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Abstract

Intelligent Speech Analysis (ISA) plays an essential role in smart conversational
agent systems that aim to enable natural, intuitive, and friendly human computer
interaction. It includes not only the long-term developed Automatic Speech Recog-
nition (ASR), but also the young field of Computational Paralinguistics, which has
attracted increasing attention in recent years. In real-world applications, however,
several challenging issues surrounding data quantity and quality arise. For example,
predefined databases for most paralinguistic tasks are normally quite small and few
in number, which are insufficient for building a robust model. A distributed struc-
ture could be useful for data collection, but original feature sets are always too large
to meet the physical transmission requirements, for example, bandwidth limitation.
Furthermore, in a hands-free application scenario, reverberation severely distorts
speech signals, which results in performance degradation of recognisers.

To address these issues, this thesis proposes and analyses semi-autonomous data
enrichment and optimisation approaches. More precisely, for the representative par-
alinguistic task of speech emotion recognition, both labelled and unlabelled data
from heterogeneous resources are exploited by methods of data pooling, data selec-
tion, confidence-based semi-supervised learning, active learning, as well as coopera-
tive learning. As a result, the manual work for data annotation is greatly reduced.
With the advance of networks and information technologies, this thesis extends the
traditional ISA system into a modern distributed paradigm, in which Split Vector
Quantisation is employed for feature compression. Moreover, for distant-talk ASR,
Long Short-Term Memory (LSTM) recurrent neural networks, which are known to
be well-suited to context-sensitive pattern recognition, are evaluated to mitigate re-
verberation. The experimental results demonstrate that the proposed LSTM-based
feature enhancement frameworks prevail over the current state-of-the-art methods.
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Zusammenfassung

Intelligente Sprachanalyse (ISA) ist von grundlegender Bedeutung für zukünftige
Sprachdialogsysteme, die auf natürliche, intuitive und benutzerfreundliche Mensch-
Maschine-Interaktion abzielen. ISA beinhaltet nicht nur automatische Spracherken-
nung, deren Entwicklung bereits weit fortgeschritten ist, sondern auch das derzeit im
Entstehen begriffene, aber zunehmend wichtige Feld der computergestützten Par-
alinguistik (Computational Paralinguistics). In realistischen Anwendungsszenar-
ien stellen sich einige Herausforderungen hinsichtlich Quantität und Qualität der
Daten, die von ISA-Systemen verarbeitet werden. Zunächst sind für Anwendungs-
gebiete im Bereich der computergestützten Paralinguistik nur wenig und meist
kleine Datensätze verfügbar, was zu erheblichen Problemen bei der Robustheit
der trainierten Modelle führt. Dieses Problem könnte durch Datensammlung über
verteilte Architekturen gelöst werden; die Implementierung solcher Architekturen
im Bereich der computergestützten Paralinguistik stellt jedoch insofern ein Problem
dar, als die typischerweise verwendeten Merkmalssätze zu groß für die Übertragung
über bandlimitierte Kanäle sind. Schließlich sind bei wichtigen Anwendungsszenar-
ien von ISA wie z.B. im Freisprechmodus auch Störfaktoren wie Nachhall zu
berücksichtigen, die die Erkennungsgenauigkeit signifikant beeinträchtigen können.

Als Beitrag zur Lösung dieser Probleme stellt diese Arbeit einige Ansätze zur Op-
timierung der Datensammlung und -übertragung vor. Zunächst werden am Beispiel
der Emotionserkennung Methoden zur Datenaggregation und -selektion eingeführt,
die handverschriftete und unverschriftete Daten aus verschiedenartigen Quellen mit-
tels halbüberwachtem Lernen mit Konfidenzmaßen, aktivem und kooperativem Ler-
nen vereinigen. Dadurch kann der Arbeitsaufwand zur manuellen Datenverschrif-
tung erheblich reduziert werden. Anschließend wird ein Ansatz vorgestellt, in dem
herkömmliche ISA-Systeme durch Split-Vektorquantisierung zur Kompression der
Merkmalssätze in eine moderne verteilte Architektur überführt werden. Schließlich
werden Long Short-Term Memory (LSTM) rekurrente neuronale Netze hinsichtlich
ihrer Eignung zur Enthallung von Sprachmerkmalen bewertet, deren Architek-
tur in besonderer Weise auf kontextbehaftete Musterkennungsaufgaben zugeschnit-
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ten ist. Die Ergebnisse zeigen, dass der vorgeschlagene LSTM-Ansatz zur Merk-
malsverbesserung einen erheblichen Zugewinn gegenüber dem Stand der Technik
bringt.
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1

Introduction

1.1 Motivation

Linguistic content interpretation systems, also known as Automatic Speech Recog-
nition (ASR) systems, have been studied for more than half a century. The aim of
these systems is to enable machine–human, or even machine–machine, communica-
tion that is as natural as human–human interaction. Thanks to the advance of new
techniques such as deep learning algorithms, these systems have begun to be used
in real-life applications, for example, as personal voice assistants in smartphones.
Nevertheless, these systems still lack any social competencies and are weak in com-
plex environments, such as reverberant rooms. In this light, an extended research
field of speech technology is emerging, termed ‘Intelligent Speech Analysis’ (ISA).
While research in speech technology traditionally focuses on the interpretation of
verbal speech (i.e., ASR), the new research domain of ISA is more relevant to the
understanding of non-verbal speech, that is, computational paralinguistics. Paralin-
guistics means ‘alongside linguistics’. It is defined as the discipline dealing with
those phenomena that are embedded into the verbal message, for example, speak-
ers’ states, attitudes, and characteristics [1]. Computational paralinguistics indeed
aims to extract these paralinguistic cues from speech by computationally intelligent
algorithms provided by the machine-learning, and not just the signal-processing,
community.

The advance of ISA can benefit numerous and wide-ranging potential appli-
cations in information and communication systems. For example, the improved
capability of computational paralinguistics and ASR has been shown to greatly con-
tribute to the building of more natural and friendly interactive and communicative
robots. It has also been helpful for creating more sophisticated call-centre manage-
ment systems, computer games, and the systems for the monitoring and surveillance
of critical environments. However, research on the paralinguistic tasks in particu-
lar is still at its earliest stages. Thus, at the moment, these application systems
are far from being perceived as natural, efficient, and comparable to humans in the
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1. Introduction

‘wild’. This is because of the limitation of system capabilities in ASR, computational
paralinguistics, and so forth.

To bridge the gap between humans and machines regarding information extrac-
tion and perception of speech, we need to overcome several major data-related chal-
lenges in the field of ISA:

(1) Data scarcity for computational paralinguistics. With respect to the analysis of
paralinguistic tasks, especially emotion recognition, most previous studies based
their methods on a restricted set of labelled corpora that contain a rather small
amount of data. These data have normally been acquired from subjects repre-
senting a limited range of cultures and backgrounds. Recording environments
and devices are often controlled, and the linguistic tasks asked of the subjects are
often prototypical and situation-specific. Therefore, the data are easy to charac-
terise with current pattern recognition techniques, thus leading to overestimated
recognition accuracies. By contrast, realistic inter-human or human–machine in-
teractions are more complex and diverse. Therefore, data need to be collected
from different recording environments and devices, with diverse backgrounds of
evaluation targets, and non-prototypical tasks (e.g., ambiguous and spontaneous
emotions). Even state-of-the-art systems have difficulty in distinguishing speech
patterns, owing to the narrow data set on which their development was based
[2, 3, 4]. The shortage of data seriously limits the robustness of acoustic mod-
elling and consequently restrains its real-life applications to some extent. Even
though extensive research has been conducted on other pattern-recognition ap-
plications (e.g., speech recognition), insufficient efforts have been made in the
computational paralinguistics area to provide any comprehensive conclusions
about how to deal with this data scarcity [5, 6].

(2) Large dimensions of data features for computational paralinguistics. Thanks
to the prevalence of networks and the advance of cloud computing technol-
ogy, server- or even cloud-based recognition systems are well-suited to handling
ubiquitous data processing and computing. Consequently, such a distributed
structure can continuously refine classification models [7, 8]. Feature reduction
has been addressed in much previous research [9, 10, 11]; however, this research
does not consider the specific requirements of such a distributed computing
structure. To better leverage this structure for computational paralinguistics,
the data have to be optimised to meet the requirement of data transmission
via physical communication channels, data storage in memory, and user-privacy
protection.

(3) Distorted data features for ASR. Current systems of verbal speech analysis can
yield a very high accuracy when recognising well articulated read speech in
predefined clean acoustic conditions. Nonetheless, background noise and re-
verberation, which are to be expected in natural communication, can severely
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downgrade recognition performance. Numerous approaches to tackle this issue
have been proposed over the past decades, and have had a great success [12].
Additionally, the development of advanced algorithms makes it possible to shed
new light on this issue. These algorithms could further enhance the data fea-
ture, improve recognition accuracy, and, simultaneously, do not require heavy
revision of pre-existing systems.

In general, all three challenges have to do with the front stage of the process-
ing chain of ISA systems. In addition to these challenges, there are also many
others, for example, the determination of labels for subjective paralinguistic tasks,
the interaction effect among multiple tasks, and the environmental noise effect for
computational paralinguistics. It is worth noting that the concept of data in this
thesis is defined as the pattern recognition unit before feature extraction (i.e., frame,
instance, turn, example, or record), or the values after feature extraction (i.e., at-
tribute or feature).

1.2 Aims of this Thesis

This thesis targets the aforementioned three major challenges by trying to achieve
the following objectives:

(1) Data enrichment by exploiting heterogeneous labelled data. The most direct
way to increase the data quantity is through the use of pre-existing labelled
databases. However, most of these databases are prepared for specific targets
with different annotations, background speakers, recording environments, etc.
In this light, a unified learning mechanism is required to make better use of
these heterogeneous data.

(2) Data enrichment by exploiting vast unlabelled data, with as little human effort
as possible. In comparison with the low amount of labelled data, a vast quantity
of unlabelled data are available from public sources, such as social media, and
they can be acquired through the use of application systems. Conventional
ways to annotate these data by human raters (labellers/annotators/coders) are
extremely time-consuming and expensive [13]. Therefore, to efficiently leverage
these unlabelled data, it is necessary to create a (semi-)automatic self-optimising
mechanism. By doing this, existing classification models can still be used, and
their parameters continuously and statistically optimised.

(3) Data optimisation by reducing feature size. In the case of distributed computa-
tional paralinguistics, feature optimisation methods for reducing feature dimen-
sionality are required. These methods have the potential to benefit not only
data transmission via communication line and data storage in memory, but also
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1. Introduction

privacy protection. Although distributed speech recognition systems are well-
developed and even standardised, distributed computational paralinguistics lag
behind [7, 8, 14]. Therefore, it is interesting to know whether the relative fea-
ture optimisation techniques used for distributed speech recognition could be
transferred to the computational paralinguistics.

(4) Data optimisation by enhancing corrupted features. Here, the aim is to ease the
impact of noise, especially reverberation, on speech recognition from the acoustic
feature aspect. The advantage of this strategy is that the pre-existing acoustic
models, which are trained on a clean data set, can be maintained. Recently,
novel neural network structures have been employed to abstract the high-level
representative features from original ones, or to create acoustic or language
models for speech recognition. These networks have been demonstrated to be
greatly effective for ASR [15, 16]. For feature enhancement, therefore, it is also
worth investigating the effectiveness of a state-of-the-art neural network.

Generally, the central points of these challenges to be addressed and advanced
are the data quantity and quality. To achieve the above objectives, this thesis is
dedicated to developing (semi-)autonomous data enrichment and optimisation algo-
rithms in the context of ISA. For computational paralinguistics (in particular for
emotion recognition), a variety of methods are extensively studied to increase the
amount of training data without relying on expensive human effort for labelling.
These methods include semi-autonomous pooling, data selection, self-learning (e.g.,
semi-supervised learning and active learning), and their derivations. Moreover, in the
case of distributed paralinguistics recognition systems, one crucial issue of feature
optimisation (or rather feature compression) is addressed by Split Vector Quanti-
sation (SVQ). For ASR, promising context-sensitive networks, namely Long Short-
Term Memory (LSTM) neural networks [17], are employed to advance the feature
enhancement techniques.

1.3 Structure of this Thesis

This thesis is structured into five main chapters as follows.
Chapter 2 concentrates on the theoretical framework of the ISA system. First,

an overview of the workflow of the state-of-the-art ISA system is given. Then, fun-
damental and advanced knowledge of each crucial component is presented stage by
stage: from the speech data, to the acoustic features, to the classification algorithms
and the evaluation metrics.

Chapter 3 describes a set of methods that are proposed and employed in this
thesis for dealing with the challenges outlined in Section 1.1. To be more specific,
these methods are designed to exploit labelled data using data aggregation or data
selection; or to utilise unlabelled data through various semi-supervised learning and
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1.3. Structure of this Thesis

active learning methods without involving a lot of manual effort; or to optimise
feature data by reducing its feature size or alleviating the impact of channel rever-
beration. All these methods are successively evaluated.

Chapter 4 describes the implementations of the methods presented in Chapter 3.
These applications cover speech emotion recognition, general paralinguistics recog-
nition, and verbal speech recognition. For each task, various methods are provided
to address different aspects of the challenges. Following an introduction of care-
fully selected databases and a description of experimental setups, the results of the
corresponding methods are then reported.

Chapter 5 summaries and concludes the presented work, and suggests possible
further investigations.

Additionally, Appendix A gives a short introduction of multiple databases that
have been adopted to investigate the effectiveness and efficiency of the methods
proceeded in this thesis.
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2

General Framework of Intelligent
Speech Analysis

2.1 Overview

Figure 2.1 illustrates the framework of a unified Intelligent Speech Analysis (ISA)
system. The major objective of this system is to utilise machine learning approaches
to extract interesting information from speech signals. The information generally
includes speakers’ verbal intentions, their personal IDs, states (e.g., anger or sleepi-
ness), cultural background, and characteristics. Inspired by the standard structure
of speech recognition [18], the framework of the ISA system can also be divided
into two modules: the front-end and the back-end. The front-end module comprises
several sequential processing stages that aim to maintain as much information as
possible in speech input and to encode them into a collection with the fewest fea-
tures. With these features, the back-end module could continuously train and update
the task-oriented acoustic/language models and interpret these features as specific
notations, such as words and emotions.

More specifically, in the front-end, the goal of the speech preprocessing stage –
the Signal Processing block – is to enhance the incoming speech signals that are
often distorted by various noises, such as the additive noise derived from multiple
interfering speakers, environmental and recording noise, as well as the convolutional
noise, such as reverberation. Many methods are employed to suppress the effect of
noise, such as adaptive filtering [19], spectral normalisation and subtraction [20],
Non-negative Matrix Factorisation (NMF) [19], and beamforming [12].

Voice Activity Detection (VAD) is firstly used for detecting speech signals and
dropping the non-speech frame. If speech is detected, the signals will be delivered
to the following processing components. Following the Signal Processing stage, the
denoised and enhanced signals are sent to the feature extraction module. Here, Low-
Level Descriptors (LLDs) are computed at a frequency of 100 frames per second with
a typical window size of 10–30 ms. The windowing functions for the extraction of
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2.1. Overview

LLDs in the time or the time-frequency domain are usually chosen as the smooth
ones (Hamming or Hann) or the rectangular one [4]. Then, the LLD sequences
are divided (chunked) into super-segmental turns (the Chunking block). The turns
can be the fixed number of frames, syllables, words, acoustic chunks, sub-turns,
or complete turns [21]. In the present framework, the selection of turns depends
on the requirements of specific tasks. For example, emotion-related information
is often reflected by short-term speech, whereas gender information can normally
be accumulated over the whole speech track. After chunking the LLD sequences,
hierarchical functionals are applied over LLDs to each turn, so as to project the
multivariate time series onto a single vector of a fixed dimension that is independent
of the length of the entire turn. Especially for Automatic Speech Recognition (ASR),
only the process of LLD extraction is implemented to extract features, such as Mel-
Frequency Cepstral Coefficients (MFCCs), due to its rapid pronunciation variation
over time. To reduce the dimensionality of a feature set, a feature selection stage is
additionally added by reducing the relevancy among attributes.

Turning now to the back-end module, the feature set is delivered to the recogniser
for either classification, where the outputs are discrete classes (e.g., word and gen-
der), or regression, where the outputs are continuous values (e.g., speaker’s height
and age). The classification/regression results from the acoustic and/or language
models can also be fused with other information (the Fusion block), such as fa-
cial expression and motion recognition, before reaching the final decision of pattern
analysis.

Moreover, before putting forth the speech analysis, pre-existing databases with
target labels are applied for initial parameter selection and model learning. The
parameter selection block ‘fine tunes’ the learning algorithms, such as the learning
algorithm’s topology, the type of functions, or initialisation. The model learning
block is the actual training phase, where classifiers or regressors are built on labelled
data. By this process, two models can be obtained: the acoustic model and the
language model. The acoustic model is built on the acoustic features, whereas the
language model is created on the speech content. In this thesis, the language model
is only used for ASR.

Given the need to deal with diverse tasks simultaneously, and the fact that
the information required for a specific task may also be relevant to other tasks,
task selection algorithms are of significance for the execution of the ISA system.
A common way is to invite the user to perform the task selection which in turn
determines the feature set selection in the front-end and the model selection in the
back-end. If no specific tasks are predefined, however, computational auditory scene
analysis (CASA) could be used to automatically analyse the circumstances of speech
recording (e.g., cocktail party, home, street) and to then predict the possible tasks
[22].

All in all, several important challenges need to be overcome on the way towards
the goal of extracting useful information from speech signals by such a unified system
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2. General Framework of Intelligent Speech Analysis

(cf. Section 1.1). In the ongoing, the challenges, as well as each important component
in the processing chain, will be discussed in detail.

2.2 Speech Data

In the realm of pattern recognition, there is a preference to use more data to train
classifiers. However, the ISA, as a fresh pattern research field (except for the speech
and speaker recognition), has insufficient data with which to create a robust clas-
sification [14]. Accordingly, the widely-agreed priority is a change in the scale and
quality of databases in the field of ISA, especially computational paralinguistics.

2.2.1 Databases

Before discussing the challenge of data scarcity for the ISA system, the following
subsections briefly sketch and cluster the categories of speech data.

2.2.1.1 Human vs. Synthesised

From the generation point of view, speech can be primarily divided into two groups:
the human and the synthesised speech. The human speech, as the name implies, is
uttered by the vibration of human’s plica vocalis. Particularly, it can be categorised
as the acted one, the induced one, and the spontaneous one upon the types of
speaking. On the contrary, the synthesised speech is created via computer systems
by statistical modelling and concatenative signal generation techniques.

1) Human Speech: Acted, Induced, and Spontaneous

Due to the difficulty of controlling the power level and settings of microphones during
recording, the earlier databases implemented for ISA, occurs on acted speech. To
collect these data, the speakers (usually amateur or professional performers) are
asked to pretend a predefined task, e.g., expressing various emotions like anger,
disgust, fear, happiness, sadness, and surprise, by uttering mostly fixed spoken
content. In fact, these databases are partly and originally not intended for analysis,
but for quality measurement of speech synthesis [23]. For pattern recognition, even
though they are comparably easy to obtain high accuracy with, they are quite far
from realistic settings.

The induced group is a transitional solution to ease the recording conditions of
spontaneous speech, with the aim of generating the spontaneity-similar one from
the acoustic feature aspect. Generally, a Wizard-of-Oz (WOZ) is designed at the
beginning (e.g., a multi-model dialogue system), then elicits the speakers to a prede-
termined state, giving rise to the provoking of utterances ‘naturally’. Normally, the
speakers are in the ‘darkness’ of the specific purpose in order to let them perform

10



2.2. Speech Data

naturally. Hence, eliciting data in such a WOZ scenario seems to be a useful way of
determining what may happen in a real-life application.

Nowadays, the actual application-oriented research work motivates to collect
more spontaneous data from daily life. Typical scenarios are related to call centres,
game-playing, communication between human and robots or automatic voice servers,
and the like. As a matter of fact, the pattern recognition tasks on such natural data
are much tougher than that with the acted or the induced ones. One difficulty
pertains to the inherent differences between the real and the acted speeches [24,
25, 26]. These differences mainly include: speaking rate, acoustic environment, and
vocal tracts variability, which result in a huge gap in acoustic features between the
real and the acted speeches [9]. Another difficulty with spontaneous speech is the
annotation, since the speakers are almost impossible to be known with certainty. In
addition, the majority of the spontaneous speech often has nothing to do with the
targets of interest. Taking the speech emotion recognition for example, the neutral
speech indeed normally predominates the whole recording.

2) Synthesised Speech

By contrast, synthesised speech is fully artificially produced. The Text-To-Speech
(TTS) synthesis procedure mainly consists of two stages: The first stage is text
analysis and phonetic transcription. The input raw text is firstly normalised as a
unified format. Then, we assign phonetic transcription to each word, and divide
and mark the text into prosodic units, like phrases, clauses, and sentences. Pho-
netic transcriptions and prosody information together make up the symbolic linguis-
tic representation. The second one is referred to as the synthesiser that converts
the symbol linguistic representation into the waveforms by using the phonetic and
prosodic information. Two primary approaches to model the synthetic speech exist:
the parametric system, like articulatory and formant synthesis, and the data-based
system, such as unit-selection synthesis [27].

An approach called diphone synthesis is considered as the compromise between
the flexibility of parametric synthesis and the naturalness of data-based synthesis. In
this thesis, the simulation of emotions is achieved by a set of parametrised rules that
describe the manipulation of speech signals by the following aspects: pitch changes
(including pitch level, range, variation, contour, and duration), voice quality (e.g.,
jitter), and articulation (substitution of centralised/decentralised vowels). For the
details about the modifications, please refer to [28]. Finally, the quality of a speech
synthesiser is evaluated by its similarity to the human voice or by its ability to be
distinguished clearly.

11



2. General Framework of Intelligent Speech Analysis

2.2.1.2 Objective vs. Subjective

Upon the subjectivity of target patterns, the data can be classified as the objective
and the subjective ones. The vertical axis of Figure 2.2 denotes the subjectivity of
various patterns in speech.

Like traditional speech recognition and speaker identification, some other pat-
terns in speech (deemed as objective patterns) can be measured (annotated/labelled)
by ground truth, or highly correlated with the ground truth. That is, the source
can be mapped one-to-one onto the variable/class: gender in female/male, age in
year/day, or height in cm/in. In addition, personal state of alcoholic intoxication
can be measured reasonably reliably with Blood Alcohol Concentration (BAC), the
value of which could indicate the degree of intoxication. Heart rate can also be
measured more or less directly by using electrocardiogram equipment.

By contrast, there are some other phenomena (namely subjective patterns) that
can only be accessed by perceptive judgement. Such an assessment highly depends
on the individuals, since each person normally has different perceptual thresholds.
For music mood, for example, some would consider a musical piece sadder or hap-
pier than others, or even have opposing views due to personal associations with a
song. The same holds true for other speakers’ emotion-related states like stress,
interest, and confidence, as well as speakers’ personality-related traits of likeability,
friendship, and aggressiveness. This assessment is also known as gold standard. In
contrast to the ground truth that is for the tasks being able to be measured pre-
cisely, the gold standard is only for agreed-upon human annotation procedures. As
to speech and language analysis, such a gold standard has twofold impacts: On the
one side, learnt models of computer systems that process, for example, affective data
are annotator-prone; on the other side, the test results might be over- or underesti-
mated. Thus, to live up to a reliable gold standard, several annotators are required
for one database.

These multiple annotations are unified into a single hierarchy as a final reference
(the gold standard) by means of certain decision rules [29]. The most popular
and straightforward method is the majority voting [30], where each rater is equally
considered, and the final label is defined by the most agreement for the discrete
classes or by the central tendencies (average values) over all the raters for continuous
values. In practice, some annotators may lack concentration if they have to label
huge amounts of data, or do not take labelling seriously at all or at any time. In
this light, weighting evaluators is considered to reach the greatest consent among
these with the gold standard. In [31], Grimm & Kroschel proposed the Evaluator
Weighted Estimator (EWE) with the definition of

x̂EWE,i
n =

1∑M
m=1 r

i
m

M∑
m=1

rimx̂
i
n,m, (2.1)

where the indices n and m stand for the instance index 1 ≤ n ≤ N and for the
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Figure 2.2: Subjectivity and temporality of various patterns in speech.

evaluator index 1 ≤ m ≤ M , respectively. The x̂in,m is the label of the rater m for
the instance n. The evaluator-dependent weight rim is estimated by calculating the
correlation coefficient between the individual evaluation sequences {x̂in,m}n=1,...,N

and the Maximum Likelihood estimation sequences {x̂MLE,i
n }n=1,...,N , {x̂MLE,i

n } =
1
M

∑M
m=1 x̂

i
n,m, as follows

rim =

∑N
n=1(x̂in,m − µim)(x̂MLE,i

n − µMLE,i)√∑N
n=1(x̂in,m − µim)2

√∑N
n=1(x̂MLE,i

n − µMLE,i)2

, (2.2)

with

µim =
1

N

N∑
n=1

x̂in,m (2.3)

and

µMLE,i =
1

N

N∑
n=1

x̂MLE,i
n . (2.4)

If all evaluators have the same correlation coefficient rim, the gold standard is
equal to the mean of the labels of all raters x̂in,m. Therefore, the EWE is a weighted
mean, with the weights corresponding to the ‘reliability’ of each rater, which is the
cross-correlation of one’s rating with a mean rating (over all the raters). For each
rater, this cross-correlation is computed only on the block of stimuli that one rated.
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2. General Framework of Intelligent Speech Analysis

2.2.1.3 Short Term vs. Long Term

In accordance with the temporal characteristic of targets, the data can be categorised
as short-, medium-, and long-term tasks-related ones. The horizontal axis of Figure
2.2 denotes the temporality of various patterns in speech.

Plenty of previous research has been devoted to the ‘endpoints’ on the time
scale, i.e., to spontaneous text understanding (speech recognition) and to perma-
nent personal ID identification. Within this time axis, other speakers’ information
like gender, age, personality, sleepiness, and emotion states are also crucial to the
modelling and processing of human–human or human–machine interaction, giving
rise to increasing attention recently.

It is widely accepted that these paralinguistic phenomena can be sorted as follows
[4]:

Short-term states: They normally last for only a few microseconds, seconds,
or minutes. Generally speaking, they include emotion-related states, feelings, or
affects, e.g., Ekman’s six basic emotions (anger, disgust, fear, happiness, sadness,
and surprise) [32], confidence, truthfulness, politeness, interest, intimacy.

Medium-term phenomena: This group generally takes at least several minutes,
hours, or even days. Normally, these phenomena consist of (partly) self-induced
states such as intoxication, sleepiness, and health states, as well as structural (be-
havioural, interactional, social) signals like consumer tendencies, interpersonal at-
tributions, and friendship.

Long-term traits: These patterns vary in a long run (usually for months or years),
or even remain permanently invariable. Generally, they are related to biological
trait primitives like age, height, weight, gender; to the cultural background, race,
and ethnicity; to the personal characteristics such as likeability; and to the speaker
ID.

The differences among various patterns in the temporality results in different
ways to handle these patterns from a processing point of view. For short-term states,
taking emotion for example, it is known that the emotional state in the previous
seconds influences that in the following seconds. Thus, segmenting speech signals
into coherent chunks is crucial for performance analysis [21, 33]. In contrast, for
medium- and long-term patterns, the method of segmentation is not so important
because the state does not change quickly. Moreover, from the machine learning
aspect, it is quite efficient to collect cumulative evidence for longer-term patterns
[34].

2.2.2 Challenge of Data Scarcity

With the development of ASR, the data-scarcity problem has been greatly relaxed.
However, it is still one of the major curses of computational paralinguistics. Even
though several public databases have been designed as benchmark sets for specific
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2.2. Speech Data

Table 2.1: Classic paralinguistic databases (For emotional databases, please refer to
Appendix A.1). Some acronyms of tasks: intoxication, personalities, and likeability;
Languages (Lan): English (EN), French (FR), German (DE), or Dutch (NL); speech
types (Y): spontaneous (S) or promoted (P); number of instances (Inst) and total
speech time (T[h]); number of speakers (sk) and labellers (L); recordings (Rec) ob-
tained by lab recording (LAB), conference recording (CON), telephone transmission
(TEL), or broadcast speech (FM); and recording rate (kHz).

Task Corpus Lan Y # Inst T[h] # sk # L Rec kHz

interest AVIC [35] EN S 3 880 2.3 21 4 LAB 11
deception CSC [36] EN P 1 140 7.0 32 - LAB 16
conflict SC [37] FR S 1 430 12.0 138 550 CON 16
sleepiness SLC [38] DE P 9 089 21.3 99 4 LAB 16
intox. ALC [39] DE P 12 360 43.8 162 - LAB 16
heart rate MBC [40] EN P 1 088 0.3 19 - LAB 96
cognition CLSE [41] EN P 2 418 1.0 26 - LAB 16
personality SPC [42] FR S 640 1.7 322 11 FM 8
likability SLD [43] DE P 800 0.7 800 32 TEL 8
pathology NCSC [44] NL P 2 386 2.0 55 13 LAB 16
autism CPSD [45] FR P 2 542 1.0 99 4 LAB 16
ethnicity VaB [46] EN S 315 175 557 - TEL 8
age aGender [47] DE P 65 364 50.6 945 - LAB 44
gender aGenger [47] DE P 65 364 50.6 945 - LAB 44

tasks, part of which are shown in Table 2.1, they are just ‘drops of water in the
desert’.

The limitations of these databases can be summarised as follows:

1) Small amount of instances. From Table 2.1, it can be seen that most databases
include only thousands of instances and several hours of recording. Compared
to the state-of-the-art speech recognition systems, like Siri on iPhone, Cortana
on winPhone, and Google Now on Andriod, which are trained on hundreds and
thousands of hours translated recordings, the databases in Table 2.1 seem to
be insufficient for building a robust model.

2) Less spontaneity. Most databases are recorded by a predefined recording pro-
cedure (i.e., fixed content) in laboratories. In this case, the characteristics
are always exaggeratedly expressed, and the speech signals are normally quite
clean. All these phenomena do not match with real-life scenarios. For real-
world applications, more spontaneous speech under diverse recording environ-
ments is required.
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2. General Framework of Intelligent Speech Analysis

3) Limited number/background of speakers. The diversity of speakers is crucial
for speech analysis (cf. Section 2.3.4). Therefore, increasing the variety of
speakers with different dialects, ethnicities, gender, ages, and the like, will
certainly enhance the model robustness.

4) Imbalanced class distribution. In many cases, the examples in the training
data set belonging to one class heavily outnumber that of other classes. Such
an imbalanced distribution over classes leads to difficulties for the systems to
learn the concept related to the minority class [48, 49, 50].

5) Incompatibility of annotations across corpora. Due to the lack of standard-
isation, each database is normally created with its own annotation method
for its own goal. Let us take emotion for example – some databases are la-
belled by event-related emotions, such as Ekman’s ‘big six’ emotion classes
(i.e., anger, disgust, fear, happiness, sadness, and surprise) [32], but some oth-
ers are marked by self-appraisal emotions (i.e., achievement, self-confidence,
sociability, embarrassment, shame, guilt, and remorse) [51].

6) High-level labelling disagreement or mislabelling. As given in Section 2.2.1.2,
the subjective tasks are accessed by annotators’ perception. Such perception
might be not reliable because of the annotators’ mind distraction for long-time
working, their reluctance to label, or their temporary variation of personal
emotion. This probability results in high-level of labelling disagreement, even
in mislabelling [52].

All these data-scarcity-related issues laying before the computational paralin-
guistics obstruct the application of intelligent speech techniques. This thesis will
address such data-scarcity-related issues elaborately, and give an overview on the
representative paralinguistic task of emotion.

2.3 Acoustic Feature Extraction

Speech recognition is primarily based on spectral features, such as MFCCs, whereas
computational paralinguistics tends to employ a larger set of statistical features,
which are extracted by applying higher hierarchical functionals over a set of LLDs.
Figure 2.3 gives an overview of the acoustic feature generation steps: 1) frame-level
LLDs extraction; 2) chunking; and 3) super-segment-level functionals application.
The following subsections will provide more details about the LLDs and the func-
tionals for the recognition of speech and paralinguistic tasks.
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2.3. Acoustic Feature Extraction
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Figure 2.3: Overview of the steps for generating acoustic features.

2.3.1 Low-Level Descriptors

Low-Level Descriptors (LLDs) are extracted at the frame-level – approximately 100
frames per second with a window size of 10-30 ms depending on the overlapping
ratio. Windowing functions are usually the rectangular in the time domain, and the
Hamming or the Hann in the frequency or time-frequency domain. Typical acoustic
LLDs in the field can be grouped into prosodic, spectral, and voice quality features
[53]. After extracting the raw LLDs, derived LLDs like deltas are often added to
the feature sets. Furthermore, diverse filters (smoothing, normalising, etc.) may be
applied. For the better introduction of LLDs, let us assume that S(n) is a speech-
signal frame after applying a window with N samples.
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2. General Framework of Intelligent Speech Analysis

Prosodic Features

1) Pitch (F0)
The fundamental frequency F0 (or Pitch) plays a crucial role in the expression

of paralinguistic cues via speech and thus is an important feature in the domain
of computational paralinguistics. To extract the fundamental frequency, one of the
most popular approaches, focusing on the signature in the time domain, uses the
Auto Correlation Function (ACF) R(k) [54], which is defined as

R(k) =
N−k∑
n=1

S(n)S(n+ k), (2.5)

where R(k) depends on the time-shift k. The peak of R(k) can be found at inte-
ger multiples of the period T0 if voiced sound is uttered. Then, the fundamental
frequency F0 can be calculated as the reciprocal value of T0 by F0 = 1

T0
.

2) Energy
The short-time energy of a speech-signal frame can be calculated as follows:

E = log
N∑
n=1

|S(n)|2. (2.6)

Applying the logarithm accounts for the fact that the sensation of loudness increases
logarithmically as the intensity of a stimulus grows. Usually, the short-term energy
is normalised since parameters, such as the distance to the microphone, heavily
influence the intensity of the recorded signals.

Spectral Features

1) Formants
Formants are defined as the spectral peaks which can be used as the distinguish-

ing or meaningful frequency components of human speech. Essentially, it is related
to the human vocal tract. Different shapes of human vocal tract will contribute
to different reinforced frequency zones (resonating frequencies). From the low to
high frequency, they are usually referred to as F1, F2, and F3. Among them, F1 is
almost inversely correlated to the height of tongue body. The higher the tongue is,
the lower the frequency of F1 is, and vice versa. Whereas, F2 is determined, though
not entirely, how far back or how far forwards the tongue body is: The further back
the tongue is, the lower the frequency of F2, and vice versa. Most often, the two
formants F1 and F2 are enough to disambiguate the vowels. Compared to F1 and
F2, F3 has no high relationship with the position of a tongue but with the activity
of a tongue tip. To estimate the formant frequencies and bandwidths, the methods
based on Linear Prediction Coding (LPC) can be used [55].
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2.3. Acoustic Feature Extraction

2) TF-Transformation

Rather than viewing a one-dimensional signal in the time domain, Time-
Frequency Transformation (TF-Transformation) focuses on a two-dimensional
spectrum in the time and frequency domains. One of the most basic types of TF
transform is the Short-Time Fourier Transform (STFT) [56]. A typical scheme is
Gabor transform [57]. It is used to determine the sinusoidal frequency and phase
content of local sections of a signal as it changes over time. The function to be
transformed is firstly multiplied by a Gaussian function, which can be regarded as a
window function. The resulting function is then transformed with a Fourier trans-
form to derive the time-frequency analysis. The window function means that the
signals near the time being analysed will have higher weight.

A more sophisticated TF-Transform approach has been developed, namely
wavelet transformation [57]. Its goal is to divide a given function or a continuous-
time signal into different scale components. Usually, one can assign a frequency
range to each scale component by using Heisenberg boxes. A wavelet transform is
the representation of a function by wavelets. The wavelets are scaled and translated
copies (or ‘daughter wavelets’) of a finite-length or fast-decaying oscillating wave-
form (or ‘mother wavelet’). Wavelet transforms have the advantage over traditional
Fourier transforms for representing functions that have discontinuities and sharp
peaks, and for accurately deconstructing and reconstructing finite signals.

3) Spectrum

Both Pitch Class Profile (PCP) and Chroma are interesting and powerful
representations of spectrum for the tonal analysis of music. PCP feature vectors
represent the spectral energy distribution in the pitch classes according to the semi-
tone band of Western music. Rather than the storing and analysing each individual
musical semitone’s energy (normally it includes a feature vector size of 36, 24, or 12
bands), the main idea of Chroma features is to project the entire spectrum onto 12
bins representing the 12 distinct semitones (or chroma) of the music octave.

4) Linear Prediction

Linear Prediction (LP) uses the estimated linear function of previous samples
to predict the future values of discrete-time signals. A well-known derivation of
LP analysis is Linear Prediction Cepstral Coefficients (LPCCs), which is the
representation of Linear Prediction Coefficients (LPC) in the cepstrum domain. The
idea of LPC is based on the speech production model. The characteristic of the vocal
tract can be modelled by an all-pole filter that is equivalent to the smoothed envelope
of the log spectrum of speech. LPC can be computed either by the autocorrelation
or covariance methods directly from the windowed portion of speech [58]. With the
obtained LPC, the LPCC can be calculated:

LPCC(i) = LPC(i) +
i−1∑
j=1

j − i
i
· LPC(j) · LPCC(i− j), (2.7)
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2. General Framework of Intelligent Speech Analysis

where i and j are the LPCC index. LPCC has been widely used for speech recogni-
tion and has been proven to be more robust and reliable than LPC.

However, one disadvantage of LPCC is that it approximates the short-term power
spectrum equally well at all frequencies of the analysis band. Perceptual Linear
Prediction (PLP) does nevertheless take the psychophysics of human hearing into
account to derive an estimate of the auditory spectrum: Beyond about 800Hz,
the spectral resolution of hearing decreases with frequency. In addition, for the
amplitude levels typically encountered in conversational speech, hearing is more
sensitive in the middle-frequency range of the audible spectrum. Therefore, PLP
analysis is more consistent with the sensitivity of human hearing to the changes of
several important speech parameters [59].

5) Cepstral Coefficients
The most popular cepstral coefficients are Mel-Frequency Cepstral Coeffi-

cient (MFCCs). They are widely applied in ASR as they can efficiently encode
spoken content while being relatively independent of speaker characteristics. They
take the non-linear frequency perception of human ear into account, and use trian-
gular overlapping filters to map the spectral powers onto the Mel scale:

Mel(f) = 2595 · lg
(

1 +
f

700

)
. (2.8)

Then, they take logs with base 10 at each Mel frequency. Afterwards, MFCCs c(i)
are calculated from the log filterbank amplitudes m(l) by applying the Discrete
Cosine Transform (DCT):

c(i) =

√
2

N

N∑
j=1

lg

(
m(j)cos

(
(j − 0.5)

iπ

N

))
, (2.9)

where N is the number of filterbank channels.

Voice Quality Features

1) Perturbation
The most important parameters for speech signals are pitch, energy, formants,

and their associated bandwidths. Also, micro-perturbations of the fundamental
frequency and the intensity are sometimes still of interest. They reflect voice quality
properties such as breathiness and harshness, and can be computed from pitch and
energy contours, respectively. In the following, n′ denotes the order of frames.

Jitter (J) denotes period-to-period fluctuations in the fundamental frequency
and is calculated between successive pitch periods (T0) of the signals:

J(n′) = |T0(n′)− T0(n′ − 1)|, for n′ > 1. (2.10)
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Shimmer (Sh) is computed as the average (over one frame) of the relative peak
amplitude differences. In an analogy to jitter, the local period-to-period shimmer is
expressed as follows:

Sh(n′) = |A(n′)− A(n′ − 1)|, for n′ > 1, (2.11)

where A is the peak to peak amplitude difference A(n′) = Smax(n′) − Smin(n′).
2) Harmonics-to-Noise Ratio
Harmonics-to-Noise Ratio (HNR) is another important parameter for evalu-

ating the speech quality. It gives the energy ratio of the harmonic signal parts to the
noise signal parts, and it is estimated from the short-time autocorrelation functions
(60 ms window) as the ratio of the ACF amplitude R(∗) at F0 and the total frame
energy:

HNRacf =
RT0

R0−RT0

(2.12)

where RT0 is the amplitude of the autocorrelation peak at the fundamental period,
and R0 is the 0-th ACF coefficient (equivalent to the quadratic frame energy).
Normally, the ratio will be further logarithmised in dB to avoid highly negative and
varying values for low-energy noise.

2.3.2 Functionals

Since ASR is a kind of short-term related task, a frame (normally 10∼30 ms) is
adopted as a standard feature extraction unit. Besides, most of early studies on
computational paralinguistics also directly use the frame-level LLDs for building dy-
namic models like Hidden Markov Models (HMMs) [60, 61]. Nevertheless, more and
more recent research has begun to use static features on the supra-segmental level
due to the long-term essence of paralinguistic cues. These static features are gen-
erated by projecting the time-axis-along LLD contours into a set of feature vectors
with descriptively statistic functionals [53, 4, 14, 34]. In this case, static modelling,
such as Support Vector Machines (SVMs), can be freely selected to analyse patterns
in speech.

The super-segment is obtained by cutting the consequential LLD series into
smaller parts (i.e., a fixed number of frames, acoustic chunks, voiced/unvoiced parts,
phonemes, syllables, words, or sub-turns) in the sense of syntactically or semanti-
cally motivated chunks below or equal to the turn level [21]. After that, functionals
are applied per LLD or spanning over LLDs. The purpose is to further reduce the
feature size, by way of projecting the time series of potentially unknown length to a
scalar value per applied functional. The functionals comprise (shown in Figure 2.3):
extremes (minimum, maximum, ranges, etc.), mean (arithmetic, quadratic, geo-
metric), moments (variance, skewness, kurtosis, etc.), percentiles (quantiles, ranges,
etc.), peaks (number, distances, etc.), temporal variables (durations, positions, etc.),
and regression (coefficients, error).
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Table 2.2: Turn duration (average [avg], minimum [min], maximum [max], and stan-
dard deviation [std]) and required transmission bandwidth for three transmission
strategies (i.e., raw coded speech, LLDs, and statistical feature set) and four cor-
pora (i.e., AEC, ALC, NCSC and Agender; a detailed description of the databases
and respective acronyms is given in Section A.2).

turn length (s) bandwidth (kb/s)
Corpus avg min max std raw LLDs stat

AEC 1.7 0.1 24.5 0.8 16∼40 51.2 7.3
ALC 11.4 1.5 61.8 14.2 16∼40 188.8 12.3
NCSC 3.1 0.9 21.2 1.8 16∼40 204.8 62.4
Agender 2.6 0.3 11.3 1.2 16∼40 92.8 5.5

In this thesis, the acoustic features are extracted by the open source toolkit
openSMILE [62].

2.3.3 Challenge of Large Feature Size

In order to continuously update the acoustic models, it is necessary to collect and
transmit the data from the real world via the Internet, whilst guaranteeing privacy
protection. Concerning such requirements, a distributed structure is proposed in
Section 3.3.1.

With this system structure, data have to be transmitted from terminals to
servers. Three possible types of data can be adopted: raw coded speech, LLDs
features, and statistical features. One of the key points which we need to consider
is the bandwidth requirement of each transmission channel in the principle of band-
width conservation. In Table 2.2, the bandwidth requirement is calculated on the
official databases of the INTERSPEECH 2009–2012 Challenges [63, 64, 65, 66] for
each of the coding strategies mentioned above. Note that the ITU-G.726 protocol
was considered for coding raw speech, and single precision floating point – 32 bit –
was used for LLDs and statistical feature sets. In the case of statistical features, as
it is assumed that the vector dimensionality is always the same per turn (and so the
transmission bandwidth will vary as a function of turn duration), the bandwidth
size is calculated on the average turn duration in each data set. As can be observed
from Table 2.2, with the exception of the pathology task, the statistical feature set
requires less bandwidth than the remaining coding strategies.

However, such a system still requires a large bandwidth if considering an appli-
cation scenario that involves a large number of users/devices. Similarly, the same
requirement goes for the storage size in memory. Therefore, it is necessary to fur-
ther reduce the dimensionality of feature space when considering the recognition

22



2.3. Acoustic Feature Extraction

performance and privacy protection.
There are at least two general solutions that can deal with the large feature

size: feature selection and feature compression. A feature selection strategy takes
the features’ relevance, irrelevance, and abundance into account, and aims to select
a subset that can predict the output with an accuracy that is comparable to the
performance of the complete feature set. Typical methods which achieve this goal
include wrappers, filters, and embedded routines [67] [68]. Some algorithms, such
as minimum Redundancy Maximum Relevance (mRMR) [69] and random subset
feature selection [67], are now well-developed and have been successfully applied to
paralinguistic tasks [10, 70]. In this thesis, nevertheless, the use of feature selection
algorithms will not be analysed since they has repeatedly been explored in many
studies (e.g., [71]). Instead, the feature sets which have been previously optimised for
the various paralinguistic tasks will be employed in this work. There are two main
reasons for this. First, this thesis intends to focus only on the essential components
of the distributed system. Feature selection techniques can easily be integrated into
the system as a ‘plug-in’ [10]. Second, in order to directly and fairly compare the
performance of the distributed system with the baseline performances of embedded
systems, the same features sets should be used.

Feature compression generally refers to the methods that transform a high dimen-
sional feature space into a lower dimensional one. Typical dimensionality reduction
methods include Principle Component Analysis (PCA) [72] and Linear Discriminant
Analysis (LDA) [73]. These methods have been implemented, for instance, in dis-
tributed face recognition, speaker identification, and speech recognition. Another
family of methods for (lossy) compression is Vector Quantisation (VQ) [74], which
has been very popular in a variety of research fields such as speech coding, image
and video compression, and various pattern recognition applications (e.g., face de-
tection, texture classification). There are many variations of VQ proposed in the
literature, such as distance-based VQ [75], Histogram-based Quantisation (HQ) [76],
lattice VQ, and address VQ [77].

In the context of ASR, a particular VQ compression algorithm, known as Split
Vector Quantisation (SVQ) [78], is selected as a standard method to address this
problem on the frame-level LLDs. Whereas, how efficient this SVQ compression
algorithm is on the statistical features for distributed paralinguistic recognition? In
this thesis, the theoretical knowledge of SVQ, as well as its experimental evaluation
on distributed paralinguistic recognition are elaborated in Section 3.3.1 and 4.2.2.

2.3.4 Challenge of Feature Corruption

It is commonly admitted that the acoustic features of speech signals represent dif-
ferently in the case of different circumstances of signal production, transmission,
and recording [12]. These circumstances can generally be summarised in Table 2.3,
which mainly contains:
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Table 2.3: Factors to distort speech signals.

Environment Speaker Device

• Stationary noise:

– Babble noise
– White noise
– Music noise
– Driving noise

• Non-stationary noise:

– Side talk

– Reverberation

• Age
• Gender
• Culture
• Accents
• Dialect
• Style
• Emotion
• Production
• Speed

• Microphone

– Single
channel

– Multiple
channel

• Loudspeaker
• Mobile phone

1) Environments. Environmental interferences consist of stationary noises like
babble and white noise, as well as non-stationary noises such as side talk (ad-
ditive noise) and speech reverberation (convolutive noise) distort clean speech,
resulting in many challenges for speech analysis. Typical scenarios are relevant
to cocktail party, talking in the rooms, etc.

2) Speakers. It is widely accepted that the speech signals could reflect manifold
clues related to the speakers (e.g., age, gender, cultural background, region,
characteristics, emotion/affect), which in turn increase the acoustic variety.

3) Devices. Different sampling frequencies, coding protocols, transmission
schemes (single channel or multi-channel), and the performance of microphones
and loudspeakers will lead to different levels of speech analysis.

Reverberation

Particularly, reverberation is one of the greatest challenges. It happens when the
speech signals from the user reach the microphone with different time delays and
amplitude attenuations, caused by the various surfaces in the acoustic enclosure,
such as a living room. The speech signal received by a microphone is a sum of
three components: (a) the direct path signal, whose power is inversely proportional
to the square of the distance from the speaker [79]; (b) the early reflections from
the walls, floor, ceiling, etc., which depend on the position of the speaker; and (c)
the late reverberation, which depends mainly on the size of the room and reflective
properties of the room surface. This reverberation is considered to be less dependent
on the position of the speaker [12, 79].
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In the past decades, extensive research has been carried out to handle the harm-
ful effects of non-stationary convolutive noise of reverberation. These works can
generally be categorised in two ways depending on the amount of distant-talk train-
ing data available. When limited or no training data are available, the close-talk
acoustic models are used, but the incoming reverberated speech signal is compen-
sated either in the signal or the feature domain. When a large amount of distant-talk
data are available, the acoustic models can be retrained or adapted using Maximum
Likelihood Linear Regression (MLLR) or Constrained MLLR (CMLLR). Frequently,
a combination of the above two methods is used.

The approaches based on the signal or the feature domain locate in the front-end
of ISA systems. Therein, the goal of the signal-based approaches is to enhance the
reverberant signal from temporal or spectral information. A typical method involves
inverse filtering using a known or unknown Room Impulse Response (RIR) [80]. If
the RIRs are known a priori, the inverse filter precisely recovers the quality of the
source signal. However, such a scenario is not generalisable since, in most cases, the
RIRs are not known in advance. Altering the recording rooms, or changing the rel-
ative position between the speakers and microphones, would result in the variation
of RIRs. Thus, it needs to estimate the RIRs, or the equivalent inverse filter online
during decoding. Such blind deconvolution methods use techniques like long-term
linear prediction [81], maximum-likelihood objective [82], NMF [19, 83], and the like.
Another common method is spectral subtraction that treats the late reverberation as
additive noise in the spectral domain [84]. In addition to these microphone-array-
independent methods, microphone-array-dependent techniques like beamforming are
also used [12]. The basic idea is to delay and sum the signals from each microphone,
whereby, it is executed under the assumption that the target and the undesired
signals are uncorrelated, which is not true for reverberation. Recently, some new
approaches, known as likelihood maximising beamforming [85] and two-stage beam-
forming [86], have been demonstrated to provide potential advantages over the stan-
dard ones. These microphone-array-based techniques can be followed with most of
the above-outlined inverse filtering techniques, and jointly achieve noise and rever-
beration reduction [12].

The feature-based approaches attempt to remove the effect of reverberation di-
rectly from the corrupted feature vectors (feature enhancement) or extract specific
noise-robust feature sets. Cepstral Mean Normalisation (CMN) [87] is an effective
feature enhancement approach for mitigating early reverberation, as well as its ad-
vanced version of long-term spectral subtraction, where longer analysis windows
are required to calculate the mean values since the typical room reverberation time
constants are much longer (e.g., centiseconds) than the traditional analysis window
(e.g., 20 ms) [88]. Additionally, taking into account the noise and reverberation infor-
mation, some new feature sets like RelAtive Spectral Transform - Perceptual Linear
Prediction (RASTA-PLP) [89] and Delta-Spectral Cepstral Coefficient (DSCC) [90]
have been designed and often hand-crafted. In comparison with Perceptual Linear
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Prediction (PLP), RASTA-PLP assumes that human speech perception is less sen-
sitive to the steady-state spectral factor, and thus applies a bank-pass filter to the
energy in each frequency subband in order to smooth over short-term noise varia-
tions and to remove any constant offset resulting from static spectral colouration in
the speech channel [89]. Similarly, DSCC features are motivated by the vast differ-
ence between the rates of change of power for speech and noise [90] compared to
MFCCs.

In contrast to the signal- or feature-based approaches, the model-based ap-
proaches are applied in the back-end of ISA systems. It adjusts the parameters
of the acoustic model to the statistical properties of reverberant feature vectors
or tailors the decoder to the reverberant feature vectors. One or more adaptation
techniques are applied, for example, Maximum A Posteriori (MAP) [91], MLLR
[92], and CMLLR (or feature-space MLLR [fMLLR]) [93], to reduce the mismatch
of HMMs trained on clean speech and reverberant speech [94]. MAP combines
the prior knowledge of the model parameters and the information obtained from
the adaptation data. Thus, it normally needs a large amount of adaptation data.
MLLR shifts the means and variances of the Gaussian Mixture Models (GMMs)
used across a number of distributions. By contrast, CMLLR is a feature adaptation
technique that estimates a set of linear transformations for the features.

Despite the fact that only a few efforts have been made in computational par-
alinguistics, but many in ASR to address the issue of reverberation over the past
decades [95, 96], it is still of great importance to bring some fresh insights into in
the area of ASR via advanced techniques. In this thesis, a state-of-the-art neural
network with Long Short-Term Memory is used for an evaluation on ASR.

2.4 Classification

Classification is the process of finding a model (or function) that describes and
distinguishes data classes or concepts. The derived model is based on the analysis
of a set of training data (i.e., data objects whose class labels are known). Using this
model, one could predict the class of objects whose class label is unknown.

2.4.1 Support Vector Machines

Support Vector Machines (SVMs) are effectively and frequently-used for statistic
machine learning, as well as for ISA [2, 63, 4]. SVMs are supervised learning models
based on the concept of decision hyperplanes that define decision boundaries, i.e.,
planes that separate sets of objects having different class memberships. SVMs per-
form classification tasks by constructing a set of hyperplanes in a multidimensional
space that separates cases of different class labels. The goal of SVMs is to maximise
the separation between classes, which consists of finding the hyperplane that has
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the largest distance to the nearest training data point of any class (aka functional
margin), since the larger the margin, the lower the generalisation error of the classi-
fication task. In practice, training instances belonging to two or more categories are
used to determine the hyperplane that best discriminates amongst different classes
(that with the widest possible gap). The testing instances are then mapped to this
multi-dimensional space, and the predicted categories are defined based on which
side of the gap they fall onto.

Formally, given a set of examples (xi, yi), i = 1, 2, . . . , n, where xi ∈ Rd is a
d-dimensional feature vector, and yi : Y ∈ {−1,+1} is a corresponding prediction of
each example. To separate the two classes from each other, a hyperplane is defined
as the set of points x satisfying

wT · x + b = 0, (2.13)

where w is a normal vector and b is a bias.

If the training data are linear separable, one can select two hyperplanes written
as

wT · x + b = 1,

wT · x + b = −1,
(2.14)

between which there are no points. Given a test point xi, if it is subjective to
wT · xi + b ≥ 1, it will have prediction yi = 1; similarly, if it is subjective to
wT · xi + b ≤ −1, it will have prediction yi = −1.

The goal is to maximise their distance (aka functional margin) 2
||w|| , that is, to

minimise ||w|| or 1
2
||w||2 in (x, b) s.t. ∀i, yi(wT · xi + b) ≥ 1. By applying Lagrange

multipliers α, (αi ≥ 0, i = 1, . . . , n), this constrained problem can be converted to
finding the saddle point of such a Lagrange function:

L(w, b,α) = arg min
w,b

max
α≥0
{1

2
||w||2 −

n∑
i=1

αi[yi(w
T · xi + b)− 1]}. (2.15)

So, the saddle point must satisfy the following condition:

∂L(w, b,α)

∂b
=

n∑
i=1

yiαi = 0, (2.16)

∂L(w, b,α)

∂w
= w −

n∑
i=1

αiyixi = 0. (2.17)

Substituting Equations (2.16) and (2.17) into Equation (2.15), the optimisation
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problem amounts to maximise the following formula

W (α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi
T ,xj)

s. t.: 0 ≤ αi ≤ C, i = 1, . . . , n,
n∑
i=1

αiyi = 0

(2.18)

where K(xi
T ,xj) = xTi · xj, and C is a freely defined constant. To calculate

K(xi
T ,xj), the Sequential Minimal Optimisation (SMO) algorithm can be used

[97]. Finally, the normal vector w is determined by

w =
n∑
i=1

αiyixi. (2.19)

Up to now, linear separable problems have been analysed. However, it could
also be extended to a nonlinear problem by applying a kernel trick [98]. All xi’s
are replaced by φ(xi), where φ provides the higher-dimensional mapping. Thus, the
kernel can be rewritten as

K(xTi ,xj) = φ(xi)
Tφ(xj). (2.20)

The common kernel functions are the polynomial kernel with order d

K(xTi ,xj) = (xi · xj)d, (2.21)

and the Gaussian Radial Basis Function (RBF)

K(xTi ,xj) = exp(
1

2α2
||xi − xj)||)2, (2.22)

with standard deviation α.
For the multiclass problem, one-versus-all or one-versus-one strategies can be

used to reduce the multiclass problem into multiple binary classification problems
[99].

2.4.2 Decision Trees

A decision tree is a simple representation for classifying examples. In the tree
structures, each internal (non-leaf) node is labelled with an input feature; the arcs
coming from an internal node are labelled with a possible value of feature; and each
leaf of the tree is labelled with a class or a probability distribution over classes. Its
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main objective is to capture some meaningful relationship between class and the
values of the attributes.

An earlier algorithm is Iterative Dichotomiser 3 (ID3) developed by Ross Quinlan
in 1986 [100]. It begins with the original data set D as the root node. In each
iteration, it iterates through every unused attribute of the data set D and calculates
the entropy H(D) or information gain IG(A) of that attribute A. It then selects the
attribute that has the smallest entropy value. The data set D is then split by the
selected attribute to produce subsets of data. The algorithm repeats on each subset
until one of the following stopping criteria is met: 1) Every example in the subset
belongs to the same class; 2) There are no more attributes to be selected; and 3)
There are no examples in the subset. Then, the node is turned into a leaf with the
most common class of the examples in the subset.

More specifically, for a given set D of examples (x, y), where x ∈ Rd is a d-
dimensional feature vector, and y : Y ∈ {P,N} (P : positive; N : negative) is a
corresponding prediction of each example. Assume that D contain p examples of
the class P and n examples of the class N , then the entropy can be calculated as

H(p, n) = − p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n
. (2.23)

If attribute A with values A1, A2, . . . , Ak is used for the root of the decision tree,
it will partition data set D into k subsets D1,D2, . . . ,Dk where Dj (j = 1, 2, . . . , k)
contains those examples that have value Aj (j = 1, 2, . . . , k) of A. Let Dj contain
pj examples of class P and nj of class N . Then, the expected entropy remaining
after trying attribute A (with branches j = 1, 2, . . . , k) is obtained as the weighted
average

H(A) =
k∑
j=1

pj + nj
p+ n

H(pj, nj). (2.24)

Therefore, the information gained or reduction in entropy by branching on at-
tribute A is

IG(A) = H(p, n)−H(A). (2.25)

The attribute that can bring the most information gain (aka gain criteria) or
reduction in entropy will be chosen to branch. Finally, use the above process recur-
sively to form decision trees for the residual subsets D1,D2, . . . ,Dk.

A serious deficiency of this algorithm is that it has a strong bias in favour of the
dominant class [101]. An extension algorithm of ID3 is C4.5. In contrast to the gain
criterion employed for ID3, C4.5 uses the Gain Ratio (GR) criterion (or normalised
information gain) for splitting data as follows

GR(A) =
IG(A)

H(A)
. (2.26)
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The attribute with the highest normalised information gain is chosen to make a
decision. This kind of normalisation can rectify the bias-inherent problem in the
gain criterion [101].

Furthermore, the above assumption for a two-class task can also be easily ex-
tended to any number of classes by altering the entropy function 2.23 to

H(Y) = −
K∑
k=1

nk∑K
k=1 nk

log2

nk∑K
k=1 nk

, (2.27)

where nk denotes n examples belonging to the class k for a K-class task in a given
data set.

In addition to the classification task, decision trees can also be used to deal with
the regression task, known as the Classification And Regression Tree (CART) [102].

Random Forests

Decision tree is a simple and useful approach for pattern recognition, however, it
will encounter a serious problem of over-fitting. To handle this issue, trunk-pruning
is conducted for decision tree. Inspired by the ensemble algorithm of ‘bagging’ (cf.
Section 3.1.3 for more details), the algorithm of random forests was first introduced
by Leo Breiman [103]. The basic idea of random forests is to use several individual
trees to make a final decision by taking the majority vote:

ŷ = arg max
kj∈K

T∑
t=1

yt(x
′
t), (2.28)

where T is the predefined tree number, x′t is the random subspace of the whole
attributes for training the t-th tree. Therefore, each tree could be considered as an
expert for a specific feature set. Normally, multiple trees are used depending on the
size and nature of the training set. The majority vote by all trees could decrease the
variance of models and ease the influence of over-fitting, thus making the classifier
a strong predictor.

2.4.3 Long Short-Term Memory Neural Networks

Before giving an insight into Long Short-Term Memory (LSTM) neural networks,
this section starts with the history of Artificial Neural Networks (ANNs). ANNs
are mathematical models with the information processing capabilities of biological
neural networks. It consists of a set of processing units or nodes that are jointed
together by weighted connections. In terms of a biological model, the nodes represent
the neurons, and the connection weights can be interpreted as the strength of the
synapses between neurons. The network is activated by providing input to part/all of
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Figure 2.4: Multilayer Perceptron network.

the nodes. Then, the activations propagate through the network along the weighted
connections. Based on whether the connections can form feedback loops (referred
as feedback), ANNs can generally be categorised into Feed-forward Neural Networks
(FNNs) and Recurrent Neural Networks (RNNs).

Multilayer Perceptrons

A well-known example of FNN is the Multilayer Perceptrons (MLP), whose nodes are
arranged in layers, with connections feeding forward from one layer to the next one
(see Figure 2.4). An MLP consists of an input layer, one or multiple hidden layers,
and an output layer. Each layer is fully connected to all nodes of the subsequent
layer, and no connections across multiple layers or within the same layer. The nodes
or units in the hidden layers and output layers have (typically non-linear) activation
functions.

In the context of pattern recognition, the activation of the input layer corresponds
to the components of a feature vector (x = [x1, x2, . . . , xn]). Each hidden or output
node j receives its network input αj from the I nodes in the preceding layer via the
connections with the associated weights wij as follows:

αj =
I∑
i=1

wijβi, (2.29)

where wij denotes the weight from node i to node j, and βi denotes the activation
of the i-th node in the preceding layer. After applying an activation function f , the
final activation of the j-th node can be written as

βj = f(αj). (2.30)
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The most commonly used activation functions f are the non-linear hyperbolic
tangent

tanh(x) =
e2x − 1

e2x + 1
, (2.31)

or the logistic sigmoid

σ(x) =
1

1 + e−x
. (2.32)

The activations of the output nodes are then obtained as y, indicating the actual
classification or regression results.

The network learning or training process is considered as the one of iteratively
updating the weights of the networks by using backpropagation [104, 105], with
the purpose of minimising the objective function (or cost function). Normally, the
objective function is the Sum of Squared Errors (SSE) between the desired outputs
(or targets) z and the actual network outputs y as follows:

J (θ) = E(z,y) =
1

2

K∑
i=1

(zi − yi)2, (2.33)

where K is the number of output nodes. Then, the weight changes ∆wij for each
weight wij is obtained by

∆wij :=
∂E

∂wij
= δjβi, (2.34)

where δj is the error of the j-th node computed by the derivatives of the objective
function (Equation (2.33)) with respect to this node. Assuming that the output
activation function is a sigmoid function, then, if the j-th node is in the output
layer, its error can be calculated as

δj = βj(1− βj)(βj − zj), (2.35)

where βj equals to yj. In the hidden layer, the error δj is alternated into

δj = βj(1− βj)
K∑
k=1

δkwjk, (2.36)

where k denotes the k-th node in the output layer.
During the network’s training, some essential problems cannot be ignored, such

as converging rate and over-fitting. To overcome the converging problem, a multi-
tude of techniques have been proposed. Gradient descent learning is used to adjust
the weights towards the negative error gradient in small steps [104]:

wij,t+1 = wij,t − λ∆wij,t, (2.37)
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where λ ∈ [0, 1] is the learning rate, which can be adaptively changed by the learning
process [106].

As the gradient descent tends to get stuck in local minima, a so-called momentum
term is normally added to avoid such a local minima, aiming to speed up the learning
process [104]:

wij,t+1 = wij,t − λ∆wij,t + η∆wij,t−1, (2.38)

with the momentum η ∈ [0, 1].
As the training iteration increases, the training error (see Equation (2.33)) will

decrease more and more, and the network will become better and better to produce
the desired outputs of the training set. At the same time, however, it will be
more and more divergent in processing the test set. To cope with such an over-
fitting phenomena, generalisation approaches are required. One approach is adding
a penalty term in the objective function to avoid the weights changing too large
[107, 108]:

J (θ) = E(z,y) +
γ

2

I∑
i=1

J∑
j=1

||wij||2, (2.39)

where γ ∈ [0, 1] is named weight decay. In this case, a new weight will be calculated
by the iteration of wij

wij,t+1 = wij,t − λ∆wij,t + η∆wij,t−1 − γwij,t. (2.40)

In addition, there are some other tricks to avoid over-fitting like applying early
stopping [109], or training with noise [109].

Recurrent Neural Networks

In contrast to FNNs whose connections did not form cycles, Recurrent Neural Net-
works (RNNs) allow cyclical connection, which consequently gives the RNNs the
capability of accessing previously processed inputs. This section focuses on a simple
RNN with self-connections in the hidden layer (referred to as Elman neural net-
works [110]), as shown in Figure 2.5. The self-connected hidden nodes can collect
(weighted) activations not only from the input nodes but also from the hidden nodes
in a previous time step. This implicitly allows a ‘memory’ of previous inputs that
can be modelled in the internal state of the network.

Instead of merely considering isolated pattern vectors x as input for MLP, we
now consider a sequence of vectors x1:T with length T to a RNN with I input nodes,
H hidden nodes, and K output nodes. Let xi,t be the value of the input i at time t,
and let αj,t and βj,t be the respective network input and the activation of the node
j at time t. Thus, for the hidden nodes, we have

αh,t =
I∑
i=1

wihxi,t +
H∑
h′=1

wh′hβh′,t−1. (2.41)
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Figure 2.5: Recurrent Neural Network.

As to the backward pass, the partial derivatives of the objective function with
respect to the weights are required. These derivatives can be determined via Back-
Propagation Through Time (BPTT) [111, 105]. Similar to the backward pass for
MLP, it is also a repeated application of the chain rule.

Bidirectional Recurrent Neural Networks

In sequential pattern recognition (e.g., handwriting, speech recognition), not only
the past context but also the future context can improve the prediction capabilities
[112, 113]. Unlike conventional RNNs that can only access the past inputs, bidirec-
tional RNNs (BRNNs) [112] are proposed to access future inputs. The two separate
recurrent hidden layers scan the input sequences in opposite directions [112]. As
illustrated in Figure 2.6, the network calculates its forward hidden layer activations
hft from the beginning to the end of the sequence, and its backward hidden layer ac-
tivations hbt from the end to the beginning of the sequence, then updates the output
layer by

yt = Wfyh
f
t + Wbyh

b
t + by, (2.42)

where Wfy and Wby are the forward and backward weight matrices, respectively,
and by is the hidden bias vector. The forward and backward directed layers are
connected to the same output layer, which can consequently access the whole context
information.

Long Short-Term Memory

The conventional MLP, as outlined above, propagates the input signals uni-
directionally layer-by-layer with sigmoid activations without any recurrent connec-
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Figure 2.6: Structure of a bidirectional recurrent neural network.

tion. To exploit context information, one needs to stack several successive feature
vectors as input [114]. Nevertheless, the capability of capturing context informa-
tion is still limited [115]. Another method to address this issue is to employ RNNs,
where the output of a previous time step is looped back and used as additional input.
However, research shows that the standard RNNs cannot access long-range context
since the backpropagated error either blows up or decays over time (the vanishing
gradient problem) [116].

To overcome this limitation, the work in [17] introduced LSTM networks which
are able to store information in memory cells over a long period. LSTM networks
can be interpreted as RNNs in which the traditional neurons are replaced by so-
called memory blocks (shown in Figure 2.7). Analogous to the cyclic connections
in RNNs, these memory blocks are recurrently connected. Every memory block
consists of self-connected linear memory cells and three multiplicative gate units:
input, output, and forget gates. The input and output gates scale the input and
output of the cell, respectively, while the forget gate scales the internal state. In
other words, the input, output, and forget gates are responsible for writing, reading,
and resetting the memory cell values, respectively. For example, if the forget gate
is open and the input gate is closed (i.e., the input gate activation is close to zero),
the activation of the cell will not be overwritten by new inputs. Therefore, the
information from previous time t can be accessed by opening the output gate at the
following arbitrary time steps.

In particular, for a memory block, the activation of the input gate it is composed
of four components:

it = fg{Wxixt + Whiht−1 + Wcict−1 + bi}, (2.43)

where fg{·} denotes the logistic sigmoid function of the input unit; Wxi, Whi, and
Wci are weight matrices of the connections from input gates, output gates, an forget
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Figure 2.7: LSTM memory block. The symbols fg, fi, and fo denote logistic sigmoid,
tanh, and tanh activation functions, respectively; it, ot, ft are the activations of the
input, output, and forget gates at time t, respectively; xt, ht, ct represent input,
output, and cell values of the memory block at time t, respectively; b is a bias.

gates in the same hidden layer to the input unit, respectively; xt is the input vector;
ht is the hidden vector; and bi is the unit bias. The activation of the forget gate ft
follows the same principle, and can be written as

ft = fg{Wxfxt + Whfht−1 + Wcfct−1 + bf}. (2.44)

The memory cell value ct is the sum of the inputs at time step t and its previous
time step activations that are multiplied by forget gate activation, and updated by:

ct = it · fi{Wxcxt + Whcht−1 + bc}+ ft · ct−1, (2.45)

where fi is the tanh activation function. Finally, the output of the memory cell is
controlled by the output gate activations of

ot = fg{Wxoxt + Whoht−1 + Wcoct + bo}, (2.46)

and delivered by
ht = ot · fo{ct}, (2.47)

where fo is also a tanh activation function.
Note that each memory block can be regarded as a separate, independent unit.

Therefore, if each memory block includes one memory cell, the activation vectors it,
ot, ft, and ct are all of the same dimensional size as ht, i.e., the number of memory
blocks in the hidden layer. From the formulas given above, it can be seen that the
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Table 2.4: Confusion matrix.

Truth Prediction
Positive Negative

Positive True Positive (tp) False Negative (fn)
Negative False Positive (fp) True Negative (tn)

values from all the memory cells and block outputs at the previous time step t− 1
in the same hidden layer will affect the activations of all input gates, output gates,
and forget gates, as well as the input units at the current time step t. One exception
is the case between the memory cell and the output gate that is the current state of
memory cell ct rather than the state from the previous time step, which contributes
to forget gate activation.

Analogous to the standard ANNs, LSTM networks can be interpreted as differ-
entiable ‘function approximators’ and can be trained by using BPTT in combination
with gradient descent [117]. For more details, please refer to [118].

Overall, the memory cell of LSTM can store and access information over a long
temporal range, thus avoid the vanishing gradient problem [17]. Therefore, one
could also regard LSTM as a natural extension of Deep Neural Networks (DNNs)
for temporal sequence data, where the depth comes from the layers through time.

To exploit both past and future context, LSTM neural networks can also be ex-
tended as Bidirectional LSTM (BLSTM) neural networks, as described for BRNNs.
Each of the two separate recurrent hidden layers presents a training sequence forward
and backward, and both of them are connected to the same output layer.

2.5 Evaluation Metrics

A number of measures have been defined to evaluate the performance of compu-
tational paralinguistics and speech recognition. Each of them only accesses one
or several aspects of pattern recognition tasks, but none of them can be used to
evaluate overall performance. The frequently-used measures in the present litera-
ture are Unweighted Average Recall (UAR), Weighted Average Recall (WAR), and
Word Error Rate (WER) for classification tasks, and Coefficient Correlation (CC)
for regression tasks.

Recall

Let us first define a two-class classification experiment from p positive instances and
n negative instances. Then, the outcome can be calculated in a 2 × 2 confusion
matrix as shown in Table 2.4.
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The terms positive and negative in the first column refer to the ground truth
or gold standard of data, and the ones in the second row denote the classifier’s
prediction (aka expectation). Furthermore, the terms of true and false indicate
whether the prediction correctly corresponds to the external observation.

Recall is the proportion of the instances that are classified as class X among all
the instances that are labelled as class X. Taking the positive class for example, it
is defined as follows:

Recall =
tp

tp + fn
. (2.48)

This measure is helpful for evaluating the performance for each class separately,
and for judging which classes can be distinguished better.

UAR and WAR

In order to evaluate the general performance of a classification over all classes, the
most frequently-used and officially-recommended measure [63] is the Unweighted
Average Recall (UAR) that emphasises the overall accuracy across all classes. It is
defined as

UAR =

∑K
i=1 Recalli

K
, (2.49)

where K is the number of classes.

Another common measure for classification is called Weighted Average Recall
(WAR) that considers the unbalanced class distribution by the usage of the weight
of each class.

WAR =
K∑
i=1

λi ·Recalli, (2.50)

where λi is the weight of the i-th class, and mathematically equals the proportion
of the instance number of the i-th class over that of the whole data set.

In the case of a binary class task, the definitions of UAR and WAR are then
simplified as

UAR =
Recallp +Recalln

2
(2.51)

and

WAR = λp ·Recallp + λn ·Recalln. (2.52)

The values of all these measures discussed above (i.e., Equation (2.49) – (2.52))
are in the interval [0,1]. The maximum value 1 indicates that all instances are
perfectly predicted. In this thesis, the UAR and WAR are both adopted as the
primary and secondary metrics, respectively, to evaluate the recognition performance
of paralinguistic tasks in Sections 4.1 and 4.2.
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Word Error Rate

For ASR, the general difficulty of measuring performance lies in the fact that the
recognised word sequence might have a different length from the reference word
sequence (the supposed correct one). One of the de facto standard measures applies
to the Word Error Rate (WER) which is derived from the Levenshtein distance and
works at the word level instead of the phoneme level. It is computed as

WER =
S +D + I

N
, (2.53)

where S, D, and I are the number of substitutions, deletions, and insertions, re-
spectively, and N is the number of words in the reference. Note that the WER can
be larger than 1.0 when the number of insertions I is large enough. In this thesis,
it is used for speech recognition tasks in Section 4.3.

Correlation Coefficient

All the measures defined above are related to the classification tasks. For the re-
gression tasks, Correlation Coefficient (CC, sometimes also called cross-correlation
coefficient) is broadly used to evaluate the degree of correlation between two vari-
ables. There are several definitions for CC, among them is Pearson product-moment
CC (PCC) which is one of the most frequently-used ones in statistics, which mea-
sures the strength and direction of the linear relationship between two variables. It
is defined as the (sample) covariance of the variables divided by the product of their
(sample) standard deviations:

CC =
cov(X, Y )

σX · σY
=
E[(X − µX)(Y − µY )]

σX · σY
, (2.54)

where cov is the covariance, σX is the standard deviation of X, µX is the mean of
X, and E is the expectation.

The value of CC varies from -1 to +1. The value of -1 indicates perfect negative
correlation, 0 means no correlation, and +1 denotes perfect positive correlation.
Note that the CC used in this thesis always refers to PCC.
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3

Methodology for Data Enrichment
and Optimisation

This chapter contributes to describing the approaches of data collection, selection,
compression, and enhancement for the ISA systems. As most research topics (e.g.,
emotional speech recognition) in ISA are young and promising, such data process-
ing work is still missing and is supposed to be the foremost work for building the
ISA systems under real-life conditions. Here, the approaches of data processing,
which are either transferred from the pre-existing classic algorithms in the commu-
nity of other machine learning areas or proposed innovatively in this thesis, will be
elaborately analysed.

From a technical point of view, data processing can be simply sorted into the
concepts of data enrichment and data optimisation. Data enrichment is a general
term which refers to the process of integrating the data that are available in the
real world. There is an ever-lasting belief in the context of pattern recognition that
‘there is no data like more data’. Although there are plenty of corpora comprising
hundreds of hours of transcribed speech for ASR, the annotated data for other ISA
tasks are still rare – in particular the publicly available ones as discussed in Section
2.2.2. The main purpose of data enrichment is to increase the size and diversity
of speech data by, not only making good use of manifold labelled corpora, but also
by exploiting the value of large-scale unlabelled data that are coloured with target
information.

Typical approaches to data enrichment are related to data pooling, Semi-
Supervised Learning (SSL), and Active Learning (AL). Data pooling is applied to
merge pre-existing data from multiple, normally labelled but inconsistent, databases
into one consistent database, whereas SSL or AL are used to semi or automatically
develop the data that are missing labels.

Data optimisation is a general term regarding the process of improving data
quality. The data coming from various sources, especially from real-life settings,
tends to be dirty, incomplete, inconsistent, and heterogeneously distributed (cf.
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Section 2.3.4). In the light of the principle that high-quality data will contribute
to better performance of pattern recognisers, improving the data quality is also an
essential step in the knowledge discovery process for ISA. The data quality in this
thesis can be interpreted as 1) the most representative examples with the smallest
data set; 2) the appropriate feature size and format that are suitable for the system
structure; and 3) the least acoustic-characteristics mismatch between the training
set and test set.

More specifically, data optimisation involves data balancing and data selecting.
Generally, data balancing is used to adjust the data weights belonging to the minority
class. Data selecting tries to choose the smallest, most representative data set, i.e.,
it seeks to eliminate redundant data that could result from environmental noise, se-
riously noise-contaminated data, high-uncertainty-labelled data, or even mislabelled
data. When considering data distributions, data optimisation also refers to feature
compression and enhancement. Feature compression can be applied to obtain the
attributes with a reduced dimensionality, whereas feature enhancement attempts to
boost the robustness of data by wiping off the additive or convoluted noise based
on feature processing.

It is worth noting that the concepts of data enrichment and data optimisation are
not mutually exclusive. For example, the process of data aggregation usually accom-
panies data selection; that is, only the data satisfied with predefined requirements
will be chosen. Additionally, the goal of active learning methods is to integrate with
the most informative data, which can also be viewed as a sort of data optimisation.

From an application point of view, this thesis simply categorises these techniques
upon the processing objects – labelled data, unlabelled data, and features. These
techniques will be presented in detail in Sections 3.1 to 3.3, respectively. Note that
the concept of data is referred to as instance, turn, record, or examples in most
sections, except Section 3.3, in which data means attribute or feature.

3.1 Exploiting Labelled Data

In the recent development of computational paralinguistics, especially speech emo-
tion recognition, several databases (cf. Appendix A) have been released as bench-
mark sets that can be shared among researchers [119, 3, 2]. Hence, in general, the
most straightforward way to increase the data is to reuse the existing labelled data.
However, to build application systems in realistic conditions, almost all existing
databases have limitations in the aspects of, for example, the naturalness of uttered
emotional speech, emotional categories, class distributions, devices, languages, as
well as acoustic backgrounds [119, 3, 2] (cf. Section 2.2.2).

To cope with these limitations and make the best advantage of each labelled
database, many methods have been proposed in the context of machine learning,
for example, data pooling [120], ensemble learning [121], data balancing [122], and
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data selection [123, 124]. However, most of these methods are neither investigated
in computational paralinguistics, nor dealing with specific issues, such as label un-
certainty, in the subjective tasks. In this thesis, these approaches are re-evaluated
for speech emotion recognition as a representation task for general paralinguistics.

To do this, we firstly assume a database D that contains n examples, with
the form {(x1, y1), (x2, y2), . . . , (xn, yn)}, where x ∈ X , y ∈ Y . The symbol of X
represents a d-dimensional feature space Rd, so x = [x1, x2, . . . , xd]. Additionally,
the symbol of Y denotes a prediction space, either from a discrete set of classes
{1, 2, . . . , k} in the case of classification, or from continuous values in the case of
regression. The goal of a learning algorithm A is to find a decision function f :
X 7→ Y that correctly predicts the output of y from a future input drawn from
the same distribution of X . Finally, a classifier h characterised with the decision-
function parameters is delivered. When there are q various labelled databases, these
databases can be marked as {D1,D2, . . . ,Dq}.

Before going into the details of each approach, we will first face the issue that
the categories, Y , differ among databases. To address this issue, the dimensional
model of emotions offers an elegant solution, as emotion categories can be mapped
onto coordinates to generate a unified set of labels. For example, the emotions can
be mapped onto the arousal-valence dimensional coordinates [125, 126] from the
cognitive psychology aspect. This mapping strategy is applied in the rest of this
thesis. The specific way is displayed in Table A.3 and A.4.

3.1.1 Label Uncertainty

As to the tasks with subjective speech phenomena, such as the emotion and intoxi-
cation states, labels are determined by several labellers’ personal judgement [52, 127]
(cf. Section 2.2.1.2). Most previous studies on the speech pattern analysis, however,
simply treated the labels as certain ‘ground truth’ [63, 65] without considering the
label uncertainty among annotators. This, in fact, does not exactly express the
whole pattern information embedded in speech [127]. In this thesis, the label uncer-
tainty information is explored via data selection in Section 3.1.5.2 to well mine the
most representative labelled examples.

A variety of methods can be employed to measure the label uncertainty (aka
human agreement level) among human inter-raters. For example, the Spearman’s
rank correlation coefficient rho and the Pearson’s intraclass correlation coefficient r
are particularly suited for ranked intervals, albeit only for two raters [128, 129]. The
same limitations also apply to the Scott’s pi and Cohen’s kappa [130, 131]. In this
thesis, I employ the frequently-used Fleiss’ Kappa coefficient [132], which is claimed
to be a multi-rater generalisation of Scott’s pi. It requires all raters to rate all data
and is suited for larger data sets. It is defined as:

κ :=
p0 − pc
1− pc

, (3.1)

43



3. Methodology for Data Enrichment and Optimisation

where p0 is the observed agreement of annotators, and pc is the chance-level agree-
ment. For a single instance, the calculation of p0 can be simplified by estimating
the proportion of cases in which labellers agree on a common category:

p0 =
1

m

m∑
i=1

Ai, (3.2)

where Ai ∈ (0, 1) stands for a binary annotation of a specific category, and m is the
number of annotators. Thus, the difference p0 − pc indicates the proportion of the
cases where ‘beyond-chance agreement’ occurs. It is normalised by the probability
of disagreement 1− pc that is expected by chance.

3.1.2 Data Pooling

The idea of data pooling is integrating multiple databases with different distributions
into a large size of pool P = D1 ∪ D2 ∪ . . . ∪ Dq. In this case, the mismatches
over corpora exist due to the varieties of recording settings and languages. Thus,
normalisation techniques are required to ease the mismatches among languages,
speakers, and acoustic environments, so that the feature values can be unified within
a small specified range, such as -1 to 1. In the ongoing, I introduce three kinds of data
normalisation methods: centring, normalisation, and standardisation. Note that,
apart from the data pooling, the process of data normalisation is also of importance
for other methods dealing with labelled and unlabelled data, as well as features.
For example, the feature sets are always normalised before being fed into neural
networks, which helps in speeding up the learning phase [133, 134].

Centring is equal to the simple subtraction of the feature-wise mean, which
corresponds to the following formula:

x′ = x− x̄, (3.3)

where x̄ is the mean feature vector over a specific corpus Di.
Min-max (range) normalisation forces the range of each feature to a prede-

fined interval [a, b] by linear scaling. Suppose that xmin and xmax are the minimum
and maximum feature vectors over a specific corpus Di. When such a normalisation
is applied, the representations per instance can be calculated by

x′ =
x− x̄

xmax − xmin

· (b− a) + a. (3.4)

Specifically, if the interval of [a, b] corresponds to [0,1], equation 3.4 evolves into

x′ =
x− x̄

xmax − xmin

, (3.5)
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and if it corresponds to [-1,1], it is altered by

x′ = 2 · x− x̄

xmax − xmin

− 1. (3.6)

It is worth noting that an ‘out-of-bounds’ error could take place if an unknown
future input case falls outside of the original data range. In this case, a simple way
is assigning the extreme values (i.e., -1 or 1) to the ‘out-of-bounds’ data.

Standardisation (sometimes termed z-score normalisation) refers to the linear
scaling to zero mean and unit variance, which is expressed as:

x′ =
(x− x̄)

σ
, (3.7)

where x̄ and σ are the mean and standard deviation vectors over the whole corpus.
Compared to min-max normalisation, standardisation is more robust to outliers.

These three methods can not only be applied to each corpus separately (i.e.,
before data agglomeration), but also be used after building a joint training set from
multiple databases, where the parameters {x̄, xmin, xmax, σ} are extracted.

3.1.3 Ensemble Learning

In contrast to most machine learning approaches that consist in training one classi-
fier, ensemble methods try to construct a set of classifiers (aka weak or base learn-
ers) and then classify new data by taking a weighted or unweighted vote through
individual predictions. The robustness and effectiveness of ensemble methods are
empirically and extensively verified in [135] and [136], where it found out that the
predictions made by the fusion of a set of learners often perform better than the best
single classifier. Prominent approaches include Bagging [137], Boosting [135, 136],
and Stacking [138].

Bagging (aka bootstrap aggregating) [137] is an approach to training a plurality
of weak learners, each of which is trained with different sets of bootstrap examples
by a base learning algorithm. The bootstrap examples are obtained by randomly
subsampling the training data set with replacement, where the number of the ex-
amples is the same as that of the training data set. Hence, some training examples
may not appear, and some may appear even more than once. After obtaining a set
of base learners hi, i = 1, . . . , r, Bagging combines their predictions by means of
majority voting, and the most-voted class is predicted. That is, the final classifier
is delivered by

H(x) = arg max
y∈Y

r∑
i=1

1(y = hi(x)), (3.8)

where the value of 1(a) is 1 if a is true and 0 otherwise. The pseudo-code description
of Bagging is presented in Algorithm 1.
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Algorithm 1: Bagging.

Input:
D: training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)};
A: certain base learning algorithm;
r: number of learning rounds.
Output:
H: final classifier, H(x) = arg max

y∈Y

∑r
i=1 1(y = hi(x)).

Process:1

for i = 1, . . . , r: do2

Generate bootstrap examples from training set D, Si = Bootstrap(D).3

Train the weak learner hi on the bootstrap examples, hi = A(Si).4

end5

Ensemble the r weak learners by (un-)weighted majority voting, and finally6

deliver the output.

Upon Hansen and Salamon’s suggestion in 1990 – a necessary and sufficient
condition for an ensemble of weak learners to be more accurate than any of its
individual members is if the base learners are accurate and diverse [121]. Thus, a
variant of Bagging, also known as cross-validation committees, has been proposed
in [139]. This method constructs base learners by leaving out disjoint subsets in the
training data set.

Boosting consists in calculating the output using several different models and
then averaging the results via a weighted average approach. Among a number of
variants, which was developed by Freund and Schapire [140], AdaBoost is con-
sidered as the most popular boosting algorithm. Generating r classifiers for the
ensemble requires r rounds through the algorithm. First, it assigns each training
example an equal weight of 1/n. Let’s denote the distribution of these weights at
the i-th learning round as Wi. Upon the training data set D and Wi, the algorithm
generates a base learner hi by calling the base learning algorithm. After that, it
uses hi to classify training examples, and the weights of the misclassified examples
will increase. Then, an update weight distribution Wi+1 is obtained. Again, upon
the training set D and updated Wi+1, AdaBoost generates another base learner.
Such a process is repeated r times, leading to r base learners. The final strong
learner is derived by weighted majority voting, where the weights of base learners
are determined by a corresponding measured error rate on the training data set.

Stacking, in contrast to Bagging and Boosting that use a one-base learning
algorithm to train all base learners, employs different learning algorithms A’s (e.g.,
SVM and Decision Tree) to train individual learners [138]. Those individual learners
are then combined with a higher-level learner that determines the final predictions.

Generally speaking, extensively empirical studies have shown that no ensemble
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method outperforms other ensemble methods in all scenarios [141]. More analysis
about the influence of base learner’s number, issues of overfitting and generalisation
are provided in [142, 143].

In this thesis, Bagging is selected as a representative ensemble approach to be
evaluated, because it is easier to adapt with multiple datasets, where each individual
database is considered as a dependent base learner training set. In this case, the
training set D is replaced by the data pool P , the bootstrap data set Si by the single
database Di, and the number of learning rounds r by the number of databases n.

3.1.4 Data Balancing

A lion’s share of the ubiquitous speech data is labelled as neutral, yet only a small
share of them are characterised with interesting information like emotion and in-
toxication. Such an issue of highly imbalanced class distribution often results in a
recognition engine with a poor prediction for the target classes. Under the assump-
tion of a two-class task (k = 2), for simplicity, let us define the subsets Dmin ⊂ D
and Dmaj ⊂ D, where Dmin and Dmaj are the subsets belonging to the minority and
majority class in D, respectively. Thus, Dmin ∩ Dmaj = φ and Dmin ∪ Dmaj = D.

Over the past decade, a number of studies in the field of machine learning have
already laid heavy emphases on tackling this issue [144, 48, 145]. From the technical
point of view, these studies can generally be categorised into three groups [145]: 1)
sampling methods; 2) cost-sensitive methods; 3) kernel-based methods.

Sampling is the processing of repeating pre-existing data, or regenerating new
data to modify the imbalanced data distribution, so as to provide a more balanced
class distribution. This process counts on the findings that a balanced data set can
usually provide more performance gain compared to an imbalanced data set [146,
147]. One specific way in them is random sampling, either by random oversampling
(aka upsampling) – randomly selecting a set of examples D′min in the minority subset
Dmin and then adding them to the original training set D, D = D ∪ D′min, or by
random undersampling (aka downsampling) – randomly selecting a set of examples
D′maj in the majority subset Dmaj and then removing them from the original training
set D, D = DrD′maj. Yet, it is worth mentioning that, in the case of undersampling,
the process of removing examples from the majority class may cause the loss of
important information pertaining to the majority class. Another frequently-used and
effective way of data sampling is the Synthetic Minority Oversampling TEchnique
(SMOTE) [148]. The idea of this method is to create a new set of artificial examples
belonging to the minority class. First, randomly select one example belonging to the
minority class, x ∈ Dmin. Then, find out its k nearest neighbours in the minority
class set upon a Euclidean distance with x, and randomly choose one xneighbour

among those neighbours. After that, create a new example by

xnew = x + δ · (xneighbour − x), (3.9)
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where δ ∈ [0, 1] is a random number. This process is repeated until a predefined
number or percentage of the minority examples are created. The pseudo-code de-
scription of the SMOTE algorithm can be found in [148].

In comparison with these data sampling methods that are with the aim of cre-
ating an evenly-distributed new data set, cost-sensitive methods attempt to use
different cost metrics that describe the costs for misclassifying any particular data
examples [149]. Similarly, the kernel-based methods try to adjust the decision
boundary [150] in order to yield better performance for the less representative class.
A typical kernel-based learning diagram is SVM [151].

In this thesis, the upsampling method is always applied to address the data
imbalance issue due to its less complexity of computation and wide popularity of
implementation.

3.1.5 Data Selection

With the implementation of the data enrichment methods presented from Section
3.1.2 to 3.1.4, the amount of labelled training data will increase, and the diversity of
labelled training data will be enhanced. At the same time, however, they may also
make for some problems [152]: 1) Data may be too overwhelming to be handled. In
this case, the classifier training process could take a long time (Even though for most
commercial applications the classifiers are usually trained in a once-off operation,
a short training time is always desirable for researchers.) 2) There are redundant,
mislabelled, and noise-distorted data fused into the prototypical data set, which
damages the model performance.

These issues give rise to the necessity of data selection since the accurate decisions
of a pattern recognition engine must be based on good quality data. The goal of
data selection is to select a data source that is representative of the entire data
universe of interest, and/or remove the superfluous and garbage data. Numerous
methods have been proposed and investigated in the literature, and most of them
can be assigned to one of the two groups from a technical point of view [152, 153].

The first data selection group is based on wrappers, where the selection criteria
depend on the accuracy obtained by a classifier [153]. Those instances that do not
improve predictive performance of the classification will be discarded from the train-
ing set. Most of the wrapper-based selection methods are relative to the k-nearest
neighbour classifiers [154] like Condensed Nearest Neighbour (CNN) [155], Selective
Nearest Neighbour rule (SNN) [156], or Decremental Reduction Optimisation Pro-
cedure (DROP) [157]. Taking CNN for example, the instances misclassified by the
classifier will be selected and added into the initial training set.

Unlike the wrapper-based selection methods, the second data selection group
is based on filters that attempt to select the instances by means of sampling or
clustering, without depending on the prediction of classifier [153]. A prominent
algorithm in them is RANdom SAmple Consensus (RANSAC) proposed by Fishler
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and Bolles [158]. It uses a set of data as small as possible to determine model
parameters. Then, other data are tested via the fitted model, and those data that
fit the estimated model within a predefined tolerance ε will be considered as part of
the consensus set. When the fraction of the number of consensus data over the total
number of data exceeds a predefined threshold, it re-estimates the model parameters
using all consensus data and initial data. This procedure is repeated a fixed number
of times. Another example comes to the Pattern by Ordered Projections (POP)
[159] that discards the interior instances and selects some border instances. The
border instance is defined if its nearest neighbour belongs to other classes, and the
interior instance is defined in the other way around.

For ISA, especially for acoustic emotion recognition, however, only a handful of
studies have placed their emphases on data selection so far [160]. To the best of
my knowledge, almost all these studies just depended on the absolute labels (i.e.,
ground truth, or gold truth considered as ground truth), and none of these studies
have directly exploited the agreement-level information of labelling (gold truth) for
subjective tasks so far. In fact, due to the agreement levels among annotators,
the instances with the same class may be with different label uncertainty, which is
discussed in Section 2.2.1.2 and 3.1.1.

In the following, I introduce two methods to address the problem of data selection
in the principle of 1) equal or improved performance: That means the performance
of the model trained on a selected subset should be equal to, or better than, the
performance of the model trained on all instances; and 2) reduction of training time.
The two methods are Euclidean Distance-based Instance Selection, and Agreement-
and Sparseness-based Instance Selection.

3.1.5.1 Euclidean Distance-based

The idea of Euclidean Distance-based Data Selection (EDDS) is to select the in-
stances that are far away from the centre of the other classes (see Algorithm 2).
Assume a two-class task with positive-negative dimensionality, where x+ and x̄+

denote the feature vector of a particular positive instance and the averaged feature
vector (centre) through all positive instances, respectively. The same definitions,
x− and x̄−, apply to the negative class. Finally, only the instances that have long
distances with the opposite class centre (d(x+, x̄−) and d(x−, x̄+)) will be selected.
In fact, this algorithm can also be considered for database selection.

3.1.5.2 Agreement- and Sparseness-based

Agreement- and Sparseness-based Instance Selection (ASIS) includes two steps:
Agreement-based Instance Selection (AIS) and Sparseness-based Instance Selection
(SIS) (see Algorithm 3). As discussed in Section 3.1.1, those instances labelled as the
same class might have different label uncertainty among annotators. It is interest-
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Algorithm 2: Euclidean Distance-based Data Selection (EDDS).

Input:
D: Database of n instances annotated in classes ;
P : Percentage of selected subset;
Output:
S: Subset of database D;
Process:1

Obtain the proportional distribution of each class R+, R− in the training set2

of D.
Calculate the centres for positive data set x̄+ = E{x+} and negative data set3

x̄− = E{x−}.
Calculate the Euclidean distance for each instance x+ or x− to corresponding4

opposite class centre x̄− or x̄+. That is, d(x+, x̄−) and d(x−, x̄+).
Sort the instances based on the distance values from high to low for both5

positive class (‘positive’ queue: Q+) and negative class (‘negative’ queue:
Q−), respectively.
Select the most beginning N+ (N+ = n× P ×R+) instances in the ‘positive’6

queue Q+ and N− (N− = n× P ×R−) instances in the ‘negative’ queue Q−.
Fuse N+ and N− into output subset S.7

ing to see what is the influence of these instances labelled by high-level uncertainty
when building pattern recognition model. To this end, the AIS step aims to dis-
card the instances with high-level label uncertainty. In this process, the instances
are discarded proportionally over classes, whereby the proportion value depends on
the original class distribution. On the one hand, it prevents the case of potential
maldistribution of instances that might result in discarding such instances which
mainly belong to certain classes, especially to the sparse ones; on the other hand,
it improves the separability of classes by potentially removing the instances close
to the class boundary in the feature space. Therefore, the larger the size of the
discarded subset (PD[%]) chosen, the fewer instances will be located near the class
boundaries, and the less complex the model will become.

Moreover, the SIS step randomly selects an equivalent number of instances from
each class set, so as to cope with the class imbalance problem that was introduced
in Subsection 3.1.4. Note that, in the case of a class balanced task the size of
the selected subset (PS[%]) will satisfy PD + PS ≤ 1, while in the case of a class
imbalanced task, both PD and PS are constrained by the instance number of the
most sparse class.
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Algorithm 3: Agreement- and Sparseness-based Instance Selection (ASIS).

Input:
D: Database of n instances annotated in classes Ci (i = 1, · · · , k) and
corresponding human agreement levels l;
PD: Percentage of discarded subset with low human agreement levels;
PS: Percentage of selected subset;
k: number of classes;
Output:
S: Subset of database D;
Process:1

Obtain the proportional distribution of each class Ri (i = 1, · · · , k) in the2

training set of D.
(Step: Agreement-based Instance Selection [AIS])3

for i = 1, · · · , k do4

Sort the instances that are annotated as class Ci by human agreement5

levels l from low to high, producing queue Qi.
Delete nDi = n× PD ×Ri instances that are at the beginning of Qi.6

end7

(Step: Sparsness-based Instance Selection [SIS])8

for i = 1, · · · , k do9

Randomly select nSi = n× PS�k instances belonging to class Ci.10

end11

Fuse nSi (i = 1, · · · , k) into one output subset S.12

3.2 Exploiting Unlabelled Data

In contrast to the labelled data that are scanty, expensive, and time-consuming,
unlabelled data are ubiquitously available in the real world and easily collected at
little cost. This advantage motivates the exploitation of unlabelled data by advanced
techniques that seek to directly extract the information embedded in the unlabelled
data, so that the greatest performance gain can be delivered just by using a small
human labelled data set.

In the past few decades, a multitude of methods in machine learning have been
proposed and investigated, as will be introduced later. However, this thesis employs
a prediction uncertainty-based learning strategy in terms of the Confidence Value
(CV). This strategy involves the prediction work from the machine oracle (e.g.,
SSL), the human oracle (e.g., AL), and the combinations thereof (e.g., cooperative
learning). The basic idea is to deliver the instances predicted with low uncertainty
(or high CV) for the machine oracle, and the ones predicted with high/medium
uncertainty (or low/medium CV) for the human oracle.
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Input:
L: small amount of labelled data (with gold standard);
U : large amount of unlabelled data pool;
S: selected data set;
k: number of classes;
n′: number of selected instances for each repetition.
Output:
H: enhanced emotion classifier.

Figure 3.1: Definitions of notations in the algorithms.

Before going into the algorithms from Section 3.2.2 to 3.2.4 in depth, Figure 3.1
provides the definitions of common notations. The initial labelled training set con-
sists of inputs and outputs drawn from a joint distribution L = {(xi, yi)|(xi, yi) ∼
p(x, y)}li=1, and the unlabelled data pool from a marginal distribution U = {xi|xi ∼
p(x)}l+ui=l+1, typically l � u. Another point that needs to be mentioned is the stop-
ping criterion of the learning process. There are several ways to stop the closed loop.
The best time to stop training is when the anticipated performance is achieved. To
do this, a separate validation set is involved. If there is no significant performance
improvement in the validation set, the learning loop could be stopped [161]. An-
other way is that the loop could be automatically stopped once all the data in the
unlabelled pool have been labelled by humans or machines. In this thesis, and for
the sake of comparison, I adopt the strategy that the learning process stops when a
predefined number of learning iterations are finished.

3.2.1 Prediction Uncertainty

Compared to the label uncertainty (cf. Section 3.1.1) which denotes the degree of
labelling variability among annotators, the prediction uncertainty indicates the de-
gree of predictions reliability of a classifier. In this thesis, the prediction uncertainty
is derived from the poster probability of classification and measured by the level of
CV.

For SVMs, as analysed in Section 2.4.1, the following function is implemented
to classify a given test example:

f(x) =
m∑
i

αiyiK(xi,x) + b. (3.10)

The sign of this function determines the category of the test example. Essentially, the
output value of standard SVMs is the distance of a specific point from the separating
hyperplane. Therefore, such standard SVMs are also known as the maximum margin
algorithm.
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To enable post-processing (e.g., for dealing with unbalanced data [162]), the
output of a classifier should be a calibrated posterior probability p(class|input)
[163] within the range of [0, 1]. To this end, there are various approaches including
nonparametric and parametric methods [164]. As to the nonparametric methods,
Zadrozny and Elkan proposed isotonic regression to transform the output of SVMs
to probabilities, and demonstrated its effectiveness in [165]. Later on, they also
reported a simple histogram method that outperforms isotonic regression for the
properly chosen bin size [165]. As to the parametric methods, a typical one is to
train a kernel directly with a regularised likelihood error function (e.g., logit link
function). However, such an algorithm will produce non-sparse kernel machines. To
overcome this limitation, Platt applied a sigmoid function to map the SVM outputs
into posterior probabilities and demonstrated that the SVM+sigmoid combinations
compete with the kernel methods. More specifically, it assumes that the poste-
rior probability consists in finding the parameters A and B for a form of sigmoid
function:

p(y|f(x)) =
1

1 + exp(Af(x) +B)
, (3.11)

which maps the value f(x) into the probability estimates p(y|f(x)). For each in-
stance, the sum of the posterior probability for all classes is equal to 1. In the
special case of binary recognition tasks, the decision threshold is 0.5. Thus, the final
prediction class is determined by comparing the posterior probability with 0.5.

However, sometimes we are not particularly concerned with the final prediction
but more its uncertainty. For example, the prediction uncertainty can be used for
SSL or AL. To measure such an uncertainty, a confidence value (CV) is proposed
and can be calculated by the equation:

C(x) = |p0(x)− p1(x)|, (3.12)

where p0(x), p1(x) are the posterior probabilities for classes ‘0’ and ‘1’, respectively.
It can be seen that the CV is an indicator of the prediction uncertainty. The more
certainty the predictor gives, the higher the CV. Its value ranges from 0 to 1.

3.2.2 Machine Oracle

Semi-Supervised Learning (SSL) techniques aim to use unlabelled data in an efficient
way without any intervention from human annotators. A wide variety of methods
exist [166], which can generally be distinguished as generative and discriminative
models.

Generative model estimates the joint probability distribution p(x, y) of all vari-
ables, both the classes and the features. Common methods include the generative
model with Expectation-Maximisation (EM). It assumes that the data (labelled or
unlabelled) satisfy an identifiable mixture distribution like GMM, and use an EM
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algorithm to optimise the joint likelihood taking both labelled and unlabelled data
into account [167]. It includes two steps: an expectation (E) step and a maximisa-
tion (M) step. In the E step, each unlabelled example is assigned a label distribution
according to its expected value under the current model. In the M step, the multino-
mial parameters are re-estimated [168]. However, this method does not work when
the independent input features are viable or when the best generative structure does
not correspond to the decision boundary [169].

Discriminative model learns the probability distribution p(y|x), that is, the prob-
ability of y given x. It comprises Transductive SVM (TSVM) and graph-based
methods [169]. TSVM is a variant of standard SVM with unlabelled data. The
objective is to find labelling strategies for unlabelled data, so as to have a maxi-
mum margin on both original data and unlabelled data (labelled after the labelling
process) [170]. One drawback of this method is that the margin may not exist if
the classes strongly overlap. Graph-based methods define a graph where the nodes
are labelled or unlabelled examples in the data set, and edges denote the similarity
between examples [171]. The graph is usually constructed from the distances in the
feature space. Indeed, this method is also sensitive to the overlapping classes.

In this section, I choose the discriminative models based on the prediction uncer-
tainty of SVM classification as the evaluation methods, because SVM is frequently
used for computational paralinguistics and does serve somewhat as a standard clas-
sifier. Two specific paradigms – self-training and co-training – are analysed.

3.2.2.1 Self-Training

Figure 3.2 and Algorithm 4 describe the flowchart and pseudocode of self-training.
A classifier is firstly trained with a small amount of labelled data. After that, the
classifier is used to recognise the unlabelled data. Typically, those unlabelled data
that are classified with high confidence, together with their predicted labels, are
added to the training set. The classifier is retrained, and the process is repeated.
Formally, the selected example x′ ∈ S can be expressed as

x′ = arg max
x∈X

C(x). (3.13)

Note that the classifier uses its own prediction to teach itself. Thus, this procedure
is also named self-teaching.

Self-training is a widely used technique in SSL. It is simple and could be easily
applied to an existing classifier. However, it also suffers from several drawbacks.
Early mistakes could reinforce themselves, and be accumulated, possibly leading to
a vicious circle of learning. Another drawback of self-training is the imbalanced class
distribution. The prediction results are always biased to the most dominant class,
and the opposite phenomenon occurs with the less representative one.
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Figure 3.2: Self-training.

Algorithm 4: Self-training.

repeat1

(Optional) Upsample training set L to even class distribution LD.2

Use L/LD to train a classifier H, then classify U .3

Select a subset Sst that contains those instances predicted with the4

highest confidence values.
Remove Sst from the unlabelled set U , U = U r Sst.5

Add Sst to the labelled set L, L = L ∪ Sst.6

until a predefined number of iterations is met.7

3.2.2.2 Co-Training

Another SSL method is Multi-View Learning (MVL) [172, 166, 173], which focuses
on improving the learning performance by training different models concurrently
and optimising them by exploiting redundant feature sets (or ‘views’) of the same
input data [169]. Co-training is one of the earliest schemes for MVL proposed in the
literature [174]. Figure 3.3 and Algorithm 5 describe the flowchart and pseudocode
of co-training.

We have a feature space X = X 1 × X 2, where X 1 and X 2 correspond to two
different ‘views’ of an example, and X 1 ∩X 2 = ∅. That is, each example x is given
as a pair of (x1,x2). The two feature sets satisfy the following two assumptions
[174]:

• sufficiency – Each view is sufficient for classification on its own. That is,
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Figure 3.3: Co-training.

the two hypotheses f 1 : X 1 7→ Y and f 2 : X 2 7→ Y are good enough for
recognition.

• conditional independence – The views are conditionally independent given the
class label [174], that is, p(yi|x)← p(yi|x1)p(yi|x2).

Initially, two models h1 and h2 are built on separate ‘views’, X 1 and X 2, respec-
tively. Like self-training, each model then chooses the example x′i ∈ S from the
unlabelled data pool U with the most confident predictions

x′i = arg max
xi∈X i

C(xi), (3.14)

where i = 1, 2 denotes the ‘view’ index. Both selected subsets S1 and S2 are finally
added into the training set. Such a process is repeated several times until a prede-
fined number of iterations is met. Essentially, each classifier is trained with its own
data plus the additional training examples provided by the other classifier. There-
fore, in one iteration, an instance is either discarded (low certainty predictions),
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Algorithm 5: Co-training.

Input: (additional)
A learning domain with features X .
repeat1

Divide the domain features X into two views: X 1,X 2, and X 1 ∩ X 2 = ∅.2

for i = 1, 2 do3

(Optional) Upsample each view of data to even class distribution XDi.4

Use Xi/XDi to train classifier Hi, and then classify U .5

Select a subset Ssi that contains those instances predicted with the6

highest confidence values.
end7

Remove Sct = Ss1 ∪ Ss2 from the unlabelled set U , U = U r Sct.8

Add Sct = Ss1 ∪ Ss2 to the labelled set L, L = L ∪ Sct.9

until a predefined number of iterations is met.10

added once (high certainty predictions by one of the two classifiers), added twice
with the same label (high certainty and similar predictions by the two classifiers),
or added twice with different labels (high certainty but different predictions by the
two classifiers).

Co-training makes strong assumptions on the splitting of features. However, in
most application cases, such assumptions are hard to satisfy. Even so, co-training
is still working in most applications and demonstrated empirically and theoretically
[175, 176].

3.2.3 Human Oracle

As discussed in Section 3.2.2, SSL techniques can exploit the annotation work from
machines without any human intervention, yet they often may not improve the per-
formance as expected because of the issues of error accumulation and prediction
inclination to the dominant class [169]. Alternatively, Active Learning (AL) [169]
has the potential to achieve higher accuracy with fewer training labels by (actively)
choosing the data from which it learns. Those instances that are ‘most informative’
for the task being modelled are selected from large pools of unlabelled data, and
subsequently query an oracle or teacher for annotation. There are various strate-
gies by which the informativeness of unlabelled examples can be processed (usually
referred to as query strategies). One of the simplest strategies is to allow the model
(or active learner) to determine the uncertainty of the predictions on unlabelled
data based on a previously trained model (uncertainty sampling AL), and query an
oracle (i.e., a human annotator) for the annotation of those with the least certain
predictions [177]. Another common strategy is the so-called query-by-committee,
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Algorithm 6: Passive Learning (PL).

repeat1

Randomly select subset Sp from unlabelled set U .2

Ask human experts to label the selected subset Sp.3

Remove Sp from the unlabelled set U , U = U r Sp.4

Add Sp to the labelled set L, L = L ∪ Sp.5

until a predefined number of iterations is met.6

whereby the predictions for unlabelled data are obtained from multiple models (pre-
viously) trained on the same data (typical models represent competing hypotheses
to solve the same task). In this type of strategy, the data with the lowest agreement
across classifiers are considered to be the most informative ones [178]. Other AL
query strategies include the expected-error-reduction method that aims to measure
how much its generalisation error is likely to be reduced [179], the expected-model-
change-based method that chooses those instances that have a greater impact on
the current model [180], and the diversity-density-related method that attempts to
maximise the learning benefits of relevance feedback on retrieving documents [181].

In this thesis, I choose the query function based on the prediction uncertainty
by SVM classification as mentioned in Section 3.2.1. In addition, as a baseline, the
Passive Learning (PL) algorithm is briefly introduced in Algorithm 6, whereby unla-
belled data are randomly selected from a pool, and subjected to human annotation,
before being added to the training set.

3.2.3.1 Active Learning

Figure 3.4 gives the flowchart of AL based on the prediction uncertainty (confidence
value). In particular, Algorithm 7 describes the traditional AL algorithm based on
the least-certainty query strategy, and Algorithm 8 provides another AL algorithm
with a novel query strategy based on the selection of those instances predicted with
medium certainty levels for further annotation. The rationale behind the adoption of
a medium-certainty query strategy is the fact that it has the potential advantage of
avoiding the selection of noisy data, which can be caused by unreliable annotations
[31] or distortions of the (acoustic) pattern [182] as demonstrated in [183]. This
is particularly important for acoustic emotion recognition owing to the comparably
high degree of ambiguity.

Formally, the query function is defined as:

Query(x) =

1, if x = arg min
x∈X

|C(x)− Cm|,

0, otherwise,
(3.15)

where C(x) represents the prediction CV for a given instance x, and Cm is the CV
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Figure 3.4: Active Learning (AL) based on confidence values.

Algorithm 7: Active Learning (AL) with least certainty query strategy.

repeat1

(Optional) Upsample the training set L to obtain even class distribution2

LD.
Use L/LD to train a classifier H, and then classify the unlabelled set U .3

Rank the data based on the prediction confidence values C and store4

them in queue Q.
Select a subset Sa whose elements are in the bottom of the ranking queue5

Q (least certainty).
Submit the selected subset Sa to human annotation.6

Remove Sa from the unlabelled set U , U = U r Sa.7

Add Sa to the labelled set L, L = L ∪ Sa.8

until a predefined number of iterations is met.9

of the instance located in the middle of the ranking queue. Ideally, for uniformly
distributed predictions, Cm would be 0.5. Nonetheless, in practice this value is not
fixed. Instead, it varies due to the changes on the unlabelled data pool as learning
progresses (instances moved to the training set).

3.2.3.2 Co-Active Learning

Inspired by the concept of MVL and co-training, this thesis extends the AL to
a novel method of ‘Co-Active Learning’ (hereafter coAL) and uses a prediction
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Algorithm 8: Active Learning (AL) with medium certainty query strategy.

repeat1

(Optional) Upsample the training set L to obtain even class distribution2

LD.
Use L/LD to train a classifier H, and then classify the unlabelled set U .3

Rank the data based on the prediction confidence values C and store4

them in queue Q.
Select subset Sa whose elements are in the middle of the ranking queue Q5

(medium certainty).
Submit the selected subset Sa to human annotation.6

Remove Sa from the unlabelled set U , U = U r Sa.7

Add Sa to the labelled set L, L = L ∪ Sa.8

until a predefined number of iterations is met.9

Algorithm 9: Co-Active Learning (coAL).

Input: (additional)
A learning domain with features X .
repeat1

Split the domain features X into two views: X 1, X 2, and X 1 ∩ X 2 = ∅.2

for i = 1, 2 do3

(Optional) Upsample each ‘view’ to even class distribution XDi.4

Use Xi/XDi to train classifier Hi, and classify U , respectively.5

Rank the data based on the prediction confidence values C and store6

them in queue Q.
Select a subset Sa whose elements are in the middle of the ranking7

queue Q (medium certainty).
end8

Submit the selected subsets Sca = Sa1 ∪ Sa2 to human annotation.9

Remove Sca from the unlabelled set U , U = U r Sca.10

Add Sca to the labelled set L, L = L ∪ Sca.11

until a predefined number of iterations is met.12

certainty query strategy. It consists of implementing two different views into AL.
This strategy diverges from Co-Testing [172] by allowing both views to select the
data to be annotated independently, rather than finding the ‘contention points’.
Figure 3.5 and Algorithm 9 give the flowchart and pseudocode of coAL.

The feature domain X of a given data set needs to be separated into two inde-
pendent and sufficient parts X 1,X 2, each of which is regarded as a ‘view’. Then,
each view is used to create a model h that selects the instances by the same query
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Figure 3.5: Co-Active Learning.

function with the medium certainty-based AL as:

Query(xi) =

1, if xi = arg min
xi∈X i

|C(xi)− Ci
m|,

0, otherwise,
(3.16)

where i = 1, 2 denotes the ‘view’ index. That is, the unlabelled instances in the data
pool U predicted by each model with medium CVs (S1 and S2) are then delivered
to a human oracle to be annotated. After the annotation, the subsets of S1 and
S2 are added (together with the new label) to the training set and removed from
the unlabelled data pool. There are three possibilities regarding the selection of a
particular instance by the two views: 1) If an instance is not selected by any of the
two views, it will be discarded in this iteration; 2) If an instance is selected by any
of the two views, that instance plus the given label will be added to the training
set once; 3) If an instance is selected by both views, it will be added twice to the
training set together with the common class label (because it was annotated by
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a human oracle). The whole process is repeated until a predetermined number of
iterations of the learning process is reached.

3.2.4 Cooperative Oracle

SSL techniques exploit the data labelling work without any human interaction, yet
usually cannot acquire the gain as high as AL techniques when the same number of
instances are labelled [172]. This phenomenon accounts for the essential drawbacks
of SSL. One drawback relates to the absence of sufficient instances for a particu-
lar category in the initial training set, which leads to poor performance for that
category. This drawback is because the instances with higher confidence estimates
selected by the SSL algorithm are generally inclined to those categories with more
examples and correct classification. This problem often engenders a vicious cycle in
which the dominant categories are increasingly better recognised, with the opposite
occurring with the less represented categories. Another common drawback of using
SSL techniques is that noise can be added to the training set. Even though only the
instances with the highest CVs are chosen, some of these instances are still misclassi-
fied. In this case, the noise is accumulated and increasingly affects the performance
of the classifier. Both drawbacks are absent from AL. However, AL still requires a
considerable amount of costly human intervention.

In order to take advantages of both approaches, the idea of jointly conducting
AL and SSL was first introduced in [184], where the authors integrated Query-by-
Committee-based AL and EM-based SSL. Later on, Tur et al. [185] used a combi-
nation of AL and Boosting-based SSL for spoken language understanding, showing
that it significantly reduces human annotation effort; and Zhu et al. [186] took a
combination of AL and SSL using Gaussian field and harmonic functions for graphic
processing to recognise handwritten digit and text classification. Furthermore, in
[172], Muslea et al. extended the idea of multi-view learning – considering the di-
versity of different views that are obtained from different feature subsets – into such
a combination, namely Co-EMT (integrating co-testing with co-EM). After that,
the work done by Wang and Zhou theoretically shows its efficiency [187].

In this thesis, the Cooperative Learning (CL) algorithm is further investigated,
which integrates AL with SSL based on the prediction uncertainty with SVMs.
It allows the sharing of the labelling effort between human and machine oracles,
whilst being able to mitigate the limitations of both algorithms in the application
of paralinguistic tasks (particularly for speech emotion recognition). In particular,
CL always proceeds AL before SSL in each iteration. Such a process will repeat
several times until a predefined number of iterations is satisfied. When taking the
idea of multi-view learning into account, I consider the following three schemes: 1)
single-view CL (svCL) – implementing AL followed by self-training (cf. Algorithm
10); 2) mixed-view CL (xvCL) – combining AL and co-training (cf. Algorithm 11);
and 3) multi-view CL (mvCL) – fusing coAL and co-training (cf. Algorithm 12).
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Figure 3.6: Single-view cooperative learning.

Algorithm 10: Single-view Cooperative Learning (svCL).

repeat1

Execute AL based on an initial training set L, and obtain a subset Sa for2

human labelling (cf. Algorithm 7 or 8).
Remove Sa from the unlabelled set U (U ′ = U r Sa), and add Sa to the3

labelled data set L (L′ = L ∪ Sa).
Execute self-training based on a training set L′, and obtain a subset Sst4

for machine labelling (cf. Algorithm 4).
Remove Sst from the unlabelled set U ′ (U = U ′ r Sst), and add Sst to the5

labelled set L′ (L = L′ ∪ Sst).
until a predefined number of iterations is met.6

Particularly, taking the algorithm of svCL for example (the procedure is given
by Figure 3.6), the algorithm distributes the data predicted with low certainty for
human labelling at the first step (denoted as red lines), and the ones predicted with
the highest certainty for machine labelling at the second step (denoted as blue lines)
in each learning iteration.

In addition, to deal with the potential problem of imbalanced class distribution,
data upsampling is employed in all algorithms by repeating a random subsample of
the data set belonging to sparse categories.
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Algorithm 11: Mixed-view Cooperative Learning (xvCL).

Input: (additional)
A learning domain with features X .
repeat1

Execute AL based on initial training set L, and obtain a subset Sa for2

human labelling (cf. Algorithm 7 or 8).
Remove Sa from the unlabelled set U (U ′ = U r Sa), and add Sa to the3

labelled set L (L′ = L ∪ Sa).
Execute co-training based on training set L′, and obtain a subset Sct for4

machine labelling (cf. Algorithm 5).
Remove Sct from the unlabelled set U ′ (U = U ′ r Sct), and add Sct to the5

labelled data set L′ (L = L′ ∪ Sct).
until a predefined number of iterations is met.6

Algorithm 12: Multi-view Cooperative Learning (mvCL).

Input: (additional)
A learning domain with features X .
repeat1

Execute coAL based on an initial training set L, and obtain a subset Sca2

(cf. Algorithm 9).
Remove Sca from the unlabelled set U (U ′ = U r Sca), and add Sca to the3

labelled set L (L′ = L ∪ Sca).
Execute co-training based on training set L′, and obtain a subset Sct for4

machine labelling (cf. Algorithm 5).
Remove Sct from the unlabelled set U ′ (U = U ′ r Sct), and add Sct to the5

labelled set L′ (L = L′ ∪ Sct).
until a predefined number of iterations is met.6

Overall, all the above described learning algorithms will be elaborately analysed
to leverage the unlabelled data by way of performance comparison in Chapter 4.
However, it is necessary to point out that each algorithm has its own benefits and
drawbacks. In realistic applications, the algorithm selection highly depends on the
potential usage of human work and requirements of system performance.

3.3 Feature Optimisation

Following the stage of data preparation, features that are regarded as the repre-
sentations for distinguishing patterns in the context of machine learning are suc-
cessively exacted. Feature optimisation indeed is a general concept of reprocessing
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the original features with the goal of improving the recognition performance un-
der certain circumstances. Within this thesis, these circumstances are defined as
the distributed computing and the reverberant environments. That is because the
distributed computing structure for pattern recognition task is emerging with the
advance of networks and computer science recently, and the reverberant environ-
ments (e.g., room) are quite normal in our daily life. Each of the circumstances
holds particular characteristics and requirements. In these cases, we need to find
out a way to reprocess the raw features, contributing to higher recognition accu-
racy. Both cases will be elaborately discussed in Section 3.3.1 for computational
paralinguistics and in Section 3.3.2 for ASR, respectively.

3.3.1 Feature Compression

Embedded vs. Client-Server-Based Recognition Systems

In the area of computational paralinguistics, most state-of-the-art academic research
focuses on statically embedded recognition systems [14], [4], [64]. Such systems have
a good degree of flexibility since they can be used without Internet access and there-
fore be applied in a wide range of practical scenarios. Nonetheless, at present, this
advantage is becoming less significant. On one hand, because current data-driven
pattern recognition systems largely benefit from processing large amounts of data
for training and continuous development, which requires data transmission for the
integration of data from multiple users, as well as vast storage and computational
resources for training. Furthermore, sophisticated computational paralinguistic sys-
tems may require advanced computational models that are not possible to implement
in users devices [188]. On the other hand, because Internet access is now ubiqui-
tous on account of the advent of far-ranging coverage and high transmission speed
wireless networks such as 3G, 4G and wireless LAN, and the breakout of mobile
electronic devices like smartphones, laptops, and tablets.

One possible solution to these problems is to recur to client-server computing
[189]. On the client side, the normal consumer devices with restricted computing
ability can perform basic computational tasks; on the server side, super computers
or computing centres can deal with the most expensive computational tasks. In
the context of computational paralinguistics, the client is responsible for collecting
realistic data (i.e., voice recordings in natural occurring scenarios) that is then sent
to the server. On the server, the computational resources can be employed to in-
tegrate the data from various clients, build (and continuously improve) the target
paralinguistic system(s), classify the data received from the clients for the task at
hand, and feed back the final results to them.

Such a solution has several advantages for the future development and applica-
tion of paralinguistic recognition systems in the real world. First, it can overcome
one of the most important limitations for the development of robust paralinguistic
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recognition tasks – data scarcity (cf. Section 2.2.2). The client-server-based systems
have the potential to allow the collection of large amounts of labelled and unlabelled
realistic data from thousands of users in real-life scenarios, which can be exploited
for training models and enhancing their performance using a multiplicity of machine
learning techniques, as shown in Section 3.1 and 3.2. Second, it can accelerate the
improvement of paralinguistic recognition systems, since having the data processed
on the server side, computer scientists can continuously develop and apply more
effective techniques (e.g., BLSTM [33] or cumulative evidence [34]) and combine
various data sources to boost the systems’ performance and robustness. Moreover,
user profiles can be stored in the server to support long-term analysis and improve
user-specific models. Third, on the client side, the requirements of computing power,
the conditions of operating systems and hardware configurations are greatly relaxed,
therefore making it possible to spread the use of paralinguistic analysis to a wide
range of personal mobile and fixed devices.

Network vs. Distributed Recognition Systems

Concerning the location where the feature extraction takes place, client-server ar-
chitectures for computational paralinguistics can be categorised into two classes:
network recognition systems and distributed recognition systems [189]. The former
uses conventional speech coders for transmission of speech from a client device to
a server where feature extraction and recognition decoding are undertaken. The
latter implies that the feature extraction stage is processed on the client side, but
the recognition is made on the server [189].

One of the major advantages of adopting a network recognition approach is that
it is not necessary to develop a completely new system for paralinguistic recognition
tasks. Indeed, numerous commercial applications already implement speech cod-
ing, and so, without the need to change the applications on existing devices and
networks, we can simply use preexisting recognition models on the server side to
process the encoded speech signals. Moreover, it shares all the advantages of server-
based systems in terms of system maintenance, update and device requirements
[189]. Nonetheless, network recognition systems pose various challenges related to
privacy and transmission bandwidth limitations as discussed later.

In distributed pattern recognition systems, instead, the feature extraction pro-
cess occurs on the client side, where a representation of the speech signal with a
lower dimensionality and redundancy can be obtained and optimised for transmis-
sion. Such systems have been adopted in various applications, being some of the
most impressive and successful ones developed in the context of speech recognition,
where both theoretical (e.g., packet loss via transmission [190], feature compression
techniques [191], and noise robustness [192]) and experimental (e.g., Google search
engines and Apple’s Siri) research have been conducted. In other fields, distributed
pattern recognition has also been applied, for instance, to the recognition of human
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faces [193], actions [194], and nature elements (such as trees or weeds).
In relation to computational paralinguistics, if distributed computing can be

demonstrated to be feasible and reliable, some of the current limitations preventing
recognition systems to be applied to a variety of realistic applications can be greatly
mitigated. More importantly, this would be beneficial to a variety of areas, such
as, remote medicine treatment, remote conferences or negotiations, remote educa-
tion, and even advanced driver assistance systems, where paralinguistic recognition
systems have manifold applications.

3.3.1.1 Distributed Speech Analysis System

Upon the discussion outlined above, a framework of distributed structure is proposed
and illustrated in Figure 3.7. It is indeed inspired by the standardisation work of
distributed speech recognition performed by the Aurora group from the ETSI [18].
Compared to the unified ISA framework shown in Section 2.1, this distributed system
maintains all original components, whereas the front-end and back-end modules turn
into the client and server modules. Moreover, two new components related to signal
transmission and feature (de-)compression are added. Similar to any other network-
based systems, the process of data framing, bit-stream formatting, error protection,
and secure coding are demanded before entering data into the physical transmission
channel. This process targets at meeting the physical transmission requirements
(e.g., IP routing, clock recovery), preventing the channel distortion (e.g., channel
noise, packet loss), and guaranteeing the information security. The component of
feature (de-)compression plays a vital role in dealing with the main concerns as
follows.

Major Concerns of Distributed Recognition Systems

One major concern of network-based systems is transmission bandwidth. As dis-
cussed in Section 2.3.3, the statistic feature set delivers the smallest feature size
compared to the raw coded speech and LLD feature sets. Nevertheless, it is still a
challenge for both network transmission and memory storage in consideration of a
target scenario involving a large number of users/devices.

Another major concern in paralinguistic recognition is security, as the privacy
of the speakers has to be guaranteed. This protection is particularly important in
real-life contexts in which personal information and sensitive data may be collected.
Paralinguistic information is indeed of a highly private nature (e.g., emotional state-
ments, information about alcohol intoxication, tiredness) [195]. The transmission of
raw coded speech is a common approach in client-server architectures. The speech
data are normally coded by protocols such as G.711, G.726, and AMR-WB [196].
However, the goal of these methods is to have the speech signals well recovered to
ensure better communication quality. As mentioned earlier, a possible alternative is
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to perform feature extraction directly in the client and transmit LLDs [18], therefore
preventing direct access to users’ speech. Previous work has shown that it is feasi-
ble to reconstruct audio from static feature vectors, such as MFCCs and pitch (e.g.,
[197], [198]). Unfortunately, this feasibility once more generates important privacy-
related issues. For the system, I propose to generate and transmit statistical feature
vectors obtained by applying functionals over LLDs for each utterance. The proce-
dure for generating such feature vectors is irreversible, and, therefore, it avoids the
reconstruction of speech signals. Because of this irreversibility, the speakers’ speech
content is fully protected, which is significantly important because the speech con-
tent is widely admitted as the most important personal information. Moreover,
even though we can acquire some age and gender information from the statistical
features, it is difficult to confirm a speaker’s identify among billions of people of
different genders and ages. Furthermore, in the context of state-of-the-art compu-
tational paralinguistic research, statistical features are currently well-accepted for
extracting relevant information from speech (e.g., [14, 4, 53]).

3.3.1.2 Split Vector Quantisation

Given the concerns outlined above, Split Vector Quantisation (SVQ) [78] is consid-
ered for feature compression in the proposed distributed systems. The rationales
behind this choice are: i) The assignment of prototype numbers from a codebook
finally eliminates any direct feature information from the user thus ensuring high
privacy [18]; ii) SVQ is the officially recommended method by the ETSI standards
[18] for distributed speech recognition; and iii) It is a well established and efficient
feature compression technique [77, 74, 199].

SVQ algorithms split the high dimensional feature vectors into several sub-
vectors that automatically group the original feature set through some sort of
clustering algorithm (e.g., k-means). Each subvector is then represented by the
centroid of each group. Figure 3.8 shows a diagram depicting the SVQ algo-
rithm. The encoding scheme firstly partitions the whole d-dimensional feature
vector x = [x1, x2, . . . , xd]

T into p subvectors, each of which si = [xi, . . . , xi+ki ]
T

is with ki dimensions, where i ∈ [1, . . . , p]. Thus, x = [s1, s2, . . . , sp]
T , and d is

equal to the sum of dimensions of each subvector, d = k1 + k2 + . . . + kp. In the
particular case of having the same number of dimensions in each subvector, then
d = k × p. Following, each subvector is quantised using a separated VQ codebook,
Q = vq(x) = [vq(s1), vq(s2), . . . , vq(sp)]

T = [v1,v2, . . . ,vp]
T , where vi ∈ Ci. Note

that, the codebook (Ci) pertaining to a particular subvector can be different from
that of other codebooks, not only in the clustering space but also in size.

In this implementation, a k-means algorithm is used for clustering. That is, each
observation belongs to the closest quantisation centroid that is found by using a
weighted Euclidean distance to determine the index:
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Figure 3.8: Diagram of the Split Vector Quantisation (SVQ) algorithm. [8]

dji = si − vji , i = 1, . . . , p; j = 1, . . . , Ni, (3.17)

idxi = arg min
1≤j≤(Ni)

(dji )
TWi(d

j
i ), (3.18)

where vji means the j-th codevector in the codebook Ci, d
j
i denotes the Euclidean

distance between subvector si and codevector vji , Ni is the size of the codebook, Wi

is the weight matrix, e.g., identity matrix, to be applied to the codebook Ci, and
the idxi denotes the codevector index chosen to represent the vector si.

The final set of quantised vectors, [idx1, idx2, . . . , idxP ]T , is used to represent
the corresponding speech chunk, and transmitted to the server back-end. On the
server back-end, the SVQ process is reversed by using the same codebook used in
the front-end for each subvector:

ŝi = vidxii , (3.19)

where ŝi denotes the estimate of si. Then, we unify all estimated subsets of features
into one set, x̂ = [ŝ1, ŝ2, . . . , ŝp]

T .
Finally, it is important to mention that there are various aspects that need to

be taken into consideration when using SVQ as they can impact the performance of
the various recognition tasks. Those will be exemplified in Section 4.2.2.

3.3.2 Feature Dereverberation

To tackle the reverberation problem of speech recognition, many techniques using
neural networks have been proposed. A prominent technique is to train DNNs [16]
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using a wide variety of reverberated data sources. The key objective is to derive the
original speech features to a high-level representation. Its potential capability for
noise robust ASR has been demonstrated in [200, 201]. Another approach that has
lately received increasing attention is to use neural networks for feature enhance-
ment, which aims to remove the reverberation characteristic information from the
distant-talk speech by means of learning a mapping (or transforming) rule from the
distant-talk feature space to its close-talk counterpart. The main advantage of this
approach is that it leaves the feature extraction and the back-end untouched, as
the mapping is performed after feature extraction and prior to decoding. Therefore,
the technique can be easily integrated with any existing ASR systems. This work
was firstly realised in [202], in which an MLP was employed via mapping multiple
channel array speech to clean speech. Then, it was extended using RNNs [203] for
the 2nd CHiME challenge [204], where reduction in word error rates was observed.

Recently, long short-term memory RNNs (LSTM-RNNs) [17], a more sophisti-
cated form of RNNs, have been successfully applied to a variety of pattern recog-
nition tasks, especially to sequential pattern tasks, e.g., handwriting recognition
[205], continuous speech recognition [206], and driver distraction detection [207].
Compared to ‘classic’ RNNs, LSTM-RNNs adopt memory blocks to replace the in-
dividual artificial neurons. Therefore, these networks can learn an optimised range of
contextual information, aiming to overcome the vanishing gradient problem of con-
ventional RNNs [116, 17]. The superiority of LSTM neural networks (especially the
bidirectional type of BLSTM) when compared to DNNs and conventional RNNs has
been empirically confirmed in several recent comparative studies [206, 208, 209]. The
effectiveness of LSTM networks in handling non-stationary noisy speech was first
demonstrated in [210], and this was later extended to enhance reverberated noisy
speech in [211]. Applying LSTM networks to enhance non-stationary noisy speech
was firstly introduced in [210]. It was further shown to enhance noise-reverberated
speech in [211].

3.3.2.1 Feature-Enhanced Speech Recognition System

The framework of BLSTM models for dereverberation in distant-talk ASR is il-
lustrated in Figure 3.9. The clean talk signal s(t) is corrupted by convolutional
noise r(t) and additive noise n(t) when transmitting through space channel. So, the
observed distant-talk signal ŝ(t) at the microphone can be written as:

ŝ(t) = s(t) ∗ r(t) + n(t). (3.20)

For the sake of simplification, I ignore additive noise in this thesis. Thus, Equation
(3.20) becomes

ŝ(t) = s(t) ∗ r(t). (3.21)

The total length of RIR can be denoted as T60 that represents the time taken
for the energy in the impulse response to decay by 60dB compared to the direct
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Figure 3.9: Framework of BLSTM models for dereverberation in distant-talk ASR.
[212]

sound. The RIR r(t) can be divided into two portions: the early reflection re(t)
that includes several strong reflections, and the late reverberation rl(t) that consists
of a series of numerous indistinguishable reverberation. That is,

r(t) = re(t) + rl(t), (3.22)

where

re(t) =

{
r(t) 0 ≤ t < T

0 otherwise,
rl(t) =

{
r(t+ T ) 0 ≤ T

0 otherwise,
(3.23)

and T is the length of the spectral analysis window (20 ∼ 30 ms)1. Thus, Equation
(3.21) can be changed into

ŝ(t) = s(t) ∗ re(t) + s(t− T ) ∗ rl(t). (3.24)

When the length of RIR T60 is much shorter than the analysis window size T ,
r(t) is equal to re(t), which only effects the speech signals within a frame (analysis
window). This linear distortion in the spectral domain can be effectively mitigated
by conventional techniques like CMN [87]. For most applications (e.g., occurring in
typical office and home environment), however, the reverberation time T60 ranges
from 200 to 1 000 ms [213] that is much longer than the analysis window size, result-
ing in an undesirable influence on the following speech frames. For example, if the
duration of a RIR is 1 s (T60) and a feature frame is extracted every 10 ms, one RIR
would smear across the following 100 frames. Therefore, this distorted speech, after
applying Short-Time Discrete Fourier Transform (STDFT), can be formulated by:

Ŝ(t, f) = S(t, f)Re(t, f) +
N−1∑
τ=1

S(t− τ, f)Rl(t− τ, f), (3.25)

where R(τ, f) denotes the part of R(f) (i.e., STDFT of RIR r(t)) corresponding
to frame delay τ , N is the number of influenced frames following one RIR. In this

1In some studies, T is denoted as the boundary between the early reflection and late reverber-
ation. Its typical value is 50 ms [213, 79].
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case, the channel distortion is no more of multiplicative nature in a linear spectral
domain – rather it is convolutional.

Assuming the phases of different frames are non-correlated for simplification, the
power spectrum of Equation (3.25) can be approximated as

|Ŝ(t, f)|2 ≈|S(t, f)|2|Re(t, f)|2

+
N−1∑
τ=1

|S(t− τ, f)|2|Rl(t− τ, f)|2.
(3.26)

To extract the standardised feature vectors in cepstral domain for ASR [18],
logarithms and DCT are executed over the above spectral signals. So,

D(ln|Ŝ(t, f)|2) ≈D(ln|S(t, f)|2) +D(ln|Re(t, f)|2)

+D(ln|M(t, f)|2),
(3.27)

where D denotes the discrete cosine transformation matrix, and

|M(t, f)|2 = 1 +

∑N−1
τ=1 |S(t− τ, f)|2|Rl(t− τ, f)|2

|S(t, f)|2|Re(t, f)|2

=
|Ŝ(t, f)|2

|S(t, f)|2|Re(t, f)|2
.

(3.28)

If the speech signal transmission channel is invariable within the sentence period,
the second term of D(ln|Re(t, f)|2) in Equation (3.27) can be treated as a constant,
and can be theoretically removed just by subtracting the cepstral mean over each
utterance [214]. Therefore, the objective of the strategy is to get rid of the third term,
D(ln|M(t, f)|2), which is the proportion of the power spectrum of the whole observed
distorted speech and the distorted speech only convoluted by early reverberation (cf.
Equation (3.28)). The specific way to realise such a strategy in this thesis is to apply
neural networks to map the feature vectors xτt that are extracted from the distant-
talk speech signals ŝ(t) to the target ones frame by frame. Finally, the enhanced
feature vectors x̂t will be fed into the ASR decoder.

3.3.2.2 Feature Enhancing by Neural Networks

From Equation (3.27) and Equation (3.28), one can observe that the term of M(t, f)
is not only relative to the early reflection, but also convoluted to the late reverber-
ation of previous speech signals. Such a highly nonlinear and nonstationary charac-
teristic makes dereverberation an extremely challenging task [12, 213, 19]. To this
end, using a nonlinear system to predict this term might be a potentially promising
approach. On the other hand, the close relationship of M(t, f) with the numerous
previous speech frames also implies the possibility of compensating for the late re-
verberation by leveraging the long-term acoustic context. That is, exploiting the
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sequence of reverberant feature vectors preceding the current ones might also be
beneficial for mitigating the late reverberation. The traditional way to capture such
contextual information is to use triphone HMMs, which is empirically proved not
sufficient for this task [204].

Motivated by these analyses, I explore an approach based on the usage of a
nonlinear and more efficient context-learning-ability neural network [17] – BLSTM-
RNN – to remove such convoluted late reverberation in the cepstral domain. More
specifically, two ways could be applied according to Equation (3.28). They are via
transforming the distorted feature vectors xdt from the distant speech signal ŝ(t)
into:

1) the corresponding absolute (clean) ones xct from close-talk speech signals s(t)
by minimising the following objective function of the Mean Squared Error (MSE):

J (θ) =
r∑
i=1

(xct − x̂ct)2, (3.29)

where x̂ct is the predicted close-talk feature, and r is the dimensionality of feature
vector. This direct channel mapping strategy has already been investigated in [210]
and [211].

2) the corresponding differential (delta) ones x∆
t that are obtained from later

reverberation of M(t, f) (cf. Equation (3.28)). Before training the neural networks,
the differential vectors are calculated by subtracting the feature vectors of distant
talk xdt from those of the corresponding close talk xct . When training the neural
networks, the parameters are optimised by minimising:

J (θ) =
r∑
i=1

(x∆
t − x̂∆

t )2, (3.30)

where x̂∆
t is the predicted differential feature. After that, these mapped differential

vectors are added to the original distant-talk feature vectors xdt frame by frame, so
as to compensate the distortion by reverberation. This indirect channel mapping
strategy will be well investigated in this thesis.

74



4

Applications in Intelligent Speech
Analysis

Speech is broadly considered to be the most natural communication form for humans.
When we are interacting with humans or mediating between humans, both spoken
content and non-verbal information, such as emotion and gender, play critical roles.

In this vein, this chapter focuses on designing and executing experiments re-
garding speech to verify the effectiveness of the presented approaches in Chapter
3. It starts with the one of the most representative paralinguistic tasks – emotion.
The challenge of data scarcity is extensively investigated by not only well-developed
machine learning algorithms, such as confidence-value-based SSL and AL, but also
by some novel methods like labelling agreement-based data selection. Among these
learning algorithms, co-training is further extended to be accessed for general par-
alinguistic tasks, for example, sleepiness, intoxication, gender, and age. Such a
process of data collection and model updating can benefit from a distributed recog-
nition structure, which is then preliminarily investigated via compressing feature
size. Subsequently, it moves to the linguistic task of ASR, in which the context-
sensitive LSTM neural networks are illustrated to enhance reverberant features.

4.1 Speech Emotion Recognition

ASR has already served as an integral part in many intelligent systems, such as
personal assistants (e.g., Siri, Google Now, and Cortana) in smartphones. How-
ever, the analysis of other patterns (e.g., speakers’ characteristics, personalities, and
states) are still needed to enable machines to permanently observe and react to its
conversational partner in a socially competent way.

Emotion, which is widely admitted as a fundamental component of being hu-
man, has received much attention over the past years [215, 216, 63, 2]. Taking the
automatic call centre for example, the systems can be changed into a manual service
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mode after detecting customers’ specific states, such as anger. Indeed, any interface
that ignores users emotional states or fails to manifest the appropriate emotions
can dramatically impede performance and risks being perceived as cold and socially
inept.

In this light, speech emotion recognition (SER) is selected as the representative
task for data enrichment and optimisation evaluation in this section. More specifi-
cally, Sections 4.1.1 - 4.1.4 examine the data pooling, data bagging, data sampling,
and data selection techniques, respectively, with the objective of profiting from ex-
isting databases for the same or similar targets. Yet, it is still difficult for these
databases to meet the application requirements. Thus, Sections 4.1.5 and 4.1.6 use
machines to complete the annotation work using the approaches of SSL and co-
training, respectively, so as to exploit the value of unlabelled data and further boost
the ‘limitedly’ trained models. Alternatively, Section 4.1.7 asks humans for annota-
tion, with as little work as possible via the use of certain queries. Finally, Section
4.1.8 distributes the annotation work among machines and humans.

4.1.1 Human Speech Data Fusion

This experiment is designed to aggregate several pre-existing separated databases
or classifiers into a large database (pooling) or a strong classifier (voting or bagging).
Here, six frequently-used databases were selected – DES, eNTERFACE (eNTER),
ABC, AVIC, SAL, and VAM. They range from acted over induced to spontaneous
affect portrayal. For better comparability of obtained performances among corpora,
the diverse emotion groups were additionally mapped onto the two most popular
axes in the dimensional emotion model as in [23, 25]: arousal (i.e., passive [‘-’]
vs. active [‘+’]) and valence (i.e., negative [‘-’] vs. positive [‘+’]). These mappings
were not straight forward, which favours better balance among target classes. The
introduction of each database as well as its category mapping strategy is presented
in Appendices A.1.2 and A.1.4.

For the acoustic feature set, brute-forced feature vectors of 6 552 dimensions
were employed (see [217] for more details) by applying 39 functionals over 56 acoustic
LLDs including first and second order delta regression coefficients. For the classifiers,
SVM, RF, and Näıve Bayes (NB) [218] were all considered due to their very good
generalisation properties in SER (cf. Section 2.4). Further, the kernel of SVM is
linear with a complexity constant of 0.05, and RF is with 10 trees and 200 attributes
per tree.

Compared to the bagging algorithm shown in Section 3.1.3, each randomly se-
lected subset is replaced by each database in this experiment. Thus, note that the
data bagging is here referred to as data voting.
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Figure 4.1: Distributions of UARs for cross-corpus binary arousal/valence classifi-
cation of six test databases: Single-database classifiers (crosses), average of single-
database classifiers (circles), and classifier fusion by voting (triangles) and pooling
(diamonds). The top row per test database depicts results obtained by SVM, the
middle one by RF, and the bottom one by NB. [217]

Data Fusion vs. Single Classifier

The results of fusion by pooling and voting against the results obtained by pair-
wise cross-corpus SER are compared, as has been investigated, e.g., in [23]: There,
classifiers are simply trained on a single database and tested on another. In par-
ticular, the average UAR is calculated for each test database obtained in pairwise
classification. These evaluation procedures represent fully realistic conditions where
the classifier cannot simply adapt to the peculiarities of a single database as in
‘traditional’ intra-corpus evaluation.

Results for each test database and different classifiers (top: SVM, middle: RF,
bottom: NB) are depicted in Figure 4.1 as one-dimensional scatter plots. Circles
depict the average performance of pairwise cross-corpus, and triangles indicate the
UAR obtained by voting and diamonds the one obtained by pooling. Exact values
are given in Table 4.1. On average, it can be seen that both, voting and pooling
are superior to the average UAR for pairwise classification. Thus, on average one
expects a gain by fusing databases instead of selecting a single one that performs
best.

Comparing the results by data fusion to the individual single-corpora results,
data fusion seems most promising for valence recognition, where it often outper-
forms the best single-corpus classifier. On the other hand, this trend is not as
strongly visible in arousal recognition. Still, from the application point of view, this
is very interesting: When designing an SER system, we normally do not know which
training database performs best. In that case, using multiple training databases and
fusing decisions can dispose of the need for extensive validation experiments with
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4.1. Speech Emotion Recognition

different training sets.

Pooling vs. Voting

As to comparison of fusion strategies with one another, it seems that pooling (63.4 %
UAR on average over all test databases) generally outperforms voting (54.4 %) for
the SVM classifier, even drastically for the arousal recognition on the DES database
(75.7 % vs. 56.2 % UAR). However, this can be observed neither for the RF nor for
the NB classifier. A possible explanation might be that the SVM training algorithm
automatically weights training instances by selecting them as support vectors; thus,
it seems more suited to training on large, heterogeneous data sets. On the other
hand, voting with random forests outperforms the voting from other classifiers signif-
icantly, both, for valence and arousal; this probably indicates that using confidence
scores indeed increases robustness of the voting strategy. Finally, on average over
classifiers, pooling is superior to both, single-database classification of arousal and
voting, delivering a relative improvement of UAR by 9.0 % over the former. For va-
lence recognition, pooling and voting perform almost equally, and voting is observed
slightly better.

Two-Stage Voting

As the above evaluation revealed very notable differences in the performance of
different classifiers, I investigated the performance of a two-stage voting process,
where a secondary majority vote among the three classifiers is performed. Again,
this majority vote is well-defined in any case. From Table 4.1, it can be seen that
for recognition of arousal, the two-stage vote is on average slightly inferior to the
voting by random forests (59.0 % vs 60.0 % UAR); for valence, the accuracy of two-
stage voting (58.1 %) is even equal to the best possible configuration of classifier and
fusion strategy (voting by random forests).

This result, in fact, suggests that when designing an emotion recogniser from
multiple databases using fusion by voting – in that case, it is not clear a priori
that classifier performs best – a majority vote among classifiers delivers almost
equal accuracy to the best classifier. Thus, it will be an interesting issue for future
research to evaluate the two-stage scheme for pooled training as well.

4.1.2 Synthesised Speech Data Fusion

Contrary to the method of fusing natural speech data, an alternative approach is
fusing artificially generated speech – synthesised speech. If such data are suitable for
training or adapting models for the recognition of human emotional speech, count-
less options open up: Not only could training data be generated in virtually infinite
quantities, but emotional speech could be produced for different target groups (e.g.,
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4. Applications in Intelligent Speech Analysis

by varying parameters of the synthesiser corresponding to different ages or genders),
for various and also under-resourced languages, and for fitting to the spoken content
at hand. The latter could help for the design of dialogue systems with specific vo-
cabularies, and could also be promising to address the challenge of text-independent
emotion recognition: Assuming reliable ASR, one could first recognise the phonetic
content, and then reproduce this content in various emotional facets for adaptation
of acoustic emotion models. The general feasibility of this idea has been repeatedly
demonstrated: For example, Microsoft’s Kinect sensor uses synthesised user models
to provide for different body shapes, postures, etc. Concerning the field of audio
processing, improved recognition of chords in music was enabled by the synthesis
of training material from symbolic music using various sound fonts (sets of instru-
ment samples) in [219]. Finally, the work in [220] achieved tentative results showing
that using synthesised speech for training benefits emotion recognition from human
speech in a pair-wise cross-database evaluation using the eNTERFACE and EMO-
DB corpora, i.e., training on one database and testing on the other. Therein, using
synthesised speech for training could often outperform training with human speech.

This section aims to consolidate these promising results by providing extensive
empirical evaluations on eight human emotional speech databases – ABC, AVIC,
DES, EMO-DB (EMOD), eNTER, SAL, SUSAS, and VAM, as well as two synthe-
sised emotional speech databases – TXT2PHO and OpenMary. Such two synthesised
databases were generated by two different phonemisation components, in combina-
tion with Emofilt and Mbrola. In regard to the introduction of the eight human
and the two synthesised speech databases, as well as the category mapping strategy,
please refer to Appendices A.1.2, A.1.3, and A.1.4. Moreover, the same acoustic
features (6 552 attributes) and classifier (SVM with a linear kernel and a complexity
constant of 0.05) as those in Section 4.1.1 were chosen.

In the following, the first baseline experiment employs pair-wise cross-corpus
training and testing on the eight databases of human emotional speech (HS), i.e., for
each test database, each of the remaining seven databases is used once as a training
set. This protocol results in 56 = 7×8 cross-corpus classifications for each dimension
(arousal and valence). Then, to assess the suitability of synthesised training data
for analysing human speech, the experiment is repeated by training with each of the
two sets of synthesised emotional speech (SS), and testing on each of the human
speech databases (16 = 2 × 8 evaluations per dimension). Finally, to investigate
the benefit of joint training with human and synthesised speech (HS+SS), all 16 =
2× 8 combinations of human and synthesised data sets are considered for training,
and evaluate on each of the seven human databases not found in the training data.
The last experiment results in 112 = 16× 7 combinations of training and test data
per dimension. To generally enhance performance in cross-corpus SER, the thesis
employed feature standardisation per corpus (cf. Section 3.1.3). This process helps
to reduce trivial cases of feature mismatch due to different microphone-to-mouth
distances, etc.
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4.1. Speech Emotion Recognition

Experimental Results

Table 4.2 shows the UARs obtained for the two-class arousal and valence classifi-
cation tasks when following the three above-mentioned evaluation protocols (HS,
SS, and HS+SS). In summary, the results of the baseline experiment (cross-corpus
training and testing on human speech, HS) corroborate the results of other cross-
corpus SER studies [23], indicating that although arousal classification is somewhat
stable, cross-corpus valence classification cannot be performed robustly using the
acoustic features used in this study. In fact, results are often found below chance
level UAR (50 %) for valence. Furthermore, in arousal classification, we find that
testing on highly prototypical emotions (e.g., EMO-DB [EMOD] or DES) generally
leads to higher performance than testing on spontaneous emotions (e.g., in the SAL
or SUSAS databases), which is expected. A notable exception from this general
pattern is the comparably high UAR (73.2 %) when testing on the VAM database;
this can be attributed to the fact that although the emotions in this database are
naturalistic, the talk-show recording scenario is much more likely to elicit strong
emotions than, for example, the human–computer interaction scenario in the SAL
database.

Comparing synthesised and human speech for training purposes, it is highly
interesting that in the SS scenario (training on synthesised speech only) the average
UAR of binary arousal classification across all test databases (64.8 %) is significantly
higher than in the HS scenario (training on human speech only, 62.6 %). In contrast,
for valence, the performance of synthesised training data (50.4 % average UAR)
is observed significantly below the one of human data (53.3 % UAR), and is near
chance level UAR (50 %). This phenomenon indicates a large mismatch between the
features of the synthesised speech that is supposed to express negative valence, and
the human utterances actually corresponding to negative valence (or being perceived
as such by the human labellers). Generally, this result corroborates the well-known
fact that variation of valence can only partly be modelled, and hence be generated,
by variation of acoustic features.

Third, when considering the performance of merging ‘HS’ and ‘SS’ data in train-
ing (65.2 % average UAR), we find a slight enhancement over training with only
synthesised speech (64.8 % UAR), and a significant gain of 3 % absolute across all
databases with respect to training with only human speech (62.6 % UAR). This
performance enhancement by agglomeration of HS and SS training data is to be
expected, since the performances of HS and SS on the individual databases suggest
that they may have complementary strengths when used for model training (see
Figure 4.2 and the discussion below).

Besides these promising improvements in a large scale perspective, without a
doubt there are several noteworthy singular results that should not be overlooked.
For example, we see that the synthesised speech prevails over human training data
when testing on the EMO-DB (77.3 % on average); this is probably a consequence
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Table 4.2: Mean and maximum UARs for varying training data in cross-corpus bi-
nary arousal/valence classification on eight test databases of human speech. Train-
ing with HS: eight databases of human speech, SS: two databases of synthesised
speech, HS+SS: all possible permutations of human speech and synthesised speech
databases. EMOD: EMO-DB, eNTER: eNTERFACE. [28]

Train on Test on

UAR [%] A
B
C

AV
IC

D
E
S

E
M

O
D

eN
T
E
R

SA
L

SU
SA

S

VA
M

mean

Arousal
Mean
HS 60.8 58.0 71.7 69.6 59.6 59.4 56.2 65.4 62.6
SS 65.7 66.8 69.9 77.3 55.9 57.2 59.7 66.2 64.8
HS+SS 64.0 61.7 74.1 76.8 59.0 59.7 58.5 67.6 65.2
Max
HS 66.1 64.2 80.3 71.0 64.0 64.7 60.6 73.2 69.3
SS 66.7 66.8 70.1 79.8 57.7 57.9 61.2 67.5 66.0
HS+SS 69.1 67.0 79.7 84.0 61.4 62.0 63.2 72.9 69.9

Valence
Mean
HS 56.5 56.4 53.6 54.0 52.8 52.2 49.1 51.4 53.3
SS 48.3 51.8 55.0 54.2 56.9 50.8 38.5 47.7 50.4
HS+SS 55.2 59.1 54.2 54.5 54.1 52.1 42.1 49.1 52.6
Max
HS 60.6 66.1 57.7 58.8 58.4 57.4 56.0 58.5 59.2
SS 48.4 53.9 58.3 55.8 58.1 51.5 38.5 50.0 51.8
HS+SS 59.4 66.3 58.7 59.3 56.9 55.4 45.0 57.3 57.3

of text dependency, because the sentences from the EMO-DB were used to syn-
thesise the emotional training speech. In the same vein, the overall best result on
the EMO-DB (84.0 %) is achieved by joining the DES database of acted emotions
with synthesised speech from Mary. This, however, should not suggest that synthe-
sised speech is only useful when the textual content matches: On the spontaneous,
free-text AVIC database, both variants of synthesised speech deliver 8.8 % absolute
higher UAR (66.8 %) than human speech on average (58.0 %), and are observed
above the best single human speech database, which is, interestingly, the acted DES
database (64.2 % UAR). Looking at the maximum UAR values in Table 4.2, we
find other surprising cases of databases that seem to ‘match’ particularly well. For
example, the best result in cross-corpus arousal classification on the DES database
is achieved by using the spontaneous VAM database for training (80.3 % UAR);
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Figure 4.2: Distributions of UARs for cross-corpus binary arousal/valence classifica-
tion of eight test databases: Single-database classifiers are depicted by crosses and
the average of single-database classifiers by a plus sign. For each test database, the
top row corresponds to training on human speech, the middle row to training with
synthesised speech, and the bottom row to merging of one human database with
one synthesised speech database. [28]

even more notably, the same holds vice versa (training on DES and testing on VAM
delivers the best single result of 73.2 % UAR on VAM). This apparent similarity of
DES and VAM is also reflected in the fact that both are ‘equally hard’ to classify
by synthesised speech as opposed to human speech (max. UAR of 70.1/80.3 % for
DES, max. UAR of 67.5/73.2 % for VAM). The latter also indicates that the evident
mismatch between the synthesised speech and DES is not simply caused by different
languages (Danish/German): VAM is in German as is the synthesised speech.

To give an overview of the performance and its variability of the various training
and testing permutations, I visualise the distributions of the UAR for the three kinds
of training scenarios in Figure 4.2 as one-dimensional scatter plots. For each human
testing database, the top row shows results obtained by human speech training sets,
the middle row corresponds to synthesised speech training sets, and the bottom row
refers to training sets obtained by merging one human database with one synthesised
speech database. The ‘plus’ symbols indicate the average performance per row.
From Figure 4.2, it is obvious that training with single databases of human speech
results in greatly varying performance. This effect is most visible for the acted test
databases (DES and EMO-DB), where the UAR of binary arousal classification with
training on human speech ranges from 60.6 % to 80.6 % (DES), and from 51.4 %
to 81.0 % (EMO-DB). The latter is somewhat expected since for databases with
limited variation of content, there is a larger chance that some training databases
will strongly ‘mismatch’ the testing data. One can see that especially for arousal
classification (Figure 4.2 (a)), this variability can be partly compensated by adding
synthesised data to the training set; this effect is clearly visible for all but the
AVIC and SUSAS databases. For valence classification (Figure 4.2 (b)), we cannot
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Table 4.3: Min(imum), max(imum) and mean UARs when training on one of 8
databases and testing on the 7 remaining databases. [221]

Train on Test on 7 remaining databases
UAR [%] Arousal Valence

min max mean min max mean

ABC 52.5 73.6 59.8 47.8 58.5 53.3
AVIC 55.0 66.6 59.5 43.7 56.6 51.7
DES 58.8 80.4 66.6 49.2 64.1 54.8
EMOD 54.9 72.9 62.5 45.6 60.5 51.3
eNTER 51.1 68.4 60.0 48.9 57.9 54.3
SAL 54.1 76.7 63.8 47.0 57.8 51.4
SUSAS 52.2 69.5 57.1 47.1 56.3 51.7
VAM 60.6 80.6 67.7 48.8 51.3 50.2

observe such decreases in variability, which can be attributed to the generally lower
classification performance that is often near chance level.

4.1.3 Distance-Based Data Selection

By implementing the methods evaluated in Section 4.1.1 and 4.1.2, a growing amount
of training data can be accumulated. At the same time, however, it has some
drawbacks, for example, the model complexity and training time are increased, as
stated in Section 3.1.5. To overcome these issues, this section tries to examine the
Euclidean distance-based data selection (EDDS) (cf. Section 3.1.5.1) in a cross-corpus
scenario.

Methods for pruning atypical instances from training have been thoroughly ex-
plored in pattern recognition [222] and particularly SER [223]; still, such experiments
are limited to training and testing on the same data set. On the other hand, first
studies on feature selection in cross-corpus SER suggest that training optimisations
do not always generalise across different data sets [224]. Here, the goal is to find
objective measures for databases and instances that are correlated with the expected
accuracy in cross-corpus SER. Particularly, it deals with the question whether se-
lecting the most ‘prototypical’ instances and databases for model building enables
generalisation across corpora.

For the experiments, the same eight human emotional speech databases (i.e.,
ABC, AVIC, DES, EMOD, eNTER, SAL, SUSAS, and VAM), as well as the same
feature set (6 552 attributes) and the classifier (i.e., SVM, c=0.05) as those in Section
4.1.2 were selected. Note that, the signs of ‘+’ and ‘-’ in the following indicate the
positive and negative classes, respectively.
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Figure 4.3: Training database selection: Mean UAR in cross-corpus testing – i.e.,
training on one database and testing on the remaining seven – and its relation to the
Euclidean distance of class centres of ‘+’ and ‘-’ instances (after z-normalisation),
for arousal (a) and valence (b). [221]

Database Selection

For each of the eight databases, the performance in a cross-corpus evaluation on
the seven other databases was firstly evaluated. Results are shown in Table 4.3.
For arousal, interestingly, training with the VAM database of spontaneous, natural
speech yields highest average UAR (67.7 %), minimum UAR (60.6 % on SUSAS),
and maximum UAR (80.6 % on DES). The second best training corpus is the DES
database of acted emotions (66.6 % mean UAR). In contrast to arousal, recognition
of valence seems to be very challenging, resulting in no more than 54.8 % average
UAR, which is achieved by training with DES. In fact, it is well known that valence
recognition from purely acoustic features is challenging, and even more so in cross-
corpus testing.

In the following, I investigated the relation between the ‘prototypicality’ of a
database and the expected UAR in cross-corpus SER when using that database for
training. As a measure of prototypicality, I calculated the Euclidean distance d of
the class centre of ‘positive’ instances, x+ = E{x+}, and the one of ‘negative’ in-
stances, x− = E{x−}. Figure 4.3 (a) shows the results for recognition of positive and
negative arousal. Generally, training with databases that exhibit large distances be-
tween positive and negative classes delivers higher UA; notably, this prototypicality
in the feature space does not exactly correspond to the notion of acted vs. sponta-
neous emotion: Consider the similar prototypicality measure of the VAM and DES
databases. Furthermore, training on the highly prototypical EMOD only delivers
mediocre results (62.5 %), seemingly due to insufficient generalisation. Overall, the
Spearman (rank) correlation between d(x+,x−) and the mean UAR is ρ = .571,
which is however not of statistical significance due to the small sample size (8).
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Figure 4.4: Training instance selection: Relation between mean UAR in cross-corpus
testing – i.e., training on one database and testing on the remaining seven – and
the amount of training data chosen in order of prototypicality, measured as the
Euclidean distance from the class centre of the opposite class. [221]

Analogously, results for valence recognition are shown in Figure 4.3 (b). As
opposed to the arousal case, for valence there is no clear trend as to whether one
can expect a gain by using more prototypical databases as training data (Spearman’s
ρ = −.060). Still, the lower recognition rates compared to arousal are reflected in
generally smaller distance between the class centres.

Instance Selection

The second experiment evaluated the effect of restricting the training to prototypical
instances, for each database. To this end, I computed for each positive instance x+

the distance to the class centre of the negative instances, d(x+,x−). Then, I com-
puted the quartiles of the distribution of d(x+,x−) and selected only the instances
corresponding to the fourth quartile (in other words, the 25 % most prototypical
positive instances). An analogous procedure was followed for selection of negative
instances, which were selected according to the distance d(x−,x+) from the positive
class centre. For each database, the selected positive and negative instances were
joined, and the resulting model was evaluated on the seven other databases. We
repeated the experiment using the 50 % (quartiles 3 and 4) and 75 % (quartiles 2–4)
most prototypical instances, respectively.

Results are shown in Figure 4.4. For arousal recognition (Figure 4.4(a)), one
gains almost 2 % absolute UAR on average across the eight databases when using
only the 50 % most prototypical instances for training—this result suggests that the
‘manual’ process of instance selection is complementary with the instance weighting
performed in SVM optimisation. The improvement is most visible for training with
the ABC database, where an absolute gain of 7.5 % UAR is achieved. However, a
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drop in performance occurs when further restricting the amount of training data.
Furthermore, cross-corpus valence recognition (Figure 4.4(a)) cannot generally

(i.e., on average) be improved by selecting training instances using the proposed
method, despite slight UAR gains for the eNTERFACE, EMO-DB, ABC and VAM
databases.

4.1.4 Agreement- and Sparseness-Based Data Selection

This section examines another data selection method, named Agreement- and
Sparseness-Based Instance Selection (ASIS) (cf. Section 3.1.5.2), by which 1) the
instances with lowest labelling agreement are pruned; and 2) an equal number of
instances from each class are selected.

One of the motivations of this method is the subjectivity of paralinguistic phe-
nomena. Unlike traditional pattern recognition tasks where a true ‘ground truth’
is available, those tasks only have ‘gold standard’ labels, which are often assigned
by (sometimes weighted) majority voting over multiple human ratings (cf. Section
2.2.1.2). In fact, instance labelling for such tasks highly depends on the labellers’
personal judgements. Instances with high labelling uncertainty could potentially
cause the model to over-fit these ‘noisy’ instances, which results in increased com-
plexity [225]. This case thus would deteriorate the generalisation performance.

Another motivation for using this method is relevant to the unbalanced dis-
tribution of classes, which is most pronounced in natural and spontaneous speech
databases, where ‘neutral’ speech is much more frequent than clear-cut cases of emo-
tional or other target speech. This phenomenon results in some models favouring
the majority classes and showing bad performance on the sparse (minority) classes.
However, these sparse classes are indeed usually of most interest in practical appli-
cations.

To proceed with the experiments, I selected the well-standardised machine learn-
ing task and corresponding database from the INTERSPEECH 2009 Emotion Chal-
lenge (EC) [63]. The introduction of the database – FAU Aibo Emotion Corpus
(AEC) – can be found in Appendix A.1.1. Particularly, based on the definition of
human agreement level in Section 3.1.1, Figure 4.5 displays the instance distribution
of training set with human agreement levels. In addition, the same classifier of SVM
and the acoustic features (384 attributes) were kept in line with the EC [63].

Experimental Results

The following experiments were executed for SER using different variations of the
instance selection algorithm: 1) only agreement-based instance selection (‘AIS’)
based on discarding low-agreement instances (cf. Step ‘AIS’ in Algorithm 1); 2)
only sparseness-based instance selection (‘SIS’) by selecting sparse instances (cf.
Step ‘SIS’ in Algorithm 1); 3) combining both steps (ASIS) (random selection with
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Figure 4.6: Agreement-based Instance Selection (AIS): UAR on the AEC test set
after discarding low agreement training instances (no balancing). [183]

balancing of instances across classes). For comparison, I denote the control methods
of Random Instance Selection (RIS) as randomly selecting a predefined number of
instances from the whole set.

Figure 4.6 provides an overview of performances after discarding a certain ra-
tio of instances with low human agreement (AIS). Note that the human agreement
levels by discarding {5, 10, 20, 30, 40, 50, 60}% of the instances for the class IDL
are {0.4, 0.52, 0.60, 0.60, 0.60, 0.72, 0.90}, respectively; and for the class NEG,
they are {-0.28, -0.2, -0.2, -0.2, -0.08, 0.06, 0.2}, respectively. No instance balanc-
ing is performed here. The performance of the classifier improves continuously and
significantly (one-sided z-test) until 55 % of the training set instances with human
agreement are discarded (from 60.7 % to 64.2 % UAR). Figure 4.7 compares the
performance of two instance sub-sampling strategies (with (SIS) and without bal-
ancing), both without any prior discarding of low agreement instances. As expected,
UAR is increased by about 8 % absolute when balancing is performed, showing the
importance of a balanced distribution for SVM (and further) classifiers. Figure 4.8
shows results obtained when randomly sub-sampling the training set and balancing
after discarding low agreement instances (ASIS). At a certain ratio of discarded in-
stances, increasing the number of selected instances enhances the system robustness.
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Figure 4.8: Agreement- and Sparseness-based Instance Selection (ASIS): Mean UAR
on the AEC test set in 40 independent runs of balanced sub-sampling after discarding
PD instances with lowest labelling agreement from the training set of the AEC. [183]

As more instances are added, however, the increase of UAR converges. At a certain
amount of sub-sampling, discarding up to 50 % of low agreement instances improves
UAR. Note that this improvement is more obvious for a small subset size, as in this
case when the disturbing influence of the low agreement instances has a larger rela-
tive impact on the model. The best result of 67.8 % of UAR is achieved by discarding
50 % of lowest agreement instances and selecting only 30 % of instances (relative to
the whole set) for model building. This result is equivalent to the baseline (67.7 %
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of UAR) in [63], in which the whole training set with SMOTE is considered (for
balancing). Note that in the experiments, the amount of sub-sampling is limited by
the size of the minority class ‘NEG’.

4.1.5 Semi-Supervised Learning

To evaluate the effectiveness of Semi-Supervised Learning (SSL) for SER, I selected
six databases, i.e., ABC, AVIC, DES, eNTER, SAL, and VAM. These corpora cover
a broad variety of data from acted (DES) over simulated (ABC, eNTERFACE) to
spontaneous emotional speech (AVIC, VAM), and from strictly limited textual con-
text (DES) over more variation (eNTERFACE) to full variance (AVC, AVIC, SAL,
VAM). Three languages (English, German, and Danish) belonging to the same fam-
ily of Germanic languages are contained. Moreover, the speaker characteristics, the
recording conditions, as well as the annotators vary greatly among these databases.
An overview of these six corpora and their category mapping strategy are shown in
Appendices A.1.2 and A.1.4, respectively.

Moreover, the acoustic feature set (6 552 attributes) and classifier (i.e., SVM,
c=0.05) were kept in line with the experiments in Section 4.1.2 [226]. In the exper-
iments, a Leave-One-Corpus-Out (LOCO) strategy was used, i.e., one corpus was
used as test set and the remaining five were used for (supervised or unsupervised)
training. Training data were always agglomerated on the instance level by simply
joining databases for training (‘pooling’), as this strategy has shown superior classi-
fication performance in comparison with late decision fusion for cross-corpus LOCO
evaluation with SVM in Section 4.1.1.

Normalisation

In automatic speech and speaker recognition, methods such as cepstral mean sub-
traction or joint factor analysis are widely used to mitigate the diversities among
speakers and acoustic environments. In the case of cross-corpus SER, differences
do not only exist within corpora among different speakers (intra-corpus) but also in
between corpora (inter-corpus) due to various recording settings and languages (cf.
Table A.2); consequently, the impact of normalisation techniques on cross-corpus
recognition rates has been demonstrated [23]. In this section, I investigate three
kinds of normalisation methods: centring, normalisation and standardisation (cf.
Section 3.1.3). These three methods can be applied to each corpus separately
(i.e., before data agglomeration) or after building a joint training set from mul-
tiple databases. In Table 4.4, I compare the mean UAR across databases in LOCO
evaluation with the three above named normalisation methods. Since the databases
vary greatly in size (cf. Table A.2), I present both, the unweighted mean and the
mean UAR weighted by number of instances in the database.
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Table 4.4: Normalisation in leave-one-corpus-out cross-corpus binary
arousal/valence classification: Test on 6 databases and training on 5 remaining
databases. UAR for centring (C), min-max normalisation (M) and z-normalisation
(Z) on corpus before and after data agglomeration (agg.), and both. W-Mean:
mean weighted by number of instances as opposed to Mean: mean over the results
of the corpora without weighting by the number of instances within the corpora.
[226]

UAR [%] Before agg. After agg. Both
Test on C M Z C M Z C Z

Arousal
ABC 63.1 64.5 66.6 64.3 60.2 61.0 63.4 65.5
AVIC 55.9 55.1 62.0 55.9 59.0 62.7 55.8 61.4
DES 76.1 79.1 78.3 74.9 66.3 74.4 77.9 80.1
eNTER 62.7 60.0 61.6 61.7 57.8 61.6 63.3 60.8
SAL 60.0 55.4 61.6 64.4 51.2 64.7 62.9 63.3
VAM 64.6 58.2 69.2 65.8 58.3 67.4 67.4 69.7
W-Mean 60.5 58.2 63.9 62.9 57.5 64.1 61.6 64.0
Mean 63.7 62.1 66.6 65.2 58.8 65.3 65.1 66.8

Valence
ABC 63.6 62.2 62.3 63.3 58.0 59.7 63.6 62.3
AVIC 61.8 51.7 57.8 61.8 50.1 60.0 61.8 57.9
DES 57.0 56.3 59.7 57.0 61.1 57.9 56.8 59.7
eNTER 57.4 56.0 58.2 56.5 55.2 57.4 57.4 58.2
SAL 54.3 50.0 53.4 54.3 51.1 55.5 54.3 53.4
VAM 54.4 51.5 52.0 56.4 53.0 54.0 54.5 52.0
W-Mean 58.4 52.8 56.6 58.5 52.5 57.7 58.4 56.6
Mean 58.1 54.6 57.2 58.2 54.8 57.4 58.1 57.3

When applying normalisation per corpus before data agglomeration, it can be
seen that z-normalisation delivers a vast improvement for arousal recognition both
over min-max normalisation and centring: The (unweighted) mean UAR is 66.6 %
for z-normalisation compared to 62.1 % (min-max normalisation) and 63.7 % (cen-
tring). For valence, interestingly, simple centring delivers best results (58.1 %), and
min-max normalisation severely deteriorates the results (54.6 %). The largest im-
provement in accuracy of arousal classification by standardisation instead of centring
or min-max normalisation is found for the AVIC and VAM databases of spontaneous
speech. These results are mirrored to a great extent in the results for normalisation
after data agglomeration, and in general the per-corpus normalisation cannot be
outperformed. I also investigated a combination of normalisation both before and
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Table 4.5: Mean and the maximum UAR of supervised and unsupervised training
for cross-corpus binary arousal/valence classification. Pool 3: agglomeration of three
corpora; Pool 5: agglomeration of five corpora; Pool 3 + 2: agglomeration of three
labelled corpora and two unlabelled corpora for unsupervised learning; W-Mean:
mean weighted by number of instances. [226]

UAR [%] Pool 3 Pool 3 + 2 Pool 5
Test on Mean Max. Mean Max. Value

Arousal
ABC 62.9 66.3 62.7 66.5 66.6
AVIC 61.5 65.9 62.3 67.0 62.0
DES 76.4 84.3 77.0 86.1 78.3
eNTER 60.2 63.0 60.7 63.9 61.6
SAL 60.6 63.4 61.1 63.9 61.6
VAM 66.8 69.5 66.9 69.6 69.2
W-Mean 62.6 66.3 63.2 67.1 63.9
Mean 64.7 68.7 65.1 69.5 66.6

Valence
ABC 62.2 65.0 62.3 64.7 63.6
AVIC 56.6 60.9 60.5 64.6 61.8
DES 52.6 57.0 54.4 56.6 57.0
eNTER 55.8 58.3 55.7 58.4 57.4
SAL 53.5 56.0 53.1 55.2 54.3
VAM 54.2 56.3 54.5 58.6 54.4
W-Mean 55.6 58.9 57.1 60.4 58.4
Mean 55.8 58.9 56.6 59.7 58.1

after agglomeration; the mean UAR in arousal recognition in that case is 65.1 % for
centring and 66.8 %. In all further experiments, I used z-normalisation on the cor-
pus level for arousal and centring for valence recognition. Note that the per corpus
normalisation strategy is very convenient in practice as it does not require retraining
when adding further databases to the training set.

Unsupervised vs. Supervised Learning

To determine the potential of unsupervised learning for SER, I considered three
different experimental settings: First, I agglomerated (‘pooled’) together three cor-
pora for training and tested on one database (corresponding to ‘Pool 3’ in Table
4.5). This results in ten possible training set permutations for each of the six test
sets. Second, I agglomerated three corpora for training and two corpora for unsu-
pervised adaptation, and tested on the remaining corpus (i.e., I used three corpora
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Figure 4.9: Distributions of UARs for cross-corpus binary arousal/valence classifica-
tion of six test databases. Crosses refer to the individual training set combinations,
and the plus sign refers to the average performance. The top row per test database
depicts results obtained by pooling three training corpora, the row in the middle
refers to pooling three corpora and fusing two corpora for unsupervised adaptation,
and the bottom row represents pooling five training corpora. Note that in the last
case no permutations are possible, as six corpora are used and five are pooled for
training, whereas in the other cases several permutations exist. [226]

to build models that are used to generate predictions for the two further corpora
that in turn are used for unsupervised learning). This series of experiments is de-
noted by ‘Pool 3 + 2’ in Table 4.5. Note that due to the varying size of the corpora,
this covers both settings where little labelled data are available as a ‘seed’, and an
‘unsupervised adaptation’ scenario where the amount of unlabelled data are rather
small compared to the available labelled data. Finally, as a reference for supervised
learning, I considered agglomerating together five databases for training, again test-
ing on the remaining corpus. Table 4.5 shows the UAR obtained for the two-class
arousal and valence classification task when evaluating the three training scenar-
ios. Using a set of three databases for training leads to an average UAR of 64.7 %
and 55.8 % for arousal and valence, respectively. Unsupervised adaptation with two
additional corpora increases average recognition performance to 65.1 % and 56.6 %,
respectively. The most impressive gain is seen for the AVIC database of spontaneous
speech: Here, unsupervised training even slightly outperforms supervised training
for arousal recognition, and gives a boost in accuracy of almost 4 % absolute for
valence (compared to 5 % for supervised training). Still, as expected, the best aver-
age result is obtained when using the labels of all five corpora for training (UAR of
66.6 % and 58.1 %, respectively).

Figure 4.9 depicts the distributions of UAR for the six test databases. The plus
sign indicates the UAR averaged over all test sets. The top row per test database
depicts results obtained by agglomerating three training corpora, the middle row
refers to agglomerating 3 corpora and fusing two further corpora for unsupervised

93



4. Applications in Intelligent Speech Analysis

learning, and the bottom row shows the results for agglomerating all five training
corpora with known ground truth. From Figure 4.9, it can be seen that unsupervised
learning outperforms the baseline setting (i.e., using only three corpora without fur-
ther data agglomeration) in 5 of 6 cases for arousal, but only 3 of 6 cases for valence,
which can probably be attributed to generally insufficient robustness of cross-corpus
valence recognition from acoustic features. Overall, in terms of (weighted) mean
UAR in arousal and valence recognition, addition of unlabelled training data deliv-
ers roughly half of the gain that can be expected from adding labelled training data,
as in previous studies in speech recognition [227].

4.1.6 Co-Training

The results obtained in Section 4.1.5 demonstrate the efficiency of SSL. Another
SSL method with the potential to exploit unlabelled data is co-training [174]. As
described in Section 3.2.2.2, co-training focuses on building two learners by max-
imising the mutual agreement on two distinct ‘views’ of the unlabelled data set.
In previous work, co-training was applied in several areas, such as documents clas-
sification [174] and handwriting [228] classification. In this section, I attempt to
investigate the performance of co-training for SER. To do this, the conventional
SSL is referred to as self-training (cf. Section 3.2.2.2), which is considered to be the
baseline.

Experiments

For the experiments, two databases were selected – the AEC and SUSAS. Both
databases consist of natural speech samples and are widely used in the field of
SER [63, 229, 23]. The description of the two databases can be found in Sections
A.1.1 and A.1.2. Similarly to the AEC database, four stress classes of SUSAS
are divided into two stress-intensity cover classes – HIGH (i.e., high stress and
screaming) and LOW (i.e., neutral and medium stress). In order to perform a
speaker independent evaluation, the validation set contains 1 064 instances recorded
from one male speaker and one female speaker, and the unlabelled pool set includes
the remaining instances (2 529). Table 4.6 gives the distribution of speakers and
instances per partition for both databases.

In addition, to verify the robustness of co-training, two standard sets of acoustic
features were selected – the INTERSPEECH 2009 (IS09) EC [63] and the INTER-
SPEECH 2010 (IS10) Affect Sub-Challenge (ASC) [64]. The former contains 384
features that result from a systematic combination of 16 LLDs and corresponding
first order delta coefficients with 12 functionals. The latter is an extension of the
former, designed to cover a wider range of features relevant for paralinguistic infor-
mation retrieval [64]. All features were extracted using the openSMILE framework
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Table 4.6: Distributions of speakers and instances per partition of the FAU Aibo
Emotion Corpus (AEC) [53] and the Speech Under Simulated and Actual Stress
(SUSAS) [230]. NEG: negative emotions; IDL: neutral and positive emotions; HIGH:
high stress; LOW: low stress.

# speakers # instances

AEC male female NEG IDL Σ
Pool 13 13 3 358 6 601 9 959
Validation 8 17 2 465 5 792 8 257
Σ 21 30 5 823 12 393 18 216

SUSAS M F HIGH LOW Σ
Pool 3 2 1 116 1 413 2 529
Validation 1 1 500 564 1 064
Σ 4 3 1 616 1 977 3 593

[62]. Table 4.7 shows the LLDs and functionals for both feature sets. For more
details, please see [63, 64]

As described in Section 2.4.1, SVMs were used as the modelling paradigm. In
accordance with the IS09 EC baseline specifications, the SVMs were initially trained
with SMO algorithm with a linear kernel and a complexity constant of 0.05. Logistic
regression modelling was enabled to allow converting the SVMs’ output distances
to confidence values (cf. Section 3.2.1). In addition, an upsampling strategy was
adopted for evening class distribution (cf. Section 3.1.4). The training process was
repeated 20 times with different initialisations of the random generator for each
experimental condition.

Four different experiments were conducted to evaluate the performance and ro-
bustness of co-training. The first two experiments were designed to evaluate the
performance of the various learning methods with different numbers of initial train-
ing instances using the AEC corpus and the IS09 EC feature set. In this section,
200 and 500 instances of the AEC database were used for initial training, which cor-
responds to approximately 2 % and 5 %, respectively, of the whole pool. In the third
experiment, the various learning strategies were evaluated with the AEC corpus and
a new feature set (IS10 ASC) so as to establish the robustness of co-training for dif-
ferent feature sets (using 200 initial training instances). In the final experiment, an
additional corpus (SUSAS) was used with the IS10 ASC feature set to evaluate the
robustness of co-training across tasks (with 100 initial training instances, approxi-
mately 5 % of the whole pool). For the four experiments, the UARs obtained after
the initial supervised training were: 1) 60.9 % (std = 1.8); 2) 62.6 % (std = 1.1); 3)
64.4 % (std = 1.3); and 4) 58.6 % (std = 2.5). The performance when training the
SVMs with the full set of training data was: 1) 67.7 %; 2) 67.7 %; 3) 67.2 %; and 4)
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Table 4.7: The IS09 EC and the IS10 ASC Acoustic feature sets used in these
experiments: LLDs and respective functionals. The ∗ symbol indicates the features
belonging to view-1 for the co-training. [231]

LLD (∆) Functionals

IS09 EC feature set (384)
ZCR mean
RMS Energy standard deviation energy
F0 kurtosis, skewness
HNR extremes: value, rel. position, range
MFCC 1-12∗ linear regression: offset, slope, MSE

IS10 ASC feature set (1 582)
PCM loudness position maximum/minimum
MFCC 0-14∗ algorithmic mean, standard deviation
log Mel freq. band 0-7 skewness, kurtosis
line spectral pairs freq. 0-7 linear regression coefficients 1/2
F0 linear regression error quadratic/absolute
F0 envelope quartile 1/2/3
voicing probability quartile range 2-1/3-2/3-1
jitter local percentile 1/99
jitter consec. frame pairs percentile range 99-1
shimmer local up-level 75/90

64.6 % UARs.

In all experiments, the instances that are not used for the initial training were
used for the unlabelled data pool. For AEC, 500 instances are selected per itera-
tion for self-training and co-training. Thus, each ‘view’ of co-training selects 250
instances due to the equal number of selected instances per ‘view’. For SUSAS,
given the smaller size of the database (approximately 25 % of the AEC), only 125
instances are selected in each learning iteration for self-training and co-training.

For the creation of each ‘view’ used for co-training, the full feature set is split
into two partitions - one comprising MFCCs (view-1) and the other the remaining
LLDs (view-2). This partitioning is well motivated by size of the feature sets and
different characteristics. In fact, more ‘traditional’ paralinguistic feature sets use
prosodic and further non-cepstral information, whereas MFCCs on their own are a
common set in speaker identification and speech recognition that increasingly found
its way into general paralinguistics. Nevertheless, although such feature separation
is only related to LLDs and not to higher level features of functionals or linguistics,
the feature sets in the two views may not be conditionally independent, as, for
example, a change in the signal which affects F0 or energy, etc., will also affect the
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Figure 4.10: Comparison between co-training using the feature separation method
based on cepstral LLDs, co-training using a random feature separation method, and
self-training. The charts show the average UARs across 20 independent runs (and
respective standard deviations) vs. number of machine labelled instances for the four
experiments described in this section: a) AEC database with the IS09 EC feature
set and 200 initial supervised training instances; b) AEC database with the IS09 EC
feature set and 500 initial supervised training instances; c) AEC database with the
IS10 ASC feature and 200 initial supervised training instances; and d) the SUSAS
database with the IS10 ASC feature set and 100 initial training instances. [231]
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MFCCs. However, the effect will be different, thus likely adding complementary
information. Furthermore, the experimental results in [232] demonstrate that such
feature separation criterion applied to multi-view learning is valid and effective.
The ratio of attributes (view-1/view-2) is 288/96 for the IS09 EC feature set and is
630/952 for the IS10 ASC feature set.

Results

Figure 4.10 shows the average and standard deviation of the UAR measure for the
self-training and co-training approaches under study. The error measures shown
correspond to the average of the individual performances across 20 independent
runs of the learning process for all four experiments described in this thesis.

The first observation is that co-training using the feature separation based on
cepstral LLDs improves the initial classification performance in all above mentioned
four experimental scenarios. Co-training using random feature separation does not
lead to improvements using the IS10 feature set and AEC database (see subfigure
4.10 (c)). Self-training leads to improvements in the experiments using the IS09 fea-
ture set, but not in those with the IS10 one (see subfigures 4.10 (c) and (d)). Overall,
co-training with cepstral LLDs feature separation seems to be more robust than the
other two approaches when using different number of initial supervised training in-
stances, different databases and different feature sets. Furthermore, it outperforms
the other approaches after only a few iterations, which suggests that this algorithm
leads to faster learning process and better generalisation performance. Finally, it is
also noticeable that the performance of co-training degrades after a certain number
of learning iterations. Previous work (e.g., [174, 233]) has demonstrated that this
phenomenon can be attributable to the exchange of mislabelled instances between
the different ‘views’.

4.1.7 Active Learning and Co-Active Learning

SSL techniques could deliver good results without any intervention of human anno-
tators for SER (cf. Section 4.1.5 and 4.1.6). Yet, they have several disadvantages,
for example, prediction bias and noise accumulation (cf. Section 3.2.4).

This section attempts to evaluate the human oracles by means of Active Learning
(AL) and co-Active Learning (coAL), both of which are based on CV. In the ‘hay
stack’ of speech data, AL is a way to automatically identify the ‘needles’, i.e., the
most informative instances (cf. Section 3.2.3.1). Motivated by the ‘multi-view’ idea
of co-training, a novel AL – coAL (cf. Section 3.2.3.2) – is also accessed in this
section.
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Experiments and Results

For the experiments, all setups were kept in line with the ones in Section 4.1.6 for
the sake of comparison except the instance number selected per learning iteration.
Here, for AL and coAL, only 200 instances were selected for labelling. As a result,
each view of coAL selected 100 instances per learning iteration.

The performance of the PL, AL with least (lc) and medium (mc) certainty query
strategies, and coAL algorithms (cf. Section 3.2.3.1) are shown in Figure 4.11, which
depicts the performance figures averaged across 20 independent runs of the whole
training process (and respective standard deviations) for the four experimental sce-
narios (the results of CL, also shown, will be described later).

As can be seen, the sequential addition of human-labelled instances to the train-
ing set (200 for AEC and 50 for SUSAS per iteration) lead to improvements of
classifier performance for all four supervised learning approaches. Nonetheless, con-
trary to our expectations, the coAL approach does not show an improvement over
the AL algorithms. The best global performance is delivered by the AL with medium
certainty query strategy, especially in relation to the AEC database. The exception
to this rule, as can be seen on Figure 4.11 (d), is the performance of the SUSAS
database, which is particularly worse than the other algorithms for fewer human-
labelled instances. In this task, the AL with the least certainty query strategy
performs better. Regarding the amount of labelled data used, the AL approaches
with either least or medium certainty strategies achieve a similar performance to
that of the baselines when the models are trained with the full set of training data.
Nevertheless, it uses 55 %, 50 %, 70 %, and 65 % fewer human-labelled instances in
each of the four experimental scenarios. Therefore, AL methods efficiently reduce
the amount of required human-labelled data.

4.1.8 Cooperative Learning

Both SSL and AL have their own advantages and disadvantages: AL algorithms gen-
erally improve a model’s performance, but they still require a considerable amount
of costly human intervention. SSL techniques, instead, exploit machine labelling of
data, yet usually cannot improve the performance of an existing classifier as much
as AL techniques when the same number of instances are labelled [172]. In order to
take advantage of the best of both approaches, a cooperative learning (CL) method
is proposed. It combines AL and SSL, which allows sharing the labelling effort be-
tween human and machine oracles while being able to ease the drawbacks of each
method.

In this section, three types of schemes – single-view CL (svCL), mixed-view CL
(xvCL), and multi-view CL (mvCL) – are examined for SER.
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Table 4.8: Mean and standard deviations of UAR performance measure obtained
by averaging the results between iterations 4 and 12 (800 ∼ 2 400 instances for
AEC, and 200 ∼ 600 instances for SUSAS). Values are shown for Passive Learning
(PL), Active Learning (AL), co-Active Learning (coAL), and single-/mixed-/multi-
view Cooperative Learning (svCL/xvCL/mvCL) for the four experimental scenarios.
[231]

Avg. (a) (b) (c) (d)
UAR AEC AEC AEC SUSAS
[%] IS09, l:200 IS09, l:500 IS10, l:200 IS10, l:100

PL 65.7±0.8 66.8±0.6 65.6±0.7 62.4±2.0

AL 66.1±0.6 67.0±0.5 66.0±0.8 63.2±1.7

coAL 65.9±0.6 66.4±0.9 65.7±0.7 62.3±1.8

svCL 66.4±0.7 66.9±0.6 66.1±0.8 63.9±1.5

xvCL 66.7±0.5 67.2±0.4 66.7±0.8 63.9±1.7

mvCL 66.7±0.5 67.2±0.5 66.6±0.8 63.1±1.9

Experiments and Results

All the experimental setups in Section 4.1.6 and 4.1.7 were maintained in this section
for the sake of comparison. In particular, given that more unlabelled data are
necessary for machine-supervised learning than for human-supervised learning, at
each learning iteration, 200 instances were selected for labelling for AL and coAL
algorithms, and 500 instances for self-training and co-training on the database of
AEC. For SUSAS, because of the smaller size of this database, fewer instances are
selected in each learning iteration: 50 (AL and coAL) and 125 (self-training and
co-training).

In these approaches, only a maximum of 2 400 and 600 human-labelled instances
could be considered for the AEC and the SUSAS databases, respectively. This de-
cision is due to the fact that both AL and SSL algorithms independently select
instances from the unlabelled data pool for human and machine (respectively) la-
belling at each learning iteration. Therefore, the comparisons with the previous
models in Section 4.1.6 and 4.1.7 are only made for a maximum of 12 iterations of
the learning algorithm (when the maximum number of human-labelled instances is
achieved). Given the inconclusive results obtained from Section 4.1.7 regarding to
the query strategy, the AL algorithms used in the CL approaches make use of the
medium certainty query strategy for the experiments with the AEC database and
least certainty query strategy for those with the SUSAS database. The results are
shown in Figure 4.11.

As depicted in Figure 4.11, the three CL methods perform globally better than
all other algorithms for different numbers of initial training instances, databases
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Figure 4.11: Comparison between the supervised (PL, least certainty AL, medium
certainty AL, and coAL) and cooperative (AL+self-training, AL+co-training, and
coAL+co-training) learning. The performance measures shown are mean and stan-
dard deviations of UAR averaged across 20 independent runs of each algorithm vs.
the number of manually labelled instances for the AEC with IS09 EC feature set by
200 (a) or 500 (b) initial supervised training instances, as well as with the IS10 ASC
feature set by 200 (c) initial supervised training instances, and the SUSAS with the
IS10 ASC feature set by 100 (d) initial training instances. [231]
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Table 4.9: Significance levels obtained from the statistical comparison (Student’s
t-test) of the UAR performance measures between iterations 4 and 12 ( 800 ∼
2 400 instances for AEC, and 200 ∼ 600 instances for SUSAS). Values are shown
for Passive Learning (PL), Active Learning (AL), co-Active Learning (coAL), and
single-/mixed-/multi-view Cooperative Learning (svCL/xvCL/mvCL) for the four
experimental conditions. [231]
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(a) AEC, IS09, l : 200 (b) AEC, IS09, l : 500
PL
AL
coAL aa aa
svCL aa
xvCL
mvCL aa aa

(c) AEC, IS10, l : 200 (d) SUSAS, IS10, l : 100
PL
AL
coAL aa aa aa aa
svCL aa aa
xvCL aa
mvCL aa aa aa aa

aa p > .05 p < .05 p < .01 p < .001

and feature sets. The improvement is evident in all experiments just after a few
iterations of the learning algorithms, the only exception being the experiment with
the AEC and the IS10 feature set where the improvement is clearer at the end of the
learning process. Moreover, the standard deviation of UAR exhibits a descending
trend, which indicates that increasingly adding more human-labelled instances to the
training set makes the system more stable. In relation to the global performance
improvement and human effort minimisation, the best UARs obtained with CL
algorithms in the four experimental scenarios (67.2 %, 67.2 %, 67.6 %, 64.9 %) are
very close to the baseline performance of the models trained on the whole pool of
labelled data (67.7 %, 67.7 %, 67.2 %, 64.6 %). Nevertheless, CL uses about 75 %
fewer labelled instances in all scenarios and is, therefore, less expensive.

In order to analyse in more detail the performance of the various algorithms,
Table 4.8 presents the average UAR across iterations 4 and 12, and Table 4.9 com-
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putes Student’s t-tests statistically to compare the performances of the various algo-
rithms. The analysis of both tables confirms our previous observations and clearly
indicates that all three CL approaches (single-, mixed-, and multi-view) generally
lead to significantly better performance than all other approaches. This observation
is particularly evident for xvCL (AL and co-training), the algorithm that led to the
best performance in all four experiments by consistently and robustly outperform-
ing the other methods. This conclusion is consistent with the best performance of
co-training over self-training as demonstrated in Section 4.1.6.

4.1.9 Summary

SER, one of the most important computational paralinguistic tasks, was chosen to
verify the effectiveness of a variety of data enrichment and optimisation algorithms.
The main objective of these algorithms is to exploit the value of available data
(either labelled or unlabelled), so as to maximise the performance of pre-existing
modellings with less human effort.

Sections 4.1.1 and 4.1.2 introduced the data learning by aggregating human
speech data or synthesised speech data in a cross-corpus evaluation scenario. The
results in Section 4.1.1 show that the systems based on pooled data considerably
surpass the performance of the ones based on single training corpora. Concerning
the majority voting of individually trained learners, as opposed to the data pooling
in a single classifier, the results largely depend on the classifier architecture (e.g.,
SVMs or RFs). The results in Section 4.1.2 illustrate that combining human and
synthesised speech increases the expected performance while decreasing the per-
formance variability caused by training with ‘matching’ or ‘mismatching’ human
speech databases. Furthermore, in many cases, training on synthesised speech alone
has been shown to be at least competitive with training on disjoint human speech
databases. However, these trends are not observed for cross-corpus valence clas-
sification. This fact shows the difficulty not only of building generalising models
for acoustic valence classification, but also the difficulty of synthesising speech that
matches the human perception of positive/negative valence.

In contrast to Sections 4.1.1 and 4.1.2, in which the algorithms agglomerated
data as much as possible, Sections 4.1.3 and 4.1.4 attempted to pick the most useful
data via certain algorithms. Section 4.1.3 evaluated a distance-based data selection
over eight emotional databases. Its effectiveness is shown by computing the proto-
typical data in cross-corpus arousal recognition, even though such a conclusion is
not observed in cross-corpus valence recognition. Section 4.1.4 verified another data
selection method, namely agreement- and sparseness-based instance selection. An
obvious improvement of performance is observed by balancing the instance distri-
bution among classes through random sub-sampling. Furthermore, in conjunction
with data balancing, discarding the instances with low agreement levels bring further
improvement.
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The data collected by the above methods are labelled by experts, which are time-
and money-consuming. Alternative data that could be collected for SER occurs to
the ubiquitously available label-missed data, which can be easily acquired. Three
possible ways can be used for annotation: by machine oracle, by human oracle, or
by a combination thereof.

Section 4.1.5 investigated the SSL (self-training) in extensive studies of six dif-
ferent emotional databases in a various permutation of databases. It is interesting
to see that, adding unlabelled data significantly exceeds not adding at the common
.05 level (one-sided z-test) for valence on average. An enhanced SSL technique,
namely co-training, divides the whole feature sets into two conditionally indepen-
dent parts (‘view’), which then learn each other. Extensive experiments on two
emotional databases (i.e., AEC and SUSAS) in four experimental scenarios suggest
that the proposed co-training with an LLD feature separation is more robust than
the other two approaches: self-training and co-training with random feature sepa-
ration. However, it is also observed that the performance of co-training degrades
after a certain number of learning iterations. This phenomenon is possibly due to
the exchange of mislabelled instances between different ‘views’.

Because of the drawbacks of SSL such as noise accumulation and prediction
tendency, a human oracle could provide relatively reliable and trustworthy annota-
tions. In comparison with the passive learning, the confidence-value-based AL with
the medium or least certainty query strategies generally perform significantly bet-
ter (Section 4.1.7). When achieving a similar performance to that of the baselines
(trained with the full set of training data), the models only use approximately half
of the data, which resulted in a high human-work reduction. However, it still needs
medium-level workload from a human.

For leveraging the merits and restraining the drawbacks of both SSL and AL,
CL was estimated in Section 4.1.8. The underlying idea is to efficiently share the
labelling work between humans and machines efficiently in such a way that instances
predicted with insufficient CVs are subject to human labelling, and those with high
CVs are subject to machine labelling. In particular, three approaches were consid-
ered: 1) single-view CL – combination of AL and self-training; 2) mixed-view CL –
combination of AL and co-training; and 3) multi-view CL – combination of coAL and
co-training. Furthermore, I evaluated the use of a medium certainty query strategy
for instances selection in AL. Various test runs were conducted on two well-defined
SER tasks (i.e., AEC and SUSAS) with a variable number of initial supervised train-
ing instances. The results show that all three suggested CL algorithms are superior
to all other approaches when using the same number of human-labelled instances
for retraining. The results also show that not only is the accuracy of the classifier
improved, but its stability is enhanced. Furthermore, by varying the amount of
instances used in the initial supervised training phase, using different feature sets,
and testing different classification tasks, it demonstrates that the CL is a robust
method. In particular, the best performance and robustness were obtained with the
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mixed-view CL algorithm. In relation to the type of query strategy used for instance
selection in AL, the results indicate that medium certainty may be a feasible way
to improve the classification performance of pre-trained models. Its robustness with
different initial training set sizes and features sets using the AEC is observed. Nev-
ertheless, the lowest certainty query strategy leads to better results with the SUSAS
database and, thus, the results are not conclusive in this respect.

As data scarcity is considered to be the frontier challenge for computational
paralinguistics, all these conclusions displayed above are significantly important for
computational paralinguistics, or rather SER, in real-life applications. As a matter of
fact, all these approaches can not only work independently but also jointly. However,
there are still numerous points that could be improved or extended. A lesson learnt
from Section 4.1.2 tells us that using multi- or cross-lingual speech synthesis methods
could benefit cross-lingual emotion recognition, and developing synthesis methods
to simulate different target groups of computer users, from children to elderly, or
even pathologic voices. If a meaningful synthesis of such voices can be established,
it would be a major step forward in the generalisation of SER to target groups that
are nowadays overlooked by the lion’s share of research in the (certainly justified)
quest for stable results in ‘controlled’ evaluation scenarios involving healthy adult
speech.

In addition, with the conclusions from Section 4.1.5 to 4.1.8, one can further im-
prove the modelling robustness by considerably large databases that are not coming
from predefined speech databases per se, but stemming from the richly available re-
sources, such as Youtube online audio, and recordings of everyday-life conversations,
among others.

Further promising directions can also be found in novel learning algorithms.
On the one hand, for the subjective tasks, ground truth annotation differs severely
among human raters. The most labelling uncertainty instances indeed deteriorate
the modelling performance. On the other hand, the sparsest class often does not
have enough information to yield robust model parameters. The conclusions in
Section 4.1.4 imply that this information regarding annotation agreement, as well
as class-sparseness, can in turn be used as queries for advanced learning. Tentative
experiments in [234, 235] have demonstrated their value.

4.2 General Paralinguistic Tasks

Rather than emotion, this section proceeds extensive experiments on more general
paralinguistic tasks, such as sleepiness and gender. Here, co-training is re-analysed
because it demonstrated a remarkable performance without any manual annotations
in Section 4.1.6. To support the data collection and continuous model updating,
Section 3.3.2 proposed a distributed structure that increase the potential of com-
putational paralinguistics to escape from the current ‘lab-based’ state to ‘realistic’
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applications. One of the key issues – feature compression – is analysed elaborately
here.

4.2.1 Co-Training

For the experiments, three common representative tasks to span the time continuum
were selected, which were officially studied in INTERSPEECH Challenges from
2009-2011: short-term-related emotion [63], mid-term-related sleepiness [65], and
long-term-related gender [64] of speakers. The corresponding official databases are
the AEC, the Sleepy Language Corpus (SLC), and the Agender database. The main
tasks of the three corpora cover different time-relations of paralinguistic groups from
the short-term state of emotion, over the medium-term phenomena of sleepiness, to
the long-term trait of gender. Speaker-independent partitioning of instances is shown
in Table A.6(a). For more details of these databases, please refer to Appendices A.1.1
and A.2.

In order to keep in line with the INTERSPEECH Challenge 2009–2011 condi-
tions, I employ the same feature sets per task in these experiments as those in the
respective original Challenge. Thus, for SER, 384 features by brute-forcing based on
31 LLDs and 42 functionals are implemented; for sleepiness detection, 4 368 features
comprising 59 LLDs and 39 functionals are used, and for gender classification, 450
features composed by 38 LLDs and 21 functionals. For more details of the LLDs
and functionals, please refer to [63, 65, 64].

Concerning the two assumptions of co-training (i.e., compatibility and indepen-
dence) as stated in Section 3.2.2.2, I firstly split the whole LLDs into three partitions:
energy-related, spectral, and cepstral. Taking the (largest) feature set for sleepiness
recognition as an example, Table 4.10 depicts this feature splitting. In comparison
to the LLD groups shown in [65], the feature separation described in Table 4.10 dif-
fers – the one chosen here proved more suitable for the assumption of independence.
For the other two tasks of emotion and gender recognition, the feature separation
rule is the same. After divided into three partitions, the features are rather unbal-
anced across partitions. To solve this problem and satisfy the first assumption of
sufficiency for each view, I rearrange the three groups into two views. That is, the
two groups including fewer features are agglomerated as one view. In Table 4.10,
the symbols of †, ∗, ] mark the feature group of which view-1 comprises for emo-
tion, sleepiness, and gender recognition, respectively (remember that, the feature
sets differ from task to task). Thus, the remaining two feature groups form view-2.
Eventually, attribution ratios of view-1/view-2 are obtained as 288/96, 2 294/2 074,
and 240/210 for the three tasks, respectively.

In addition, the classifier of SVMs with linear kernel and its parameters (complex-
ity constant optimised on development data of 0.05, 0.02, 0.1 for emotion, sleepiness,
and gender recognition) were also kept in line with the INTERSPEECH Challenge
2009–2011.
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Table 4.10: Feature separation based on LLDs. The symbols †, ∗, ] indicate the
feature group on which view-1 of co-training bases for emotion, sleepiness, and
gender recognition, respectively. [232]

Group Features in Group

Energy- Sum of energy in auditory bands (loudness)
related∗ Sum of RASTA-style filtered auditory spectral band energies

RMS Energy
RASTA-style filtered auditory spectral bands 1–26 (0–8 kHz)
Spectral energy 25–650 Hz, 1 k–4 kHz

Spectral Zero-Crossing Rate
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90
Spectral Flux, Entropy, Variance, Skewness, Kurtosis, Slope
F0, Probability of voicing
Jitter (local, delta), Shimmer (local)

Cepstral†,] MFCC 1–12

Table 4.11: Experimental set-ups for AEC, SLC, and Agender. R: round number of
whole processing; n0: number of initial human-labelled training instances; N1+N2:
number of instances selected by view-1 and view-2 per iteration; I: iteration times
per round.

# R n0 N1+N2 I

AEC 5 500 100+100 25
SLC 5 500 100+100 20
Agender 5 4 000 100+100 20

I randomly select 500 instances as initial human-labelled training set from AEC
and SLC, and 4 000 instances from Agender due to its larger size, which resembles
approximately 3 %, 6 %, 8 % of each database. At each new iteration, 100 instances
are selected by each view of co-training. Thus, for the baseline experiment of single-
view self-training, 200 instances are chosen per iteration to provide a fair comparison.
Finally, 25, 20, and 20 times of SSL iterations for AEC, SLC, and Agender are
executed per learning round. Furthermore, to reduce the influence of ‘lucky’ or
‘unlucky’ selection for the initial training set, I repeat five times with different
random generator initialisations (‘seeds’), leading to five learning rounds executed.
In addition, to deal with class imbalance, instance upsampling is used per iteration
for emotion and sleepiness recognition. Details of the three experimental set-ups are
given in Table 4.11.
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Figure 4.12: UAR vs. number of iterations. Comparison between single-view semi-
supervised learning and co-training in five independent rounds for three paralinguis-
tic corpora – AEC, SLC, and Agender.

Experimental Results

The chance level of UAR is 50.0 % for the binary emotion and sleepiness classifica-
tion, and 33.3 % for the three-class gender classification.

Figure 4.12 displays a comparison of average performance and standard devia-
tions between co-training (dark grey histograms with solid error lines) and single-
view self-training (light grey histograms with dotted error lines) in five independent
rounds for the three experiments based on the AEC, SLC, and Agender databases.

For the SER based on AEC, as seen in Figure 4.12 (a), the best mean UAR
obtained by co-training with two-view learning based on feature partition in five
independent rounds is 64.8 % UAR at the 12th iteration (24K instances combined
by co-training). This value boosts the initial mean UAR of 62.0 % without any
SSL iteration at the .001 significance level in a one-side z-test, and even greatly
higher than the best mean UAR of 63.4 % achieved by single-view self-training at
the 15th iteration at the .05 significance level (see Table 4.12). This improvement
means that, the two-view SSL of co-training incorporates more additional informa-
tion than single-view self-training. Further, one can also notice that the performance
degrades quicker than in single-view self-training after the highest UAR gain. This
phenomenon can probably be attributed to falsely labelled data by both views when
the instances with increasingly lower confidence score are selected as iteration goes
on, leading to doubling or accelerating error numbers added per iteration.

Figure 4.12 (b) depicts the UAR for recognition of sleepiness based on SLC. The
gain obtained by co-training is also notable with a boost in mean UAR of almost
4.1 %, and 2.2 % absolute in comparison to the initial results (UAR of 65.1 %) and the
best mean UAR achieved by single-view self-training (UAR of 67.0 %), respectively.
Both improvements are significant at the .001 and .05 level (one-side z-test, see
Table 4.12).
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Table 4.12: Classification evaluation comparison of co-training and single-view self-
training in five independent rounds for three corpora of AEC, SLC, Agender. Initial:
initial supervised learning result; delta: absolute improvement of co-training over
single-view self-training. [232]

Mean of
UAR[%] initial self-training co-training delta

AEC 62.0 63.4 •◦ 64.8 •• 1.4 •◦
SLC 65.1 67.0 ◦◦ 69.2 •• 2.2 •◦
Agender 73.7 75.7 •• 75.8 •• 0.1 ◦◦

Significance levels [236]: ◦◦not significant •◦ 0.05 •• 0.001

Table 4.13: Features used for five paralinguistic tasks.

# Features Emotion Intoxication Pathology Age/Gender

LLDs 16 59 64 29
Functionals 12 39 61 8
Total 384 4 368 6 125 450

Finally, Figure 4.12 (c) shows the performance for recognition of gender based
on the Agender database. It can be seen that, both co-training and single-view self-
training significantly increase the initial UAR from 73.7 % to 75.8 %, and 75.7 %, at
the significance level of .001 in a one-side z-test (see Table 4.12).

Overall, in terms of UAR for emotion, sleepiness, and gender recognition, the
gain achieved by co-training based on feature multi-view is highly significant in
comparison with the initial results of supervised learning for all three tasks. This
conclusion holds even when compared to the baseline SSL approach. Details of
performance improvement are given in Table 4.12.

4.2.2 Feature Compression

As discussed in Section 3.3.1, SVQ is selected for feature compression for dis-
tributed computational paralinguistics systems. To access the feasibility of this
method, I proceeded the experiments recurring to five well-defined paralinguistic
tasks (i.e., emotion, intoxication, pathology, age and gender) in correspondence with
four databases (i.e., AEC, ALC, NCSC, and Agender) that are well-defined in the
INTERSPEECH Challenges 2009–2012. For the details of these databases, please
refer to Appendix A.2.

For the experiments, both acoustic feature sets and classifiers (i.e., SVMs) are
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kept in line with the INTERSPEECH 2009–2012 EC [63], Paralinguistic Challenge
(PC) [64], Speaker State Challenge (SSC) [65], and Speaker Trait Challenge (STC)
[66]. I also followed the classifier setups of the five Sub-Challenges: the complexity
constants optimised on the development or cross-validation of the training data with
values 0.05, 0.01, 0.001, 0.05, and 0.05 for emotion, intoxication, pathology, age, and
gender, respectively. Furthermore, as in the challenge, to alleviate the influence of
instance imbalance, I implemented instance upsampling before any learning process
that produces a random subsample of the data set belonging to sparse category
with-/out replacement.

In the experiments on ALC and NCSC tasks, the training and development sets
are combined for training, and the test sets are used for testing. In relation to the
Agender task, the development set is used for testing given that there is no test set.
The UAR baseline for the binary classification on the emotion, intoxication, and
pathology classification tasks are 67.6 %, 66.0 %, 69.0 %, respectively. The baseline
for the three-class gender classification is 76.0 %, and the baseline for the four-class
age classification is 45.7 %. It should be pointed out that the baselines obtained in
this section are different from those reported in the 2009–2012 INTERSPEECH due
to the use of a different Weka version.

For the sake of simplicity, in each paralinguistic task I split the whole feature
vector (d dimensions) into multiple subvectors with the same dimensionality k (note
that the last subvector dimensionality may be smaller than k and equal to d mod k).
I also adopted the same codebook size N (N = 2L, where L is codevector length)
for all subvectors. In this case, the transmission bandwidth Bw for such compressed
features is

Bw = (dd
k
e · L)/T, (4.1)

where T is the average length of chunks. Hence, its corresponding feature compres-
sion rate R for a transmission bandwidth requirement Bw/o (no feature compression)
is calculated by the equation

R =
Bw/o

Bw

=
(32 · d)/T

(d d
k
e · L)/T

∼= 32 · k
L
, (4.2)

assuming a single-precision floating point for the transmission of uncompressed data
(32 bits). Obviously, the feature compression rate R is in direct proportion to the
subvector dimension k and in inverse proportion to the codevector length L.

Influence of Attributes Independence

As discussed in Section 3.3.1, the central issue of SVQ is splitting the whole feature
set into multiple subvectors in an effective way. The most important factor is ar-
guably the cross correlation of attributes in the feature domain. A simple method
to deal with this issue is to adopt a splitting strategy based on the types of LLDs,
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Table 4.14: Performance comparison for five paralinguistic tasks using two types
of vector splitting strategies: LLD-based (D) and random (R). BL: baseline; k:
dimension of subvector; N : codebook size for each subvector.

UAR
BL k =

N = 128 N = 256 N = 512
[%] D R D R D R

Emotion 67.6 12 66.1 65.3 66.7 65.8 67.4 66.8
Intoxication 66.0 37 61.4 59.7 63.2 60.4 61.9 60.7
Pathology 69.0 35 69.0 66.6 68.3 66.8 69.1 66.2
Age 45.7 8 44.5 43.6 44.6 43.8 44.9 44.0
Gender 76.0 8 75.0 73.9 75.3 74.1 75.2 74.2

that is, the statistical features belonging to the same LLD are grouped into one sub-
vector. In order to test this method, I compared the performance of this strategy
with the performance achieved using a random clustering of the features on the five
paralinguistic tasks. The dimensionality of all subvectors was set to the same value
in each task – k = 12, 37, 35, 8, 8 for emotion, intoxication, pathology, age, and gen-
der recognition, respectively. Given that the number of functionals over each LLD
within each task may be different, I defined the dimensionality of the subvectors for
each task as the maximum number of functionals over all LLDs. Table 4.14 shows
the results obtained for the various tasks.

As it can be seen in Table 4.14, the performance achieved through LLD-based
vector splitting strategy is always better than the strategy that used a random
splitting strategy. This improvement is evident for all codebook sizes and across all
tasks, and lies in the range of 1 ∼ 3 % (absolute UAR). Results also show that the
improvement delivered by the LLD-based splitting strategy over the random one is
more noticeable for the tasks with larger features spaces, i.e., Intoxication (absolute
average improvement of 1.9 %) and Pathology (absolute average improvement of
2.3 %). The absolute average improvement on the Emotion, Age and Gender tasks
is less pronounced: 0.8 %, 0.8 % and 1.1 %, respectively.

Distributed Paralinguistic Tasks Classification

In the context of distributed speech recognition, the feature set typically comprises
14 features, and adjacent features are grouped into pairs [18]. This feature grouping
method is quite different from the one for distributed paralinguistic tasks recogni-
tion, since the feature spaces are much larger (cf. Table 4.14). Therefore, grouping
features into pairs would lead to a very large number of subvectors and low compres-
sion rates, which is not ideal given the bandwidth limitations. In order to investigate
the influence of the dimensionality of the subvectors as well as the codebook sizes
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Figure 4.13: Performance for distributed short-term (emotion, AEC) and medium-
term (intoxication, ALC; pathology, NCSC) paralinguistic tasks. k: subvector size.
[8]

and their impact on the recognition performance, I considered several permutations
of these two parameters for each task. Given the results presented in the previ-
ous section, I adopted an LLD-based splitting strategy, and so, each subvector is
quantised using the same codevector length and their own codebook.

Figure 4.13 to 4.14 depict the classifier performance for the short-term, medium-
term and long-term recognition tasks for various codevector lengths (the length of
each codevector is L = log2N , where N is the codebook size) and subvector sizes
(k; increasing values of k indicate higher compressions rates). The horizontal lines
in each figure indicate the baseline performance for each task. As expected, for
increasing codevector lengths (i.e., smaller quantisation error) and lower subvector
dimensionalities (i.e., lower compression rates) the recognition performance is im-
proved for all tasks, except some cases of the ‘Pathology’ task (k = 5 and k = 175;
discussed below). Taking the ‘Emotion’ task as a representative example (see Figure
4.13(a)), we can observe that for k = 24 the UAR varies between (approximately)
62.6 % (L = 3) to 67.0 % (L = 12), a value very close to the baseline (67.6 %).
If we increase the subvector dimensionality (e.g., k = 48), the performance varies
between 61.0 % (L = 3) to (approximately) 65.3 % (L = 12), which is further away
from the baseline. Naturally, with a higher value of k a smaller bandwidth is re-
quired. In the example given, for a codevector of length 12, the bandwidth would
be (384/24) ∗ 12/1.7 ≈ 113b/s (k = 24) and (384/48) ∗ 12/1.7 ≈ 57b/s (k = 48).
Compared to the no compression case the bandwidth reduction would be of 98.4 %
and 99.2 %, respectively.

As mentioned above, the Pathology task does not follow the same pattern and
shows a more complex relationship between the code vector length and subvector
dimensionality. As it can be seen in Figure 4.13(c) for different values ok k the
performance either decreases (k = 5 and k = 175) or increases (k = 35 and k = 875)
for increasing code vector lengths. In my view, this phenomenon might be caused by
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and age + gender classification on Agender. k: dimension of subvector. [8]

data scarcity. As it can be observed in Table A.6(a), there are only 2 386 instances in
total for this task, which is potentially an insufficient number of instances to train a
robust SVQ model and/or recogniser. This conclusion seems to be corroborated by
the results of the ‘Agender’ task, where we have 53 074 instances, and the stability
and reliability of the system is much higher (and also the fact that age and gender
recognition tasks have a more solid ground truth). Despite this unexpected result,
and as it will be shown in the next section, the relationship between recognition
performance, feature compression rate, and bandwidth follows a pattern that is
similar to that of other tasks (see Figures 4.15 and 4.16).

It is also noticeable that in this task compressing the feature set to a certain
degree increased the performance of the model over the baseline – in the case of
k = 5/L = 6 the UAR is 69.4 %, and in the case of k = 35/L = 9 the UAR is 69.1 %.
This phenomenon may indicate that, to a certain degree (both values are actually
not significantly higher than the baseline) the compression process attributed more
weight to relevant features and reduced the impact of less relevant information.

Performance, Feature Compression Rate, and Bandwidth

Figure 4.15 provides a combined overview of the relationship between performance
and feature compression rate for the five distributed paralinguistic classification
presented in this section. The distributed gender recognition seems to be the most
sensitive to the feature compression rate as it can be inferred from the slope of the
trend line (dash-dot). It can also be observed that, for most tasks (i.e., four of
five tasks, except the case of “age”), the performance degradation is not significant
(one-side z-test, p > .05) when the feature compression rate is less than 40, but it
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Figure 4.16: Relationship between recognition performance (UAR) and bandwidth
requirements for the various tasks with manifold permutations of codevector length
and subvector dimensionality. [8]

is increasingly pronounced for values over 40, and especially over 160. This is an
interesting result given that in a multi-task scenario where the best permutation of
the subvector dimension and codebook sizes for a given task may be unknown and
varied, guaranteeing a compression rate below 40 warrants a good performance for
all tasks.
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Given that a crucial aspect of a distributed recognition system is a trade-off
between recognition accuracy and bandwidth limitations, Figure 4.16 shows the
relationship between recognition performance and required transmission bandwidth
for all five tasks (the transmission bandwidth is calculated by the Equation (4.1)).
This figure can be used to obtain an estimation of the recognition task accuracy for
a particular transmission bandwidth, and vice versa. As expected, the performance
decreases for lower transmission bandwidth rates, and is particularly degraded for
rates below 100 bit/s. For instance, considering the ‘Gender’ classification task, if
a transmission bandwidth of 10 bit/s is available the recognition accuracy would
be of about 65.0 %. If a better performance is required, for instance 75.0 %, then a
transmission bandwidth of more than 100 bit/s would be necessary.

4.2.3 Summary

The suitability of co-training was evaluated by investigating three representative
cases of personal affect, speaker state, and speaker trait recognition. The results
indicate that adding unlabelled data with co-training can significantly enhance
the performance of initial supervised learning – here by 2.8 %, 4.1 %, and 2.1 %
UAR absolutely for emotion, sleepiness, and gender classification, respectively –,
and even impressively improve upon the performance of commonly used single-view
self-training for the former two cases with a mean UAR of 1.4 % and 2.2 % abso-
lutely (one-side z-test, p < .05), respectively. This renders co-training beneficial in
real-world applications of computational paralinguistics, in which labelled data are
scanty, but unlabelled data is sufficient.

Moreover, to support the process of data collection and continuous modelling up-
dating, Section 4.2.2 further investigated a general distributed architecture, which
holds manifold advantages compared to embedded or network-based structures. Be-
cause of the security, transmission bandwidth, and storage capacity requirements,
the statistic feature set was chosen for transmission. However, these features could
be further optimised by means of feature compression when considering a large num-
ber of users/devices. To this end, this section also focused on the evaluation of SVQ
due to its efficiency, security, and the fact that it is the official compression method
recommended by ETSI for distributed speech recognition. Various experiments were
conducted to investigate the feasibility of the system on large-scale paralinguistic
tasks, including short-term states, medium-term phenomena, and long-term traits.

The results report that there is a strong influence of feature attributes on the
performance of the compression algorithm. Compared to a random clustering strat-
egy, grouping the feature attributes under same LLDs reduces the information loss
when implementing compression of the feature set using SVQ. It has also shown that
subvector and codebook size have a critical impact on the system’s performance –
the classification performance degrades for almost all tasks when either large subvec-
tor or small codebook size (or both) is used. Overall, the results demonstrated that
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when the feature compression rate is less than 40, the classification performance is
similar to that with no compression.

These results are very informative and encouraging for future exploitation of the
system proposed in this thesis. Nonetheless, this work is only a first step towards
the creation of large-scale distributed paralinguistic information analysis systems
for applications in real-life contexts, and several issues still need to be addressed.
A central issue is the optimisation of various modules. In this section, I focused
on demonstrating the feasibility of the whole system, but there is plenty of room
for improvements in the various modules. For instance, I used a common feature
compression technique (SVQ), but given the demonstrated importance of the com-
pression stage it would be very beneficial to explore other state-of-the-art feature
compression techniques such as PCA [72], LDA [73], HQ [191], and sparse presenta-
tion [237]. Additionally, even though I used preselected features sets for each task, it
is worth exploring the use of feature selection as it could improve compression rates
and reduce the required bandwidth while maintaining or improving the recognition
tasks performance. Furthermore, given that the dimensionality of statistical features
vectors used in this thesis is always the same per turn, the transmission bandwidth
will vary as a function of turn duration, which may lead to bandwidth bursts for
consecutive short turns. A possible way of overcoming such a problem is to consider
different methods for dealing with long and short turns so as to avoid its negative
impact on the client-server communication. Another possible solution would be to
evaluate the contribution of the features used for each classification task, and to
vary the dimensionality and codebook size for the attributes with different levels of
importance (in this thesis, all features were equally important to the classification
tasks).

In addition to the optimisation issues, there are various important challenges par-
ticular to paralinguistic recognition systems that should be addressed in the future.
A central one is to deal with multiple paralinguistic tasks simultaneously, which
could be handled by the ways of task selection or multi-task learning. In relation to
the first way, if the tasks are not selected manually on the client side, methods such
as CASA could be used to analyse the characteristics of the acoustic environment
and to infer the paralinguistic task(s) of interest. Concerning the second way, and
given that it has been continuously demonstrated that paralinguistic tasks benefit
from contextual knowledge (for example, gender, social background, and other in-
formation can improve SER tasks [238, 239]), it would be relevant to exploit the use
of mutual information in multi-task learning scenarios to improve the performance
for a particular task. Furthermore, given the overlaps between the feature sets used
for different tasks, it is plausible to pursue a common set of features that can be
applied to all tasks. In this case the distributed framework can be simplified since
modules related to task selection are not necessary anymore. To this end, DNNs or
sparse coding could be used to extract high-level feature representations that may
be shared by the various paralinguistic tasks.
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Another aspect that should be at the very centre of future developments is the
enhancement of the system robustness, being relevant to, in particular, device dis-
parity, environmental noise and reverberation, voice variation across users, security
protection, and the impact of packet loss during data transmission. This point is
crucial for the implementation and use of the system proposed in this thesis.

Despite the many issues still to be addressed in this area, this section has shown
very promising results and demonstrated that we are not far from the creation of
robust distributed multi-task paralinguistic recognition systems that can be applied
to a myriad of everyday life scenarios, such as remote medical treatments, remote
conferences or negotiation, remote education, or even advanced driver assistance
systems. Also, and very importantly, as previously mentioned, this type of systems
may also be crucial to the future of computational paralinguistics by providing the
essential speech signals for the development of robust ISA systems.

4.3 Speech Recognition

4.3.1 BLSTM Model for Dereverberation

The ultimate user experience for human–machine interaction is the ability to commu-
nicate hands-free from a distance, typically a few meters. In this case, however, the
distant-controlled speech can undergo significant distortion due to room reverbera-
tion, echo from a loudspeaker, and additive noise sources, which consequently leads
to high WER of speech recognition. To eliminate the reverberation, this section aims
to explore the advantage of Bidirectional Long Short-Term Memory Recurrent Neu-
ral Networks (BLSTM-RNNs) to learn the nonlinear feature mapping rule, and to
contribute to (1) evaluating the BLSTM dereverberation approach by executing ex-
tensive experiments on realistic and synthesised reverberated speech, by comparing
the approach with other traditional network structures, such as MLP and (B)RNN in
order to exploit the potential value of memory networks; (2) evaluating the proposed
differential feature vectors between the distant-talk (reverberant/distorted) speech
and close-talk (clean) speech as training targets, which differs with the ones used
in [211] where only the absolute feature vectors of close-talk speech were adopted
as training targets; (3) comparing and integrating the feature enhancement meth-
ods with the widely used adaptation algorithms like MLLR [92] and CMLLR [93];
and (4) assessing the robustness of the techniques in the scenarios of mismatched
recording environments between training and evaluation sets.

Experimental Setup

To demonstrate the effectiveness of the proposed methods, two databases – a French
and an English corpus were recorded beforehand in a realistic acoustic space envi-
ronment. Both databases are collected for speech controlled TV application. (For
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more details of the two corpora, please refer to Appendix A.3.) In the ongoing, the
effectiveness of the mapping techniques is mainly evaluated on the French corpus.
The English database is used to study the impact of mismatch in acoustic (room)
environments between training and testing conditions.

The stereo training (close-talk and distant-talk) feature vectors are time aligned
such that the Pearson product-moment correlation coefficient (PCC) is maximised
between the MFCC-0 time series. The training utterances with maximum PCC
coefficient lower than 0.9 were dropped to avoid utterances with severe channel
distortions.

The mapping techniques were evaluated on the standard MFCCs. The 12-
dimensional static MFCCs were appended to their first, second, and third order
regression coefficients, resulting in a feature vector of size 48. The feature vectors of
xct and xdt were extracted from the close- and distant-talk signals, respectively, every
10 ms using a window size of 25 ms. Then, the differential feature vectors of x∆

t were
acquired by xct − xdt . Furthermore, before training the neural networks I calculated
the global means and variances of the close-talk, distant-talk, and their differen-
tial feature vectors over the whole neural network’s training sets. Then, mean and
variance normalisation were performed over the network inputs and targets (i.e.,
the absolute close-talk feature vectors or the differential feature vectors) using the
means and variances from the corresponding sets, respectively.

For the neural networks, both input and output node numbers are equal to the
dimension of the feature vector (48 in our case) except that stacked frames are used
as input. Moreover, one hidden layer with 200 neurons was chosen. Particularly, for
the LSTM memory block, input and output gates adopt hyperbolic tangent (tanh)
activation functions, and the forget gates take logistic activation functions.

During network training, gradient descent is implemented with a learning rate
of 10−5 and a momentum of 0.9. Zero mean Gaussian noise with standard deviation
0.1 is added to the input activations in the training phase in order to improve
generalisation. All weights are randomly initialised in the range from -0.1 to 0.1.
Finally, the early stopping strategy is used as no improvement of the MSE on the
evaluation set has been observed during 20 epochs.

The acoustic models were trained on mobile data collected on hand-held devices.
The performance of the ASR is measured and compared in terms of WER and its
relative reduction (WERR) metrics (cf. Section 2.5), and the baselines for the close
talk and distant talk of the French corpus are 11.8 % and 19.41 % WERs, respectively
(see Table 4.15).

Neural Network Architectures

To verify the effectiveness of BLSTM networks for dereverberation, I compare it
with MLP, and recurrent networks without memory (RNNs) or with memory (i.e.,
LSTM). The comparison results are displayed in Table 4.15. Note that, according to
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Table 4.15: Performance of the baseline recogniser and dereverberant systems by
adopting various neural network architectures like MLP, RNN, BRNN, LSTM, and
BLSTM, with different number of hidden neurons and stacked feature frames. [212]

networks # neurons # frames # weights WER [%] WERR [%]

w/o mapping (close talk) 11.81
w/o mapping (distant talk) 19.41

MLP

200 1 19K 24.15 -24.4
200 5 58K 18.74 3.5
200 7 77K 18.72 3.6
200 9 96K 18.74 3.5
600 7 230K 18.06 7.0

RNN 200 1 59K 19.07 1.8
BRNN 200 1 118K 17.42 10.3
LSTM 200 1 180K 18.47 4.8
BLSTM 200 1 360K 16.38 15.6
BLSTM 200 7 590K 16.43 15.4
BLSTM 144-200-144 1 1M 16.32 15.9

the empirical experience, the best performance for training MLP and (B)RNN was
achieved by a learning rate of 10−6, as opposed to 10−5 for the (B)LSTM networks.

It can be seen that, when no context is used at the input of the MLP, there is an
increase in WER compared to the baseline. Whereas, the recurrent neural networks
(standard RNN and more sophisticated LSTM) show lower WERs. This is because
of their ability to capture the contextual information implicitly. When the temporal
context is increased at the input of the MLP, there is a steady decrease in WERs
and for 600 hidden nodes and a context of seven frames, we see a WERR of 7 %
over the baseline system.

RNN and LSTM models capture only the past information. However, for dere-
verberation, it is important to learn the temporal smearing in the future frames
because the distant-talk signals are delayed (future) and attenuated version of the
close-talk signals (cf. Section 3.3.2). The bidirectional RNN and LSTM yield a signif-
icant (one-side z-test, p < .001) reduction in WERs compared to the corresponding
uni-directional models capturing past information.

It can also be seen that both uni- and bi- directional LSTM models give lower
WERs compared to the simple RNN models. This observation can be attributed
to the sophisticated architecture of the individual neurons compared to the simple
neuron. Previous acoustic information can be stored in the memory cell until the
input gates and the forget gates allow (partly) changing it (cf. Section 2.4.3).

Moreover, as seven successive frames are simultaneously fed into BLSTM net-
works, no improvement is observed from this side (see Table 4.15). Hence, the
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Figure 4.17: The scaled MFCC-0 (1∼256) of a close-talk utterance (red), a distant-
talk one (green), and a mapped close-talk one (blue) for two examples. [212]

BLSTM seems to learn the context better if feature frames are presented one by one
and the increased size of the input layer rather harms recognition performance. In
addition, when increasing one hidden layer with 200 neurons to three hidden layers
with 144-200-144 neurons, the performance improvement is not obvious. In the fol-
lowing experiments, I keep using one hidden layer with 200 neurons as the BLSTM
network’s architecture on the French corpus.

To visualise the mapping learned by the BLSTM model, I plot the trajectories
of MFCC-0 for two randomly selected utterances in Figure 4.17. The figure shows
three trajectories – close talk (red), distant talk (green), and mapped (or estimated)
close talk (blue). It can be seen that the MFCC-0 curves of mapped close-talk
speech (by BLSTM networks) are closer to the original one than the distant-talk
speech during the speaking period, and are smoother during the silence period. This
observation indicates that the reverberant signals and channel noise are successfully
suppressed. Such a feature enhancement phenomenon can be further confirmed
over the entire training set and the whole feature vectors. Figure 4.18 presents the
PCCs of the 48 MFCCs between distant-talk utterances (hollow circle and dotted
line)/mapped utterances (solid circle and line) and close-talk utterances over the
whole training set. Obviously, the PCCs is boosted after reverberated features are
enhanced, which could demonstrate the performance improvement of ASR by using
a BLSTM dereverberation model.

Training on Differential Targets

As discussed in Section 3.3.2, there are two ways to obtain the enhanced features
from distant talk, either by direct way (training networks with absolute targets) or
by indirect way (training networks with differential targets). Table 4.16 compares
the performance of the two mapping ways in ASR systems.

By checking three types of BLSTM network structure, the BLSTM dereverber-
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Figure 4.18: Pearson product-moment Correlation Coefficient (PCC) of 48 MFCCs
between distant-talk utterances (hollow circle and dotted line)/mapped close-talk
utterances (solid circle and line) and close-talk utterances over the whole training
set. [212]

Table 4.16: Performance comparison by using absolute and differential targets.

methods # neurons WER [%] WERR [%]

absolute 144 17.04 12.2
differential 144 16.52 14.9
absolute 200 16.38 15.6
differential 200 16.43 15.4
absolute 144-200-144 16.32 15.9
differential 144-200-144 16.29 16.1

ation models trained on differential targets perform better than the models trained
on the absolute targets when the network structure is simpler. It can be seen that a
gain of about 3 % relative WERR (at the .05 significance level in a one-side z-test)
is achieved when only 144 neurons are used in only one hidden layer, compared to
using absolute targets.

To find out the rationale behind this phenomenon, I plot the distribution of
globally normalised log energies (MFCC-0) on the absolute targets (a) and the dif-
ferential targets (b) over the whole French corpus in Figure 4.19. Obviously, the
differential targets have a symmetrical unimodal distribution that is centred around
zero. In contrast, the absolute target has a bimodal distribution that could be harder
to learn. Therefore, the simpler the neural networks are, the higher a gain would
be obtained via training on the differential targets. Such superiority of differential
targets-based learning can further be verified in the following.
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Figure 4.19: Distribution of normalised log energy (MFCC-0) of absolute targets
(a) and differential targets (b). [212]

Incorporating CMLLR and MLLR

As the distant-talk speech is passing through the BLSTM dereverberation models,
its feature vectors are transformed (almost) to the clean target, on which most pre-
existing acoustic models are trained. Thus, this technique could also be considered
as a sort of feature adaptation. It is interesting to see whether incorporating back-
end adaptation techniques like CMLLR and MLLR can further enhance the ASR
performance. As expected, without the mapping technique the WERs for distant
talk decrease from 19.41 %, over 19.01 %, to 17.19 % with no adaptation, CMLLR,
and CMLL + MLLR, respectively (as shown in Table 4.17). The WERs drop fur-
ther to 16.43 %, 16.34 %, and 15.68 % when integrating with the suggested mapping
technique, which results in 15.4 %, 13.8 % and 7.8 % relative WERR, respectively
(All improvements are at the .001 significance level in a one-side z-test). Overall,
the best result is achieved by combining both mapping and adaptation (CMLLR +
MLLR) techniques, with 8.8 % and 19.2 % performance improvement in WERR in
comparison with adaptation techniques only and the baseline (w/o adaptation and
mapping), respectively. Additionally, Table 4.17 also shows that if the close talk was
falsely detected as distant talk and fed into the mapping and adaptation systems,
the WER would increase about 10 % relatively.

Cross-Room Evaluation

In the above experiments, the data set used for training the dereverberation model
is recorded in the same room with the evaluation set. In a real-life application,
however, the evaluation scenarios are always unpredictable. That is, the acoustic
environments (i.e., room size, type) for creating the training data normally mismatch
with the evaluation scenarios. To cope with this issue, I firstly artificially generated
several reverberant corpora on the close-talk set of French by convolving various
RIRs and adding a little noise. The rooms to create the RIRs are different with
the ones for creating the French corpus. When generating the simulated corpora,
three elements were taken into account: positions variation of the speakers w.r.t
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Table 4.17: ASR evaluation on distant-talk and close-talk sets by combining BLSTM
dereverberation and adaptation (CMLLR and MLLR) techniques.

[%] targets distant talk close talk
adaptation WER WERR WER WERR

w/o adaptation
w/o mapping 19.41 11.81
w/ mapping absolute 16.38 15.6 14.47 -22.5
w/ mapping differential 16.43 15.4 14.02 -18.7
w/ CMLLR
w/o mapping 19.01 2.0 11.78 -0.3
w/ mapping absolute 16.14 16.8 13.70 -16.0
w/ mapping differential 16.34 15.8 13.46 -13.9
w/ CMLLR+MLLR
w/o mapping 17.19 11.4 11.63 -1.5
w/ mapping absolute 15.70 19.1 13.33 -12.9
w/ mapping differential 15.68 19.2 13.04 -10.4

Table 4.18: ASR evaluation on the artificial distant-talk set using the BLSTM dere-
verberation models trained on the natural distant-talk set. pos: position of speakers
w.r.t microphones; R/N: reverberant/noisy signal weights (dB); w/o: without map-
ping.

[%]
w/o absolute differential

WER WER WERR WER WERR

pos-1,R:-100,N:-30 20.86 20.06 3.8 19.24 7.8
pos-1,R:-30,N:-100 21.28 20.59 3.2 19.97 6.2
pos-2,R:-100,N:-30 20.24 19.25 4.9 18.78 7.2
pos-2,R:-30,N:-100 19.89 19.70 1.0 18.71 5.9
Average 20.57 19.90 3.3 19.18 6.8

the microphones, the weights of the reverberation signals and the weights of the
noise signals. The first column of Table 4.18 shows the four scenarios of simulated
speech. The second to sixth columns represent the WER and WERR for each
simulated corpus without mapping, mapping to the absolute targets, and mapping
to the differential targets, respectively. As observed from the table, the BLSTM
dereverberant ASR systems prevail over the systems without dereverberation, which
overall leads to a reduction of WER with 3.3 % relatively by the usage of absolute
targets and 6.6 % relatively by the usage of differential targets.

In addition, I repeated the experiments on a realistic English corpus, of which
the training and test sets are recorded in totally different rooms (cf. Section A.3).
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Table 4.19: ASR evaluation on the training and test sets of the English corpus by us-
ing the BLSTM (one hidden layer with 128 neurons) feature dereverberation model
trained on the training set. CMN (utt.): utterance level cepstral mean normalisa-
tion.

[%]
targets training set test set

WER WERR WER WERR

w/o mapping (close talk) 9.27 9.48
w/o mapping (distant talk) 18.30 18.77
BLSTM absolute 15.80 13.7 20.67 -10.0
BLSTM differential 15.26 16.6 17.73 5.5
BLSTM+CMN (utt.) absolute 14.61 20.2 19.38 -3.0
BLSTM+CMN (utt.) differential 14.96 18.3 17.32 7.7

As shown in Table 4.19, the baselines of the distant talk of the English corpus are
WERs of 18.30 % and 18.77 % for the training and test sets, both of which almost
double the baseline of close talk (WERs of 9.27 % and 9.48 % for the training and
test sets). As expected, a high gain is obtained for the training set when applying
channel mapping. Nevertheless, such a high gain is not observed for the test set.
Only when using the differential targets to train neural networks, a gain can be
obtained by 5.5 % of WERR on the mismatched test set, and can be enlarged to
7.7 % WERR when I further implement utterance level CMN that mainly aims to
remove static noise as well as the early reverberation [87]. In this experiment, it
can also be noticed that the indirect mapping way (using differential targets for
networks training) significantly overcomes the direct mapping way (using absolute
targets for networks training).

From the above two experiments, the results imply that the inter-room scenario
is more challenging when compared to the intra-room scenario shown above. This
observation leads to the following conclusions: On the one hand, the performance
improvement on both training and test sets indicates that different rooms share
some common reverberation information. These shared information can be learned
by the BLSTM networks. On the other hand, the different gains obtained by the
training and test sets suggest that the networks probably learn too much information
from a specific acoustic environment. Therefore, to generalise the neural networks
and exploit more common information, I further did some preliminary experiments
on the English corpus for generalisation, on the means of adding more Gaussian
noise to the input when training networks. The results in Table 4.20 indicate that
by improving the generalisation capability, the networks can learn more common
information, as the WER reduces from 17.32 % to 16.89 % with about 3 % relative
performance improvement.
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Table 4.20: Performance of the test set of the English corpus by adding more training
noise to regularise the BLSTM-RNN (one hidden layer with 128 neurons) feature
dereverberation model.

noise variation targets WER [%] WERR [%]

0.1 differential 17.32 7.7
0.2 differential 17.15 8.6
0.3 differential 16.89 10.0
0.4 differential 16.96 9.6

4.3.2 Summary

In this section, a feature-based dereverberation method was investigated for a real-
istic distant-talk ASR system. The basic idea is to use BLSTM-RNNs for channel
mapping – from distant-talk cepstral feature space to its close-talk counterpart.

In the scenario of distant talk, the speech signals at each frame time will impact
the subsequent frames in long term. This issue consequentially requires a learning
algorithm that has the potential to not only access long-term context information
but also make use of the future information. The bidirectional structure (past and
future) of LSTM neural networks is capable of dealing with these issues. The ex-
perimental results on a French corpus show a WERR of more than 16 % for ASR,
which significantly outperform the ‘conventional’ networks MLPs (one-side z-test,
p < .001) and BRNNs (one-side z-test, p < .05). Such effectiveness of the feature
mapping method is further confirmed by integrating widely-used adaptation tech-
niques of MLLR or/and fMLLR, which yields the best performance of about 20 %
of WERR. It is also confirmed in the scenario of cross- or inter-room evaluation,
as the evaluation sets in a mismatched acoustic environment also obtain a gain via
channel mapping when using BLSTM.

This study also presents another indirect way for channel mapping – the differ-
ential feature vectors (between the distant-talk speech and the close-talk speech)
as network targets, then adding the estimated differential feature vectors to the
counterpart of original distant-talk ones. The results based on a rich number of ex-
periments show that this indirect mapping strategy can compete with the previously
used direct mapping strategy, particularly in some cases like using a simple network
structure and evaluating mismatched data sets. All these cases are quite welcome
for real-life applications.

Due to a gain gap between matched and mismatched evaluation cases, future
work will focus on the further exploitation of joint acoustic information across dif-
ferent rooms with the goal of ‘blind’ dereverberation application. One way to achieve
this is to train the networks by a vast amount of reverberant speech collected in a
variety of rooms. Furthermore, one can apply to the objective functions some gener-
alisation terms such as weight decay. In addition, it seems also beneficial to develop
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a way of selecting predefined mapping models for different room categories, in order
to ultimately explore the advantages of the room-specific models.
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5

General Summary and Outlook

Intelligent speech analysis (ISA) systems can be applied to, for example, intellec-
tual interaction between humans and machines where linguistic subsystems (e.g.,
automatic speech recognition [ASR] systems) are able to interpret semantic content,
while computational paralinguistics subsystems are capable of analysing information
about the speaker, such as characteristics and states (e.g., emotion). When applying
such systems in real-world scenarios, however, developers will encounter numerous
challenges with respect to realistic conditions, such as the diversity of speakers,
background noise, and reverberation. Computational paralinguistics, which is still
a new research topic, suffers from a shortage of training data. This problem is
widely considered the most frontier challenge in the field, which, in turn, prevents
the creation of a robust acoustic model. In addition, large feature set size impedes
real-world application when implementing a distributed structure. For speech recog-
nition, especially in a distant-talk scenario, performance is significantly undermined
by noise and reverberation.

To deal with these challenges, the key strategy of this thesis is to exploit data
quantity and quality in an efficient way. Thus, the focus of this thesis is semi-
autonomous data enrichment and data optimisation either by transferring the effec-
tive approaches developed by the machine learning community or proposing novel
approaches. More precisely, this work presents and evaluates a variety of approaches
to achieve the four major objectives: (1) reuse of pre-existing heterogeneous data,
(2) efficiently exploiting the vast amount of unlabelled data, (3) reducing feature
size to satisfy the requirements of physical transmission, storage, and security, and
(4) enhancing the features corrupted as a result of reverberation.

Here, the conclusions of this thesis are summarised and suggestions made for
further research.
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5.1 Summary

After an introduction of the general framework of ISA systems in Chapter 2, each
of the four aforementioned objectives of this thesis is addressed by proposing and
investigating appropriate approaches in both theoretical aspects (Chapter 3) and
empirical aspects (Chapter 4).

(1) Unified perspectives on leveraging available labelled data were illustrated to
overcome the varieties among different databases. In particular, the approaches of
data pooling, bagging, sampling, and selection were presented in Section 3.1, and
further examined using the speech emotion recognition (SER) task from Sections
4.1.1 to 4.1.4. The corresponding experimental results in Section 4.1.1 show that,
in the case of cross-corpus evaluation [217], pooling or bagging multiple similar
databases boosts the performance of the model trained on a single database. The
idea of data pooling was then extended to aggregate synthesised emotional speech,
and the results obtained in Section 4.1.2 further prove its efficiency [28]. However,
such a direct data fusing approach overlooks the issues of noisy data (i.e., severely
mislabelled or highly distorted data) and imbalanced class distribution. Accordingly,
distance-based data selection [221], and agreement- and sparseness-based data se-
lection [183] were proposed. The results in Section 4.1.3 and 4.1.4 show that the
selected smaller size of subsets achieved almost the same performance as the baseline
model.

(2) Manifold semi-automatic self-optimisation ways were proposed and presented
in Section 3.2 and investigated from Sections 4.1.5 to 4.1.8, so as to enrich the data
quantity by exploiting massive unlabelled data for SER using less human effort. One
way of achieving this was to leverage the ability of machines (pre-trained model)
to predict unlabelled data, and, in turn, to integrate these machine labelled data
to retrain a new model. The success of this method was empirically confirmed
[226]. Another way was to seek help from humans by iteratively making queries
to select the most informative data. A traditional confidence-value-based active
learning was examined and proved to be highly efficient. Both ways have their
own advantages and disadvantages: The semi-supervised learning often accumulates
the mislabelled data and tends to predict the dominant class, whereas the active
learning needs more laborious human work. In an attempt to compensate respective
drawbacks, a novel solution – cooperative learning (CL) – was proposed to iteratively
proceed using both methods. Extensive experiments were devoted to comparing the
performance of CL for SER to the other methods. The observations show that
CL significantly outperforms the learning methods that merely use the effort from
machines or humans. Furthermore, the idea of multi-view learning was merged into
the CL method, which gave rise to better performance [231].

(3) The recommended compression method of split vector quantisation for dis-
tributed speech recognition was transferred to distributed computational paralin-
guistics (cf. Section 3.3.1). By conducting extensive experiments on five time-scaled

128



5.2. Outlook

paralinguistic tasks (i.e., emotion, intoxication, pathology, age, and gender), the
proposed compression method on the statistic features was demonstrated to be su-
perior (cf. Section 4.2.2): Even if the compression ratios are up to 40, the recognition
accuracies are still very close to the baseline [8].

(4) A novel feature enhancement method was proposed in Section 3.3.2 with the
aim of alleviating the influence of noise, especially reverberation, on speech signals
for distant-talk ASR. In particular, this method is by means of mapping the feature
space from distorted speech to the one from clean speech via Bidirectional Long
Short-Term Memory modelling for regression [212]. It was evaluated on a realistic
digital TV application in Section 4.3. The results indicate that such a context-
sensitive neural networks-based method outperforms alternative neural networks
(e.g., Multilayer Perceptrons and conventional recurrent neural networks), delivering
a relative word error rate reduction of approximately 16 % in an intra room scenario
and 10 % in an inter room scenario.

5.2 Outlook

Despite the techniques that were proposed and investigated to address the data
scarcity and distortion issues for ISA in this thesis, there are many thinkable and
promising possibilities to enrich and optimise the data in future. The first possibility
goes to utilise truly unlabelled data collected from the real world, such as YouTube,
movies, call centres, and video games. Contrary to the use of pre-prepared data, con-
stantly mining useful information from such applications is more challenging. Thus,
it will be interesting to examine the feasibility and efficiency of the proposed meth-
ods in these cases. Moreover, a major part of paralinguistic tasks (e.g., emotion)
are subjective, which means that multiple annotators are demanded for labelling,
so as to obtain a gold standard. In this case, the annotation work for a subjective
task requires several times the work for an objective task. To fulfil this work, one
way called crowd sourcing might be feasible, which takes the advantage of the Inter-
net, i.e., anyone in the world can contribute to this annotation work. In addition,
more sophisticated algorithms on the basis of agreement levels could also further
ease the burdensome work. In comparison with the investigated CL methods, the
information of labelling agreement levels could also be helpful to improve the system
performance. Some preliminary results have already been shown in [235].

So far, although some of the most frontier issues regarding the ISA were tackled,
there are several other issues that are still laying ahead when applying such systems
in the real world. State-of-the-art machine learning algorithms could be further
employed to increase the recognition accuracy. One potential direction is to apply
multi-task learning that aims to learn the knowledge of a target task jointly with
other related tasks, for example, using shared representations [240]. For computa-
tional paralinguitics, each paralinguistic task (e.g., gender) also plays an important
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role in the analysis of almost all other tasks (e.g., emotion) [4]. Thus, this mutually
joint information may benefit the individual task recognition. In the context of com-
putational paralinguistics, however, multi-task learning is still a fresh topic, as there
are only a few preliminary studies on this topic [241, 238]. Another possible research
direction involves distributed computational paralinguistics. Several related issues
are still waiting to be solved, for example, the impact of package loss and security.
Moreover, the paralinguistic subsystems and linguistic subsystems were considered
independently, heretofore. Thus, it seems promising to investigate a unified scheme
that could merge the two subsystems into one.

Overall, this thesis has investigated all four goals in detail and hopefully the field
has gained from the research presented here.
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Databases

A large number of databases are used for the performance evaluation throughout
the thesis. This appendix summarises the technical details of each database. Par-
ticularly, Appendix A.1 introduces multiple speech emotion databases (i.e., FAU
Aibo Emotion Corpus, other eight related corpora, as well as synthesised Open-
Mary and TXT2PHO databases) that are employed in Section 4.1. Then, Appendix
A.2 describes four general paralinguistic databases (i.e., Alcohol Language Corpus,
Sleepy Language Corpus, NKI CCRT Speech Corpus, and Agender Database) for
the experiments in Section 4.2. Finally, Appendix A.3 gives a description of the
reverberant French and English databases for speech recognition in Section 4.3.

A.1 Emotion Databases

In this part, the FAU Aibo Emotion Corpus is presented in detail. It is adopted in a
plethora of experiments in Section 4.1, as well as widely used in others’ research [63,
53, 242, 243]. The other eight emotional corpora are also frequently-used databases
in the field of emotion analysis [23, 25]. In this thesis, the eight databases are mainly
employed to exploit the value of labelled data. Among these eight databases, some of
them are mixed audiovisual collections, whereas only the audio information is used
in this thesis. In comparison to human speech databases, OpenMary and TXT2PHO
are two artificially synthesised speech databases.

A.1.1 FAU Aibo Emotion Corpus

FAU Aibo Emotion Corpus (AEC) [53] is the official corpus of the INTERSPEECH
2009 Emotion Challenge (EC) [63]. This corpus contains audio recordings of
German-speaking children interacting with Sony’s pet robot Aibo [53]. For the con-
struction of this database, children were led to believe that the Aibo was responding
to their commands by producing a series of fixed and predetermined behaviours.
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Table A.1: Distribution of speakers and instances per partition of the FAU Aibo
Emotion Corpus (AEC) [53]. NEG: negative emotions; IDL: neutral and positive
emotions.

# speakers # instances
male female NEG IDL Σ

Pool 13 13 3 358 6 601 9 959
Validation 8 17 2 465 5 792 8 257
Σ 21 30 5 823 12 393 18 216

Nevertheless, the Aibo robot did sometimes disobey to the children’s commands,
which provoked various types of emotional reactions. The recordings include speech
samples from 51 children (30 females) with ages ranging from 10 to 13 years that
were taken at two different German schools to which I will refer to in this thesis as
MONT and OHM. The whole corpus comprises a total of 9.2 hours of speech with-
out pauses and was recorded through a DAT-recorder (16 bit, 48 kHz down-sampled
to 16 kHz) placed on a wireless head set. The recordings were segmented into turns
using a pause threshold of 1 s. Five students of advanced linguistics were then asked
to listen to the various samples and to annotate each one of them by selecting one
specific label (from a set of 11 predefined labels) to describe the emotional char-
acter of the sample. The labels used were: neutral, angry, touchy, reprimanding,
emphatic, surprise, joyful, helpless, motherese, bored, and rest. If more than three
labellers assigned a specific label to a speech sample (majority voting), that label
was chosen to describe the emotional character of the segment.

In this thesis, I employed the same natural speech corpus used in the INTER-
SPEECH 2009 EC [63] that consists of 18 216 instances taken from the full database.
Each instance consists of a manually defined chunk of speech longer than a word
and shorter than a turn defined based on syntactic-prosodic criteria. The original 11
classes were mapped onto two cover classes: one consisting of NEGative emotion
labels (angry, touchy, reprimanding, emphatic), and the other consisting of non-
negative (IDLe) states (for more information about the database development and
data processing please refer to [63]). In order to guarantee speaker independence,
I used the data recorded at the OHM school as the unlabelled data pool (9 959),
and the data recorded at the MONT school as the validation set (8 257). Table A.1
shows the details of the data sets used.

A.1.2 Other Eight Emotion Databases

The details of the eight emotional human speech databases are summarised in Table
A.2 (also includes two synthesised speech databases.). In the following, I briefly
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introduce the eight emotion databases.

ABC

The Airplane Behaviour Corpus (ABC) [244] is an audiovisual emotion database. It
is crafted for the special target application of public transport surveillance. In order
to induce a certain mood, a script was used, which lead the subjects through a guided
storyline: Prerecorded announcements by five different speakers were automatically
played back controlled by a hidden test-conductor. As a general framework, a va-
cation flight was chosen, consisting of several scenes such as start, serving of wrong
food, turbulences, falling asleep, conversation with a neighbour, or touch-down. The
general setup consisted of an airplane seat for the subject, positioned in front of a
blue screen. Eight subjects in gender balance from 25 to 48 years (mean 32 years)
took part in the recording. The language throughout recording is German. A total
of 11.5 h video was recorded and annotated independently after pre-segmentation
by three experienced male labellers within a closed set. The average length of the
431 clips is 8.4 s.

AVIC

The AudioVisual Interest Corpus (AVIC) [35] is another audiovisual emotion corpus.
In its scenario setup, a product presenter leads one of 21 subjects (10 female) through
an English commercial presentation. The level of interest is annotated for every turn
reaching from boredom (subject is bored with listening and talking about the topic,
very passive, does not follow the discourse; this state is also referred to as level
of interest [loi] 1, i.e., loi1), over neutral (subject follows and participates in the
discourse, it cannot be recognised, if she/he is interested or indifferent in the topic;
loi2) to joyful interaction (strong wish of the subject to talk and learn more about
the topic; loi3). Additionally, the spoken content and non-linguistic vocalisations
are labelled in the AVIC set. For the evaluation I use all 3 002 phrases, in contrast
to only 996 phrases with high inter-labeller agreement as e.g., employed in [35].

EMO-DB

The Berlin Emotional Speech Database (EMO-DB) [245] was created by 10 pro-
fessional actors (5 males and 5 females), who were asked to express 10 predefined
German sentences like ‘Der Lappen liegt auf dem Eisschrank’ (The cloth is lying on
the fridge) in seven emotional states that include anger, boredom, disgust, fear, joy,
neutral, and sadness. Finally, around 900 utterances were obtained.
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DES

The Danish Emotional Speech (DES) [246] database has been chosen as one of the
‘traditional representatives’, because it is easily accessible and well annotated. The
data used in the experiments are nine Danish sentences, two words and chunks that
are located between two silent segments of two passages of fluent text, for example:
‘Nej’ (No), ‘Ja’ (Yes), ‘Hvor skal du hen?’ (Where are you going?). The set used
contains 419 speech utterances (i.e., speech segments between two silence pauses)
that are expressed by four professional actors, two males and two females. Speech is
expressed in five emotional states: anger, happiness, neutral, sadness, and surprise.
Twenty judges (native speakers from 18 to 58 years old) verified the emotions with
a score rate of 67 %.

eNTERFACE

The eNTERFACE [247] corpus is a further public audiovisual emotion database.
It consists of induced anger, disgust, fear, joy, sadness, and surprise speaker emo-
tions. 42 subjects (eight female) from 14 nations are included. It consists of office
environment recordings of predefined spoken content in English. Each subject was
instructed to listen to six successive short stories, each of them eliciting a particular
emotion. They then had to react to each of the situations by uttering previously
read phrases that fit the short story. Five phrases are available per emotion as ‘I
have nothing to give you! Please dont hurt me!’ in the case of fear. Two experts
judged whether the reaction expressed the emotion in an unambiguous way. Only if
this was the case, the sample was added to database. Overall, the database consists
of 1 277 samples.

SAL

The Belfast Sensitive Artificial Listener (SAL) data is part of the final HUMAINE
database [248]. This subset contains 25 recordings in total from 4 speakers (2 male, 2
female) with an average length of 20 minutes per speaker. The data contains audio-
visual recordings from natural human–computer conversations that were recorded
through a SAL interface designed to let users work through a range of emotional
states. The data has been labelled continuously in real time by four annotators
with respect to valence and activation using the feel-trace system: The annotators
used a sliding controller to annotate both emotional dimensions separately whereas
the adjusted values for valence and activation were sampled every 10 ms to obtain
a temporal quasi-continuum. To compensate linear offsets that are present among
the annotators, the annotations were normalised to zero mean globally. Further, to
ensure common scaling among all annotators, each annotator’s labels were scaled
so that 98 % of all values are in the range from -1 to +1. The 25 recordings have
been split into turns using an energy based voice activity detection. A total of 1 692
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turns is accordingly contained in the database. Labels for each turn are computed
by averaging the frame level valence and activation labels over the complete turn.
Apart from the necessity to deal with continuous values for time and emotion, the
great challenge of the SAL database is the fact that one must deal with all data.

SUSAS

The Speech under Simulated and Actual Stress (SUSAS) database [230] contains
audio recordings of speakers in various (actual and simulated) stress conditions and
organised in different domains. In this thesis, I focus on the ‘Actual Speech Under
Stress’ domain, which includes audio recordings of speech produced in the ‘Scream
Machine’ scenario, one of the subject motion-fear tasks. In this scenario, 7 speakers
(3 female) were taken in a roller-coaster (the ‘Scream Machine’) ride for about 90 s
and asked to repeat words from a 35-word vocabulary card held in their hands at
different moments. Each speaker performed the task twice.

In the task scenario, different levels of stress are spontaneously evoked by the
dynamics of the roller-coaster ride, resulting in the various levels of stress being ex-
pressed in the voice. A total of 1 642 utterances were collected during the rides (sam-
pled at 8 kHz, 16 bit). Subsequently these utterances were segmented into words,
resulting in 3 593 instances that were then annotated for stress levels (i.e., neutral,
medium, high stress, and screaming) based on the time and position during the ride.

VAM

The Vera-Am-Mittag (VAM) corpus [249] consists of audiovisual recordings taken
from a German TV talk show. The set contains 946 spontaneous and emotion-
ally coloured utterances from 47 guests of the talk show that were recorded from
unscripted, authentic discussions. The topics were mainly personal issues such as
friendship crises, fatherhood questions, or romantic affairs. To obtain non-acted
data, a talk show in which the guests were not being paid to perform as actors
was chosen. The speech extracted from the dialogues contains a large amount of
colloquial expressions as well as nonlinguistic vocalisations and partly covers dif-
ferent German dialects. For annotation of the speech data, the audio recordings
were manually segmented to the utterance level, whereas each utterance contained
at least one phrase. A large number of human labellers was used for annotation
(17 labellers for one half of the data, six for the other). The labelling bases on
a discrete five point scale for three dimensions mapped onto the interval of [-1,1]:
The average results for the standard deviation are 0.29, 0.34, and 0.31 for valence,
activation, and dominance. The averages for the correlation between the evaluators
are 0.49, 0.72, and 0.61, respectively. The correlation coefficients for activation and
dominance show suitable values, whereas the moderate value for valence indicates
that this emotion primitive was more difficult to evaluate, but may partly also be a
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result of the smaller variance of valence.

A.1.3 Two Synthesised Emotion Databases

The two synthesised speech databases – TXT2PHO and OpenMary – are gen-
erated by the emotional speech synthesis system – Emofilt [250]. TXT2PHO and
OpenMary are also the names of their two phonemisation components. Ten sen-
tences of the EMO-DB (cf. Section A.1.2) are served as the content of synthesised
speech. Both synthesised databases cover eight target emotions (happiness, joy,
boredom, yawning, fear, despair, hot anger, sadness) plus a neutral state, using all
seven German voices (four female and three male), thus obtaining 1 260 samples
(10 × 2 × 9 × 7, cf. Table A.2). For more details of the generation process, please
refer to [28, 250].

A.1.4 Mapping and Clustering

Upon the above databases description, it can been seen that the eight human speech
databases, as well as the two synthesised speech databases, are annotated in various
emotion categories or continuous valued dimensions. In this case, I mapped the
diverse emotion groups into the quadrants of two-dimensional arousal-valence space
as in [25]: arousal (i.e., high vs. low) and valence (i.e., positive vs. negative) in order
to generate a unified set of labels that can be used for cross-corpus experiments.
It is because on the one hand, most categorical emotion labels (such as the ‘Big
Six’ emotions joy, sadness, anger, fear, surprise and disgust) can be expressed as
points in the arousal-valence space [251]; on the other hand, the majority of the
considered databases is annotated by emotion categories instead of a more fine-
grained, continuous annotation – this is mostly due to the type of emotion elicitation
used for creating these databases. In addition, these mappings are not straight
forward – it also favours better balance among target classes. The specific mapping
strategies are given in Tables A.3 and A.4 for arousal and valence, respectively.

A.2 General Paralinguistic Databases

This part of the Appendix focuses on introducing four databases in accordance
with different paralinguistic tasks, covering speakers’ medium-term states, such as
intoxication, sleepiness, pathology, and speakers’ long-term characteristics like age
and gender. All these databases are prepared for Section 4.2.
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A. Databases

Table A.3: Mapping the classes of various databases to a binary arousal (High or
Low).

Corpus High Low

Eight Human Speech Databases
ABC aggressive, cheerful, neutral, tired

intoxicated, nervous
AVIC loi2, loi3 loi1
DES angry, happy, surprise neutral, sad
EMO-DB anger, fear, joy boredom, disgust,

neutral, sadness
eNTERFACE anger, fear, happiness, surprise disgust, sadness
SAL q1, q4 q2, q3
SUSAS high stress, medium neutral

stress, screaming, fear
VAM q1, q4 q2, q3

Two Synthesised Speech Databases
OpenMary / despair, fear, happiness, boredom, neutral,
TXT2PHO hot anger, joy sadness, yawning

Table A.4: Mapping the classes of various databases to a binary valence (Positive
or Negative).

Corpus Positive Negative

Eight Human Speech Databases
ABC cheerful, neutral, intoxicated aggressive, nervous, tired
AVIC loi2, loi3 loi1
DES happy, surprise, neutral angry, sad
EMO-DB neutral, joy anger, boredom, disgust,

sadness, fear
eNTERFACE happiness, surprise anger, fear, disgust, sadness
SAL q1, q2 q3, q4
SUSAS medium stress, neutral high stress, screaming, fear
VAM q1, q2 q3, q4

Two Synthesised Speech Databases
OpenMary / happiness, joy, neutral boredom, despair, fear, hot
TXT2PHO anger, sadness, yawning
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A.2. General Paralinguistic Databases

Alcohol Language Corpus

The Alcohol Language Corpus (ALC) [252] contains 38 hours of genuine alcohol
intoxicated and sober speech. For the experiments, as for the 2011 Speaker State
Challenge (SSC) [65], I use a gender balanced subset of the ALC with 154 speakers
(77 male, 77 female). Speakers are within the age range of 21 to 75 years and were
selected to ensure a balance of German dialects. The corpus is subdivided into
training, testing and development partitions guaranteeing speaker independence.

To create the corpus, speakers were recorded at self-chosen blood alcohol concen-
trations (BACs) ranging from 0.28 to 1.75 per mill. The intoxicated speech material
in the ALC was obtained by a speech test that the speakers were asked to perform
immediately after taking a blood sample. Since the speech test did not last longer
than 15 minutes, it is ensured that the BAC throughout the speech test remains
roughly equal to the measured BAC before the test. At least two weeks after the
intoxicated speech test, each speaker returned to undergo a second recording in
sober condition. The sober recordings were chosen to be roughly twice as long as
the intoxicated recordings.

Three different speech styles are part of each ALC recording: read speech, spon-
taneous speech, and command & control. For the experiments in this thesis, the
recordings from speakers with BAC ≤ 0.5 per mill were labelled as non-alcoholised
(NAL). All other were labelled as alcoholised (AL).

Sleepy Language Corpus

The Sleepy Language Corpus (SLC) [38] is the official corpus of the Sleepiness Sub-
Challenge of the INTERSPEECH 2011 Speaker State Challenge (SSC) [65]. To
build this corpus, 99 participants with an age range of 20–52 years took part in
six partial sleep deprivation studies. The recording took place in a realistic car
environment or in lecture-rooms, including read and spontaneous German speech as
detailed in [65]. To annotate the value of sleepiness, the Karolinska Sleepiness Scale
(KSS) was used by the subjects and two raters. Scores ranging from 1–10 are given
from extremely alert (1) to cannot stay awake (10). For training and classification
purpose, the recordings (mean = 5.9, standard deviation = 2.2) were binarised into
two classes: not sleepy (‘NSL’) and sleepy (‘SL’) with the threshold of 7.5 on the
KSS.

NKI CCRT Speech Corpus

The ‘NKI CCRT Speech Corpus’ (NCSC) [44] is the official corpus of the Pathol-
ogy Sub-Challenge of the INTERSPEECH 2012 Speaker Trait Challenge (STC)

1Test labels of Agender are not freely available. Thus, only its partitions of train and develop
are used in Section 4.2.2.
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Table A.5: Overview of selected corpora for emotion (AEC), intoxication (ALC),
sleepiness (SLC), pathology (NCSC), age and gender (Agender) recognition tasks.
Languages (LA): German (DE) and Dutch (NL); speech types (TY): spontaneous
(S) and promoted (P); number of subjects (S) and instances (INST); total speech
time (TT) and average speech time per chunk (TC); recording rate (Hz).

Corpus LA TY S # TT[H] TC[s] INST # Hz

AEC DE S 51 8.9 1.8 18 216 16k
ALC DE P 162 43.8 12.8 12 360 16k
SLC DE S 99 – – 9 089 16k
NCSC NL P 55 2.0 3.0 2 386 16k
Agender1 DE P 770 35.9 2.4 53 074 8k

Table A.6: Instances distribution per partition (Train, Develop or Test) for
four paralinguistic corpora—ALC, SLC, NCSC, and Agender. (N)AL: (non-
)intoxicated; (N)SL: (non-)sleepiness; (N)I: (non-)intelligible; C/Y/A/S: chil-
dren/young/adult/senior; X/M/F: children/male/female.

(a) ALC, SLC, NCSC

ALC SLC NCSC
NAL AL NSL SL I NI

Train 3 750 1 650 2 215 1 241 384 517
Develop 2 790 1 170 1 836 1 079 341 405
Test 1 620 1 380 1 957 851 475 264
Σ 8 160 4 200 5 918 3 171 1 200 1 186

(b) Agender

Agender: Age Agender: Gender
C Y A S X M F

Train 4 406 8 657 8 990 10 473 4 406 13 985 14 135
Develop 2 396 4 892 5 873 7 387 2 396 8 508 9 644
Σ 6 802 13 549 14 863 17 860 6 802 22 493 23 779

[66]. The database was created at the Department of Head and Neck Oncology and
Surgery of the Netherlands Cancer Institute and consists of speech recordings from
55 speakers (10 female; mean age is 57 y.o.) before and after Chemo-Radiation Treat-
ments (CCRT). All speakers read a text in the Dutch language with an emotionally
neutral content. Thirteen speech pathologists evaluated the speech recordings in an
on-line experiment on an intelligibility scale ranging from 1 to 7. Finally, evalua-
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Table A.7: Distribution of speakers, sentences, words, and recording time of close
talk per partition of French and English corpora.

French English
train test train test

# speakers (f/m) 5/6 6/5 5/4 5/6
# sentences 2 231 4 619 1 430 1 801
# words 15 148 30 094 7 886 9 907
time (hours) 4.1 4.2 2.9 3.4

tor weighted estimator (EWE) was used to compute and discretise the ratings into
binary classes—intelligible (I) and non-intelligible (NI)—wising the median of the
ratings distribution.

Agender Database

The Agender database [47] is the official corpus of the INTERSPEECH 2010 Par-
alinguistic Challenge (PC) Age and Gender Sub-Challenges [64]. This database was
collected by a commercial company with the aiming of identifying people of specific
targeted ages and genders. The participants were asked six times to call an auto-
mated Interactive Voice Response system and to repeat various German utterances
or to produce free speech content. The calls were made in through a mobile phone
in various recording environments, and in different days and times so as to ensure
more variation in the voices of each speaker. In the Challenge task, four classifi-
cation classes were used for age—Children, Young, Adult, and Senior—and three
for gender—Children (X), Male, and Female. Additionally, I also consider seven
new classes that are generated by combining the various age and gender classes.
Hereinafter, this classification task is referred to as ‘Age+Gender’ (cf. [64]).

A.3 Speech Recognition Databases

The French and English Reverberation Databases

The French and English corpora were recorded in a realistic acoustic space environ-
ment. Both databases were collected for a speech-controlled TV application. This
application was designed to enable the user to change the TV controls (volume,
brightness, etc.) or to browse the programs using her voice. Table A.7 shows the
statistics of the two databases. The French corpus was recorded in a living room
containing furniture, where one microphone near the mouth recorded the close talk,
and another microphone array, consisting of 16 channels, recorded the distant talk.
Twenty-two native French speakers (11 females) were asked to speak naturally so
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as to control the TV as their wish, i.e., ‘je veux un film avec Cameron Diaz (I want
a movie with Cameron Diaz)’. Finally, 8.3 h recordings were obtained, including
about 5K sentences and 30K words in total. The distant talk data obtained from
a 16-channel microphone array was grouped into four disjoint sets (1-4, 5-8, 9-12,
and 13-16). The four channel speech in each of the sets was beamformed and noise
reduced to obtain a single speech signal. As a result, the amount of distant talk
training/test data was four times that of its close talk counterpart. The whole
database was then divided into training and test sets, both speaker-independently
and equally. Likewise, 6.3 h of recordings were captured for the English corpus that
comprised 20 speakers (10 females), and approximately 3K sentences and 18K words
in total. For French, the training and test data sets were recorded in the same room,
but for English, these data sets were recorded in different rooms. The details of the
French and English corpora are shown in Table A.7.
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ABC . . . . . . . . . . . Airplane Behaviour Corpus

ACF . . . . . . . . . . . AutoCorrelation Function

AIS . . . . . . . . . . . . Agreement-based Instance Selection

AL . . . . . . . . . . . . . Active Learning

ALC . . . . . . . . . . . Alcohol Language Corpus

ANN . . . . . . . . . . . Articial Neural Network

ASC . . . . . . . . . . . Affect Sub-Challenge

ASIS . . . . . . . . . . . Agreement- and Sparseness-based Instance Selection

ASR . . . . . . . . . . . Automatic Speech Recognition

AVIC . . . . . . . . . . AudioVisual Interest Corpus

BAC . . . . . . . . . . . Blood Alcohol Concentration

BLSTM . . . . . . . . Bidirectional Long Short-Term Memory

BPTT. . . . . . . . . .BackPropagation Through Time

BRNN . . . . . . . . . Bidirectional Recurrent Neural Network

CART. . . . . . . . . .Classication And Regression Tree

CC. . . . . . . . . . . . .Coefficient Correlation

CCRT. . . . . . . . . .Chemo-Radiation Treatments

CL . . . . . . . . . . . . . Cooperative Learning

CMLLR . . . . . . . . Constrained MLLR

CMN. . . . . . . . . . .Cepstral Mean Normalisation

CNN . . . . . . . . . . . Condensed Nearest Neighbour

143



Acronyms

coAL. . . . . . . . . . . co-Active Learning

CV. . . . . . . . . . . . .Confidence Value

DCT . . . . . . . . . . . Discrete Cosine Transform

DES . . . . . . . . . . . Danish Emotional Speech

DNN . . . . . . . . . . . Deep Neural Network

DROP . . . . . . . . . Decremental Reduction Optimisation Procedure

DSCC. . . . . . . . . .Delta-Spectral Cepstral Coefficient

EC . . . . . . . . . . . . . Emotion Challenge

EDIS. . . . . . . . . . .Euclidean Distance-based Instance Selection

EM . . . . . . . . . . . . Expectation-Maximisation

EMO-DB. . . . . . .Berlin Emotional Speech Database

ETSI . . . . . . . . . . .European Telecommunications Standards Institute

EWE. . . . . . . . . . .Evaluator Weighted Estimator

FNN . . . . . . . . . . . Feed-forward Neural Network

GMM . . . . . . . . . . Gaussian Mixture Model

GR. . . . . . . . . . . . .Gain Ratio

HMM . . . . . . . . . . Hidden Markov Model

HNR . . . . . . . . . . . Harmonics-to-Noise Ratio

HQ. . . . . . . . . . . . .Histogram-based Quantisation

HS . . . . . . . . . . . . . Human Speech

ID3 . . . . . . . . . . . . Iterative Dichotomiser 3

ISA . . . . . . . . . . . . Intelligent Speech Analysis

KSS . . . . . . . . . . . .Karolinska Sleepiness Scale

LDA . . . . . . . . . . . Linear Discriminant Analysis

LLD . . . . . . . . . . . Low-Level Descriptor

LOCO . . . . . . . . . Leave-One-Corpus-Out

LPCC. . . . . . . . . . Linear Prediction Cepstral Coefficient

LPC . . . . . . . . . . . Linear Prediction Coefficient

LPC . . . . . . . . . . . Linear Prediction Coding

LP . . . . . . . . . . . . . Linear Prediction
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LSTM. . . . . . . . . .Long Short-Term Memory

MAP. . . . . . . . . . .Maximum A Posteriori

MFCC . . . . . . . . . Mel-Frequency Cepstral Coefficient

MLLR . . . . . . . . . Maximum Likelihood Linear Regression

MLP . . . . . . . . . . . Multilayer Perceptrons

MSE . . . . . . . . . . . Mean Squared Error

MVL . . . . . . . . . . . Multi-View Learning

NB. . . . . . . . . . . . .Näıve Bayes

NCSC. . . . . . . . . .NKI CCRT Speech Corpus

NMF. . . . . . . . . . .Non-negative Matrix Factorisation

PCA . . . . . . . . . . . Principle Component Analysis

PCC . . . . . . . . . . . Pearson product-moment Correlation Coefficient

PC . . . . . . . . . . . . . Paralinguistic Challenge

PL . . . . . . . . . . . . . Passive Learning

PLP . . . . . . . . . . . Perceptual Linear Prediction

POP . . . . . . . . . . . Pattern by Ordered Projections

RANSAC . . . . . . RANdom SAmple Consensus

RASTA-PLP . . . RelAtive Spectral Transform - Perceptual Linear Prediction

RBF . . . . . . . . . . . Radial Basis Function

RIR . . . . . . . . . . . . Room Impulse Response

RIS . . . . . . . . . . . . Random Instance Selection

RNN . . . . . . . . . . . Recurrent Neural Network

SAL. . . . . . . . . . . .Belfast Sensitive Artificial Listener

SIS . . . . . . . . . . . . .Sparseness-based Instance Selection

SLC. . . . . . . . . . . .Sleepy Language Corpus

SMO . . . . . . . . . . . Sequential Minimal Optimisation

SMOTE. . . . . . . . Synthetic Minority Oversampling TEchnique

SNN . . . . . . . . . . . Selective Nearest Neighbour rule

SSC . . . . . . . . . . . . Speaker State Challenge

SSE . . . . . . . . . . . . Sum of Squared Errors
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Acronyms

SSL . . . . . . . . . . . . Semi-Supervised Learning

SS . . . . . . . . . . . . . Synthesised Speech

STC . . . . . . . . . . . Speaker Trait Challenge

STDFT . . . . . . . . Short-Time Discrete Fourier Transform

STFT . . . . . . . . . . Short-Time Fourier Transform

SUSAS . . . . . . . . . Speech under Simulated and Actual Stress

svCL . . . . . . . . . . . single-view Cooperative Learning

xvCL. . . . . . . . . . .mixed-view Cooperative Learning

mvCL . . . . . . . . . . multi-view Cooperative Learning

SVM . . . . . . . . . . . Support Vector Machine

SVQ . . . . . . . . . . . Split Vector Quantisation

TSVM . . . . . . . . . Transductive SVM

TTS . . . . . . . . . . . Text-To-Speech

UAR . . . . . . . . . . . Unweighted Average Recall

VAD . . . . . . . . . . . Voice Activity Detection

VAM . . . . . . . . . . . Vera-Am-Mittag

VQ. . . . . . . . . . . . .Vector Quantisation

WAR. . . . . . . . . . .Weighted Average Recall

WER . . . . . . . . . . Word Error Rate

WOZ. . . . . . . . . . .Wizard-of-Oz

ZCR . . . . . . . . . . . Zero-Crossing Rate
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List of Symbols

Acoustic Feature Extraction

n . . . . . . . . . . . . . . . index of sampling

S(n) . . . . . . . . . . . discrete speech signal

k . . . . . . . . . . . . . . . time-shift

R(k) . . . . . . . . . . . autocorrelation function

F0 . . . . . . . . . . . . . . fundamental frequency (pitch)

T0 . . . . . . . . . . . . . . pitch period

E . . . . . . . . . . . . . . Energy

Z . . . . . . . . . . . . . . zero-crossing rate

sgn[·]. . . . . . . . . . .sign function

f . . . . . . . . . . . . . . . frequency

Mel(f) . . . . . . . . .Mel-scale frequency

m(l). . . . . . . . . . . .the l-th log filter bank amplitudes on Mel-scale frequency

c(i) . . . . . . . . . . . . the i-th Mel-frequency correlation coefficient

n′ . . . . . . . . . . . . . . index of frame

J(n′) . . . . . . . . . . . jitter

A(n′) . . . . . . . . . . .peak to peak amplitude difference

sh(n′) . . . . . . . . . . shimmer
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Acronyms

Classification

n . . . . . . . . . . . . . . .number of examples

x . . . . . . . . . . . . . . . feature vector

y . . . . . . . . . . . . . . . referenced class

X . . . . . . . . . . . . . . feature space

Y . . . . . . . . . . . . . . prediction space (class domain)

Rd . . . . . . . . . . . . . d-dimensional feature space

w . . . . . . . . . . . . . . normal vector of SVM hyperplane

b . . . . . . . . . . . . . . . bias

α . . . . . . . . . . . . . . .Lagrange multiplier

L(·) . . . . . . . . . . . . Lagrange function

K(xi, xj) . . . . . . . kernel function

C . . . . . . . . . . . . . . constant

φ(x). . . . . . . . . . . .high-dimensional feature mapping

D . . . . . . . . . . . . . . database

p . . . . . . . . . . . . . . . number of positive examples

n . . . . . . . . . . . . . . .number of negative examples

k . . . . . . . . . . . . . . . number of subsets

A . . . . . . . . . . . . . . attribute set

H(·). . . . . . . . . . . .entropy

IG(·) . . . . . . . . . . . information grain

GR(·) . . . . . . . . . . gain ratio

T . . . . . . . . . . . . . . number of trees

x′t . . . . . . . . . . . . . . random attribute subspace for training the t-th tree

βi . . . . . . . . . . . . . . activation of the i-th node

αi . . . . . . . . . . . . . . input of the i-th node

wij . . . . . . . . . . . . . the weight from node i to node j

f . . . . . . . . . . . . . . .activation function

y . . . . . . . . . . . . . . .predicted output vector

z . . . . . . . . . . . . . . . designed output vector
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Acronyms

J (θ) . . . . . . . . . . . objective function

E(z,y) . . . . . . . . . sum of squared errors between z and y

∆wij . . . . . . . . . . . weight change

δi . . . . . . . . . . . . . . error of the i-th node

λ . . . . . . . . . . . . . . . learning rate

η . . . . . . . . . . . . . . . momentum

γ . . . . . . . . . . . . . . .weight decay

x1:T . . . . . . . . . . . . time sequential (1:T ) feature vectors

I . . . . . . . . . . . . . . . input nodes

H . . . . . . . . . . . . . . hidden nodes

K . . . . . . . . . . . . . . output nodes

xi,t . . . . . . . . . . . . . input of the i-th node at time t

b . . . . . . . . . . . . . . .bias vector

fg . . . . . . . . . . . . . . logistic sigmoid activation function of forget gates

fi . . . . . . . . . . . . . . tanh activation function of input gate

fo . . . . . . . . . . . . . . tanh activation function of output gate

it . . . . . . . . . . . . . . .activation of input gate at time t

ot . . . . . . . . . . . . . . activation of output gate at time t

ft . . . . . . . . . . . . . . activation of forget gate at time t

xt . . . . . . . . . . . . . . input of node at time t

ht . . . . . . . . . . . . . . output of hidden node at time t

hft . . . . . . . . . . . . . .output of forward hidden node at time t

hbt . . . . . . . . . . . . . . output of backward hidden node at time t

ct . . . . . . . . . . . . . . cell value of memory block at time t

Evaluation Metrics

tp . . . . . . . . . . . . . . case is positive and predicted positive

tn . . . . . . . . . . . . . . case is negative and predicted negative

fp . . . . . . . . . . . . . . case is positive and predicted negative
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Acronyms

fn . . . . . . . . . . . . . . case is negative and predicted positive

λ . . . . . . . . . . . . . . .weight

K . . . . . . . . . . . . . . number of classes

S . . . . . . . . . . . . . . number of substitutions

D . . . . . . . . . . . . . . number of deletions

I . . . . . . . . . . . . . . . number of insertions

N . . . . . . . . . . . . . . number of total words

X, Y . . . . . . . . . . . variables

σX . . . . . . . . . . . . . standard deviation of variables X

µX . . . . . . . . . . . . . mean of variables X

cov . . . . . . . . . . . . . covariance

E[·] . . . . . . . . . . . . expectation

Methodology for Data Enrichment

D . . . . . . . . . . . . . . database

q . . . . . . . . . . . . . . . number of databases

n . . . . . . . . . . . . . . .number of examples

k . . . . . . . . . . . . . . . number of classes

m . . . . . . . . . . . . . . number of labellers

x . . . . . . . . . . . . . . . feature vector

Rd . . . . . . . . . . . . . d-dimensional space

y . . . . . . . . . . . . . . . preferred label

h . . . . . . . . . . . . . . . classifier

pc . . . . . . . . . . . . . . probability of chance-level

po . . . . . . . . . . . . . . probability of observed labellers’ agreement

κ . . . . . . . . . . . . . . .Kappa coefficient

Ai . . . . . . . . . . . . . .binary annotation by the i-th labeller

P . . . . . . . . . . . . . . fused database

x′ . . . . . . . . . . . . . . normalised feature vector
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Acronyms

xmin . . . . . . . . . . . .minimum feature vector

xcentre . . . . . . . . . . central feature vector

xmax . . . . . . . . . . . maximum feature vector

x̄ . . . . . . . . . . . . . . .mean feature vector

σ̄ . . . . . . . . . . . . . . . standard deviation vector

A . . . . . . . . . . . . . . learning algorithm

r . . . . . . . . . . . . . . . number of learning rounds

Dmaj . . . . . . . . . . . data subset of majority class

Dmin . . . . . . . . . . . data subset of minority class

δ . . . . . . . . . . . . . . . random value

E{x} . . . . . . . . . . centre of a set of data

d(x,x′) . . . . . . . . . distance of data sets x and x′

PD . . . . . . . . . . . . . percentage of discarded subset

PS . . . . . . . . . . . . . percentage of selected subset

Ri . . . . . . . . . . . . . .quantity ratio of examples belonging to class-i

l . . . . . . . . . . . . . . . human agreement level

p(y|x) . . . . . . . . . . conditional probability of class y given input x

p(x, y). . . . . . . . . .joint probability distribution

L . . . . . . . . . . . . . . labelled data set

LD . . . . . . . . . . . . . labelled data set after class balancing

U . . . . . . . . . . . . . . unlabelled data set

S . . . . . . . . . . . . . . data subset selected per learning iteration

n′ . . . . . . . . . . . . . . number of selected instances per learning iteration

H . . . . . . . . . . . . . . acoustic model

Ch/m/l . . . . . . . . . . high/medium/low confidence value

X . . . . . . . . . . . . . . feature space

Methodology for Data Optimisation

p . . . . . . . . . . . . . . . number of subvectors
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Acronyms

s . . . . . . . . . . . . . . . feature subvector

k . . . . . . . . . . . . . . . dimensionality of subvector

v . . . . . . . . . . . . . . .codevector

C . . . . . . . . . . . . . . codebook

dji . . . . . . . . . . . . . .Euclidean distance between si and vji

idx . . . . . . . . . . . . . index of codevector

s(t) . . . . . . . . . . . . clean speech signal

ŝ(t) . . . . . . . . . . . . distorted speech signal

r(t) . . . . . . . . . . . . convolutional noise

n(t) . . . . . . . . . . . . additive noise

re(t). . . . . . . . . . . .early reverberation

rl(t) . . . . . . . . . . . . late reverberation

S(t, f). . . . . . . . . .STDFT of speech signal

R(t, f) . . . . . . . . . STDFT of reverberation signal

τ . . . . . . . . . . . . . . . frame delay

D(·) . . . . . . . . . . . . discrete cosine transform

xd . . . . . . . . . . . . . . feature vector of distorted speech

xc . . . . . . . . . . . . . . feature vector of clean speech

x∆ . . . . . . . . . . . . . delta feature vector between clean and distorted speech

x̂c . . . . . . . . . . . . . . enhanced feature vector of distorted speech

x̂∆ . . . . . . . . . . . . . enhanced delta feature vector between clean and distorted speech
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[7] W. Han, Z. Zhang, J. Deng, M. Wöllmer, F. Weninger, and B. Schuller, “To-
wards distributed recognition of emotion in speech,” in Proc. of ISCCSP,
Rome, Italy, 2012, pp. 1–4.

[8] Z. Zhang, E. Coutinho, J. Deng, and B. Schuller, “Distributed recognition in
computational paralinguistics,” IEEE Transactions on Affective Computing,
2014, to appear.

153



Bibliography
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[210] M. Wöllmer, Z. Zhang, F. Weninger, B. Schuller, , and G. Rigoll, “Feature en-
hancement by bidirectional LSTM networks for conversational speech recogni-
tion in highly non-stationary noise,” in Proc. of ICASSP, Vancouver, Canada,
2013, pp. 6822–6826.
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[226] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsupervised learning
in cross-corpus acoustic emotion recognition,” in Proc. of IEEE workshop on
Automatic Speech Recognition and Understanding, Big Island, HY, 2011, pp.
523–528.

[227] G. Tur and A. Stolcke, “Unsupervised language model adaptation for meeting
recognition,” in Proc. of ICASSP, Honolulu, HY, 2007, pp. 173–176.

[228] V. Frinken, A. Fischer, H. Bunke, and A. Foornes, “Co-training for handwrit-
ten word recognition,” in Proc. of 2011 Document Analysis and Recognition
(ICDAR), Beijing, China, 2011, pp. 314–318.

[229] L. Zao, D. Cavalcante, and R. Coelho, “Time-frequency feature and AMS-
GMM mask for acoustic emotion classification,” IEEE Signal Processing Let-
ters, vol. 21, no. 5, pp. 620–624, 2014.

[230] J. Hansen and S. Bou-Ghazale, “Getting started with SUSAS: A speech under
simulated and actual stress database,” in Proc. of EUROSPEECH, Rhodes,
Greece, 1997, pp. 1743–1746.

[231] Z. Zhang, E. Coutinho, J. Deng, and B. Schuller, “Cooperative learning and
its application to emotion recognition from speech,” IEEE Transactions on
Audio, Speech, and Language Processing, 2014, in peer review.

[232] Z. Zhang, J. Deng, and B. Schuller, “Co-training succeeds in computational
paralinguistics,” in Proc. of ICASSP, Vancouver, Canada, 2013, pp. 8505–
8509.

[233] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Syn-
thesis lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp.
1–130, 2009.

[234] Z. Zhang and B. Schuller, “Active learning by sparse instance tracking and
classifier confidence in acoustic emotion recognition,” in Proc. of INTER-
SPEECH, Portland, OR, 2012, 4 pages.

172



Bibliography

[235] Z. Zhang, J. Deng, E. Marchi, and B. Schuller, “Active learning by label
uncertainty for acoustic emotion recognition,” in Proc. of INTERSPEECH,
Lyon, France, 2013, pp. 2856–2860.

[236] S. Salzberg, “On comparing classifiers: Pitfalls to avoid and a recommended
approach,” Data mining and knowledge discovery, vol. 1, no. 3, pp. 317–328,
1997.

[237] K. Huang and S. Aviyente, “Sparse representation for signal classification,” in
Proc. of NIPS, Vancouver, Canada, 2006, pp. 609–616.

[238] B. Schuller, M. Wöllmer, F. Eyben, G. Rigoll, and D. Arsic, “Semantic speech
tagging: Towards combined analysis of speaker traits,” in Proc. of AES 42nd
International Conference, Ilmenau, Germany, 2011, pp. 89–97.

[239] D. Ververidis and C. Kotropoulos, “Automatic speech classification to five
emotional states based on gender information,” in Proc. of European Signal
Processing Conference (EUSIPCO), Vienna, Austria, 2004, pp. 341–344.

[240] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75,
1997.

[241] R. Reisenzein and H. Weber, “Personality and emotion,” in The Cambridge
handbook of personality psychology. Cambridge, UK: Cambridge University
Press, 2009, pp. 54–71.

[242] A. Batliner, C. Hacker, S. Steidl, E. Nöth, S. D’Arcy, M. Russell, and M. Wong,
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