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Abstract. The extraction of information from recorded meetings is a
very important yet challenging task. The problem lies in the inability of
speech recognition systems to be directly applied onto meeting speech
data, mainly because meeting participants speak concurrently and head-
mounted microphones record more than just their wearers’ utterances -
crosstalk from his neighbours are inevitably recorded as well. As a result,
a degree of preprocessing of these recordings is needed. The current work
presents an approach to segment meetings into four audio classes: Single
speaker, crosstalk, single speaker plus crosstalk and silence. For this pur-
pose, we propose Two-Layer Cascaded Subband Filters, which spread
according to the pitch and formant frequency scales. This filters are able
to detect the presence or absence of pitch and formants in an audio sig-
nal. In addition, the filters can determine how many numbers of pitches
and formants are present in an audio signal based on the output subband
energies. Experiments conducted on the ICSI meeting corpus, show that
although an overall recognition rate of up to 57% was achieved, rates for
crosstalk and silence classes are as high as 80%. This indicates the posi-
tive effect and potential of this subband feature in meeting segmentation
tasks.

1 Introduction

Meetings are an important part of everyday work life. Many spend more time
in meetings, where important goals and new strategies are discussed and deter-
mined, than on their desks. It is therefore desirable to extract the contents of a
meeting and conserve them for future work or for purposes of proof. Automatic
speech recognition (ASR), for example, seems to be a good tool to extract at
least the textual content of a meeting. Unfortunately the recognition of speech
in recorded meetings is a difficult task. Meeting participants speak naturally (i.e.
use natural language), interrupt each other, talk at the same time and also use
ungrammatical or incomplete sentences. In turn, these meeting conditions and
norms, negatively affect ASR recognition rate. That is why some form of pre-
processing of the recorded meetings is needed, among other things, to determine
how many persons had been speaking at any one time in the meeting.

There have been some attempts at preprocessing of meetings. Dielmann and
Renals [1] tried to segment meetings automatically into a set of social actions



such as monologue, discussion and presentation. For that purpose, they com-
bined prosodical, lexical and speaker activity features to train and test a dy-
namic Bayesian Network model. With the so-called speaker activity feature, one
can estimate which direction of the meeting room the speech recorded at a time
is coming from. Therefore a microphone array was used to simulate a steerable
directional microphone. Their experiments achieved a recognition rate of 92.9%
and were conducted on the M4 corpus, which had been recorded at the IDIAP
Research Institute. The M4 corpus contains 53 short meetings, recorded using
lapel microphones for each meeting participant, and an eight element circular
microphone array. However the lexical features that were used were based on
human-generated word-level transcription of the meetings, entailing the employ-
ment of significant manual effort and that the segmentation process cannot be
done automatically.

Wrigley et al. [2] segmented meetings into four different audio classes, namely
single speaker (S), crosstalk (C), speaker plus crosstalk (SC) and silence (SIL).
Crosstalk occurs when the lapel microphones or head-mounted microphones of
meeting participants record not only their wearers’ utterances, but also spo-
ken comments from their neighbours. To discriminate the four different classes,
Wrigley et al. analyzed several features on their efficiency for the task. Besides
the classical speech processing features like MFCCs, Energy and Zero Crossing
Rate, they also tested other features which had been proven to work well in
similar tasks. These features include the following: Kurtosis, Fundamentalness,
Spectral Autocorrelation Peak-Valley Ratio, Pitch Prediction, features derived
from genetic programming and cross-channel correlation. After feature evalua-
tion, they presented a system which consisted of a multistream ergodic Hidden
Markov Model (eHMM) and a rule-based post processor to test the feature sets
they had first found. They reported high average recognition rates of 76.5% for
the speaker alone class, and 94.1% for the crosstalk alone class, but very low
recognition rates for single speaker plus crosstalk and silence.

In the current work, we implement Two-Layer Cascaded Subband Filters
(TLCSF) for meeting segmentation. The filters are able to extract the infor-
mation of number of speakers based on the pitch and formant information. We
combine this feature with other features which had been reported in [2] to classify
the audio classes S, C, SC and SIL with higher accuracy. We trained Gaussian
Mixture Models (GMM) for the four classes and linked them to an ergodic HMM.
Experiment results show that our recognition rates are significantly higher for
the classes SC and SIL.

The remaining of this paper is organized as follows: Section 2 describes the In-
ternational Computer Science Institute (ICSI) meeting corpus which was used in
our experiments. Following that is a presentation of our ergodic Hidden Markov
Model in section 3, and an explanation of the acoustic parameters used in section
4. With the model and features in place, a range of experiments were conducted
and are presented and discussed in section 5. Finally section 6 contains a con-
clusion of the current work as well as an outline of a few possibilities for future
improvements.



2 Corpus

The ICSI Meeting Corpus consists of 75 meetings, which were recorded during
the years 2000 - 2002 at the International Computer Science Institute (ICSI) in
Berkeley, California. The meetings were not restricted by any guidelines, that
means the recording sessions were held during normal meetings, which would
have been conducted regardless of the recordings. In these recording sessions,
every meeting participant wore either a head-mounted or a lapel microphone.
At the same time, the meeting was recorded by six table microphones of different
qualities. The meeting lengths range between 17 and 103 minutes and the corpus
contains 72 hours of recorded speech in total. The data were collected at a 48
kHZ sample-rate, which was downsampled to 16 kHz. The audio files for each
meeting are provided as separate time-synchronous recordings for each channel,
encoded as 16-bit linear wave files and saved in the NIST sphere format. For each
meeting, a time-tagged word-level transcript is available, which also contains
meta information about its meeting participants and the hardware used for the
session. A full description of the corpus can be found in [3]. From the corpus
we chose 30 meetings, of which the data from 11 meetings were used to train
the ergodic Hidden Markov Model and the data from the remaining 19 meetings
were used for testing purposes.

3 Model

The model used in this work is an ergodic Hidden Markov Model (eHMM), which
is made up of four GMMs, one for each of the four classes - S, C, SC and SIL -
that we want to detect. The term ergodic refers to the fact that all four states of
the HMM are linked together, such that every state is reachable from any other
state and by itself, as illustrated in Figure 1. A GMM is defined by

G∑

i=1

piΦi(X,µi, Σi) (1)

where X is the feature vector and G is the number of Gaussian densities Φi.
Every Φi has a mean vector µi, a covariance matrix Σi and a mixing coefficient
pi.

Every GMM was trained with the expectation-maximization algorithm, as
it is implemented in the Hidden Markov Toolkit (HTK). The training data was
extracted from 11 meetings 1 of the corpus. For each of the four classes, one
million feature vectors were chosen randomly from the data. The number of
mixtures per GMM varied and were chosen according to the values mentioned
in [2]. The number of mixtures for the classes S and SC was set to 20, and to
5 and 4 for the classes C and SIL respectively. After training, the four GMMs
were linked with transitions, such that every GMM is reachable from any other

1 Training data was taken from the following meetings: Bed006, Bed008, Bed010,
Bed011, Bmr001, Bmr005, Bmr006, Bmr014, Bmr024, Bro007, and Bro012



Fig. 1. Ergodic Hidden Markov Model, comprising four GMMs

GMM. The arcs between the GMMs were provided with transition probabilities,
which were computed from the meeting transcripts.

4 Acoustic Parameters

The expressiveness of the acoustic parameters has direct impact on segmenting
audio into different classes. In addition to short-time spectral information, we
integrate pitch and formant information into our acoustic features. We propose
Two-Layer Cascaded Subband Filters (TLCSF), which spread according to the
pitch and formant frequency ranges. This filters are able to detect the presence
or absence of pitch and formants in an audio segment. Furthermore, the filters
can determine how many number of pitches or formants are present in an audio
segment from the output subband energies. We transform these subband energies
into cepstral coefficients for statistical modeling. The cepstral coefficients are
used, because they have been proven to be robust in audio and speech recognition
[7].

4.1 Acoustic Characteristics and Audio Classes

Before computing the features, we examine the significant characteristics pos-
sessed by each audio class. The signal strengths of the classes S (speaker alone)
and SC (speaker plus crosstalk) are higher than those of class C (crosstalk alone)
and class SIL (silence). In addition, the numbers of pitches and formants present
in class S and class SC are different. The audio segment of class S has only one
pitch or formant. However, the audio segment of class SC can present more than
one pitch and formant. Furthermore, pitch and formant are not present in class
SIL. Therefore, the acoustic features to identify these 4 audio classes (S, SC, C
and SIL) should reflect the information on 1) signal strength, 2) the presence
or absence of pitches and formants and 3) how many numbers of pitches and
formants are present in an audio segment. To this end, we propose Two-Layer
Cascaded Subband Filters to capture the above information from an audio sig-
nal.



4.2 Two-Layer Cascaded Subband Filters (TLCSF)
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Fig. 2. A bank of Two-Layer Cascaded Subband Filters.

We propose Two-Layer Cascaded Subband Filters, shown in Figure 2, to
capture the information of pitch, formant and signal strength. The filter has
two cascaded layers. The first layer has overlapped rectangular filters. For each
filter in the first layer, there are 5 non-overlapped rectangular filters of equal
bandwidth in the second layer. The first filter of the first layer has a bandwidth
spanned between 65Hz and 250Hz. This bandwidth covers the pitch of male
and female in general [8]. This filter is able to determine the information on
1) presence or absence of pitch, and 2) number of pitches in an audio segment.
Details on how the filter captures pitch information will be discussed in later
paragraphs. Bandwidths of the following filters cover F1 (First formant), F2
(Second formant) and F3 (Third formant) of 15 selected English vowels [5].
Each of these filters determines the information on 1) presence or absence of
formant, and 2) number of formants in an audio segment. To this end, we need
to implement 1 filter for pitch and 45 filters for F1, F2 and F3 of each of the
15 vowels. Note that the formants of some vowels (example, First formants of
vowels [aÈ] and [aØ]) overlap each other. Hence, we need to implement only one
filter for these overlapped formants. Finally, we have 1 filter for the pitch (F0)
and 40 filters for the formants (F1, F2 and F3). In Total, we implement 41 filters
in the first layer. The center frequencies and bandwidths of all filters are listed
in Table 1.

We have 41 filters in the first layer. For each filter of the first layer, we have
5 non-overlapped filters in the second layer. Hence, we have a total of 205 (41 x
5) filters in the second layer. The range of our subband filters is from 65 Hz to
3.2kHz.

The upper panels of Figure 3 (a), (b), (c) and (d) represent the signals of
the four audio classes S, SC, C and SIL in the pitch frequency range (65Hz
to 250Hz). As can be seen in the figures, the audio classes S and SC have the
strongest signal strength of all four classes. In addition, only one pitch is present
in audio class S and two pitches are present in the class SC, while no pitch is
present in the class SIL. The Two-Layer Cascaded Subband Filter captures this
information as follows.

The pitch information is captured by TLCSF for the four audio classes which
are presented in Figures 3 (a), (b) (c) and (d). In each figure, the signal in the



No Type Vowel CF(Hz) BW (Hz) No Type Vowel CF(Hz) BW (Hz)
1 F0 - 157.5 185 22 F2 [ÿ] 1290 100

2 F1 [i] 300 72.5 23 F2 [oÈ] 1390 910

3 F1 [u] 335 95 24 F2 [aÈ], [ÿ] 1540 765

4 F1 [eÈ] 405 212.5 25 F2 [̈I] 1575 295

5 F1 [È] 435 120 26 F2 [E] 1605 240

6 F1 [ÿ] 445 150 27 F2 [È] 1700 300

7 F1 [oÈ] 455 260 28 F2 [eÈ] 1870 400
8 F1 [Ø] 475 130 29 F2 [i] 2045 250
9 F1 [oØ] 495 170 30 F3 [u] 2200 140

10 F1 [aÈ], [a] 530 345 31 F3 [oØ] 2300 70
11 F1 [E] 575 150 32 F3 [Ø] 2370 120

12 F1 [O] 615 120 33 F3 [oÈ] 2425 195

13 F1 [U] 620 80 34 F3 [̈I], [aØ] 2450 360

14 F1 [̈I] 635 100 35 F3 [E] 2515 230

15 F1 [A] 700 130 36 F3 [aÈ] 2525 250
16 F2 [oØ] 1000 270 37 F3 [U] 2550 140

17 F2 [O] 1015 150 38 F3 [eÈ] 2560 280

18 F2 [u] 1075 460 39 F3 [È],[O] 2585 170
19 F2 [E] 1085 360 40 F3 [A] 2600 160
20 F2 [Ø] 1140 180 41 F3 [i] 2960 400
21 F2 [A], [U] 1220 70

Table 1. Center Frequencies (CF) and Bandwidths (BW) of the 41 subbands in the
first layer

upper panel is passed through the TLCSF filters shown in the middle panel.
Then, the output amplitudes of the five subband filters are computed and shown
in the lower panel. As can be seen in the figures, the number of local maxima in
the lower panel is the number of pitches present in the audio signal. Since TLCSF
includes subbands for pitch and formant frequency ranges, these subbands work
together to capture the pitch and formant information of the signal.

As mentioned above, formants of some vowels overlap each other. In Table
1, the filters with numbers 10, 21, 24, 34 and 39 are for 2 overlapped formants.
Each of these filters covers the formants of two vowels. These filters can wrongly
classify S as SC. The reason can be explained as follows: Let us assume, a speech
segment of class S includes two vowels, [aÈ] and [aØ], which formants overlap in
filter number 10. Two local maxima (two formants) can be present in the output
of filter number 10 similar to the one shown in the lower panel of Figure 3(b).
As we discussed above, if an audio segment has two local maxima, the classifier
classifies the segment as ’SC’. Hence, we need to make sure that only one local
maximum presents a segment of class ’S’. To this end, we choose an analysis
frame length that covers the duration of only one vowel. For this reason, we
choose the frame length of 60ms which is less than the average vowel duration
[4].
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Fig. 3. Capturing pitch information and TLCSF subband filtering: (a) Speaker alone -
only one pitch and strong signal strength. (b) Speaker plus crosstalk - two pitches and
strong signal strength. (c) Crosstalk alone - only one pitch and weak signal strength.
(d) Silence - no pitch and weak signal strength. In each figure, the upper panel shows
the signal. The middle panel presents the frequency response of the TLCSF subband
filters. The lower panel demonstrates the output of the TLCSF subband filters. The
filters capture the information on 1) presence or absence of pitch, and 2) number of
pitches in the signal by detecting the local maxima.

4.3 Computation of TLCSF coefficients

The speech signal was divided into frames of 60ms with 10ms overlapping. Each
frame was multiplied by a Hamming window to minimize signal discontinuities
at the end of each frame. Next, fast fourier transform (FFT) was applied, and
following that, the audio frame was passed through a bank of cascaded subband
filters and the log energy of each of 205 bands in the second layer was computed.
Finally, a total of 40 Pitch and Formant Frequency Cepstral Coefficients (PF-
FCC) was computed from log energies using Discrete Cosine Transform [9] for
each audio frame.

In Figure 4, example frames for the four classes S, SC, C and SIL and their
corresponding feature vectors are illustrated. It can be seen clearly that the
values of the feature vectors can be used to discriminate between the classes.
For each class in Figure 4, two panels are shown. The top panels illustrate the
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Fig. 4. Illustration of signals and feature vectors for all four audio classes

signal in time domain. Their corresponding subband feature vectors with 205
values are shown in the lower panel. Please note that the scales for the signals
of S/SC and C/SIL differ for illustration purposes.

4.4 Features from Other Work

In addition to the PFFCC we introduced, seven other features were added. These
have been shown to give good results in the meeting segmentation processes in
[2]. Each of the following features was computed over a 16ms Hamming window
with a frame-shift of 10ms.

– Cross-channel Correlation (CCC). The CCC is the maximum of the cross-
channel correlation between a particular channel and any other channel. It
was computed at any time of the signal. For each set of correlation values
for any channel, the mean CCC, maximum normalized CCC and mean and
maximum spherically normalized CCC was computed.

– Kurtosis (KU). Kurtosis is the fourth-order moment of a signal divided by
the square of its second-order moment.

– Log Energy (LE).



5 Experiments

For the experiments, data from 19 of the ICSI meetings2 were used. We tried
combinations of different features to study the effects of the following parameters:
Window length of the PFFCC feature, reduction of PFFCC features by dct, as
well as a combination of the PFFCC features with the parameters Cross-channel

Correlation, Kurtosis and Log Energy. As mentioned in Section 4.2, 60ms is a
suitable window length for this task since this length is the average duration
of a vowel. However, we would like to see the effect on the system performance
using a shorter window length (example, 20ms). The reason is that a shorter
window length could be a better choice to make sure that the audio segment
includes only one vowel. Hence, we use window lengths of 20ms and 60ms to
extract features. All these parameters led to six feature sets which are listed in
Table 2. According to the window length and the number of features, the sets

Window No. No. PFFCC CCC KU LE
Length Total 40 205

20 41 • •

20 46 • • • •

20 211 • • • •

60 41 • •

60 46 • • • •

60 211 • • • •

Table 2. Composition of feature sets

are named 20-41, 20-46, 20-211, 60-41, 60-46 and 60-211.
The feature vectors from all the test meetings were extracted and labeled.

Then recognition tests were made using the HTK. As we were interested to study
only the effects of the feature combinations, no smoothing strategy was applied
to the outgoing streams of recognition results.

In Table 3, we report the overall recognition results for two of the meetings
(namely Bed015 and Bmr002) to show the performance of the different feature
sets. It can be seen that the 41-dimensional feature sets, which contain the
reduced PFFCC features and log energy, clearly outperform the remaining sets.
But it should be noted that the low performance of the other feature sets may
be due to a problem of normalization, which can be solved in future studies.
In addition, we found that a 60ms window length performs better than a 20ms
window. The reason for that is that a short window can not show a significant
spectral difference between the different audio classes.

Figure 5 displays the recognition rate (line with circles) and the false positive
rate (line with squares) for the single states of all meetings for the 60-41 feature

2 The data of the following meetings were used: Bed015, Bed017, Bmr002, Bmr007,
Bmr008, Bmr009, Bmr013, Bmr018, Bmr022, Bmr026, Bmr027, Bro008, Bro013,
Bro014, Bro015, Bro017, Bro018, Bro023, Bro026.



Set Bed015 Bmr022

20-41 44.5% 46.0%

20-46 33.9% 39.3%

20-211 22.7% 22.9%

60-41 47.9% 52.7%

60-46 28.6% 36.3%

60-211 19.0% 17.0%
Table 3. Overall recognition results for meetings Bed015 and Bmr022
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Fig. 5. Recognition rates (upper line with circles) and false positive rates (lower line
with squares) for all 19 test meetings using feature set 60-41. Each of the circles and
squares stands for the recognition rate, and false positive rate accordingly, of one meet-
ing.

set, which performed best. The recognition rate denotes the percentage of cor-
rectly classified frames, while the false positive rate is specified as the proportion
of negative instances that were erroneously reported as being positive.

These results also show that the recognition rate for the classes S and SIL are
much higher than for the classes C and SC. Since our system aims to be used in
the preprocessing of meetings for ASR systems, these results are very useful as
they denote that a rather accurate detection of single speaker frames is possible
and achievable. This indicates that the PFFCC feature is indeed suitable for
the detection of several speakers and deserves further investigation. Our results
can’t be compared directly to the ones reported in [2], because on the one hand
we used a slightly different set of the recorded meetings for training and testing.
And on the other hand Wrigley et al. don’t report their recognition results before
applying a smoothing strategy.



6 Conclusions

In this paper, we presented a system for meeting segmentation, which segments
recorded meetings into the four audio classes: Single speaker, crosstalk, single

speaker plus crosstalk and silence. For that purpose we trained several ergodic
Hidden Markov Models with different feature sets, which were made up of a
feature that had been computed with two layers of subband-based filters, plus
several other features that had been reported in other publications. Experiment
results show that the performance of our system is effective for the single speaker
and silence classes. Upcoming tasks to improve the recognition rate for the other
classes can include normalization of the feature sets and implementing different
models.
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