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Abstract—In this paper, we present Smart2, an advanced
smartphone charger that mitigates battery’s capacity fading,
which until now has usually been ignored. Smart2 exploits the
fact that many users charge their phones over night. Since the
overnight charging duration is unnecessarily long, the battery
is subjected to a high average state of charge (SOC), which
accelerates battery aging. Therefore, we delay the charging
adaptively to be done shortly before the phone is unplugged.
With this scheme, clearly when averaged over the duration of
the night, the average SOC is lower and hence aging is reduced.
Indicators are a set alarm clock and/or statistics of previous
usage. Similarly, we lower the maximum target SOC. To enable
this, the main challenges are firstly to find a solution that does
not negatively influence the usability and secondly to quantify the
achieved savings in terms of aging mitigation. Towards this, we
propose a novel charging scheme which can be implemented in
the smartphone’s firmware. Furthermore, we propose a modified
battery charging device that can be used with almost all existing
smart phone models. Using our proposed techniques, the average
battery cycle life can be nearly doubled from 3.7 to 6.6 years.

Keywords—smartphone; battery aging; capacity fading; charg-
ing

I. INTRODUCTION

One of the most important limitations of smartphones
is their battery runtime. Despite the fact that batteries have
evolved during the last years and in spite of the high-capacity
lithium-ion cells that smartphones are equipped with nowa-
days, smartphones usually have to be recharged every day.
Whereas the available runtime might be sufficient shortly after
the purchase of the device, the capacity fading effect reduces
the available capacity over time until after 2-3 years only 80%
of the initial capacity might be available and the battery gets
empty before the user usually recharges it.

Battery Aging: Battery aging usually means power and ca-
pacity fading. In this work, we are interested in the latter
and use the terms aging and capacity fading interchangeably.
Battery aging is influenced by the battery temperature, average
state of charge (SOC), SOC swing and charge-/discharge
current. While the battery’s capacity decreases even when not
in use, the reduction of remaining available capacity increases
whenever the battery is cycled, in other words when it is
charged or discharged.

As a result of capacity fading, either larger batteries are
built into the phone that will last for a whole day even when
aged or the battery needs to be replaced, which imposes a
significant cost. Moreover, there are many phones which have
batteries that cannot be replaced by the user. If the battery
runtime decreases below an acceptable value, the whole device
usually is replaced. In addition to the additional expenses, the

intelligent
control

charging
current

alarm
information

Fig. 1. Intelligent smartphone charger. Charging is adapted to the use pattern
in order to reduce battery degradation.

high amount of electrical waste is of concern. Considering a
decreasing innovation rate on the smartphone’s hardware and
a resulting longer usage time, a fast aging battery remains the
bottleneck in smartphone disposal and resulting environmental
issues.

Hence, battery aging needs to be mitigated. We propose a
novel aging aware charging scheme that mitigates the capacity
fading by reducing the average SOC because a high average
SOC is one of the factors that increase capacity fading. There
already exist intelligent software components in other device
classes such as laptop computers that manage the charging
process in order to increase the cycle life of the battery. For
example, the Lenovo Battery Manager [1] allows to select a
maximum state of charge. For smartphones, simply reducing
the maximum SOC would reduce the battery aging, but in some
cases it would artificially shorten the battery runtime below the
acceptable level. However, the detailed personal data available
on smartphones, viz., a detailed history of the phone usage and
recharging behavior can be exploited to make predictions to
optimize the charging procedure towards reducing the battery
aging without impairing the usability of the device.

In this paper, we for the first time present a novel context
aware scheme for aging aware battery charging that achieves
the reduction of the average SOC and hence contributes to
mitigation of the battery’s capacity fading. This is done by
shifting the start of the charging process in time and by
lowering the maximum SOC: Since smartphones are usually
charged during the night, batteries usually reach 100 % of
their maximum SOC a long time before their chargers are
unplugged. In this period of time, the SOC remains at its
maximum level thereby accelerating the battery aging. By
shifting the charging process to be done shortly before the
phone is unplugged, the phone remains at a much lower SOC
for most hours of the night. Clearly the average SOC is lower
without having a negative impact on the user experience. In
order to address an unexpected need for phone energy during
night, we propose a two stage charging process. When the



charger is plugged in, the battery is charged to a lower SOC
first (e.g., 50 %) and the remaining charge is provided in
a second charging process that finishes shortly before the
phone is unplugged from the charger. The unplugging time is
estimated based on the alarm clock a user has configured in his
mobile phone (see Figure 1) as well as statistical usage data.
In addition, the charge which is consumed during the day is
predicted to allow for an adaptive reduction of the maximum
SOC while still providing enough charge to keep the phone
operative during the whole day. Combining both, shifting the
charging in time and lowering the maximum target SOC, the
battery lifetime can be almost doubled from 3.7 to 6.6 years,
as shown in Section V.

Using our scheme allows for building batteries with smaller
capacity into phones that due to less aging, will be usable for a
longer period of time. Another advantage of these batteries is
their smaller size and lower weight. Furthermore, the amount
of electronic waste can be reduced.

In this work, we make the following contributions:

‚ We present a novel context aware charging scheme that
uses a combination of shifting the charging process in
time and adaptively lowering the maximum charging SOC
according to the required amount of charge needed per
day. Hereby, the average SOC is reduced, which results
in a mitigation of the battery’s capacity fading.

‚ Towards this, we compare three predictors that exploit the
available usage data and the regularity of usage patterns
on smartphones to adaptively adjust the charging process.
We compare a simple moving average, an exponential
moving average and a probabilistic predictor.

‚ We describe two different implementations of this system:
One has been realized as a pure software solution running
as an application on an Android smartphone, the other one
is an external charger that works independently of the
specific charger chip of the smartphone for all Android
devices.

‚ We evaluate our proposed scheme using real-world mea-
surements combined with a battery aging simulation
model and estimate the impact of our system on the
battery aging.

‚ Finally, we conduct a user study to support our assump-
tions on usage patterns and test the usability of our smart
charger.

The rest of this paper is organized as follows. In Section II,
we present related work including theory on battery aging
and previously known aging aware charging systems. In Sec-
tion III, we present our proposed system and describe multiple
implementation possibilities. In Section IV we give details
on the three predictors. To demonstrate the smart charger’s
effectiveness, we evaluate its impact on the battery aging in
Section V. Finally, we conclude our work in Section VI.

II. RELATED WORK AND BACKGROUND

In this section, we present previous work on battery aging
and derived models in order to justify the aging mitigation of
our approach. In addition, we summarize other aging aware
applications for laptops and smartphones. Finally, we give
an overview of works that analyze and predict battery usage
patterns of smartphone users.

A. Battery Aging
Battery aging of Li-Ion batteries means either loss of

power capability due to the increase of the internal resistance,
or capacity fading. Capacity fading is the reduction of the
available charge stored in the battery within one cycle. Our
work aims at the mitigation of the latter. There are two types
of aging, calendar aging and cycle aging. A battery is always
exposed to calendar aging, independent of whether the battery
is actually used or not. Factors that influence calendar aging are
the ambient temperature and the (average) SOC of the battery.
When the battery is in use, its degradation is additionally
increased by cycle aging, which depends on the SOC deviation
and the charging/discharging current. The impact of these
factors on the aging also depends on the cell chemistry.

Measurements on cycle aging of a 900 mA LiCoO2 battery
at 25˝C that are presented in [2] reveal the following results.
A higher cut-off voltage (full battery) while charging increases
the capacity fading, while there is no dependence on the the
cut-off voltage (empty battery) while discharging. Further-
more, lower charging and discharging rates decrease aging.
Also a longer duration of float charging, that compensates the
self discharge of a fully charged battery and maintains the full
charge level as long as the battery is still connected to the
charger, increases the capacity fading.

Calendar aging of Li-ion cells is investigated with measure-
ments on a cell with a hard carbon anode and a LiNiMnCoO2

cathode in [3]. The authors find that capacity fading depends
on the temperature, whereat a lower temperature is better.
Another factor of influence is the cell voltage which corre-
sponds to the battery SOC. Clearly, a lower voltage (or SOC,
respectively) is preferable. The same holds true for a LiCoO2

cell as shown in [4]. In [5], an increased degradation is found
when the cell voltage is above 4V, which means in this case
a SOC of approximately 50% or higher.

In this work, an aging model is used for quantifying the
amount of battery degradation with and without our proposed
scheme. In [6], a comprehensive overview of battery aging
models is given. We select the aging model suggested by
[7], which uses average SOC, SOC deviation and temperature
as inputs and simulates the capacity fading over time. The
parameter fitting in this model is done for a lithium iron
phosphate cell, while the typical cell chemistry used in portable
devices is LiCoO2. In fact, most available and already fitted
battery aging models do use other cell chemistries than LiCoO2

and instead take data of batteries developed for use in electric
vehicles that are optimized for high power and slower aging.
According to [8], the cycle life of LiFePO4 cells is more
than two times higher than the one of LiCoO2. Therefore,
our results on battery aging presented in Section V can be
seen as an upper bound, while the real cycle life is likely
to be even shorter and hence the beneficial impact of our
proposed charging technique is expected to be even higher.
Also, from a consumer perspective, building batteries with
improved degradation profiles into portable devices would
be desirable. A sign that battery aging awareness also is of
concern to manufacturers is a patent filed by Apple Inc. [9] that
describes a tracking procedure for capacity fading in portable
devices.

The model [7] which we use in our simulations considers
single charge and discharge cycles of an identical pattern. One



cycle consists of the time interval Tm. In order to derive the
average state of charge SOC, we calculate

SOC “

ˆ
ż

Tm

SOCptqdt

˙

{T, (1)

where T is the duration of the time interval.

The normalized SOC deviation σ is calculated by

σ “ 2

d

3

ż

Tm

pSOCptq ´ SOCq2dt{T . (2)

Typically a single cycle does not charge from 0% to 100%
and then discharge back to 0%. Therefore, the effective number
of throughput cycles N needs to be determined:

N “

ż

Tm

|iptq|dt

2Qnom
, (3)

where iptq is the charge or discharge current and Qnom is the
nominal amount of charge that can be stored in the battery.

Now the prepared data can be fed into the iterative battery
aging model [7] that is based on a crack propagation model.
A parameter L1 which is referred to as incrementing life
parameter is calculated by

L1 “ KcoNexp
ˆ

pσ ´ 1q
Tref ` 273

KexpTB ` 273q

˙

` 0.2
tcycle
tlife

, (4)

where Kco is a normalization coefficient for N and Kex is a
constant exponent for depth of discharge. Tref is the reference
battery temperature of 25˝C and TB the battery temperature.
tcycle is the duration of one cycle and tlife the shelf life at
25˝C and 50% SOC until 80% of the initial capacity remain
(we set this value t0 10 years). The life parameter is further
adjusted by

L2 “ L1exp
`

4KsocpSOC ´ 0.5q
˘

p1´ Lq, (5)

using a constant Ksoc to account for the average SOC. Finally,
the total increase in the life parameter L is given by

LpTmq “ L2exp
ˆ

KtpTB ´ Tref q
Tref ` 273

TB ` 273

˙

, (6)

where Kt accounts for a doubling of the decay rate for each
10˝C rise in temperature.

Summing up the damage done by each cycle, one gets
the remaining life of the battery. Assuming that the following
cycles will follow the same profile, one can simulate the time
until the defined end of life is reached.

B. Battery Management Applications

From the studies and models described above, it is clear
that lowering the maximum SOC would help to reduce the
battery aging. For notebook computers, there already exist
programs that stop the charging after a predefined maximum
SOC has been reached. This maximum SOC can be chosen
manually by the user. Examples for such notebook applica-
tions are the Lenovo Power Manager [1] and the Samsung
Battery Life Extender [10], which work only on notebooks
of the respective manufacturers. Hence for laptops as well as

smartphones, the battery control possibilities also depend on
the specific device. Our application uses the concept of limiting
the maximum SOC and expands it by adaptively doing so as
well as by adaptively setting the start time of the charging
process based on the usage pattern. Both concepts reduce the
overall average SOC. Lowering the target SOC actually avoids
the disadvantageous high voltages, while delaying the charging
process only reduces the time spent at the high voltages.
The typically more distinct regularity of smartphone usage
patterns compared to the ones of laptops facilitates an adaptive
implementation on smartphones.

In case of smartphones, the application Battery Doctor
[11] claims to prolong battery life by a three stage charging
method. As the source code of this application is not publicly
available, we cannot find out whether the application’s de-
velopers control the charging current, which however seems
unlikely as Android does not provide access to charging
control functionalities on unrooted devices. It seems that the
application mainly encourages the user to develop a battery
friendly charging behavior by notifying the user on, e.g., when
to unplug the phone.

C. Smartphone Usage Predictors

As already mentioned, we suggest to adaptively delay the
point in time when the SOC is charged to its target value in
order to lower the average SOC. Hence, we need to estimate
the unplug time of the phone by either evaluating the alarm
clock time or predicting the unplug time based on statistics
of the previous user behavior in order to adjust the starting
time of the charging process. The assumption that most people
charge their phone over night has been confirmed by [12] and
[13]. Users that mainly charge over night have a longer average
plug duration than users that also charge during the day, which
means that keeping ones phone plugged over night [12] leads
to an unnecessary high average SOC. In [13] it is shown that in
77 % of the cases the smartphone is plugged in for longer than
30 min after the full charge level has been reached.Therefore,
the charging start time can be delayed in order to decrease the
average SOC.

In addition, predicting the SOC drain between two charging
sessions helps to adjust the cut-off SOC (or voltage) when
charging. Often different power sources, such as USB and AC,
go along with different plug durations. The usage frequency
of these different sources varies among users [14]. Also the
start of charge and end of charge level depends on patterns
determined by the individual use [14]. According to [13], the
average lowest SOC level before recharging determined among
multiple users is at 30 %. Accordingly, a great amount of users
could discharge their phones to a lower SOC while still having
enough energy left in their batteries before the next recharge.

Several predictors of future battery level have been pre-
sented in literature [14], [12]. We need to estimate times of
unplug events and the energy consumption until the next plug
event determining which requires similar methods as the ones
on predicting the battery level that are presented in literature.

III. AGING AWARE CHARGING

In the following, we explain our aging aware charging con-
cept and discuss challenges and design options when realizing
our approach on different target platforms.
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Fig. 2. Comparison of charging schedules with and without smart charging.
Curve (a) is the conventional charging scheme, curve (d) shifts the charging
in time and curve (f) additionally has a lower maximum target SOC. Curves
(b), (c) and (e) are the respective average SOCs.

A. Aging Mitigation by Delayed Charging

As stated before, one of the factors that increase the battery
aging is a high average SOC. By lowering the average SOC of
a smartphone battery, its degradation can be decreased. This is
done by shifting the start of the charging process in time and
by adaptively reducing the maximum SOC. Figure 2 illustrates
this charging scheme. The left graph shows a typical profile (a),
where the SOC stays at 100 % over night with an average SOC
of 77.5 % (b). In the right graph our proposed optimizations
are applied: The average SOC is lowered to 62.5 % (c) by
delaying the charging process to be done in the morning (d).
In the lower graph on the right, the average SOC is further
reduced to 32.5 % (e) by lowering the charging target SOC (f).

The delay of the charging process is either set manually by
the user, gathered automatically by reading the alarm clock or
predicted from the user’s statistical usage pattern. Similarly, the
target SOC can be either selected by the user or can be learned
by the system based on the average daily usage including a
safety margin. As a wrong assumption on the unplug time
causes great inconvenience for the user, i.e., the battery is
still uncharged when unplugged, we suggest to immediately
charge to a medium SOC and delay the charging only after
this medium SOC has been reached (see Section III-D), which
however obviously results in a less efficient aging mitigation.

An obvious objection towards this scheme is that charging
over night with a reduced charging current might also have an
improving effect on battery degradation. Hence the questions
arises which of the two schemes should be used. First of all, no
definitive answer can be provided as this question needs further
investigation in future work. There already exists a patent [15]
for charge rate reduction which argues that a reduced charging
current has a positive impact on the battery lifespan in terms of
reducing the capacity fading. Unfortunately no measurement
or simulation results are provided. However, one has to keep
in mind that the charging the smartphone is likely to have
an impact on the temperature of the smartphone, which has a
strong effect on the battery aging. Therefore it cannot be said
without further discussion, whether a reduced charging current
has a better effect than a delayed one.

In the following, we describe two realization options of the
proposed system: A software implementation as a smartphone
application and a dedicated charging device. We then introduce
an algorithm that relies either on values manually entered by
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Fig. 3. System Abstraction Layers in Android.

the user or uses the alarm clock and predictors to calculate
delay and target SOC.

B. Smart Charger Android Application

The above described solution can be implemented either
directly on the smartphone or on an external charging device.
In order to later understand the drawbacks of the direct im-
plementation, we previously need to explain the dependencies
of the Android operating system and the smartphone hardware
with its respective drivers.

Figure 3 shows the abstraction layers of the hardware and
the software. On the hardware layer, there are three main
components that are involved in charging the smartphone
battery. The power IC manages power sources and the power
distribution to the system. Among other tasks, it is responsible
for voltage regulation, voltage scaling, power source selection
and charging functions. The charger controls the charging
process of the battery and one of its tasks is to ensure a
safe charging process. The fuel gauge monitors the battery and
provides state of charge, state of health, state of connection,
capacity and voltage readings to the system.

On the software level, the application has a registered
broadcast receiver for the power connector state. A broadcast
receiver receives a notification if a system or application event
occurs, i.e., when a charger is connected or disconnected.
If the application is notified about a plug event and the
desired charging time is still in the future, the charging has
to be disabled. Hereby, the virtual file system sysfs is used
to exchange information between the power management chip
and the user space, i.e., writing to the corresponding sysfs file
can enable or disable the charging process.

Due to different power ICs with different drivers, not
all smartphone models provide the same charging control
functionalities. At the time of writing, the sysfs charging
control varies. I.e., for the Nexus 4 phone, a switch variable
enables or disables charging, whereas in the Nexus 5 phone,
a parameter is provided to reduce the charging current.

As the sysfs is located in the kernel space and no standard-
ized API is provided by the Android system, it is currently
not possible to write a universal application that works for
all Android smartphones. When writing an application for
a specific smartphone, root access is required in order to
access the sysfs interface. However, a solution which can be
used for almost all current smartphones is implementing our
smart charging scheme into the charger. Such a smart charger
hardware is described next.



C. Smart Charger Hardware

As explained above, no standardized implementation from
the smart charger as a pure Android application is currently
possible. Therefore, we develop a second solution that is based
on hardware and hence works independent of the smartphone
model. The attractiveness of this hardware solution arises from
its independence of the smartphone power IC and a less
profound intervention in the operating system. A switch is
inserted in the supply lines of the USB cable used for charging
in order to interrupt the current supply if needed. The switch is
controlled by a microcontroller which also is used as a USB
host controller in order to receive SOC data and the alarm
clock information from the smartphone.

D. Alarm Clock Based Charging Delay

The battery health aware charging algorithm can be imple-
mented either on the external microcontroller or directly on the
smartphone. In order to reduce the average SOC, we adjust two
parameters: We adaptively delay the start time of the charging
process and we lower the target SOC soctarget. Algorithm 1
determines the reserve amount of charge socmedium, target
SOC soctarget and the unplug time tunplug. These are then
used to manage the charging scheme.

Algorithm 1 Smart Charging
1: function SMARTCHARGING(mode)
2: if mode ““ manual then
3: socmedium = GetReserveChargeFromSettings()
4: soctarget = GetTargetSocFromSettings()
5: tunplug = GetUnplugTimeFromSettings()
6: else
7: if mode ““ alarm then
8: tunplug = GetUnplugTimeFromAlarmTime()
9: else

10: tunplug = GetUnplugTimeFromPredictor()
11: end if
12: socmedium = SetReserveChargeToConstantValue()
13: soctarget = GetTargetSocFromPredictor()
14: end if
15: EnableCharging(socmedium)
16: DisableCharging(tunplug - ∆tcharge)
17: EnableCharging(soctarget)
18: end function

The mode variable allows to switch between three oper-
ation scenarios: manual, alarm and predictor. If mode is
set to manual the target SOC soctarget, reserve amount of
charge socmedium and unplug time tunplug are set manually
by the user in the preferences settings menu. To retrieve this
data, we determine three functions:

‚ GetReserveChargeFromSettings(): Gets the
manually set value for the reserve amount of charge
socmedium.

‚ GetTargetSocFromSettings(): Gets the manu-
ally set value for the target SOC soctarget.

‚ GetUnplugTimeFromSettings(): Gets the manu-
ally set value for the unplug time tunplug.

Alternatively, the unplug time is set to either the value of
the alarm clock if it is set or else it is predicted based on

unplug statistics as indicated by the mode variable being set
to alarm or predictor, respectively:

‚ GetUnplugTimeFromAlarmTime(): In case the
alarm clock is set, the unplug time tunplug is determined
from its set value. We use the alarm clock application that
comes pre-installed with Android and is used by most
users.

‚ GetUnplugTimeFromPredictor(): In case no
alarm clock is set, a predictor is used to determine the
unplug time tunplug.

The reserve amount of charge and the target SOC are ob-
tained in the same way for both modes alarm and predictor:

‚ GetTargetSocFromPredictor(): Another predic-
tor determines the target SOC soctarget.

‚ SetReserveChargeToConstantValue(): The
medium SOC socmedium is set to a predefined, relatively
low value.

Once the smartphone is plugged in, it charges to the
medium SOC socmedium to have a safety margin in case of
the smartphone being unplugged earlier than expected. After
charging to the reserve SOC socmedium, charging is disabled
until the charging time is reached. The charging time is derived
from the difference between the determined unplug time and
the estimated duration: ptunplug - ∆tchargeq. The duration
∆tcharge describes the time it takes to charge the phone to the
target SOC soctarget. For the sake of simplicity of presentation,
in our implementation, we set this duration to a constant value
because the variation among phones is small. Nevertheless, this
duration could also be estimated from previous charging cycles
which might be included in future versions. Two functions
control the charging:

‚ EnableCharging(soc) charges the battery until a
certain SOC value has been reached.

‚ DisableCharging(time) disables the charging for a
given time.

IV. PLUG DURATION MODEL

Three predictors that model the plug duration have been
developed and will be compared in the following: a simple
moving average predictor, an exponential moving average
predictor and a probabilistic predictor.

As discussed in Section II, the best results in lowering the
average battery SOC and hence the battery aging are expected
when delaying the night time charging. Previous studies [12]
as well as our own sample data in Figures 4 and 5 show that
plug durations tend to be longer when the plug event occurs
at night time.

As expected, the charging behavior varies among users,
see Figure 6. The x-axis shows the charging duration rounded
to full hours. The number of events per a certain duration is
counted. User 2 has many short charges. Both users have an
increased number of samples for 8-9 hours which is likely to
be the charging over night. Due to the differences among users,
adaptive predictors are of advantage.
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A. Simple Moving Average Predictor

If the manual mode is not active, two predictors take
action. In case the alarm clock is not available, a first predictor
estimates the time the phone will be unplugged from the power
source (AC, USB). In order to further lower the SOC, a second
predictor computes a target SOC soctarget below 100%. A
moving average can be used for a simple implementation.
However there exist more elaborate models in literature.

In order to predict the time the phone usually remains
plugged ∆tplug, we sort the last plug durations ∆tm,k into
multiple bins k according to the plug time. We use one bin
per hour of the day, hence the total number of bins is K “ 24.
Once a plug event is detected, the moving average in bin k over
the last Nplug “ 5 events (the number compromises between
smoothing over the last numbers and forgetting the past fast
enough when the user’s behavior changes) is calculated by

∆tplug,avg,k “
1

Nplug

M
ÿ

m“M´pNplug´1q

∆tm,k, (7)
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Fig. 6. Number of charging events for given charge duration.

where M is the total number of entries into one specific
bin and tm,k are the stored durations in bin k and counter m.

The time when charging should be enabled is determined
by

tstartcharging “ tnow `∆tplug,avg ´∆tcharge ´∆tbuffer, (8)

where tcharge is the duration it takes to charge the battery to
the target SOC soctarget and ∆tbuffer is an additional safety
time to account for possible mispredictions.

We need a second predictor that determines the target SOC
soctarget for our evaluation. It uses the same number of bins
k “ 0...23 and calculates the moving average over the last
Nsoc “ 5 events in the respective bin k:

∆sock “
1

Nsoc

M
ÿ

m“M´pNsoc´1q

∆socm,k, (9)

where ∆soc “ socptlastunplugq ´ socptplugtimeq with
socptlastunplugq being the SOC when the phone was previously
unplugged and socptplugtimeq being the SOC when the phone
was plugged. The target SOC soctarget is then calculated by

soctarget “ ∆sock `∆socbuffer, (10)

with ∆socbuffer being a safety margin to account for longer
usage. Also note that the bin ksoc is determined by the time
the phone was last unplugged tlastunplug instead of using
the plug time tplugtime as for the plug duration ∆tplug.
Algorithm 2 shows the sequence of calculations. If a plug
event occurs, first the history of ∆soc values is updated in the
respective bin (UpdateSocHistory (ksoc, ∆socM)).
Next, the unplug time tunplug and the target SOC soctarget

are predicted (CalculateUnplugTime(kplug, HP)
and CalculateTargetSoc( ksoc, HS)), based
on the current hour. When the phone is unplugged,
the plug duration is stored in the respective bin
(UpdatePlugDurationHistory(kplug, ∆tM)).

Algorithm 2 Predictor
1: if PlugEvent then
2: HS Ð UpdateSocHistory (ksoc, ∆socM )
3: CalculateUnplugTime(kplug, HP )
4: CalculateTargetSoc(ksoc, HS)
5: end if
6: if UnplugEvent then
7: HP Ð UpdatePlugDurationHistory(kplug, ∆tM )
8: end if

B. Exponential Smoothing

As a comparison, we use exponential smoothing. We sim-
ply replace Equation 7 and calculate the exponential moving
average recursively by

∆tplug,k,1 “ ∆t1,k, for m “ 1

∆tplug,k,m “ α∆tm,k ` p1´ αqtplug,k,m´1, (11)
for m ą 1,

where the smoothing factor α is set to 0.2 in our example.
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Fig. 7. Fitting a bimodal log-normal probability density function to the
statistical data.

C. Probabilistic Predictor

Our third predictor fits the data to log-normal distributions,
similar to the one suggested by [16] for stay durations at a
given location.

Given a certain plug time x, we can fit the conditional
probability density function fpy|xq to the statistical data. We
use discrete hourly bins x “ 0..23. As can be seen from Fig-
ure 6, the plug duration is either very short or lies in the range
of 8-9 hours. Furthermore, the duration cannot take negative
values. Hence, we model the probability density function of
the charging delay as a bimodal log-normal distributions. We
fit the data to a mixture of log-normal functions:

fpy|xq “
p

yσ1

?
2π

exp

ˆ

´
pln y ´ µ1q

2

2σ2
1

˙

`
1´ p

yσ2

?
2π

exp

ˆ

´
pln y ´ µ2q

2

2σ2
2

˙

, (12)

where y are the durations, σ1 and σ2 are the variances of the
log-normal functions, µ1 and µ2 are the mean values of the
two functions and p is a weight applied to the two probability
density functions. The data is fitted using a maximum likeli-
hood estimator. Figure 7 gives an example of a resulting curve
compared to the measured data.

Apart from the additional information that is provided by
the mixture of log-normal distributions, such as variance, ex-
pected value and the respective weights, we can also determine
a value that gives us a prediction on the duration.

One drawback of this predictor, which fits the statistical
data to probability density function, is that in case the sample
size is very low, fitting is impossible or very inaccurate.
Hence, our implementation deals with the following cases: if
no samples are available, the delay is set to zero and charging
starts immediately. If there are only one or two data samples
the mean value of theses samples is calculated. In case of
three samples or if the bimodal predictor fails to fit the data
and degrades, a unimodal predictor is used:

fpy|xq “
1

yσ
?

2π
exp

ˆ

´
pln y ´ µq2

2σ2

˙

. (13)

Figure 8 shows data fitted to a unimodal log-normal func-
tion. For four samples and more, the bimodal log-normal
predictor is used.
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Fig. 8. Statistical data fitted to a unimodal log-normal function.
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Fig. 9. Battery profile for a user that runs the smart charger application.
Charging is delayed according to a set alarm. The red triangles indicate the
plug times.

V. EVALUATION

In this section, we show the amount of battery aging that
can be mitigated by delaying the charging and lowering the
target SOC. We first evaluate our smart charger application,
which delays charging based on the alarm clock, in a real user
test. We then compare the results of an omniscient simulator to
the ones achieved by the predictor that determines its decisions
on statistical usage patterns.

A. Smartphone Application Evaluation

Our first experiment shows how charging is delayed merely
based on the alarm clock in a real usage scenario. A user
runs our smart charger application on his smartphone for two
weeks and the charging is delayed according to his alarm
clock settings. As can be seen in Figure 9, the target SOC is
adjusted according to user preferences on the maximum SOC
in the morning and minimum SOC in the evening and a linear
interpolation when charged during the day. Therefore, the SOC
usually varies between 95 % and 50 %. The simulated cycle
life for this plot is 6.6 years. When comparing Tuesday and
Thursday in week 1 to Wednesday in week 2, one can see
that the minimum SOC was set from 50 % to 40 % during
the test period. The profile does not have long periods of
being at a high SOC, and starts discharging shortly after being
unplugged (only exception is the second friday, when no alarm
was set). It can be seen that having reached the target value
when charging the smartphone triggers drawing a rather high
discharge current, with a gradient that is even higher than
the discharge current while in use. We assume that this is
due to some background processes remaining active in the
assumption that the phone is powered by AC since it is plugged
in even though charging is disabled. Currently we counteract
by frequently recharging to the target value. However, a
better solution would be to schedule the background processes
differently.
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Fig. 10. Charging plot of User 4 with recorded data (a), perfect predictor
for delayed charging (b), lowered soctarget “ 90% (c) and a combination
of both (d). As well as simple moving average prediction of delayed charging
(e), predicted lowered soctarget (f) and a combination of both (g).

B. Smart Charging with Perfect Predictor

Next, we would like to quantify the separate as well as
joint effects on aging of shifting the charging process in time
and adjusting the target SOC. Towards this, we derive the
battery aging for the unmanaged curve and compare it with
three scenarios: Delaying the charging, lowering the target
SOC and the combination of both. We first calculate the aging
for the three scenarios by optimally delaying the charging with
a perfect predictor. In Section V-C, we determine the aging for
the same three scenarios but instead of optimal adjustments,
we simulate the use of a predictor instead. We collect real
user data using the Android application Battery Log [17] for
a duration of two weeks. The average SOCs per profile vary
between 54.4 % and 78.5 %. The accumulated hours spent at
100 % SOC during the recording period are between 16 h and
120 h.

Using these profiles, we simulate a smart charging behavior
and determine the corresponding amount of battery aging using
the aging model from [7] implemented in Matlab. The Matlab
model takes the SOC profile and temperature data as an input.
Remember that the model provides a bound on the cycle life
and real aging is likely to be even faster than our numbers

Profiles 1 2 3 4 5 6 7 8 9

Original 2.6 2.5 3.3 4.2 3.7 3.1 5.6 3.3 4.6
Perfect Predictor for
Delay charge time 3.4 3.6 6.0 5.2 4.3 5.1 6.3 3.8 5.2
soctarget “ 90% 3.8 3.6 4.8 6.0 5.4 4.6 8.1 4.8 6.7
Delay and soctarget 4.8 4.9 7.6 7.2 6.1 6.7 8.9 5.7 7.5

SMA Predictor for
Delay charge time 3.2 3.0 5.2 4.3 4.7 3.8 6.2 4.0 6.0
soctarget 3.3 3.4 3.7 6.7 5.8 4.1 7.1 3.7 5.9
Delay and soctarget 4.4 4.4 5.8 7.2 6.7 6.4 7.9 4.5 8.3

TABLE I. SIMULATED CYCLE LIFE IN YEARS FOR RECORDED DATA,
PERFECT PREDICTOR AND SIMPLE MOVING AVERAGE (SMA) PREDICTION

OF DELAYED CHARGING, LOWERED TARGET SOC AND A COMBINATION
OF BOTH. THE GRAPH ON THE RIGHT VISUALIZES THE AVERAGE CYCLE

LIFE AND THE RANGE FROM THE LOWEST AND HIGHEST DATA POINT.
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Fig. 11. Lifetime Comparison

suggest as has been explained in Section II. We use a perfect
predictor, therefore the battery reaches full charge precisely at
the moment when it is unplugged. In order to not leave the
user with no charge in case he unexpectedly has to unplug
the phone earlier, the battery is charged to a SOC of 50 %
immediately when plugged. After that charging is delayed.

As can be seen in Table I and Figure 11, considering the
original unmanaged profile, most batteries last for about three
to four years, with some exception that would last up to almost
six years for normal charging behavior. If the batteries would
be charged in a smart way, the expected cycle life would
have an average above six years. Hence, delaying the charge
time increases the cycle life, i.e., the duration until the battery
capacity has faded to 80 % of its initial value, by factor 1.1
(profiles 7,9) to 1.8 (profile 3). Average over all profiles is 1.3.

Next, we lower the target SOC to a fixed value of 90 %.
The effect on aging mitigation lies within a similar range
as delaying the charging start time. The battery cycle life is
increased by a factor of 1.5 on average for our examples.

Note that sometimes simulations of lowering the target
SOC result in a full drain of the battery prior to the plug
event in the recorded data set. Also lowering the target SOC
potentially effects the user behavior, e.g., the user might decide
to plug in his phone earlier. This kind of psychological effects
can of course not be captured in the simulation. Delaying the
charging process usually does not result in similarly negative
simulation effects.

A combination of both, delay of the charging process and
lower target SOC, yields the most benefit. Here the achieved
increase in lifetime has a factor of 1.6 up to 2.2 compared to
the battery cycle life without any SOC management. The av-
erage is 1.8. Figure 10 (a)-(d) show the recorded and simulated
battery profiles for User 4.



C. Smart Charging with Predictor

Now the same comparison as in the previous section is
done for the aa simple moving average predictor that estimates
the delay time and the target SOC. The predictor shows good
results performing only little worse than the results of the
perfect predictor, see Table I. On average, the improvement
factor, which is the predicted cycle life divided by the original
cycle life, is decreased by 0.1 for each of the three predic-
tion combinations (predict delay, predict target SOC, joint
prediction). For the joint simple moving average prediction
of delayed charging and decreased target SOC, the gain of
lifetime over the original cycle life yields factor 1.7, while a
factor of 1.8 was achieved with the perfect predictor results.

A problem that occurs when using a predictor is that the
battery is sometimes drained down to 0 % of SOC due to
wrong prediction of the charging delay or wrong prediction of
the target SOC and remains at its empty state for some time.
This lowers the average SOC and therefore increases the cycle
life, however it is not a desired behavior as the smartphone
cannot be used during this time. Such happenings can partly
be seen from the data provided in Table I in case the predicted
cycle life for the delay predictor is larger than the simulated
cycle life. Making the user recharge during the day is not a
desired behavior of the predictor but infrequent occasions may
be considered acceptable in terms of battery aging.

Further notice that the predicted target SOC is not allowed
to be below 70 % and hence lies within the range of 70 %
to 100 %. Therefore in some cases, the target SOC predictor
may perform better than the fixed value simulation because
the predicted target SOC may be lower than the one fixed
at 90 %. In Figure 10 (e)-(f), the charge plots for User 4 are
shown. To sum up, even the relatively simple moving average
predictor helps to reduce aging. However, further means of
improvement are the optimized choice of bin size and buffer
terms. Also the SOC predictor should be replaced by more
elaborate suggestions from literature which incorporate further
environment data. Alternatives for the plug duration predictor
are discussed in the following.

As explained earlier, a mayor drawback of the use of
the predictor is that in case of wrong prediction and earlier
plug off time the user will be left with an empty battery.
We suggest two measures to deal with this drawback: Firstly,
when plugged in, the phone should immediately charge to a
medium SOC in order to provide a reserve amount of charge
in case of an earlier unplug time at the cost of slightly less
efficient aging mitigation. Secondly, the predicted unplug time
should be displayed in a user interface to provide the user the
opportunity to immediately charge the phone or to manually
set an earlier unplug time.

D. Comparison of Predictors

In Section IV, we discuss three predictors for estimating the
plug duration: A simple moving average predictor, an expo-
nential moving average predictor and a probabilistic predictor.
For evaluating these predictors, we use two data sets of two
different users that contain data for several weeks. In future
work, a further evaluation with bigger data sets containing
more users is planned.
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Fig. 12. Sample sizes per plug time bin for the two data sets. The two users
favor different plug times.
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Fig. 13. Mean squared error per sample for User 1. The outliers are likely
to represent empty bins. All predictors have similar difficulties with outliers.

As can be seen from Figure 12, the two users show distinct
patterns. The sample sizes per bin (plug times rounded to hours
of day) vary. All three predictors have difficulties with outliers,
independent of the data set (user 1 or user 2), see Figures 13
and 14. The peaks of increased error are either real outliers
or represent the first entry within a bin for which no previous
knowledge can be used.

A comparison of the predictors is done by calculating the
mean squared error per sample and computing the average of
all errors. The results are shown in Figure 15. It can be seen
that the exponential moving average predictor is slightly better
than the one using a simple moving average. The probabilistic
predictor is more accurate for both data sets.

Figure 16 shows a comparison of mean squared errors
within a single bin. Outliers occur also at later points in time
and all three predictors have similar difficulties in dealing with
them.

In summary, the advantage of the probabilistic predictor is
that it is more accurate. However, the simple moving average
predictor and the exponential moving average predictor are
easier to implement. Using a probabilistic predictor can bring
the efficiency of aging mitigation from the previous experiment
even closer to their optimum.
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Fig. 15. Comparison of the mean squared error over all samples using the
simple moving average predictor, the exponential moving average predictor
and the probabilistic predictor.

VI. CONCLUSION

The concept of an intelligent smartphone battery charger
has been presented. The charger makes use of typical smart-
phone usage profiles, i.e., most smartphones are charged over
night, delays charging and hence lowers the time spent at a
hight SOC, which is one of the factors that increase battery
degradation. We presented Smart2 a context aware charging
device that determines the possible charging delay by either
manually applied setting, reading an alarm or using a predictor.
Simulation of the battery aging showed, that the battery cycle
life could be extended by a factor of 1.8 on average when
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Fig. 16. Comparison of errors within a single bin. Outliers occur also at later
points in time and all three predictors have difficulties.

delaying charging and lowering the target SOC. A probabilistic
predictor for plug duration estimation shows the most accurate
results compared to a simple moving average and exponential
moving average predictor.
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