
INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit I
Angewandte Softwaretechnik

Rugby - A Process Model for

Continuous Software Engineering

Stephan Tobias Krusche

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation: 1. Univ.-Prof. Bernd Brügge, Ph.D.

2. Prof. Dr. Jürgen Börstler,
Blekinge Institute of Technology,
Karlskrona, Schweden

Die Dissertation wurde am 28.01.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 29.02.2016 angenommen.

Abstract

Software is developed in increasingly dynamic environments. Organizations need
the capability to deal with uncertainty and to react to unexpected changes in require-
ments and technologies. Agile methods already improve the flexibility towards changes
and with the emergence of continuous delivery, regular feedback loops have become
possible. The abilities to maintain high code quality through reviews, to regularly re-
lease software, and to collect and prioritize user feedback, are necessary for con-
tinuous software engineering. However, there exists no uniform process model that
handles the increasing number of reviews, releases and feedback reports.

In this dissertation, we describe Rugby, a process model for continuous software en-
gineering that is based on a meta model, which treats development activities as parallel
workflows and which allows tailoring, customization and extension. Rugby includes a
change model and treats changes as events that activate workflows. It integrates re-
view management, release management, and feedback management as workflows.
As a consequence, Rugby handles the increasing number of reviews, releases and
feedback and at the same time decreases their size and effort. Rugby reduces the
time between development and usage of software features in development projects.
When used in education, Rugby reduces the time between teaching and exercising
concepts to improve knowledge retention. We applied Rugby in three case studies: (1)
in 62 university capstone projects with about 500 students, (2) in a lecture with 57 team
projects and about 400 students, and (3) in 8 industry projects with 31 professionals in
a company.

Empirical evaluations demonstrate that Rugby significantly increases the frequency
and quality of interactions between developers and users as well as instructors and
students. (1) The introduction of Rugby increased the number of students in capstone
projects who have improved their skills in configuration and release management from
40 % to 80 %. Rugby led to 96 code reviews, 64 releases and 27 feedback reports
on average per team in 2014. (2) 77 % of the lecture students who participated in the
exercises are confident to apply continuous software engineering workflows in future
projects. (3) The 8 industry projects tailored Rugby to their needs and were able to re-
duce the time effort for integration and delivery from hours to minutes, while increasing
the frequency of releases.

iii

Zusammenfassung

Software wird unter immer dynamischeren Bedingungen entwickelt. Organisationen
benötigen die Fähigkeit mit Ungewissheit umzugehen und auf unerwartete Änderungen
von Anforderungen und Technologien zu reagieren. Agile Methoden verbessern bereits
die Flexibilität bezüglich Änderungen und mit dem Aufkommen von kontinuierlicher
Auslieferung sind regelmäßige Feedback Schleifen möglich geworden. Die Fähigkeiten
hohe Quellcode Qualität durch Reviews zu erhalten, Software regelmäßig auszuliefern
und Nutzer Feedback zu sammeln und zu priorisieren, sind nötig für kontinuierliche
Software Entwicklung. Jedoch existiert noch kein einheitliches Prozessmodell, das die
steigende Zahl von Reviews, Releases und Feedback Berichten behandelt.

In dieser Dissertation beschreiben wir Rugby, ein Prozessmodell zur kontinuierli-
chen Software Entwicklung, das auf einem Meta Modell basiert, das Entwicklungsakti-
vitäten als parallele Arbeitsabläufe behandelt und das Tailoring, Anpassung und Erwei-
terung erlaubt. Rugby beinhaltet ein Änderungsmodell und behandelt Änderungen als
Ereignisse, die Abläufe aktivieren. Es integriert Review Verwaltung, Release Verwal-
tung und Feedback Verwaltung als Arbeitsabläufe. Dadurch behandelt Rugby die stei-
gende Anzahl von Reviews, Releases und Feedback und reduziert gleichzeitig deren
Größe und Aufwand. Rugby verringert die Zeit zwischen Entwicklung und Nutzung von
Software Bestandteilen in Entwicklungsprojekten. In der Lehre reduziert Rugby die Zeit
zwischen Unterrichtung und Einübung von Konzepten und verbessert damit den Wis-
senserhalt. Rugby wurde in drei Fallstudien angewandt: (1) in 62 Universitätsprojekten
mit ca. 500 Studenten; (2) in einer Vorlesung mit 57 Team Projekten und ca. 400 Stu-
denten; sowie (3) in 8 Industrieprojekten mit 31 Fachkräften im Unternehmen.

Empirische Evaluationen zeigen, dass Rugby die Häufigkeit und die Qualität der
Interaktionen zwischen Entwicklern und Nutzern sowie zwischen Unterrichtenden und
Studenten signifikant erhöht. (1) Die Einführung von Rugby erhöhte die Anzahl der
Studenten in Projektkursen, die ihre Fähigkeiten in der Konfigurations- und Release
Verwaltung verbesserten, von 40 % auf 80 %. Rugby führte 2014 zu 96 Quellcode Re-
views, 64 Releases und 27 Feedback Berichten im Durchschnitt pro Team. (2) 77 % der
Studenten in der Vorlesung, die an den Übungen teilnahmen, sind zuversichtlich die
Arbeitsabläufe der kontinuierlichen Software Entwicklung in künftigen Projekten anzu-
wenden. (3) Die 8 Industrieprojekte passten Rugby für ihre Bedürfnisse an und waren
in der Lage den Zeitaufwand für Integration und Auslieferung von Stunden auf Minuten
zu verringern, während sie die Häufigkeit der Releases erhöhten.

v

Acknowledgements

Many people influenced the last five years of my life and my research. I want to thank
them and acknowledge their support. First, I would like to express my deep gratitude
to Bernd Bruegge, who always inspired me with new ideas, with endless enthusiasm
and support throughout the whole time of my dissertation. He created an environment
of opportunities and growth, supported my ideas, trusted me and my work, provided
valuable feedback, encouraged new ways of thinking and always gave me chances to
grow and the freedom to try out new approaches.

Further I want to thank Jürgen Börstler for accompanying my dissertation research
and for his feedback. I am very grateful to all members of the Chair for Applied Soft-
ware Engineering. I learned a lot from all of you and I am thankful for all discussions,
feedback, fun, and encouragement. In particular, I like to thank my office neighbor
Martin Wagner who started with me back in 2011 to organize the capstone course iOS
Praktikum, which is one of the foundations of this dissertation. I also want to thank
Dr. Yang Li, Sebastian Peters, Constantin Scheuermann and Florian Schneider, who
provided valuable feedback.

In addition, I like to thank all coauthors of papers and articles who contributed to this
dissertation, in particular Sebastian Peters, Sebastian Klepper, Dora Dzvonyar, and
Mjellma Berisha. I would like to express my gratitude to Helma Schneider and Monika
Markl, who were always positive and helpful. I am grateful to all study participants for
their time, patience, and feedback.

Finally, I want to express my love and gratitude to my family, and in particular to
my girlfriend Anke. Writing a dissertation requires even more than the researcher’s
full attention. I am indebted for your love and devotion, your understanding and your
support. Without you, this dissertation would not have been possible!

vii

Contents

Abbreviations xiii

1 Introduction 1
1.1 Existing Process Models in Software Engineering 1
1.2 Problems in Existing Process Models 5
1.3 Motivation for a new Process Model . 6
1.4 Research Objectives . 7
1.5 Contributions . 8
1.6 Dissertation Structure . 9

2 Foundations 11
2.1 Process Models . 12
2.2 Version Control . 14
2.3 Continuous Integration . 17
2.4 Continuous Delivery . 18
2.5 Informal Reviews . 21
2.6 User Feedback . 23
2.7 Learning Techniques . 26

3 Rugby’s Process Meta Model 29
3.1 Static View of Rugby’s Process Meta Model 31
3.2 Rugby’s Change Meta Model . 33
3.3 Dynamic View of Rugby’s Process Meta Model 34
3.4 Instantiation of Waterfall Model as Linear Model 38
3.5 Instantiation of Unified Process as Iterative Model 40
3.6 Instantiation of Scrum as Agile Model 42
3.7 Related Process Meta Models . 45

ix

4 Rugby’s Ecosystem 47
4.1 Top Level Design . 47
4.2 Requirements . 48
4.3 Use Case Model . 56
4.4 Static View of Rugby’s Process Model 59
4.5 Dynamic View of Rugby’s Process Model 61
4.6 Related Process Models . 65

5 Rugby’s Workflows 67
5.1 Review Management Workflow . 69
5.2 Related Work in the Area of Code Reviews 76
5.3 Release Management Workflow . 78
5.4 Related Work in the Area of Release Management 81
5.5 Feedback Management Workflow . 84
5.6 Related Work in the Area of User Feedback 88

6 Case Studies 90
6.1 Capstone Course . 91

6.1.1 Interventions . 92
6.1.2 Course Environment . 94
6.1.3 Teaching Approach . 100

6.2 Lecture . 105
6.2.1 Individual Exercises . 107
6.2.2 Team based Exercises . 109

6.3 Industry . 112
6.3.1 Applicability in Industrial Projects 112
6.3.2 Extending and Customizing Rugby 113

7 Evaluation 117
7.1 Hypotheses . 117
7.2 Study Design . 119
7.3 Findings . 127

7.3.1 Review . 127
7.3.2 Release . 130
7.3.3 Feedback . 131
7.3.4 Frequency . 133
7.3.5 Understanding . 136
7.3.6 Learning . 137

x

7.3.7 Scalability . 141
7.4 Limitations . 147
7.5 Summary . 152

8 Conclusion 153
8.1 Contributions . 153
8.2 Future Work . 155

A Terminology 156

B Process Models 160
B.1 Scrum . 160
B.2 Unified Process . 163

C Rugby’s Full Change Model 166

List of Figures 168

List of Tables 173

Bibliography 174

xi

Abbreviations

API Application Programming Interface, page 115

AUP Agile Unified Process, page 65

BPDM Business Process Definition Meta Model, page 10

CASE Computer Aided Software Engineering, page 155

CAT Client Acceptance Test, page 95

CD Continuous Delivery, page 18

CI Continuous Integration, page 17

CVS Concurrent Version System, page 15

DAD Disciplined Agile Delivery, page 65

DoD Department of Defense, page 2

FR Functional Requirement, page 48

IEEE Institute of Electrical and Electronics Engineers, page 22

ITIL IT Infrastructure Library, page 83

MOF Meta Object Facility, page 29

MOOC Massive Open Online Course, page 155

NFR Nonfunctional Requirement, page 55

OMG Object Management Group, page 10

OOPSLA Object Oriented Programming, Systems, Languages and Appli-
cations, page 4

xiii

POM Project Organization and Management, page 105

REST Representational State Transfer, page 133

SPEM Software Process Engineering Meta Model, page 10

SPMP Software Project Management Plan, page 111

SS Summer Semester, page 91

SVN Subversion, page 15

UML Unified Modeling Language, page 30

VCS Version Control System, page 14

WS Winter Semester, page 91

XP Extreme Programming, page 3

xiv

Chapter 1

Introduction

“Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.“

— Principle behind the Agile Manifesto

The term “software engineering” was first proposed in the 1960s as a reaction to
the software crisis in computer industry when software systems became larger and
more complex to develop [Mah90]. Projects failed because development concepts and
methods were missing and teams worked together in rather chaotic and unstructured
ways: the term software engineering “was deliberately chosen as being provocative, in
implying the need for software manufacture to be [based] on the types of theoretical
foundations and practical disciplines[,] that are traditional in the established branches
of engineering” [NRB76,Mah90].

Software engineering was established as a field in 1968 at the NATO conference in
Garmisch [NR69]. The vision was to move from unstructured ways to a defined soft-
ware life cycle model to understand and characterize how software is developed. By
adapting successful methods of other engineering domains, e.g. the manufacturing
domain, the goal was to industrialize the creation of software with a defined and disci-
plined process that is well understood, predictable, repeatable and efficient [Fow01].

1.1 Existing Process Models in Software Engineering

Detailed process models emerged with a strong emphasis on planning and the goal
to describe the process of engineering software, e.g. Royce’s linear waterfall process
model [Roy70]. His idea was to transfer the sequential order of activities from produc-
tion lines in factories to form a linear software development approach. This resulted in

1

Chapter 1. Introduction

a defined software process following strict rules and avoiding deviations, which were
seen as errors that need to be corrected. The hypothesis was that a well defined set
of inputs always generates the same output as in production lines.

Linear process models describe an approach that flows steadily through several de-
velopment activities such as analysis, design, implementation, integration, testing and
delivery. The United States Department of Defense (DoD) made the use of the wa-
terfall model mandatory for their software projects [Dep88]. Wong commented on this
in 1984: “This [waterfall] model was adopted [...] because [...] software development
was guided by DoD standards and these DoD standards impose clean separations be-
tween phases. In reality, software development is a complex, continuous, iterative, and
repetitive process. The [waterfall] model [...] does not reflect this complexity” [Won84].

The V-Model [JT79, BD93], an extension to the waterfall model, was developed as
national standard for the German Federal Armed Forces and has been a mandatory
methodology for German governmental projects since 1996 [Bun92]. It emphasizes the
separation between development and testing. One advantage in contrast to the water-
fall model is that each development phase can be associated with its corresponding
test phase and that the model describes the levels of abstractions from coarsest grain
to most detailed. In 2004, the V-Model was replaced by its successor, the V-Model XT,
which added the capability of tailoring to the initial V-Model [BR05].

One of the drawbacks of linear approaches is the difficulty to accommodate changes
after the project has been started. Only after one development activity has been com-
pletely finished, the next one can start. Especially in large projects, it is difficult to
analyze all requirements completely, correctly and unambiguously, which often leads
to a situation, where developers spend an extraordinary amount of time in the analy-
sis phase. This scenario has been well described with the analysis paralysis antipat-
tern [BMMM98]. Another disadvantage is that software is only delivered after it was
completely realized at the end of the project so that developers are not able to incor-
porate external feedback during the development phases.

As a response to this situation, iterative and incremental software process models
were developed, such as the spiral model by Boehm in 1988 [Boe88] or the Unified Pro-
cess by Jacobson, Booch and Rumbough in 1998 [JBR98]. The spiral model includes
ideas from rapid prototyping [DMSW98]: initially small but growing increments of the
software are constructed that are potentially thrown away in favor of alternative solu-
tions. Each iteration includes a development activity as described in the waterfall model
and an additional risk analysis activity to evaluate project continuation multiple times
throughout the project. While the spiral model allowed to accommodate changes, the
software was still only released after it was completely realized as in linear approaches.

2

1.1. Existing Process Models in Software Engineering

The Unified Process is a use case driven, architecture centric and risk focused pro-
cess framework. It is decomposed into four different phases: inception, elaboration,
construction and transition. Each phase focuses on specific deliverables and can fur-
ther be split into multiple iterations. The project team addresses critical risks early in
the inception and elaboration phases, e.g. by creating an executable architecture base-
line, a partial implementation of the system including its core components. Business
modeling, requirements, analysis & design, implementation, testing, and deployment
are modeled as six core workflows in the Unified Process. A workflow is a thread of
related and usually sequential activities performed by the development team in order
to produce artifacts. Workflows span across the four phases, while each phase having
a different emphasis on specific workflows. In addition to the six core workflows, there
are three supporting workflows: project management, environment, and configuration
& change management. [JBR98]

Software developers increasingly recognized that the essence of software engineer-
ing is to deal with changes and that linear and iterative process models are not capa-
ble of addressing this need. Software engineering consists of experimental knowledge
work where creativity is important [Bas96]. Such work includes unexpected events,
incidents and uncertainty. Lehman realized in the 1980s that software evolution, the
continual change to a software system, is inevitably required to keep software up to
date with changing environments and to satisfy stakeholders [LB85].

In the 1990’s, agile methods emerged with the philosophy that software engineer-
ing should not follow a defined process model but rather an empirical model that is
structured, but not entirely planned. An empirical process model sees deviations, er-
rors and failures as opportunities that need to be investigated and that lead to adap-
tions. In 2001, the ideas of empirical process control led to the agile software devel-
opment manifesto, which values individuals and interactions more than processes and
tools, working software more than comprehensive documentation, customer collabora-
tion more than contract negotiation, and responding to change more than following a
plan [BBVB+01].

Kent Beck proposed Extreme Programming (XP) as one of the first agile methods,
in 1996 in a large Chrysler project [BA04]. XP focuses on development practices such
as pair programming and test driven development. Automated tests are written before
the actual implementation, and executed on a dedicated integration computer. XP in-
cludes the practice of continuous1 integration where developers integrate source code
every few hours, whenever possible, into a source code repository so that integration

1Continuous in this context refers to regular practices that are conducted multiple times per day. It
does not refer to the mathematical definition of continuity.

3

Chapter 1. Introduction

failures are detected and repaired early. XP requires a colocated customer, who is al-
ways available to the development team and who writes requirements in form of small
user stories. It is based on the premise that analysis and design activities should be
minimized in the beginning: design emerges from small iterations as the system is
developed and opportunities for reuse are identified. [BA04]

Ken Schwaber introduced the agile process model Scrum in 1995 at a workshop
at OOPSLA [Sch95], based on a “holistic” method originally described by Tekeuchi
and Nonaka in the Harvard Business Review [TN86]. Schwaber and Beedle further
described Scrum in 2002 [SB02]. Today, Scrum is used by many software development
companies2. It describes management aspects and divides development into time
boxed iterations with a fixed duration called Sprints, which are usually four weeks long.

In each sprint, the cross functional and self organizing team performs development
activities, such as analysis, design, implementation and testing, in parallel to turn de-
fined sprint requirements into a potentially shippable product increment. Within one
sprint, no change to these sprint requirements is allowed, however new requirements
can be added to the project and existing requirements can be changed or removed, in-
fluencing the outcome of future sprints. The development team meets on a daily basis
to discuss status, impediments and promises forming a second smaller iteration. This
refines the idea of risk analysis and reduces the granularity of risk identification and
assessment to just one day.

Anderson formulated the Kanban method for software development as an incre-
mental and evolutionary software process model for organizations in 2007 [And10].
Kanban is another attempt to introduce approaches from engineering into software de-
velopment. Anderson took ideas from Toyota manufacturing processes implemented
in 1953 that use a scheduling system for lean and just in time production [SKCU77].
Kanban focuses on continual improvements and workflow visualizations. In contrast
to Scrum, Kanban does not define iterations. Instead it implements a continuous de-
velopment model with a limitation of parallel work in progress. By limiting the work in
progress, the team is able to produce value, minimize waste and reach a consistent
development flow [Rei09].

2In a survey in 2015 with 3,925 completed responses from a broad range of industries in the global
development community, 56 % reported to use Scrum as their choice of agile methodology [Ver15].

4

1.2. Problems in Existing Process Models

1.2 Problems in Existing Process Models

In linear process models, there is a large delay between the development and the
usage of the system. Iterative and agile models decreased this delay. With the in-
corporation of agile methods, software projects have gained more flexibility towards
requirements and technology changes, while allowing the early identification of risks
through regular meetings. Conboy and Fitzgerald define agility as “the continual readi-
ness of an entity to rapidly or inherently, proactively or reactively, embrace change,
through high quality, simplistic, economical components and relationships with its en-
vironment” [CF04].

While Scrum embraces change, a limitation is that it does not allow to react to
changes within a sprint. It is necessary to specify sprint requirements completely and
unambiguously at the beginning of the sprint, which might lead to a smaller form of
analysis paralysis. If developers find a problem during the implementation of a require-
ment, they would need to wait until the end of the sprint, postponing the answer to their
problem to the next iteration or they would develop the software in the wrong way. How-
ever, changes are uncertain and unpredictable: it is possible, that no changes occur
for four weeks and then three changes occur on the same day. Postponing the reaction
to unexpected events would increase risks and would lead to inefficient development.

The first two principles in the agile manifesto include customer satisfaction through
early and continuous delivery of valuable software in short cycles and the welcome of
changing requirements, even late in the development phase [BBVB+01]. Jez Humble
defined a deployment model for continuous delivery in 2010 [HF10], that is based on
continuous integration: the development team keeps the software artifacts in a state
so that the software and changes to it can be released at any time. Regular releases
lead to an improved product quality and high customer satisfaction [Che15].

However, Humble’s model does not describe how to handle changes and user feed-
back. In fact, Rodrı́guez and her colleagues state in their systematic mapping study
in 2016 that “a clear research gap exists for mechanisms to use customer feedback
in the most appropriate way so that information can be quickly interpreted” [RHL+16].
Humble’s model also does not cover an approach to prevent poor internal software
quality with respect to architecture, design and source code, such as quality assurance
through software reviews.

Jan Bosch and his colleagues introduced the term continuous software engineering
[Bos14] and the stairway to heaven model to describe the organizational transition from
traditional development over continuous deployment to research and development as

5

Chapter 1. Introduction

innovation system [OAB12]. While feedback is covered in this model, it is limited to the
output of user monitoring. Quality assurance through reviews is not mentioned.

There has not yet been an attempt to model software engineering continuously
with reviews, releases and feedback as central concepts. This is the focus of this
dissertation.

1.3 Motivation for a new Process Model

Based on Takeuchi’s and Nonaka’s article [TN86], we use the term Rugby3 for a pro-
cess model for continuous software engineering that can be used in university and
industry. Rugby is an attempt to improve the quality throughout the process by al-
lowing changes and reaction to these changes anytime in the development process.
Instead of waiting until the end of the project in linear approaches or until the end of an
iteration in iterative and agile approaches, Rugby allows to address unexpected events
immediately. Development teams can detect changes earlier by validating the usage
of realized requirements with users. Rugby provides a mechanism to release software
event based, i.e. when developers want to obtain feedback.

In Rugby, changes can occur at any time in the development process and are seen
as events waking up processes and triggering reactions4. When there is a new re-
quirement, the analysis process wakes up. A new technology wakes up the design
process and a new crash triggers the implementation and testing processes to wake
up. Sometimes a bug turns out to be a problem in the requirements. For this reason,
Rugby starts with the assumption, that all activities can react to changes at any time.
The development activities have to work together and cannot be viewed isolated.

Rugby is activity based and provides a general view on how to react to unexpected
changes. It describes continuous workflows for review management, release manage-
ment and feedback management and their relationship with the development team.
Rugby is tailorable on the process level and customizable on the workflow level to spe-
cific project environments with respect to the development activities. Its change model
includes many predefined events and is extensible for new events so that it can also be
applied in other areas, such as eduction.

3In the sport of Rugby, a scrum is a method to restart play after a foul or when the ball has gone out
of play. In that sense, Scrum handles only the exceptions of the game. The rule that a Rugby player
passes the ball laterally to another player running in parallel formation is a better metaphor for describing
the continuous interaction between developers, customers and users.

4This idea is based on the metaphor of communicating sequential processes by Hoare [Hoa78].

6

1.4. Research Objectives

The high frequency of conducting reviews, releasing software and obtaining user
feedback reduces the difficulty of these activities [Fow11]. Rugby combines multiple
feedback loops from its review, release and feedback workflows as shown in Figure 1.1.
There are multiple steps (review, integration, test, delivery) between the development
and use of software which can lead to failures (e.g. Integration Failure) producing
change events. If feedback is needed immediately, developers can bypass most steps
and deliver unreviewed, unintegrated and untested code (only the step delivery has to
pass). Rugby treats user feedback also as change event.

Review Workflow

Feedback Workflow
Release Workflow

Develop Review Design
& Source Code

Integrate
Feature

Test
Software

Use
Software

Change
Event

Source Code
Failure

Integration
Failure Test Failure Delivery

Failure FeedbackReact to
Change Event

Deliver
Software

[Need immediate user feedback]

[OK][OK][OK][OK]

[NOK] [NOK][NOK][NOK]

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 1.1: Interaction between review, integration, test, delivery and feedback loops in Rugby

Rugby has been designed to be extensible to other domains. It can e.g. also be
used in education where it provides an environment that reduces the time between the
delivery of a concept and the corresponding exercise to deepen the knowledge about
the concept. As a result, Rugby allows the decomposition of large lectures into multiple
smaller units. By combining theory and exercises in small units shortly after each other,
it is easier for students to understand and to apply the learned concepts.

1.4 Research Objectives

The main research objective pursued in this dissertation is to reduce the delay between
development and usage of software in development projects and to reduce the delay
between teaching a concept and exercising it. Our hypothesis is that Rugby is able to
reduce these delays through an increased frequency of delivery and feedback, which
reduces the size of the content – software changes in the development and concepts
in education – and which increases the amount of interaction. Rugby’s process model
integrates three workflows that address this hypothesis:

(1) The continuous review management workflow improves the internal quality be-
cause multiple persons review design decisions and code changes before they are

7

Chapter 1. Introduction

integrated into the main codebase. It increases the understanding about code and de-
sign within the team through peer reviews and ensures that only high quality is present
in released product increments.

(2) The continuous release management workflow automates integration, testing,
and delivery to improve productivity and efficiency, and increases the product quality
of the software, because it reduces the amount of bugs. It allows the creation of event
based releases as product increments during an iteration to clarify questions, to obtain
user feedback or to review the current progress.

(3) The continuous feedback management workflow allows developers to build the
right product with the right features. It improves the motivation of users to give feedback
by simplifying the feedback provision. It decreases the effort for developers to analyze,
prioritize and integrate user feedback with a semi automatic approach. Developers can
choose to integrate changes directly or to postpone them to future iterations.

Another objective is to create a process meta model that allows the instantiation of
multiple process models by generalizing the concepts using an event based change
model. We describe the static and dynamic aspects of the meta model and show three
examples of instantiations for a linear, an iterative and an agile process model. Rugby’s
process model is also an instantiation of the process meta model.

1.5 Contributions

The main contribution of this dissertation is the establishment of a software process
model for continuous software engineering that is based on the agile principles of
Scrum [SB02] and the iterative workflows of the Unified Process [Kru04]. Rugby mod-
els software engineering as a set of continuously running processes which are wait-
ing for events. Based on the Unified Process, we call these independent processes
“workflows”. Each of these workflows models a software engineering activity such as
requirements elicitation, analysis, design, implementation and testing. Rugby in par-
ticular includes workflows for review management to achieve high design and code
quality, for release management to achieve automated integration and delivery, and for
feedback management to allow the assessment and integration of user feedback.

We demonstrate Rugby’s applicability in three case studies in university and indus-
try. In a first case study, we applied Rugby’s workflows in 62 university capstone course
projects between 2011 and 2015. We conducted multiple formative evaluations to ana-
lyze the introduction of Rugby’s workflows in the capstone courses. Qualitative studies
allowed us to understand the perspectives and motivations of development teams and

8

1.6. Dissertation Structure

showed that Rugby improves the communication between developers and users. Us-
ing quantitative analysis, we measured the usage of the activities of Rugby’s workflows
in the capstone projects. From 2011 to 2014, the number of students in capstone
projects who have improved their skills in configuration and release management in-
creased from 40 % to 80 %. Rugby led to 96 code reviews, 64 delivered releases, 136
downloads and 27 feedback reports on average per team in 2014.

Another contribution is the application of Rugby in a large lecture environment
based on experiential and blended learning. In a second case study, we used Rugby
in a university course in 2015 which demonstrates Rugby’s extensibility. A qualitative
study showed that Rugby improves the communication between instructors and stu-
dents and the participation of students. We used Rugby in lecture units to decrease
the delay between teaching a concept and exercising it and identified a correlation be-
tween the exercise participation and the final exam results. A lecture unit consists of
the presentation of a concept, followed by an exercise that ensures the students ap-
ply the concept immediately after the presentation and a retrospective. 77 % of the
students who participated in the exercises are confident to apply continuous software
engineering workflows in future projects. We identified a correlation between the exer-
cise participation and the final exam results.

In a third case study, we applied Rugby in eight industry projects in 2014, which
demonstrated Rugby’s customizability for different project environments. The industry
projects tailored Rugby and customized its release management workflows to their
needs. A qualitative analysis confirmed the results that we found in the capstone
projects in university and demonstrated that the delay between development and us-
age is reduced. The professionals in the eight industry projects were able to reduce
the time effort for integration and delivery from hours to minutes, while increasing the
frequency of releases.

1.6 Dissertation Structure

The dissertation is organized as follows5.
Chapter 2 describes the foundations of the dissertation and introduces the ter-

minology. First, we discuss the differences between defined and empirical process
models. Then we describe existing concepts in version control, continuous integration,
continuous delivery, informal reviews and user feedback. Finally, we present existing
learning techniques that we apply in education in the first and second case study.

5Instead of a separate chapter for related work, we relate our work to others in different sections after
the description of corresponding concepts.

9

Chapter 1. Introduction

Chapter 3 describes the static and dynamic aspects of Rugby’s process meta
model. It consists of a change model where changes are treated as events that ac-
tivate certain workflows. We show that the meta model can be instantiated with linear,
iterative and agile software process models. In addition, we relate Rugby to the Soft-
ware Process Engineering Meta Model (SPEM) [Obj08b] and the Business Process
Definition Meta Model (BPDM) [Obj08a], which were both standardized by the Object
Management Group (OMG).

Chapter 4 presents Rugby’s ecosystem with its environments and Rugby’s process
model. It describes Rugby’s requirements and use case model and shows Rugby’s
static and dynamic aspects. We relate Rugby to the Disciplined Agile Delivery [AL12]
by Scott Ambler, which is the successor of the Agile Unified Process [CPP10], a hybrid
process model that combines the Unified Process with agile aspects.

Chapter 5 describes the three workflows review management, release manage-
ment and feedback management which are integrated into Rugby’s process model. It
also describes related work in the area of code reviews, release management and user
feedback.

Chapter 6 presents the application of Rugby in three case studies. The first case
study describes a capstone course where several interventions improved the learning
experience of students. In the second case study, we use Rugby’s workflows to im-
prove the learning experience of students in the context of a large lecture based on
blended learning principles. The third case study demonstrates the applicability and
customizability of Rugby in industrial projects in a company.

Chapter 7 describes empirical evaluations that we conducted in the three case
studies. We describe the design of six qualitative studies using questionnaires and
personal interviews as evaluation methods and three quantitative studies. We show
the findings of these studies and describe limitations of the evaluations.

Chapter 8 concludes the dissertation by summarizing its contributions and by pro-
viding different ideas for future work.

Appendix A lists the terminology and the used definitions. Appendix B describes
more details about the process models Scrum and Unified Process because Rugby is
based on ideas of both. Appendix C shows Rugby’s full change model.

The dissertation is based on previously published journal articles as well as confer-
ence and workshop papers: [BKW12], [KA14], [KABW14], [KB14], [DKA14], [KKP+15],
[BKA15], [KBB16], [DKAB16], [KKB16].

10

Chapter 2

Foundations

“We all need people who will give us feedback. That‘s how we improve.“

— Bill Gates

This chapter introduces the foundations for this dissertation. Section 2.1 discusses
the differences of defined and empirical process control and introduces terms related to
process models. It also describes the concepts of process tailoring and customization.
In Section 2.2, we describe version control concepts, discuss the differences between
central and distributed version control and describe a model for branch and merge
management.

Section 2.3 discusses the concept of continuous integration where developers inte-
grate their software frequently, i.e. several times per day. In Section 2.4, we describe
the idea of continuous delivery that builds on top of continuous integration and allows
to deliver changes to the software easily, frequently and automatically throughout the
whole software lifecycle. Distributed version control, continuous integration and contin-
uous delivery are the components of Rugby’s release management workflow.

Section 2.5 discusses the differences between formal and informal reviews and in-
troduces a taxonomy of tool assisted code reviews. Distributed version control includ-
ing branch and merge management and code reviews are the components of Rugby’s
review management workflow. In Section 2.6, we discuss user involvement and user
feedback as important techniques for software evolution, and present a taxonomy of
typical roles in the user feedback process. User feedback is a component of Rugby’s
feedback management workflow. Section 2.7 describes different learning techniques
such as blended and experiential learning that we use in the application of Rugby in
education. Appendix A summarizes the terminology introduced in this chapter.

11

Chapter 2. Foundations

2.1 Process Models

The term process is used in various contexts and can be defined as “a related set of
activities conducted to the specific purpose of product definition” [Rol93]. A process
model describes how activities must, should or could be done in contrast to the process
itself which is what really happens. A process model corresponds to the way of work-
ing prescribed by the methodology in use. A process is an instantiation of a process
model and includes workflows describing work practices in the project. A workflow is
a thread of cohesive and mostly sequential activities performed by project participants
that produce artifacts [BD09]. A process corresponds to a concrete project whose out-
put is a product such as the implemented information system. The knowledge required
to design a process model is related to process meta modeling [Rol93].

Process control deals with mechanisms for maintaining the output of a process in
a specified and desired range. Control does not mean the process can be completely
predicted. One goal of process control is the minimization of risks. If potential problems
can be detected early, a reaction can be defined to solve the problem. An example for
process control is a heating system with a feedback loop. High temperature in the
environment reduces heating, low temperature increases heating.

There are different styles of process models distinguished by their process control,
in particular deterministic vs. nondeterministic process control. Deterministic process
control requires every element of the process to be completely understood. Given a
well defined set of inputs, a defined process will generate the same outputs and results
until completion every time. A defined process is a collection of tightly coupled steps:
the output of one step is the input to the next step [SB02].

A defined process model is an example for deterministic process control. It has no
random variables. The defined control model handles changes and failures as devia-
tions that need to be corrected and tries to prevent the occurrence of changes in the
plan or outcome of the process. An example for defined process control is European
navigation in the open sea as described by Gladman [Gla64]. The European navigator
follows a specific route. If he deviates from the route in his voyage, he introduces cor-
rective activities to achieve the planned goal and to return to the planned route. This
type of process control is used in assembly productions as described by Taylor in the
1920s [Tay14] for the production of similar industry products such as cars.

However, it cannot be used for building complex systems which require creative
problem solving and adaptivity to change [BD09]. Software development is a complex
process with random variables, that cannot be defined completely deterministic. “It
is typical to adopt the defined (theoretical) modeling approach when the underlying

12

2.1. Process Models

mechanisms by which a process operates are reasonably well understood. When the
process is too complicated for the defined approach, the empirical approach is the
appropriate choice” [OR94]. Complex processes, which are not understood completely,
require an empirical control model, which is an example for a nondeterministic process
control.

Empirical process control includes visibility, inspection and adaption. It allows to
control complex processes, which cannot perfectly be defined and which would gen-
erate unrepeatable and unpredictable results. Visibility means that aspects of the pro-
cess that affect the outcome must be known and visible. Inspection requires that pro-
cess aspects are evaluated frequently so that unacceptable variances can be detected.
The process should be adapted if one or more aspects are in an unacceptable range.

The empirical model described by Schwaber is based on Ogunnaike’s definition
of a stochastic model [OR94]. It handles changes and failures as opportunities. A
quick reaction to changes can lead to advantages compared to competitors. If random
variables are allowed, the process control is nondeterministic and empirical. If no
random variables exist, the process control is deterministic and defined.

An example of an empirical process control is the Polynesian navigation as de-
scribed by Gladwin [Gla64] and Suchman [Suc07], which it is goal oriented and uses
heuristics. Polynesian navigation begins with an objective instead of a plan. It responds
to conditions when they arise using skills and experience by observing the environment
such as wind, waves, tides, stars, etc., to figure out the direction towards the objective
or the proximity of land. A management style like the Polynesian navigation is the key
of agile methods such as Scrum [Sch95]. It is particularly useful in projects exploring
new technologies whose purpose is to break existing paradigms [BD09].

Consequently, a realistic model of the reality would employ probability distributions
to characterize random process variables. The process model then becomes stochas-
tic, with individual outcomes driven by random variables drawn from the given proba-
bility distributions [Kel91]. Stochastic control is not solved analytically and deals with
the existence of uncertainty. It includes one or more stochastic elements, i.e. random
components which cannot be completely predicted: it is unknown if and when certain
events happen.

An agile manager uses empirical process control to expect the unexpected, but
has confidence that the chaos can be organized. He has contingency plans to handle
unexpected situations such as impediments and changes in technologies or require-
ments. The random variable is not the unexpected situation itself, it is the point in time,
when the situation occurs. If something unexpected occurs, the process is inspected
and potentially adapted. There are three ways to adapt a process model to the domain

13

Chapter 2. Foundations

and environment of a project: process tailoring, process customization and process
extension.

We define process tailoring as adapting a process to operational needs on a higher
level through removing, modifying or adding specific workflows, without significantly de-
viating from the process model. According to Ginsberg, two terms are used to describe
a relationship, e.g. identification, correlation, and/or derivation, between different levels
of process definitions: interpreting and tailoring. Interpreting is the act of analyzing and
correlating the definition of a general process description with respect to an existing in-
stantiation. The goal is to understand the relationship between the description - the
process model - and the instantiation - the process. Tailoring is the act of adjusting the
definition of a general process description - the process model - to derive an alternative
environment - the process. [GQ95]

We define process customization as adapting a process to operational needs on
a smaller level through removing, modifying or adding specific activities to an existing
workflow, without significantly deviating from the workflow model of the process. In the
sense of inheritance in object oriented systems, process customization can be seen as
adding a new sub class that can modify the behavior of an existing super class, e.g. by
adding new static or dynamic aspects and by overriding methods.

We define process extension as adapting a process to operational needs through
adding a new workflow or activity that cannot be described with existing elements of
the process model. In the sense of inheritance in object oriented systems, process
extension can be seen as adding a new super class with completely new static and
dynamic aspects that cannot be described with existing classes.

2.2 Version Control

A central concept in software configuration management [Mor04] is version control. A
version control system (VCS) is ”a system that records changes to a file or set of files
over time so that you can recall specific versions later” [Cha09]. From the early days
of software engineering, developers sought a way to store and organize the different
versions of files that emerge during software development. They started to copy and
move files from time to time to a local backup directory.

Initially, the management of these files was tedious and error prone, when it was
still performed manually. Moreover, accumulating the entire history of a certain file was
a complex and time consuming task. As a first improvement, developers began using
local version control systems, which are essentially local databases, to keep track of

14

2.2. Version Control

the files and their changes. This solved the very basic problems of local backup direc-
tories. In relation to architectural patterns, local version control systems correspond
to a standalone or monolithic architecture, since they are completely independent of
other systems [Cha09].

With growing demands for more complex software, team collaboration became the
norm. At this point, a local database for file management was not sufficient anymore.
When a developer begins editing an already existing file, he does not wish to work
on his latest local version, but instead wants to get the latest changes from the team.
Similarly, when viewing a file’s change history, a programmer is not only interested in
his own changes, but also in what the other team members have accomplished. To
meet these demands, the former local database was moved to a server which was
then shared by the entire team.

This marked the introduction of centralized version control systems, the most popu-
lar of which include: Concurrent Version System (CVS), Subversion (SVN) and Per-
force. To modify a file, the programmer would check out the file to his local ma-
chine, the client, and depending on the configuration of the version control system,
he would need to block it from his team members. Centralized version control sys-
tems use the repository architectural pattern, a special case of the client server pat-
tern [Sha96, CGB+02]. A central property of the repository pattern is the existence of
many loosely coupled clients that mainly interact with a database on a server, but very
little with each other [Cha09].

Centralized version control systems introduced a significant weakness: the servers
became single points of failure. A single server crash could destroy the whole team’s
documents and work history. This problem is solved by the currently most used type
of version control systems: distributed version control systems. In modern distributed
systems like git or Mercurial, clients mirror the full repository, making them very ro-
bust to machine failures. Distributed version control systems use an implementation
of the peer to peer architectural pattern. Since programmers can create branches
and commit locally, they also allow for very fast and comfortable offline development
[Cha09,CGB+02].

The basic entity of distributed version control is the repository, which is a place
where files can be stored along with their history. Developers do not work directly on
the files from the repository, but instead have a local copy of the repository, called the
working copy, from a specific point in time. The process of initially creating this work-
ing copy is the check out. After a developer has checked out a local copy from the
repository, he can start developing by making changes to the files of the local copy.
When he is done, he has the option of committing his changes to the repository. If the

15

Chapter 2. Foundations

corresponding files in the repository have not been changed in the meantime, he can
simply proceed with the commit. Otherwise, if the changed files have simultaneously
been modified by commits from other developers, a conflict occurs. Before the devel-
oper can commit his changes, he needs to resolve the conflict by either manually or
automatically merging the conflicted files.

If the developer is aware of the fact that he will work on a specific set of files at a
speed different than that of his colleagues, he can opt for creating a ”parallel version
of the repository” [Cha09], namely a branch. This enables the existence of multiple
copies of the files in the repository, so that the developers can each work on them
independently [Cha09]. While centralized version control systems such as Subversion
are easier to use and faster to learn, distributed version control systems such as git pro-
vide more possibilities, in particular to commit locally (offline) and to create and merge
branches fast and easily [BCSD14]. Easier branching allows context switches and ex-
ploratory coding [MBNC14]. A branching workflow defines the coexistence of versions,
i.e. when new branches are created, merged and deleted. Branch management is the
activity of defining and controlling these workflows [Ins88, WS02]. Branching models
handle different types of branches, e.g. feature, bugfix, release and hotfix branches.
An established branching model is git flow [Dri10] which is shown in Figure 2.1.

Time

(3) Release
branches

(1) Master
branch

(4) Development
branch

(2) Hotfix
branches

(5) Feature
branches

Feature for
future release

Tag 1.0

Major feature
for next release

From this point
on, “next release”
means the release

after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bugfixes from
release

branches may
be continuously

merged back
into develop

Tag 0.1 Tag 0.2

Incorporate bugfix
in development

branch

Only
bugfixes!

Start of
release

branch for
1.0

Figure 2.1: Git flow branching model (adapted from [Dri10])

16

2.3. Continuous Integration

Git flow defines five branch types: (1) A single master branch is used to store
versions in form of tags that were released to production. (2) Hotfix branches are
used to fix bugs in production leading to minor version updates. They only live very
shortly in case of critical bugs. (3) Release branches prepare new major releases.
They are created when all features for the new release are finished and additional
time for testing and bug fixing is needed. If the release is finished, the changes on
the release branch are merged to the master branch and the release branch is closed.
Additional bugfixes happen in hotfix branches. (4) A single development branch is used
to integrate finished features, hotfixes and bugfixes from release branches for future
releases. (5) The realization of requirements happens on feature branches. Multiple
feature branches can run in parallel. For each requirement, a feature branch is created
and merged back to the development branch as soon as the feature is finished.

2.3 Continuous Integration

Continuous integration (CI) is a practice first described by Grady Booch [Boo91] as “a
far better way to measure productivity” and to avoid a big bang integration at the end
of the project. Software is integrated regularly during development, multiple times per
day: “No code sits unintegrated for more than a couple of hours. At the end of every
development episode, the code is integrated with the latest release and all the tests
must run at 100 %” [BA04]. Kent Beck included continuous integration as practice in
Extreme Programming [BA04] emphasizing the importance of face to face communi-
cation over technological support.

Martin Fowler defines continuous integration as “software development practice
where members of a team integrate their work frequently, usually each person inte-
grates at least daily - leading to multiple integrations per day. Each integration is ver-
ified by an automated build (including regression testing) to detect integration errors
as quickly as possible” [Fow06]. The term “continuous” is not used in its mathematical
definition and does not imply that the integration is constantly running and never stops.
It is rather a description of a continual, regular use, usually multiple times per day, but
at least once a day. Small and frequent changes are immediately verified by an integra-
tion and test system, and in case of a broken integration, they are immediately fixed.
This practice can highly reduce the time between a defect is introduced and when it is
fixed [DMG07].

CI reduces integration effort and makes integration work more predictable, com-
pared to performing integration after a large amount of development work. The goal

17

Chapter 2. Foundations

of CI is to have a working state of the project throughout the development. When
practicing continuous integration, the development team uses an automated workflow
to periodically integrate and test all parts of the system and to continuously verify the
correct functionality of a system after making changes. When a test fails, team mem-
bers turn their attention to find the reason and to fix the problem behind the test failure.
Continuous integration leads to the early detection and removal of errors, improved
release frequency and predictability, increased developer productivity, and improved
communication [SB14].

2.4 Continuous Delivery

Continuous delivery (CD) builds on top of continuous integration. In addition to inte-
gration, it automates all steps in the delivery process so that even small changes to
software, such as bug fixes, can be released efficiently without much manual effort.
CD provides rapid feedback to developers, improves software quality and reduces in-
tegration and delivery risks. Martin Fowler recommends to provide an easy way to
obtain the latest version and to automate the deployment process [Fow06]. The idea
is to frequently test the software in real use and simultaneously make the process of
delivering the software to its target environment fast and error resistant. Humble and
Farley expand on this and describe continuous delivery as the practice of automating
the entire process of taking a change from commit to release [HF10].

The aim of continuous delivery is to achieve “a reliable, predictable, visible, and
largely automated process with well understood, quantifiable risks” by combining con-
tinuous integration with other advanced development practices such as software con-
figuration management, data management, environment management, and release
management [HF10]. Chen defines continuous delivery as a “a software engineering
approach in which teams keep producing valuable software in short cycles and ensure
that the software can be reliably released at any time” [Che15].

Continuous delivery builds on the goal of having an integrated and working version
at all times and extends it to being able to release the latest version at all times. In con-
trast to the related concept of continuous deployment, the goal is not to actually deploy
every version to the target environment, but the ability to do that [HF10]. The transfor-
mation of continuous delivery should not be limited to the software development team,
but should also consider other functions, in particular sales and marketing [NS13].
This suggests that an end to end consideration of the software development lifecycle
is important.

18

2.4. Continuous Delivery

The ability to create releases for each change in the source code in a fast, easy and
robust way is the purpose of continuous delivery. The release manager is responsible
for a release, has the final authority which changes are included in the release and
usually triggers the delivery [Ere03]. Humble models a deployment pipeline as a stage
gate process that is shown in Figure 2.2. During its lifecycle a build moves from the
integration stage through multiple test stages to a delivery stage which uploads the
binaries to the target environment. In each stage, the build is checked against certain
quality criteria. If these are fulfilled, the build is promoted to the next stage and can be
delivered to a target environment, e.g. production, with no effort.

Delivery Stage

Upload binaries
3

Integration Stage

Build Application
1

Environment configuration

Binaries Config Data Binaries Config Data Binaries Config Data

Source Code

Version Control System

Artifact RepositoryA

S

Test data
Key

Object Fflow

Control Flow

Storage

Stage

Test Stage(s)

Execute Test Cases

2

Figure 2.2: Deployment process with integration stage, test stage(s) and delivery stage (adapted
from [HF10])

Continuous delivery can provide the following benefits [Che15,LMP+15]:

• Accelerated time to market: business value inherent in new releases comes to
customers more quickly

• Building the right product: frequent releases let the development team obtain
user feedback more quickly

• Improved productivity and efficiency: time and effort savings through automa-
tion

• Reduced risk of a release failure: the release process becomes more reliable
• Improved product quality: the number of open bugs and production incidents

decrease
• Improved customer satisfaction: developer can respond to feedback more

quickly to increase the level of satisfaction
• Improved collaboration: Closer connection between development and opera-

tions

In addition, continuous delivery may pose the following challenges [Che15,LMP+15]:

19

Chapter 2. Foundations

• Different interests: varying interests in different departments of an organization
could lead to conflicts

• Heterogeneous organizations: different development and production environ-
ments might require different workflows

• Resistance against change: traditional and bureaucratic processes may hinder
continuous delivery

• Long test execution for large software: large test suites might require a long
test execution time

• Manual and nonfunctional testing: Some tests can hardly be automated and
require manual testing

On an organizational level, the “stovepipe” or “silo” antipattern may hinder an ef-
ficient implementation of continuous delivery when the structure of the organization
restricts the flow of information, inhibiting or preventing cross organizational commu-
nication [Han93]. One example of such an antipattern is a stovepipe between the
development and the operations department. A concept related to continuous delivery
is DevOps (Development + Operations), a term that describes improvements in the
collaboration between development and operations departments by automating pro-
cesses and focusing on important issues [Hum11].

DevOps is used to describe a collection of “practices that advocate the collaboration
between software developers and IT departments with the goal to shorten the feedback
loop and align the goals of both” [CSA15]. A continuous delivery infrastructure can be
used to implement DevOps, i.e. to deliver a new software release to customers, to
collect user feedback and usage data, and transfer it back to developers. Activities of
the development and operations departments are combined to prevent stovepipes and
to improve release engineering.

DevOps and release engineering both try to improve product value for the customer
by enabling the organization to react to changes faster and to deliver high quality soft-
ware [DPL15]. Dyck and his colleagues define DevOps as “organizational approach
that stresses empathy and cross-functional collaboration within and between teams –
especially development and IT operations – in software development organizations, in
order to operate resilient systems and accelerate delivery of changes” [DPL15]. They
define release engineering as “a software engineering discipline concerned with the
development, implementation, and improvement of processes to deploy high-quality
software reliably and predictably” [DPL15].

20

2.5. Informal Reviews

2.5 Informal Reviews

Reviews habe the purpose to increase quality. Product quality has been investigated
from various perspectives. Renown quality experts either take the stance that quality
means ”conformance to requirements” [Cro80] or define it relative to the user’s needs
and their ”stated or unstated, conscious or merely sensed” [Fei02] requirements. An-
other component of quality includes patterns, which describe generic solutions for re-
curring problems within a particular context using proven concepts [GHJV94]. The
application of the pattern has consequences in addition to the benefits. When change
occurs and the consequences become “decidedly negative” [BMMM98], patterns de-
volve into antipatterns. An antipattern has a refactored solution: a “commonly occurring
method in which the antipattern can be resolved and reengineered into a more ben-
eficial form” [BMMM98]. Another knowledge base for recognizing mistakes are code
smells, defined as “indicators that usually correspond to a deeper problem in the sys-
tem” [Fow99].

We define quality as conformance to flexible specifications that respond to the
changes of the user’s needs, in addition to the usage of corresponding patterns to
address nonfunctional requirements if applicable, while avoiding antipatterns. We con-
sider code quality to be a subclass of quality, focusing on functional requirements,
system architecture, design patterns and coding guidelines, avoiding development an-
tipatterns and code smells. Refactoring becomes essential for improving quality, as
it helps to remove both code smells and problematic solutions from antipatterns. The
Oxford Dictionary defines review as “formal assessment of something with the intention
of instituting change if necessary” [Ste10]. This definition applies to software engineer-
ing, where reviews are an important quality assurance method to check for defects,
deviations from development standards, and other problems in products [CLB03].

Weinberg states how early software developers, even the likes of von Neumann
and Babbage, understood that correctness was too difficult a task to master by oneself,
and sought their colleagues’ feedback [WF84]. These initial reviews were informal in
nature, as there was no defined or agreed upon process. In fact, well defined reviews
eluded research interests into the 1970s. Weinberg [WF84] explains that “the need
for reviewing was so obvious to the best programmers that they rarely mentioned it in
print, while the worst programmers believed they were so good that their work did not
need reviewing”. An early approach to reviews found in literature is a formal and well
defined process called inspection [Pat05]. Software inspections were developed under
the direction of Michael Fagan in an effort to improve quality and increase productivity.
Fagan’s inspection process consists of six activities: planning, overview, preparation,

21

Chapter 2. Foundations

inspection, rework and follow up. The first three lay out the foundation: the author
determines what materials are to be inspected and ensures that they meet predefined
entry criteria. Then, a meeting is scheduled, the participants are chosen and each is
assigned one of the four inspection roles: designer, coder, tester and moderator. This
set of roles ensures that the material is reviewed from various perspectives to identify
different bugs. [Fag76,Fag86]

Walkthroughs are lower in formality than inspections [Pat05]. There are different ap-
proaches to define the process ranging from formal ones such as Yourdon’s structured
walkthrough [You79] or the IEEE Standard 1028 [Ins08], to informal ones that focus
mainly on the walkthrough meeting [SLS14, Blu92]. They all have in common the fact
that the author walks an audience of reviewers step by step through the material, while
explaining the purpose and reasoning behind it. There is consensus on the purpose
for walkthroughs to evaluate and improve the quality of the materials by finding defects,
suggesting (alternative) solutions, checking conformance to standards, educating the
audience on the materials and training new team members.

Informal reviews provide a higher flexibility in contrast to formal ones, to be con-
ducted as needed and to have the ability to customize the process. Moreover, plan-
ning is limited to choosing the reviewers and asking them for feedback. They often
only include the code author and a few reviewers with programming or testing back-
ground [Pat05]. The review results do not need to be explicitly documented. Listing the
remarks or revising the document is in most cases sufficient. Thus, informal reviews
can be simplified down to a cross reading in an author reader cycle [SLS14]. Informal
reviews have mainly focused on source code, due to the tools developed to help con-

Review

Formal
review

Informal
review

Structured
walk throughInspection Informal

code review
Informal

walk through

b lank

Over the
shoulder review

Email thread
review

Tool assisted
review

Pair
programming

Commit based
code review

Branch based
code review

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.3: Review taxonomy (adapted from [CBDT06])

22

2.6. User Feedback

duct code reviews and the techniques specific to programming. Figure 2.3 shows a
taxonomy for reviews including variations for informal code reviews.

A code review is a “manual assessment of source code by humans, mainly intended
to identify defects and quality problems” [BBZJ14]. Beller et al. and Bacchelli and Bird
define the term modern code review, which “is characterized by fewer formal require-
ments, a tendency to include tool support, and a strive to make reviews more efficient
and less time-consuming” [BBZJ14,BB13]. A code review should not only focus on the
source code itself, but also take into account the architecture and the object design of
the particular software. An additional activity specific to code reviews is the integration
needed to merge the individual code changes with the project’s shared codebase which
resides in a repository under version control (see Section 2.2). The rest of the review
process is tailored to apply to source code. The informal code review process typically
includes the following four activities as shown in Figure 2.4: preparation, examination,
rework, and integration. Depending on the review type, activities are skipped to make
the process lighter and more flexible.

Preparation Examination

Rework

Integration

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.4: Activities in informal code reviews (adapted from [CBDT06])

There are variations of informal code reviews, which Cohen [CBDT06] categorizes
as: over the shoulder review, email thread review, tool assisted review and pair pro-
gramming [CW00]. We distinguish two types of tool assisted reviews: commit based
and branch based code reviews. The difference between them is whether the review
is conducted on a single commit or on an entire branch that usually contains multiple
commits. In this dissertation, we describe an informal review technique for tool assisted
reviews that can be instantiated as workflow: branch based code reviews.

2.6 User Feedback

The IKIWISI (“I’ll know it when I see it”) phenomenon [Boe00] describes that users are
frequently not able to express their needs and expectations from scratch, but quite good
at criticizing existing software. Without having an executable prototype of the software,
it is difficult for project stakeholders to discuss important issues [KB14]. User involve-

23

Chapter 2. Foundations

ment can be defined as “a systematic exchange of information between (prospective)
users and developers”, aiming for a better understanding of user needs and a conse-
quent improvement of the software [Pag13].

User involvement is usually mentioned in connection with terms like user input
[MHR09], user participation [Cav95], or participatory design [Dam96]. Involving users
in the software development process has been recognized as an important source of
information for development teams [Hol05], and has shown to have a positive impact
on user satisfaction and project success [Kuj03]. While user involvement alone is no
guarantee for the success of a project [Cav95], statistical research has shown that it
significantly increases the requirements quality [KKLK05].

Developer

User

Analyze

SendImprove

Compose

Figure 2.5: Circular model of feedback in software evolution (adapted from [Sch11])

User feedback can be defined as an artifact in the user involvement process, be-
cause ”providing feedback is a user interaction [...] to communicate her subjective
experience with the application to the application developers” [Pag13]. User feedback
contains important information for developers and helps to improve software quality and
to identify missing features [PB13]. Software evolution refers to the activity of develop-
ing and continuously adapting software due to changes in the environment or needs
of its stakeholders, including both development and maintenance activities [Men08].
Figure 2.5 shows the circular model of feedback in software evolution [Sch11]: Users
compose and send feedback to developers who analyze the feedback and improve
the software according to the feedback. In a future release, users evaluate the im-
provements, compose additional feedback and the cycle continues. User involvement
strategies include the user’s opinion at varying stages of the software evolution pro-
cess.

In the early phases of a project, users can contribute to the idea generation pro-
cess and describe their needs regarding the software, whereas in the later stages

24

2.6. User Feedback

they can evaluate the implemented functionality and identify possibilities for improve-
ment [Ala02]. Users can both validate existing requirements, e.g. by giving their opin-
ion on a prototype, and also state new requirements which could provide a competitive
advantage in the future [KDoD+03]. Users should be involved continuously to guaran-
tee that not only features, but also nonfunctional requirements such as usability and
performance are satisfactory [KK05].

The domain of user feedback includes different stakeholders who can take on mul-
tiple roles, which we summarize in the taxonomy in Figure 2.6. A stakeholder can fulfill
multiple roles, but depending on the role his perspective and thus also his requirements
towards a system for user feedback might differ [BVGW10].

Stakeholder Role

Product
Owner

Team
Member

User

DesignerDeveloperTest
Engineer

Project
Manager

Beta
Tester

Lead
User

End User

1..*

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.6: Exemplary taxonomy of roles in the user feedback process (non exhaustive, adapted
from [DKAB16])

We divide the development team into the roles Project Manager, Test Engineer,
Developer and Designer, although other roles are possible depending on the organi-
zational structure. These roles have varying needs for user feedback, for instance a
designer is more interested in feedback which concerns overall design adjustments
than in a bug report, while a test engineer is likely looking for information to reconstruct
a problem in the test environment. The role of the Product Owner is defined as in
Scrum (compare Appendix B.1). His interests in a system for user feedback include
the ability to provide feedback and reporting capabilities. For instance, he might check
the number of bug reports for a specific release of the application as an indicator for
software product quality.

The role of the User can be defined as “The people who (will) use the delivered
software application” [Roe15]. Several researchers categorize users according to their
experience either in software development [YF07, Cav95] or the application domain
in question [CMPP08]. The technical background of a user is relevant, since there

25

Chapter 2. Foundations

is an information gap between what a user provides and what a development team
needs [ZPB+10]. Users who have experience in software engineering know which
information a development team needs to convert feedback into a requirement, thus
they are more likely to include this information in their feedback [Roe15,ZPB+10]. We
distinguish three user roles depending on their experience and their motives regarding
user feedback: end user, lead user and beta tester.

An End User is ”any organizational unit or person who has an interaction with the
computer based information system as a consumer or producer/consumer of informa-
tion” [CK89]. A Lead User is someone whose present needs will become general in
the future and who benefits significantly by having those needs met [Hip86]. Lead
users are likely to try out a new application or technology earlier than the majority of
the user base, e.g. by downloading a prerelease version of a software, which makes
their interests comparable to those of early adopters. In addition to their interest in
innovation, lead users are also keen on their needs being realized, which motivates
them to provide feedback to the development team of an application [Cav95]. A Beta
Tester does not necessarily have a technical background, but has the task of testing
an application in its target environment, typically before an official release to the whole
user base [BD09]. Since beta testers have the task of ensuring the application’s qual-
ity and finding possible errors, they are most likely to give feedback and to provide a
sufficient amount of detail for their findings.

2.7 Learning Techniques

Software engineering is an activity that requires collaboration and practical application
of knowledge. Educators struggle when teaching it in traditional lecture based environ-
ments where activities take place in the front of the classroom. Lectures are usually
similar to broadcasting, where essential interactions are initiated by the teacher with
only limited participation on the students side. Self guided learning, personal responsi-
bility, practical relevance and individualization are important elements of a great learn-
ing experience. Several pedagogic theories have been developed that include these
elements.

Problem based learning is a technique to learn about a subject through the expe-
rience of problem solving. Educators facilitate learning by supporting, guiding, and
monitoring this process. Working in groups, students identify what they know, what
they need to know, and how and where to access new information that leads to the
resolution of the problem [BF98].

26

2.7. Learning Techniques

Cooperative learning is an educational approach which aims to organize class-
room activities into social learning experiences: Students work in groups to complete
tasks collectively towards a common goal. The teacher’s role changes from giving
information to facilitating students’ learning. Everyone succeeds when the group suc-
ceeds [J+91].

Blended learning allows students to learn through delivery of content and instruc-
tions via computer mediated activities, digital media and online media. While still
attending traditional teaching environments, face-to-face methods are combined with
computer mediated activities. Blended learning facilitates a simultaneous, independent
and collaborative learning experience [GK04].

Experiential learning is the process of learning from experience, a methodology
in which educators engage with students in direct experience to increase knowledge,
develop skills, and clarify values. Aristoteles said: “For the things we have to learn
before we can do them, we learn by doing them”. John Dewey followed this idea with
his statement that “there is an intimate and necessary relation between the process of
actual experience and education” [Kol84].

While the combination of these learning techniques leads to a more complex expe-
rience for educators, it lowers their stress and leads to higher satisfaction [BAKHE03].
A Chinese proverb, first mentioned by Confucius and adapted by Benjamin Franklin
describes a modern approach to exercise based education. In recent publications an
extended version of the proverb is mentioned:

” Tell me and I will forget.
Show me and I will remember.
Involve me and I will understand.
Step back and I will act. “ — Chinese proverb [KKLW01]

The first line “Tell me and I will forget” describes that explaining a concept only
theoretically does not give students the possibility to apply it. The second line “Show
me and I will remember” includes the idea of cognitive apprenticeship: an apprentice
observes the skills of a master who shows how a concept works in practice, e.g. in a
tutorial. Clarifying the thinking process behind the application of the concept makes it
easier for the apprentice to imitate the behavior [CBH91].

The third line “Involve me and I will understand” includes aspects of experiential
learning. Involving students in the learning process, e.g. by using interactive tutorials,

27

Chapter 2. Foundations

allows them to apply a concept on their own, possibly in a different way that fits to their
own techniques. It helps them to understand a concept together with its application.
The last line “Step back and I will act” refers to self guided learning, self improvement
and problem based learning. Students take the responsibility to solve a certain problem
on their own using the concepts they learned before. This only happens if the educator
steps aside and allows students to act on their own. This proverb is the foundation of
how we teach software engineering in capstone courses and in lectures [KRTB16] that
we present as case studies in Chapter 6.

28

Chapter 3

Rugby’s Process Meta Model

“Practical experience has shown the need for modeling software engineering
entities (especially processes), measuring those entities, reusing the
models, and improving the models.“

— Hans Dieter Rombach and Martin Verlage

In this chapter we introduce Rugby’s process meta model. It abstracts core con-
cepts that can be found in different types of process models: linear, iterative, agile and
continuous process models. Figure 3.1 shows Rugby’s process meta model integrated
into the meta object facility (MOF) with four layers (from most abstract at the top to most
concrete at the bottom) and corresponding examples. The topmost layer M3 consists
of the meta meta model with the most abstract concept of a class.

M3 - Meta Meta Model Meta Object Facility

M2 - Meta Model
Generic concepts

Rugby Process Meta Model

M1 - Model
Way of working

Process Model

M0 - Reality
What actually happens

Concrete Process

Class

<<stereotype>>
Work Queue

<<instantiate>>

<<Work Queue>>
Sprint Backlog

<<instantiate>>

<<instantiate>>

<<stereotype>>
Work Item

<<Work Item>>
Backlog Item

<<instantiate>>

<<instantiate>>

*

*

<<instantiate>>

Sprint 1 Backlog
ID Name Difficulty
1 Search available Pedelecs Medium
2 Check working radius Large

<<instantiate>>

Figure 3.1: Rugby’s process meta model in the meta object facility layers

29

Chapter 3. Rugby’s Process Meta Model

Rugby’s process meta model resides in the M2 layer where generic concepts are
modeled that can be found in all process models. An example of a generic concept
on M2 is the Work Queue, an abstract representation of an ordered list of Work Items
with a priority. Section 3.1 shows a static view of Rugby’s process meta model in-
cluding other generic concepts, their attributes and operations, and their relations as
UML (Unified Modeling Language) class diagram. Rugby’s change model is described
in Section 3.2. It models changes as events that trigger the activations of workflows
which can subscribe to events and generate events. Section 3.3 shows the dynamic
aspects of the meta model including activities and reactions to events using UML ac-
tivity diagrams and a UML state chart diagram.

On layer M1 in Figure 3.1, there can be different process models that describe the
way of working in a software development project. An example of a concrete concept
in Figure 3.1 on the M1 layer is the Sprint Backlog which is an instantiation of the Work
Queue on the M2 layer. The sprint backlog consists of Backlog Items in Scrum, which
are instantiations of Work Items. Instantiations are represented using the stereotype
notation, e.g. <<Work Queue >>, which is similar to an inheritance relationship. We
show four instantiations of Rugby’s meta model, which all reside on the M1 layer. In
Section 3.4, we describe the waterfall model [Roy70] as an instantiation of a linear
process model. Section 3.5 shows static and dynamic views of the Unified Process
[JBR98] as an instantiation of an iterative process model. In Section 3.6, we describe
Scrum [Sch95] as an instantiation of an agile process model. The instantiation of
Rugby as process model for continuous software engineering is shown in Chapter 4.

Concrete processes used in projects are instances of process models and reside
on the M0 layer in Figure 3.1, that describes what actually happens in the reality. An
example would be the real Sprint 1 Backlog of a project written on a whiteboard or
paper. The example in Figure 3.1 includes two concrete backlog items “Search avail-
able Pedelecs” and “Check working radius” with specific values for attributes such as
ID and difficulty. We describe concrete projects and their elements in the case studies
in Chapter 6.

In Section 3.7, we relate Rugby’s process meta model to two other process meta
models, the Software & Systems Process Engineering Meta Model Specification (SPEM)
[Obj08b] and the Business Process Definition Meta Model (BPDM) [Obj08a]. Both
meta models were specified by the Object Management Group (OMG).

30

3.1. Static View of Rugby’s Process Meta Model

3.1 Static View of Rugby’s Process Meta Model

Rugby’s process meta model allows to start with a deterministic process control model
(compare Section 2.1) and to change to an empirical process control if required, which
makes the meta model tailorable and flexible. If the development process supports
change of the requirements during development, a change model can be included.
If the development supports multiple releases, a release workflow can be included.
If the development process supports user feedback, a feedback workflow can be in-
cluded. If the development allows multiple reviews during development, the Rugby
meta model allows the instantiation of a review management workflow. Rugby’s pro-
cess meta model consists of five packages that are shown in Figure 3.2.

Role Meta Model

Project Management Meta Model

Configuration Management Meta Model Workflow Meta Model

Change Meta Model

Figure 3.2: Overview of Rugby’s process meta model

The role meta model describes generic project roles and how they are integrated
into the organization. It depends on the configuration management meta model, which
includes controlled items, and on the workflow meta model. The workflow meta model
describes how parallel workflows can be customized and activated by events of the
change meta model inside of the workflow meta model. Configuration management
and workflow meta model depend on each other. There is also a project management
meta model that describes other process aspects such as phases and milestones and
that depends on the workflow and the configuration management model.

31

Chapter 3. Rugby’s Process Meta Model

Workflow Meta Model

Change Meta Model

- load
-state : State
+customize()
+activate()
+sleep()

Workf low

+modifyItem()
+proritizeItem()

Work QueueConfiguration Management Meta Model

-state : State
-priority : Int
-assignee : Person
+interrupt()
+resume()

Work Item

Art i fact
(Resource)

Role Meta Model

Sleep
Ready
Running
Blocked
Finished

< < e n u m > >
State

Person

Organizat ion
+scheduleEvent()
+reactToUnscheduledEvent()
+giveFeedback()

Role

Act iv i ty

+analyze()
+design()
+implement()
+test()

Developer
+customizeWorkflow()
+tailorProcess()
+scheduleActivity()
+prioritizeActivity()

Project Manager

Project Management Meta Model

+tailor()
Process

Port fol io

Project

Outcome

Control led
I tem

Educational
Uni t

+send()
Event

+addObserver()
+removeObserver()
+notify()

Event Subject
+update()
Event Observer

Service
(Tool)

Feedback
Task

Schedule

Version

MilestonePhase

Review

Release

Team

+release()
Release Manager

+review()
Reviewer

Organizational
Uni t

I terat ion

+customizeWorkflow()
Workflow Manager

*

*

*

*

*

**

1..*

1

*

*

*

*

1

*

*

*

1..*
1..*

0..*

has

works on

depends on

manages

requires

creates

relates to

activates

subscribe
/ create

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.3: Static view of Rugby’s process meta model as UML class diagram describing the core
concepts and their relationships. The event hierarchy is described in more detail in Figure 3.4.

Figure 3.3 shows the static view of Rugby’s process meta model. The role meta
model includes a composite pattern for Organizational Units that build Teams of Team
Members (and potentially teams of teams). Each team member can have multiple
roles such as Developer or Reviewer. A Project Manager is responsible for tailoring
the process to the specific needs of a project environment and to customize workflows
together with the Workflow Manager who is responsible for a specific workflow. For
instance, the Release Manager is responsible for Releases in the release management
workflow.

32

3.2. Rugby’s Change Meta Model

The project manager also manages the Work Queue by scheduling and prioritizing
an Activity which is a subclass of a Work Item. A work queue is a prioritized list of
work items. New elements are sorted into the queue after their priority and urgency.
If priority or urgency of a work item change, the element can be moved in the queue.
There might be cases where a team member decides to start with a different work item
than the first one in the queue, e.g. due to dependencies or due to capacity reasons.

The workflow meta model includes a composite pattern to decompose activities,
which belong to workflows, into smaller work items, such as Tasks. Work items can
depend on each other and can have different states, such as ready, running or fin-
ished. The change meta model includes the workflow as an Event Observer, which
can subscribe to certain Events and also create events that trigger the activation of
other workflows.

A workflow belongs to the Process of the Project in the project management meta
model. The process includes a Schedule that consists of multiple Phases. There
are process models, in which certain workflows are only activated in specific phases.
Each phase can have Milestones, e.g. an important meeting where the continuation
of the project is decided or where an Outcome of the project is discussed, e.g. the
documentation of the requirements analysis phase.

Outcomes are Controlled Items and belong to the configuration management meta
model. Controlled items are outcomes of work items created by team members us-
ing Services (Tools) and have a Version. The same document might exist in multiple
versions after it was changed due to feedback. Certain outcomes (e.g. builds) are
combined into a Release, which is a specific version. Resources, such as Educational
Units, e.g. documentation, tutorials or manuals, are also controlled items. An outcome
can be subject of a Review that leads to Feedback on the outcome.

3.2 Rugby’s Change Meta Model

Rugby’s change meta model includes different Event types. In Rugby, an event is
the generic form of a change and can trigger interruptions of the current workflow
and lead to the activation an another workflow. This is modeled with the observer
pattern. Figure 3.4 shows a simplified version with some exemplary events of the
event taxonomy with. The full model with all events used in this dissertation is shown
in Figure C.1 in Appendix C. Rugby’s event model is extensible: Events can be added,
changed and removed through process tailoring, workflow customization or the use of

33

Chapter 3. Rugby’s Process Meta Model

Rugby in different domains such as education. New Rugby events can be added during
a project.

Communicat ion
Event

Communicat ion
Mechanism

RequestProposal
created

Decision

Scheduled
Event

Unscheduled
Event

Meeting

Asynchronous
Mechanism

Synchronous
Mechanism

Time based
Release

Rugby
Event

Event based
Release

Feedback
Report

Design
Request

Feature
Request

Bug
Report

Backlog
ChangesMilestone

Release
Request

Change
Request

Merge
Request

Project
Start

Project
End

Kickof f
Meeting

Sprint
Review

Improvement
Request

deal with

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.4: Simplified version of Rugby’s Change Model including an event taxonomy for scheduled
and unscheduled events. The full model can be found in Figure C.1.

Rugby’s change model distinguishes between scheduled (e.g. Meetings) and un-
scheduled (e.g. a Bug Report or Change Request) events and tries to provide a unified
model for both. An event only notifies a workflow if it is interested, i.e. if it subscribed
to the event. Workflows create events and notify other events when they are active.
For instance, a bug report might be interesting for the implementation workflow, while
a feature request might be more interesting for the analysis workflow. An important
distinction in Rugby’s meta model is made between time based releases, which are
scheduled, e.g. at the end of a Sprint in Scrum, and event based releases, which are
not scheduled and happen e.g. if developers need feedback or customers request a
new release. Other examples of scheduled events are milestones, such as Project
Start or Project End.

3.3 Dynamic View of Rugby’s Process Meta Model

Figure 3.5 shows a dynamic view of Rugby’s process meta model describing the control
flow of a workflow. When the project starts, all workflows are started with the Workflow
Start event. Workflows subscribe to events they are interested in and then immediately
sleep until a Rugby Event occurs which they subscribed.

If such an event occurs, the workflow is activated and performs the work until the
work is finished. Then, the workflow notifies other workflows about the finished work
by sending a Rugby Event. A specific event, which each workflow subscribes to, is the
Workflow Customization. It is created, when a workflow manager, who is responsible

34

3.3. Dynamic View of Rugby’s Process Meta Model

Start
Workflow

Perform
WorkRugby Event Activate

Workflow

Workflow

Rugby Event

Stop
WorkflowProject End

Workflow
Customization

Stop
Workflow

Customize
Workflow

Workflow
Start

Workflow Start

Workflow
Start

Subscribe
to Events

Project End

Sleep

SleepWork
finished?

Sleep

Project
Start

No
Yes

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.5: Dynamic view of Rugby’s process meta model as UML activity diagram describing the core
activities and their control flow

for the workflow, wants to customize a workflow. Before the customization, the workflow
is stopped. The workflow manager can then customize the workflow and start the
workflow again. The workflow might now subscribe to different events. Such workflow
customizations must be communicated to the whole team, so that everyone is aware
of the customization. At the project end, all workflows are stopped.

Figure 3.6 shows an exemplary instantiation of multiple workflows communicating
with each other through Rugby events. An arrow represents a Rugby Event that acti-
vates another workflow. Multiple workflows run at the same time.

Workflow n

Workflow 1

Workflow 2

…

Rugby EventKey:

Figure 3.6: Generic example for the communication between multiple workflows through Rugby events

35

Chapter 3. Rugby’s Process Meta Model

Figure 3.7 shows the lifecycle model for a workflow as UML state machine. Imme-
diately after the workflow has been started and has subscribed to events, it transitions
to the Sleep state. Rugby events trigger the transition to the Active state. Workflows
can be interrupted so that they are in the state Blocked. This happens e.g. if important
information is missing that is necessary to perform the work. If the problem is solved,
e.g. the information is available, the workflow can resume and transition to the active
state again. If the work is performed, the workflow omits a Rugby event and transitions
to the sleep state again. The workflow might also transition to the Finished state, when
it is stopped, e.g. for customizations or when the project ends.

Active Finished

Blocked

Rugby
Event

Rugby
Event

Sleep

End

Start

activate

stop

resumeinterrupt

sleep

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.7: The lifecycle model of a Rugby workflow (UML State machine)

Figure 3.8 shows an exemplary instantiation of Rugby’s work queue which is based
on the concepts of a scheduler with process priorities [Hil92]. On the left side, the
queue is visualized as a priority list with different work items, such as a feature re-
quest. On the bottom, the priority is low and on the top of the list, the priority is high.
Different types of work items can be included in the work queue. The work queue al-
lows changes, e.g. if a user reports an important bug (colored red in Figure 3.8), this
bug is inserted into the work queue on a high position and the work for it is started
immediately. A design improvement (colored green) however might not be important
and is inserted on a low position.

Depending on the type of the work item, a specific sequence of workflows is per-
formed by team members, which is shown on the right side of Figure 3.8. Review,
release and feedback workflows are highlighted in grey, as they are core workflows in

36

3.3. Dynamic View of Rugby’s Process Meta Model

Requirement

…

Bug

…

Work Queue
with Work Items

Analysis

Priority

Design Imple-
mentation

…

…

Time based Release Release

Release

ReleaseReview

high

low

…

…

Design Improvement Design

Test

Imple-
mentation

Review Release Feedback

…

Feedback

Test

Imple-
mentation

…

Figure 3.8: Exemplary instantiation of Rugby’s work queue (adapted from QNX Microkernel’s process
priorities [Hil92])

Rugby. A bug can e.g. be implemented and tested immediately, while a feature request
first needs to be analyzed and designed before it can be implemented. The creation of
a time based release is a work item where only the release workflow needs to run.

Some of these workflows might be performed in parallel for a work item, e.g. im-
plementation and testing. Each workflow type in Rugby’s process meta model can be
instantiated multiple times for different work items, such the design workflow in Fig-
ure 3.8, so each workflow can be part of multiple, parallel threads. The workflow has
a load property in percentage, so that it can be balanced. Sleeping workflows have a
load of 0, workflows with one team member working full time have a load of 1 (100 %).
It is possible that multiple team members work on a workflow so that its load is higher
than 1. In general the sum of all workflow loads cannot be higher than the number of
team members. This is expressed by the following formula, where w is the workflow, n
is the number of all currently running workflows, w1, ..., wn are the workflows, li is the
load of the workflow wi between 0 and t, and t is the number of team members.

n∑
i=1

li ≤ t

37

Chapter 3. Rugby’s Process Meta Model

3.4 Instantiation of Waterfall Model as Linear Model

The first example of an instance of Rugby’s process meta model is the linear waterfall
model, which was first described by Royce [Roy70] and which uses a defined process
model control. Its static view is shown in Figure 3.9.

<<Phase>>
Analysis Phase

<<Phase>>
Design Phase

<<Phase>>
Requirements

Elicitation Phase

<<Phase>>
Implementat ion

Phase

<<Ro le>>
Project Manager

<<Ro le>>
Developer

Waterfall
Project

<<Phase>>
Deployment

Phase

<<Phase>>
Testing Phase

<<Mi lestone>>
Requirements

Elicitation
f in ished

<<Mi lestone>>
Analysis f inished

<<Mi lestone>>
Design f inished

<<Mi lestone>>
Implementat ion

f in ished

<<Mi lestone>>
Testing f inished

<<Outcome>>
Delivered
Software

<<Outcome>>
<<Work Queue>>

Requirements
Analysis Document

<<Outcome>>
Design

Document

<<Outcome>>
Source Code

<<Outcome>>
Test Document

<<Outcome>>
Problem

Statement

<<Phase>>
Maintenance

Phase

<<Milestone>>
Release deployed

Requirement <<Ro le>>
Designer

<<Ro le>>
Tester

<<Ro le>>
Operator

<<Ro le>>
Requirements

Engineer

<<Ro le>>
Analyst

Waterfall
Process

<<Workf low>>
Analysis Workflow

<<Workf low>>
Design Workf low

<<Workf low>>
Requirements

Elicitation
Workf low

<<Workf low>>
Implementat ion

Workf low

<<Workf low>>
Deployment

Workf low

<<Workf low>>
Testing Workf low

<<Workf low>>
Maintenance

Workf low

*

1

1

1

1

1

1

1

1

1

1

depends

1

1

1

depends

1

1

depends

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1
dependsdependsdepends

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.9: Static view of the Waterfall process model with a UML class diagram as an example of a
linear instantiation of Rugby’s process meta model (adapted from [Roy70])

The model has a one to one mapping between phases and workflows. It includes
seven phases that correspond to seven workflows: Requirements Elicitation, Analysis,
Design, Implementation, Testing, Deployment and Maintenance. All phases produce
an outcome and depend on a milestone of the previous phase that represents the
end of the phase, e.g. the implementation phase can only start if the design phase is
finished and the design document was completely realized. There is only one release
produced after the testing phase that is further adapted in the maintenance phase.
The Requirements Analysis Document consists of multiple prioritized requirements
and can be seen as a static instantiation of Rugby’s work queue. Once the document
is completely realized and the priorities are determined, it should not change anymore
in the Waterfall model.

Figure 3.10 shows the dynamic view of six workflows in the waterfall model (ex-
cluding maintenance). The Requirements Elicitation Workflow starts directly after the
Project Start event and lasts until the Problem Statement is realized which triggers
the event Requirements Elicitation finished that is observed by the Analysis Workflow.
Each workflow in the Waterfall model subscribes to only event, which is triggered by

38

3.4. Instantiation of Waterfall Model as Linear Model

Requirements
Elicitation Workflow

Problem
Statement

Elicit
requirements

Analysis
Workflow

Requirements
Analysis

Document

Analyze

Design
Workflow

Design
Document

Design

Implementation
Workflow

Source Code

Testing
Workflow

Test
Document

Test

Implement

Deployment
Workflow

Deployed
Software

Deploy

Requirements
Elicitation
finished

Requirements
Elicitation
finished

Analysis
finished

Analyis
finished

Design
finished

Design
finished

Implementation
finished

Implementation
finished

Testing
finished

Testing
finished

Project
Start

Software
deployed

Project
End

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Project
Start

Project
End

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.10: Dynamic view1of the Waterfall process model with a UML activity diagram as an example
of a linear instantiation of Rugby’s process meta model (adapted from [Roy70])

the end of the previous phase, and ignores all other events. After activation, a workflow
runs solely until its outcome was produced. Then the workflow sleeps again and the
next one starts.

AnalysisRequirements
Elicitation

Analysis

Design

Implementation

Deployment

Test

Requirements
Elicitation

Design Implementation

Time

Test Deployment

Figure 3.11: Lifecycle of the Waterfall process as view of its dynamic model: Illustration of the relative
emphasis of workflows in the Waterfall model (adapted from [Roy70])

1This is a simplified view that leaves out the transitions to previous phases of the Waterfall model
that are also described in the initial publication by Royce [Roy70]. Even a defined process might have a
change control process with a software configuration control board as e.g. defined in [BF14].

39

Chapter 3. Rugby’s Process Meta Model

<<Workf low>>
Analysis & Design

<<Workf low>>
Requirements

Elicitation

<<Workf low>>
Implementat ion

<<Workf low>>
Test ing

<<Workf low>>
Business Modeling

<<Workf low>>
Project

Management

<<Workf low>>
Deployment

<<Ro le>>
Project Manager

Unified Process
Project

<<Phase>>
Inception

<<Phase>>
Elaboration

<<Mi lestone>>
Lifecycle

Architecture

<<Phase>>
Construct ion

<<Outcome>>
Intermediate

Release

<<Phase>>
Transi t ion

<<Outcome>>
Final Release

<<Ro le>>
Business Process

Analyst

<<Mi lestone>>
Lifecycle
Objective

<<Facade>>
All Workf lows

<<Outcome>>
Executable

Architecture
Baseline

<<Outcome>>
Candidate

Architecture

<<Mi lestone>>
Ini t ia l

Operational
Capabil i ty

<<Mi lestone>>
Product Release

<<Ro le>>
Systems Analyst

<<Ro le>>
Systems Architect

<<Ro le>>
Developer

<<Ro le>>
Tester

<<Ro le>>
Deployment

Manager

Inception
Iterat ion

Elaboration
Iterat ion

Construct ion
Iterat ion

Transi t ion
Iterat ion<<Workf low>>

Environment
<<Ro le>>

Process Engineer

<<Workf low>>
Conf igurat ion

& Change
Management

<<Ro le>>
Configurat ion &
Change Manager

Unified Process

1

1..*

1

1

1

1..*

1

1

1

1

1

1 1..*

1

1

1

1..*

1

1..*

1

1

depends

depends

depends

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.12: Static view of the Unified Process model with a UML class diagram as an example of an
iterative instantiation of Rugby’s process meta model (adapted from [JBR98])

Figure 3.11 shows the lifecycle of the dynamic model of the Waterfall process.
Phases map to workflows. In each phase the full work load is solely on the corre-
sponding workflow, all other workflows sleep.

3.5 Instantiation of Unified Process as Iterative Model

The second example of an instance of Rugby’s process meta model is the iterative
Unified Process that was first described by Jacobson et al. [JBR98]. The static view
of the process model is shown in Figure 3.12. It includes the four phases inception,
elaboration, construction and transition, six core workflows for business modeling, re-
quirements elicitation, analysis, design, implementation, testing and deployment and
three supporting workflows for configuration & change management, environment and
project management. Each phase consists of multiple iterations and is connected to all
workflows via the All Workflows facade. While the phases have a different emphasis
on the workflows, all workflows run in parallel and perform work in each phase.

40

3.5. Instantiation of Unified Process as Iterative Model

The Inception phase creates the Candidate Architecture as outcome and upon the
Lifecycle Objective milestone, the Elaboration phase is activated that creates an Exe-
cutable Architecture Baseline and lasts until the Lifecycle Architecture milestone. The
Construction phase creates multiple Intermediate Releases, which are increments that
include a specific functionality and build upon the last intermediate release. This is
usually the longest phase in the Unified Process. It finishes when the Initial Operation
Capability milestone is reached. Then the Transition starts with the goal to deploy the
release in the target environment and lasts until the Final Release is produced.

The dynamic view of the process model is shown in Figure 3.13. Milestones are
modeled as Rugby events, which transition between two phases. Phases can be split
into multiple iterations. The inception, elaboration and transition phases run until their
respective outcome is finalized. In the construction phase, each iteration creates an
intermediate release as outcome.

At the beginning of the project the six core workflows and the three supporting
workflows are activated. Each phase has a specific emphasis on certain workflows,
e.g. the inception phase focuses on business modeling and requirements. Figure 3.14
shows the lifecycle of the dynamic model of the Unified Process.

The elaboration phase focuses on business modeling, requirements, analysis & de-
sign and implementation. In the construction phase, the workflows for business mod-
eling, requirements and analysis & design reduce their work load, while the focus is on
implementation and test. In later construction iterations, the workload of the deploy-
ment workflow becomes higher. In the transition phase, the focus is on deployment.

Inception Phase

Candidate
Architecture

Iterate

Elaboration Phase

Iterate

Executable
Architecture

Construction Phase

Iterate

Intermediate
Release

Transition Phase

Iterate

Final Release

Lifecycle
Objective

Lifecycle
Architecture

Lifecycle
Objective

Lifecycle
Architecture

Initial
Operational
Capability

Initial
Operational
Capability

Product
Release

Project
End

Project Start

Project
Start

Iteration
needed?

Iteration
needed?

Iteration
needed?

Iteration
needed?

Project
End

No

Yes

No

Yes

Yes

Yes

No

No

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.13: Dynamic view of the Unified Process model with a UML class diagram as an example of
an iterative instantiation of Rugby’s process meta model (adapted from [JBR98])

41

Chapter 3. Rugby’s Process Meta Model

ElaborationInception

Requirements

Analysis & Design

Implementation

Deployment
Configuration &

Change Management

Test

Business Modeling

Construction

Project Management

Environment

I1 E1 E2 C1 C2 C3 C4 T1 T2
Transition

Time

Figure 3.14: Lifecycle of the Unified Process as view of its dynamic model: Illustration of the relative
emphasis of workflows in the Unified Process for different project phases (adapted from [Kru04])

The supporting workflows run with a small work load throughout the whole project.
Only the environment workflow has a higher work load in the inception phase because
tools need to be set up.

3.6 Instantiation of Scrum as Agile Model

The third example of an instance of Rugby’s process meta model is the agile Scrum
process that was described by Schwaber and Beedle [SB02]. The static view of the
process model is shown in Figure 3.15. Its schedule includes sprints (modeled as in-
stance of phase) that produce Product Increments as outcomes, which are reviewed
during the Sprint Review Meeting. Each product increment builds upon the previous
one and incrementally adds new features. Scrum defines three roles: the Scrum Mas-
ter, the Product Owner and the Developer. The Scrum Master is responsible that the
development team follows the Scrum process. The Product Owner is responsible to de-
fine the product backlog by communicating with all stakeholders and creating, editing
and prioritizing backlog items, so he is involved in the Requirement Engineering work-
flow. Developer build a self organizing and cross functional team that is responsible for
the development workflows Analysis, Design, Implementation and Testing.

Backlog Items are instances of Work Item and are managed in Backlogs which are
instances of Work Queues. Each sprint has a sprint backlog that includes all items that

42

3.6. Instantiation of Scrum as Agile Model

<<Work Queue>>
Backlog

<<Work I tem>>
Backlog Item

Task

Requirement

Bug

Sprint Backlog

Product
Backlog

User Story

Feature

Epic<<Ro le>>
Scrum Master

<<Ro le>>
Developer

Scrum Project

<<Phase>>
Sprint

<<Outcome>>
Product

Increment

<<Ro le>>
Product Owner

<<Service>>
Issue Tracker

Sprint Review
Meeting

Review Feedback

<<Workf low>>
Analysis

<<Workf low>>
Design

<<Workf low>>
Implementat ion

<<Workf low>>
Test ing

<<Workf low>>
Requirements

Elecitation

1
1

1

1

*

1

1

*

1

*

*

conduct

relates to
realize

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.15: Static view of the Scrum process model with a UML class diagram as an example of an
agile instantiation of Rugby’s process meta model (adapted from [SB02])

the developers agree with the Product Owner to realize in the next product increment.
The sprint backlog cannot change during a sprint. All other known backlog items are
listed in the product backlog which can be changed by adding, removing, modifying or
reprioritizing items.

The dynamic view of the process model is shown in Figure 3.16. After the project
starts, the kickoff meeting is conducted, in which the Product Owner creates the prod-
uct backlog as part of the requirements elicitation workflow. If the product backlog is
finished, the event Product Backlog created leads to the start of the first sprint. Sprints
are conducted until the project is finished.

A sprint starts with a Sprint Planning Meeting, in which Product Owner and devel-
opment team negotiate the sprint backlog that is used as basis for the development.
The team discusses status, impediments and promises in daily standup meetings while
developing the backlog items. It creates the product increment, a time based release,
before the sprint review meeting, which marks the sprint end. During the sprint review
meeting, the Product Owner uses the product increment and gives feedback to the
team in the usage workflow. A feedback report can lead to a revised product backlog,
that is used for the next sprint planning meeting. Revising the product backlog is part
of the requirements elicitation workflow.

Figure 3.17 shows a detailed dynamic view of the activity Develop Backlog Item
and its surrounding elements. For each backlog item, the developers activate the four
workflows analysis, design, implementation and test which are executed in parallel and
influence each other. If a developer finishes a backlog item, the Backlog Item finished

43

Chapter 3. Rugby’s Process Meta Model

Kickoff
Meeting

Create
Product
Backlog

Initial
Product
Backlog

Sprint N

Revise
Product
Backlog

Sprint Planning
Meeting

Create
Sprint

Backlog
Sprint

Backlog N

Daily Standup
Meeting

Develop
Backlog Item

Create
Product

Increment
Product

Increment N

Sprint Review
Meeting

Feedback

Revised
Product
Backlog

Time based
Release

Feedback
Report

Project
End

Product
Backlog revised

Product
Backlog
created

Product
Backlog
created

Feedback
Report

Time based
Release

Project finished?

Sprint
finished?

Project
Start

Project
End

No
Yes

Yes
No

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.16: The dynamic view of the Scrum process model is an example of an agile instantiation of
Rugby’s process meta model (adapted from [SB02]). Grey activities are meetings (scheduled events).

event is created and the developer pulls the next backlog item from the sprint backlog
until the sprint is finished. In between, developers meet regularly - usually on a daily
basis - in the Standup Meeting and discuss status, impediments and promises.

Develop Backlog Item

Analyze Design Implement TestStandup
Meeting

Sprint
Backlog N

Pull Backlog Item
from Sprint Backlog

......

Backlog Item
finished

Sprint finished?

Yes
No

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.17: Details of the activity Develop Backlog Item in the dynamic view of the Scrum process
model (adapted from [SB02]). Grey activities are meetings (scheduled events).

44

3.7. Related Process Meta Models

Figure 3.18 shows the lifecycle of the dynamic model of Scrum including six work-
flows. At the beginning of the project, there is a higher focus on requirements elici-
tation, analysis and design because the development team is not yet familiar with the
application domain of the software. The average effort in these three workflows de-
creases over the time of the project when the developers get more familiar. Instead
the work load in the implementation and testing workflows then increases. The project
management workflow is most active in the beginning of the project when the most
impediments occur and between two sprints, when the meetings for sprint review and
sprint planning need to be organized and conducted.

Sprint 1 … Sprint nSprint 2

Time

Analysis

Design

Implementation

Test

Requirements
Elicitation

Project
Management

Figure 3.18: Lifecycle of the Scrum process as view of its dynamic model: Illustration of the relative
emphasis of workflows in Scrum for different project phases (adapted from [SB02])

With these three examples, we have shown that different types of processes (linear,
iterative, agile) can be modeled as instances of Rugby’s process meta model.

3.7 Related Process Meta Models

In this section, we relate Rugby’s process meta model to two other process meta mod-
els specified by the Object Management Group (OMG). The Software Process Engi-
neering Meta model (SPEM) was released in version 1.0 by the OMG in 2002. The
current version is 2.0 which was released in 2008 [Obj08b]. It is used to define and
describe software development processes and their components.

As Rugby’s process meta model, the SPEM includes a list of fundamental elements
which are sufficient to describe different types of software process models. The scope
of SPEM is limited to minimal elements necessary to define any development process.

45

Chapter 3. Rugby’s Process Meta Model

In contrast to Rugby, it does not include specific features for particular domains or
disciplines such as project management.

The goal of SPEM is to accommodate a large range of development methods and
processes of different styles, cultural backgrounds, levels of formalism, lifecycle mod-
els, and communities. SPEM focuses on providing additional information structures for
processes modeled with UML activities.

The SPEM 2.0 meta model is structured into seven main packages structuring the
meta model into logical units: method plugin, process with methods, method content,
process behavior, process structure, management content and core. While SPEM
includes milestones as important events, it does not include a change model or an
event taxonomy. Rugby’s process meta model defines changes as events that can
trigger the activation of workflows.

The Business Process Definition Meta Model (BPDM) has been specified in 2008
[Obj08a]. It is a standard definition of concepts used to express business process mod-
els. The meta model defines concepts, relationships, and semantics for the exchange
of user models between different modeling tools.

BPDM extends business process modeling to include interactions between other-
wise independent business processes executing in different business units or enter-
prises. These interactions are called choreographies and can be specified indepen-
dently of its participants.

BPDM defines an event taxonomy and distinguishes between start and end events.
It defines success events and failure events as normal end event types and abort
events and error events as abnormal end event types in the standard model library.
Similar to Rugby, BPDM allows modelers to extend the event taxonomy with newly
defined events. BDPM events are similar to Rugby’s change model where events trig-
ger the activation of workflows. BDPM defines choreography as the synchronization
between multiple organizations and orchestration as the synchronization between dif-
ferent departments of the same organization. However, BDPM does not include work-
flows related to software engineering.

46

Chapter 4

Rugby’s Ecosystem

“Good process becomes invisible. It becomes culture.“

— original author unknown

Based on Takeuchi and Nonaka [TN86], we use the term Rugby to describe a pro-
cess that uses agile concepts of Scrum [SB02] and iterative workflows of the Unified
Process [Kru04]. In this chapter, we describe Rugby’s ecosystem1 and the rationale be-
hind it. We first show Rugby’s top level design in Section 4.1, then define requirements
in Section 4.2 and the use case model in Section 4.3. We describe static aspects of
Rugby’s process model in Section 4.4 and dynamic aspects of Rugby’s process model
in Section 4.5. We relate Rugby to the Agile Unified Process [CPP10] and the Disci-
plined Agile Delivery framework [AL12], both developed by Scott Ambler, in Section 4.6.

4.1 Top Level Design

Figure 4.1 shows releases and feedback bridging development and usage. Rugby’s
process model is based on the idea that frequency reduces complexity: the more often
a developer performs an activity, the more common and the less complex it will become.
Rugby follows Martin Fowler’s recommendation “if it hurts, do it more often” [Fow11].
It uses this principle in three continuous workflows for review management, release
management and feedback management.

Figure 4.2 shows the ecosystem of Rugby, divided into five environments. A de-
veloper interacts with the collaboration, development (the same as in Figure 4.1), inte-
gration and delivery environment, and a user interacts with the collaboration, delivery

1Highsmith defines an ecosystem as “a holistic environment” that includes several interwoven com-
ponents: chaordic perspective, collaborative values and principles, and a barely sufficient methodol-
ogy [Hig02]. We describe Rugby as an ecosystem of environments and workflows.

47

Chapter 4. Rugby’s Ecosystem

Release
Development
Environment

Developer UserFeedback

Target
Environment

Figure 4.1: Shared understanding between developers and users through releasing executable
prototypes and obtaining feedback

and target environment. Rugby focuses on the collaboration and delivery environments
because they facilitate communication between developers and users.

model,
implement

commit,
review, build

give
feedbackrelease

Integration environment

Distributed
version
control

Continuous
integration

Development environment

Integrated
development
environment

Informal
modeling

Collaboration environment

Meeting
management

Issue
management

Delivery environment

Feedback
management

Continuous
delivery

prioritize,
rate

use
Target environment

Usage
context

Executable
prototype

Developer User

communicate

Key: Interacts with

Figure 4.2: Top level design of Rugby’s ecosystem: The developer interacts with four environments
and the user interacts with three environments in Rugby (adapted from [BKA15])

A user is notified by the delivery environment if a new release is available and can
then use the software in form of executable prototypes in the target environment. User
feedback is uploaded to the delivery environment, connected with its release version
and then forwarded into the collaboration environment. A user can prioritize and rate
issues in the collaboration environment. Release management includes all activities
concerning version control, continuous integration and continuous delivery. It focuses
on the ability to release a change in the development environment as fast as possible
into the target environment to the user. Feedback management covers the activities to
motivate users to give feedback, to obtain it via structured channels and to include it
back into the development environment.

4.2 Requirements

In this section, we describe functional and nonfunctional requirements for Rugby’s pro-
cess model respectively for tools that implement Rugby’s workflows.

Functional Requirements

The following high level functional requirements (FR) describe Rugby’s functionality,
i.e. interactions between tools that implement Rugby and its actors or other exter-

48

4.2. Requirements

nal systems [BD09]. They are independent of the actual tools implementing Rugby’s
workflows and are independent of the concrete instantiation of Rugby’s process model.
We group the functional requirements by the main workflows of Rugby, namely review
management, release management and feedback management.

Review Management

We identified the following requirements for the review management workflow.

FR 1.1 Commit changes: The developer can commit changes (e.g. a bug fix or the
realization of a backlog item) to the local repository in a specific branch. He can
then synchronize these changes with the remote repository.

FR 1.2 Fix bug: The developer can fix a bug in the source code in the feature branch
by committing changes to the feature branch (see FR 1.1).

FR 1.3 Create branch: The developer can create a feature branch in order to work
separated on a specific backlog item.

FR 1.4 Update branch: The developer can update the feature branch with new changes
from the development branch. He potentially has to fix merge conflicts (see 1.12).

FR 1.5 Delete branch: The developer can delete a feature branch on the local and
remote repository, e.g. after the changes of the feature branch were merged to
the development branch.

FR 1.6 Realize requirement: The developer can realize a requirement (more general
a backlog item) in the feature branch by committing changes to the feature branch
(see FR 1.1).

FR 1.7 Resolve review task: The developer can resolve review tasks with improve-
ments that reviewers requested.

FR 1.8 Response to review comment: The developer can respond to review com-
ments, e.g. by asking clarification questions.

FR 1.9 Improve source code: The developer can improve the source code according
to the comments and suggestions of the reviewers by committing changes (see
FR 1.1) to the repository. This automatically updates the merge request.

49

Chapter 4. Rugby’s Ecosystem

FR 1.10 Request merge into development branch: The developer can request a
merge of the changes in a feature branch into the development branch, when he
finished his work on the branch.

FR 1.11 Merge changes to development branch: The developer can merge the
changes in the feature branch to the development branch after the corresponding
merge request was approved by a defined number of reviewers and if no merge
conflict occurs. If a merge conflict occurs, he needs to update the feature branch
(see FR 1.4) and fix the merge conflicts first (see FR 1.12). Depending on the
chosen solution for the merge conflict (see FR 1.12), it might be necessary for
reviewers to review the updated merge request again (see FR 1.13).

FR 1.12 Fix merge conflicts: After updating the feature branch (see FR 1.4), the
developer might need to fix merge conflicts by: (1) selecting his version; (2) se-
lecting the other version; or (3) merging the changes of both version to a new
version. After choosing one of these options, he needs to commit his changes
(see FR 1.1) to the repository.

FR 1.13 Review quality: The reviewer can review the quality of source code changes
in a feature branch (compared in a unified diff view to the version in the develop-
ment branch) directly next to the source code.

FR 1.14 Request improvements: The reviewer can request improvements, if the
source code, the architecture of the source code, or the design of the source
code contains flaws, i.e. the source code does not adhere to patterns, best prac-
tices or coding guidelines defined within the development team.

FR 1.15 Write review comment: The reviewer can write comments next to the identi-
fied flaws in the source code to request improvements.

FR 1.16 Add review task: The reviewer can add review tasks for improvements to
track the progress of the developer who implements the improvements.

FR 1.17 Approve merge request: The reviewer can approve the merge request, if
the quality of the changes is sufficient and the realized backlog item in the feature
branch should be integrated into the development branch.

FR 1.18 Decline merge request: The reviewer can decline the merge request, if the
quality of the changes is not repairable or if the realized backlog item in the feature
branch should not be integrated into the development branch.

50

4.2. Requirements

Release Management

We identified the following requirements for the release management workflow.

FR 2.1 Configure build plan: The release manager can configure the build plan on
the continuous integration server which includes setting up a connection to the
source code repository and configuring build, test and delivery stages as well as
execution build scripts for the used development environment.

FR 2.2 Integrate code: The continuous integration server can integrate the source
code of the application, which is stored in the source code repository, by compil-
ing, linking and packaging the source code.

FR 2.3 Execute test cases: The continuous integration server can execute test cases
in the source code repository and create a test report which test cases pass and
which fail.

FR 2.4 Notify about build status: The continuous integration server can notify the
developer about the build status, e.g. via email.

FR 2.5 Build application: The continuous integration server can build the application
which includes integrating the code (see FR 2.2), executing the test cases (see
FR 2.3) and notifying the developer about the build status of the integration and
test results (see FR 2.4).

FR 2.6 Detect changes: The continuous integration server can detect changes in the
source code repository, in particular it can detect new commits (see FR 1.1) and
new branches (see FR 1.3). Such changes automatically lead to a new build of
the application (see FR 2.5).

FR 2.7 Upload build to delivery server: The continuous integration server can up-
load the build to the delivery server.

FR 2.8 Create release notes: The continuous integration server can create release
notes for a specific build by accessing the issue tracker and the commit history of
the source code repository.

FR 2.9 Edit release notes: The creator of the release (developer or release manager)
can edit the automatically created release notes (see FR 2.8) and e.g. add a
question about a specific aspect of the application that the user should answer
by providing feedback (see FR 3.1).

51

Chapter 4. Rugby’s Ecosystem

FR 2.10 Select user groups: A release manager can select user groups on the con-
tinuous delivery server who will be notified about a release (see FR 2.16) and
who can download and use the release (see FR 2.14 and 2.15).

FR 2.11 Create release: Developer and release manager can create releases. Rugby
distinguishes between time based releases by the release manager (e.g. at the
end of a sprint) and event based releases by the developer (e.g. when feedback
is needed). The developer can create an event based release, even if the test
cases fail (see FR 2.3). The release manager can only create a time based
release if the test cases pass (see FR 2.4). The creation of the release includes
in both cases the creation and editing of release notes (see FR 2.8 and FR 2.9),
the upload of the builded application to the delivery server (see FR 2.7) and the
selection of specific user groups (see FR 2.10).

FR 2.12 Demonstrate status: The developer can use an event based release to
demonstrate the status of his work, e.g. in a meeting on a device or in a test
environment.

FR 2.13 Promote release: The release manager can promote a release to a new
user group. If a release was e.g. first delivered only to the developers group, the
release manager can promote the same release to the customers group so that
they can use it. In the same way, the release manager can promote releases from
test environments to production environments. In a promotion, the same release
is used and it is not necessary to create a new release.

FR 2.14 Download release: The user can download a release from the delivery server
to his own device.

FR 2.15 Use application: The user can use the released application on his own de-
vice.

FR 2.16 Notify about new release: The continuous delivery server notifies the users
in the selected user group about a new release, so that they can download and
use the release (see FR 2.14 and 2.15).

FR 2.17 Configure user groups: The release manager can configure user groups
on the continuous delivery server by adding and removing users and by editing
existing users. These groups are the basis for the selection of user groups during
a release (see FR 2.10).

52

4.2. Requirements

Feedback Management

We identified the following requirements for the feedback management workflow.

FR 3.1 Provide feedback: The user can provide feedback directly in the application
in form of a feedback report. The report is enriched with usage context (see FR
3.6) and uploaded to the continuous delivery server (see FR 3.4).

FR 3.2 Vote for feedback: The user can see existing feedback by other users and
can vote for an existing feedback report to express his desire that the feedback is
considered by the developers. This can help to reduce the number of duplicates
and supports the developer to understand the priority of the feedback when he
analyzes it (see FR. 3.13).

FR 3.3 Comment on feedback: The user can comment on existing feedback by other
users to express his opinion on the existing feedback. This can help to reduce
the number of duplicates and supports the developer to understand the feedback
when he analyzes it (see FR. 3.13).

FR 3.4 Upload feedback: Feedback by the user is automatically uploaded to the con-
tinuous delivery server which stores the feedback in the issue tracker (see FR
3.5).

FR 3.5 Store feedback in issue tracker: The continuous delivery server automati-
cally stores uploaded feedback in the issue tracker so that developers can be
notified about it (see FR 3.16) and can analyze it directly in the issue tracker (see
FR 3.13).

FR 3.6 Record usage context: Usage context is automatically recorded by the appli-
cation and attached to the feedback report that the user creates (see FR 3.1) or
to the automatically detected crash report (see FR 3.18). This information helps
the developer to analyze the feedback (see FR 3.13) and to reproduce problems.

FR 3.7 Attach media: The user can attach images, voice recordings and videos to
the feedback. These media attachments are stored as part of the usage context
(see FR 3.6).

FR 3.8 Record environment: The application automatically tracks environment infor-
mation such as the hardware configuration of the device, the operating system
version, network conditions or the application version. This information is stored
as usage context in the feedback report (see FR 3.6).

53

Chapter 4. Rugby’s Ecosystem

FR 3.9 Record screen: The application automatically tracks the screens the user has
seen before he creates the feedback report or before crash reports are detected.
This information is stored as usage context in the feedback report (see FR 3.6).

FR 3.10 Record stack trace: The application automatically tracks the stack trace in
cases of crashes and exceptions. This information is stored as usage context in
the feedback report (see FR 3.6).

FR 3.11 Record interaction steps: The application automatically tracks interaction
steps such as button clicks or textfield inputs. This information is stored as usage
context in the feedback report (see FR 3.6).

FR 3.12 Pull feedback: Developers can actively pull feedback by sending a new event
based release (see FR 2.11) to a specific user group including a question in the
release notes (see FR 2.9).

FR 3.13 Analyze feedback: Developers can analyze feedback in the issue tracker.

FR 3.14 Convert feedback into backlog item: Developers can convert feedback into
backlog items in the issue tracker after they analyzed the feedback (see FR 3.13).
They convert feature requests into requirements, bug reports into bugs and de-
sign requests into design improvements.

FR 3.15 Reply to user feedback: Developers can reply to user feedback and pro-
vide answers to user questions or comments to user problems. For instance,
they can provide information about a functionality, if a user misses it although it
is implemented. Additionally, they can ask clarification questions if they do not
understand the user feedback.

FR 3.16 Reply to developer question: Users can reply to developers’ clarifications
questions, answer them and provide more information, e.g. in form of comments
(see FR 3.3) and media attachments (see FR 3.7).

FR 3.16 Notify about feedback: The continuous delivery server notifies release man-
ager and developers, if users report new feedback (see FR 3.1), if crash reports
are detected (see Fr 3.16), and if the users comments (see FR 3.3) or votes (see
FR 3.2) on existing feedback reports.

FR 3.18 Detect crash report: If the user uses the application (see FR 2.15) and a
crash or an exception occur, the application automatically detects the crash re-
spectively the exception. Usage context (see FR 3.6) is automatically attached to
the crash report.

54

4.2. Requirements

FR 3.19 Upload crash report: Detected crashes are automatically uploaded to the
continuous delivery server including their usage context (see FR 3.6) if the user
allows it.

Nonfunctional Requirements

Rugby is a process model that is adaptable for different organizations and different
domains. Different organizations use different workflows and Rugby can be adapted
to different project environments. We define adaptability as the capability of Rugby
to adapt itself to changing circumstances. Rugby provides a common set of terms
and concepts in the meta model which can be selected via tailoring before the project
starts. So tailoring in Rugby is defined as the selection of workflows that are applied in
a project.

Another adaption possibility is the customization of the chosen workflows within
the projects, when activities of the workflow are changed. In addition, Rugby’s change
model with its event taxonomy is extensible to new domains. New events can be added
to the project and workflows can be extended to subscribe to different change events
and to generate different events. This allows the extension of Rugby to new domains
such as education. Therefore, we state the following nonfunctional requirements (NFR)
for Rugby.

NFR 1 Tailorability: The project manager can tailor Rugby’s process to include new
workflows or remove existing workflows from the process model before the project
starts. New workflows can include new change events in the event hierarchy of
the change model (see NFR 3).

NFR 2 Customizability: The workflow manager can customize a workflow during the
project. He can adjust the workflow e.g. when developers find improvement pos-
sibilities in retrospective meetings or when other involved stakeholders request
workflow changes. Customizing the workflow might also lead to new change
events in the event hierarchy of the change model (see NFR 3).

NFR 3 Extensibility: Rugby can be extended to other domains, such as education,
where different events occur, e.g. a student raising his hand and asking a ques-
tion would be a new event. Therefore, Rugby allows to add new events to the
event hierarchy of the change model, to change existing events or to remove
events. Process tailoring (see NFR 1) or workflow customization (see NFR 2)
might be necessary to react to new events.

55

Chapter 4. Rugby’s Ecosystem

4.3 Use Case Model

Figure 4.3 shows an overview of the roles inside the Rugby team that are used for the
use case models in this section. As an additional role (not shown in Figure 4.3), we
define the User (compare Figure 2.6) as a person who uses the delivered software
application and who potentially provides feedback [Roe15]. Stakeholders in a Rugby
project can have multiple roles. It is important to note, that a project manager or a
Product Owner trying out the application to evaluate how a certain requirement was
realized, also plays the role of a user. Therefore, it is possible that each team member
plays the role of the user, in addition to his normally defined roles within the team.

Rugby
Team Role

ReviewerDeveloper Product
Owner

Project
Manager

Release
Manager

Review
Manager

b lank
Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.3: Team roles in Rugby (UML class diagram taxonomy)

Figure 4.4 shows the high level uses case model of Rugby. The project manager
tailors the process and customizes workflows to the project and team environment.
The review manager is responsible for the review workflow. The release manager is
responsible for the release and the feedback workflow. The project manager conducts
sprint planning and sprint review. The Product Owner and the project manager create
the product backlog and the sprint backlog together.

Figure 4.5 shows the use case model of the review management workflow for the
actors Reviewer and Developer. The use case model follows the requirements for
review management and corresponds to the review model described in Figure 5.2 and
to the review workflow described in Figure 5.4. The developer creates, updates and
deletes feature branches to have separate places for the development of backlog items.
All changes related to a backlog item are committed to the same feature branch.

When development is finished, the developer requests a merge to the development
branch. The reviewer reviews the quality of the changes in the feature branch and
requests improvements if necessary by adding review tasks and writing review com-
ments. The developer addresses these comments by improving the source code and
resolving review tasks. In addition, he can respond to review comments by asking
clarification questions. As soon as the reviewer has approved the merge request, the
developer merges it.

56

4.3. Use Case Model

Rugby

Manage release
workflow

Manage review
workflow

Manage feedback
workflow

Plan sprint

Review sprint

Create product
backlog

Create sprint
backlog

Project
Manager

Review
Manager

Release
Manager

Product
Owner

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.4: Rugby’s high level use case model

Figure 4.6 shows the use case model of the release management workflow for the
actors Release Manager, User 2 and Developer. The two external services Contin-
uous Integration Server and Continuous Delivery Server are included as additional
actors. The use case model follows the requirements for release management and
corresponds to the release model described in Figure 5.9 and to the release workflow

2The user is defined as a role, that any stakeholder in the team can also have, compare Figure 2.6.

Review Management

Create branch

Realize
requirement

Add review task

Write review
comment

Review quality

Fix bug

Commit changes

Respond to review
comment

Resolve review
task

Request merge into
development branch

Approve merge
request

Decline merge
request

Request
improvement

Improve source
code

Merge changes to
development branch

Delete branch

Update branchFix merge conflicts

Notify about new
merge request

Notify about
new improvement

request

Developer

Reviewer

<<Inc lude>><<Extend>>

<<Inc lude>>

<<Extend>>

<<Inc lude>>

<<Inc lude>>

<<Extend>>

<<Inc lude>>

<<Inc lude>>

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.5: Rugby’s review management use case model

57

Chapter 4. Rugby’s Ecosystem

described in Figure 5.10. Each commit of a developer is detected by the continuous
integration server, which builds an application and executes test cases. The developer
can use the created application to demonstrate his status in meetings or to obtain user
feedback by creating an event based release directly from the feature branch. Then,
the application is also created even if the source code was not reviewed yet and if test
cases fail.

The creation of the release invokes the continuous integration server to upload the
build to the continuous delivery server, to create release notes which can be edited and
to notify the configured stakeholders about the new release. The release manager is
responsible for configuring the build plan. This includes setting up continuous integra-
tion and continuous delivery server and customizing the integration, test and delivery
stage of the build plan to the project environment. Before the sprint ends, the release
manager is responsible to create the time based release from the development branch.

Release Management

Create time
based release

Build application

Demonstrate
status

Integrate code

Edit release notes

Execute test cases

Configure
build plan

Commit changes

Create release
notes

Promote release

Notify about
build status

Upload build to
delivery server

Create event
based release

Download release

Create release

Detect new branch

Detect new
commit

Notify about
new release

Create branch
Detect changes

Use application

Configure
user groups

Select user groups
Release

Manager

Continuous
Integration

Server

Continuous
Delivery
Server

User

Developer

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>
<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.6: Rugby’s release management use case model

Figure 4.7 shows the use case model of the feedback management workflow for the
actors User 2 and Developer. The use case model follows the requirements for feed-
back management and corresponds to the feedback model described in Figure 5.12
and to the feedback workflow described in Figure 5.13. After an application was re-
leased, the user can give feedback by either creating a new feedback report or by com-
menting and voting on an existing report. The feedback system automatically records
the usage context when feedback is provided including environment information such

58

4.4. Static View of Rugby’s Process Model

as the operating system and network conditions. The current and potentially previ-
ous applications screens, the stack trace and the interaction steps are monitored and
attached to the feedback report, so that the developer can understand the usage sce-
nario. In addition the user can attach media such as screenshots, voice comments or
videos.

Feedback Management

Pull feedback

Provide feedback

Convert feature request
into requirement

Convert feedback
into backlog item

Reply to developer
question

Convert bug report
into bug

Convert design request
into design improvement

Reply to user
feedback

Vote for feedback

Comment on
feedback

Record usage
context

Attach media Record
environment Record screen Record stack trace Record

interaction steps

Analyze feedback

Upload feedback

Detect crash
report

Upload
crash report

Store feedback in
issue tracker

Notify about
feedback

Use application

Continuous
Delivery
Server

User
Developer

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>
<<Extend>> <<Inc lude>>

<<Inc lude>>

<<Inc lude>><<Inc lude>>

<<Extend>>

<<Extend>>

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.7: Rugby’s feedback management use case model

The recorded usage context simplifies the analysis of feedback by the developer. If
the report is still unclear or information is missing, the developer can reply to the user
feedback and ask a clarification question. The user can then reply to the developer
question and provide additional information. Depending on the feedback type, the de-
velopers convert it to backlog items. Feature requests are converted into requirements,
bug reports and crashes are converted into bugs and design request are converted into
design improvements. If a developer urgently needs feedback, he can pull feedback by
sending an event based release including a particular question in the release notes.

4.4 Static View of Rugby’s Process Model

Figure 4.8 shows the static view of Rugby’s process model. It contains three packages
for the review model, the release model and the feedback model. These packages
contain the most important elements to show their relation to other elements of the
process model. However, they do not include all details for readability reasons. We

59

Chapter 4. Rugby’s Ecosystem

show the corresponding full models in Figure 5.2 (review model), Figure 5.9 (release
model) and Figure 5.12 (feedback model).

Rugby’s process model includes a Product Backlog and a Sprint Backlog as defined
in Scrum. In addition, there is Demo Backlog, which contains the backlog items needed
to realize the demo of a release, e.g. at an intermediate presentation. The demo
backlog is out of scope in this dissertation and is only shown for completeness reasons.
It is part of the Tornado model and presented in [BKW12] and [XKB15].

<<Work Queue>>
Backlog

<<Work I tem>>
Backlog Item

Task

Requirement

Bug

Sprint Backlog

Product
Backlog

User Story

Feature

Release Model

<<Ro le>>
Project Leader

<<Ro le>>
Release Manager

Scrum Project<<Phase>>
Sprint

Time based
Release <<Ro le>>

Product Owner

Review Model

<<Service>>
Issue Tracking

Feedback Model

Code
Review

+convertToBacklogItem()
Feedback

<<Workf low>>
Analysis

<<Workf low>>
Design

<<Workf low>>
Implementat ion

<<Workf low>>
Test ing

<<Workf low>>
Requirements

Elecitation

<<Ro le>>
Review Manager

<<Workf low>>
Feedback

Management

<<Phase>>
Sprint 0

<<Service>>
Distr ibuted Version Control

Event based
Release

<<Service>>
Continuous
Integrat ion

<<Service>>
Continuous

Delivery

<<Workf low>>
Review Management

Release

<<Workf low>>
Release

Management

Scenario

Demo Backlog

Visionary
Scenario

Demo
Scenario

Demo

Build

<<Control led Item>>
Source Code

<<Ro le>>
Developer

A s - I s
Scenario

<<Ro le>>
Reviewer

<<Outcome>>
Top Level

Design

<<Ro le>>
User

1
1

*

create

*

*

1

1
1

1 0..1

*

Epic

*

relate to

create

lead to

deliver
create

customize

customize

customize

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.8: The static view of Rugby’s process model shows project management concepts and their
relation to the review, release and feedback model in a UML class diagram.

In Rugby, self organizing teams3 develop software. Rugby focuses on innova-
tion projects4 where problem statements are formulated as visionary scenarios5 and
where requirements and technologies change during the project [BKW12]. In innova-
tive projects, customers want to explore multiple ideas before they decide how vague
requirements will be implemented concretely.

Rugby has two phases, an initial Sprint 0 and development Sprints as defined in
Scrum. In Sprint 0, the team creates an initial version of the product backlog, deter-

3Self organizing teams are typical in agile projects. They manage their work on their own and are
responsible for the outcome. While they still need mentoring and coaching, they do not require traditional
managers to command and control.

4Innovation projects use new and immature technologies (hardware and/or software) and the project
result might not be predictable. Therefore, empirical process control is needed.

5A visionary scenario describes a future system and is used in greenfield engineering and reengi-
neering projects [BD09].

60

4.5. Dynamic View of Rugby’s Process Model

mines the top level design and releases it into an executable prototype called Release
0. In addition, the three supporting workflows for review management, release man-
agement and feedback management are customized to the project environment. Each
development sprint leads to one time based release (comparable to a product incre-
ment in Scrum) and optionally to multiple event based releases in which the team can
pull feedback from customers and users. Rugby’s process model includes the following
services which are provided by specific tools:

• Distributed Version Control allows to store source code and to review it before it
is merged.

• Continuous Integration allows to regularly build and test source code.
• Continuous Delivery stores Releases6 so that users can download them.
• Issue Tracking allows to manage backlog items, different backlogs and visualizes

the status of items on a taskboard.

4.5 Dynamic View of Rugby’s Process Model

A dynamic view of Rugby’s process model is shown in Figure 4.9. Rugby defines the
Sprint 0 (comparable to the elaboration phase of the Unified Process) as an upfront
project phase which customizes the three workflows for review management, release
management and feedback management. Another goal in Sprint 0 is creation of a
shared understanding of the project requirements and the software architecture. Typi-
cal deliveries in this phase, which takes two to four weeks depending on the experience
of the team, are an empty review, the Release 0 and an empty feedback to make sure
the workflows are set up properly and everyone in the team is able to apply them. Addi-
tional goals are the creation of the initial product backlog, the top level design showing
the high level software architecture and a first version of an analysis object model that
shows the most important taxonomies and relationships in the application domain of
the project. The top level design is manifested in the Release 0, which includes all
major subsystems with one facade class that is invoked upon start and shows e.g. a
welcome message.

After Sprint 0, the team works in development sprints as defined in Scrum and
has to produce a product increment before the sprint review meeting. Development
sprints in Scrum can be mapped to the construction phase in the Unified Process. The

6While a product increment is a time based release, that has to be produced at the end of each sprint,
the development team also creates event based releases when they need feedback.

61

Chapter 4. Rugby’s Ecosystem

difference to Scrum is that in Rugby, the team can produce event based releases and
obtain feedback during the development sprint.

Sprint 0

Kickoff
Meeting

Create
Empty

Release Create
Product
Backlog

Product
BacklogRelease 0

Sprint N

Revise
Product
Backlog

Sprint Planning
Meeting

Create
Top Level

Design

Top Level
Design

Create
Sprint

Backlog
Sprint

Backlog N

Standup
Meeting

Develop
Backlog Item

Create Time
based Release

Release N
(Product

Increment)

Sprint Review
Meeting

Feedback

Revised
Product
Backlog

Create Event
based Release

Event
based

Release

Use
ReleaseFeedback

Release
Request

Tailor
Release

Workflow

Empty
Feedback

Tailor
Feedback
Workflow

Create
Empty

Feedback

Tailor
Feedback
Workflow

Empty
Review

Create
Empty
Review Time based

Release

Time based
Release

Feedback
Report

Project
End

Feedback
Report

Sprint 0
finished

Sprint 0
finished

Product
Backlog
revised

Need Feedback?

Sprint
finished?

Project Start

Project
End

Project finished?

No
Yes

YesNo

No
Yes

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.9: Dynamic view of Rugby’s process model: UML activity diagram with the distinction
between Sprint 0 and development sprints.

During the sprint planning meeting, the team baselines visionary scenarios to be
realized in the upcoming sprint so that the sprint backlog includes a defined set of
requirements. The customer specifies these requirements detailed enough so that the
developers can start to work. However, he does not need to fully describe them, and
he can still challenge developers to come up with own ideas how to realize a vague
requirement and turn it into a product increment. Implementing a visionary scenario
during the sprint might raise new questions for the team members, which they could
not have thought of in the sprint planning meeting.

Presenting a first mockup for the visualization of a user interface could also lead to
a requirement change because the customer might have different expectations that he
was not able to express in words during the sprint planning meeting. Work that could be
done during the same sprint would shift to the next sprint if customer collaboration and
changing requirements during a sprint would be disallowed. In difference to Scrum,
Rugby allows that requirements are further discussed and negotiated within the sprint.

Developers can create event based releases with partially developed functionality,
when they want to obtain feedback from users. We call such releases event based to
highlight the difference to the usual time based product increment at the end of the
sprint. Event based releases help to illustrate the current realization of a requirement
and to obtain feedback whether the developer is on the right track. The team does

62

4.5. Dynamic View of Rugby’s Process Model

not have to wait until the end of a sprint to deliver software to the customer and can
save time to increase the quality of the product increment. If additional feedback is
implemented in a sprint, the team can decide to move other backlog items to the prod-
uct backlog to be realized in the next sprint. Candidates are the items with the lowest
priority which the team did not yet start to realize. When negotiating about the inclu-
sion of feedback and moving backlog items to next sprint, estimates can be used as a
currency so that the effort within one sprint stays roughly the same.

Figure 4.10 shows the details of the activity Develop Backlog Item and surrounding
actions in Rugby. Before the changes to the source code of one backlog item are
merged, a code review takes place, where reviewer request improvements, if the quality
is not sufficient. Feedback that was obtained by event based releases influences the
development of a backlog item.

Develop Backlog Item

Analyze Design Implement Test

Feedback

Standup
Meeting

Sprint
Backlog N

Pull Backlog Item
from Sprint Backlog

Create
Release

......

Check in Changes
to Branch

Create Branch
for Backlog Item

Merge
Branch

Review
changes

Request
Merge

Update Backlog
Item Status

Merge
Request

Request
Improvements

Event
based

Release

Use
Release

Changes

Improvements

Sprint finished?

Need
Feedback?

Backlog Item
realized?

Quality
ok?

Yes

Yes
No

No

No

No

Yes
Yes

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.10: Dynamic view of Rugby’s process model: Details of the activity Develop Backlog Item

Figure 4.11 shows the synchronization of parallel workflows in Rugby through Rugby
change events. The Product Owner prioritizes New Backlog Items that are identified
through change requests or feedback reports and specifies the acceptance criteria so
that these items are ready for development. This might invoke the development work-
flow, where developers analyze, design, implement, and test in parallel to produce

63

Chapter 4. Rugby’s Ecosystem

source code changes. If the backlog item is realized, i.e. it fulfills all acceptance crite-
ria, the developer requests a merge. This activates the review management workflow
where the reviewer either accepts the changes so that they can be merged, or where
the reviewer requests improvements, so that development is activated again.

Release Management Workflow

Usage Workflow

Development Workf low

Event based Release Use Release

Feedback / Change Management Workflow

Feedback Report
Analyze

Feedback
Report

Implement

Test

Release Request Create Release Release Event based
Release

Create
Feedback

Report
Feedback

Report
Feedback

Report

Backlog
Item

Add to
Sprint

Backlog
New Backlog

ItemChange Request
Analyze
Change
Request Convert to

Backlog Item

Requirements Elicitation Workflow

New Backlog Item
Prioritize Backlog Item

ready for
DevelopmentSpecify Acceptance

Criteria

Analyze

Design Check in
Changes to

Branch

Request
Merge

Merge
Request

Changes

Merge
Request

Improvement
Request

Review Management Workflow

Request
Improvements

Update Backlog
Item Status

Accept
Merge

Merge Request Review
Changes

Merge
Changes

Improvements Improvement
Request

Change to existing
functionality

Release
Request

Change to
existing

functionality

Backlog Item
finished

Add to
Product
Backlog

Backlog Item ready
for Development

Integrate
Feedback
directly?

Sleep

Sleep

Backlog
Item

realized?

Sleep

Quality ok?

Is relevant?

Need Feedback?

Sleep

Is new
requirement?

SleepHas Feedback?

Sleep

Sleep

Sleep

No
Yes

Yes
No

No

Yes
No

Yes

No
Yes

No
Yes

Yes

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.11: Dynamic view of the synchronization of parallel Rugby’s workflows through change events

Another possibility is that the developer requests a release of the non finished back-
log item in case he needs feedback or has a question. Then the release management
workflow is activated and an event based release is created which is used by a user in

64

4.6. Related Process Models

the usage workflow. If the user has feedback, he creates a feedback report, which is
analyzed in the feedback management workflow and which either leads to a change to
an existing functionality or to a new backlog item.

4.6 Related Process Models

Scott Ambler described the Agile Unified Process (AUP) [CPP10] as a hybrid model
combining the strengths of the Unified Process and agile methods. The AUP applies
techniques such as test driven development, agile modeling, change management,
and database refactoring. It includes seven disciplines, in particular configuration man-
agement and deployment, which are similar to Rugby’s release management workflow.

As shown in Figure 4.12, it distinguishes between development releases that are
deployed to the quality assurance stage and production releases that are deployed to
the production stage. Rugby also distinguishes between internal and external releases.
Similar to Rugby, the AUP reduces the difficulty of release management through an in-
creased frequency of releases with smaller changes. However, it does not describe
concepts related to review management such as branch and merge management
which are important elements of Rugby. It also lacks a similar approach for event
based releases and does not include feedback management.

Figure 4.12: Agile Unified Process Timeline with the distinction between development releases and
production releases (adapted from [CPP10])

The AUP was superseded by its successor Disciplined Agile Delivery (DAD) which
was also developed by Scott Ambler and is currently in version 2.0 [AL12]. DAD is
a process decision framework for enterprise IT around incremental and iterative solu-
tion delivery and is a means of moving beyond Scrum. It includes an agile delivery
lifecycle as shown in Figure 4.13 and claims to include elements of Scrum, Extreme
Programming and agile modeling.

It is similar to Rugby in having an upfront inception phase where initial requirements
and the release plan are developed as a list of work items. These work items are de-
scribed in more detail later in the project. It also describes enhancements requests and
defect reports as feedback which influences work items after the software was release

65

Chapter 4. Rugby’s Ecosystem

Figure 4.13: Disciplined Agile Delivery Lifecycle (adapted from [AL12])

into production. Similar to the Unified Process and Rugby, it describes workflows that
span over the whole project, however it does not include a change model that triggers
the activation of workflows.

66

Chapter 5

Rugby’s Workflows

“The single biggest problem in communication is the illusion that it has taken
place.“

— George Bernard Shaw

In this chapter, we describe Rugby’s workflows, show static and dynamic views of
their process models and describe related work.

Top Level Design

Problem
Statement

Analysis

Design

Implementation

Project Management

Review Management

Test

Requirements Elicitation

Schedule Kickoff

Release Management

Feedback Management

Product Backlog

Time

ElaborationInception
Sprint 0 Sprint 1 Sprint n … …

Construction

EventDocument Event based releaseTime based releaseKey:

Figure 5.1: Rugby’s lifecycle as view of its dynamic model: It shows the amount of work as colored
areas for each workflow in different phases (adapted from [Kru04,BRS09,BKW12]).

67

Chapter 5. Rugby’s Workflows

The lifecycle in Figure 5.1 is a view of Rugby’s dynamic model. It visualizes the
parallel running workflows1 of Rugby’s meta model and is adapted from [BRS09] and
[BKW12]. The average effort of a workflow during a particular phase is visualized as
the colored area in its horizontal bar.

Sprint 0 is comparable to the elaboration phase in the Unified Process: it focuses
on the instantiation of Rugby’s tailored process and its customized workflows, e.g. by
creating an initial empty release R0, which is comparable to the executable architecture
baseline in the Unified Process. It also requires the creation of the product backlog to
collect all functional requirements for the construction phase (development sprints).

Rugby’s lifecycle includes three supporting workflows: Review management en-
ables continuous reviews including a branching model and merge requests which pre-
vent poor code with design flaws from entering the main codebase. Section 5.1 de-
scribes the review management workflow and Section 5.2 relates it to other work in the
area of code reviews.

Release management enables continuous delivery including event based releases
which enable developers to obtain user feedback within the Sprint. Section 5.3 de-
scribes the release management workflow and Section 5.4 describes related work in
the area of release management.

Feedback management enables continuous feedback including a semi automatic
mechanism to handle feedback and crash reports to decrease developer effort in an-
alyzing feedback and increasing user motivation to provide feedback. Section 5.5 de-
scribes the feedback management workflow and Section 5.6 describes related work in
the area of user feedback.

1We adopted this idea from the Unified Process [Kru04].

68

5.1. Review Management Workflow

5.1 Review Management Workflow

We defined an informal review workflow for source code collaboration and code reviews
with the following goals:

1. Early stage reviews: The code is reviewed from the beginning of the project to
adapt the fail early principle and to learn from mistakes as soon as possible.

2. Continuous reviews: Reviews are conducted regularly to guarantee high quality
in the main codebase.

3. Review responsibility: Students conduct the review themselves to improve their
learning experience and to reduce the effort for the instructors.

4. High quality releases: Only reviewed code is integrated to the main codebase
and is present in product increments.

5. Efficient reviews: Each change is only reviewed once before it is integrated.
6. Fast development process: Reviews do not slow down the development pro-

cess and the ability to release new features quickly.
7. Customizability: The workflow should be customizable to different project envi-

ronments.

Figure 5.2 shows Rugby’s review model which is based on distributed version con-
trol using the possibilities of branch and merge management. A Merge Request is ini-
tiated by a Developer, includes changes of one source Branch that should be merged
into one destination Branch and consists of at least one informal Review by a Reviewer.
The source branch is typically a Feature Branch in which a Requirement was realized
in multiple Commits by Developers who want to integrate the Modified File(s) into the
Development Branch.

Rugby uses a simplified version of git flow [Dri10] including merge requests as
shown in Figure 5.3. A quality gate is Developers realize backlog items such as require-
ments on feature branches, use a development branch for the integration of realized
requirements and a master branch to store released versions. When implementing a
new feature, developers create a new feature branch and commit all related changes
into this branch. Meanwhile other developers may work on other feature branches and
may have already integrated their changes back into the development branch. The
developers then need to pull these changes and merge them into their feature branch.
They should regularly check if there are new changes on the development branch that
they did not yet integrate into their feature branch.

The parallel development of features in separate branches might lead to merge
conflicts. Therefore it is necessary to keep the backlog items, which are realized in

69

Chapter 5. Rugby’s Workflows

Review Model

+reviewCodeQuality()
+approveMergeRequest()
+declineMergeRequest()

Reviewer

+createFeatureBranch()
+developFeature()
+fixBug()
+commitToFeatureBranch()
+markTaskAsComplete()
+writeComment()

Developer

- t i t le
-description
-state
+update()
+approve()
+decline()
+merge()

Merge Request

-startTime
-endTime
+addComment()
+addTask()
+replyToComment()
+resolveTask()

Review

-status
-author
+resolve()

Review
Task

-author

Review
Comment

-linesOfCode
Modified File

-message
-timeStamp

Commit
-name
-description
+update()
+merge()

Branch
+clone()
Repository

-summary
-pr ior i ty
-dif f iculty
-status
+update()
+close()

Requirement

+release()
Master Branch

+promote()
Development Branch

+integrate()
Feature Branch

Blank Space

Coding Guidelines

*

1

1

*

1..*

*

1..*

*

source

1

1destination

*

1

*

1..*

commits

author

*

1

initiator
*

1

1
1..*

realized in

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.2: Rugby’s review model: concepts of the review workflow and their relations in a UML class
diagram - colors highlight related concepts

features branches, small and to limit the lifetime of features branches. A feature branch
should not exist longer than some working days, ideally only one or two working days.
In addition, the development team should not work on too many feature branches at
the same time and limit the work in progress to a few backlog items as defined in
Kanban [And10]. One approach could be that between two and three developers work
on the same feature and at most half as much feature branches exists as developers.

Release  
Manager

Developer

SprintStart End

Review
Manager Create

Branch
Merge
Branch

Release

Merge
Branch

Update
Branch

Feature
Branches

Merge
Request

Commits

Key

Master
Branch

Development
Branch

Figure 5.3: Rugby’s branching model: usage of feature branches by developers and usage of merge
requests (adapted from [Dri10])

70

5.1. Review Management Workflow

When developers have realized a feature, they run unit tests locally and on the
continuous integration server (not shown in Figure 5.3). If all tests pass, they request a
merge into the development branch to integrate their changes. Merge requests are also
called pull requests and are supported by several platforms such as GitHub, BitBucket
and Stash. They act as a quality gate that prevents code with bad quality from being
integrated into the main codebase in the development branch. When a developer files a
merge request, he is requesting that the review manager accepts and then integrates
the changes from the feature into the development branch. This review workflow is
shown as UML activity diagram in Figure 5.4.

Commit source code
in feature branch

Request merge into
development branch

Review
changes

Approve

Request
improvements

Merge changes to
development branch

Improve source code
according to feedback

Yes

No

Quality
ok?Developer

Reviewer

Comments
& Tasks

Commits in
feature branch

Merge
Request

Figure 5.4: Overview of the review workflow with developer and reviewer as roles and their activities in
a UML activity diagram (adapted from [KBB16])

During the quality gate, reviewers address the following questions:

• Design Traceability: Is the code traceable to the specified system and object
design? Does it fulfill design principles such as low coupling and high cohesion?

• Use of Patterns: Does the code contain design or architectural patterns? Does it
avoid software development antipatterns [BMMM98]? Does it avoid code smells?

• Maintainability: Does the code adhere to coding guidelines? Is it easy to read
and understand?

• Review History: Does the code address feedback of previous reviews?

Merge requests show the accumulated changes of the feature branch. Only if the
code meets defined criteria, reviewers approve the request. Thus, the workflow pre-
vents feature branches with poor code quality or bad architectural decisions from being
merged with the development branch. Problems or misunderstandings found by re-
viewers cause a comment added directly to the changes. The developer, who had

71

Chapter 5. Rugby’s Workflows

requested the merge, reads these comments and improves the code in response com-
mits. The merge request is then updated automatically.

When all comments are addressed, reviewers approve the request. Compared to
other collaboration models, this solution for sharing and reviewing commits creates a
streamlined workflow. While git could send notification emails with a simple script,
it becomes haphazard when developers discuss changes and have to rely on email
threads, in particular when response commits are involved. Merge requests put a
discussion platform on top of commits and branches into a web interface next to the
repository. The branch based code review workflow has several advantages:

1) Only changes in the feature branch must be reviewed. If the change set of a
feature branch is small, the workload for reviewing is small.

2) If an experienced programmer reviews the code for errors, there will be less de-
fects in the code [CW00].

3) Developers prevent ”broken windows” in the development branch, if they use this
workflow from the beginning: ”Don’t leave broken windows (bad designs, wrong
decisions, or poor code) unrepaired. Fix each one as soon as it is discovered”
[HT00]. Conducting code reviews avoids that bad design and poor code are
distributed to the whole development team, and are potentially being reused in
other places in the system. This alleviates the risks of the broken window theory
in programming.

4) The workflow increases collaboration and knowledge transfer between develop-
ers, because merge requests facilitate conversations about actual source code.
This improves peer learning [BCS14]. Inexperienced developers can learn best
practices and coding guidelines while doing asynchronous pair programming
[WK02]. This is especially helpful for balanced teams with beginners and ad-
vanced programmers. While merge requests allow for asynchronous pair pro-
gramming, developers should also build pairs for synchronous pair program-
ming [BA04].

However the workflow also poses challenges. If there are too few experienced de-
velopers who have to review many merge requests, they shortly become a bottleneck
for the development progress. Another problem occurs, when features are too large
and need several days or weeks to be finished. Then, the change set is large, so that
reviewing and improving the code need a lot of time. In such situations the likelihood
is high, that merge conflicts occur, in particular when parallel feature branches have
overlapping changes. To alleviate such problems, features should be small. Addition-
ally, merge requests can be integrated into a continuous integration system. When a

72

5.1. Review Management Workflow

merge request is created, the integration server detects it, checks if a merge is possible
without conflicts and if the merged code builds and all tests pass.

Detailed Review Workflow

We show workflow diagrams for each of the four activities of informal code reviews
shown in Figure 2.4 and describe the details of each activity [KBB16]. While we show
a standard workflow for each activity, the activity itself can be customized to the project
environment. One example of customization would be a development team that does
not use a branching model. Then it can e.g. switch to commit based code review, adapt
some activities and still benefit the results of having a code review before source code
changes are merged to the main code base.

The review workflow starts with the preparation activity, when the developer cre-
ates the source branch, as shown in Figure 5.5. Next comes the development work for
the feature. Both during the implementation and throughout the rest of the workflow,
the developer should be aware of new, relevant commits in the development branch
and pull them to update his branch, as shown in Figure 5.3. The merge may result
in conflicts, which are resolved locally before the workflow is continued. Once the
developer finished the work, he commits to the branch, resulting in one or more ini-
tial commits, depending on the feature size. Typically, the commits are immediately
pushed to the remote repository for storage, however, this step can be delayed until
the merge request.

Examination

Push changes to
remote

Initial
Commits

Develop
feature/bug fix

Choose reviewers
& add description

Commit code in
source branch

Request merge
into destination

branch

Create source
branch

Merge
Request

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.5: Workflow for the preparation activity in branch based code reviews (adapted from [KBB16])

When the developer implemented the feature, he requests a merge into the devel-
opment branch. For the merge request to be created, the developer needs to select
reviewers and add a brief description of the changes and their purpose. At least one
experienced reviewer that is familiar with the purpose of the changes should be in-
cluded among the participants. Nevertheless, the merge request is open to the rest

73

Chapter 5. Rugby’s Workflows

of the team, and any other member that would like to review the code, learn how to
conduct reviews or simply is curious can join and contribute to the review as well.

Once the developer has completed the above steps, the examination activity be-
gins that is shown in Figure 5.6 following either preparation or rework. The first point
of interest is ensuring that the code was able to build successfully and passed the test
cases. If either the built or a test case failed, the developer is notified and is expected
to fix the code and update the merge request before the reviewers can examine it. Usu-
ally, this step is automated by using a continuous integration server and an integrated
notification mechanism such as email.

Rework

Approve

Review
changes

Merge
Request

Code
Guidelines

Decline

Request
Improvement

IntegrationPreparation

Update guidelines
with common

occuring issues

Comments, tasks
& feedback

Post notification
to developer

New
common
issues

?

Build /
tests

passed
? Quality

ok?

No

No

IrrecoverableRecoverable

Yes

Yes

Yes

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.6: Workflow for the examination activity in branch based code reviews (adapted from [KBB16])

If the build is successful and all test cases pass, the actual review takes place. The
assigned reviewers are automatically notified about the pending request and can follow
a link to begin reviewing. Their goal is to find anomalies by answering the questions
mentioned above. Since branch based reviews are asynchronous over the Internet, the
reviewers conduct the examination independently of each other. When an anomaly is
identified, it is documented using comments or tasks, which directly reference the code.
Comments support discussion threads, whereas tasks are used to track anomalies that
must be refactored.

If the examination follows the preparation activity, the reviewers have to examine all
changes, however, if it comes after rework, they focus on the detected anomalies. The
reviewers check if their prior feedback was implemented correctly and ensure that no
other problems were introduced. The code guidelines are an essential source for the
reviewers. A good opportunity to continuously improve and keep them relevant, is to
update the document with common anomalies found after each review.

74

5.1. Review Management Workflow

Once a reviewer has examined the changes, he decides whether the source code
fulfills the team’s quality standards. In the best case, the merge request is directly ap-
proved and the workflow proceeds to integration. However, if the reviewer believes that
code quality should be further improved through rework, he requests improvements by
noting the anomalies in comments and tasks. The third possibility is to outright decline
the merge request, either because the developer is unwilling or incapable of imple-
menting the feedback, or because the code quality is so poor that the improvement
cost outweighs the benefit of having the work.

Declined merge requests, though, are very rare and should be treated as an in-
dicator for a bigger problem concerning work allocation or lack of motivation. The
more common case are recoverable merge requests, where with one or more improve-
ment cycles of examination and follow up, the code reaches a state where it satisfies
the quality requirements for approval. The developer is immediately notified about in-
coming feedback. Ideally, he first responds to comments that require clarification or
discussion threads about possible or alternative solutions.

Once these are resolved, he starts the rework activity shown in Figure 5.7. He then
improves his source code according to the feedback documented in tasks and com-
ments. This includes fixing bugs, adjusting coding style to guidelines and restructuring
the design to fit to the system architecture. If antipatterns or code smells were de-
tected, the developer must implement refactored solutions or refactor the code smells.
The second case for entering rework is when the merge request has a build or test
case failure. In this context, the developer needs to find and fix the problems before
the reviewers have a chance to examine his changes.

Examination

Improve source
code according

to feedback

Post notification
to developer

Comments, tasks
& feedback

Fix build/test
case issue

Commit code in
source branch

Response
Commits

Merge
Request

Update merge
request

Push changes
to remote

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.7: Workflow for the rework activity in branch based code reviews (adapted from [KBB16])

Rework results in changes that are committed as a response commit. The commit
must be pushed to the remote repository in order to automatically update the merge
request with the new changes. Typically, the tool used to conduct the review is inte-
grated with the version control system, so that the commit automatically triggers the
update, which alerts the reviewers to return back to the merge request and conduct

75

Chapter 5. Rugby’s Workflows

the examination activity. This examination review cycle is repeated until the request is
approved, at which point the review enters the last step in the workflow.

The work that remains for the integration activity, is for the developer to merge the
changes into the development branch, as shown in Figure 5.8. Possible impediments
that could arise from the merge attempt are merge conflicts. They are present when the
source branch has diverged from the destination branch and the two contain different
changes in same areas. To resolve the conflict, the developer can either use tools
designed for this purpose, or, in the worst case, do it manually.

Handle
potential merge

conflict
Examination

Merge changes
to destination

branch
Delete source

branch

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.8: Workflow for the integration activity in branch based code reviews (adapted from [KBB16])

The actual resolution involves choosing which version of the changes to keep: the
developer’s changes, the ones in the destination branch or a combination thereof. If the
merge conflict involves large changes to the codebase, the reviewer should examine
the code again. Once all conflicts are resolved, the code can be successfully merged
into the development branch. The developer can then delete the source branch to
clean up the repository, which marks the end of the review workflow.

5.2 Related Work in the Area of Code Reviews

Our results regarding review motivation differ from publications such as [BB13] where
finding defects ranks first. However, [BB13] and [RB13] come to the same conclusion
that improving readability and maintainability counts for the majority of the feedback
in reviews. The studies also confirm our findings that reviewing increases exposure
and enables developers to learn more about the system [BB13, RB13]. There is also
agreement that reviewing enables teaching novice developers about quality and best
practices [BB13]. Similarly, the interviews highlighted that the mere knowledge of code
being reviewed and criticized leads to developers paying extra attention to quality and
therefore writing better code. Developers reported a remaining need for direct commu-
nicate during reviews [BB13].

Developers need incentives for reviews, otherwise they do not like to spend time
on reviewing code. Team members who develop many features and fix a lot of bugs
are seen as heroes, reviewers do not get noticed so much [BB13]. Teams should

76

5.2. Related Work in the Area of Code Reviews

be able to adapt the process to their own needs, e.g. to allow certain changes to
happen on the development branch or time critical bugfixes not to be reviewed. In
contrast to formal reviews, modern code review approaches involve less formal prac-
tices [CBDT06, RCP+12]. Informal practices enable teams to adapt code reviews to
their needs and to switch to other forms such as over the shoulder reviews or pair
programming.

In open source communities such as GitHub, repository owners manage incoming
code contributions using merge requests2. Developers without write access fork the
repository and implement their contribution in their forked repository. If they want to
merge back their contribution, they create a merge request from their forked reposi-
tory to the original repository, which includes their changes. The owner of the source
repository can review the changes and ask for improvements before accepting the
change. Publications show that merge requests are an important part of the social
coding community in GitHub and improve transparency, learning and collaboration in
open software repositories [DSTH12].

[TDH14] presents a study on open source contribution in GitHub that evaluates
merge requests, which are the primary method for contributing code. They analyzed
the association of technical and social measures with the likelihood of acceptance.
They found that repository owners use the information about the technical contribu-
tion and the personal connection to the submitter when reviewing the request. In
some cases, multiple rounds of reviewing and comments were necessary to estab-
lish a shared understanding. This is in line with [MDH13] who found that uncertain
merge requests need negotiation and explanation. Merge requests with many com-
ments tend to signal controversy and were less likely accepted by repository own-
ers [TDH14, DSTH12] which is different to Rugby’s approach where many comments
lead to more improvements of the quality. Popular projects were more conservative in
accepting merge requests because it poses a higher risk for the users of the source
code if defects get through [TDH14].

2GitHub calls merge requests pull requests: https://help.github.com/articles/using-pull-requests

77

https://help.github.com/articles/using-pull-requests

Chapter 5. Rugby’s Workflows

5.3 Release Management Workflow

Figure 5.9 shows Rugby’s release model which includes a Version Control Server with
the same concept as modeled in Figure 5.2 and a Continuous Integration Server that
has Build Plans that consist of Build Stage(s) which can depend on each other and can
further be decomposed into Build Jobs and Build Tasks. A build plan usually consists
of three stages to build a pipeline: Integration Stage automatically produces a Build
for a given Branch. The build is tested in the Test Stage that produces Test Results.
After passing this stage, there is a manual Delivery Stage triggered by the Release
Manager. The delivery stage turns the build into a Release with Release Notes which
can be edited by the Release Manager.

Release Model
Developer

+sendReleaseToUser()
+promote()
+updateReleaseNotes()
+configureBuildPlan()

Release Manager

-name
-description
+update()
+merge()

Branch

+clone()
Repository

-summary
-pr ior i ty
-dif f iculty
-status
+update()
+close()

Work Item

+tag()
Master Branch

+promote()
Development Branch

-requirement
Feature Branch

Blank Space

-releaseNumber
Release

-version
Bui ld

+execute()
Build Plan

-automatic : Bool
+execute()

Build Stage

Integrat ion
Stage

Test Stage

Delivery
Stage

-state
Test Result Bui ld

Art i fact

- t ex t
Release Notes+execute()

Build Job

+realize()
Requirement

+f ix()
Bug

Version
Control Server

Continuous
Integrat ion

Server

+execute()
Build Task

1..*

1

1

1

1..*
*

*

realized

*

*

source1

depends

depends

depends

depends

linked

creates

creates

creates

asignee

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.9: Rugby’s release model: concepts of the release workflow and their relations in a UML class
diagram - colors highlight related concepts

Rugby uses Humble’s deployment process as base for its integrated release man-
agement workflow shown in Figure 5.10. The release management workflow starts
each time a developer commits source code to the version control server, leading to a
new build on the continuous integration server. If the build was successful and if all test
stages passed, the release manager uploads it to the delivery server which then noti-
fies users about a new release. The release manager can choose to send the release
to all users or only to a certain group of users, e.g. A/B testers of a specific feature. He
manages users and groups in the delivery server and promotes releases.

Each release includes release notes, which are obtained automatically by the con-
tinuous integration server using information of the issue tracker, such as closed backlog

78

5.3. Release Management Workflow

items. Optionally the messages in the commit history in the source code repository can
also be used as information source for the release notes, however commit messages
might be very technical and not suitable, because an end user might not understand
the message. The release manager can edit the automatically obtained release notes
in a manual release step if necessary. This semi automatic approach for release notes
saves time, allows the release manager to describe features and resolved bugs in
terms that users can understand and the release manager can insert specific ques-
tions for feedback.

10

Version
Control
Server

Developer

1

notify

upload
build 6

download

7

Issue
Tracker

notify

store feedback as issues

11

release4

Release  
Manager

checkout, compile
and test build

2

upload
feedback

give
feedback

Continuous
Integration

Server

Continuous
Delivery
Server

8

Device

9

User
inform about
build status

commit

312

5
obtain release notes

Figure 5.10: High level release management workflow with roles, services and transitions (adapted
from [KA14])

The user can download the release and recognize easily, which features and bugs
were resolved in the release. He can use an embedded mechanism to give feedback
in a structured way. This feedback is collected on the delivery server and forwarded
to the issue tracker which notifies the developer about new feedback. The workflow
in Figure 5.10 only shows a limited amount of interactions of the developer with the
version control server.

In fact a developer has more possibilities than just committing source code. He can
create branches to separate the work on a feature basis and merge these branches.
Rugby’s deployment process can be configured to automatically build and test all types
of branches. Continuous delivery combined with branch management helps develop-
ers to automatically check if new features pass all tests and can be delivered to the
target environment. It also enables developers to let users or customers validate the
requirements of a feature, by producing a release in form of an executable prototype
as communication model and sending it to the user or customer (event based).

79

Chapter 5. Rugby’s Workflows

While event based releases are a great opportunity to obtain early feedback, they
do not come for free and involve certain cost factors. The team might need time for the
decision to create a release and send a request to the user. There might also be effort
for deciding about included features and for creating the release, for contacting users
and requesting their feedback. There problem could occur that users get too many
releases and do not have time to respond to them quickly so the team has to wait for
feedback.

While Rugby’s release management workflow automates the creation as well as the
transmission of the release to the user, it cannot automate the decision when an event
based release is appropriate or not. Experience shows that self organizing teams ap-
preciate the possibility and usually find a good balance between too less and too many
event based releases so that the described additional time effort can be neglected.
Rugby uses executable prototypes to communicate with the user during the whole de-
velopment process [BKW12]. Rugby allows developers to create releases from any
branch. Figure 5.11 shows four different use cases of releases in Rugby.

Sprint 
End

Master
Branch

Feature
Branches

Development
Branch

Sprint 
Start

Developer CustomerUser Manager

4

321

Unreleasable build
Releasable build
Release

Key:

Figure 5.11: Event based delivery in the context of the branching model with four examples for
releases (adapted from [KA14])

Releases from feature branches can be used in meetings to demonstrate the devel-
opment status to all other team members (1). This improves the quality of the commu-
nication in the team meeting and shortens the time that is required to explain specific
implementation details. Releases from feature branches can also be used to obtain
feedback from users to see whether a feature is usable and satisfies all user wishes

80

5.4. Related Work in the Area of Release Management

(2). In both cases, the release notes contain information about the progress of the
corresponding backlog item that is realized in the feature branch, such as a list of open
and closed tasks for the backlog item. The developer can insert a clarification question
into the release notes or point out on which aspects of the backlog item he needs feed-
back. This helps the other team members and users to quickly identify the changes of
the release with respect to the previous release they received.

Releases of the development branch can be used for the status in management
meetings (3). The development branch only contains finished backlog items. There-
fore the release notes contain an overview of the realized backlog items, where the
ones are highlighted that were not yet realized in the previous release from the devel-
opment branch. The release notes can also contain the list of backlog items, that are
not finished yet, so that a manager can recognize on which items the development is
working in the current sprint. Such releases can improve the coordination across teams
in project based organizations because the current implementation status of one team
is always visible in form of executable prototypes.

Builds from the master branch are used as time based releases in the way Scrum
uses product increments at the end of the Sprint (4). This means the master branch
always contains the latest potentially shippable product increment. The release man-
agement workflow produces releases automatically when the team merges the finished
features into the master branch before the sprint review meeting and the team does not
need to compile and build the release on their own computer. In this cases, the release
notes highlight the list of changes since the last release from the master branch, but
also contain older changes so that customers recognize what they can expect in the
release and on which items they should focus in the sprint review meeting.

Developers and managers can also select a releasable build and deliver it to their
own device for demonstration. The ability to use branching increases the flexibility for
the developers, because they now have the possibility to create internal releases to test
the software on their own devices and external releases just for specific features. Man-
agers can use a development build with no additional costs to discuss the progress and
current issues with other managers, using the same deployment process and amount
of automation.

5.4 Related Work in the Area of Release Management

Humble describes release anti patterns as well as benefits and principles of contin-
uous delivery [HF10]. He then illustrates configuration management and continuous

81

Chapter 5. Rugby’s Workflows

integration as the prerequisites of continuous delivery and presents his model of the
build pipeline. He also introduces a management model and a maturity model for con-
tinuous delivery and describes the relation to risk management. While Rugby’s release
management workflow is based on Humble’s build model, Rugby includes a mecha-
nism for event based releases.

Rugby also describes organizational aspects such as how to handle feedback that
is obtained from releases. All these elements cannot be found in [HF10]. Another
related topic in this area is DevOps [Hum11], a concern for larger applications with
multiple operators that care about topics such as performance and scalability. Rugby
focuses on the shared understanding between developers, customers and users and
was introduced and evaluated in smaller, innovative mobile app development projects
without the need for operations.

Michlmayr and his colleagues analyzed the release strategy in large open source
projects and discuss why and how these projects should adopt time based releases
[MFS15]. They found that the introduction of a time based release strategy with reg-
ular releases offers several benefits in contrast to non regular feature based release
strategy, such as improved quality and predictability of releases However, they did not
analyze the impact of event based releases.

Wright describes time based releases and feature based releases in the context of
the release engineering process [Wri12]. Rugby also supports time based releases
and additionally supports event based releases that can include unfinished features.
Rugby’s approach for obtaining release notes is similar to the one described by Morena
and his colleagues [MBDP+14]. It also uses information of the issue tracker (and op-
tionally information of the commit history in the source code repository) to create in-
formation about the changes of the release. The difference is, that Rugby supports
different release notes depending on the branch the release is started from (compare
Figure 5.11.)

Marschall describes the transformation of a six month release cycle to continuous
flow with small releases in a company [Mar07]. His approach is similar to Rugby’s re-
lease management workflow. He uses test cases as quality gate to determine whether
the release can be delivered or not. Rugby also uses test cases as quality gate, but
introduces code reviews as additional quality control before time based releases are
created.

Feitelson describes how Facebook applied continuous deployment including a com-
bination of review management using a commit based code review workflow and re-
lease management using a deployment model with multiple control steps [FFB13]. In-
stead of using feature branches to separate the development, they apply feature tog-

82

5.4. Related Work in the Area of Release Management

gles, i.e. small switches that can completely activate or deactivate a feature during
runtime. Even if the feature is not realized, its code will be shipped and can be acti-
vated for testing purposes for only a small user base of alpha testers.

The IT Infrastructure Library (ITIL) is a collection of predefined and standardized
processes, functions and roles that are typically used in medium sized or large com-
panies for IT service management [Kö06]. ITIL defines service transitions which relate
to the delivery of services required by a business into operational use. One service
transition is release and deployment management, which is used by the software mi-
gration team for automated distribution of software and hardware. Typical goals of
release management in ITIL include planning the rollout of software and designing and
implementing procedures for the distribution and installation of changes to IT systems.

In addition, ITIL release and deployment management is responsible to control how
a release is tested and deployed into the production environment. The main goal is
to ensure that the integrity of the production environment is protected and that only
tested components can be deployed. In this sense, ITIL can be seen as a quality gate
to production. While Rugby promotes regular event based releases to test software
in the target environment, release managers have to be careful if they release unfin-
ished or untested software into the production environment. Rugby recommends to
test software in test environments.

83

Chapter 5. Rugby’s Workflows

5.5 Feedback Management Workflow

Figure 5.12 shows Rugby’s feedback model with Work Item and Feedback as sub-
classes of Issue, both can include Comments by Users and Developers. Certain feed-
back types can be converted into work item sub types: Bug Report into Bug, Design
Request into Design Improvement and Feature Request into Requirement. Addition-
ally, feedback includes Usage Context that consists of media Attachment(s), Applica-
tion Screen(s) and other information. A feedback belongs to one Release that realized
certain issues and was created in the release management workflow.

Feedback Model
+giveFeedback()
+replyToFeedback()

User
+replyToUser()

Developer

-summary
- t i t le
-status
+update()
+resolve()
+comment()

Issue

Blank Space

-userMessage
+convertToWorkItem()
+attachMedia()
+link()
+vote()
+replyToUser()

Feedback
-pr ior i ty
-dif f iculty
+assign()
+prioritize()
+estimate()
+moveToSprintBacklog()

Work Item

-versionNumber
Release

+fix()
Bug

Usage
Context

Appl icat ion
Screen

Interact ion
Step

Environment
Informat ion

Design
RequestBug Report

Issue Tracker

Attachment

Picture

Video

Voice
Recording

-message
Comment

StackTrace

+realize()
Requirement

+realize()
Design Improvement Feature

Request

Release Notes

Praise Complaint Question

Sprint
Backlog

Backlog

Product
Backlog

*

*

*

0..*

*

*

author

*

assignee1

0..*

*

*

*

realized

1..*

0..*

relates to

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.12: Rugby’s feedback model shows concepts of the feedback workflow and their relations in a
UML class diagram - colors highlight related concepts

While Rugby expects developers to deliver at least one time based release at the
end of each sprint, it also allows them to release their software event based, when-
ever they want to obtain feedback. In this section we first describe a semi automated
feedback management workflow and then discuss legal issues, in particular concerns
with respect to data collection and live experimentation. User feedback is an important
source of elements for the backlog such as bug reports, design requests and feature
requests. Instead of eliciting requirements upfront, users try the product increment
and provide valuable feedback for the further development using different feedback
channels. The level of automation depends on the feedback channel. Crash reports
and instrumentation results such as usage statistics are collected automatically with
Rugby’s feedback framework that is integrated into the delivered application.

Developers can choose to collect heuristics about usability issues in mobile appli-
cations, e.g. low discoverability of user interface elements, and measure user interac-

84

5.5. Feedback Management Workflow

tion [HR00]. The framework measures the usage context (e.g. availability of network
connections, location of the user, stack trace of an exception, version of the software,
etc.), uploads the results back to the delivery server and attaches the information into
the feedback report. Crashes automatically lead to bug reports that are converted to
bugs in the issue tracker.

When using the built in feedback mechanism, the usage context (e.g. the currently
active view and the current state of the application) is attached to the feedback. The
integrated framework suggests the user existing feedback reports to prevent duplicates
and allows users to vote or comment [Pag13]. For other feedback channels such as
emails, phone calls and meetings, developers still have to insert and categorize feed-
back manually into the issue tracker. In such situations, sentinel analysis tools can help
developers in the categorization and prioritization [GM14].

Figure 5.13 shows Rugby’s semi automated feedback workflow and visualizes how
developers manage feedback. Depending on the feedback type, developers initiate dif-
ferent workflows to handle it: feature requests in the analysis workflow, design requests
in the design workflow and bug reports in the implementation workflow. During Sprint
0, the client receives an empty release, labeled R0 in Figure 5.13, to ensure early in
the project that release and feedback management workflows are set up.

R0 contains a feedback button that allows the user to send an empty feedback, la-
beled F0, within the application back to the developers. The initial release takes longer
(indicated by a longer horizontal bar in Figure 5.13), because the release manager
needs to setup build plans in the continuous integration server and the mechanism to
deliver the application to the user. After the setup is completed, subsequent releases
can be created easily and take less time3.

The first release R1 includes a realized scenario (the team went through all devel-
opment workflows: analysis, design and implementation; some of the work was done
in parallel) and leads to two feedback items F1 and F2. F1 is automatically categorized
as bug report and converted to a bug in the issue tracker. The responsible developer
decides to fix this bug in the current sprint, so he moves it to the sprint backlog, corrects
the bug, commits his changes and releases R2 that includes the bugfix. R2 automati-
cally includes audience specific release notes [KKB16] about the resolved bug, so the
user can directly see that the developer was able to resolve it.

While further using R1, the user detects a user interface design problem and pro-
duces another feedback report F2. This is categorized as a design request and con-
verted to a design improvement in the issue tracker. While it is additional work, the

3Usually the release only takes about one to five minutes depending on the size of the software, after
the source code was automatically built in the release management workflow.

85

Chapter 5. Rugby’s Workflows

Developer

User

Feedback
Management

Feedback
Provision

Release
Management

Feedback
Tracker

R1 R2

F1
F2

F3

R3

Bug RequirementDesign
Improvement

R0

F0

Analysis

Design

Implementation

Feedback

Bug Report Design Request Feature Request

x

Release
Feedback

Key:

Figure 5.13: Rugby’s feedback management workflow (adapted from [KABW14]) shows that feedback
requests by users are handled differently depending on their type - the colors are corresponding to the

workflows in Figure 5.1

team decides to implement the design improvement within the same sprint because it
is related to the already realized scenario. After switching to R2, the user recognizes
that the bug was fixed that he reported. He identifies a new requirement and provides
another feedback report F3. F3 is a feature request so it will be converted to a require-
ment. The team decides to put it on the product backlog to review it with the customer
in the next sprint planning meeting. Rugby’s combined release and feedback manage-
ment workflows support pulling feedback initiated by developers and pushing feedback
(spontaneously) initiated by users.

Figure 5.14 visualizes three feedback situations according to [Sch11]: (1) Develop-
ers can pull feedback, e.g. by using Rugby’s mechanism to send a release to certain
user groups during A/B tests, including release notes with specific questions. (2) Users
can spontaneously push feedback using multiple channels (e.g. social media). Then
only some feedback reports reach the developer (unfocused) and feedback is lost. (3)
A mechanism, e.g. Rugby’s integrated feedback mechanism, can focus spontaneous
user feedback so that all feedback reports reach the developer and no feedback is lost.

86

5.5. Feedback Management Workflow

Rugby supports pulling feedback (1) and focusing pushed feedback (3) to prevent that
feedback does not reach developers as in the case of unfocused push (2).

(1) pulled by developer (2) unfocused push (3) push, focused by developer

User Developer DeveloperUser User Developer

Figure 5.14: Three approaches for feedback provision (adapted from [Sch11])

There are different challenges when continuously analyzing user feedback that
might add up to additional effort: quantity of data, missing structure, content and qual-
ity and conflicting preferences [Pag11]. Continuously gathering user feedback results
in large amounts of unstructured data, complicating manual and automated analysis
techniques. Developers have to interpret information provided by users to understand
their needs. Gathering user input without mediation results in unpredictable content
and quality, which leads to misunderstandings [ZPB+10]. Content and quality of user
feedback directly impact how precisely developers can understand users’ needs.

User feedback with low quality and inhomogeneous terminology is hard to analyze
and might be ignored. Continuously gathered user feedback can lead to conflicts, when
different users report contrary opinions [Pag11]. Rugby’s feedback system includes a
semi automatic categorization mechanism to address these challenges. It automati-
cally collects the relevant context information by instrumenting the application and lets
the user annotate it (e.g. by selecting the type of feedback) to precategorize user feed-
back which improves the structure of feedback reports [SMP+10]. It allows users to
see existing feedback so that they do not report duplicated feedback. If the users still
provide duplicated feedback, natural language processing approaches as described
in [FCC13] could help to detect these duplicates. Users can discuss on existing feed-
back reports, which can increase the quality of the feedback, and vote on feedback
which can solve conflicts.

Though these additional input facilities improve the communication with respect to
feedback between developers and users, not all users might use the integrated feed-
back channel. It is important to make the value of feedback cycles visible to both,
developers and users. The four step value chain for software evolution summarizes
the values [Sch11]. The user composes and sends feedback, while the developer
analyzes the feedback and improves the application. The value chain integrates the

87

Chapter 5. Rugby’s Workflows

perspectives of senders (users) and their motivation to compose a feedback message
with the interests of receivers (developers).

It is necessary to lower the user’s effort and to increase his intrinsic desire to provide
feedback. On the receiver side, standardized feedback should be filtered and sorted
by predefined criteria to lower the developer’s effort. This leaves manual analysis time
for feedback messages that cannot be interpreted automatically. Rugby uses context
information as a clue for reducing effort on both sender and receiver sides [Sch11,
SMP+10]. It supports the four focusing steps in the feedback value chain (compose,
send, analyze, and improve) [Sch11] by providing a voting and commenting system
for existing feedback to lower the user’s effort and by providing pre categorization and
context information to lower the developer’s effort.

5.6 Related Work in the Area of User Feedback

Involving users during any phase of the software lifecycle is a socio technical issue
when gathering and analyzing their feedback [Gru91]. Analyzing usage data, uploading
usage context and instrumenting the application raises privacy concerns for users. In
Rugby, user involvement is supported by technical entities, in particular the software
itself as well as the monitored context. These activities involve technical activities of
software development, release planning, and deployment.

On the other hand, Rugby aims at establishing a social communication with the end
users, asking them to provide information in order to deliver a better service. Dealing
with technical aspects has always been part of software development, the social as-
pects of it have only recently picked up momentum [MP11]. A number of gaps typically
complicate the communication between users and developers. These gaps can be of
both social, e.g. trust, and technical nature, e.g. communication media.

Important questions answered by socio technical goals include: How can trust be-
tween developers and users be established and maintained [TF99]? Which information
may be monitored, which feedback is regarded helpful, how much effort are users will-
ing to offer? Tseng and Fogg discuss the interaction and relationship between trust
and credibility [TF99]. If developers want to include feedback, they have to take con-
crete decisions, e.g. which information they want to obtain from users. Rugby aims
at maximizing the benefit for both users and developers. For that purpose, the socio
technical goals for the project need to be established, explicitly involving both users
and developers perspectives.

88

5.6. Related Work in the Area of User Feedback

Rugby’s feedback collection mechanism is responsible for obtaining end user feed-
back in a non intrusive way, to associate it with relevant context information, and to send
it to the application developer [GM14]. It uses an application independent framework
for mobile applications including specific feedback views, which depend on attached
context information. After user feedback is collected, it is enriched with the gathered
context information and sent to the continuous delivery server which collects the feed-
back and forwards it to the issue tracker as shown in Figure 5.10.

Challenges for developers lie in identifying which information to ask from the user,
and in processing the monitored context information with respect to relevance and
privacy . Rugby’s feedback mechanism allows end users to attach rich information such
as videos, pictures, and audio recordings. User feedback is linked with the gathered
contextual information, to obtain contextualized feedback. Linking the feedback to the
issues in the issue trackers and the ability to convert feedback into requirements or
bugs provides feedback traceability.

There are many different ways how to obtain feedback after the initial deployment
of an application such as the upload into an app store. If an application is already
deployed, an integrated feedback framework cannot prevent users from sending feed-
back over unstructured channels like app store reviews or social media. App stores
allow users to submit feedback for downloaded apps in form of star ratings and text
reviews [PM13].

Such feedback includes diverse information useful for developers, such as user
requirements, ideas for improvements, user sentiments about specific features, and
descriptions of experiences with these features [GAB15]. However, for many applica-
tions, the amount of reviews is too large to be processed manually and their quality
varies largely [GM14]. Star ratings apply to the whole application and it is often hard
for developers to analyze the feedback for single features.

Natural language processing techniques allow to automatically identify features in
reviews, extract sentiments about a feature and categorize the feedback among certain
features. Such approaches can help developers to systematically analyze diverse user
feedback and filter irrelevant reviews [GM14]. While Rugby describes how to handle
feedback reports, it does not include mechanisms to obtain feedback from external
sources such as app stores and natural language processing techniques to automati-
cally analyze this feedback.

89

Chapter 6

Case Studies

“To acquire knowledge, one must study; but to acquire wisdom, one must
observe.“

— Marilyn Vos Savant

In this chapter, we present three case studies in which we used Rugby. Table 6.1
shows an overview of these case studies.

ID Year(s) Environment Projects Participants
C1 2011 - 2015 6 Capstone Courses 62 579
C2 2015 1 Lecture 57 about 400
C3 2014 8 Industry Projects 8 31

Table 6.1: Overview of the case studies

Section 6.1 describes the first case study C1, a multi customer capstone course
with up to 100 participants and up to 11 parallel projects with customers from industry.
We used Rugby in six capstone courses with 62 projects and overall 579 participants
between 2011 and 2015. We describe interventions – incremental improvements of the
learning experience – and the course environment. We also show how the students
learned Rugby’s workflows to apply them in their projects.

Section 6.2 presents the second case study C2, in which we used Rugby in a uni-
versity lecture with about 400 registered students. Students learned Rugby’s workflows
in individual exercises and then applied them in small projects in team based exercises
to improve their project management skills.

In Section 6.3, we present the use of Rugby’s release and feedback management
workflows in eight industry projects in a project based company Capgemini as the third
case study C3. We extended Rugby’s release and feedback management workflows
and customized them for different project sizes.

90

6.1. Capstone Course

6.1 Capstone Course

Since 2008, we have regularly conducted a multi customer capstone course in the
university which we call “iOS Praktikum”. In this capstone course, student teams de-
velop mobile applications for the iOS platform in innovation projects using the newest
technologies for real industry clients such as BMW, T-Systems or Siemens. The iOS
applications are embedded in a larger system context, i.e. the apps communicate with
backend servers, with smart sensors such as iBeacons, intelligent clothing, wearables
like smart watches or micro controllers such as the Raspberry Pi or the Intel Edison.

The idea is to make the project as realistic as possible to increase the learning
experience of the students. The students should interact with real data from the clients
and therefore sign a non disclosure agreement. If the development pressure is high,
the students experience real problems in their team work and in the communication
with the clients. The projects focus on the development of innovative applications over
a period of one semester, i.e. three months, so the students have a real deadline to
finish their application.

Between 2008 and 2014, we conducted the capstone courses once a year in the
summer semester (SS). The capstone courses were so successful and the students
reported such a great learning experience, that we decided to conduct the capstone
course twice a year since 2014. In addition to the summer semester, we also offer the
course in the winter semester (WS).

Around two thirds of the developers are master students who already developed
object oriented programs before. Their experience ranges between a few months and
up to four years of developing. One third of the developers are bachelor students with
no or limited development experience. One project team includes one project leader,
one student coach and between six and eight student developers1.

Table 6.2 shows the number of participants in these six courses between 2011
and 2015. It also shows the average team size including student developers, student
coaches and project leaders for each course, which ranged between 7.8 in SS 2011
and 10.6 in WS 2014/15.

1There were a few exceptions to this distribution: In SS 2011, no student coaches participated in the
course. 1 project had five developers. In SS 2012, 1 project had 4 developers, another project had 2
project leaders. In SS 2013, 1 project had 2 project leaders, another project had 13 developers and 2
coaches managing 2 sub projects in the same system context for the same client. In SS 2014, 4 projects
had two project leaders who shared the management work. In WS 2014/15, 4 projects had multiple sub
projects in the same system context for the same client: 1 project had 2 project leaders, 1 coach and
10 developers. Another project had 3 project leaders and 12 developers. The third team had 2 project
leaders, 2 coaches and 12 developers. In SS 2015, 1 project had 2 project leaders.

91

Chapter 6. Case Studies

Year2 # Projects
Team size

(on average)
Student

developers
Student
coaches3

Project
leaders4

Program
managers

SS 2011 8 7.8 54 0 8 3
SS 2012 11 8.4 69 11 12 3
SS 2013 10 10.1 79 11 11 3
SS 2014 11 9.5 79 11 14 3

WS 2014/15 11 10.6 90 12 15 4
SS 2015 11 9.4 80 11 12 3

Total 62 9.3 451 56 72 19

Table 6.2: Number of participants in the multi customer project courses between 2011 and 2015. The
average team size includes student developers, student coaches and project leaders.

6.1.1 Interventions

In 2010, the process model in the then called iPhone Praktikum was a rather linear one
with some iterative elements such as the design review after two thirds of the course.
In the beginning of the projects the focus was on requirements elicitation and analysis,
in the middle on system and object design that was reviewed in the design review
presentations. In the last four weeks the students then focused on the implementation.

Table 6.3 shows the interventions in the iOS Praktikum between 2011 and 2014. In
2011, we introduced Rugby as agile process model that was used from the beginning
of the course. The students learned the main concepts of Scrum in a course wide
tutorial two weeks after the kickoff. We explained how to apply Rugby as a variation of
Scrum, with part time developers and weekly meetings. It was also the first time, that
we asked the teams whether they want to use git as distributed version control system
or SVN as central version control system. Half of the teams decided to use git and the
other half decided to use SVN.

In the next instance of the capstone course in 2012, we integrated the idea of an
initial elaboration phase into Rugby’s process model and called it Sprint 0. We decided
that distributed version control is the new standard and that all teams should learn and
use it. In addition, we switched the tools that the students used for the development

2More information about the capstone courses can be found on the corresponding websites. SS
2011: http://www1.in.tum.de/ios11, SS 2012: http://www1.in.tum.de/ios12, SS 2013: http://www1.in.
tum.de/ios13, SS 2014: http://www1.in.tum.de/ios14, WS 2014/15: http://www1.in.tum.de/ios1415, SS
2015: http://www1.in.tum.de/ios15

3In rare cases the same student was coach in two teams. In such cases, we count this participant
twice to calculate an appropriate team size.

4In rare cases the same person was project leader in two teams. In such cases, we count this
participant twice to calculate an appropriate team size.

92

http://www1.in.tum.de/ios11
http://www1.in.tum.de/ios12
http://www1.in.tum.de/ios13
http://www1.in.tum.de/ios13
http://www1.in.tum.de/ios14
http://www1.in.tum.de/ios1415
http://www1.in.tum.de/ios15

6.1. Capstone Course

Year Interventions

2011
First application of Rugby as agile process model
Introduction of distributed version control using git for half of the teams

2012

Adaption of Rugby’s process model to include Sprint 0
Introduction of Atlassian JIRA for issue tracking
Introduction of Atlassian Confluence for knowledge management and meeting
Distributed version control using git for all teams
Introduction of release and feedback management with Atlassian Bamboo and HockeyApp
Introduction of functional (cross project) teams

2013
Introduction of Atlassian Stash as version control server with web access
Usage of a simple branching model
Release and feedback management with Atlassian Bamboo and HockeyApp from the beginning

2014
Adaption of the branching model to include merge requests
Review management from the beginning: branch based code reviews

Table 6.3: Interventions in the multi customer capstone courses between 2011 and 2014

in 2012. Instead of using the application Unicase5 for issue and meeting manage-
ment, we decided to use Atlassian JIRA for issue tracking and Atlassian Confluence
for knowledge management and meeting management.

The main advantage was that JIRA and Confluence were easier to use and to main-
tain, because they were hosted as web services and available in the browser making
collaboration easy. Meetings could be created as pages with templates in Confluence
and it was possible to reference JIRA issues. We also started to use continuous inte-
gration and continuous delivery in 2012 with Bamboo and HockeyApp. Due to problems
with the setup of continuous integration for iOS applications6, the students could only
use it about two months after the course has started.

In 2013, we learned from the problems with continuous delivery in 2012, and fo-
cused on introducing continuous delivery right from the beginning. We also created
dedicated tutorials for release and feedback management to simplify the setup in each
team. Another improvement in 2013 was the use of Atlassian Stash as web service
for the version control system. Stash simplified the maintenance by allowing an easier
setup of git repositories and an easier configuration of access rights. It was now pos-
sible for the management and the course organization to see repositories, branches
and commits in the browser, to see metrics about the use of version control and to get
notifications. We also started to use a simplified version of git flow [Dri10] as branching

5Unicase is an Eclipse based application with a unified model for task, meeting and rationale man-
agement, which is only available as Desktop client: http://www.unicase.org

6The support for building an iOS application with Xcode on the command line was limited in 2012.

93

http://www.unicase.org

Chapter 6. Case Studies

model using feature branches for the actual development. Table 6.1 shows an overview
of the services and tools in the capstone course since 2013.

Service Tool Website with more information
Issue Tracking Atlassian JIRA http://www.atlassian.com/jira
Knowledge Management
Meeting Management

Atlassian Confluence http://www.atlassian.com/confluence

Distributed Version Control
Code Review

Atlassian Stash http://www.atlassian.com/stash

Continuous Integration Atlassian Bamboo http://www.atlassian.com/bamboo
Continuous Delivery HockeyApp http://www.hockeyapp.net

Table 6.4: Overview of the used tools in the capstone course since 2013

In 2014, we adapted the branching model to include branch based code reviews.
Developers did not directly merge their feature branches into the development branch
when they had realized the feature. Instead, they had to request the merge first. Then,
a reviewer, another more experienced student in the team, inspected the code in the
browser in Atlassian Stash for flaws, problems and bugs. After reviewing and possi-
bly improving the code in multiple rounds, the request was finally approved and the
changes in the features branch were merged into the development branch. This addi-
tional step in the branching model allowed for continuous review management from the
beginning of the course instead of inspecting the code only once or twice at the end of
the project as we did it in previous years.

6.1.2 Course Environment

Figure 6.1 shows an instantiation of Rugby’s ecosystem (which is also shown in Fig-
ure 4.2) which includes the management roles of the capstone course. The student
developer is an instance of Rugby’s developer role and the industry client is an in-
stance of Rugby’s user role. In addition, project leader and coach represent the man-
agement and there is an additional role of the program manager who is comparable to
an instructor. Typically three program managers organize the whole capstone course.

Before the course starts, the program managers advertise the course, talks to po-
tential clients, brainstorms with them about possible ideas and their involvement. The
clients in our courses come from large companies, small companies with only a few
employees, and even include startups. Important milestones and the timeline of the
course are shown in Figure 5.1. During the Kickoff, the customers present their project
ideas. After that, the program managers map students to specific projects using their
preferences and balancing constraints. Then, the projects start. The Design Review

94

http://www.atlassian.com/jira
http://www.atlassian.com/confluence
http://www.atlassian.com/stash
http://www.atlassian.com/bamboo
http://www.hockeyapp.net

6.1. Capstone Course

model,
implement

give
feedbackrelease

Integration environment

Distributed
version
control

Continuous
integration

Development environment

Integrated
development
environment

Informal
modeling

Collaboration environment

Meeting
management

Issue
management

Delivery environment

Feedback
management

Continuous
delivery

prioritize,
rate

use
Target environment

Usage
context

Executable
prototype

Student
developer

Industry
client

Project leader / coach

communicate

Management environment

Program
management

Course
organization

Program
manager

Key: Interacts with
commit,

review, build

Figure 6.1: Environments of the capstone course including Rugby’s ecosystem and a management
environment or the general course organization (adapted from [BKA15])

after two thirds of the course is a course wide presentation where all teams show their
results of the requirements analysis and system design. During the Client Acceptance
Test (CAT), all teams present their results at the end of the semester.

The first phase of the course can be mapped to the inception phase of the Unified
Process and lasts until the Kickoff. The program managers provide a template for the
Problem Statement to the clients who write at least one visionary scenario [BKW12].
The clients are also encouraged to specify an initial Top Level Design of the application
to be developed so that the students already know whether it is a reengineering project,
a greenfield project or an interface engineering project.

The Kickoff is the official start of the course. The clients give a short presentation
(about 10 minutes) where they try to convince the students of their project idea. After
the kickoff event, the students fill out an online questionnaire, in which they state their
preferences for the presented projects as well as their experiences in software devel-
opment. On the day after the kickoff, the program managers use the results from the
questionnaire to assign the students to project teams. This is a semi automated phase
that still requires about half a day. Program mamangers try to address the preferences
of the students. If all students get their first choice, they know that they stay motivated.

However, there are several constraints to produce balanced teams, e.g. with re-
spect to diversity and gender. On average, about one third of the participating student
have a good background knowledge in software development, so that they are con-
sidered as experienced developers. Furthermore, about 15 % - 20 % female students
apply to the course. Overall there are about 50 % international students.

During the team assignment, the program managers attempt to staff each team
with experienced as well as inexperienced students and with a good gender balance.

95

Chapter 6. Case Studies

However, often not all these constraints can be applied simultaneously. There have
been kickoff events, where one client attracted all the first choice votes. In other cases,
students were assigned into a project that was their fifth or sixth choice. In such situ-
ations, it is important that the program managers meet face to face with the affected
students. It helps to tell the students that their learning experience is independent from
a particular project.

After the team assignment, the program managers set up the team spaces in the
collaboration and integration environment and provide meeting agenda templates for
the first team meetings. The project leaders invite their team members to the first
meeting, in which they explain the basic meeting management concepts and discuss
the problem statement. Then, each team starts the initial sprint which we have coined
Sprint 0. The focus of Sprint 0 is not on development, but on team building exercises.
It can be mapped to the elaboration phase of the Unified Process. For example, we
use icebreakers that focus on teamwork, in particular team based problem solving, and
provide a lot of fun. Example of icebreakers are tricks where the students learn how to
rip a phone book in half or the marshmallow challenge [Wuj10]. In addition, each team
has to produce a trailer, a short 60 second movie describing the basic idea or vision
of the system to be built. The trailer is marketing oriented and helps to bring the client
and the team together. In many cases, our clients have used these trailers to market
the project within their own organization.

Other team building activities include kart races, paintball games and dinner groups.
Such activities help to overcome cultural differences in the team formation phase.
Sprint 0 also covers short tutorials about Rugby’s workflows to bring all team mem-
bers up to a shared knowledge level. Our tutorials are based on experiential learning,
to establish a culture of continuous improvement and continuous learning within the
course [Kol84]. Another activity in Sprint 0, often in the middle as shown in Figure 5.1,
is the creation of a first release. Because it is early in the project, students only have to
build an “empty release” so that they become familiar with release management tech-
niques, in particular version control, continuous integration and continuous delivery, as
well as with feedback management. This empty release R0 can be considered as the
executable architecture baseline, because all subsystems need to be included.

After Sprint 0, the teams move on to development sprints which can be mapped to
the construction phase of the Unified Process. Each of these sprints usually lasts be-
tween two and four weeks7, depending on the innovation of the project. With students
working on different schedules, daily meetings are hard to schedule, therefore the

7Explorative projects have shorter sprints as requirements change more often and more feedback is
required. Projects with mature requirements usually have longer sprints.

96

6.1. Capstone Course

teams conduct weekly meetings (in contrast to Scrum). We consider our students as
part timers, because they are taking other classes and exams throughout the course.
Part time developers are becoming common in agile industry projects [Fow01]. In addi-
tion to the weekly face to face meeting, the students use asynchronous communication
mechanisms such as chat as well as audio and video conferences.

In the design review event after two thirds of the course, all teams present their un-
derstanding of the problem, show the trailer, the requirements and one or two visionary
scenarios usually in form of a demo, as well as the status of the project. The demo
can still include workarounds and mocks. However, we require from the students to
report which parts of the demo are already implemented, which of them are only unit
tested and which of them are bridged by a “narrator”. The work load increases signifi-
cantly before the design review. The course wide presentation motivates the students
because they have to present their work to all other teams in the presence of all clients.
After the presentations, the teams get feedback from their clients, as well as from other
teams and the program managers.

At the end of the course (after three months), the students present the requirements
and the architecture of the system combined with another demo in the course wide
client acceptance test. The demo is based on the demo scenario, a refined version
of one or more of the visionary scenarios from the problem statement. It should not
include workarounds and mocks any more. The CAT (Client Acceptance Test) is filmed
and we also provide a live stream into the internet so parents, friends, and others can
watch the event online. This allows clients, who cannot be physically present, to see
the presentations from a remote location.

The transition phase starts after the client acceptance test and depends on the
intentions of the client. Possibilities include a project extension immediately afterwards,
usually with some of the students of the team and a productization project where the
prototype produced by the students is turned into a product. Often, the results of the
project are used for another project course in the following semester.

Figure 6.2 shows the project based organization of Rugby. Each development team
is shown as vertical column, consisting of up to eight developers, a coach and a project
leader. Each team is self organizing and therefore responsible for all aspects of de-
velopment and delivery of the software. The project leader and the coach fulfill a
role similar to the Scrum Master, but in a master apprentice relationship. While the
project leader is already experienced with project management, the coach is a student
who took a project course in a previous year (similar to the organization described
by [JBF13]). This ensures the coach is familiar with the infrastructure and the organi-
zational aspects of our ecosystem.

97

Chapter 6. Case Studies

Functional activities Project team 2Project team 1 Project team n

Release
coordinator

Project
leader

Customer

Release
manager

Developer

...

...

…

Project
leader

Customer

Release
manager

Developer

...

Project
leader

Customer

Release
manager

Developer

...

Program
managers

Program management Program
manager

Program
manager

CoachCoachCoachProgram
managers

Review
coordinator

Review
manager

Review
manager

Review
manager

Coach team

Release
management

team
Review

management
team

Management ManagementManagement

Development DevelopmentDevelopment

Project
leader team

Figure 6.2: Organizational chart showing the project based organization of the capstone course with
project teams and functional teams (adapted from [BKA15])

One task of the coach is to organize the first team meeting and to ensure that
the team organizes all following team meetings in a structured way. In the first team
meeting, the coach takes the role of the primary facilitator and introduces the other
two important roles in a meeting, the minute taker and the timekeeper [BD09]. In the
following meetings, we require that these roles are rotated between the students in
each team, so that everybody learns how to delegate and how to fulfill responsibilities.
Börstler also used rotation in his early courses, but in a different way [Bö01].

During the project, the coaches learn essential management skills by observing
the behavior and actions taken by the project leader. Another task of the coach is
the communication of problems to the project leader and to the program management
(see Figure 6.2). The client has a similar role as the Product Owner. If the client is
not available due to time reasons or a large physical distance, the project leader takes
the role of a proxy client [BD09]. Several functional (cross project) teams are set up to
bring software engineering expertise into the development teams (they are represented
as horizontal rows in Figure 6.2).

The release management team consists of one student from each project team. It
is responsible for release and feedback management issues with respect to version

98

6.1. Capstone Course

control, continuous integration and continuous delivery. We also set up cross project
teams to address architecture issues and ensure code quality (review team). Member-
ship in the cross project teams is voluntary, because it requires the members to be part
of two teams, their project team (which focuses on development) and the functional
team (which focuses on a particular workflow). Usually, we ask the most ambitious
students to participate in one of these cross project teams. The cross project teams
meet regularly to build up and share their knowledge and understanding of tools and
workflows. In addition, they often help to resolve conflicts among teams.

Disagreements within team members are taught to be normal, especially during
system design, when architectural alternatives are discussed and need to be reviewed.
We teach the students that they provide valuable opportunities to develop better team-
work skills and better end products [JJS91]. To help students handle disagreements
and tensions in a productive manner, we provide them with syntactical phrases they can
use to keep a meeting on time, voice objections constructively, express preferences for
certain proposals and reinforce listening skills. Most of these examples are taken from
Doyle’s book [DS76]. We teach them about the Harward conflict resolution model to re-
solve conflicts by depersonalization [FUP11]. Actual examples from the team meetings
that caused tension (e.g., a domineering personality, a slacker, cultural differences in
communication style, heated discussions about alternative proposals) are used by the
program managers to demonstrate, which techniques the students could have used
to get consensus and arrive at a resolution. This is usually done during the meeting
critique at the end of each meeting.

The collaboration environment supports synchronous as well as asynchronous com-
munication, in particular it includes meeting management and issue management. We
use a defined structure for meeting agendas and protocols, adapted from [BD09]. The
main purpose of our meetings is to have everyone taking away action items and meet-
ing minutes. Meeting skills are required for all software engineers in order to meet
efficiently and to avoid information loss. However, meeting procedures and meeting
skills are usually not included in standard software engineering curricula. How to make
meetings work [DS76] and Mining Group Gold [Kay90] (from which we derived the
agenda and protocol templates) describe many useful procedures and heuristics for
conducting efficient meetings.

We use a defined structure for meeting agendas and protocols, adapted from [BD09].
During the weekly face to face meetings, the students communicate their status, iden-
tify impediments and conflicts. Conflicts and open issues are resolved in the discussion
part of the meeting, leading to action items where the students promise to finish identi-
fied tasks until the next meeting. In addition to the planned weekly meeting with a fixed

99

Chapter 6. Case Studies

time slot, the teams also agree on working meetings where they solve tasks in smaller
groups. To further synchronize their work, they use chat rooms and mailing lists as well
as tools like Skype to setup virtual meetings.

We use an issue tracker to allow students to structure their work. They can store
product backlog items as well as other tasks. In Scrum, task management is usually
done on a physical taskboard, e.g. a whiteboard, because developers work full time in
the same room. In Rugby, we use a digital taskboard that is integrated into the issue
tracker to synchronize the communication between developers and managers and to
allow everyone to know who is currently working on which task.

Our issue tracker supports sprint planning and task estimation. During sprint plan-
ning, developer assume the responsibility for a specific sprint backlog item and assign
it to themselves. Then they create sub tasks that involve other developers of the teams
in the realization of the backlog item. With the help of the digital taskboard, the coach
and the project leader can check that each developer has enough tasks to work on
in order to balance the task allocation in the team; often the more motivated students
assign themselves too many tasks.

During development sprints, project leader and coach track the progress with digital
burn down charts. We teach the students techniques such as planning poker [Hau06]
or the team estimation game [Joh12] for task estimation. Because planning can take a
lot of time, we limit the time for planning, especially in the initial sprints, when the stu-
dents are not yet experienced with these techniques. Our meeting templates provide
the capability for linking issues from the issue tracker directly into our knowledge man-
agement system, so that tasks and promises from the current meeting can be tracked
and included in the agenda for the next meeting.

6.1.3 Teaching Approach

In this subsection, we explain three ways to teach Rugby’s workflows to students in the
multi customer capstone course:

1. Introduction course before the capstone course starts
2. Functional teams (cross project) during the capstone course
3. Interactive tutorials in course wide meetings during the capstone course

Introduction course

Before the kickoff of the capstone course, all students attend an introduction course,
in which we teach the programming language, common design patterns and important

100

6.1. Capstone Course

frameworks of the development platform. The example code of the introduction course
is often reused by the students in their projects. Therefore, we check all materials
against a comprehensive set of coding guidelines. During the introduction course,
students learn the branching model and use these coding guidelines. They develop
the solution to programming exercises in feature branches in their own repository and
open a merge request to submit their solution.

Tutors review and approve the merge request, if the solution is correct. Otherwise,
if anomalies or errors occur, they write comments to ask for changes. If the tutors
finally accept the solution, the student merges the changes. With this method the
students apply the code review workflow more than ten times during the introduction
course and incorporate it in an organic manner. In addition, the students have to
setup a build plan on the continuous integration server and write test cases during
the introduction courses to get familiar with the concepts of release management and
regression testing.

Functional teams

Two typical functional (cross project) teams are shown in Figure 6.2: review manage-
ment and release management. Each cross project team is led by a coordinator (e.g.
a teaching assistant), who is experienced with the topic. The review coordinator is e.g.
an experienced programmer who also has good communication skills. One member of
each project team is part of a functional team and has the role of the review manager
(respectively the release manager). The review manager is responsible for all activities
to achieve high design and code quality. The release manager is responsible for all
activities to continuously deliver software and to obtain user feedback.

The first cross project meetings are early after the course started and the infrastruc-
ture has been setup. After becoming acquainted, the review coordinator explains goals
and responsibilities of the review team. He gives a tutorial about branch management
and the review workflow using an example project and shows all steps from the devel-
oper and reviewer perspectives. The goal is that each team tries out the workflow in
Sprint 0 and creates at least one empty review so that the team knows how to apply
review management. The review coordinator is the main contact person for the review
managers. He needs technical expertise to understand the process and common er-
rors, e.g. how to fix a merge conflict. He also needs skills to communicate with the
team of review managers and to track the status of all projects.

The review coordinator introduces coding guidelines and asks the review managers
to discuss and agree upon them with their development team. He takes care that all

101

Chapter 6. Case Studies

review managers understand and apply the workflow in their teams. The review team
meets biweekly to share knowledge about tools and workflows, to synchronize their
understanding and to discuss and resolve potential issues with workflows and tools.

The coordinator uses different techniques to further build knowledge in the team.
He assigns small challenges to review managers such as to present best practices,
code smells or antipatterns that were reviewed within their team. Another task is to
describe how the development team actually uses the workflow and why they might
differ from the presented one. This facilitates that review managers take responsibility
for their role and internalize the knowledge required for peer learning with the rest of
the team. The review coordinator regularly checks whether the review managers fulfill
the mentioned tasks by talking to coaches and project leaders.

In the release management team, the coordinator uses a similar approach to in-
troduce the topics and to control that each release manager applies the workflows as
needed. He makes sure that each release manager sets up and configures continuous
delivery as needed, including build plans for the actual application and for backend ser-
vices. Each release manager has to create an empty release in Sprint 0 that includes
all subsystems of the developed software with one class that e.g. prints a message.

The release manager has to communicate with the rest of the team so that the top
level design of the project is integrated in this executable architecture baseline. Some
ambitious teams already include first user interface elements into the empty release to
get feedback about the navigation concept of the application. In addition, the release
coordinator monitors all build plans and helps the release managers if build problems
occur in their project team.

The release manager introduces the idea of a wallboard that shows the current in-
tegration and delivery state of all branches within a project or all projects within the
whole capstone course. An example of such a wallboard is shown in Figure 6.3. Work-
ing build plans are visualized in green and broken build plans are visualized in red.
We observed that the wallboard visualization motivates the students to always have a
potentially releasable version of their software.

Interactive tutorials

The capstone course includes a weekly course wide meeting for milestone events like
kickoff, design review and client acceptance test, and is also used in between to intro-
duce workflows and best practices, and to reflect over the current status. The program
managers use interactive tutorials to incrementally introduce students to the methods
and workflows needed for the project. During these tutorials, the students use the ex-

102

6.1. Capstone Course

Figure 6.3: Wallboard showing whether the current version of the software is releasable or not

isting infrastructure and experience the workflows hands on before they apply them in
their own project team. Table 6.5 shows the content and schedule of these course wide
meetings in a three month project course.

The interactive tutorials in the beginning focus on agile methods, meeting manage-
ment and user interface prototyping to get the projects started and to prepare the stu-
dents for the deliverables in Sprint 0, such as the initial version of the product backlog.
The review coordinator uses one of these meetings to hold an interactive tutorial about
review management and the code review workflow. The release coordinator also uses
on these meetings for an interactive tutorial about release and feedback management.
The main goal of the tutorials is to create a common understanding with all students.

In the class about review management, the review coordinator explains version con-
trol, branch management and discusses important best practices such as having small
commits, using meaningful commit messages or only committing if the code compiles
without errors. Then, he shows how to use merge requests to conduct code reviews
in an asynchronous way and introduces best practices such as short branch lifetimes
and how to handle merge conflicts. He also introduces coding guidelines, typical code
smells and antipatterns as well as examples for refactored solutions. He intermixes
theory with practical exercises where the students build pairs to try out the concepts:
one student is the developer and another one is the reviewer. They apply the whole

103

Chapter 6. Case Studies

Week Topics

1 Kickoff

2 Icebreaker

3 Agile Methods; Meeting Management

4
User Interface Design [ND86,NH93] and Prototyping [STG03,RSI96];

Trailer and Software Cinema [COB06]

5 Branch and Merge Management; Review Management; Quality Management;

6 Release and Feedback Management; Continuous Delivery

7 From informal to semi formal Modeling [BKW12]

8 Scenario based Design; Software Theater and Demo Engineering [XKB15]

9 Design Review

10 -

11 -

12 -

13 Client Acceptance Test

Table 6.5: Typical schedule for course wide meetings in the multi customer capstone course (adapted
from [BKA15]).

workflow as described in Figure 5.4 and then switch the roles to apply it again from the
other perspective.

In the class about release management, the release coordinator shortly repeats
the most important concepts of distributed version control including branch and merge
management. He then introduces Bamboo as continuous integration server, shows
how to configure build plans with multiple stages in Bamboo and how to deal with
branches to create event based releases (see Figure 5.11). He also presents Hock-
eyApp as delivery server, explains the differences between internal and external re-
leases and how release notes can be configured within the workflow. He shows how
crash reports and feedback reports are uploaded to the delivery server and then for-
warded to the issue tracker, and explains how developers can handle feedback. In
the tutorial, he interactively walks through the release management workflow in Fig-
ure 5.10 and the feedback management workflow in Figure 5.13 so that all students of
the capstone course apply these workflows at least once.

104

6.2. Lecture

6.2 Lecture

In 2015, we used Rugby’s workflows to improve the collaboration between instructors
and students in a university lecture “Software Engineering II: Project Organization and
Management” (POM). Typically the instructor and exercise workflows are separated in
such lectures, i.e. the students learn a concept in the lecture and apply it only two
weeks later in an exercise, when they already forgot the concept. Rugby allows to
integrate both workflows with each other in interactive classes. The students learn a
concept theoretically, then immediately apply it in a small exercise and provide feed-
back about their progress to the exercise.

The module description of POM describes the following intended learning out-
comes: Participants understand the key concepts of software project management.
They are able to deal with typical problems such as writing a software project manage-
ment plan, initiating and managing a software project and tailoring a software lifecycle.
They are also familiar with the most important techniques of risk management, schedul-
ing, planning, quality management, build management and release management, and
apply them to solve simple problem.

In recent years, modern trends such as agile methods were only a small focus of
lectures and exercise, and techniques such as distributed version control, continuous
integration and continuous delivery, which software project managers need to under-
stand to communicate with their developers, were not covered. In 2015, the teachers
put a higher emphasis on agile techniques and introduced the main concepts of contin-
uous software engineering using Rugby’s workflows in lectures and central exercises
with up to 450 registered students participating in the course. The lecture and exercise
schedule is shown in Table 6.6.

The students learned early in the course about agile methods so that they could ap-
ply them in the exercises throughout the semester. Later, they learned about software
configuration management and applied their knowledge in exercises about branch and
merge management, continuous integration and continuous delivery. In 2015, the ex-
ercise concept consisted of three different types of exercises divided into individual
exercises and team based exercises:

• Individual exercises

1. Quizzes with multiple choice questions about previous lecture content, con-
ducted in the beginning of the lecture as a motivation to attend classes.

2. Interactive tutorials with detailed step by step instructions, conducted in class
or as homework.

105

Chapter 6. Case Studies

• Team exercises

3. Team based exercises in a small agile project with 5 students who manage
the development of a small mobile application by regularly conducting meet-
ings, configuring tools to apply software configuration management tech-
niques and delivering software artifacts.

The students were able to earn up to 600 exercise points for the successful partic-
ipation in the exercises in order to improve their grade in the final exam of the course.
This motivated the students to participate in exercises. We mapped exercise points to
a specific grade improvement.

If the students earned between 120 and 239 points, they received a 0.3 grade
improvement. Students with 240 to 359 points improved their grade by 0.7. 360 to
479 bonus points led to an improvement of 1.0 and more than 480 points improved the
grade by 1.3. The students could earn up to 300 bonus points through team exercises,
independent which students in the team exactly solved the exercise. They could get up
to 82 points when successfully answering quiz questions, which repeated the lecture
content, and up to 218 points through the participation in interactive tutorials. The
maximum amount of individual bonus points was 300 as well.

Class Lecture Exercise

1 Introduction Icebreaker

2 Project Organization
Software Project Management Plan

Meeting Management

3 Software Process Models I Agile Methods I

4 Software Process Models II Agile Methods II

5 Kanban Kanban

6 Usability Management Prototyping

7 Software Configuration Management
Distributed Version Control

Branch and Merge Management

8 Contracting Review Management

9 Developing Winning Proposals Testing and Continuous Integration

10 Capability Maturity Model Continuous Delivery and Release Management

11 Estimation and Scheduling Estimation and Scheduling

12 Risk Management Demo Management and Software Theater

13 Global Project Management Global Project Management [LKLB16]

14 Project Management Antipatterns Repetitorium

Table 6.6: Lecture and exercise schedule of Software Engineering II: Project Organization and
Management in 2015

106

6.2. Lecture

6.2.1 Individual Exercises

Individual exercises built on blended, problem based, cooperative and experiential
learning techniques (see Section 2.7) to increase the learning experience of the stu-
dents. Students had to solve tasks on their computer over the Internet which supports
the idea of blended learning. They cooperated with the instructor, tutors and neighbors
to solve particular problems. They learned from their experience in these exercises and
reflected about the concepts they just learned before. The list of individual exercises
(except quizzes) and their corresponding exercise points is shown in Table 6.7.

Class Exercise title Points Exercise description

1 Organization
5 Login to JIRA

5 Upload image to Gravatar8

3 + 4 Agile methods 30
Creation of a product backlog and a sprint

backlog, conduction of a sprint in JIRA

6 Prototyping 30
Creation of paper based prototypes and

Balsamiq9 prototypes

7 Distributed version control 10 Basic interaction with a git repository

7 + 8
Branch, merge and

review management
30

Creation of branches, merging of branches

and conduction of code reviews in Stash

9 Estimation and planning 18
Estimation with a traditional and an

agile technique

10
Testing and

continuous integration
30

Configuration of continuous integration

and test cases in Bamboo

11
Continuous delivery and

release management
30

Configuration of continuous delivery

in Bamboo and in HockeyApp

13 Global project management 15
Conduction of a global project in

the classroom

14 Retrospective 15
Conduction of a retrospective about

lectures and exercises

Sum of exercise points 218

Table 6.7: Individual exercises and the corresponding bonus points for the lecture Software
Engineering II: Project Organization and Management in 2015

8Gravatar is an online service that stores images for email addresses and provides open access so
that other tools can download and display this image: http://www.gravatar.com

9Balsamiq is an online service which allows to create digital prototypes that can be exported to a
PDF and executed full screen on a mobile devices: http://www.balsamiq.com

107

http://www.gravatar.com
http://www.balsamiq.com

Chapter 6. Case Studies

The instructor conducted five interactive tutorials: (1) agile methods, (2) prototyp-
ing, (3) branch, merge and review management, (4) testing and continuous integration
and (5) continuous delivery and release management. In these tutorials, the teacher in-
troduced concepts and immediately applied them using small exercises. The students
followed by solving the exercises on their own computer using tools such as JIRA,
Balsamiq, Stash, Bamboo and HockeyApp that were available in the browser over the
Internet. The students could earn 30 bonus points for the successful participation in
each of these five tutorials. During the tutorial, the students either looked at the de-
tailed slides that were handed out at the beginning of the exercise or watched how
the teacher conducted the exercise on the presentation computer. In addition, tutors
walked through the lecture hall, helped students and answered questions directly.

One interactive tutorial consists of three to five exercises which were decomposed
into smaller tasks. In summary, the students had to solve between twelve and twenty
tasks in one tutorial. The teacher synchronized the speed of the tutorial several times
by asking students about their progress and by checking the number of participants
and results in the tools. If more than about 90 % were able to complete a particular
tasks, the teacher proceeded to the next exercise.

The student group was heterogeneous because the course was offered in multi-
ple programs. Two distinct groups participated: (1) bachelor students in information
science with a few experiences in software engineering and (2) master students in
computer science with more experiences in software engineering and project manage-
ment. This heterogeneity posed the challenge that students had a different velocity
in completing the class exercises. To alleviate this challenge, the exercises included
optional tasks specifically for more experienced students. In addition, the students had
the opportunity to solve exercises as homework if they were not able to finish them in
class. Some tasks and exercises were also explicitly designed as homework, e.g. when
the students had to write additional test cases for the continuous integration exercise.

As an example, we describe the conduction of two exercises. In class 10 and
11, the students applied continuous integration and continuous delivery. As shown in
Figure 6.4, the instructor mapped the deployment process to the service that was used,
Bamboo. To simplify the exercise, each student first forked a preconfigured source
code repository and cloned a preconfigured build plan. Then the students adapted
and configured the build plan, fixed existing failing test cases and wrote additional test
cases. A change in the requirements of the software led to a regression that was
detected by Bamboo and fixed by the students so that all tests passed again at the
end of the exercise and the students could deliver the software to their neighbors who
played the role of test users.

108

6.2. Lecture

Delivery Stage

Upload binaries
3

Integration Stage

Build Application
1

Environment configuration

Binaries Config Data Binaries Config Data Binaries Config Data

Source Code

Version Control System

Artifact RepositoryA

S

Test data
Key

Object Fflow

Control Flow

Storage

Stage

Test Stage(s)

Execute Test Cases

2

Figure 6.4: Mapping between the deployment process and stages in Bamboo

6.2.2 Team based Exercises

In addition to the individual exercises, the students participated in a small team project
with five team members that accompanied the lecture. The goal of the project was that
the students experience the learned concepts in a more realistic environment. The
instructor played the role of the customer and provided three short problem statements
about the development of mobile applications. The teams had to choose one of the
problem statements. In addition, they had to choose a development environment and
target platform, either Android, Windows Phone or iOS.

The instructor used a script to distribute the students into teams according to their
self assessment before the first exercise. The goal was to have balanced teams with
respect to the skill level of the students and teams of students with matching pref-
erences for the development environment. Without such a balancing mechanism, it
would have been unfair if five experienced students build one team and another team
would have had five completely unexperienced students. However, not all students
participated in the team exercises. Therefore, the teams were allowed to merge teams
and fill empty places in their team with other students so that the balancing was not
completely enforced.

Like the individual exercises, the team based exercises also built on blended and
experiential learning techniques. However, they had a stronger focus on problem based
and cooperative learning. In addition, the students only received a vague description
of the exercises that deliberately missed detailed instructions so that the teams have to
think on their own about how to solve the exercise. This approach follows the principle
“Step back and I will act” of the Chinese Proverb presented in Section 2.7.

Table 6.8 shows the schedule of the project, the list of team based exercises and
their corresponding exercise points. We divided the exercises into seven phases: an
initial Sprint 0 for the project startup, five development sprints (Sprint 1, ..., Sprint 5)

109

Chapter 6. Case Studies

each about two weeks long, and a final Wrap Up phase. The start and end dates
of these phases were the exercises that are mentioned in Table 6.8, e.g. Sprint 0
lasted between April 17 (date of Class 1) and May 8 (date of Class 4). However, this
schedule was just a rough orientation for the teams. In their SPMP, the teams could
slightly deviate from this schedule, if they e.g. wanted to conduct their sprint planning
and sprint review meeting on a Monday, while the exercise took place on a Friday.

Phase Start Date End Date Exercise Description Points

Sprint 0 Class 1 Class 4

Choose problem statement 5
Choose target platform 5
Upload icebreaker results to Confluence 10
Write SPMP in Confluence 20
Define product backlog in JIRA 20

Sprint 1 Class 4 Class 6

Conduct sprint planning meeting in Confluence 10
Define sprint backlog in JIRA 10
Design team space in Confluence 5
Create user interface mockups 10
Conduct sprint review meeting in Confluence 10

Sprint 2 Class 6 Class 8

Conduct sprint planning meeting in Confluence 5
Define sprint backlog in JIRA 5
Upload initial project source code in Stash 5
Use branching model (continuously) 15
Conduct sprint review meeting in Confluence 5

Sprint 3 Class 8 Class 10

Conduct sprint planning meeting in Confluence 5
Define sprint backlog in JIRA 5
Write an agile contract 10
Configure continuous integration in Bamboo 10
Write test cases and execute them on Bamboo 10
Conduct sprint review meeting in Confluence 5

Sprint 4 Class 10 Class 12

Conduct sprint planning meeting in Confluence 5
Define sprint backlog in JIRA 5
Configure continuous delivery in Bamboo 10
Release the app in HockeyApp 10
Conduct sprint review meeting in Confluence 5

Sprint 5 Class 12 Class 14

Conduct sprint planning meeting in Confluence 5
Define sprint backlog in JIRA 5
Write demo scenario and script in Confluence 15
Create software theater video with demo script 15
Conduct sprint review meeting in Confluence 5

Wrap Up Class 14 1 week later
Assessment of the overall project through instructor 25
Conduct retrospective meeting in Confluence 10

Sum of exercise points 300

Table 6.8: Team exercises and the corresponding exercise points for the lecture Software Engineering
II: Project Organization and Management used in 2015

110

6.2. Lecture

In Sprint 0, the teams chose the problem statement and the target platform, con-
ducted a Marshmallow icebreaker [Wuj10] in the class room together with all other
teams. They also wrote an initial software project management plan (SPMP) and de-
fined the product backlog for their project in JIRA. In each development sprint, the
teams conducted a sprint planning meeting, created a sprint backlog and conducted a
sprint review meetings.

The focus of the lecture was on management. Therefore, it was not important
for the exercises, how many backlog items the team actually realized. It was more
important that the students learn how to manage the project. However, managing a
software project only makes sense, if the team also develops software. To increase
the learning experience of all team members, the teams had to rotate the roles for the
Scrum Master, the Product Owner and the developers. Each team member then had
the opportunity to play the Scrum Master role in one sprint, to play the Product Owner
role in one sprint and to play the developer role in three sprints.

In addition, the teams had to conduct other exercises in the sprints as shown in
Table 6.8, e.g. create user interface mockups for their application in Sprint 1, setting
up continuous integration and writing test cases in Sprint 3 or writing demo scenarios
and demo scripts and creating a video using software theater [BKW12,XKB15] and the
demo script in Sprint 5.

The idea was that the students learned the knowledge for these team based exer-
cises in the lecture or in the individual exercises and that they then apply this knowledge
in the team to experience typical team challenges, such as communication issues. In
the final Wrap Up, the instructor assessed the overall project performance including the
developed application and the students conducted a retrospective meeting to evaluate
their project performance and to identify improvements for future projects.

111

Chapter 6. Case Studies

6.3 Industry

In this section, we describe a case study, in which we used Rugby in industry projects
in the company Capgemini10. We first describe the applicability of Rugby in industrial
projects and then present the extended and customized versions of Rugby’s release
and feedback management workflows for the use in the company [KKP+15].

6.3.1 Applicability in Industrial Projects

We analyzed the development process for mobile applications in a global company with
heterogeneous project environments with respect to team size and project duration.
We interviewed eight project managers of Capgemini who develop software solutions
for external customers in different industry sectors such as automotive, telecommuni-
cation and financial services. The answers of the interviews revealed the following key
issues in the investigated projects before the introduction of Rugby:

There was no standardized delivery process for mobile applications. Projects relied
on knowledge transfer from other projects. Depending on size and complexity, existing
approaches might not fit. Therefore the same solutions were reinvented by multiple
teams because of time constraints within mobile projects and limited communication.
The infrastructure was not sufficient for the delivery of mobile applications. It contained
the basic development tools such as an issue tracker, a version control system and an
integration server, but these tools were not preconfigured and the development team
was responsible for their configuration. A solution for automatic delivery was missing,
some projects decided to create their own one.

Automatic testing was neglected in favor of development speed, mainly because
the setup effort was too high in mobile projects, which are typically rather short liv-
ing. This especially affected unit, system and integration tests. Acceptance testing
with the customer was done manually, but not regularly. Continuity was missing in the
development. Even if projects wrote tests, they rarely automated them. Continuous
integration was only taken seriously by very few mobile projects. Even if projects used
a build server and a delivery solution, integration and delivery were still done sporadi-
cally instead of continuously. How often a version was delivered to the customer was
sometimes driven by the contract and not by development needs.

We asked the project managers why these issues occurred and why they did not
yet apply a workflow for continuous integration and continuous delivery as e.g. de-

10Capgemini provides consulting, technology, outsourcing services and local professional services. It
is presented in over 40 countries with almost 140,000 employees: http://www.capgemini.com

112

http://www.capgemini.com

6.3. Industry

fined in Rugby. From their answers, we extracted the following requirements, which
need to be addressed by project based organizations like Capgemini that consider to
apply continuous delivery in their mobile projects: Mobile applications are targeting
different platforms, some of them are developed natively, but in different programming
languages, others use cross platform frameworks. The continuous delivery workflow
should therefore support multiple platforms. Business critical applications require a
high amount of security. Customer contracts e.g. do not allow to store applications on
cloud services. Access control and data privacy are important topics and should be
considered.

Due to pricing pressure, projects are outsourced to offshore locations. It should be
possible to apply activities of the workflow in different countries for globally distributed
teams. Applications are developed for multiple markets, thus different legal aspects
regarding distribution need to be considered. Different project environments should
be supported by modular standardized components, that can be easily adapted and
maintained. Managers should be able to collect metrics about the current state of the
project. Larger mobile application projects require dependency management for the
use of external and internal frameworks. The delivery and feedback system should
distinguish between automatically generated feedback, such as crash report and mon-
itoring statistics, and manually created feedback, such as feedback reports within the
application. Furthermore, it should be possible to deliver an application manually.

6.3.2 Extending and Customizing Rugby

In a company with heterogeneous project environments like Capgemini, it is not pos-
sible to introduce one single, standardized workflow for all projects. Instead, project
managers must be able to customize the workflow to their own needs. To address
the additional requirements, we extended Rugby’s release and feedback management
workflow. We aimed to provide flexible activities as building blocks that can be com-
bined depending on the individual characteristics of a given project.

Using Rugby’s release and feedback management workflow as basis, we split it
up into four activities: Configuration Management (including version control and de-
pendency management), Integration, Delivery and Feedback. Each activity is optional
for projects and provides customization possibilities. We also extended the activities
to increase both functionality and flexibility. The resulting standard workflow and two
customized workflows are shown in Figure 6.5 next to each other.

We describe scope and transitions of these four activities to provide projects with
multiple variants of how each activity can be carried out (see Figure 6.5a). The ex-

113

Chapter 6. Case Studies

Developer

Test2.2

Delivery ServiceIntegration SystemRepository

Push

changes1.1 Observe/notify

to trigger build1.2

Fetch changes1.3

Upload app3.1

Package2.3
Collect

metrics2.4

Issue Tracker

Observe changes1.5

Observe/notify

about build2.5

Resolve

dependencies1.4

Update

status4.4

Build2.1

Release Manager

Send email3.2

Update status4.2

Send automatic

feedback4.1

User

Forward email3.3

Send user generated feedback4.3

Download app3.4

a) Standard workflow, basis for customization: automatic build, automatic upload, manual
distribution, both automatic and user generated feedback

Developer
Build2.1

Upload app3.1

Test2.2

Delivery Service User

Download app3.4

Send email3.2

Integration SystemRepository

Push

changes1.1

Package2.3
Collect

metrics2.4

Issue Tracker

Observe changes1.5

Resolve

dependencies1.4 Send automatic

feedback4.1

Forward email3.3
Update status4.2

Release
Manager

Trigger build1.2

Email Server

Fetch changes1.3

Notify

about build2.5

b) Example of customized workflow for a large project: manual build, automatic upload and
distribution, only automatic feedback

Developer

Build 2.1
Test 2.2

Delivery ServiceIntegration SystemRepository

Push

changes1.1 Trigger build1.2

Fetch changes1.3

Upload app 3.1

Package 2.3

Send user generated feedback4.3

Issue Tracker
Forward email3.3

Update

status4.4

Release Manager

Send email3.2

User

Download app3.4

Download app3.0

IntegrationConfiguration
Management Delivery Feedback

c) Example of customized workflow for a small project: no dependency resolution, no metrics,
manual upload, only user generated feedback

Figure 6.5: Extended and customizable release management workflows with colors to indicate
activities (adapted from [KKP+15])

114

6.3. Industry

tended workflow provides customization by distinguishing between mandatory and op-
tional activities. In particular, projects can modify the workflow depending on project
size, complexity, staffing, timeline and priorities. For a better understanding of how a
customized version of our workflow could be instantiated, we describe two examples
that we have observed at Capgemini, one for larger and more complex projects and
another one for smaller and simpler projects.

Large and complex project (see Figure 6.5b): Version control uses a branching
model in combination with a full fledged dependency management system. Builds
are triggered manually since the integration system resolves dependencies, builds a
hybrid core app first and then includes native wrappers for several platforms. It runs
unit and system tests, integration tests with a backend API (Application Programming
Interface) as well as automated acceptance tests for the user interface. Uploads to
delivery service occur automatically and emails are automatically forwarded using lists
and filters managed on an email server. Feedback is solely collected automatically from
within the app usage and relayed to the issue tracker, which keeps track of changes
and builds.

Small and simple project (see Figure 6.5c):
Version control uses a branching model, but dependencies are kept in the repository

instead of a full fledged dependency management system. The project builds a single
native app and uses an integration system that automatically fetches changes and runs
a few unit and system tests. Apps are uploaded manually to the delivery service and
delivery emails are forwarded manually to users. Feedback is collected from users via
phone, email and personal meetings.

Additional requirements and constraints have been considered in the extended im-
plementation of Rugby’s release and feedback management workflows: The release
mechanism is based on email and can be configured using mailing lists, removing the
need for team members to learn new tools. A custom built, centralized delivery service
avoids uploading client data to cloud services, thus addresses privacy and security
concerns, and enables both manual and automated delivery.

The integration system has been rebuilt from scratch, using available infrastructure
and Jenkins11 as open source component with suitable plugins. The solution can be
ordered from the central IT department of Capgemini as a turn key solution running in
an isolated virtual machine. It comes with a basic configuration, but projects can adapt
the entire tool set to their specific needs.

The implementation of the release and feedback management workflow requires
collaboration between several individuals and departments. The organizational trans-

11Jenkins is an open source continuous integration server: https://jenkins-ci.org

115

https://jenkins-ci.org

Chapter 6. Case Studies

formation necessary to introduce and subsequently fine tune this process involves
detailed descriptions of aspects such as responsibilities, approval process, project-
specific resources, reporting structures etc. However, this is not part of our discussion
and covered by others such as Humble [HF10] and Poppendiek [PP06].

116

Chapter 7

Evaluation

“I think it‘s very important to have a feedback loop, where you‘re constantly
thinking about what you‘ve done and how you could be doing it better.”

— Elon Musk

In this chapter, we describe the evaluation of Rugby in university and industry. First,
we state nine hypotheses in Section 7.1, two main hypotheses, five derived hypotheses
for software engineering and two derived hypotheses for education. Then, we present
the study design of six qualitative and three quantitative evaluations in Section 7.2. We
present and interpret the findings in the evaluations for the seven derived hypotheses
in Section 7.3. Finally, we describe the limitations of the nine evaluations in Section 7.4
and summarize the findings with respect to the hypotheses in Section 7.5.

7.1 Hypotheses

Rugby can be used in multiple contexts, in particular in continuous software engineer-
ing and continuous education. Our main hypotheses are:

H1 Rugby allows to reduce the delay between development and usage in software
projects.

H2 Rugby allows to reduce the delay between lectures and exercises in education.

Rugby’s process model provides an event model that increases the frequency of
delivery and feedback, which reduces the size of the content – software changes in
development – and increases the amount of interaction. Through the increased inter-
action with a smaller content size, the collaboration between developers and users and
between instructors and students is improved. We derive the following five hypotheses
for Rugby in software development projects:

117

Chapter 7. Evaluation

H 1.1 Review: Developers increase their code quality with Rugby’s review manage-
ment workflow.

H 1.2 Release: Rugby’s release management workflow reduces the effort required to
create a release.

H 1.3 Feedback: Rugby’s feedback management workflow increases the quality of
feedback.

H 1.4 Frequency: The use of Rugby’s process model increases the number of re-
views, releases and feedback reports.

H 1.5 Understanding: The presentation of event based releases as executable proto-
types improves communication and understanding between project participants.

We hypothesize that continuous peer reviews in Rugby’s review management work-
flow allow developers to improve the code quality and increase the understanding about
code and design within the team (H1.1). This ensures that only high quality is present
in released product increments. We hypothesize that the automation of testing, integra-
tion and delivery in Rugby’s release management workflow reduces the effort of these
activities and improves the efficiency and the productivity of the team (H1.2). Rugby’s
feedback management workflows enables automated feedback such as crash reports
with context information and the built in feedback approach motivates users to provide
feedback. Therefore, we hypothesize that the quality of feedback is improved (H1.3).

Each of Rugby’s three workflows increases the number of produced outcomes,
therefore we hypothesize that the number of reviews, release and feedback reports
increases when Rugby is used (H1.4). Rugby’s release management workflow allows
the creation of event based releases within an iteration. We hypothesize that event
based releases used as executable prototypes improve the communication and the
understanding between project participants (H1.5).

Rugby’s process model is extensible to education where its event model reduces
the size of the content – theoretical concepts in education – and increases the amount
of interaction between educators and learners. We derive the following two hypotheses
for Rugby in eduction:

H 2.1 Learnability: Rugby’s workflows can be effectively taught by an instructor in
university capstone courses and lectures within one semester.

H 2.2 Scalability: Rugby enables instructors to scale exercises in large class rooms
with more than 100 students.

We hypothesize that Rugby’s workflows for review, release and feedback manage-
ment can be taught to students in the university environment within one semester, so

118

7.2. Study Design

that they feel comfortable with and want to use the workflows in future projects (H2.1),
even if they did not use these workflows before. We further hypothesize that Rugby
enables the conduction of exercises with more than 100 students in the class room
while reducing the effort of the exercises (H2.2), because it automizes exercises and
provides smaller chunks of theory intermixed with exercises.

7.2 Study Design

We validate the seven derived hypotheses with qualitative and quantitative evaluations.
Table 7.1 shows an overview of six formative and qualitative evaluations (E1, ..., E6)
and their mapping to the hypotheses. It provides information about the evaluation
method, the corresponding case study (C1, C2, or C3) as described in Chapter 6,
in which we conducted the evaluation, the covered topics of the study, the pool of
participants and the response rates.

ID Year(s)
Evaluation

method
Case
Study

Topics
Participants

Pool
Responses

(Rate)
Hyp

E1 2013 Questionnaire C1
Release management

Feedback management
90 students1 41 (46 %)

H1.2

H1.3

E2 2014 Questionnaire C1 Review management 90 students2 81 (90 %) H1.1

E3
2011 -

2014
Questionnaire C1

Improvement of

technical and soft skills
301 students3 178 (59 %) H2.1

E4 2014 Questionnaire C3
Release management

Feedback management

8 project

managers
8 (100 %)

H1.2

H1.3

H1.4

E5 2015
Personal

interviews
C1 Review management 90 students4 18 (20 %) H1.1

E6 2015 Questionnaire C2
Review management

Release management

Feedback management

423 students 223 (53 %)
H2.1

H2.2

Table 7.1: Overview of the formative and qualitative evaluations between 2013 and 2015

We conducted our first evaluation (E1) about release management and feedback
management in 2013. We wanted to understand whether release management re-

1The pool of 90 students includes developers and coaches in the SS 2013 course, compare Table 6.2.
2The pool of 90 students includes developers and coaches in the SS 2014 course, compare Table 6.2.
3The pool of 301 students includes developers and coaches in the courses SS 2011, SS 2012, SS

2013 and SS 2014, compare Table 6.2. Some students participated twice, first as developer and then in
a later iteration as coach.

4The pool of 90 students includes developers in the WS 2014/15 course, compare Table 6.2.

119

Chapter 7. Evaluation

duced the effort to create a release (H1.2) and whether feedback management in-
creases the quality of feedback (H1.3). In 2014, we evaluated review management
(E2) in the capstone course to understand its impact and whether students can con-
duct peer code reviews in order to improve their code quality (H1.1).

In 2014, we conducted a quasi experiment (E3) about the improvement of technical
skills and soft skills of students in the four capstone courses between 2011 and 2014 to
investigate whether Rugby’s workflows can be effectively taught (H2.1). We evaluated
(E4) release management and feedback management in industry in 2014 to validate
the generalizability of our findings in the university with respect to H1.2, H1.3 and H1.4.

In personal interviews (E5) about review management in 2015, we addressed the
limitations of our earlier evaluation on review management (E2), that we did not ask the
participants on the review purpose. The personal interviews aimed to find additional
insights about purpose and quality improvements through reviews. The questionnaire
(E6) in the lecture allowed us to investigate the subjective learning experience of the
students (H2.1) and the scalability of Rugby’s workflows in the class room (H2.2).

Table 7.2 shows an overview of three formative and quantitative evaluations (E7,
E8, and E9) and their mapping to the hypotheses.

ID Year(s) Case Study Topics Quantity Hyp

E7 2012 - 2014 C1
Release management

Feedback management
32 projects H1.4

E8 2014 - 2015 C1 Review management 33 projects H1.4

E9 2015 C2
Grade improvement through

exercise participation
294 students H2.1, H.2.2

Table 7.2: Overview of the formative and quantitative evaluations between 2012 and 2015

We conducted E7 to measure the frequency of delivery and user feedback (H1.4) in
order to understand whether the introduction of release management and feedback
management workflows increased the frequency. With E8, we wanted to find out
whether the frequency of code reviews increased (H1.4) through the introduction of
the review management workflow. The evaluation E9 helped us to validate the results
of the qualitative evaluation (E6) of the subjective learning experience in the lecture, be-
cause we could measure the correlation between exercise participation and the exam
grade, which is objective data that is not influenced by the personal opinion of the stu-
dents. In the following, we describe the study design of all evaluations (E1, ... E9) in
more detail.

120

7.2. Study Design

E1: Qualitative Study in Capstone Course in 2013

The questionnaire (E1) in the SS 2013 capstone course investigated the students’
learning and the benefits of the release management and feedback management work-
flows [KA14]. After the course, we invited 90 students, developer and coaches includ-
ing the release managers of each team, to participate in an online questionnaire. The
anonymous questionnaire consisted of 23 questions, took about 15 minutes and was
not mandatory for the students.

15 questions of the survey were closed questions with predefined answer possibili-
ties. Eight questions were open questions with a large answer field where the respon-
dents could write their opinion. We conducted the survey in August 2013 during the
exam phase and gave the students four weeks to complete it. After two weeks we sent
out a reminder email to all students. We received 41 valid responses out of 90 students,
about 30 % of the answers were given by undergraduate and about 70 % by graduate
students. At least three students of each team participated in the questionnaire.

The questionnaire covered questions with respect to release management and
feedback management, in particular about continuous integration and continuous de-
livery. We categorized the questions into five sections: personal data (4 questions),
knowledge acquisition (7 questions), workflow usage (5 questions), workflow benefits
(3 questions) and personal experience (4 questions). In the personal data category,
we asked about the students about their major, their semester, their team and their de-
gree. The knowledge acquisition category contained questions about prior experience
with continuous delivery and evaluated whether they understood the main concepts.

In the workflow usage category, we evaluated our teaching methods, i.e. which
teaching approaches the students used the most to understand the workflows and how
much knowledge they gained through each of them. The workflow benefits category
asked how often participants used the activities for version control, continuous inte-
gration, continuous delivery and obtaining user feedback. In the personal experience
category, we asked if they understood the main goals and benefits of continuous deliv-
ery and user feedback.

E2: Qualitative Study in Capstone Course in 2014

The questionnaire (E2) in the SS 2014 capstone course investigated the benefits of
the review management workflow and whether students improved their coding skills
[KBB16]. After the course, we invited 90 students, developer and coaches including
the review managers of each team, to participate in an online questionnaire. The

121

Chapter 7. Evaluation

anonymous questionnaire consisted of 29 questions, took about 20 minutes and was
not mandatory for the students.

21 questions of the survey were closed questions, eight questions were open. Five
open questions and one closed question were conditional questions, i.e. they were only
shown to participants that chose specific answers in a previous question. One example
is that we only asked students why a merge conflict happened, if they answered Often,
Sometimes or Once in the previous question how often a merge conflict happened. If
they answered Never, then the question was not shown.

We conducted the survey in August 2014 during the exam phase and gave the stu-
dents four weeks to complete it. We created personalized tokens and send them to
each participant to increase the response rate. The survey tool LimeSurvey5 guaran-
tees that the answers are anonymous by strictly separating the token and the answers
tables in the database. After one week we sent out a reminder email only to the stu-
dents who did not yet participate. After another week, we sent a second reminder. With
these mechanisms, we could receive 81 valid responses out of 90 students, about 30 %
of the answers were given by undergraduate and about 70 % by graduate students. At
least four students of each team participated in the questionnaire.

The questionnaire covered questions with respect to review management. We cat-
egorized the questions into eight sections: personal data (3 questions), knowledge
(3 questions), coding support (3 questions), branching model (3 questions), merge re-
quests (3 questions), review workflow (6 questions), review workflow problems (4 ques-
tions), personal experience (4 questions). In the personal data category, we asked the
students about their major, degree and team. In the knowledge category, we asked
about existing knowledge before the course and how much knowledge participants
gained through the course. The coding support category included questions about the
use of coding guidelines in the course. In the branching model category, we asked
about the benefits of branch and merge management and how often participants ex-
perienced mistakes such as accidentally deleting a branch and why this happened.

The merge request category included questions about the usage frequency and the
benefits of merge requests. In the review workflow category, we asked whether stu-
dents agree to benefits, such as improved quality, and whether and why participants
bypassed the workflow. The review workflow problems category asked whether stu-
dents experienced specific problems, such as simple or complex merge conflicts and,
if this was the case, how they could solve the problem, why the problem occurred and
how it could be prevented. In the personal experience category, we asked whether

5http://www.limesurvey.org

122

http://www.limesurvey.org

7.2. Study Design

students would use the workflow again, what worked well in their team and what was
the main issue in their team with respect to review management.

E3: Qualitative Study in Capstone Courses between 2011 and 2014

The qualitative quasi experiment (E3) between 2011 to 2014 investigated the students’
improvement of technical and soft skills [BKA15]. We performed a quasi experiment to
analyze the introduction of release management in 2013 and the introduction of code
review workflows in 2014 as interventions. We used a five point Likert type scale with
the answers strongly disagree, disagree, neutral, agree, strongly agree to measure
either negative, neutral or positive responses. The anonymous questionnaire consisted
of four questions, took about 5 minutes and was not mandatory for the students. Two
questions were closed, two questions were open.

We conducted the survey in November 2014 and gave the students three weeks
to complete it. We created personalized tokens and send them to all participants of
the four capstone courses to increase the response rate. The survey tool LimeSurvey
guarantees that the answers are still anonymous by strictly separating the token and
the answers tables in the database. We sent two reminders to the students who did
not participate until this point in time. We invited 301 students to participate in an
online questionnaire and received 178 responses. The overall response rate was 59 %
(2011: 33 %, 2012: 56 %, 2013: 57 %, 2014: 71 %). While the were more answers
from later years, we received enough results from earlier years to be able to compare
the results. We combined the responses of the results into a three point Likert type
scale with positive responses (strongly agree and agree), neutral and negative ones
(strongly disagree and disagree) to minimize positive and negative outliers.

The questionnaire asked in which year the student participated in the course. The
second question asked the student to rate his personal technical skill improvements in
eight software engineering categories, such as requirements elicitation, programming
and release management. It also asked the student to rate his personal soft skill im-
provement in four categories such as communication and team work. The other two
questions were open and asked about what the student liked in particular in the course
and what could be improved.

E4: Qualitative Study in Industry in 2014

The questionnaire (E4) of eight industry projects in 2014 investigated the use of re-
lease management and feedback management at the company Capgemini [KKP+15].
We designed the questionnaire as an expert interview in order to benefit from the

123

Chapter 7. Evaluation

technical and domain expertise of participants. We chose project managers as ques-
tionnaire participants according to their technical, process and explanatory knowledge,
who have multiple years of experience in the mobile domain and insight into the work-
ings of mobile projects. All project managers have an understanding of and preliminary
experience with agile methodologies and the standard components of our integration
system are already known within the company. However, there is little experience with
automated delivery in general and no experience with our custom built delivery service.

After the introduction of Rugby in these projects, we asked the eight project man-
agers to participate in a survey which consisted of 32 questions and took about 30
minutes. 26 questions of the survey were closed, six were open. All eight project
managers participated.

The questionnaire covered questions with respect to release management and
feedback management, in particular about metrics, integration, delivery and feedback.
We categorized the questions into five sections: intro (3 questions), project (11 ques-
tions), integration (9 questions), delivery (6 questions) and feedback (3 questions).
We asked participants how fast, well or easy the process of build, test, delivery and
feedback collection were before and after the introduction of our solution. We also es-
timated the project complexity using metrics and feedback. Additionally, we included
informal questions to further elaborate on the setup, processes, and situation in the
project and to evaluate the project managers’ opinion about our solution.

E5: Qualitative Study in Capstone Course in 2015

The personal interviews (E5) in the capstone course in WS 2014/15 investigated the
environment, the technique, properties and results of reviews as well as the tool quality
in Rugby’s review management workflow. After the course, we invited review managers
and developers to participate in a personal interview which took between 60 and 90
minutes for reviewers and about 30 minutes for developer. The time depended on the
discussion and on how many details the interviewees explained.

We used a structured interview manual and separate questionnaires for the two
types of roles. Interviewing the two groups is important for understanding both sides
of the review process. Whereas the reviewer questionnaire focuses on the review
influence factors and its execution, the developer questionnaire focuses more on the
perceived review byproducts such as potential code quality improvement, development
process disturbance and knowledge gain.

The participation was voluntary and because of its length, it was limited to a subset
of the students. We conducted each interview face to face with eleven reviewers and

124

7.2. Study Design

five developers. The reviewer questionnaire covered 13 categories with multiple ques-
tions per category. The developer questionnaire included a subset of the questions of
the reviewer questionnaire in eleven categories.

E6: Qualitative Study in Lecture in 2015

The questionnaire of the lecture in 2015 (E6) investigated the students’ improvements
and confidence in the techniques that we applied in the individual and team based ex-
ercises. After the lecture, we invited 423 students, who were registered for the lecture,
to participate in an online questionnaire. The anonymous questionnaire consisted of
six closed questions, took about five minutes and was not mandatory for the students.

The first two questions were about personal data, the field of study and degree.
The third question asked whether the students participated in six individual exercises,
while the fourth question asked whether the students applied the same six techniques
in their team project. The last two questions used a five point Likert type scale with the
answers strongly disagree, disagree, neutral, agree, strongly agree to measure either
negative, neutral or positive responses. The fifth question measured if students were
able to improve their skills in these six techniques and the sixth questions measured if
students are confident to apply these six techniques in their next team project.

We conducted the survey in July 2015 and gave the students two weeks to com-
plete it. We created personalized tokens and send them to all participants of the four
capstone courses to increase the response rate. The survey tool LimeSurvey guar-
antees that the answers are still anonymous by strictly separating the token and the
answers tables in the database. We sent two reminders to the students who did not
participate until this point in time. We received 223 responses (53 %). We combined
the responses of the results into a three point Likert type scale with positive responses
(strongly agree and agree), neutral and negative ones (strongly disagree and disagree)
to minimize positive and negative outliers.

E7: Quantitative Measurement in Capstone Courses between 2012 and 2014

The quantitative measurement (E7) in the three capstone courses SS 2012, SS 2013
and SS 2014 focused on numbers of the release management and feedback man-
agement workflows that we introduced after two thirds of the capstone course in 2012
and from the beginning in 2013. We used the git command line to count commits
and branches and used the REST API of Atlassian Bamboo to count the number of
builds and releases. We had to manually count the number of downloads and feed-
back reports, because no REST API was available. We then took the average of these

125

Chapter 7. Evaluation

numbers per team. We measured the values after the courses was finished. Some
values in 2012 are not available, therefore we estimated an generous upper number.

E8: Quantitative Measurement in Capstone Courses between 2014 and 2015

The quantitative measurement (E8) in the three capstone courses SS 2014, WS 2014/15
and SS 2015 focused on numbers of the release management workflow that we intro-
duced in 2014 from the beginning. We used the REST API of Atlassian Stash in a
custom command line application to count for each merge requests the number of re-
lated commits (excluding merge commits), the number of comments, the number of
reviewers and the interval, i.e. the time between the merge request was opened and
finally merged. We then took the average of these numbers per merge request and
also calculated the average number of merge request per team. We measured the
values after the courses was finished.

E9: Quantitative Measurement in Lecture in 2015

The quantitative measurement (E9) in the lecture in 2015 focused on the correlation
between exercise participation and the final grade of the student. In order to upload
the final grades into the lecture and exam management tool TUMOnline, we inserted
all exam results and the exercise participation into an Excel sheet, where all students
were listed that participated in the final exam. The Excel sheet therefore included the
final exam grade and the number of exercise points (divided into quizzes, individual
exercises and team based exercises) for each student. We used the Excel sheet to
group the students after the exercise points into four categories and calculated the
grade point average for each category.

126

7.3. Findings

7.3 Findings

In this section we describe the findings according to the seven derived hypotheses. We
also show, in which evaluation we found the findings, interpret the results and indicate
whether the findings support the hypothesis or not.

7.3.1 Review

Hypothesis H1.1 states that developers increase their code quality when using Rugby’s
review management workflow. To evaluate this hypothesis, we interviewed developers
in the capstone course (E5). Figure 7.1 shows interview findings from capstone course
participants who ranked their motivation for conducting reviews and the achieved ben-
efits they perceived. Ensuring architecture compliance and improving code readability
and maintainability were the main motivators, and likewise, the most prominent bene-
fits of branch based reviews. The interviewees agreed that reviews had a bigger im-
pact with sharing system knowledge among the team than initially believed. Educating
novice developers about best practices and quality standards was a strong motivator
and benefit. While reviewers did find defects using reviews, it was not more than they
had expected.

Peer$Learning

Readabilityand
Maintainability

Finding$DefectsArchitecture/Structure$
Compliance

System$Knowledge$$$$
Transfer Motivationforreviewing

Achieved$review$benefitLow

High

Figure 7.1: Answers in personal interviews (E5): The developers’ view on motivations and benefits of
code reviews

Rugby’s review management and release management workflows both include the
use of a branching model. Figure 7.2 shows that the participants see the benefits in
using a distributed version control system combined with a simple branching model.
98 % of the team members think that the branching model helped to work with multiple
persons on the same codebase. More than 40 % of the developers used features
branches to develop multiple prototypes for one functionality. We asked whether they
experienced the benefits of continuous integration (E2).

127

Chapter 7. Evaluation
The Branching Model …

0 %

20 %

40 %

60 %

80 %

100 %
No Uncertain Yes

Develop with multiple persons
on the same codebase

Map backlog
items to branches

Develop multiple
prototypes for a feature

98% 85%

41%

27%

32%10%
5%1%

1%

Figure 7.2: Answer of questionnaire participants (E1): Rugby’s branching model helps to

To evaluate possible workflow challenges, we wanted to know whether students en-
countered specific problems while using the workflow, e.g. if they encountered simple
or complex merge conflicts (E2). Figure 7.3 shows that simple merge conflicts occurred
often. Students reported that they could easily resolve them.

Complex merge conflicts such as when multiple developers worked on non merge-
able files, happened less often, nonetheless, three out of four students experienced
them. Some students reported that they had problems resolving complex merge con-
flicts on their own. However, they were also able to solve this challenge by asking
experienced team members for help. We also asked how to prevent such errors and
some common answers were to improve team communication, to only change non
mergeable files on the development branch and to pull changes from development
into feature branches more often. One important answer was that they should try toHow often did you encounter…?

0 %

20 %

40 %

60 %

80 %

100 %

Often Sometimes Once Never

54 %

26 %20 %

0 %

25 %20 %

48 %

7 %

28 %

5 %

40 %
27 %

Simple merge conflicts that could be solved easily
Complex merge conflicts that required a lot of work to be fixed
After applying a merge request, the build broke

Figure 7.3: Answer of questionnaire participants (E2): How often did you encounter the following
branch and merge management problem?

128

7.3. Findings

minimize the lifetime of branches. We conclude from these findings that students can
handle challenges that Rugby’s review management workflow poses.

A problem of the code review workflow is that the additional step of the quality gate
might slow down the progress of the team. In situations with high time pressure such as
right before a sprint review meeting, developers might not thoroughly review a merge
request to avoid the additional effort. However, only 22 % of the respondents believe
the workflow affected the team’s progress as shown in Figure 7.4.Review Management

0 %

20 %

40 %

60 %

80 %

100 %

22 %

67 %68 %
42 %

9 %15 %
36 %25 %17 %

No Uncertain Yes

Comments from
experienced developers
helped me to improve
the quality of my code

The review workflow
helped my team to keep
code in the development

branch in high quality

The review workflow
slowed down the

progress of my team

Figure 7.4: Answer of questionnaire participants (E2) about review management

Another focus in our evaluation was the learning experience through the code re-
view workflow. Figure 7.4 shows that more than two thirds of the developers could im-
prove the code quality of their own code with the feedback of experienced developers,
because they used Rugby’s review management workflow. They reported about men-
toring relationships between experienced and inexperienced developers where both,
developer and reviewer improved their skills. We received the same results when we
asked whether the code review workflow helped the team to sustain good code quality
in the development branch. As shown in Figure 7.4, two thirds think that the work-
flow had an important impact in preventing the negative effects of the broken window
theory [HT00].

We asked whether developers would use the review workflow again in future projects.
Only one student replied that he would not do so (E2). Figure 7.5 shows that 43 % of
the developers definitely want to use the workflow again, 27 % very likely and 19 %
likely. We found anecdotal evidence that Rugby’s review management workflow leads
to better code quality. We conclude that our findings support hypothesis H1.1. More-

129

Chapter 7. Evaluation

over, developers learned about different parts of the system from reviewing their peers,
a finding other researcher also found in code review studies in industry [RB13].

7.3.2 Release

Hypothesis H1.2 states that Rugby’s release management workflow reduces the ef-
fort required to create a release. To evaluate H1.2, we first asked the participants if
they would use Rugby’s workflows in future projects. 83 % want to definitely or very
likely use the branching model, 63 % will very likely use continuous integration and
continuous delivery again (E1 and E2).Would you use these workflows in a future project?

0 %

20 %

40 %

60 %

80 %

100 %
No Maybe Likely Very Likely Definitely

56%

22% 17%
43%

27%

19%
10%
1% 22%

15%

46%41%

17%

20%

27%

7%
7%
2%

Branching
Model

Continuous
Integration

Continuous
Delivery

Code Review
Workflow

Figure 7.5: Answer of questionnaire participants (E1 and E2): Would you use this Rugby workflow in
future projects?

In the industry evaluation (E4), we found the following results: number of steps
required for delivery (e.g. building, signing, packaging, uploading the app and then no-
tifying users) reduced from 5 to 1 (median). Projects with a more complicated release
process were even able to reduce complexity from 10 to 1 (median). Likewise, involve-
ment of team members in the delivery process was reduced by 25 % (median), in most
cases requiring only one release manager.

Before the introduction of an automated process, deliveries required one hour up to
an entire business day. Projects were able to reduce this duration to 5 minutes (me-
dian). These time savings implicitly improve cycle time and free up project members to
address other tasks [HF10]. As a side effect, projects reportedly plan to involve more
external users in the future, now that complexity of delivery no longer increases with
number of users. We found anecdotal evidence that Rugby’s release management

130

7.3. Findings

workflow reduces the time required to create releases. Moreover, developers appre-
ciate the workflows and like to use it again in future projects. We conclude that these
findings support hypothesis H1.2.

7.3.3 Feedback

Hypothesis H1.3 states that Rugby’s feedback management workflow increases the
quality of feedback. To evaluate H1.3 in the industry case study (E4), we wanted to
know whether applying Rugby’s release and feedback management does not only save
time and effort but also increases the quality of feedback that can be collected from
users during the development process. Because actual quantity of feedback is hard to
measure and compare, we counted the frequency of collection. Our results show which
channels are utilized for feedback collection: For weekly feedback collection, 90 % of
projects use email and phone, followed by meetings (50 %) and software tools (25 %).

40 % of projects supplement this with additional meetings, virtual meetings or cus-
tom tools on a less frequent basis. Figure 7.6 shows that industrial projects prefer
channels that yield unstructured feedback and state ease of use as the primary reason
for this. Reportedly, channels that facilitate personal communication also yield the best
feedback quality. More frequent delivery as well as better integration between tools
also yield more defined feedback. These findings correspond to the ones in university
capstone courses that we reported in [KA14].

0 %

20 %

40 %

60 %

80 %

100 %

Phone Email Virtual
meetings

Real
meetings

Custom
tools

Dedicated
tools

25 %

25 %

12,5 %

12,5 %
37,5 %

12,5 %

25 %
50 %

12,5 %

87,5 %87,5 %

At least weekly At least montly Less than montly

Figure 7.6: Answers in questionnaire (E4): Utilization of feedback channels and frequency of feedback
collection

131

Chapter 7. Evaluation

Figure 7.7 shows the perceived quality of feedback across the used channels. In
the comparison before and after the introduction of Rugby’s feedback management
workflow, we found the same results for the quality of manual feedback. However,
the quality of automated feedback, such as crash reports, is increased by Rugby’s
feedback management workflow, because additional context information such as the
stack trace or the previous interaction steps are attached.

0 %

20 %

40 %

60 %

80 %

100 %

Phone Email Virtual
meetings

Real
meetings

Custom
tools

Dedicated
tools

25 %

25 %
12,5 %

37,5 %

12,5 %

12,5 %
75 %

37,5 %

12,5 %

50 %

25 %
37,5 %

25 %

Excellent Good Acceptable Insufficient Useless

Figure 7.7: Answers in questionnaire (E4): Perceived quality of feedback across feedback channel
(where used)

However, the studies do not yet show that the quality of manual feedback reports
has improved. We think that increasing the quality of manual feedback is an organiza-
tional issue. Our evaluation was shortly after the introduction of Rugby in these projects
and it takes more time until the project participants in industry get used to the feedback
mechanism and until they actively pull user feedback with integrated feedback mech-
anisms, i.e. Dedicated Tools in Figure 7.7. In addition, it is easier to communicate
feedback synchronously in meetings instead of typing it into the feedback form in the
application, because direct communication is faster and less error prone. Developers
can ask clarification questions directly and the user can explain the problem by showing
it in the application.

We found anecdotal evidence that Rugby’s feedback management workflow in-
creases the quality of automated feedback through usage context. However, we did
not find evidence, that the quality of manual feedback increases. We conclude from
these findings, that hypothesis H1.3 is supported partially.

132

7.3. Findings

7.3.4 Frequency

Hypothesis H1.4 states that the use of Rugby’s process model increases the number
of reviews, releases and feedback reports. To evaluate H1.4, we quantitatively mea-
sure these numbers and also asked about them quantitatively in a questionnaire (E1).
Figure 7.8 shows that 59 % of the developers think that Rugby’s Release Management
workflow leads to more releases compared to a manual delivery process. 37 % think
that they could obtain more feedback and 44 % think they obtain better feedback from
their users by applying continuous delivery.The Release Management workflow leads to …

0 %

20 %

40 %

60 %

80 %

100 %

More releases More feedback Better feedback

44 %37 %
59 %

32 %39 %

27 %

24 %24 %15 %

No Uncertain Yes

Figure 7.8: Answer of questionnaire participants (E1): Rugby’s release management workflow leads to

We measured the use of branches, commits, builds, releases, downloads and feed-
back reports on average per team in the capstone courses between 2012 and 2015
and estimated these numbers for the capstone course in 2011. The tools that we use
for Rugby’s reference implementation allowed us to count these numbers by accessing
a REST (Representational State Transfer) API. As shown in Table 7.3, the number of
branches significantly increased in 2013 from 2 to 26 on average per team when we
first introduced the branching model, while the number of commits in the version con-
trol system only slightly increased by 15 %. In 2013, more than 75 % of all commits led
to a build in the continuous integration server while in 2012 only 15 % of all commits
led to a build. This is caused by the fact that the build server was available from the first
day in 2013 whereas in 2012 it was only available after two third of the project course.

More than 94 % of the builds were successful in 2013, because the coaches cared
more about always having an executable prototype which can be presented in a meet-
ing. Consequently, the absolute number of executable prototypes delivered to the cus-
tomer is three times higher in 2013 because the teams were able to deliver releases
from the first day. In 2012, we did not measure the number of downloads, crash re-

133

Chapter 7. Evaluation

ports and feedback reports. However, in 2013 each delivered build was downloaded
2.5 times on average. Crash reports and the built in feedback were used to create 14
reports on average per team.

Year Version Control Release Management Feedback Management

Branches Commits6 Builds

created

Builds

green
Releases Downloads

Feedback

reports

2011 1 <200 * 0 0 <2 * <10 * <5 *

2012 2 500 76 56 15 <10 * <5 *

2013 26 575 440 414 49 126 14

2014 55 728 637 591 64 136 27

Table 7.3: Measurements of average use of version control, release management and feedback
management workflows per team in capstone courses (E7)] between 2011 and 2014 (adapted

from [BKA15]). Numbers with a star * are estimated.

In 2014, the number of branches further increased because we introduced and
used a code review workflow based on branch and merge management. The num-
ber of commits also increased because we asked the developers to produce smaller
commits for the code reviews. This also led to more builds released into the delivery
environment. While the number of downloads only slightly increased, the number of
feedback reports using the built in feedback mechanism increased by 96 % in 2014.
This means that the teams received 27 feedback reports on average in 2014. Around
half of these reports were crash reports pointing to bugs in the source code, the other
half of these reports were feature and design requests, mostly given by non technical
customers or users of the developed applications.

We observed that more users recognized the benefits of providing feedback directly
while trying out the application. About two third of the releases were event based within
the sprint and about two third of the feedback reports originated from these event based
releases. Customers preferred to give feedback to product increments produced at the
end of the sprint directly to the team in the sprint review meetings. Developers reported
that event based releases required only minor effort and provided a great opportunity
to confirm the realization of requirements or to obtain early feedback so that they could
save time and effort.

Table 7.4 shows the number of repositories, merge requests, comments, commits
for three capstone courses, which had eleven projects each. Additionally, we computed
the interval (i.e. the amount of time in hours) for each pull request, from when it was
created until it was merged. We also included the average measures per pull request

6We counted all commits including merge commits.

134

7.3. Findings

as well as standard deviation and coefficient of variation to compare the results. We
filtered out declined reviews and did not count merge commits or commits which were
not referenced in merge requests (e.g. because someone directly committed to the
development branch or to the master branch).

In the course in SS 2014, the teams created and approved 1053 merge requests,
on average 96 pull requests per team. In the course in WS 14/15, the average per
team was 74, while in SS 2015 it was 97. This indicates the teams’ frequent use of
the review workflow. There were differences between teams, which we attribute to the
following three reasons: (1) The number of pull requests depends on the partition of
requirements into sprint backlog items such as features; some teams came up with a
high amount of small features, while others created a small amount of large features.
(2) Some teams also used hotfix branches for each bug, which then consisted of only
a very small amount of changes. (3) A few teams had a larger codebase than others.

Course # Repos
Merge

Requests

Comments Commits7 Interval

avg sd cv # avg sd cv avg sd cv

SS 2014 3.2 96 143 1,49 ± 4,03 2,70 400 4,18 ± 6,05 1,45 11,19 ± 22,49 2,01

WS 14/15 2.9 74 136 1,83 ± 3,93 2,15 316 4,24 ± 5,37 1,27 16,62 ± 27,87 1,68

SS 2015 3.0 97 145 1,50 ± 5,03 3,35 373 3,85 ± 5,37 1,40 12,88 ± 25,36 1,97

Table 7.4: Measurements of average number or reviews, comments and commits per team in capstone
courses (E8). avg = average per merge request, sd = standard deviation, cv = coefficient of variation.

Some teams made little use of comments in pull requests because they worked
together in the same room or used other channels to communicate the feedback. Other
teams used comments quite often when they worked distributed. Most teams had
a similar number of commits per pull request (between three and five). Only a few
teams had a lot more commits per pull request since they used larger features that
needed more code changes. Then, multiple features branches were open for a long
time because the developers needed more time to actually implement and review the
functionality of the feature. This in turn leads to longer review intervals and a higher
chance for merge conflicts, although most teams managed to review and approve pull
requests within less than one day on average. Only a few teams needed more time
due to fewer reviewers or larger amounts of changes.

7We only counted commits referenced in the merge request, which were not merge commits. Com-
mits directly to the development branch or directly to the master branch were not counted. Therefore the
number is smaller than in Table 7.3.

135

Chapter 7. Evaluation

We found anecdotal evidence that Rugby increases the frequency of reviews, re-
leases and feedback reports and therefore conclude that these findings support hy-
pothesis H1.4.

7.3.5 Understanding

Hypothesis H1.5 states that Rugby’s increase of presentations of event based releases
as executable prototypes improves communication and understanding between project
participants. To evaluate H1.5, we investigated the use of executable prototypes in the
capstone courses. In capstone courses before 2012, where the teams did not use exe-
cutable prototypes as communication mechanism, the synchronization between devel-
opers in the project teams took a lot of time. In addition, the synchronization of multiple
projects on project management level also took too much time, because the project
leaders and the coaches were not familiar with the other projects. Therefore, they were
not able to report the project status in a short amount of time in the weekly meetings.

This was also the feedback we received from some of the project leaders and
coaches in 2012. Often the participants did not focus on crucial points and discussed
issues too long which were not important for all meeting participants. This communica-
tion problem was intensified because of the multiplicity of problem statements and the
different technical challenges in each of the projects in the project based organization
of the capstone course. If a project leader talks about the status of his team without
the ability to visualize it, the others can hardly follow and understand it.

After we introduced executable prototypes as main communication mechanism in
meetings in 2013, project leaders and coaches were able to communicate their team
status, i.e. what their team achieved since the last meeting, in significant less time.
They downloaded the last event based release as executable prototype to one demo
device and presented it on the shared meeting screen to all others. By showing the
differences in the application, they could easier explain the status and the impediments.
Other meeting participants were able to understand the projects status better than in
the meetings without executable prototypes.

We also asked the release managers to introduce this technique in team and cus-
tomer meetings. From team retrospective meetings in 2013, we received a lot of posi-
tive feedback about this possibility. If the meeting participants download the executable
prototypes to the device in advance, this technique saves a lot of time and improves
the communication and the understanding between different project participants, in
particular between developers and the customer.

136

7.3. Findings

We consider these findings anecdotal evidence and conclude that the regular pre-
sentation of executable prototypes in Rugby improves the understanding of project
participants, which supports hypothesis H1.5. The prerequisite for this finding is the
existence of a fast and easy to use release mechanism that creates event based re-
leases which can be used as executable prototypes.

7.3.6 Learning

Hypothesis H2.1 states that Rugby’s workflows can be effectively taught by an instruc-
tor in university capstone courses and lectures within one semester. To evaluate H2.1,
we conducted a quasi experiment (E3), in which we investigated whether the partici-
pants improved their technical skills and their soft skills as a result of taking our course.
We looked at four categories software engineering, usability engineering, configuration
management and non technical skills. First, we asked students about their skill im-
provements in software engineering with respect to requirements engineering, system
design, modeling and programming.

On average, 79 % improved their requirements engineering skills (2011: 78 %,
2012: 80 %, 2013: 75 %, 2014: 81 %) and 72 % improved their system design skills
(2011: 83 %, 2012: 78 %, 2013: 63 %, 2014: 72 %). The number of students who
improved their modeling skills decreased by 25 % between 2011 and 2012 (see Fig-
ure 7.9), while at the same time the number of students who improved their program-
ming skills increased by 28 % (see Figure 7.10). In 2012, it was the first time that we
included an introduction to iOS programming before the course started. Due to the

Modeling (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
8 %

20 %

72 %

10 %

20 %

71 %

4 %

42 %

53 %

11 %11 %

78 %

2011 2012 2013 2014

Figure 7.9: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
modeling between 2011 and 2014

137

Chapter 7. Evaluation

Programming (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
8 %

19 %

73 %

4 %

22 %

75 %

9 %
13 %

78 %

17 %

33 %

50 %

2011 2012 2013 2014

Figure 7.10: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
programming between 2011 and 2014

higher emphasis on programming, we decreased the focus on formal modeling dur-
ing the course. In 2013, the number of students who improved their modeling skills
increased again because we emphasized user interface modeling and informal model-
ing techniques [DKA14].

We asked the students about their skills improvements in prototyping and user inter-
face design. On average, 75 % of the students improved their prototyping skills (2011:
72 %, 2012: 80 %, 2013: 78 %, 2014: 69 %) and 65 % of the students improved their
user interface design skills (2011: 72 %, 2012: 58 %, 2013: 63 %, 2014: 66 %). With
respect to configuration management, we evaluated the students’ skill improvements
in version control and release management.

Distributed version control (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
8 %11 %

81 %

0 %

28 %

73 %

18 %18 %

64 %

17 %

44 %
39 %

2011 2012 2013 2014

Figure 7.11: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
distributed version control between 2011 and 2014

138

7.3. Findings

Release management (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree

11 %11 %

78 %

4 %

18 %

78 %

27 %
33 %

40 %

28 %

39 %
33 %

2011 2012 2013 2014

Figure 7.12: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
release management between 2011 and 2014

Figure 7.11 shows a gradual increase of students who improved their version control
skills from 2011 to 2014. The reason is the introduction of the branching model and
stronger emphasis on dedicated code review workflows. Figure 7.12 shows the number
of students who improved their release management skills doubling from 2012 to 2013.
The reason is the early introduction of the continuous delivery workflow in the course.

We asked the students about their skill improvements with respect to communica-
tion, team work, presentation and demo management. Figure 7.13 and Figure 7.14
show that continuously more than 80 % improved their communication and team work
skills in each course. For most students our course is their first experience working in
large teams overcoming cultural differences and negotiating with a client. In addition,

Communication (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
3 %

17 %

80 %

2 %10 %

88 %

4 %
11 %

84 %

0 %

17 %

83 %

2011 2012 2013 2014

Figure 7.13: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
communication between 2011 and 2014

139

Chapter 7. Evaluation

Team work (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
8 %8 %

84 %

2 %4 %

94 %

4 %9 %

87 %

0 %

17 %

83 %

2011 2012 2013 2014

Figure 7.14: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
team work between 2011 and 2014

they have to self organize each other in their team while the instructor makes sure that
everybody contributes to the success of the project.

Figure 7.15 shows a gradual increase of the presentation skills from 56 % in 2011
to 83 % in 2014 and Figure 7.16 shows that the demo management improvement was
on average 70 %. The possibility to watch the performance of their own presentation
in the dry run and to get detailed feedback about technical aspects helped the stu-
dents to improve their presentation skills. Our increased focus on demo management
required more students to participate in the presentation. Up to 2011, it was normal
that only one or two students performed the presentation, while in later years the whole
team was involved. In addition, we film and stream the final presentations live into the

Presenting (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
6 %

11 %

83 %

4 %

20 %

77 %

0 %

24 %

76 %

0 %

44 %

56 %

2011 2012 2013 2014

Figure 7.15: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
presenting between 2011 and 2014

140

7.3. Findings

Demo management (3-Likert)

0 %

20 %

40 %

60 %

80 %

100 %

Agree Neutral Disagree
5 %

25 %

70 %

2 %

28 %

71 %

9 %

24 %

67 %

6 %

17 %

78 %

2011 2012 2013 2014

Figure 7.16: Answer of questionnaire participants (E3): Skill improvements in capstone courses in
demo management between 2011 and 2014

Internet, so that global customers and the family members of students can watch the
presentations. This increases the pressure to the students to improve their presenta-
tion skills in multiple dry runs. We observed that most of the teams asked for multiple
internal dry runs to improve their presentations. The industry clients appreciate the im-
provements in the presentation, because they can use the videos to promote the idea
in their company and for the further development of the application.

We found anecdotal evidence that students improve their technical and soft skills in
capstone courses which use Rugby’s process model. More students reported that they
improved their skills, e.g. with respect to release management, in later years of the
capstone course, when Rugby’s workflows, e.g. release management, were used from
the beginning of the course. We conclude that Rugby’s workflows can be effectively
taught by instructors in capstone courses, which supports hypothesis H2.1.

7.3.7 Scalability

Hypothesis H2.2 states that Rugby allows instructors to conduct exercises in large
class rooms with more than 100 students. To evaluate H2.2, we investigated the in-
troduction of five exercises in a large lecture with 423 registered students (E6). 223
students (53 %) participated in the questionnaire at the end of the course. As de-
scribed in more detail in Section 6.2, the students first learned concepts in individual
(tutorial based) exercises conducted in class. Then, they applied these concepts in
team exercises. The questionnaire asked the students whether they participated in
five individual exercises and whether they applied the following five techniques in their

141

Chapter 7. Evaluation

team: agile methods, distributed version control, branch and merge management, con-
tinuous integration (including testing) and continuous delivery.

The questionnaire used a five point Likert type scale with the answers strongly
disagree, disagree, neutral, agree, strongly agree to measure either negative, neutral
or positive responses with respect to techniques learned in the five exercises:

1. Improved: In the exercises, I was able to improve my skills in the following tech-
niques

2. Confident: I am confident to apply the following techniques in my next team
project

In the following, we describe the results to these statements for students who partic-
ipated in individual exercises and who applied the technique in their team. This means,
for each technique we filtered the students who reported that they did not participate
in the individual exercise or who reported that they did not apply the technique in their
team. We did that, because answers of these students would distort the results.

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

agile methods

I am confident to apply
agile methods

in my next team project

2.6%3.1%
9.3%11.9%

88.1%85.1%

Agree Neutral Disagree

Agile methods (3-Likert)

Figure 7.17: Answer of questionnaire participants (E6): improvements and confidence in agile methods

Figure 7.17 shows that 85 % of the students improved their skills in agile methods
and that 88 % of the students are confident to apply agile methods in their next team
project. This results confirms the strong focus of the exercises on agile methods and
shows that students feel prepared for the management of their next agile project.

Figure 7.18 shows that 73 % of the students improved their skills in distributed
version control. This number is lower because distributed version control is widely
today in software engineering projects [BCSD14] and students also use it other projects
besides the university. 86 % of the students are confident to apply distributed version
control in their next team project.

142

7.3. Findings

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

distribute version control

I am confident to apply
distributed version control
in my next team project

4.2%6.7% 10.3%
20.0%

85.5%
73.3%

Agree Neutral Disagree

Distributed Version Control (3-Likert)

Figure 7.18: Answer of questionnaire participants (E6): improvements and confidence in distributed
version control

Figure 7.19 shows that 78 % of the students improved their skills in branch and
merge management which is part of Rugby’s review management workflows. 87 % of
the students are confident to apply it in their next team project. These results show that
branch and merge management has become teachable. Students are able to handle
parallel branches and can deal with merge conflicts.

Figure 7.20 shows that 76 % of the students improved their skills in continuous
integration. The students could experience the benefits of immediate feedback about

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

branch and merge management

I am confident to apply
branch and merge management

in my next team project

4.5%5.2% 9.0%
16.8%

86.5%
78.1%

Agree Neutral Disagree

Branch and merge management (3-Likert)

Figure 7.19: Answer of questionnaire participants (E6): improvements and confidence in branch and
merge management

143

Chapter 7. Evaluation

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in
continuous integration

I am confident to apply
continuous integration

in my next team project

9.2%
4.2%

14.3%
20.2%

76.5%75.6%

Agree Neutral Disagree

Continuous integration (3-Likert)

Figure 7.20: Answer of questionnaire participants (E6): improvements and confidence in continuous
integration

integration and test failures after they committed their changes to the source code
repository. 77 % feel confident to apply continuous integration in their next team project.

Figure 7.21 shows that 78 % of the students improved their skills in continuous
delivery. In the release management exercise, they configured continuous delivery for
a mobile application and applied it in their team project as well. 79 % of the students
are confident to apply continuous delivery in their next team project.

0%

20%

40%

60%

80%

100%

In the exercises, I was able
to improve my skills in

continuous delivery

I am confident to apply
continuous delivery

in my next team project

6.1%4.1%
15.3%18.4%

78.6%77.6%

Agree Neutral Disagree

Continuous delivery (3-Likert)

Figure 7.21: Answer of questionnaire participants (E6): improvements and confidence in continuous
delivery

144

7.3. Findings

In Table 7.5, we summarize the evaluation results of the questionnaires for the five
techniques introduced in the exercises and evaluated in the questionnaire. Table 7.5
includes the following three different filters:

(1) Individual exercise: We considered only students who reported that they par-
ticipated in the individual exercise of the corresponding technique and filtered
out students who reported that they did not participate in the individual exercise,
independent whether the students applied the technique in their team project.

(2) Team based exercise: We considered only students who reported that they
applied the concept in their team project and filtered out students who reported
that they did not apply the technique in their team project, independent whether
the students participated in the individual exercise.

(3) Both exercises: We considered only students who reported that they partic-
ipated in individual exercises and who applied the technique in their team. We
filtered out all other students. These are the same results as shown in Figure 7.17
- Figure 7.21.

Technique
(1) Individual exercise (2) Team based exercise (3) Both exercises

#
Agree

improved
Agree

confident
#

Agree
improved

Agree
confident

#
Agree

improved
Agree

confident
Agile methods 209 83.7 % 87.1 % 198 84.8 % 88.4 % 194 85.1 % 88.1 %
Distributed
version control

195 71.3 % 83.6 % 172 73.3 % 86.0 % 165 73.3 % 85.5 %

Branch & merge
management

197 75.6 % 81.7 % 162 75.9 % 85.8 % 155 78.1 % 86.5 %

Continuous
integration

166 71.7 % 73.5 % 138 70.3 % 73.9 % 119 75.6 % 76.5 %

Continuous
delivery

149 71.8 % 71.8 % 118 73.7 % 73.7 % 98 77.6 % 78.6 %

Table 7.5: Overview of subjective opinions of students about exercise improvements and confidence
(E6) divided into students who participated in individual, team or both exercises: percentage of students
who participated and (strongly) agree that they improved their skills, and percentage of students who
participated and (strongly) agree that they are confident to apply the technique in their next project

In addition to the qualitative evaluation (E6), we also conducted a quantitative eval-
uation (E9) to find a correlation between exercise participation and the average grade
of the students in the final exam. The students could receive up to 600 exercise points
through the participation in quizzes, individual exercises and team based exercises.
We grouped the 294 students, who participated in the exam, into five categories with
equal distances describing their participation in the exercises. For instance, the first

145

Chapter 7. Evaluation

category contains 75 students who obtained less than 20 % of the exercise points and
the second category contains 66 students who obtained between 20 % and 40 % of the
exercise points. Figure 7.22 shows that students with less exercise participation (i.e.
with less exercise points) have worse grades than students with a higher participation.

2

2.5

3

3.5

4

2.4
2.5

2.9

3.6

3.9

GPA (Grade point average, lower ist better)

Exercise points

GPA

20 % 40 % 60 % 80 % 100 %0 %

Figure 7.22: The GPA of the final exam grouped by students’ exercise points (E9) shows correlation:
students who successfully completed more exercises received more exercise points and scored better

in the exam (grades vary between 1.0 and 5.0; a lower grade is better).

In fact, students with less than 20 % of the exercise points have a grade point
average of 3.9 and students with more than 60 % have a grade point average of 2.5
or better8. We found the following correlation: A higher exercise participation leads
to a better grade on average. Table 7.6 shows additional details of the correlation,
such as how many students participated in the exam and how many students were
in each exercise point category. The final exam included questions about the five
techniques mentioned in Table 7.5. A better grade in the exam means, that the students
showed a better understanding of these techniques. Therefore, we can conclude that
the exercises improved the understanding of the students.

We identified a correlation between the exercise participation and the final exam
results. Therefore, we conclude from these findings that Rugby’s workflows can be
effectively taught by instructors in capstone courses, which supports hypothesis H2.1.
We can also conclude that instructors can conduct exercises in large class rooms with
more than 100 students, which supports hypothesis H2.2.

8The grade point averages in Figure 7.22 and Table 7.6 do not include the bonus that the students
could receive through exercise participation.

146

7.4. Limitations

Exercise points
(absolute)

0 - 119 120 - 239 240 - 359 360 - 479 480 - 600 All

Exercise points
(relative)

0 % - 20 % 20 % - 40 % 40 % - 60 % 60 % - 80 % 80 % - 100 % -

Number of students
who took the exam

75 66 88 56 9 294

Number of students
who passed

42 48 79 55 9 233

Number of students
who failed

33 18 9 1 0 61

GPA without bonus
(all students)

3.9 3.6 2.9 2.5 2.4 3.2

Table 7.6: Correlation between exercise participation and GPA in the final exam: students who
successfully completed more exercises received more exercise points and scored better in the exam

(grades vary between 1.0 and 5.0; a lower grade is better, a higher grade is worse).

7.4 Limitations

As is the case with many qualitative studies, ensuring the validity of findings is a chal-
lenging undertaking [Gol03]. In this section, we describe the limitations of our qualita-
tive and quantitative evaluation9.

E1 and E2: Questionnaires in the Capstone Courses in 2013 and 2014

There are threats to the validity in the methodology of evaluation E1 and E2 that we
discuss briefly. First, we might have the problem of selection bias. Some teams used
the workflows more frequently than others because of more experienced students. To
alleviate selection bias we asked students in which team they worked. We have at
least three responses in E1 from each team and at least five responses in E2 from
each team, so the threat of selection bias is small. Additionally we observed the same
results in the interviews where interviewees agreed with our findings.

A problem might be that participants gave answers which do not reflect their work
practice, because they knew we would publish the results. We guaranteed the partic-
ipants the complete anonymity and addressed this threat by that. We know that our
findings might not be generalizable to industry projects because of the different setup
at university. However, we think our course is similar to a project based organization in
industry so that most results would remain valid. In addition, we could validate some
results in an evaluation in industry (see E4). The amount of code lines changed in a

9To avoid repetition, we do not mention specific biases multiple times.

147

Chapter 7. Evaluation

pull request is not shown. It does not reflect the size of the code changes as developers
added frameworks, used automatic code formatting and refactored code.

Another limitation is that we cannot compute the number of response commits after
the pull request was created to address review comments in the initial change set. It
would be interesting to evaluate how many comments developers addressed in these
response commits. We were not able to measure the code quality automatically and
how much it improved in contrast to previous courses. We reviewed random samples
and observed that it increased. Our evaluation mainly focused on the benefits through
the process aspects of the workflow and it was not our aim to measure code quality in
a quantitative manner.

E3: Questionnaire in the Capstone Courses in 2011 - 2014

In the quasi experiment E3, we did not use a control group within the same course;
instead we did a formative evaluation where we compared the previous course without
intervention with the successor course that used the intervention. Small differences
in the organization of the courses could have influenced the results. Even though it
is a quasi experiment, we think that the results are generalizable for other capstone
courses. Another threat is that we used Likert type scales which may be subject to
distortion.

Respondents may have avoided using extreme response categories (central ten-
dency bias) and may have agreed with statements as presented (acquiescence bias).
They may have tried to portray themselves or our course in a more favorable light (so-
cial desirability bias). As we designed the Likert type scale with balanced keying (i.e.
an equal number of positive and negative statements), we obviated the problem of
acquiescence bias, since acquiescence on positively keyed items will balance acqui-
escence on negatively keyed items. Our findings apply to a multi customer capstone
course that was set up at our university. In other universities with different curricula and
environments, it might not be possible to instantiate our course format easily.

E4: Questionnaire in Industry in 2014

In the industry evaluation E4, we wanted to gain insight into the development process
of mobile projects and measure the impact of our workflow. We thoughtfully worded
each question to avoid ambiguity of leading questions. However, our results may be
subject to the following limitations:

Factors such as duration of evaluation period, number of metrics, or level of detail
may have influenced the reliability of our results. We can consider our findings anecdo-

148

7.4. Limitations

tal evidence [RS11] for the impact of release and feedback management on mobile app
development projects in a corporate environment. The number of projects and the vari-
ation of project characteristics is low in order to achieve generalizable results [PCL+04].
For example, we did not find a correlation between project size or complexity and any of
the observed effects. However, consistent results across all eight interviewed projects
are an indication that our results apply to other projects as well.

Projects participating in our personal interview may already have experience in ag-
ile methods and interest in automated integration and delivery [PCL+04]. This might
impact our findings to the positive, though cultural acceptance is a prerequisite for suc-
cessful agile projects [HF10]. Bias caused by an appreciation for continuous software
engineering or our customized workflow in particular and positive results of previous
studies [KABW14] may have influenced the wording of the questions. We chose project
managers as interview participants with high expertise, which allows them to correct
for ambiguity and added open ended questions to encourage full, meaningful answers
to alleviate this threat.

E5: Personal Interviews in the Capstone Course in 2015

The interviews in our evaluation E5 were on a voluntary basis which leads to a po-
tential problem with selection bias. The question arises if only the students who were
convinced of the benefits of the review workflow were willing to participate in our study.
We noted the team of each interviewee and had a diverse pool of participants that
represent seven of the eleven teams from the WS 2014/15 capstone course. More
than half of the review managers volunteered to join the study. To alleviate selection
bias we also analyzed data quantitatively (see evaluation E8). Another limitation is that
we were only able to interview 16 participants due to the limited number of volunteers
paired with the substantial amount of time an interview took. Therefore, generalizations
are difficult to make and the study rather aims to provide qualitative insights into how
code reviews were conducted and how the students’ regarded their value.

Given the nature of personal interviews person, the students might not entirely be
forthcoming with negative information about their team members, the teaching assis-
tants and the workflow itself. The lack of anonymity and the exposure of their person
may have influenced their answers. To minimize this threat, we assured that their
recounts would not be shared with any third party without being anonymized. The
phrasing of some of the questions in the interview could be considered to lead the re-
spondent to a certain answer. However, the questions were primarily used as manual
to lead the discussion towards finding the opinion on the matter and its rationale. The

149

Chapter 7. Evaluation

questions helped the interviewer and were not exposed to the participants so that the
interview rather was a conversation instead of a question answer session.

E6: Questionnaire in the Lecture in 2015

In our evaluation E6 in the lecture in 2015 one threat to the validity is that the personal
opinion of students does not reflect the real situation. Most students were beginners
in the taught concepts. A student without previous knowledge in an area will definitely
improve his knowledge, even if he only learns a limited amount of concepts. Beginners
cannot estimate objectively about their real improvement and the confidence to apply
a concept does not necessarily mean that the student is really able to apply it. Other
positive effects of the lecture, such as the open atmosphere towards feedback, might
have a positive influence on the evaluation result. Only if a student likes interactive
exercises, this does not necessarily mean that he improves his skills. To alleviate
these threats, we additionally evaluated the participation in the exercises quantitatively
in a more objective manner, see E9.

E7: Quantitative Measurement in Capstone Courses between 2012 and 2014

In the quantitative measurement of release and feedback management numbers, we
recognize the following limitations. More releases do not necessarily mean, the cus-
tomer has a look at the release and more feedback does not necessarily mean the
feedback is helpful or does contain good quality. However, the qualitative studies show
that releases were helpful and that the quality of feedback was improved for automatic
feedback reports. We were not able to distinguish whether developers and customers
downloaded the releases. While both is helpful, we cannot say how often a customer
actually downloaded the application. We also do not know how often the customers
actually tried out the application after the downloaded it and how thoroughly they did
it. However, we know from feedback after the courses and from the project leader that
customers use this opportunity and that they like it.

E8: Quantitative Measurement in Capstone Courses between 2014 and 2015

In the quantitative measurement of review management numbers, we recognize the fol-
lowing threats to validity. More reviews do not necessarily improve the quality of source
code. We know that some reviews were empty due to time pressure before milestones.
In addition, more comments do not necessarily improve the communication because
wrong and misleading comments might occur. However, the qualitative study showed

150

7.4. Limitations

that these threats are low and that most reviews and comments led to quality improve-
ments We could not quantitatively measure the actual code quality, because of missing
tool support for Swift. Therefore, we cannot measure the quantitative improvements of
the code quality, we only know that the quality improved from the qualitative study (see
E2 and E5).

E9: Quantitative Measurement in Lecture between 2012 and 2014

In the quantitative measurement of the correlation between exercise participation and
final exam grade, we recognize the following threats to validity. The exercise quality
might not be the root cause for the improvement of the final exam grade. One other
influence to the correlation might be the motivation of the students, because students
who participate in exercises usually also have a higher motivation to learn the theory
for the exam, or they might have more experience. We were not able to measure
these variables or to exclude them. However, the qualitative evaluation E6 supports
the results. Therefore we believe that these threats are low.

151

Chapter 7. Evaluation

7.5 Summary

In our evaluation, we found anecdotal evidence that supports our two main hypotheses
H1 and H2: Rugby allows to reduce the delay between development and usage in soft-
ware projects and between teaching and exercising a concept in education. In addition,
we found anecdotal evidence to support the dervied hypotheses. Only H1.3 is partially
supported, because Rugby’s feedback management workflow increases the quality of
automatic feedback, however we did not find evidence that it also increases the qual-
ity of manual feedback. The summarized results of the findings of our evaluations in
relation to the hypotheses are shown in Table 7.7.

ID Hypothesis Result

H1
Rugby allows to reduce the delay between development and usage in
software projects.

Supported

H1.1
Review: Developers increase their code quality with Rugby’s review
management workflow.

Supported

H1.2
Release: Rugby’s release management workflow reduces the effort required
to create a release.

Supported

H1.3
Feedback: Rugby’s feedback management workflow increases the quality of
feedback.

Partially
supported

H1.4
Frequency: The use of Rugby’s process model increases the number of
reviews, releases and feedback reports.

Supported

H1.5
Understanding: The presentation of event based releases as executable
prototypes improves communication and understanding between project
participants.

Supported

H2 Rugby allows to reduce the delay between lectures and exercises in education. Supported

H2.1
Learnability: Rugby’s workflows can be effectively taught by an instructor
in university capstone courses and lectures within one semester.

Supported

H2.2
Scalability: Rugby enables instructors to scale exercises in large class
rooms with more than 100 students.

Supported

Table 7.7: Results of the evaluations in relation to the stated hypotheses

152

Chapter 8

Conclusion

“To raise new questions, new possibilities, to regard old problems from a new
angle, requires creative imagination and marks real advance in science.”

—Albert Einstein

With Rugby, we have shown that continuous software engineering has become pos-
sible. We established a software process model for continuous software engineering
that is based on agile principles and iterative workflows. In this chapter, we summarize
the contributions of this dissertation and propose future work.

8.1 Contributions

Rugby’s process meta model describes software engineering as a set of continuously
running processes called workflows describing activities in the software development
lifecycle. Workflows subscribe to events, sleep until a subscribed event wakes up the
workflow, perform work and then sleep again. We have demonstrated that linear, iter-
ative and agile process models and Rugby’s continuous process model itself can be
instantiated with this meta model. Rugby’s process model addresses three nonfunc-
tional requirements: the process is tailorable, the workflows are customizable and the
change model with the event hierarchy is extensible.

Rugby’s process model integrates three workflows: review management, release
management, and feedback management. Rugby’s review management workflow in-
cludes a branching model and a quality gate that together prevent poorly written code
from being integrated into the main codebase where it would be distributed to the
whole team. Developers improve the code quality and the understanding of the sys-
tem through peer reviews. Rugby’s release management workflow includes continuous

153

Chapter 8. Conclusion

integration and continuous delivery activities, reduces the effort required to create a re-
lease and allows to release a change in the source code in an easy, fast and robust
way to the user. Event based releases allow developers to quickly obtain feedback from
customers anytime in the project lifecycle, if they have clarification questions. Rugby’s
feedback management workflow includes a semi automatic approach to enable user
involvement with context sensitive user feedback. It includes a voting and comment
system to reduce the number of duplicates, to optimize the feedback’s quality and to
help in situations of conflicting feedback. It is important to reduce effort on both user
and developer sides when composing, sending and analyzing feedback and when im-
proving the software according to the feedback.

We developed a reference implementation for Rugby and demonstrated Rugby’s
applicability in three case studies in university and industry. In the first case study,
we applied Rugby’s workflows in 62 university capstone course projects between 2011
and 2015. We conducted formative evaluations to analyze the introduction of Rugby’s
workflows in the capstone courses. From 2011 to 2014, the number of students in cap-
stone projects who have improved their skills in configuration and release management
increased from 40 % to 80 %. Rugby led to 96 code reviews, 64 delivered releases,
136 downloads and 27 feedback reports on average per team in 2014.

Another contribution is the application of Rugby in a lecture environment based
on experiential and blended learning. In the second case study, we used Rugby in a
university course in 2015, which demonstrates Rugby’s extensibility. A qualitative study
showed that Rugby improves the communication between instructors and students.
77 % of the students who participated in the exercises are confident to apply continuous
software engineering workflows in future projects. We identified a correlation between
the exercise participation and the final exam results.

In the third case study, we applied Rugby to eight industry projects in 2014, which
demonstrated Rugby’s customizability for different project environments. The projects
adapted Rugby’s release and feedback management workflows to their needs. A quali-
tative analysis confirmed the results that we found in the capstone projects in university
and showed that the delay between development and usage of software is reduced in
industry as well. The professionals in the eight industry projects were able to reduce
the time effort for integration and delivery from hours to minutes, while increasing the
frequency of releases.

154

8.2. Future Work

8.2 Future Work

We have identified topics that can be further improved and extended. A CASE (com-
puter aided software engineering) tool that implements Rugby’s process meta model
could automize the adaptations of the process for a concrete ecosystem. The CASE
tool would enable the visualization of process tailoring, workflow customization and
process extension, and it would generate the project environment and the reference
implementation for the adapted process. Further research is needed about the quality
of manual feedback and the use of a semi automated feedback workflow, to answer
questions about the effort a developer can save through attached usage context.

Another area of future work would be the formalization of Rugby’s process model
with first order logic. A challenge is the combination of knowledge that was generated
through Rugby’s continuous software engineering approach with rationale manage-
ment. This would allow developers to continuously reflect user behavior and user feed-
back, and support development teams in their software evolution decisions. Developers
could reflect about the rationale of decisions made in previous product increments and
managers could use this knowledge for decision support.

Rugby already allows the exploration of multiple variations of requirements through
feature branches. Development teams can deliver such variations through event based
releases from these features branches to users and collect user feedback. This sets up
a search space with multiple proposals. Currently, knowledge management is indepen-
dent of this search space and the decision which proposal is chosen is not captured as
rationale in the knowledge management repository. Therefore, this knowledge is not
accessible in later iterations of the project.

A different research area is the further automatization of exercises in large class
rooms through Rugby. This would allow to scale the exercises to large heterogeneous
MOOCs (Massive Open Online Course), which are aimed at “unlimited” participation
and open access via the Internet. Rugby allows to combine theory and exercises
in small interactive units shortly after each other to improve the learning experience
in classes. In a MOOC, content is delivered through videos, where the interactive
feedback loop is missing. Rugby could allow the combination of theory and exercises
in videos and still provide this feedback loop through immediate responses to students
whether their exercise solution is correct or not.

We already validated aspects of Rugby in industry by customizing the release and
feedback management workflows for its use in eight projects at Capgemini. The valida-
tion of additional aspects such as review management in industrial projects is an area
for future work.

155

Appendix A

Terminology

This appendix chapter provides an alphabetically sorted summary of terminology and
definitions used in this dissertation.

Beta tester. A person who tests the application in its target environment, typically
before an official release to the whole user base. [BD09]

Blended learning. Educational approach that allows students to learn through deliv-
ery of content and instructions via computer-mediated activities, digital and online
media. [GK04]

Code quality. Conformance to functional requirements and the system architecture, in
addition to the usage of corresponding design patterns and code guidelines, while
avoiding development anti patterns and code smells.

Code review. Manual assessment of source code by humans, mainly intended to
identify defects and quality problems. [BBZJ14]

Continuous integration. A development practice where members of a team integrate
their work frequently, usually each person integrates at least daily - leading to
multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible. [Fow06]

Continuous delivery. A development practice - based on continuous integration - in
which teams keep producing valuable software in short cycles and ensure that the
software can be reliably released at any time. [Che15]

Continuous deployment. A development practice - based on continuous delivery -
in which every change that passes automated test is automatically deployed to
production. [HF10]

156

Cooperative learning. Educational approach which aims to organize classroom activ-
ities into social learning experiences where students work in groups to complete
tasks collectively towards a common goal. [J+91]

Defined process control. Defined process control requires that every piece of work
be completely understood. Given a well defined set of inputs, the same outputs
are generated every time. [SB02]

Empirical process control. Empirical process control allows to control complex pro-
cesses, which cannot perfectly be defined and which would generate unrepeatable
and unpredictable results through visibility, inspection and adaption. [SB02]

End user. A person who has an interaction with the computer based information sys-
tem as a consumer or producer/consumer of information. [CK89]

Experiential learning. Educational approach in which educators engage with students
in direct experience to increase knowledge, develop skills, and clarify values, to
facilitate the process of learning from experience. [Kol84]

Formal review. Formal assessment of something with the intention of instituting
change if necessary. [Ste10]

Informal review. Flexible assessment that is customized to the situation and that is
conducted as needed.

Lead user. A person whose present needs will become general in the future and who
benefits significantly by having those needs met. [Hip86]

Methodology. A collection of methods for solving a class of problems. [BD09]

Problem based learning. Educational approach to learn about a subject through the
experience of problem solving. [BF98]

Process control. Deals with mechanisms for maintaining the output of a process
in a specified and desired range. Control does not mean the process can be
completely predicted (also compare defined process control and empirical process
control).

Process customization. Adapting a process to operational needs on a smaller level
through removing, modifying or adding specific activities to an existing workflow,
without significantly deviating from the workflow model of the process.

157

Appendix A. Terminology

Process extension. Adapting a process to operational needs through adding a new
workflow or activity that cannot be described with existing elements of the process
model.

Process tailoring. Adapting a process to operational needs on a higher level through
removing, modifying or adding specific workflows, without significantly deviating
from the process model.

Product Owner. A facade to all interested stakeholders, who defines the product
by describing and prioritizing the most valuable requirements for the proposed
system. [SB02]

Quality. Conformance to flexible specifications that respond to the changes of the
user’s needs, in addition to the usage of corresponding patterns to address non-
functional requirements if applicable, while avoiding anti patterns.

Scrum Master. A facilitator, who resolves impediments in the team and who is respon-
sible that the team follows the basic Scrum process. [SB02]

Software configuration management. A project function, which encompasses the
disciplines and techniques of initiating, evaluating and controlling change to soft-
ware products, with the goal to make technical and managerial activities more
effective. [BD09]

Software development process. A set of software development activities performed
toward a specific purpose.

Software evolution. The continual development and adaption of a software system to
keep it up to date with the changing environment, to satisfy stakeholders and to
remain at an acceptable level in a changing world. [LB85]

Software life cycle. All activities and work products necessary for the development of
a software system. [BD09]

Software life cycle model. An abstract characterization of how software should be
developed for the purpose of understanding, monitoring, or controlling it. [Sca01]

Software process model. An abstract representation of a process describing the way
of working in a software project.

Software process metamodel. An abstraction representation of a process model.

158

Software project. An endeavor undertaken to meet unique goals and objectives to
bring beneficial change or add value by developing a software system.

Software project management. An activity during which managers plan, budget,
monitor, and control the development process. Project management ensures that
constraints and project goals are met. [BD09]

User feedback. Comments, complaints or requests directly from users about the sat-
isfaction or dissatisfaction with a software system used as an important resource
for improving the software system.

User involvement. A systematic exchange of information between (prospective) users
and developers aiming for a better understanding of user needs and a consequent
improvement of the software. [Pag13]

Version control system. A system that records changes to a file or set of files over
time so that specific versions can be recovered. Local, centralized and distributed
version control systems exist. [Cha09]

Workflow. A thread of cohesive and mostly sequential activities performed by project
participants that produce artifacts. [BD09]

159

Appendix B

Process Models

In this appendix chapter, we describe Scrum as a prominent instance of an agile pro-
cess model and the Unified Process as a prominent instance of an iterative process
model. Both play an important role for this dissertation, because the Rugby meta model
allows the instantiation of both process models.

B.1 Scrum

Scrum [Sch95] is an agile process model [Ver15] and is based on the agile manifesto
[BBVB+01] published 2001 to uncover “better ways of developing software by doing
it and helping others do it” [BBVB+01]. Some of the participants formed the Agile
Alliance1 later in the same year which is now the main organization behind Scrum. As
a response to defined process control, the manifesto focuses on these four items to be
more important for agile processes:

” Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan “

— Agile Manifesto [BBVB+01]

Preconditions for successful projects are communication and collaboration within
the team. Tools can facilitate and improve the working process, but the team members

1http://www.agilealliance.org

160

http://www.agilealliance.org

B.1. Scrum

(individuals) and the interactions between them (e.g. in meetings) are more impor-
tant. Teams do focus on working software because that is what the customer normally
prefers over a comprehensive documentation. Documentation is important but exe-
cutable software in the target environment has higher priority.

Collaboration with the customer is essential and communication about changes in
requirements and adaptions to meet the customers is more important than a contract
that has to be negotiated. The idea of dynamic project management is also known as
the Polynesian navigation principle where everything “begins with an objective instead
of a plan” and experience and the occurrence of unexpected events determine further
steps. [BD09]

Scrum follows an incremental process with short time boxed iterations called Sprints.
An informal overview is shown in Figure B.1. While the chosen requirements in a sprint
are fixed in the Sprint Backlog, they can change between sprints in the Product Back-
log. This gives the development team a fixed period without disturbance within the
sprint to focus on the realization, but allows the team to respond to changes between
sprints. Scrum maximizes risk management and transparency through frequent intro-
spection.

Figure B.1: Overview of the main Scrum activities and meetings [Mou05]

It defines three roles: Scrum Master, Product Owner and developer. A Scrum
Master is different to a traditional project manager as he has no decision power. While
he facilitates, resolves impediments and is responsible that the team follows the basic
Scrum process, he does not assign tasks to developers who form a self organizing and
cross functional team that is responsible for realizing the product increment. A Prod-
uct Owner is the facade to all interested stakeholders such as the customer, external
managers and users. As the owner of the product he takes the role of the requirements
engineer, defines the product by describing and prioritizing the most valuable require-

161

Appendix B. Process Models

ments for the proposed system. His role is comparable to a product manager who is
responsible for the results of the project. [SB02]
Scrum uses three main artifacts [Coh04]:

• Product Backlog: List of backlog items (requirements) for the whole product
• Sprint Backlog: List of backlog items (requirements and tasks) for one iteration
• Potentially Shippable Product Increment: Release to the Product Owner that

contains all results of the current sprint

The main goal of a sprint is to create a potentially shippable product increment or
short product increment, which refines previously realized requirements and includes
additionally realized requirements. Only completely realized backlog items, that fully
cover the system from a vertical perspective, are integrated into the product increment.
The increment is used to obtain feedback that is addressed by adding new backlog
items, changing or removing existing ones and reprioritizing items of the product back-
log.
Scrum defines the following five main meetings [Coh04]:

• Project Kickoff Meeting: At the start of the project, everyone meets to create
and prioritize the initial product backlog.

• Sprint Planning Meeting: At the start of each sprint, everyone meets to estimate
and to create the sprint backlog

• Daily Scrum Meeting: Every day, the Scrum Master and the developers meet to
share status since the last meeting, discuss impediments and promise work until
the next meeting

• Sprint Review Meeting: At the end of each sprint, developers demonstrate re-
alized backlog items in the product increment to the Product Owner and other
participating stakeholders to obtain feedback.

• Sprint Retrospective: After the sprint review meeting, everyone meets to identify
improvements in the process by discussing what went well and what went wrong
in the last sprint.

Scrum defines additional artifacts such as burn down charts to track the progress
of the team and task boards to visualize the status of tasks in the current sprint. While
Scrum does not define a specific form of requirements, many teams use user stories
to split the requirements into vertical items that can be implemented quickly [Coh09].
One technique to estimate the effort of backlog items is planning poker [Hau06], a
team based technique based on expert estimates that usually uses Fibonacci numbers
to estimate relative effort of backlog items. The idea of planning poker is to facilitate

162

B.2. Unified Process

initial discussion about backlog items: only if all developers come to an agreement for
the estimate, the estimation of an item is finished [Coh06]. If different developers have
varying opinions about the estimate, they have to exchange their arguments and find
consensus.

B.2 Unified Process

The Unified Process [JBR98] is an iterative and incremental software development
process framework that can be customized for organizations and projects. It divides
the project in four different phases: inception, elaboration, construction and transi-
tion. Each phase can have multiple iterations and has a specific emphasis on different
workflows as shown in Figure B.2. Workflows are also called process disciplines or en-
gineering disciplines and include business modeling, requirements, analysis & design,
implementation, test and deployment. The key process characteristics of the Unified
Process are:

• Iterative and Incremental: Phases are divided into time boxed iterations which
each result in an increment, a release including added or improved functionality.

• Use Case Driven: The development team describes use cases to explore func-
tionality and content of requirements and to drive all development work, from
requirements elicitation through analysis, design and code.

• Architecture Centric: The architecture is modeled upfront in the elaboration
phase and the executable architecture baseline, a partial implementation of the
system, validates the architecture and is the foundation for the rest of the project.

• Risk Focused: Addressing the most critical risks early in the project life cycle is
required. Through the creation of an executable architecture baseline, important
business and technical risks are identified, assessed and mitigated early.

The project starts with the relatively short inception phase, where the project team
answers the question “Should we build the proposed system?” by establishing a busi-
ness case for the project. Other typical goals include the definition of the project scope,
boundary conditions and the outline of key requirements that influence the candidate
architecture and the design tradeoffs. The team outlines a candidate architecture by
creating initial versions of different models, identifies critical risks and determines when
and how these risks will be addressed in the project. The milestone at the end of the
inception phase is called life cycle objective. It is reached when the stakeholders agree
on the scope of the propose system, when the candidate architecture addresses the

163

Appendix B. Process Models

Figure B.2: Diagram illustrating how the relative emphasis of core workflow activities in the Unified
Process change over the project duration [Kru04]

critical requirements and when the business case is valuable enough for continued
development. [Sco02]

The elaboration phase addresses the question “Can we build the proposed sys-
tem?”. The goal is to establish the ability to build the proposed system in the given con-
straints. Important tasks in this phase include the elicitation and analysis of remaining
functional requirements as use cases and the transition of the candidate architecture
into an executable architecture baseline, an internal release that validates the feasibil-
ity of the proposed system. Significant risks are assessed on an ongoing basis and
the project plan is further detailed for the next phase. The milestone at the end of the
elaboration phase is called life cycle architecture. It indicates that the most important
functional requirements for the new system have been analyzed in the use case model,
the architecture baseline is available as a solid foundation for ongoing development and
the business case has green lights to proceed to the next phase. [Sco02]

In the construction phase, which is typically the largest phase of the project, the
team actually implements the proposed system based on the foundation laid in the
elaboration phase. It answers the question “Are we building it”. Functionality is real-
ized incrementally in a series of short and time boxed iterations so that the proposed
system is capable of operating successfully in beta environments. The team creates
executable release in each iteration making sure the realized functionality of the sys-
tem is always available in executable form. The milestone at the end of the construction
phase is called initial operational capability. The project reaches this milestone if a fully
operational system was successfully tested in beta environments. [Sco02]

164

B.2. Unified Process

The final phase in the Unified Process is called transition phase and answers the
question “Have we delivered it?”. The fully functional system is rolled out to customers
and eventually handed over to operations. The development team modifies the system
only slightly to correct previously unidentified problems and deviations and corrects
additional defects found in operation. The last milestone is the product release which
marks the end of the project. [Sco02]

There are multiple refinements and variations of the Unified Process such as the
Rationale Unified Process [Kru04], a commercial product of the company Rational Soft-
ware which belongs to IBM. The Rational Unified Process includes three additional
workflows as supporting disciplines for environment, project management, configura-
tion and change management. It is a tailorable process to guide development includ-
ing tools that automate the application of the process and services that accelerate the
adoption of processes and tools [Kru04]. The Enterprise Unified Process [ANV05] is
an extension of the Rational Unified Process and introduces eight additional enterprise
disciplines: operations and support, enterprise business modeling, portfolio manage-
ment, enterprise architecture, strategic reuse, people management, enterprise admin-
istration and software process improvement. It also adds two additional phases for
production and retirement of software [ANV05]. We describe two other variations of
the Unified Process, the Agile Unified Process and Disciplined Agile Delivery, as re-
lated work in Section 4.6.

165

Appendix C

Rugby’s Full Change Model

Figure C.1 shows Rugby’s full change model that includes all events used in this dis-
sertation in the following figures:

• Dynamic view of the Waterfall process model: Figure 3.10

• Dynamic view of the Unified Process model: Figure 3.13

• Dynamic view of the Scrum process model: Figure 3.16

• Dynamic view of the Develop Backlog Item activity in the Scrum process model:
Figure 3.16

• Dynamic view of the Rugby process model: Figure 4.9

• Dynamic view of the parallel workflows in the Rugby process model: Figure 4.11

Rugby’s change model is extensible, which means that events can added, changed
and removed through process tailoring and workflow customization or through the use
of Rugby into other domains.

166

C
om

m
un

ic
at

io
n

E
ve

nt

C
om

m
un

ic
at

io
n

M
ec

ha
ni

sm

R
eq

ue
st

P
ro

po
sa

l
cr

ea
te

d

D
ec

is
io

n

S
ch

ed
ul

ed
E

ve
nt

U
ns

ch
ed

ul
ed

E
ve

nt

M
ee

tin
g

A
sy

nc
hr

on
ou

s
M

ec
ha

ni
sm

S
yn

ch
ro

no
us

M
ec

ha
ni

sm

Ti
m

e
ba

se
d

R
el

ea
se

P
la

nn
in

g
M

ee
tin

g

R
ug

by
E

ve
nt

E
ve

nt
 b

as
ed

R
el

ea
se

R
ev

ie
w

M
ee

tin
g

Fe
ed

ba
ck

R
ep

or
t

D
es

ig
n

R
eq

ue
st

Fe
at

ur
e

R
eq

ue
st

B
ug

R
ep

or
t

M
ile

st
on

e

Im
pr

ov
em

en
t

R
eq

ue
st

S
pr

in
t

P
la

nn
in

g
K

ic
ko

ff
S

pr
in

t
R

ev
ie

w
In

sp
ec

tio
n

P
ro

je
ct

E
nd

P
ro

je
ct

S
ta

rt

R
eq

ui
re

m
en

ts
E

lic
ita

tio
n

fin
is

he
d

A
na

ly
si

s
fin

is
he

d
D

es
ig

n
fin

is
he

d

Im
pl

em
en

ta
tio

n
fin

is
he

d

Te
st

in
g

fin
is

he
d

Li
fe

cy
cl

e
O

bj
ec

tiv
e

Li
fe

cy
cl

e
A

rc
hi

te
ct

ur
e

In
iti

al
O

pe
ra

tio
n

C
ap

ab
ili

ty

P
ro

du
ct

R
el

ea
se

B
ac

kl
og

It
em

fin
is

he
d

P
ro

du
ct

B
ac

kl
og

re
vi

se
d

P
ro

du
ct

B
ac

kl
og

cr
ea

te
d

R
el

ea
se

R
eq

ue
st

C
ha

ng
e

R
eq

ue
st

M
er

ge
R

eq
ue

st

S
pr

in
t

0
fin

is
he

d

C
ha

ng
e

to
ex

is
tin

g
fu

nc
tio

na
lit

y

N
ew

 B
ac

kl
og

It
em

B
ac

kl
og

 It
em

re
ad

y
fo

r
D

ev
el

op
m

en
t

B
ac

kl
og

C
ha

ng
es

W
or

kf
lo

w
S

ta
rt

W
or

kf
lo

w
C

us
to

m
iz

at
io

n

de
al

 w
ith

V
is

ua
l P

ar
ad

ig
m

 S
ta

nd
ar

d
E

di
tio

n(
TU

M
 -

In
st

itu
t f

ue
r I

nf
or

m
at

ik
 -

Le
hr

st
uh

l 1
)

Fi
gu

re
C

.1
:

R
ug

by
’s

fu
ll

ch
an

ge
m

od
el

w
ith

al
le

ve
nt

s

167

List of Figures

1.1 Interaction between review, integration, test, delivery and feedback loops
in Rugby . 7

2.1 Git flow branching model (adapted from [Dri10]) 16
2.2 Deployment process with integration stage, test stage(s) and delivery

stage (adapted from [HF10]) . 19
2.3 Review taxonomy (adapted from [CBDT06]) 22
2.4 Activities in informal code reviews (adapted from [CBDT06]) 23
2.5 Circular model of feedback in software evolution (adapted from [Sch11]) 24
2.6 Exemplary taxonomy of roles in the user feedback process (non exhaus-

tive, adapted from [DKAB16]) . 25

3.1 Rugby’s process meta model in the meta object facility layers 29
3.2 Overview of Rugby’s process meta model 31
3.3 Static view of Rugby’s process meta model as UML class diagram de-

scribing the core concepts and their relationships 32
3.4 Simplified version of Rugby’s Change Model including an event taxon-

omy for scheduled and unscheduled events 34
3.5 Dynamic view of Rugby’s process meta model as UML activity diagram

describing the core activities and their control flow 35
3.6 Generic example for the communication between multiple workflows through

Rugby events . 35
3.7 The lifecycle model of a Rugby workflow (UML State machine) 36
3.8 Exemplary instantiation of Rugby’s work queue (adapted from QNX Mi-

crokernel’s process priorities [Hil92]) . 37
3.9 Static view of the Waterfall process model with a UML class diagram

as an example of a linear instantiation of Rugby’s process meta model
(adapted from [Roy70]) . 38

168

List of Figures

3.10 Dynamic view of the Waterfall process model as an example of a linear
instantiation of Rugby’s process meta model 39

3.11 Lifecycle of the Waterfall process as view of its dynamic model 39
3.12 Static view of the Unified Process model with a UML class diagram as

an example of an iterative instantiation of Rugby’s process meta model
(adapted from [JBR98]) . 40

3.13 Dynamic view of the Unified Process model with a UML class diagram as
an example of an iterative instantiation of Rugby’s process meta model
(adapted from [JBR98]) . 41

3.14 Lifecycle of the Unified Process as view of its dynamic model 42
3.15 Static view of the Scrum process model with a UML class diagram as

an example of an agile instantiation of Rugby’s process meta model
(adapted from [SB02]) . 43

3.16 Dynamic view of the Scrum process model as an example of an agile
instantiation of Rugby’s process meta model 44

3.17 Details of the activity Develop Backlog Item in the dynamic view of the
Scrum process model . 44

3.18 Lifecycle of the Scrum process as view of its dynamic model 45

4.1 Shared understanding between developers and users through releasing
executable prototypes and obtaining feedback 48

4.2 Top level design of Rugby’s ecosystem 48
4.3 Team roles in Rugby (UML class diagram taxonomy) 56
4.4 Rugby’s high level use case model . 57
4.5 Rugby’s review management use case model 57
4.6 Rugby’s release management use case model 58
4.7 Rugby’s feedback management use case model 59
4.8 Static view of Rugby’s process model 60
4.9 Dynamic view of Rugby’s process model 62
4.10 Dynamic view of Rugby’s process model: Details of the activity Develop

Backlog Item . 63
4.11 Dynamic view of the synchronization of parallel Rugby’s workflows through

change events . 64
4.12 Agile Unified Process Timeline with the distinction between development

releases and production releases (adapted from [CPP10]) 65
4.13 Disciplined Agile Delivery Lifecycle (adapted from [AL12]) 66

5.1 Rugby’s lifecycle as view of its dynamic model 67

169

List of Figures

5.2 Rugby’s review model . 70
5.3 Rugby’s branching model . 70
5.4 Overview of the review workflow with developer and reviewer 71
5.5 Workflow for the preparation activity in branch based code reviews (adapted

from [KBB16]) . 73
5.6 Workflow for the examination activity in branch based code reviews (adapted

from [KBB16]) . 74
5.7 Workflow for the rework activity in branch based code reviews (adapted

from [KBB16]) . 75
5.8 Workflow for the integration activity in branch based code reviews (adapted

from [KBB16]) . 76
5.9 Rugby’s release model . 78
5.10 High level release management workflow with roles, services and tran-

sitions (adapted from [KA14]) . 79
5.11 Event based delivery in the context of the branching model with four

examples for releases (adapted from [KA14]) 80
5.12 Rugby’s feedback model shows concepts of the feedback workflow and

their relations in a UML class diagram - colors highlight related concepts 84
5.13 Rugby’s feedback management workflow (adapted from [KABW14]) . . 86
5.14 Three approaches for feedback provision (adapted from [Sch11]) 87

6.1 Environments of the capstone course including Rugby’s ecosystem and
a management environment or the general course organization (adapted
from [BKA15]) . 95

6.2 Organizational chart showing the project based organization of the cap-
stone course with project teams and functional teams (adapted from
[BKA15]) . 98

6.3 Wallboard showing whether the current version of the software is re-
leasable or not . 103

6.4 Mapping between the deployment process and stages in Bamboo . . . 109
6.5 Extended and customizable release management workflows with colors

to indicate activities (adapted from [KKP+15]) 114

7.1 Answers in personal interviews (E5): The developers’ view on motiva-
tions and benefits of code reviews . 127

7.2 Answer of questionnaire participants (E1): Rugby’s branching model . . 128
7.3 Answer of questionnaire participants (E2): branch and merge manage-

ment problems . 128

170

List of Figures

7.4 Answer of questionnaire participants (E2) about review management . . 129
7.5 Answer of questionnaire participants (E1 and E2): future usage of Rugby

workflows . 130
7.6 Answers in questionnaire (E4): Utilization of feedback channels and fre-

quency of feedback collection . 131
7.7 Answers in questionnaire (E4): Perceived quality of feedback across

feedback channel . 132
7.8 Answer of questionnaire participants (E1): Rugby’s release manage-

ment workflow . 133
7.9 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in modeling between 2011 and 2014 137
7.10 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in programming between 2011 and 2014 138
7.11 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in distributed version control between 2011 and 2014 . . 138
7.12 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in release management between 2011 and 2014 139
7.13 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in communication between 2011 and 2014 139
7.14 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in team work between 2011 and 2014 140
7.15 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in presenting between 2011 and 2014 140
7.16 Answer of questionnaire participants (E3): Skill improvements in cap-

stone courses in demo management between 2011 and 2014 141
7.17 Answer of questionnaire participants (E6): improvements and confidence

in agile methods . 142
7.18 Answer of questionnaire participants (E6): improvements and confidence

in distributed version control . 143
7.19 Answer of questionnaire participants (E6): improvements and confidence

in branch and merge management . 143
7.20 Answer of questionnaire participants (E6): improvements and confidence

in continuous integration . 144
7.21 Answer of questionnaire participants (E6): improvements and confidence

in continuous delivery . 144
7.22 GPA of the final exam grouped by students’ exercise points (E9) 146

171

List of Figures

B.1 Overview of the main Scrum activities and meetings [Mou05] 161
B.2 Diagram illustrating how the relative emphasis of core workflow activities

in the Unified Process change over the project duration [Kru04] 164

C.1 Rugby’s full change model with all events 167

172

List of Tables

6.1 Overview of the case studies . 90
6.2 Number of participants in the multi customer project courses between

2011 and 2015 . 92
6.3 Interventions in the multi customer capstone courses between 2011 and

2014 . 93
6.4 Overview of the used tools in the capstone course since 2013 94
6.5 Typical schedule for course wide meetings in the multi customer cap-

stone course . 104
6.6 Lecture and exercise schedule of Software Engineering II: Project Orga-

nization and Management in 2015 . 106
6.7 Individual exercises and the corresponding bonus points for the lecture

Software Engineering II: Project Organization and Management in 2015 107
6.8 Team exercises and the corresponding exercise points for the lecture

Software Engineering II: Project Organization and Management used in
2015 . 110

7.1 Overview of the formative and qualitative evaluations between 2013 and
2015 . 119

7.2 Overview of the formative and quantitative evaluations between 2012
and 2015 . 120

7.3 Measurements of average use of version control, release management
and feedback management workflows per team in capstone courses (E7) 134

7.4 Measurements of average number or reviews, comments and commits
per team in capstone courses (E8) . 135

7.5 Overview of subjective opinions of students about exercise improve-
ments and confidence (E6) . 145

7.6 Correlation between exercise participation and GPA of students in final
exams (E9) . 147

7.7 Results of the evaluations in relation to the stated hypotheses 152

173

Bibliography

[AL12] Scott Ambler and Mark Lines. Disciplined agile delivery: A practitioner’s
guide to agile software delivery in the enterprise. IBM, 2012.

[Ala02] Ian Alam. An exploratory investigation of user involvement in new service
development. Journal of the Academy of Marketing Science, 30(3):250–
261, 2002.

[And10] David Anderson. Kanban: Successful Evolutionary Change for Your Tech-
nology Business. Blue Hole Press, 2010.

[ANV05] Scott Ambler, John Nalbone, and Michael Vizdos. Enterprise unified pro-
cess, the: extending the rational unified process. Prentice Hall, 2005.

[BA04] K. Beck and C. Andres. Extreme programming explained: embrace
change. Addison-Wesley, 2004.

[BAKHE03] Rachel Ben-Ari, Ronit Krole, and Dov Har-Even. Differential effects of sim-
ple frontal versus complex teaching strategy on teachers’ stress, burnout,
and satisfaction. International Journal of Stress Management, 2003.

[Bas96] Victor Basili. The role of experimentation in software engineering: past,
current, and future. In Proceedings of the 18th international conference
on Software engineering, pages 442–449. IEEE, 1996.

[BB13] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of ICSE, pages 712–721.
IEEE, 2013.

[BBVB+01] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. Manifesto
for agile software development. The Agile Alliance, 2001.

174

Bibliography

[BBZJ14] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens.
Modern code reviews in open-source projects: which problems do they
fix? In Proceedings of the 11th working conference on mining software
repositories, pages 202–211. ACM, 2014.

[BCS14] David Boud, Ruth Cohen, and Jane Sampson. Peer learning in higher
education: Learning from and with each other. Routledge, 2014.

[BCSD14] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig.
How Do Centralized and Distributed Version Control Systems Impact Soft-
ware Changes? In Proceedings of the 36th International Conference on
Software Engineering, pages 322–333, 2014.

[BD93] Adolf Bröhl and Wolfgang Dröschel. Das V-Modell - Der Standard für die
Softwareentwicklung mit Praxisleitfaden. Oldenburg, 1993.

[BD09] Bernd Bruegge and Allen Dutoit. Object Oriented Software Engineering
Using UML, Patterns, and Java. Prentice Hall, 3rd edition, 2009.

[BF98] David Boud and Grahame Feletti. The challenge of problem-based learn-
ing. Psychology Press, 1998.

[BF14] Pierre Bourque and Richard Fairley. Guide to the Software Engineering
Body of Knowledge, Version 3.0. IEEE Computer Society Press, 2014.

[BKA15] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. Software en-
gineering project courses with industrial clients. ACM Transactions on
Computing Education, 15(4):17:1–17:31, 2015.

[BKW12] Bernd Bruegge, Stephan Krusche, and Martin Wagner. Teaching Tornado:
from communication models to releases. In Proceedings of the 8th edition
of the Educators’ Symposium, pages 5–12. ACM, 2012.

[Blu92] Bruce Blum. Software engineering: a holistic view. Oxford University
Press, 1992.

[BMMM98] William Brown, Raphael Malveau, Hays McCormick, III, and Thomas
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley & Sons, 1998.

[Boe88] Barry Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, 1988.

175

Bibliography

[Boe00] Barry Boehm. Requirements that handle ikiwisi, cots, and rapid change.
Computer, 33(7):99–102, 2000.

[Boo91] Grady Booch. Object Oriented Design with Applications. Cummings,
1991.

[Bos14] Jan Bosch. Continuous Software Engineering. Springer, 2014.

[BR05] Manfred Broy and Andreas Rausch. Das neue v-modell R© xt. Informatik-
Spektrum, 28(3):220–229, 2005.

[BRS09] Bernd Bruegge, Maximilian Reiss, and Jennifer Schiller. Agile principles
in academic education: A case study. In Sixth International Conference
on Information Technology: New Generations, pages 1684–1686. IEEE,
2009.

[Bun92] Bundesamt für Wehrtechnik und Beschaffung. Software Development
Standard for the German Federal Armed Forces, V-Model, Software Life-
cycle Process Model, BWB General Directive 250 edition, 1992.

[BVGW10] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. Commu-
nication, collaboration, and bugs. In Proceedings of the ACM conference
on Computer supported cooperative work, page 291. ACM, 2010.

[Bö01] Jürgen Börstler. Experience with work-product oriented software develop-
ment projects. Computer Science Education, 11(2):111–133, 2001.

[Cav95] Angèle Cavaye. User participation in system development revisited. Infor-
mation & Management, 28(5):311–323, 1995.

[CBDT06] Jason Cohen, Eric Brown, Brandon DuRette, and Steven Teleki. Best kept
secrets of peer code review. Smart Bear, 2006.

[CBH91] Allan Collins, John Seely Brown, and Ann Holum. Cognitive apprentice-
ship: Making thinking visible. American educator, 1991.

[CF04] Kieran Conboy and Brian Fitzgerald. Toward a conceptual framework of
agile methods: a study of agility in different disciplines. In Proceedings
of the 2004 ACM workshop on Interdisciplinary software engineering re-
search, pages 37–44. ACM, 2004.

176

Bibliography

[CGB+02] Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord,
James Ivers, and Reed Little. Documenting software architectures: views
and beyond. Pearson Education, 2002.

[Cha09] Scott Chacon. Pro git. Apress, 2009.

[Che15] Lianping Chen. Continuous delivery: Huge benefits, but challenges too.
Software, IEEE, 32(2):50–54, 2015.

[CK89] William Cotterman and Kuldeep Kumar. User cube: a taxonomy of end
users. Communications of the ACM, 32(11):1313–1320, 1989.

[CLB03] Marcus Ciolkowski, Oliver Laitenberger, and Stefan Biffl. Software re-
views: The state of the practice. IEEE software, 20(6):46–51, 2003.

[CMPP08] Maria Francesca Costabile, Piero Mussio, Loredana Parasiliti Provenza,
and Antonio Piccinno. End users as unwitting software developers. In
Proceedings of the 4th international workshop on End-user software en-
gineering, pages 6–10. ACM, 2008.

[COB06] O. Creighton, M. Ott, and B. Bruegge. Software cinema-video-based re-
quirements engineering. In Proceedings of the 14th International Confer-
ence on Requirements Engineering, pages 109–118. IEEE, 2006.

[Coh04] Mike Cohn. Agile Project Management with Scrum. Microsoft Press, 2004.

[Coh06] Mike Cohn. Agile estimating and planning. Prentice Hall, 2006.

[Coh09] Mike Cohn. Succeeding with Agile: Software Development Using Scrum.
Addison Wesley, 2009.

[CPP10] Ioannis Christou, Stavros Ponis, and Eleni Palaiologou. Using the agile
unified process in banking. Software, IEEE, 27(3):72–79, 2010.

[Cro80] Philip Crosby. Quality is free: The art of making quality certain. Signet,
1980.

[CSA15] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum.
On the journey to continuous deployment: Technical and social challenges
along the way. Information and Software Technology, 57:21–31, 2015.

[CW00] Alistair Cockburn and Laurie Williams. The costs and benefits of pair
programming. Extreme programming examined, pages 223–247, 2000.

177

Bibliography

[Dam96] Leela Damodaran. User involvement in the systems design process - a
practical guide for users. Behaviour and Information Technology, 15:363–
377, 1996.

[Dep88] Department of Defense. Military standard: defense system software de-
velopment, 1988.

[DKA14] Dora Dzvonyar, Stephan Krusche, and Lukas Alperowitz. Real projects
with informal models. In Proceedings of the 10th Educators’ Symposium,
2014.

[DKAB16] Dora Dzvonyar, Stephan Krusche, Rana Alkadhi, and Bernd Bruegge.
Context-aware user feedback in continuous software evolution. In Pro-
ceedings of the 1st International Workshop on Continuous Software Evo-
lution and Delivery. IEEE/ACM, 2016.

[DMG07] Paul Duvall, Steve Matyas, and Andrew Glover. Continuous integration:
improving software quality and reducing risk. Pearson, 2007.

[DMSW98] David Duffy, Cooper McDonald, Olivier Schueller, and George Whitesides.
Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Ana-
lytical chemistry, 70(23):4974–4984, 1998.

[DPL15] Andrej Dyck, Ralf Penners, and Horst Lichter. Towards definitions for re-
lease engineering and devops. In Proceedings of the Third International
Workshop on Release Engineering, pages 3–3. IEEE, 2015.

[Dri10] Vincent Driessen. A successful git branching model, 2010.
Retrieved January 08, 2016 from http://nvie.com/posts/
a-successful-git-branching-model.

[DS76] Michael Doyle and David Straus. How to make meetings work. Jove
Books, 1976.

[DSTH12] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social cod-
ing in github: transparency and collaboration in an open software reposi-
tory. In Proceedings of the Conference on Computer Supported Cooper-
ative Work, pages 1277–1286. ACM, 2012.

[Ere03] Justin Erenkrantz. Release management within open source projects.
Proceedings of the 3rd Open Source Software Development Workshop,
pages 51–55, 2003.

178

http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model

Bibliography

[Fag76] Michael Fagan. Design and code inspections to reduce errors in program
development. IBM Journal of Research and Development, 15(3):182,
1976.

[Fag86] Michael Fagan. Advances in software inspections. IEEE Transactions on
Software Engineering, 12(7):744–751, 1986.

[FCC13] Davide Falessi, Giovanni Cantone, and Gerardo Canfora. Empirical princi-
ples and an industrial case study in retrieving equivalent requirements via
natural language processing techniques. IEEE Transactions on Software
Engineering, 39(1):18–44, 2013.

[Fei02] Armand Feigenbaum. Total quality management. Wiley, 2002.

[FFB13] Dror Feitelson, Eitan Frachtenberg, and Kent L Beck. Development and
deployment at facebook. IEEE Internet Computing, pages 8–17, 2013.

[Fow99] Martin Fowler. Refactoring: improving the design of existing code. Pear-
son, 1999.

[Fow01] Martin Fowler. The new methodology. Wuhan University Journal of Natural
Sciences, 6(1-2):12–24, 2001.

[Fow06] Martin Fowler. Continuous Integration, 2006. Retrieved January 08, 2016
from http://martinfowler.com/articles/continuousIntegration.html.

[Fow11] Martin Fowler. Frequency Reduces Difficulty, 2011. Retrieved January 08,
2016 fromhttp://www.martinfowler.com/bliki/FrequencyReducesDifficulty.
html.

[FUP11] Roger Fisher, William Ury, and Bruce Patton. Getting to yes: Negotiating
agreement without giving in. Penguin, 2011.

[GAB15] Emitza Guzman, Omar Aly, and Bernd Bruegge. Retrieving diverse opin-
ions from app reviews. In International Symposium on Empirical Software
Engineering and Measurement, pages 1–10. IEEE, 2015.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Pearson, 1994.

[GK04] Randy Garrison and Heather Kanuka. Blended learning: Uncovering its
transformative potential in higher education. The internet and higher edu-
cation, 2004.

179

http://martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/bliki/FrequencyReducesDifficulty.html
http://www.martinfowler.com/bliki/FrequencyReducesDifficulty.html

Bibliography

[Gla64] Thomas Gladwin. Culture and logical process. In Goodenough W., editor,
Exlorations in Cultural Anthropology: Essays Presented to George Peter
Murdock. McGraw-Hill, 1964.

[GM14] Emitza Guzman and Walid Maalej. How do users like this feature? a fine
grained sentiment analysis of app reviews. In 22nd International Require-
ments Engineering Conference, pages 153–162. IEEE, 2014.

[Gol03] Nahid Golafshani. Understanding reliability and validity in qualitative re-
search. The qualitative report, 8(4):597–606, 2003.

[GQ95] Mark Ginsberg and Lauren Quinn. Process tailoring and the the soft-
ware capability maturity model. Technical Report CMU/SEI-94-TR-024,
Carnegie Mellon University, 1995.

[Gru91] Jonathan Grudin. Systematic Sources of Suboptimal Interface Design in
Large Product Development Organizations. Human-Computer Interaction,
6(2):147–196, 1991.

[Han93] Charles Handy. Understanding organizations: managing differentiation
and integration. Oxford University Press, 1993.

[Hau06] Nils Haugen. An empirical study of using planning poker for user story
estimation. In Agile Conference. IEEE, 2006.

[HF10] Jez Humble and David Farley. Continuous delivery: reliable software re-
leases through build, test, and deployment automation. Pearson, 2010.

[Hig02] Jim Highsmith. Agile Software Development Ecosystems. Addison-
Wesley, 1st edition, 2002.

[Hil92] Dan Hildebrand. An architectural overview of qnx. In USENIX Workshop
on Microkernels and Other Kernel Architectures, pages 113–126, 1992.

[Hip86] Eric von Hippel. Lead users: a source of novel product concepts. Man-
agement science, 32(7):791–805, 1986.

[Hoa78] Tony Hoare. Communicating sequential processes. Communactions of
the ACM, 21(8), 1978.

[Hol05] Karen Holtzblatt. Designing for the mobile device: Experiences, chal-
lenges, and methods. Communications of the ACM, 48(7):32–35, 2005.

180

Bibliography

[HR00] David Hilbert and David Redmiles. Extracting usability information from
user interface events. ACM Computing Surveys, 32(4):384–421, 2000.

[HT00] Andrew Hunt and David Thomas. The pragmatic programmer: from jour-
neyman to master. Addison-Wesley, 2000.

[Hum11] Jez Humble. Devops: A software revolution in the making? Cutter IT
Journal, 24(8), 2011.

[Ins88] Institute of Electrical and Electronics Engineers. Guide to Software Con-
figuration Management (Standard 1042-1987), 1988.

[Ins08] Institute of Electrical and Electronics Engineers. Standard for Software
Reviews and Audits (Standard 1028-2008), 2008.

[J+91] David Johnson et al. Cooperative Learning: Increasing College Faculty
Instructional Productivity. ASHE-ERIC Higher Education Report. ERIC,
1991.

[JBF13] Lynette Johns-Boast and Shayne Flint. Simulating industry: An innovative
software engineering capstone design course. In Frontiers in Education
Conference, pages 1782–1788. IEEE, 2013.

[JBR98] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software
development process, volume 1. Addison-Wesley, 1998.

[JJS91] David Johnson, Roger Johnson, and Karl Smith. Active learning: Coop-
eration in the college classroom. Interaction Book Company, 1991.

[Joh12] Hillary Johnson. How to play the Team Estimation Game, May 2012. Re-
trieved January 08, 2016 from http://www.agilelearninglabs.com/2012/05/
how-to-play-the-team-estimation-game.

[JT79] Randall Jensen and Charles Tonies. Software Engineering. Prentice Hall,
1979.

[KA14] Stephan Krusche and Lukas Alperowitz. Introduction of Continuous Deliv-
ery in Multi-Customer Project Courses. In Companion Proceedings of the
36th International Conference on Software Engineering, pages 335–343.
IEEE, 2014.

181

http://www.agilelearninglabs.com/2012/05/how-to-play-the-team-estimation-game
http://www.agilelearninglabs.com/2012/05/how-to-play-the-team-estimation-game

Bibliography

[KABW14] Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin Wag-
ner. Rugby: An agile process model based on continuous delivery. In
Proceedings of the 1st International Workshop on Rapid Continuous Soft-
ware Engineering, pages 42–50. ACM, 2014.

[Kay90] Thomas Kayser. Mining group gold: How to cash in on the collaborative
brain power of a group. Serif Publishing, 1st edition, 1990.

[KB14] Stephan Krusche and Bernd Bruegge. User feedback in mobile devel-
opment. In Proceedings of the 2nd International Workshop on Mobile
Development Lifecycle, pages 25–26. ACM, 2014.

[KBB16] Stephan Krusche, Mjellma Berisha, and Bernd Bruegge. Teaching Code
Review Management using Branch Based Workflows. In Companion Pro-
ceedings of the 38th International Conference on Software Engineering.
IEEE, 2016.

[KDoD+03] Lena Karlsson, Å Dahlstedt, J Natt och Dag, Björn Regnell, and Anne
Persson. Challenges in market-driven requirements engineering-an in-
dustrial interview study. In Proceedings of the Eighth International Work-
shop on Requirements Engineering: Foundation for Software Quality,
pages 101–112, 2003.

[Kel91] Marc Kellner. Software process modeling support for management plan-
ning and control. In Proceedings of the 1st International Conference on
the Software Process, pages 8–28. IEEE, 1991.

[KK05] Eeva Kangas and Timo Kinnunen. Applying user-centered design to mo-
bile application development. Communications of the ACM, 48(7):55–59,
2005.

[KKB16] Sebastian Klepper, Stephan Krusche, and Bernd Bruegge. Semi-
automatic generation of audience-specific release notes. In Proceedings
of the 1st International Workshop on Continuous Software Evolution and
Delivery. IEEE/ACM, 2016.

[KKLK05] Sari Kujala, Marjo Kauppinen, Laura Lehtola, and Tero Kojo. The role
of user involvement in requirements quality and project success. 13th
International Conference on Requirements Engineering, 2005.

182

Bibliography

[KKLW01] Jos Korthagen, Fredand Kessels, Bob Koster, Bram Lagerwerf, and Theo
Wubbels. Linking practice and theory: The pedagogy of realistic teacher
education. Routledge, 2001.

[KKP+15] Sebastian Klepper, Stephan Krusche, Sebastian Peters, Bernd Bruegge,
and Lukas Alperowitz. Introducing continuous delivery of mobile apps in a
corporate environment: A case study. In Proceedings of the 2nd Interna-
tional Workshop on Rapid Continuous Software Engineering, pages 5–11.
IEEE/ACM, 2015.

[Kol84] David Kolb. Experiential learning: Experience as the source of learning
and development, volume 1. Prentice Hall, 1984.

[KRTB16] Stephan Krusche, Barbara Reichart, Paul Tolstoi, and Bernd Bruegge.
Experiences from an experiential learning course on games development.
In Proceedings of the 47th ACM Technical Symposium on Computing Sci-
ence Education, pages 582–587. ACM, 2016.

[Kru04] P. Kruchten. The rational unified process: an introduction. Addison-
Wesley, 2004.

[Kuj03] Sari Kujala. User involvement: a review of the benefits and challenges.
Behaviour & information technology, 22(1):1–16, 2003.

[Kö06] Peter Köhler. ITIL: Das IT-Servicemanagement Framework. Springer Sci-
ence & Business Media, 2006.

[LB85] Meir Lehman and Laszlo Belady. Program evolution: processes of soft-
ware change. Academic Press, 1985.

[LKLB16] Yang Li, Stephan Krusche, Christian Lescher, and Bernd Bruegge. Teach-
ing global software engineering by simulating a global project in the class-
room. In Proceedings of the 47th ACM Technical Symposium on Comput-
ing Science Education, pages 187–192. ACM, 2016.

[LMP+15] Marko Leppanen, Simo Makinen, Max Pagels, Veli-Pekka Eloranta, Juha
Itkonen, Mika Mantyla, and Tomi Mannisto. The highways and country
roads to continuous deployment. IEEE Software, 32(2):64–72, 2015.

[Mah90] Michael Mahoney. The roots of software engineering. CWI Quarterly,
3(4):325–334, 1990.

183

Bibliography

[Mar07] Matthias Marschall. Transforming a six month release cycle to continu-
ous flow. In Proceedings of the Agile Conference, pages 395–400. IEEE,
2007.

[MBDP+14] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Andrian Marcus, and Gerardo Canfora. Automatic generation of release
notes. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 484–495. ACM,
2014.

[MBNC14] Kıvanç Muşlu, Christian Bird, Nachiappan Nagappan, and Jacek Czer-
wonka. Transition from Centralized to Decentralized Version Control Sys-
tems: A Case Study on Reasons, Barriers, and Outcomes. In Proceed-
ings of the 36th International Conference on Software Engineering, pages
334–344, 2014.

[MDH13] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation
in online peer production: activity traces and personal profiles in github.
In Proceedings of CSCW, pages 117–128. ACM, 2013.

[Men08] Tom Mens. Introduction and roadmap: History and challenges of software
evolution. Springer, 2008.

[MFS15] Martin Michlmayr, Brian Fitzgerald, and Klaas-Jan Stol. Why and how
should open source projects adopt time-based releases? Software, IEEE,
32(2):55–63, 2015.

[MHR09] Walid Maalej, Hans-Jörg Happel, and Asarnusch Rashid. When users
become collaborators: towards continuous and context-aware user input.
In Proceedings of the 24th SIGPLAN conference companion on Object
oriented programming systems languages and applications, pages 981–
990. ACM, 2009.

[Mor04] Mario Moreira. Software configuration management implementation
roadmap, volume 1. John Wiley & Sons, 2004.

[Mou05] Mountain Goat Software. Scrum images, 2005. Retrieved January 08,
2016 from https://www.mountaingoatsoftware.com/agile/scrum/images.

[MP11] Walid Maalej and Dennis Pagano. On the Socialness of Software. In 9th
International Conference on Dependable, Autonomic and Secure Com-
puting, pages 864–871. IEEE, 2011.

184

https://www.mountaingoatsoftware.com/agile/scrum/images

Bibliography

[ND86] D. Norman and S. Draper. User centered system design; new perspec-
tives on human-computer interaction. Erlbaum, 1986.

[NH93] J. Nielsen and J. Hackos. Usability engineering. Academic Press, 1993.

[NR69] Peter Naur and Brian Randell. Software Engineering: Report of the 1968
conference in Garmisch, Germany. NATO Software Engineering Confer-
ence, 1969.

[NRB76] Peter Naur, Brian Randell, and John Buxton. Software engineering: con-
cepts and techniques: proceedings of the NATO conferences. Petrocel-
li/Charter, 1976.

[NS13] Steve Neely and Steve Stolt. Continuous delivery? easy! just change
everything (well, maybe it is not that easy). In Agile Conference, pages
121–128. IEEE, 2013.

[OAB12] Helena Olsson, Hiva Alahyari, and Jan Bosch. Climbing the “stairway to
heaven” – a mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software. In 38th
EUROMICRO Conference on Software Engineering and Advanced Appli-
cations, pages 392–399. IEEE, 2012.

[Obj08a] Object Management Group. Business Process Definition Meta Model
Specification (Version 1.0), 2008.

[Obj08b] Object Management Group. Software & Systems Process Engineering
Meta Model Specification (Version 2.0), 2008.

[OR94] Babatunde Ayodeji Ogunnaike and Willis Harmon Ray. Process Dynam-
ics, Modeling, and Control, volume 1. Oxford University Press, 1994.

[Pag11] Dennis Pagano. Towards systematic analysis of continuous user input. In
Proceedings of the 4th International Workshop on Social Software Engi-
neering, pages 6–10. ACM, 2011.

[Pag13] Dennis Pagano. PORTNEUF-A Framework for Continuous User Involve-
ment. PhD thesis, Technische Universität München, 2013.

[Pat05] Ron Patton. Software Testing. Sams, 2005.

185

Bibliography

[PB13] Dennis Pagano and Bernd Bruegge. User involvement in software evo-
lution practice: a case study. In Proceedings of the 35th International
Conference on Software Engineering, pages 953–962. IEEE, 2013.

[PCL+04] Stanley Presser, Mick Couper, Judith Lessler, Elizabeth Martin, Jean Mar-
tin, Jennifer Rothgeb, and Eleanor Singer. Methods for testing and evalu-
ating survey questions. Public opinion quarterly, 68(1):109–130, 2004.

[PM13] Dennis Pagano and Wiem Maalej. User feedback in the appstore: An em-
pirical study. In Proceedings of the 21st IEEE International Requirements
Engineering Conference, pages 125–134. IEEE, 2013.

[PP06] Mary Poppendiek and Tom Poppendiek. Implementing Lean Software De-
velopment: From Concept to Cash. Addison Wesley, 2006.

[RB13] Peter Rigby and Christian Bird. Convergent contemporary software peer
review practices. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering, pages 202–212. ACM, 2013.

[RCP+12] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey,
and Daniel German. Contemporary peer review in action: Lessons from
open source development. IEEE, 29(6):56–61, 2012.

[Rei09] Donald Reinertsen. The principles of product development flow: second
generation lean product development. Celeritas, 2009.

[RHL+16] Pilar Rodrı́guez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja,
June M Verner, and Markku Oivo. Continuous deployment of software
intensive products and services: A systematic mapping study. Journal of
Systems and Software, 2016.

[Roe15] Tobias Roehm. The MALTASE Framework For Usage-Aware Software
Evolution. PhD thesis, Technische Universität München, 2015.

[Rol93] Colette Rolland. Modeling the requirements engineering process. Infor-
mation Modelling and Knowledge Bases, 1993.

[Roy70] Winston Royce. Managing the development of large software systems. In
Proceedings of IEEE WESCON, 1970.

186

Bibliography

[RS11] David Rosenwasser and Jill Stephen. Writing analytically. Cengage
Learning, 2011.

[RSI96] J. Rudd, K. Stern, and S. Isensee. Low vs. high-fidelity prototyping debate.
interactions, 3(1):76–85, 1996.

[SB02] K. Schwaber and M. Beedle. Agile software development with Scrum.
Prentice Hall, 2002.

[SB14] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice
differences in industry software development. Journal of Systems and
Software, 87:48–59, 2014.

[Sca01] Walt Scacchi. Process models in software engineering. Encyclopedia of
software engineering, 2001.

[Sch95] Ken Schwaber. Scrum development process. In Proceedings of the OOP-
SLA Workshop on Business Object Design and Information, 1995.

[Sch11] Kurt Schneider. Focusing Spontaneous Feedback to Support System
Evolution. In 19th International Requirements Engineering Conference,
pages 165–174. IEEE, 2011.

[Sco02] Kendall Scott. The unified process explained. Addison-Wesley, 2002.

[Sha96] Mary Shaw. Some patterns for software architectures. Pattern languages
of program design, 2:255–269, 1996.

[SKCU77] Y Sugimori, K Kusunoki, F Cho, and S Uchikawa. Toyota production
system and kanban system materialization of just-in-time and respect-
for-human system. The International Journal of Production Research,
15(6):553–564, 1977.

[SLS14] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software testing founda-
tions: a study guide for the certified tester exam. Rocky Nook, 2014.

[SMP+10] Kurt Schneider, Sebastian Meyer, Maximilian Peters, Felix Schliephacke,
Jonas Mörschbach, and Lukas Aguirre. Feedback in Context: Support-
ing the Eolution of IT-Ecosystems. In Product-Focused Software Process
Improvement, pages 191–205. Springer, 2010.

[Ste10] Angus Stevenson. Oxford Dictionary of English. Oxford University Press,
2010.

187

Bibliography

[STG03] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping-
what is it good for?: a comparison of paper-and computer-based low-
fidelity prototyping. In CHI’03 extended abstracts on Human factors in
computing systems, pages 778–779. ACM, 2003.

[Suc07] Lucy Suchman. Human-machine reconfigurations: Plans and situated
actions. Cambridge University Press, 2007.

[Tay14] Frederick Taylor. The principles of scientific management. Harper, 1914.

[TDH14] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and
technical factors for evaluating contribution in github. In Proceedings of the
36th international conference on Software engineering, pages 356–366.
ACM, 2014.

[TF99] Shawn Tseng and BJ Fogg. Credibility and Computing Technology. Com-
munications of the ACM, 42(5):39–44, 1999.

[TN86] H. Takeuchi and I. Nonaka. The new new product development game.
Harvard business review, 64(1):137–146, 1986.

[Ver15] VersionOne. 9th annual state of agile development survey, 2015.
Retrieved January 08, 2016 from https://www.versionone.com/pdf/
state-of-agile-development-survey-ninth.pdf.

[WF84] Gerald Weinberg and Daniel Freedman. Reviews, walkthroughs, and in-
spections. IEEE Transactions on Software Engineering, SE-10(1):68–72,
1984.

[WK02] Laurie Williams and Robert Kessler. Pair programming illuminated.
Addison-Wesley, 2002.

[Won84] Carolyn Wong. A successful software development. IEEE Transactions
on Software Engineering, pages 714–727, 1984.

[Wri12] Hyrum Wright. Release engineering processes, their faults and failures.
PhD thesis, University of Texas, 2012.

[WS02] C. Walrad and D. Strom. The Importance of Branching Models in SCM.
Computing Practices, 2002.

[Wuj10] Tom Wujec. The Marshmallow Challenge - TED Talk, 2010. Retrieved
January 08, 2016 from http://marshmallowchallenge.com.

188

https://www.versionone.com/pdf/state-of-agile-development-survey-ninth.pdf
https://www.versionone.com/pdf/state-of-agile-development-survey-ninth.pdf
http://marshmallowchallenge.com

Bibliography

[XKB15] Han Xu, Stephan Krusche, and Bernd Bruegge. Using software theater for
the demonstration of innovative ubiquitous applications. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering, pages
894–897. ACM, 2015.

[YF07] Yunwen Ye and Gerhard Fischer. Designing for participation in socio-
technical software systems. In Universal Acess in Human Computer In-
teraction. Coping with Diversity, pages 312–321. Springer, 2007.

[You79] Edward Yourdon. Structured walkthroughs. Prentice Hall, 1979.

[ZPB+10] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just,
Adrian Schroter, and Cathrin Weiss. What makes a good bug report?
IEEE Transactions on Software Engineering, 36(5):618–643, 2010.

189

	Abbreviations
	Introduction
	Existing Process Models in Software Engineering
	Problems in Existing Process Models
	Motivation for a new Process Model
	Research Objectives
	Contributions
	Dissertation Structure

	Foundations
	Process Models
	Version Control
	Continuous Integration
	Continuous Delivery
	Informal Reviews
	User Feedback
	Learning Techniques

	Rugby's Process Meta Model
	Static View of Rugby's Process Meta Model
	Rugby's Change Meta Model
	Dynamic View of Rugby's Process Meta Model
	Instantiation of Waterfall Model as Linear Model
	Instantiation of Unified Process as Iterative Model
	Instantiation of Scrum as Agile Model
	Related Process Meta Models

	Rugby's Ecosystem
	Top Level Design
	Requirements
	Use Case Model
	Static View of Rugby's Process Model
	Dynamic View of Rugby's Process Model
	Related Process Models

	Rugby's Workflows
	Review Management Workflow
	Related Work in the Area of Code Reviews
	Release Management Workflow
	Related Work in the Area of Release Management
	Feedback Management Workflow
	Related Work in the Area of User Feedback

	Case Studies
	Capstone Course
	Interventions
	Course Environment
	Teaching Approach

	Lecture
	Individual Exercises
	Team based Exercises

	Industry
	Applicability in Industrial Projects
	Extending and Customizing Rugby

	Evaluation
	Hypotheses
	Study Design
	Findings
	Review
	Release
	Feedback
	Frequency
	Understanding
	Learning
	Scalability

	Limitations
	Summary

	Conclusion
	Contributions
	Future Work

	Terminology
	Process Models
	Scrum
	Unified Process

	Rugby's Full Change Model
	List of Figures
	List of Tables
	Bibliography

