach
cannot represent any proportional semi-fuzzy quantifiers
except for all and some.® But this is exactly the type of
quantifiers OWA is intended to model.

Sie. g is distinct from the universal and the existential quantifier
6all proportional quantifiers are conservative by Eq. (1).



(a) desired: 1, OWA: 0.1  (b) desired: 0, OWA: 0.6

Figure 3: At least 60 percent of Southern Germany are cloudy

If we still try to use OWA for interpreting proportional
quantifiers, implausible results must be expected. For ex-
ample, let us consider i [;ae>0.6), defined by

ll[rateZOﬁ](m) = 0 else

for evaluating “at least 60 percent of Southern Germany
are cloudy” (see Fig. 3). In situation (a), we expect the
result 1, because sufficiently many pixels which fully
belong to Southern Germany (l) are classified as fully
cloudy that, regardless of whether we view the interme-
diate cases (II) as belonging to Southern Germany or
not, its cloud coverage is always larger than 60 percent.
Likewise in (b), we expect a result of 0 because regardless
of whether the pixels in (II) are viewed as belonging to
Southern Germany, its cloud coverage is always smaller
than 60 percent. OWA, however, ranks image (b) much
higher than image (a). This counterintuitive result is
explained by OWA’s lack of conservativity: the cloudiness
degrees of pixels in areas (l1I) and (IV), which do not
belong to Southern Germany at all, still have a strong (and
undesirable) impact on the computed results.

Further problems arise from the fact that OWA () does not
preserve duals. Suppose we wish to evaluate the criterion
“less than 60 percent of Southern Germany are cloudy”.
Because this quantifier is not regular nondecreasing, we
must resort to one of the following equivalent statements:

i. “It is not the case that atleast 60 percent of South-
ern Germany are cloudy”, i.e. use negation and compute
_‘OWAgL(Il[ratezo.(s])(Xl:X2);

ii. “More than 40 percent of Southern Germany are
not cloudy”, i.e. use the antonym and compute
OWAGT) (Jifrates0.4) (X1, 7 X32).

Unfortunately, these statements are not equivalent when
using OWA; when applied to the images in Fig. 3, we
obtain different results as shown in Table 1. In this case,
both i. and ii. compute the same (wrong) ranking, which
shows that neither alternative is correct; in other cases,
their rankings can differ. The problem is that OWA, which
cannot model “less than 60 percent” directly, forces us to

choose one of i., ii.; but due to their expected equivalence,
there is no preference for either choice. In an appropriate
model, the results of i. and ii. coincide, making this choice
inessential; OWA, however, fails to preserve the required
duality of “atleast 60 percent” vs. “more than 40 percent”.

_'OWAg)P(M[rateZO.b’]) 0.9 0.4
2

OWAéT%)(/j/[rate>0.4])_‘ 0.4 0

(desired result) 0 1

Table 1: Less than 60 percent of Southern Germany are cloudy

8 Conclusion

Fuzzy quantifiers can prove useful in image processing
if these operators are linguistically adequate. However,
our findings indicate that OWA does not pass the adequacy
test. Our results on other approaches based on fuzzy
linguistic quantifiers are also negative [4]. In order to
adequately perform the image ranking task, we have
decided to abandon fuzzy linguistic quantifiers, in fa-
vor of a theory directly built on semi-fuzzy quantifiers
and QFMs. DFS theory [3] specifies an axiom set
which includes (or entails) the adequacy conditions pre-
sented here. A QFM which satisfies these axioms avoids
counterintuitive results like those of OWA from the outset.
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