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Abstract- In this paper, we apply bidirectional training to a
Long Short Term Memory (LSTM) network for the first time.
We also present a modified, full gradient version of the LSTM
learning algorithm. We discuss the significance of framewise
phoneme classification to continuous speech recognition, and
the validity of using bidirectional networks for online causal
tasks. On the TIMIT speech database, we measure the framewise
phoneme classification scores of bidirectional and unidirectional
variants of both LSTM and conventional Recurrent Neural
Networks (RNNs). We find that bidirectional LSTM outperforms
both RNNs and unidirectional LSTM.

I. INTRODUCTION
The goal of continuous speech recognition is to provide

a mapping from sequences of acoustic frames to sequences
of linguistic symbols (phonemes, syllables or words). This
mapping is asynchronous, since each symbol may occupy
several frames, and the symbol boundaries are not generally
known in advance. The direct application of neural networks to
continuous speech recognition is therefore problematic, since
they are designed to learn only synchronous mappings between
sequences of input-output pairs. However, the classification
of frames of acoustic data into phonemes can be used as a
first step towards full speech recognition. For example, in
the so-called hybrid approach [19], [5], assuming that the
classifications can be interpreted as posterior probabilities of
phoneme occupancy (as they can for the results in this paper
- see Section V-B), Bayes' theorem is used to convert them
to scaled likelihoods of acoustic data given the phoneme class.
These likelihoods are then used by Hidden Markov Models to
find the most probable sequence of phonemes, and thereby
recognise the utterance.
We have focused on the sub-task of framewise phoneme

classification because we believe that an improvement there
will lead to an improvement in the overall performance of a
full recognition system.
The structure of the rest of this paper is as follows: in

Section II we discuss bidirectional networks, and answer a
possible objection to their use in causal tasks; in Section III
we describe the Long Short Term Memory (LSTM) network
architecture, our modification to its error gradient calculation,
and the possibility of training it with different weight update
algorithms; in Section IV we describe the experimental data
and how we used it in our experiments; in Section V we

give the structure and training parameters of our networks; in
Section VI we present and discuss our experimental results,
and in Section VII we make our concluding remarks. In the
appendices we provide the pseudocode for training LSTM
networks with a full gradient calculation, and an outline of
bidirectional training with RNNs.

II. BIDIRECTIONAL RECURRENT NEURAL NETS

For many sequence processing tasks, it is useful to ana-
lyze the future as well as the past of a given point in the
series. However, most RNNs are designed to analyse data
in one direction only - the past. A partial solution to this
shortcoming is to introduce a delay between inputs and their
associated targets, thereby giving the net a few timesteps of
future context. But this amounts to little more than the fixed
time-windows used for MLPs - exactly what RNNs were
designed to replace. A more elegant approach is provided
by the bidirectional networks pioneered by Schuster [23] and
Baldi [2]. In this model, the input is presented forwards and
backwards to two separate recurrent nets, both of which are
connected to the same output layer. See Appendix B for an
outline of the algorithm. Bidirectional recurrent neural nets
(BRNNs) have given improved results in sequence learning
tasks, notably protein structure prediction (PSP) [1], [6] and
speech processing [22], [9].

A. Bidirectional Networks and Online Causal Tasks
In a purely spatial task like PSP, it is clear that any

distinction between input directions should be discarded. But
for temporal problems such as speech recognition, relying
on knowledge of the future seems at first sight to violate
causality - at least if the task is online. How can we base our
understanding of we've heard on something that hasn't been
said yet? However, human listeners do exactly that. Sounds,
words, and even whole sentences that at first mean nothing
are found to make sense in the light of future context. What
we need to bear in mind is the distinction between tasks that
are truly online - requiring an output after every input - and
those where outputs are only needed at the end of some input
segment. For the first class of problems, BRNNs are useless,
since meaningful outputs are only available after the net has
run backwards. But the point is that speech recognition, along
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with most other 'online' causal tasks, is in the second class: an
output at the end of every sentence is fine. Therefore, we see
no objection to using BRNNs to gain improved performance
on speech tasks. On a more practical note, given the relative
speed of activating neural nets, the delay incurred by running
an already trained net backwards as well as forwards is small.

In general, the BRNNs examined here make the following
assumptions about their input data: that it can be divided into
finitely long segments, and that each of these is unaffected
by the others. For speech corpora like TIMIT, made up of
separately recorded utterances, this is clearly the case. For
real speech, the worst it can do is neglect contextual effects
that extend across segment boundaries - e.g. the ends of
sentences or dialogue turns. Moreover, such long term effects
are routinely neglected by current speech recognition systems.

III. LSTM

The Long Short Term Memory architecture [15], [11] was
motivated by an analysis of error flow in existing RNNs [14],
which found that long time lags were inaccessible to existing
architectures, because backpropagated error either blows up or
decays exponentially.
An LSTM layer consists of a set of recurrently connected

blocks, known as memory blocks. These blocks can be thought
of a differentiable version of the memory chips in a digital
computer. Each one contains one or more recurrently con-
nected memory cells and three multiplicative units - the input,
output and forget gates - that provide continuous analogues of
write, read and reset operations for the cells. More precisely,
the input to the cells is multiplied by the activation of the input
gate, the output to the net is multiplied by that of the output
gate, and the previous cell values are multiplied by the forget
gate (see Figure 1). The net can only interact with the cells
via the gates.

Recently, we have concentrated on applying LSTM to real
world sequence processing problems. In particular, we have
studied isolated word recognition [13], [12] and continuous
speech recognition [8], [3], with promising results.

A. LSTM Gradient Calculation

The original LSTM training algorithm [11] used an error
gradient calculated with a combination of Real Time Recurrent
Learning (RTRL)[20] and Back Propagation Through Time
(BPTT)[24]. The backpropagation was truncated after one
timestep, because it was felt that long time dependencies
would be dealt with by the memory blocks, and not by the
(vanishing) flow of backpropagated error gradient. Partly to
check this assumption, and partly to ease the implementation
of Bidirectional LSTM, we calculated the full error gradient
for the LSTM architecture. See Appendix A for the revised
pseudocode. For both bidirectional and unidirectional nets,
we found that gradient descent on the full gradient gave
slightly higher performance than the original algorithm. It had
the added benefit of making the LSTM architecture directly
comparable to other RNNs, since it could now be trained with
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Fig. 1. LSTM memory block with one cell. The internal state of the cell
is maintained with a recurrent connection of weight 1.0. The three gates
collect activations from inside and outside the block, and control the cell
via multiplicative units (small circles). The input and output gates scale the
input and output of the cell while the forget gate scales the internal state-for
example by resetting it to 0 (making it forget). The cell input and output
squashing functions (g and h) are applied at the indicated places.

standard BPTT. Also, since the full gradient can be checked
numerically, its implementation was easier to debug.

B. LSTM Training Algorithm
The effectiveness of LSTM comes from the learning bias

encoded in its architecture, and not from the way it is trained.
Indeed, almost all LSTM experiments so far (including this
one) have used one of the simplest RNN training algorithms
- gradient descent with momentum. However, there is no
reason that alternative methods developed for training RNNs
could not equally be applied to LSTM.

In the past, training with decoupled Kalman filters [16],
has given improved results for several tasks. We are currently
experimenting with a range of gradient descent weight training
algorithms, including Stochastic Meta-Descent [21], RPROP
[17] and Robinson's algorithm [19].

IV. EXPERIMENTAL DATA
Our experiments were carried out on the TIMIT database

[10] of prompted utterances, collected by Texas Instruments.
The utterances were chosen to be phonetically rich, and
the speakers represent a wide variety of American dialects.
The audio data is divided into sentences, each of which is
accompanied by a complete phonetic transcript.
We preprocessed the audio data into 12 Mel-Frequency Cep-

strum Coefficients (MFCC's) from 26 filter-bank channels. We
also extracted the log-energy and the first order derivatives of
it and the other coefficients, giving a vector of 26 coefficients
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per frame. The frame size was 5 ms and the input window was
10 ms. In total there were 1,124,823 frames in the training set,
and 410,920 in the test set.

For consistency with the literature, we used the complete
set of 61 phonemes provided in the transcriptions for classi-
fication. In full speech recognition, it is common practice to
use a reduced set of phonemes [18], by merging those with
similar sounds, and not separating closures from stops.

A. Training and Testing Sets

The standard TIMIT corpus comes partitioned into training
and test sets, containing 3696 and 1344 utterances respectively.
We used 184 of the training set utterances (chosen randomly,
but kept constant for all experiments) as a validation set and
trained on the rest. When the experiments were finished we
restored the nets to the weights that gave the lowest error on
the validation set. We then measured their performance on the
test set. Since the training and test sets were not drawn from
the same distribution (e.g. no speaker and no sentence appears
in both of them) it is likely that overfitting occurred despite
the validation set.

V. EXPERIMENTAL SETUP

A. Topology

With the aim of keeping the number of parameters roughly
constant between architectures, we used the following topolo-
gies

* A unidirectional net with a hidden LSTM layer containing
93 memory blocks, with one cell each.

. A bidirectional net with two hidden LSTM layers (one
forwards and one backwards) each containing 93 one cell
memory blocks.

* A unidirectional net with a hidden layer containing 185
sigmoidal units.

. A bidirectional net with two hidden layers (one forwards
and one backwards) containing 185 sigmoidal units each.

The unidirectional nets had roughly 50,000 weights, and the
bidirectional had roughly 100,000. It is possible that having
more weights favoured the bidirectional nets; however the
benefits of more trainable parameters are offset by the prob-
lems of overfitting, and our experiments with nets containing
50,000, 100,000 and 200,000 weights showed little change in
performance.

All nets contained an input layer of size 26 (an input for
each MFCC coefficient), and an output layer of size 61 (one
for each phoneme). The input layers were fully connected to
the hidden layers and the hidden layers fully connected to
themselves and the output layers. All LSTM blocks had the
following activation functions: logistic sigmoids in the range
[-2, 2] for the input and output squashing functions of the cell
(g and h in Figure 1), and in the range [0,1] for the gates. The
non-LSTM nets had logistic sigmoid activations in the range
[0,1] in the hidden layers.

B. Output Layers
For the output layers, we used the cross entropy objective

function and the softmax activation function, as is standard
for 1 of K classification [4]. The softmax function ensures
that the network outputs are all between zero and one, and
that they sum to one on every timestep. This allows them to
be interpreted as the posterior probabilities of the phonemes at
a given frame, given all the inputs up to the current one (with
unidirectional nets) or all the inputs in the whole sequence
(with bidirectional nets).

Several alternative objective functions have been studied for
this task [7]. One modification in particular has been shown to
have a positive effect on full speech recognition (though not
necessarily on framewise classification). This is to weight the
error according to the duration of the current phoneme, which
ensures that short phonemes are as significant to the training
as longer ones.

C. Network Training
All nets were trained with gradient descent (error gradient

calculated with BPTT), using a learning rate of 10-5 and
a momentum of 0.9. At the end of each utterance, weight
updates were carried out and network activations were reset
to 0. For the unidirectional nets a delay of 4 timesteps was
introduced between the target and the current input- i.e. the
net always tried to predict the phoneme it had seen 4 timesteps
ago.

VI. RESULTS

TABLE I
FRAMEWISE PHONEME CLASSIFICATION ON THE TIMIT DATABASE

System Training Set Test Set Epochs
Bidirectional LSTM 79.4% 69.5% 35

LSTM 77.2% 65.5% 70
Bidirectional RNN 67.2% 64.7% 65

RNN 68.3% 64.5% 100

Our experiments confirm that on this task, with all other
factors equal, LSTM outperforms conventional RNNs and
bidirectional training improves on unidirectional. Since the
weight updating method for all nets is the same (gradient
descent with momentum), and run with identical data and
parameters, we conclude that the improvements are due to
architectural advantages - specifically the ability of LSTM
to bridge long time lags, and that of bidirectional training to
process reverse time dependencies. In addition, the benefit of
using bidirectional training seems greater for LSTM than for
conventional RNNs. This may be due to the more limited range
of time-dependencies available to RNNs [15], which prevents
them from making use of the extra future context. For the
same reason, time-windowed MLPs often perform as well on
sequence processing tasks as RNNs.

Similar results have been obtained by Schuster with bidirec-
tional RNNs [22] (65.11% on the test set), and considerably
better results were recorded in two papers [19], [7] using
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only conventional RNNs. However, the latter two relied on
various tweaks (improved preprocessing, customised training
algorithms, and modified objective error functions) that we
haven't replicated here. In order to make a meaningful com-
parison, we intend to test these modifications with LSTM.
The training times were considerably smaller with LSTM;

indeed, after only 5 epochs, the bidirectional LSTM net had a
score of 68.7% on the training set, higher than any we recorded
with conventional RNNs. Also, as can be seen from the greater
difference between their training and test set scores, The
LSTM nets were more prone to overfitting than RNNs. Indeed,
by letting a bidirectional LSTM net run after the validation
error had begun to increase, we achieved a score of 86.4%
on the training set. This is remarkable given the proportion of
training frames to weights (20 to 1, for unidirectional LSTM);
it suggests that rather than overfitting on noise, the nets were
learning regularities that existed in the training set and not
in the test set (recall that we cross-validated on a portion
of the training set - Section IV-A). In particular, since no
speakers or sentences were shared by both sets, LSTM may
simply have been better at adapting to long term dependencies
(like phoneme ordering within sentences, or speaker specific
pronunciations) than normal RNNs. In this case, we could
expect large gains in performance with a greater range of
training material. Nonetheless, we are currently investigating
methods for improved generalisation.

VII. CONCLUSIONS AND FUTURE WORK

We have presented bidirectional LSTM networks for the
first time. We have also calculated the full error gradient for
LSTM training. Combining these methods, on a benchmark
framewise phoneme classification task, we have demonstrated
the architectural advantage of bidirectional training over unidi-
rectional and of LSTM over conventional RNNs. In particular
we have found that bidirectional LSTM nets are significantly
more powerful than unidirectional ones.

In the future we intend to experiment with alternative
LSTM learning algorithms and output error functions, and
with methods for improved generalisation. We also intend to
implement a hybrid full speech recognition system, combining
LSTM with Hidden Markov Models.

APPENDIX A: PSEUDOCODE FOR FULL GRADIENT LSTM
The following pseudocode details the forward pass, back-

ward pass, and weight updates of an extended LSTM layer in
a multi-layer net. The error gradient is calculated with online
BPTT (i.e. BPTT truncated to the lengths of input sequences,
with weight updates after every sequence). As is standard with
BPTT, the network is unfolded over time, so that connections
arriving at layers are viewed as coming from the previous
timestep. We have tried to make it clear which equations are
LSTM specific, and which are part of the standard BPTT
algorithm. Note that for the LSTM equations, the order of
execution is important.

Notation

The input sequence over which the training takes place is
labelled S and it runs from time To to Ti. Xk(r) refers to the
network input to unit k at time r, and Yk(r) to its activation.
Unless stated otherwise, all network inputs, activations and
partial derivatives are evaluated at time r - e.g. Y -Yc(T).
E(r) refers to the (scalar) output error of the net at time T. The
training target for output unit k at time r is denoted tk(r), and
the resulting output error is ek(T). The error backpropagated to
unit k at time r is denoted Ek (T). N is the set of all units in the
network, including input and bias units, that can be connected
to other units. Note that this includes LSTM cell outputs, but
not LSTM gates or internal states (whose activations are only
visible within their own memory blocks). Wij is the weight
from unit j to unit i.

The LSTM equations are given for a single memory block
only. The generalisation to multiple blocks is trivial: simply
repeat the calculations for each block, in any order. Within
each block, we use the suffixes t, b and w to refer to the
input gate, forget gate and output gate respectively. The suffix
c refers to an element of the set of cells C. s, is the state value
of cell c - i.e. its value after the input and forget gates have
been applied. f is the squashing function of the gates, and
g and h are respectively the cell input and output squashing
functions (see Figure 1).
Forward Pass
* Reset all activations to 0.
* Running forwards from time T0 to time Tr, feed in the

inputs and update the activations. Store all hidden layer
and output activations at every timestep.

. For each LSTM block, the activations are updated as
follows:

Input Gates:

X= WtjYj(T- 1) +E WlCSC(T-1)
jEN cEC

Ylt = f(x")
Forget Gates:

X = S WojYj(T- 1) +E WcSc(T- 1)
jEN CEC

y= f(X,k)
Cells:

Vc E C, Xc = WcjYj(T -1)
jEN

SC = ygsc(r- 1) + Ylg(XC)
Output Gates:

XW= Wwjyj( -1) +E wWCsC(T)
jEN cEC

Yw = f(X")
Cell Outputs:

Vc E C, Yc = ywh(sc)
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Backward Pass
* Reset all partial derivatives to 0.
* Starting at time ri, propagate the output errors backwards

through the unfolded net, using the standard BPYT equa-
tions:

define Mk(T) = E(r)a9Xk

ekT
Yk() tk(r) k E output units

ek(T) = { k0 otherwise

Ek (T) = ek (T1)

ek(T-1) = ek(T- 1) + E WjkJj(T)
jEN

. For each LSTM block the 6's are calculated as follows:

Cell Outputs:

Vce C, Ec= wjcJj(T + 1)
jEN

Output Gates:

= f'(x2) Z Ech(sc)
cEC

States:

-E (T) = Ec8yh'(yc) +a± ( + 1)yp(Tr + 1)osc T
+±S(T + 1)wt, + S,k(r + 1)wkC + SwWwc

Cells:

Vc E C, Sc = Y,g'(Xc) aE

Forget Gates:

f ( k) E: 0scYc(- 1)
cEC

Input Gates:

6,=f(l) E: asg(xc)
cEC

* Using the standard BPTT equation, accumulate the S's
to get the partial derivatives of the cumulative sequence
error:

Ti

define EtotaL(S) = E(T)
-r=To

define Vij (S) = aEtotal (S)
owij

T1

V7ii(S) = :E ii(T)y(-
Tr=-ro+l

Update Weights
* After the presentation of sequence S, with learning rate a

and momentum m, update all weights with the standard
equation for gradient descent with momentum:

Awij(S) = a Vij (S) + mAwij(p -1)

APPENDIX B: ALGORITHM OUTLINE FOR BIDIRECTIONAL
RECURRENT NEURAL NETWORKS

From [22] we give the following method for training bidi-
rectional recurrent nets with BPTT. As above, training takes
place over an input sequence running from time -r0 to rT. All
network activations and errors are reset to 0 at To and Tr.
Forward Pass Feed all input data for the sequence into the

BRNN and determine all predicted outputs.
* Do forward pass just for forward states (from time T0 to

r1) and backward states (from time rT to TO).
* Do forward pass for output layer.
Backward Pass Calculate the error functiQn derivative for

the sequence used in the forward pass.
* Do backward pass for output neurons.
* Do backward pass just for forward states (from time rT

to TO) and backward states (from time To to Ti).
Update Weights
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