
min
w,b

1
2‖w‖

2
2 + γ

n

n∑

i=1
κξi + (1− κ)ξ∗i

subject to yi − (wTxi + b) ≤ ξi, ∀i = 1, . . . , n,
wTxi + b− yi ≤ ξ∗i , ∀i = 1, . . . , n,
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . , n.

X2 = (∑m
i=1 (d1i − e1i))2

∑m
i=1 σ

2
1i

.

Ŝe(τ) =
∑n
i=1 I(f̂(xi) > τ)I(di = 1)

∑n
i=1 I(di = 1) = true positives

true positives + false negatives ,

Ŝp(τ) =
∑n
i=1 I(f̂(xi) ≤ τ)I(di = 0)

∑n
i=1 I(di = 0) = true negatives

true negatives + false positives .

argmin
Q,α

m∑

k=1
αrktr

(
QTL(k)Q

)

subject to QTQ = Id,
m∑

k=1
αk = 1, αk ≥ 0.

P (f1|ρ)
P (f2|ρ) = B12

P (f1)
P (f2) .

‖g‖2
L2 =

∫

X
g2(u)du <∞.

θ
(p)
t ∼ P

(
θ(p) |X(p)

obs,X
(1)
t , . . . ,X

(p−1)
t ,Z,Y

)
,

X
(p)
t ∼ P

(
X

(p)
mis |X(p)

obs,X
(1)
t , . . . ,X

(p−1)
t ,Z,Y ,θ

(p)
t

)
,

ŜeC(τ, t) =
∑n
i=1 I(f̂(xi) > τ)I(yi ≤ t)ωi

n(1− ŜT (t))
,

ŜpD(τ, t) =
∑n
i=1 I(f̂(xi) ≤ τ)I(yi > t)

nŜY (t)
.

f̂(x) =
M∑

m=1
ν · α̂j∗

m
xj∗

m
=

M∑

m=1
ν · xT θ̂m = xT

(
M∑

m=1
ν · θ̂m

)
.

max
j=1,...,p

max
τ
|Sj,τ |.

argmin
Q,α

m∑

k=1
αktr

(
QTL(k)Q

)
.

Se(τ) = P (f̂(xi) > τ | di = 1),
Sp(τ) = P (f̂(xi) ≤ τ | di = 0),
ROC = {(1− Sp(τ), Se(τ))}τ ∈R,

(Dw)k,k =




1 if wTxj > w
Txi − 1,

0 else.

(AT
w1lmw)i = |SV+

i ∪ SV−i |
= |{(s, t) | yt < yi < ys ∧ δt = 1 ∧ δi = 1 ∧

wTxs − 1 < wTxi < w
Txt + 1}|

= l−i − l+i .

ti =
(
− log ui

λ exp(f(xi))

)1/k

,

∂LCI(f)
∂f(xk)

=
n∑

i=1

wki exp((f(xi)− f(xk))/σ)
σ (1 + exp((f(xi)− f(xk))/σ))2

− wik exp((f(xk)− f(xi))/σ)
σ (1 + exp((f(xk)− f(xi))/σ))2

θ
(1)
t ∼ P

(
θ(1) |X(1)

obs,X
(2)
t−1, . . . ,X

(p)
t−1,Z,Y

)
,

X
(1)
t ∼ P

(
X

(1)
mis |X(1)

obs,X
(2)
t−1, . . . ,X

(p)
t−1,Z,Y ,θ

(1)
t

)
,

wik =




∆Ŝ(rk)[Ŝ(ri)]−1 if ri < rk,

0 else.

f(z) =
n∑

i=1
βik(xi, z),

Rhybrid(β, b) = 1
2β

TKβ + γ

2
[
α (1lm −AKβ)T Dβ (1lm −AKβ)

+ (1− α) (y −Kβ − b1ln)T Rβ,b (y −Kβ − b1ln)
]
.

Zk =
m∑

i=1
w(ti) [dki − eki]

σ2
kk =

m∑

i=1
w(ti)2

[
rki
ri

(
1− rki

ri

)(
ri − di
ri − 1

)
di

]

σ2
kg = −

m∑

i=1
w(ti)2

[
rki
ri
· rgi
ri

(
ri − di
ri − 1

)
di

]
, k 6= g.

min
w,b

1
2‖w‖

2
2 + γ

n

n∑

i=1
ωi [κξi + (1− κ)ξ∗i ]

subject to log yi − (wTxi + b) ≤ ξi, ∀i = 1, . . . , n,
wTxi + b− log yi ≤ ξ∗i , ∀i = 1, . . . , n,
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . , n.

j∗m = argmin
j=1,...,p

n∑

i=1
(ỹi − α̂jxij)2 ,

h(t|xi1, . . . , xip) = h0(t) exp



p∑

j=1
xijβj


⇔ log h(t|xi)

h0(t) = xTi β,

∂RRegr.(w, b)
∂b

= γ1lTnRw,b(Xw + b1ln − y)

∂2RRegr.(w, b)
∂b∂b

= γ1lTnRw,b1ln = γ|SV|
∂2RRegr.(w, b)

∂b∂wk
= γ

∑

i∈SV
xik = γ

(
1lTnRw,bX

)
k

(J (k))i,j =




exp
(
−(d(k)

RSF(xi,xj))2/2σ2
)

if j ∈ kNN(i) ∧ δi = δj,

0 otherwise.

log ti = β0 + xTi β + εi, ∀i = 1, . . . , n,

f̂RSF(x) =
m∑

i=1

1
B

B∑

b=1
Ĥb(yi|x).

D = {(xi, yi, δi)}ni=1.

P (subject experiences event at yi | one event at yi)

=P (subject experiences event at yi | event-free up to yi)
P (one event at yi | event-free up to yi)

= h(yi|xi)∑n
j=1 I(yj ≥ yi)h(yj|xj)

= h0(yi) exp(xTi β)
∑n
j=1 I(yj ≥ yi)h0(yj) exp(xTj β)

= exp(xTi β)
∑n
j=1 I(yj ≥ yi) exp(xTj β) = exp(xTi β)

∑
j∈Ri

exp(xTj β) ,

∂ logPL(f)
∂f(xk)

= δk −
n∑

i=1
δi
I(yk ≥ yi) exp(f(xk))∑

j∈Ri
exp(f(xj))

.

d(k)
RSF(xi,xj) = 1− prox(k)(x(k)

i ,x
(k)
j )

= 1− 1
B

B∑

b=1

Jb∑

v=1
I(x(k)

i ∈ I(k)
b,v ∧ x(k)

j ∈ I(k)
b,v ),

XTAT
wAwXv = XT




(l+1 + l−1 )xT1 v − (σ+
1 + σ−1 )

...
(l+n + l−n )xTnv − (σ+

n + σ−n )


 .

logPL(β) =
n∑

i=1
δi


xTi β − log


∑

j∈Ri

exp(xTj β)



 .

min
q∈R

n∑

i=1
ρκ(yi − q),

R(w) = 1
2w

Tw + γ

2
∑

i,j∈P
max(0, 1− (wTxi −wTxj))2,

G(t) = F (t)
F (tmax)

= P (T ≤ t | T ≤ tmax),

LLjλ(ûj;η) ≈ LLj(0p;η) + ∂LLj(θj;η)
∂θj

(α̂j − 0)

= LLk(0p;η) + ∂LLj(θj;η)
∂θj

(
−∂

2LLj(θj;η)
∂θ2

j

+ λ

)−1
∂LLj(θj;η)

∂θj
,

B12 = P (ρ|f1)
P (ρ|f2) =

∫
P (ρ|θ)P (θ|f1)dθ

∫
P (ρ|θ)P (θ|f2)dθ ,

qnew =
n∑

i=1
wiqi subject to

n∑

i=1
wi = 1.

[O(n log n) +O(np+ p+ n log n)] · N̄CG ·NNewton,

wi =
m∑

k=1
αkw

(k)
i , ∀i = 1, . . . , n.

min
f∈Hk

1
2‖f‖

2
Hk

+ γ

2
∑

(i,j)∈P
max(0, 1− (f(xi)− f(xj)))2

∫

X

∫

X
k(u, v)g(u)g(v)dudv ≥ 0

P (Y = ti ∩ δi = 1) = P (Y = ti | δi = 1)P (δi = 1)
= P (T = ti | T ≤ ci)P (T ≤ ci))

= f(ti)
F (ti)

F (ti) = f(ti)

Ψ(i, j) =





1 if f̂(xi) > f̂(xj),
0.5 if f̂(xi) = f̂(xj) and i 6= j,

0 else.

fH(x) = 0⇔ x2
1 + x2

2 = 1.

F (t|x) = F0(t exp(−xTβ)),
f(t|x) = f0(t exp(−xTβ)) exp(−xTβ),
h(t|x) = h0(t exp(−xTβ)) exp(−xTβ).

∂RRegr.(β, b)
∂β

= Kβ + γKRβ,b(Kβ + b1ln − y)

∂2RRegr.(β, b)
∂β∂βT

= K + γKRβ,bK,

f(t) = − d

dt
S(t) = −S ′(t)

h(t) = f(t)
S(t)

H(t) = − logS(t)⇔ S(t) = exp(−H(t))

σ2
kk =

m∑

i=1

rki
ri

(
1− rki

ri

)(
ri − di
ri − 1

)
di

σ2
kg = −

m∑

i=1

rki
ri
· rgi
ri

(
ri − di
ri − 1

)
di, k 6= g,

wik =




∆Ŝ(rk)[Ŝ(ri)]−1 if ri < rk,

0 else.

min
β,b

βTKβ + γ
n∑

i=1
L(yi,Kiβ + b),

Err(f̂D) = E(x0,y0)∼(X,Y )
[
L(y0, f̂D(x0)) | f̂D,D

]
,

LD(α) =1
2

∑

(i,j)∈P

∑

(u,v)∈P
αijαuv〈xi − xj,xu − xv〉

−
∑

(i,j)∈P

∑

(u,v)∈P
αijαuv〈xi − xj,xu − xv〉+

∑

(i,j)∈P
αij

=
∑

(i,j)∈P
αij −

1
2

∑

(i,j)∈P

∑

(u,v)∈P
αijαuv〈xi − xj,xu − xv〉.

R(β) = 1
2β

TKβ + γ

2
(
mβ + βTK

(
AT
βAβKβ − 2AT

β1lmβ
))

∂R(β)
∂β

= Kβ + γK
(
AT
βAβKβ −Aβ1lmβ

)

∂2R(β)
∂β∂βT

= K + γKAT
βAβK,

(
mP∑

i=1
dLi − rLi

dLi + dRi
rLi + rRi

)2

=
(
mP∑

i=1
dLi −

nP∑

k=1
I(xkj ≤ τ)ĤP (yk)

)2

,

PL(β) =
n∏

i=1

[
exp(xTi β)

∑
j∈Ri

exp(xTj β)

]δi

.

H1 : ∃0 ≤ t ≤ τ | S1(t) > S2(t) (group 1 has better prognosis than group 2),
H2 : ∃0 ≤ t ≤ τ | S1(t) < S2(t) (group 1 has worse prognosis than group 2),
H3 : ∃0 ≤ t ≤ τ | S1(t) 6= S2(t) (patients of group 1 and 2 have different prognosis),

k(xi,xj) = k1(xi,xj)k2(xi,xj),

ỹij =



−1 if yi < yj,

+1 if yi > yj.

min
w,b

1
2‖w‖

2
2 + γ

n

n∑

i=1
ρκ(yi − (wTxi + b)).

S(t | xnew) = exp(−H(t | xnew))
= exp(− exp(xTnewβ)H0(t))

= [exp(−H0(t))]exp(xT
newβ)

= S0(t)exp(xT
newβ).

X2 = ZTΣ−1Z k(xi,xj) = c1k1(xi,xj) + c2k2(xi,xj)

∂LLj(θj;η)
∂θj

=
n∑

i=1
δi

[
xij −

∑
k∈Ri

exp(ηk + xkjθj)xkj∑
k∈Ri

exp(ηk + xkjθj)

]

∂2LLj(θj;η)
∂θ2

j

= −
n∑

i=1
δi



∑
k∈Ri

exp(ηk + xkjθj)x2
kj∑

k∈Ri
exp(ηk + xkjθj)

−
(∑

k∈Ri
exp(ηk + xkjθj)xkj∑

k∈Ri
exp(ηk + xkjθj)

)2

 .

fH(x) = wT
Hφ(x) + b = w1x

2
1 + w2

√
2x1x2 + w3x

2
2 + b.

logPLA-LASSO(β) = logPL(β)− λ1

p∑

j=1
wj|βj|,

[O(n log n) +O(np+ p+ n log n)] · N̄CG ·NNewton,

argmin
Q

n∑

i=1

n∑

j=1
‖qi − qj‖2W i,j = argmin

Q
tr
(
QTLQ

)
,

wnew = w − µ
(
∂2R(w)
∂w∂wT

)−1
∂R(w)
∂w

argmin
f(·)

E [L(y, f(x))] ,

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t ≥ 0.

ĉHarrell = 1
|P|

∑

(i,j)∈P
I(f̂(xi) > f̂(xj)).

E(ti|ti > ci,xi) = β0 + xTi β + E(εi|εi > ci − β0 − xTi β)

= β0 + xTi β +
∫ ∞

ci−β0−xT
i β

(
u

1− F (ci − β0 − xTi β)

)
dF (u)

PLStratified(β) =
K∏

k=1
PLk(β),

Ū = 1
m

m∑

k=1
U (j)

B = 1
m− 1

m∑

k=1
(θ̂(k) − θ̄)(θ̂(k) − θ̄)T

Var(θ̄) = Ū + m+ 1
m

B.

SpS(τ, t) = P (f̂(xi) ≤ τ | ti > t∗),
ROC I/S(t) = {(1− SpS(τ), SeI(τ))}τ ∈R,

AUROC I/S(t) = P (f̂(xi) > f̂(xj) | ti = t ∧ tj > t∗).

LL(k) =
∑

i∈Ik

δi −
∑

i∈Ik

δi log
(∑

i∈Ik
δi∑

i∈Ik
yi

)
.

logPLG-LASSO(β) = logPL(β)− λ1

G∑

g=1

√
|Gg|

∑

j∈Gg

β2
j ,

R(w) = 1
2w

Tw + γ

2
(
1lTmDw −wTXTATDw

)
(1lm −AXw)

= 1
2w

Tw + γ

2
(
mw − 2wTXTATD1lm +wTXTATDwAXw

)

= 1
2w

Tw + γ

2
(
mw +wTXT

(
AT
wAwXw − 2AT

w1lmw
))
.

h(t|xi, k) = h0k
(t) exp

(
xTi β

)
, k = 1, . . . , K.

∂LP (w, ξ,α,α′)
∂w

= w −
∑

(i,j)∈P
αij(xi − xj) = 0,

∂LP (w, ξ,α,α′)
∂ξij

= γ − αij − α′ij = 0,

wT (xi − xj)− 1 + ξij ≥ 0, ∀(i, j) ∈ P ,
ξij ≥ 0, ∀(i, j) ∈ P ,

αij(wT (xi − xj)− 1 + ξij) = 0, ∀(i, j) ∈ P ,
α′ijξij = 0, ∀(i, j) ∈ P ,
αij ≥ 0, ∀(i, j) ∈ P ,
α′ij ≥ 0, ∀(i, j) ∈ P .

ĉj =
∑
u6=v δuI(yu < yv)Ψ(u, v)
∑
u6=v δuI(yu < yv)

,

Ψ(u, v) =





1 if xuj > τ and xvj ≤ τ ,

0.5 if I(xuj > τ) = I(xvj > τ),
0 else.

min
f∈Hk

1
2‖f‖

2
Hk

+ γ
n∑

i=1
L(yi, δi, f(xi) + b),

P (T > t | T ≥ lmin) = S(t)
S(lmin) ,

ρ = nLnR
nP (nL + nR)

(∫ tmax
L

0
ŜL(u)du−

∫ tmax
R

0
ŜR(u)du

)2

,

min
w

1
2‖w‖

2
2 + γ

∑

(i,j)∈P
max(0, 1−wT (xi − xj)).

min
f∈Hk,b∈R

1
2‖f‖

2
Hk

+ γ

2

n∑

i=1
[δi(yi − f(xi)− b) + (1− δi) max(0, yi − f(xi)− b)]2

Ŝα(t) =
∏

{i|α≤ti≤t}

(
1− di
|Rleft

i |

)
if t1 ≤ t,

LCI(f) =
n∑

i=1

n∑

j=1
wij

[
1 + exp

(
f(xj)− f(xi)

σ

)]−1

wij = ω2
i I(yi < yj)∑n

u=1
∑n
v=1 ω

2
uI(yu < yv)

,

P (R |X) = P (R |Xobs,Xmis).

∏

k∈J

∏

i∈Ik

(h0(yi)θk)δi exp(−H0(yi)).

f(t) = λk(λt)k−1 exp(−(λt)k) and F (t) = 1− exp(−(λt)k).

L(β) =
m∏

i=1
[h(yi)S(yi)]δi [exp(−H(yi))]1−δi

=
m∏

i=1
[h(yi) exp(−H(yi))]δi [exp(−H(yi))]1−δi

=
m∏

i=1
[h(yi)]δi exp(−H(yi)).

min
w,b

1
2‖w‖

2
2 + γ


∑

i∈L
ξi +

∑

j∈U
ξ∗j




subject to yi − (wTxi + b) ≤ ε+ ξi, ∀i ∈ L,
wTxj + b− yj ≤ ε+ ξ∗j , ∀j ∈ U ,
ξi ≥ 0, ∀i ∈ L,
ξ∗j ≥ 0, ∀j ∈ U .

R(β) = 1
2β

TKβ + γ

2 (1lm −AKβ)T Dβ (1lm −AKβ) ,

∂2 logPL(β)
∂β2

k

= −
n∑

i=1

δi
w2
i





∑

j∈Ri

exp(xTj β)x2
jk


wi −


∑

j∈Ri

exp(xTj β)xjk




2



= −
n∑

i=1
δi



∑
j∈Ri

exp(xTj β)x2
jk

wi
−
(∑

j∈Ri
exp(xTj β)xjk
wi

)2
 ,

h(t|x1)
h(t|x2) = h0(t) exp(xT1 β)

h0(t) exp(xT2 β) = exp(xT1 β − xT2 β) = exp



p∑

j=1
(x1j − x2j)βj


 .

t̃i = β̂0 + xTi β̂ +
n∑

k=1
δkwik

(
yk − β̂0 − xTk β̂

)
,

max
α

αT1lm −
1
2α

TAKATα

subject to 0 ≤ αij ≤ γ, ∀(i, j) ∈ P .

h(t) = lim
∆t→0

1
∆tP (t ≤ T < t+ ∆t | T ≥ t)

= lim
∆t→0

1
∆t ·

P ({t ≤ T < t+ ∆t} ∩ {T ≥ t})
P (T ≥ t)

= lim
∆t→0

1
∆t ·

P (t ≤ T < t+ ∆t)
P (T ≥ t)

= lim
∆t→0

F (t+ ∆t)− F (t)
∆t · 1

1− F (t)

= d

dt
F (t) · 1

1− F (t) = f(t)
S(t) .

L = In −D−
1
2WD−

1
2 ,

∂2 logPL(β)
∂β∂βT

=
n∑

i=1

δi
w2
i

X̄T
i

[
wi · diag(exp(Xβ))− exp(Xβ) exp(Xβ)T

]
X̄ i.

L(β) =
m∏

i=1
[f(yi)]δi [S(yi)]1−δi

F (t) = 1− exp(−(λt)k)
S(t) = exp(−(λt)k).

SV+
i+1 = {s|wTxs < w

Txi+1 + 1 ∧ δi+1 = 1}
= {s|wTxs < w

Txi + 1} ∪ {s|wTxi + 1 ≤ wTxs < w
Txi+1 + 1 ∧ δi+1 = 1}.

RRegr.(w, b) = 1
2w

Tw + γ

2 (y −Xw − b1ln)T Rw,b (y −Xw − b1ln) .

f̂(x) =
M∑

m=0
βmg(x; θm).

H(t) =
∫ t

0
h(u)du

S(t) =
∏

{i|ti≤t}
(1− h(ti)).

argmin
α,Q(1),...,Q(m)

m∑

k=1
αk

n∑

i=1

n∑

j=1
‖q(k)

i − q(k)
j ‖2W

(k)
i,j

= argmin
α,Q(1),...,Q(m)

m∑

k=1
αktr

((
Q(k)

)T
L(k)Q(k)

)
,

p = 1
k

k∑

i=1
I(perf(f,D0) ≤ perf(f, D̃i)),

Pk-NN = {(i, j) | yi > yj ∧ δj = 1 ∧ j is k nearest neighbor of i}ni,j=1.
h(t|x1, . . . , xj, . . . , xp)

h(t|x1, . . . , xj + 1, . . . , xp)
= exp (βj) .

∂ logPL(β)
∂βk

=
n∑

i=1
δi

[
xik −

∑
j∈Ri

exp(xTj β)xjk∑
j∈Ri

exp(xTj β)

]

=
n∑

i=1
δi

[
xik −

∑
j∈Ri

exp(xTj β)xjk
wi

]
,

S(t) = 1− F (t) = 1− (1− exp(−(λt)k)) = exp(−(λt)k),

h(t) = f(t)
S(t) = λk(λt)k−1 exp(−(λt)k)

exp(−(λt)k)) = λk(λt)k−1,

H(t) = − logS(t) = − log(exp(−(λt)k)) = (λt)k.

ti = δiyi + (1− δi)E(ti|ti > yi,xi).

(J (k))i,j =
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RSF(xi,xj))2/2σ2
)
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H0 : F (ti | xij ≤ τ) = F (ti | xij > τ), ∀t, τ ∈ R, 1 ≤ j ≤ p,

f(x) =
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m=1
βmg(x;θm),

BScensored(t) = 1
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n∑

i=1
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Ĝ(yi)
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Ĝ(t)
,

H(t | xnew) =
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0
h(u | xnew)du
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∫ t

0
h0(u) exp(xTnewβ)du

= exp(xTnewβ)
∫ t

0
h0(u)du

= exp(xTnewβ)H0(t).

S(ti) =
∏

{j|tj≤ti}

S(tj)
S(tj)

S(ti) = S(t1)S(t2) · · ·S(ti−1)S(ti)
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1
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2
2 + γ
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i∈L
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∑

j∈U
ξ∗j


+ θ

n∑

i=1
ζi

subject to yi − (wTxi + b) ≤ ε+ ξi, ∀i ∈ L,
wTxj + b− yj ≤ ε+ ξ∗j , ∀j ∈ U ,
wTxi −wTxj ≥ yi − yj − ζi, ∀i ∈ P1-NN,

ξi ≥ 0, ∀i ∈ L,
ξ∗j ≥ 0, ∀j ∈ U ,
ζi ≥ 0, ∀i = 1, . . . , n.

∂RRegr.(β, b)
∂b

= γ1lTnRβ,b(Kβ + b1ln − y)

∂2RRegr.(β, b)
∂b∂b

= γ1lTnRβ,b1ln = |SV|
∂2RRegr.(β, b)

∂b∂βk
= γ

∑

i∈SV
k(xi,xk) = γ

(
1lTnRβ,bK

)
k
.

KAT
βAβKv = K
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1 + σ−1 )

...
(l+n + l−n )Knv − (σ+

n + σ−n )


 ,

Hv =

 0 0Tp

0p Ip


v + γ


 |SV| 1lTnRw,bX

XTRw,b1ln XTRw,bX


v.

f(x) = 0.05xage + 0.8xsex + 0.03x2
N1 + 0.3x−2

N2 − 0.1xN7 + 0.6xN4/xN2
+xN1/xN8 − 0.9 tanh(xN6)/xN5 + 0.09xC1/xsex + 0.03xC2/xsex + 0.3xC3/xsex.

PLBreslow(β) =
m∏

i=1




exp(xTi β)
[∑

j∈Ri
exp(xTj β)

]di




δi

,

Rhybrid(w, b) = 1
2w

Tw + γ

2


α

∑

i,j∈P
max(0, 1− (wTxi −wTxj))2

+ (1− α)
n∑

i=1
(ζw,b(yi,xi, δi))2

]
.

ai = δi −
γi∑

k=1

δj
nP − γk + 1 , ∀i = 1, . . . , nP ,

Sj,τ =
∑nP
i=1 I(xij ≤ τ)(ai − nLµa(P ))√

nL
(
1− nL

nP

)
σ2
a(P )

,

S(t|x) = S0(t exp(−xTβ)),
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Abstract

Many countries are nowadays challenged by ever-growing government expenditures
for health care, which many seek to lower by employing electronic health records.
Electronic health records systematically collect patients’ past and current treatments
with the aim at lowering administrative overhead and identifying inadequate treatments.
Moreover, having access to large collections of clinical data creates an opportunity for
clinical research. However, analyzing health records is often very challenging: first,
they comprise a large and heterogeneous set of patient data, and second, they consist
of variables collected from a wide range of sources, such as medications, allergies,
biomarkers, medical images, and genetic markers – each of which offers a different
partial view on a patient’s state. Systematic analysis of such data is far beyond human
capabilities and calls for machine learning techniques.

This thesis develops machine learning methods for predicting the time to an adverse
event based on heterogeneous and high-dimensional health records. I introduce an
improved training algorithm for the survival support vector machine that builds upon
state-of-the-art methods in convex optimization to avoid the high time and space
complexity of previous training algorithms. Experimental results on synthetic and
real-world data demonstrate that my proposed optimization scheme allows analyzing
datasets at least an order of magnitude larger than what would have been feasible
with previous techniques. Second, I study dimensionality reduction methods in a
comparative analysis of 19 feature extraction and feature selection methods. Whereas
feature selection methods for learning from heterogeneous, high-dimensional feature
vectors are well investigated, little work focused on feature extraction methods for
survival analysis. I propose utilizing random survival forests to address two of the main
problems encountered with feature extraction methods based on spectral embedding: 1)
neighborhood graph construction and 2) out-of-sample extension. Experiments revealed
that the proposed solution can represent similarities between patients better than
the standard Euclidean distance and that feature extraction methods are a valuable
alternative to feature selection methods, except if the number of available samples is
low (< 500). Finally, I describe heterogeneous survival ensembles, which aggregate a
wide range of survival models to leverage the diversity in available models. The success
of such a model is evident by the fact that it was among the winning methods of the
Prostate Cancer DREAM challenge.

Keywords: survival analysis, support vector machine, convex optimization, dimen-
sionality reduction
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Zusammenfassung

Aktuell sind viele Länder mit stetig wachsenden Ausgaben für das Gesundheitssys-
tem konfrontiert, was viele durch die flächendeckende Einführung von elektronischen
Gesundheitsakten zu reduzieren versuchen. Die elektronische Gesundheitsakte eines
Patienten vereint Information über bereits abgeschlossene und laufende Behandlungen
mit dem Ziel administrative Mehrkosten zu reduzieren und unangemessene Behand-
lungen zu erkennen. Darüber hinaus fördert der Zugang zu vielen klinischen Daten
auch die klinische Forschung. Allerdings ist die Analyse von Gesundheitsakten häufig
sehr schwierig: erstens beschreiben sie viele unterschiedliche Patienten, und zweitens
beinhalten sie eine hohe Anzahl an Indikatoren aus den unterschiedlichsten Bereichen,
wie zum Beispiel Medikamente, Allergien, Blutwerte, radiologische und genetische
Befunde, und so weiter. Eine systematische Analyse von derart komplexen Daten
übersteigt die Fähigkeiten einer einzelnen Person und ist nur durch den Einsatz von
Methoden aus dem Bereich des maschinellen Lernens zu bewältigen.

In dieser Arbeit werden Methoden des maschinellen Lernens vorgestellt, die es ermögli-
chen heterogene und hoch-dimensionale elektronische Gesundheitsakten zur Vorhersage
der Überlebenszeit zu nutzen. Ich beschreibe einen verbesserten Algorithmus zum
Trainieren einer Survival Support Vector Machine und greife dabei auf modernste
Methoden zur Lösung von konvexen Problemen zurück; womit der hohe Zeit- und
Speicherbedarf von existierenden Algorithmen vermieden wird. Experimente auf syn-
thetischen und echten Daten zeigen dass dadurch erheblich größere Datensätze als
mit vorangegangen Algorithmen analysiert werden können. Außerdem habe ich einen
Vergleich von 19 Methoden zur Dimensionsreduktion durchgeführt. Wohingegen Feature
Selection Methoden zum Lernen von heterogenen und hoch-dimensionalen Trainings-
beispielen gut untersucht sind, beschäftigten sich bisher wenige Arbeiten mit Feature
Extraction Methoden zur Analyse von Überlebenszeiten. Ich nutze Random Survival
Forests um zwei der Hauptprobleme von Feature Extraction Methoden basierend auf
einer Eigenwertzerlegung zu umgehen: 1) die Erstellung des Nachbarschaftsgraphs, und
2) die Erweiterung zu bisher unbekannten Vektoren. Die Experimente haben gezeigt,
dass das vorgeschlagene Verfahren Ähnlichkeiten zwischen Patienten besser darstellen
kann als die gewöhnliche Euklidische Distanz und dass Feature Extraction Methoden
nur dann eine wertvolle Alternative zu Feature Selection Methoden darstellen, wenn die
Anzahl an Trainingsbeispielen ausreichend groß ist (> 500). Schließlich beschreibe ich
heterogeneous survival ensembles, die die Vielzahl an vorhandenen Modellen zur Analyse
von Überlebenszeiten ausnutzen, indem sie die Vorhersagen von mehreren Modellen
zusammenführen. Der Vorteil dieses Modells ist anhand des siegreichen Beitrags zur
Prostate Cancer DREAM Challenge erkennbar.

Stichwörter: Analyse von Überlebenszeiten, Support Vector Machine, Konvexe
Optimierung, Dimensionsreduktion
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Notations

Throughout this thesis I will use the following notations. Scalars, vectors, matrices and
sets are denoted by lower case letters, bold face lower case letters, bold face capital
letters and calligraphic capital letters, respectively. The i-th row of a matrix M is
denoted by M i and the value in the i-th row and j-th column as M i,j or (M)i,j.
Similar for a vector v, where vi and (v)i denote the i-th element.

T and C denote non-negative random variables representing the survival time and time
of censoring, respectively. Concrete values for the survival time and censoring time
are denoted by t > 0 and c > 0, respectively, and may have a subscript to indicate
patient-specific survival and censoring times.

For a survival model, the training set D consists of n triplets D = {(xi, yi, δi)}ni=1,
where xi = (xi1, . . . , xip)> ∈ Rp is a p-dimensional feature vector, yi = min(ti, ci)
is the observed time, and δi = I(ti ≤ ci) an indicator whether yi corresponds to a
survival time or time of censoring. Samples in D can also be described as the matrix
X = (x1, . . . ,xn)>, and the vectors y = (y1, . . . , yn)> and δ = (δ1, . . . , δn)>. Estimates
of quantities or functions are indicated by a hat, in particular, f̂(x) is the prediction
of feature vector x based on model f̂ .
An overview of notations is available from the table below.

Notation Description

I(·) Indicator function.
E(·) Expected value of a random variable.

Var(·) Variance of a random variable.
P (·) Probability.
O(·) Asymptotical upper bound on an algorithm’s time/space requirements.
C Non-negative random variable denoting the time of censoring.
T Non-negative random variable denoting the survival time.
Y Random variable denoting the observed time: Y = min(T,C).
ci Time of censoring of i-th individual.
ti Survival time of i-th individual.

Continued on next page
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Notations

Notation Description

yi Observed time of i-th individual: yi = min(ti, ci).
δi Event indicator of i-th individual: δi = I(ti ≤ ci).
ωi Inverse probability of censoring weight for i-th subject.
D Survival data from n patients: D = {(xi, yi, δi)}ni=1.
Ri Risk set at time point ti: Ri = {j | yj ≥ ti}.
h(t) Hazard function.
H(t) Cumulative hazard function.
F (t) Cumulative distribution function.
S(t) Survival function.
N Set of all natural numbers.
R Set of all real numbers.
Z Set of all integer numbers.
∅ Empty set.
1lm Vector of all ones of size m.
0m Vector of all zeros of size m.
Im Identity matrix of size m×m.

v>; M> Transpose of vector v or matrix M .
vi; (v)i Value of i-th element of vector v.
M i Vector corresponding to i-th row of matrix M .

M i,j ; (M)i,j Value in the i-th row and j-th column of matrix M .
diag(v) Diagonal matrix with diagonal entries v1, . . . , vk.
tr(M) Trace of matrix M .
〈·, ·〉 Inner product in Euclidean space.
‖·‖p `p norm of a vector: ‖x‖p = (

∑
j=1 |xj |p)1/p.

〈·, ·〉H Inner product in Hilbert space H.
‖·‖H Norm in Hilbert space H.
k(x, z) Kernel function.
K Kernel matrix with elements Ki,j = k(xi,xj).

[a; b] Closed interval from a (included) to b (included).
[a; b[ Half-open interval from a (included) to b (excluded).
]a; b] Half-open interval from a (excluded) to b (included).
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1 Introduction

1.1 Historical Overview

Before 1538 no information about a city’s or country’s population were systematically
recorded. In that year, Thomas Cromwell (1485-1540) ordered that every parson
maintains a parish register that records every baptism, marriage and burial within
a priest’s parish [256]. Based on recordings of parishes in and around the City of
London, James I. (1566-1625) mandated at the beginning of the 17th century that the
Company of Perish Clerks publishes weekly statistics about the number of deaths and
their causes [215]. The main purpose of these so called bills of mortality was to monitor
the outbreak of the plague in London. In 1662, John Graunt (1620-1674) analyzed
data from bills of mortality from the years 1629-1636 and 1647-1658 to produce the
first ever life table [16, 118, 139]. Graunt’s life table allowed inferring crude estimates
of child mortality, population size and life expectancy, which makes Graunt arguably
the founder of demography [139]. However, Graunt’s estimates were flawed in several
ways: 1) he had no information about the age at death, because bills of mortality
only recorded the cause of death, 2) he was only provided with the number of burials
rather than the actual number of deaths (similarly for baptized children as proxy for
newborns), and 3) he did not provide a detailed description of the methods he used to
arrive at his life table [16]. Graunt was mostly aware of these shortcomings, in fact, he
referred to his own work as “hav[ing] reduced several great confused volumes into a few
perspicuous tables, and abridged such observations as naturally flowed from them, into
a few succinct paragraphs, without any long series of multiloquious [sic] deductions”
[24, p. 4].

Many of the flaws in Graunt’s data were absent in data from the city of Breslau,
analyzed by Edmond Halley1 (1656–1742) [123]. The data contained records of births
and deaths for the years 1687–1691. In contrast to London’s population, which was
under constant changes due to migration, Breslau’s population at that time remained
approximately constant and the data contained information about a person’s sex and
age at death [16, 58]. Halley [123] published his conclusions in 1693 (reprinted in [140]),
where he presented, among others, a more accurate life table. Based on his life table,
he argued that the government should adjust the price of life annuities by relating their

1Halley’s main profession was astronomy, Halley’s comet was named in his honor.
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1 Introduction

price to a person’s age2 [16, 58] – a finding that is still reflected in today’s insurance
policies.

In the first half of the 19th century, physicians commonly believed that diseases were
caused by non-specific inflammations of organs and most diseases could be treated
by applying leeches to the area of the corresponding organ [216]. Pierre Charles
Alexandre Louis (1787-1872) opposed this interpretation and called for a new school
of thought that derived conclusions by systematically recording information obtained
from observing patients and analyzing specimens from autopsies. Subsequently, his
“numerical method” would be used to analyze the data and provide evidence about the
effectiveness of treatment. It consisted of dividing subjects into groups, calculating a
statistic for each group (usually the mean of a measurement) and comparing its value
among the groups [13]. Louis [200, p. 59] described his reasoning as follows:

“In any epidemic, for instance, let us suppose five hundred of the sick,
taken indiscriminately, to be subjected to one kind of treatment, and five
hundred others, taken in the same manner, to be treated in a different mode;
if the mortality is greater among the first, than among the second, must
we not conclude that the treatment was less appropriate, or less efficacious
in the first class, than in the second?”

An often cited application of his “numerical method” is his study on the effects of
blood-letting [199, 200]. It was based on 78 patients treated for pneumonia, of which
28 had died [200, p. 2]. He created a table that compared duration of disease to time
of first bleeding and total number of bleedings. He formed two roughly equal sized
groups: the first group comprising patients who have been treated during the first four
days after onset, and a second group comprising patients who have been treated five
to nine days after onset. Louis’s results revealed that 18 of 41 patients (44%) died in
the first group and that 9 of 36 patients (25%) died in the second group, whereas the
mean duration of pneumonia was 17.8 and 20.8 days among the survivors, respectively
[200, pp. 9 & 5]. He concluded that blood-letting in the early stages of pneumonia
had little effect on duration, and that blood-letting should be limited to severe cases,
where the risk/benefit ratio is more favorable [200, pp. 48 & 49]. The work by Louis is
considered as the birth of evidence-based medicine [216].

Nineteenth-century England was smitten with several epidemics such as smallpox and
cholera, which many physicians believed to be transmitted by “bad air” (miasma
theory). Against popular belief, John Snow (1813-1858) was convinced that germs
and unhygienic conditions were the main causes [184, 273]. In particular, Snow [272]
showed that the cholera outbreak in Soho, London, in 1854 could be traced back
to a single water pump supplied with polluted water [184]. Snow summarized the

2At that time, a life annuity provided a yearly payment to its buyer, independently of age. People
who acquired an annuity with young age would receive more money overall, which increased the
financial risk for its seller.
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1.1 Historical Overview

location of deaths around several water bumps in London in a map to reject the null
hypothesis that death is equally likely in each area – which is now considered the first
epidemiological study [184].

At the same time, William Farr (1807-1883), who is another key figure in epidemiology
and public health, opposed Snow’s germs theory and tried to proof that cholera is
transmitted by air. He conceived a mathematical model that inversely relates a district’s
elevation above the high water mark of the Thames to the mortality rate, based on
data from 53,293 cholera deaths in 1849 [92]. He justified his model by arguing that
organic materials accumulate in the water, degrade and release an “aqueous vapour
[sic]” [92, p. 163] that is most concentrated in the coastal districts and evaporates
before it reaches higher districts. In Farr’s report on the 1866 cholera outbreak, he
reversed his position on the transmission of cholera and aligned himself with Snow’s
reasoning [93]. Moreover, Farr went beyond analyzing data retrospectively by noting
that epidemics follow a “principle of periodicity” [94, p. 316], which he leveraged by
fitting a third degree polynomial to a dataset consisting of the number of deaths at ten
time points [184]. He used his knowledge about the “[l]aws of [e]pidemics” [94, p. 317],
as he called them, to predict the decline of the 1865 cattle plague [184] and the surge
of cholera in 1854 [94, p. 359].

Although seminal works of Louis, Snow, Farr and others were met with skepticism
and denial first, by the beginning of the 20th century, the belief that medical research
ought to be based on systematic collection of data and statistical analyses prevailed.
However, an important aspect of today’s clinical trials was still absent: randomization.
The concept of randomization in clinical research was popularized by Austin Bradford
Hill (1897-1991) in a series of papers in the Lancet [142]. Eventually results of the first
randomized clinical trial on streptomycin in pulmonary tuberculosis were published in
1948 [1]. Ronald Aylmer Fisher (1890-1962) introduced several key concepts used by
Hill in his book “The Design of Experiments” [100]. Fisher mostly studied experiments
in agriculture and made numerous contributions to statistics: maximum likelihood
estimation [97], analysis of variance [98], and Fisher’s exact test [96, 98], just to name
a few.

In this thesis, the focus is on learning predictive models from right censored samples. If
a sample is censored, it is only known that an event occurred in a particular (possibly
infinite) time interval, but not its exact time (see section 2.1). If areas of the sampling
distribution cannot be observed at all, data are truncated. The problem of truncated
samples was first recognized by Francis Galton (1822-1911) in his 1897 study on the
speed of American trotting horses [107]. Galton analyzed lap times of horses around a
one mile course, which were only recorded for horses requiring less than 150 seconds.
He estimated the mean by assuming a right truncated normal distribution, because he
was only provided with samples below the truncation point of 150 seconds [59, p. 2].
Galton’s estimator was rather ad hoc; better techniques for estimating the parameters
of a normal distribution from truncated samples were later proposed by Fisher [99],
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Pearson [229], and Pearson and Lee [230]. Stevens [276] (in an appendix to [30]) first
considered estimating parameters of a normal distribution from truncated samples with
known truncation time and number of unmeasured observations, which today is better
known as censored observations – the term “censoring” was first used by Hald [122].

Up to the mid-20th century, most statistical methods in clinical research treated a
disease and its associated outcome as a binary event (e.g. survival to 12 months from
entry into the trial). Therefore, proving the efficacy of a treatment usually consisted of
performing Fisher’s exact test or a χ2 test. More information about a disease can be
inferred when directly studying the time until an event of interest occurs, which is the
objective in survival analysis. Examples from the medical domain are the time until
death, until onset of a disease, or until pregnancy. For instance, by assuming a normal
distribution for the time until an event, its parameters could be estimated from censored
observations by employing techniques of Stevens [276] mentioned above. However,
the normal distribution is often unsuitable for biomedical data, because it does not
describe the distribution of event times well. Alternative distributions were extensively
studied in the 1930s to describe the life cycle of materials, mechanical and electronic
systems for reliability analysis. The exponential distribution and its generalization the
Weibull distribution originated from research in this area [312, 313]. Epstein and Sobel
[88] described a technique to estimate the parameter of an exponential distribution
from censored observations. The first non-parametric estimator for survival analysis
was proposed by Kaplan and Meier [167]: the well-known estimator of the survival
function (see section 2.4).

Estimators mentioned in the previous paragraph only work reliably if the patient
population is homogeneous and the survival distribution is identical for all patients
in a study. For instance, the assumption would be violated if survival of overweight
patients is shorter than for patients with normal weight. Regression models address
this problem by incorporating one or more patient characteristics in the estimation
of the survival distribution. The development of such models unfolded similar to the
estimators of the survival function in the previous section. Early regression models
required to explicitly specify the form of the survival distribution (e.g. exponential
distribution), which allowed employing maximum likelihood estimation [110, 331].
However, the true underlying distribution function is usually unknown and choosing
a suitable parametric form is considered an art. Eventually, Cox [67] proposed the
first semiparametric regression model that could be applied to censored survival data
without explicitly specifying the survival distribution (see section 3.2).

Advancements in survival analysis in the 1960s and 1970s, in particular with respect to
regression models, were fostered by spreading of computer technology, which allowed
analyzing more complex data without the burden of manual calculus. Moreover, the
advent of computers attended the birth of machine learning and artificial intelligence.
The first machine learning program was completed by Arthur Lee Samuel in 1955
[314], but was not published until four years later [249]. Samuel developed a program
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to play checkers that was able to learn from playing against other instances of the
program or against human players. Around the same time, Frank Rosenblatt proposed
the perceptron, which is a simple linear binary classifier [242]. By organizing multiple
perceptrons into a network, Rosenblatt [242] showed that multilayer perceptrons can
solve complex problems. Eventually, machine learning became an entity on its own,
distinct from artificial intelligence. The fields started to drift apart in the 1980s, when
research in artificial intelligence was mainly focusing on emulating humans’ way of
thinking (cognitive simulation), rather than assisting them in learning from examples
(inductive learning) [186, 266]. Langley [186, p. 277] defined machine learning as “the
study of any methods that improved performance with experience.” Therefore, pattern
recognition and data mining are closely related fields.

In the late 1990s and early 2000s advancements in DNA sequencing [155] resulted in a
flood of new data for which existing survival models, such as Cox’s proportional hazards
model, were inadequate. Rosenwald et al. [243] studied the survival of 240 patients
after chemotherapy for diffuse large-B-cell lymphoma based on 7,399 expression levels
representing approximately 4,128 genes. The example illustrates that the number of
features greatly exceeds the number of samples, in which case traditional survival
models cannot be applied. Around the same time research in machine learning expanded
into the field of statistics [186], and vice versa, which set the stage for machine learning
techniques to tackle these problems.

Today, many successful ideas from machine learning have been adapted for survival
analysis; extensions of boosting, random forest, and support vector machine are
discussed in chapter 3. Nevertheless, early work in survival analysis remains relevant
even today. According to a 2014 report in Nature [303] the impact of the work of
Kaplan and Meier [167] and Cox [67] continuous to be massive: they are considered
the two most cited papers in the field of statistics with more than 38,000 and 28,000
citations, respectively. This not only shows the impact computers had – and still
have – on the conversion of theoretical results to real-world applications, but also the
significance of survival analysis as a whole today.
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1.2 About this Thesis

1.2.1 Motivation

More and more national governments are committed to integrating the use of electronic
health records (EHR) to improve quality of care and reduce health care costs [3]. Hence,
massive amounts of medical data are collected every day, which are far beyond what
a human could analyze. However, in order to improve patients’ outcomes and lower
costs, it is necessary to identify existing problems in patient care and to resolve them,
which is only reasonable through machine learning techniques (see e.g. [161]). In the
United States of America, the Medicare and Medicaid EHR Incentive Program requires
physicians to make “meaningful use” of electronic health records, which, among others,
includes consolidating a clinical decision support system [52]. In 2013, an estimated
69% of office-based physicians in the USA participated in the “meaningful use” program
[151], which exemplifies the demand for such systems.

The primary interest in the medical domain is the analysis of time until an adverse
event occurs (survival analysis). Thus, the objective of survival analysis is to examine
how a particular set of covariates affects the time until a patient is going to experience
a particular event, such as death or reaching a specific state of disease progression. In
order to leverage electronic health records for survival analysis, a survival model must
be apt to

1. a very large sample size,
2. a large set of features, of which only an unknown subset actually affects the time

of an event,
3. feature vectors that are a mix of continuous, categorical and ordinal attributes,
4. incomplete feature vectors (missing values), and
5. censored event times.

1.2.2 Aims

The aim of this dissertation is to propose novel algorithms for learning from large
datasets of right censored observations with high-dimensional and heterogeneous feature
vectors. Consequently, the primary focus is on the first three requirements stated
above.
Note. The focus of this dissertation is solely on data acquired from the medical domain.
Nevertheless, as censoring is often encountered in reliability analysis [10] and economics
[213], my contributions are immediately applicable to a wide range of applications
outside of medicine.
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1.2.3 Contributions

This dissertation makes several important contributions to learning from survival
data:

1. I propose a novel training algorithm of linear survival support vector machines
(SVMs) with ranking constraints that leverages truncated Newton optimization of
the primal objective function and ordered statistics tree to lower the complexity
of training from O(pq2

en
4) to

[O(n log n) +O(np+ p+ n log n)] · N̄CG ·NNewton,

where qe is the percentage of uncensored records, n the number of samples, p the
number of features, N̄CG the average number of conjugate gradient iterations,
and NNewton the total number of Newton updates (see chapter 5).

2. I extend the training algorithm for linear survival SVMs with ranking constraints
to non-linear decision functions in chapter 5. I show that it is possible to leverage
techniques used in learning a linear model by directly applying the representer
theorem to the primal objective function of a non-linear model.

3. In chapter 5, I describe a hybrid survival SVM that combines two loss functions:
1) the squared hinge loss used in survival SVMs with ranking constraints, and 2)
the squared loss used in regression.

4. A novel algorithm to construct neighborhood graphs from heterogeneous survival
data is presented in chapter 6. It leverages random survival forests to account
for censoring and high-dimensional, heterogeneous feature vectors. Experimental
results show that the proposed approach preserves local neighborhoods consider-
ably better than using the common Euclidean distance, which is unsuitable if
feature vectors are a mix of continuous and categorical attributes.

5. In chapter 6, I describe the results of a large empirical study on evaluating the
performance of 10 combinations of feature extraction methods and 8 survival
models with and without embedded feature selection on three clinical datasets.
To the best of my knowledge, this is the first study with focus on survival analysis
that thoroughly investigates in which situations feature selection and feature
extraction methods excel.

6. Heterogeneous survival ensembles comprise base learners that differ in the ob-
jective function that is optimized, and hence offer a greater diversity. They are
proposed in chapter 7 in the context of my winning solution to the Prostate
Cancer DREAM Challenge.

The majority of ideas presented in chapter 5 can be found in
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S. Pölsterl et al., “Fast training of support vector machines for survival
analysis,” in Machine Learning and Knowledge Discovery in Databases, A.
Appice et al., Eds., ser. Lecture Notes in Computer Science, 2015, pp. 243–
259. doi: 10.1007/978-3-319-23525-7_15.

Methods and results presented in chapter 6 have been submitted and were still under
review at the time of submission of this thesis:

S. Pölsterl et al., “Survival analysis for high-dimensional, heterogeneous
medical data: Exploring feature extraction as an alternative to feature
selection,” Artificial Intelligence in Medicine, 2016, submitted.

At the time of submission of my dissertation, the publication on heterogeneous survival
ensembles proposed in chapter 7 was under preparation and is going to appear in
the DREAM Challenges channel at F1000Research3 once the overview paper of the
Prostate Cancer Challenge has been submitted to Nature Biotechnology.

1.2.4 Outline

The contents of this thesis are mostly self-contained, therefore, I will start defining
basic concepts and quantities used in survival analysis in chapter 2. In sections 2.1
and 2.2 (pages 11 and 13), I will define different types of censoring and truncation and
illustrate these concepts using examples. A statistical framework that is commonly
used to describe survival data in the form of survival function, hazard function, and
cumulative hazard function is given in section 2.3.

Next, I will define well-known non-parametric estimators of survival function and
cumulative hazard function for right censored as well as truncated event times in
section 2.4 (page 20). I will conclude chapter 2 by presenting a class of statistical tests
to assess whether the distribution of survival times between two or more groups of
patients differ significantly (section 2.5 on page 25).

Based on basic concepts and methods specified in chapter 2, I will describe the most
important models for analyzing survival data with right censored event times in
chapter 3 (page 31). The accelerated failure time model and Cox’s proportional hazards
model are traditional statistical models and are explained in sections 3.1 and 3.2,
respectively (pages 31 and 35).

Section 3.3 illustrates different approaches to adapting survival support vector machines
for survival analysis by casting it as learning-to-rank problem (section 3.3.1 on page 46),
a regression problem (section 3.3.2 on page 48), or a quantile regression problem
(section 3.3.4 on page 51). Initially, I will define the models in form of a linear decision

3http://f1000research.com/channels/DREAMChallenges
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function, but the extension to non-linear decision functions can be traced back to ideas
described in section 3.3.5 (page 53).

A formal definition of gradient boosting and several adaptations to survival analysis are
discussed in section 3.4 (page 60). Gradient boosting methods are ensemble methods
that are characterized by the choice of base learner (section 3.4.3 on page 63) and loss
function they optimize (section 3.4.4 on page 68).

Section 3.5 (page 71) covers survival trees and reviews split criteria that have been
proposed in the past. This forms the basis for section 3.6 (page 79), where ensembles
of survival trees, namely random survival forests are defined.

Methods to estimate the performance of survival models on right censored test data
are discussed in section 3.7.

For the sake of completeness of this thesis, chapter 4 briefly covers general methods
to address the missing value problem, in particular by Multivariate Imputation using
Chained Equations (MICE). After reviewing the basics of survival analysis and state-
of-the-art survival models in chapters 2 to 4, I will present my main contributions in
chapters 5 to 7.

I will present an improved optimization algorithm for three types of survival support
vector machines in chapter 5: 1) ranking-based, 2) regression-based, and 3) a combined
ranking and regression approach. I will demonstrate that the proposed optimization
scheme of linear ranking-based survival support vector machine lowers computational
costs of training by minimizing the primal objective function (section 5.2 on page 101)
and combining truncated Newton optimization with order statistic trees (section 5.3
on page 103). An extension to non-linear decision functions that utilizes the same
optimization scheme is proposed in section 5.6 (page 113). In section 5.7 (page 117),
results on synthetic and real-world datasets will demonstrate the superiority of my
proposed optimization scheme over existing training algorithms, which fail due to their
inherently high time and space complexities when applied to large datasets.

Chapter 6 focuses on feature extraction algorithms for high-dimensional, heterogeneous
medical data. First, I will briefly review related work in feature selection and feature
extraction in section 6.1 (page 127). Next, I will focus on spectral embedding algorithms,
in particular multiview spectral embedding, which considers that features have different
statistical properties when determining a low-dimensional representation of the training
data. In section 6.2 (page 132), I will propose using random survival forests to accurately
determine local neighborhood relations from right censored survival data consisting of
high-dimensional, heterogeneous feature vectors. I evaluated 10 combinations of feature
extraction methods and 8 survival models with and without intrinsic feature selection
in the context of survival analysis on three clinical datasets. Results in section 6.3
(page 139) demonstrate that survival models with embedded feature selection (random
survival forest and gradient boosted models) outperform feature extraction methods,
because they are unable to reliably identify the underlying manifold, which makes them
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of limited use in these situations. For large sample sizes, feature extraction methods
perform as well as feature selection methods.

Chapter 7 will cover my contributions to the Prostate Cancer DREAM Challenge, where
the objective was to predict survival of patients with metastatic, castrate-resistant
prostate cancer from a patient’s health record. After providing an overview of the
challenge’s tasks and data in section 7.1 (page 155), I will present my approach to
extracting information from health records in section 7.2 (page 158). A novel ensemble
technique to combine several survival models, each optimizing a different loss during
training, is proposed in section 7.4 (page 164). Preliminary results and insights obtained
before the final submission to the Prostate Cancer DREAM Challenge are illustrated
in section 7.5 (page 169). The final results of the challenge in section 7.6 (page 174)
demonstrate that using a heterogeneous ensemble of survival models outperformed
competing methods.

Finally, I will close my dissertation with concluding remarks in chapter 8.
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2.1 Censoring

Most clinical studies enroll patients during a fixed period of time and then follow these
patients for a certain amount of time. During the study period, patients are asked to
complete one or more follow-ups with the purpose to record how a patient’s health
changed over time. For instance, the Framingham Offspring study [166] started to enroll
participants in 1971 with the purpose to identify common factors and characteristics
that contribute to cardiovascular disease. Rather than studying the pathogenesis of the
disease, the primary motivation for the Framingham Offspring study was to determine
the difference between people who developed cardiovascular disease and those that
remained disease-free. Therefore, participants were followed for several years and if a
participant experienced a cardiovascular event, such as coronary heart disease, angina
pectoris, or stroke, the exact time of the event was recorded. In the beginning, 5,124
patients enrolled in the study and, as of 2014, nine follow-up exams – approximately
four years apart from each other – were conducted.

However, not all participants enrolled at the same date nor did they perform their
follow-up exams simultaneously. In addition, some patients decided to leave the study
or simply were unreachable, which means no information beyond the time of their last
follow-up is available. A graphical representation of this situation is depicted in fig. 2.1:
Patient A was lost to follow-up after three months with no recorded cardiovascular
event, patient B experienced an event four and a half months after enrollment, patient D
withdrew from the study two months after enrollment, and patient E did not experience
any event before the study ended. Consequently, the exact time of a cardiovascular
event could only be recorded for patients B and C; their records are uncensored. For
the remaining patients it is unknown whether they did or did not experience an event
after termination of the study. The only valid information that is available for patients
A, D, and E is that they were event-free up to their last follow-up. Therefore, their
records are censored.

Three distinct patterns of censoring exist: right censoring, left censoring, and interval
censoring. Figure 2.1 illustrates right censoring, which has been explained above. A
patient record is left censored if an event occurred prior to a specific time point t, but
its exact time of occurrence is unknown. Interval censoring occurs when a patient
experienced an event at an unspecified time point between times t1 and t2.
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2 4 6 8 10 12
Time in months

End
ofstudy

A Lost

B †

C †

D Dropped out

E

1 2 3 4 5 6
Time since enrollment in months

A Lost

B †

C †

D Dropped out

E

Figure 2.1: Example of right censoring in a clinical study. Patients B and C experienced
an event during the study period and their records are uncensored. Records
of patients A, D, and E are right censored because they did not experience
an event until they left the study (A and D) or the study ended (E). A cross
represents occurrence of an event.

Formally, each patient record consists of a set of covariates x ∈ Rd, and the time
t > 0 when an event occurred or the time c > 0 of censoring. Since censoring and
experiencing and event are mutually exclusive, it is common to define an event indicator
δ ∈ {0; 1} and the observable survival time y > 0. The observable time y of a right
censored sample is defined as

y = min(t, c) =



t if δ = 1,
c if δ = 0,

where δ = 1 if a patient experienced and event and zero otherwise. For left censored
observations, min is replaced by max: y = max(t, c). If a record is subject to left and
right censoring at times cleft and cright, respectively, data can be represented in a similar
way by extending the definition of δ to δ ∈ {−1; 0; 1}, where −1 denotes a left censored
time, 0 a right censored time, and 1 an event. The observable time y is defined as
y = max(min(t, cleft), cright). Such a record is called doubly censored.

In clinical studies, the most common type of censoring is right censoring and thus
I will focus on right censoring for the remainder of this thesis. Generally, there are
three mechanisms that can lead to right censored records. Type I censoring refers to a
study where all n subjects are enrolled at a specific time point tstart and are followed
until time point tend. Individuals that did not experience an event up to time tend are
censored at that exact time point. Consequently, the censoring time is fixed for all
participants: ci = tend (∀i = 1, . . . , n). The generalized form of type I censoring refers
to the scenario where each individual has its own starting time, but the end of the
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study is predetermined and thus each participant has its own predetermined time of
censoring.

The time of censoring in a study under type II censoring is not predetermined by the
duration of the study but a fixed number of events: the study is terminated if k of
n participants (k < n) experienced an event. Therefore, ci = tk for all patients who
remained event-free up to time tk, which means that the time of censoring is random.

Finally, competing risk censoring arises if a patient is affected by a competing event
that results in his or her removal from the study. Hence, it is impossible to observe the
actual event of interest anymore. For instance, if the primary event of interest is death
from heart disease, patients who died from cancer or from any other cause are right
censored due to competing risks. To allow inference, one assumes that the event time
and time of censoring are independent of each other, which is termed non-informative
censoring. This assumption would be violated if most patients dropping out of a study
would experience an event shortly after they left the study, which would lead to biased
estimates of survival time, because individuals that can still be observed are no longer
representative of the overall population. If the nature of competing risks is unknown,
one usually assumes random censoring, which is a simplified version of competing risk
censoring. Figure 2.1 shows an example where patients A and D randomly drop out of
the study due to unknown reasons such as accidental death or moving to another area.
Moreover, the figure indicates that most clinical studies are affected by both random
censoring (patients A and D) as well as type I censoring (patient E) [176, p. 70].

Despite the differences between the three mechanisms described above, data collected
during a study with n participants can be summarized by the set D = {(xi, yi, δi)}ni=1
for all of them.

2.2 Truncation

Another property of survival data closely related to censoring, yet with distinct dif-
ferences, is truncation. Truncated data arises when part of the overall population
cannot be observed at all and thus no information about this part of the population
is available. In contrast, censored records at least contain partial information that
can be used to drive inference. Ignoring truncation during inference would lead to
biased estimates, therefore special care has to be taken when analyzing data with
truncated survival times. Similar to censoring, times can be left or right truncated.
They are left truncated if a study excludes subjects experiencing an event prior to
a particular time of truncation. Right truncation arises if observations, whose event
times exceed a specified time of truncation, are excluded. Moreover, data truncation
does not exclude censoring, in fact, it is common that left truncated data contains
right censored observations [176, p. 71].
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Example 2.1. A classical example for left truncation (also called late or delayed entry)
is a study on the survival of members of the Channing House retirement community in
Palo Alto, California [156]. Members of the community had access to a health care
program that provided them with easy access to medical care without increasing their
financial burden. Survival times in this data are left truncated, because people needed
to reach a certain age before getting admitted. Consequently, individuals who died at
an earlier age were systematically excluded from the study, resulting in overestimated
survival probabilities if left truncation is ignored.

Example 2.2. As an example for right truncation, consider a study regarding incubation
periods for acquired immune deficiency syndrome (AIDS) patients, who were infected
with the human immunodeficiency virus (HIV) by contaminated blood transfusions
[182]. The primary interest in the study was to investigate differences in incubation
time, i.e., the time between infection and AIDS diagnosis. The study period lasted
from April 1st, 1978 until June 30th, 1986 and only individuals that were infected
and diagnosed with AIDS during that period were included retrospectively. Data is
subject to right truncation, because patients with long incubation intervals may not
have developed AIDS at the time of enrollment (the end of the study), yet. Hence,
events occurring after the time of enrollment cannot be recorded, which would result
in underestimated survival probabilities if right truncation is ignored during inference.

In the examples above, truncation is incidental, but explicit inclusion or exclusion
criteria of a study can lead to truncation too. For instance, a study interested in
smoking among teenagers would need to explicitly define the age range that constitutes
a teenager, thus estimates concerning the overall population would be biased.

2.3 Functions of Survival Time

In this section, I will define the basic quantities used in analyzing time-to-event data:
1) the probability density function of survival time, 2) the survival function, 3) the
hazard function, and 4) the cumulative hazard function. In section 2.3.3, I will show
that their definitions are actually mathematically equivalent, and therefore it suffices
to define one of them.

2.3.1 Survival Function
Definition 2.1: Survival Function. Let T denote a continuous non-negative random
variable corresponding to a patient’s survival time. The survival function S(t) returns
the probability of survival beyond time t and is defined as

S(t) = P (T > t). (2.1)
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Figure 2.2: Survival and hazard functions following Weibull distribution: S(t) = exp(−(λt)k)
and h(t) = λk(λt)k−1 with λ, k > 0. For solid lines λ = 0.1 and k = 1, for
dashed lines λ = 0.08 and k = 0.5, and for dotted lines λ = 0.25 · 3√0.1 ≈ 0.1160
and k = 3.

Moreover, S(t) is non-increasing with S(0) = 1, and S(∞) = 0. Alternatively, the
survival function can be defined based on the cumulative distribution function F (t)
or the probability density function f(t):

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t) =
∫ ∞

t
f(u)du. (2.2)

Example 2.3. A popular choice for defining the survival function in a parametric form
is the Weibull distribution with parameters λ > 0 and k > 0:

F (t) = 1− exp(−(λt)k) (2.3)
S(t) = exp(−(λt)k). (2.4)

The plot in fig. 2.2 shows the survival function for three different configurations of λ
and k. If k < 1 (dashed line), the survival function is characterized by a high gradient
at early times that decreases over time. Such a function could for example describe
infant mortality, where the risk of death is the highest directly after birth and decreases
over time. In contrast, if k > 1 (dotted line), the gradient of the survival function
is relatively low at the beginning but increases over time. This formulation could be
useful when modeling an aging process. If k = 1 (solid line), the survival function
is between the aforementioned two curves and its interpretation will become obvious
when discussing hazard functions in section 2.3.2.

Usually, the parametric form of the survival function is unknown and one has to resort
to non-parametric estimators of the survival function from a given set of patients and
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their observed survival times. If data is uncensored, i.e., all individuals experienced an
event before the study ended, the survival function at time t can simply be estimated
by the ratio of patients surviving beyond time t and the total number of patients:

Ŝ(t) = number of patients surviving beyond t
total number of patients . (2.5)

In the presence of censoring, this estimator cannot be used, because the numerator is
not always defined. For instance, consider the following set of patients, where ti and δi
denote the survival time and event indicator of the i-th patient.

i 1 2 3 4 5

ti 4 6 6 7 9
δi 1 1 0 0 1

Using eq. (2.5), it is possible to compute S(5) = 4
5 = 0.8, but not S(8), because it is

unknown whether the third and fourth patient experienced an event before or after
t = 8. An alternative non-parametric estimator that can be used for censored data is
the Kaplan-Meier estimator described in section 2.4.

2.3.2 Hazard Function

In addition to the survival function, the hazard function is an important quantity in
survival analysis, which I define next.

Definition 2.2: Hazard Function. The hazard function h(t) denotes an approximate
probability (it is not bounded from above) that an event occurs in the small time
interval [t; t+ ∆t[, under the condition that an individual would remain event-free
up to time t:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t ≥ 0. (2.6)

Alternative names for the hazard function are conditional failure rate, conditional
mortality rate, or instantaneous failure rate. In contrast to the survival function, which
describes the absence of an event, the hazard function provides information about the
occurrence of an event.

Example 2.4. Continuing with example 2.3 from above, where the survival function
followed a Weibull distribution, we can define the corresponding hazard function
as h(t) = λk(λt)k−1 (see fig. 2.2). The parameter k of the Weibull distribution
influences the form of the hazard function in the following ways. If k = 1 (solid line),
the corresponding hazard function remains constant, meaning it is equally likely to

16



2.3 Functions of Survival Time

Time t
0 5 10 15

0.2

0.4

0.6

0.8

1.0

1.2

H
az
ar
d
h

(t
)

Time t
0 5 10 15

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al

Pr
ob

ab
ili
ty
S

(t
)

Figure 2.3: Examples of humpshaped (solid line) and bathtub shaped (dashed line) hazard
functions. The humpshaped hazard function is based on a log-logistic distribution
function and the bathtub shaped hazard function on an exponential power
distribution.

experience an event at any point in time. If k < 1 (dashed line), the highest rate of
experiencing an event occurs at early times and quickly decreases afterwards. Finally, if
k > 1 (dotted line), the rate of events increases with time. Note that although survival
functions in fig. 2.2 look relatively similar to each other, the corresponding hazard
functions are dramatically different.

In addition to constant, increasing and decreasing hazard functions, humpshaped and
bathtub shaped curves are commonly encountered as well (see fig. 2.3). The former
can be used when investigating complications occurring after an intervention, where
the risk of an event increases after surgery due to infection, bleeding, and so forth. A
bathtub shaped hazard function is appropriate when modeling a population across the
whole life span: early events are due to infant mortality and later events are due to the
natural aging process.

If no record is censored, the hazard function at time t can be estimated by the ratio of
patients experiencing an event in the interval [t; t+ ∆t[ and the number of patients
who remained event free up to time t:

ĥ(t) = number of patients with event in time interval [t; t+ ∆t[
(number of patients surviving up to time t)×∆t (2.7)

However, the estimate cannot be computed in the presence of censoring, because the
exact time of an event is only known for a subset of patients.

Closely related to the hazard function is the cumulative hazard function, which is
another basic quantity in survival analysis.
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Definition 2.3: Cumulative Hazard Function. The cumulative hazard function
H(t) is the integral over the interval [0; t] of the hazard function:

H(t) =
∫ t

0
h(u)du (2.8)

The relationship between cumulative hazard function H(t) and hazard function h(t)
is similar to the relationship between probability density function f(t) and cumula-
tive distribution function F (t), except that h(t) does not represent the density of a
probability distribution.

2.3.3 Relationships between Functions

As mentioned in the beginning of this section, the definitions of survival function,
hazard function and cumulative hazard function are all mathematically equivalent, and
therefore it is sufficient to define one of them and derive the remaining two functions
from it.

Lemma 2.1. Let T denote a continuous non-negative random variable, then the fol-
lowing relationships between probability density function f(t), cumulative distribution
function F (t), survival function S(t), hazard function h(t), and cumulative hazard
function H(t) hold:

f(t) = − d

dt
S(t) = −S ′(t) (2.9)

h(t) = f(t)
S(t) (2.10)

H(t) = − logS(t)⇔ S(t) = exp(−H(t)) (2.11)

Proof. The first equality is due to the definition S(t) = 1 − F (t) in eq. (2.2), which
when substituted on the right side yields −(− d

dt
F (t)) = f(t). The proof of the second

equality is as follows:

h(t) = lim
∆t→0

1
∆tP (t ≤ T < t+ ∆t | T ≥ t)

= lim
∆t→0

1
∆t ·

P ({t ≤ T < t+ ∆t} ∩ {T ≥ t})
P (T ≥ t)

= lim
∆t→0

1
∆t ·

P (t ≤ T < t+ ∆t)
P (T ≥ t)

= lim
∆t→0

F (t+ ∆t)− F (t)
∆t · 1

1− F (t)

= d

dt
F (t) · 1

1− F (t) = f(t)
S(t) .
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Finally, using eq. (2.10) and substituting it in eq. (2.8), one obtains

H(t) =
∫ t

0
h(u)du =

∫ t

0

f(u)
S(u)du =

∫ t

0

−S ′(u)
S(u) du

= − [logS(u)]t0 = − logS(t) + logS(0)
= − logS(t),

with
∫ f ′(x)
f(x) dx = log |f(x)|+ b and S(0) = 1.

Example 2.5. Using the results above, we can go back to example 2.3, where f(t)
follows a Weibull distribution with parameters λ > 0 and k > 0, to obtain the form of
the survival function S(t) and hazard function h(t) as depicted in fig. 2.2. First of all,
the probability density function and cumulative distribution function are defined as

f(t) = λk(λt)k−1 exp(−(λt)k) and F (t) = 1− exp(−(λt)k).

Plugging these two quantities into the definition of S(t), h(t) and H(t) results in

S(t) = 1− F (t) = 1− (1− exp(−(λt)k)) = exp(−(λt)k),

h(t) = f(t)
S(t) = λk(λt)k−1 exp(−(λt)k)

exp(−(λt)k)) = λk(λt)k−1,

H(t) = − logS(t) = − log(exp(−(λt)k)) = (λt)k.

2.3.4 Functions for Discrete Random Variables

Consider a study investigating the time to pregnancy. Because a woman can only get
pregnant at certain time points in her menstrual cycle, the time to pregnancy would
correspond to the number of menstrual cycles, which is discrete. The definition of
survival function, hazard function and cumulative hazard function are slightly different
in this case; most importantly, they are step functions.

Definition 2.4: Discrete Survival Time. Let T be a discrete random variable, which
can take on values ti (i ∈ N) with probability mass function P (T = ti) and ti < tj if
and only if i < j, then

S(t) =
∑

{i|ti>t}
P (T = ti) (2.12)

P (T = ti) = S(ti−1)− S(ti) (2.13)
h(ti) = P (T = ti | T ≥ ti) (2.14)
H(t) =

∑

{i|ti≤t}
h(ti), (2.15)

where S(t) is non-increasing with S(t0) = 1.
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From the definitions above, the connection between hazard and survival function is
defined as

h(ti) = P (T = ti | T ≥ ti) = P (T = ti ∩ T ≥ ti)
P (T ≥ ti)

= P (T = ti)
P (T > ti−1) = S(ti−1)− S(ti)

S(ti−1)

= 1− S(ti)
S(ti−1) .

(2.16)

Using S(t0) = S(0) = 1, one can reformulate the survival function as

S(ti) =
∏

{j|tj≤ti}

S(tj)
S(tj)

S(ti) = S(t1)S(t2) · · ·S(ti−1)S(ti)
S(t0)S(t1) · · ·S(ti−2)S(ti−1) =

∏

{j|tj≤ti}

S(tj)
S(tj−1) (2.17)

to obtain

S(t) =
∏

{i|ti≤t}
(1− h(ti)). (2.18)

The biggest difference to T being a continuous random variable is that the relationship
H(t) = − logS(t) does not hold anymore, although the cumulative hazard function
can be defined as H(t) = −∑{i|ti≤t} log(1− h(ti)) to preserve this relationship [68].

2.4 Non-parametric Estimators

2.4.1 Estimators for Right Censored Survival Data

When collecting data in a clinical study, it is usually difficult to determine the exact
parametric form of the distribution of survival time, which means that one has to resort
to non-parametric estimators that derive the survival function S(t) from a sample of
right censored observations. In sections 2.3.1 and 2.3.2, I mentioned simple estimators
of the survival function and hazard function that are only applicable if all patient
records are uncensored. In contrast, the Kaplan-Meier estimator [167] of the survival
function and the Nelson-Aalen estimator [2, 218] of the cumulative hazard function
can be applied to censored data, i.e., when exact survival times are unknown for a
subset of patients. Both estimators assume that the distribution of survival times is
independent of the distribution of censoring times (non-informative censoring), such
that knowing one of them does not provide additional information about the other.

Based on a sample D = {(yi, δi)}ni=1 of n patients, let t1 < t2 < · · · < tm be the
m ≤ n distinct time points where an event occurred (δi = 1), and d1, d2, . . . , dm
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2.4 Non-parametric Estimators

the corresponding number of events at each of the m time points. Moreover, let
Ri = {j|yj ≥ ti} denote the risk set, i.e., the set of patients who were still event-free
shortly before time point ti, then di

|Ri| is an estimate of the conditional probability
P (T = ti | T ≥ ti) of experiencing an event at time point ti, conditional on having
remained event-free just prior to ti. From this estimate, it is possible to define estimators
of the survival and hazard function, as described below.

Definition 2.5: Kaplan-Meier Estimator. Under the assumption of non-informative
censoring, the survival function S(t) can be estimated from a sample of right censored
survival data using the Kaplan-Meier estimator [167], which is defined as

Ŝ(t) =




1 if t1 > t,
∏
{i|ti≤t}

(
1− di

|Ri|

)
if t1 ≤ t,

(2.19)

where i = 1, . . . ,m.

Definition 2.6: Nelson-Aalen Estimator. Assuming non-informative censoring, the
cumulative hazard function H(t) can be estimated from a sample of right censored
survival data using the Nelson-Aalen estimator [2, 218], defined as

Ĥ(t) =




0 if t1 > t,
∑
{i|ti≤t}

di
|Ri| if t1 ≤ t,

(2.20)

where i = 1, . . . ,m.

The Kaplan-Meier and Nelson-Aalen estimator are closely related to the definitions of
survival and cumulative hazard function for discrete random variables when setting
ĥ(ti) = di

|Ri| (see section 2.3.4). Moreover, the value of both estimators is undefined if t
exceeds the largest observed time point (t > maxi=1,...,n yi). Finally, the Kaplan-Meier
estimator is also known as Product-Limit estimator.

Example 2.6. Figure 2.4 depicts estimated survival curves for 300 males and 200
females of the Worcester Heart Attack Study [146] using the Kaplan-Meier method.
The figure shows that estimated survival functions are step functions having – by
definition – an initial survival probability of one. Jumps in the estimated survival
functions occur at time points where one or more events occurred. The example also
shows that estimated survival functions are generally undefined beyond the largest
observed time point. For the subgroup consisting of female patients, the largest
observation corresponds to an event. Since a survival function is non-increasing,
estimates beyond the largest observation would simply be zero, in this special case. In
contrast, the largest observation in the male subgroup does not correspond to an event
(it is censored) and therefore estimates beyond this time point are undefined.
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Figure 2.4: Estimated survival functions for males and females following hospital admission
for acute myocardial infarction from data of the Worcester Heart Attack Study
[146] using the Kaplan-Meier estimator.

2.4.2 Estimators for Truncated Survival Data

Left Truncation

In the previous section, I discussed non-parametric estimators for right censored survival
data. In this section, I will focus on data that is left truncated and right censored at
the same time. Instead of estimating unconditional probabilities, estimators for left
truncated data estimate conditional probabilities. Left truncated survival data consists
of tuples (li, yi, δi), where li is the date the i-th subject entered the study, yi the time of
an event or censoring, and δi a binary event indicator. The definition of the risk set Ri

at time ti is the fundamental quantity for estimators for non-truncated right censored
survival data in the previous section and needs to be redefined to be applicable to
left truncated data. In addition to the event or censoring time, the risk set for left
truncated data has to consider the time when an individual entered the study.

Definition 2.7. The risk set Rleft
i at time ti for left truncated and right censored

survival data contains all observations who survived at least up to time ti and entered
the study prior to time ti:

Rleft
i = {j | yj ≥ ti > lj}. (2.21)

By replacing Ri with Rleft
i in eqs. (2.19) and (2.20) one obtains conditional estimators

of the survival function and cumulative hazard function, respectively [203]. The Kaplan-
Meier estimator [167] becomes a conditional estimator of the survival function, because
instead of estimating the unconditional probability S(t) = P (T > t), it now estimates
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Figure 2.5: Estimated survival functions for 361 females of the Channing house retirement
community [156] introduced in example 2.1. The solid line indicates the estimate
conditional on survival at least up to 733 months (61.1 years), i.e., left truncation
is considered. The dashed line indicates the unconditional estimate of the survival
function that ignores left truncation.

the conditional probability

P (T > t | T ≥ lmin) = S(t)
S(lmin) , (2.22)

with lmin = mini=1,...,n li being the earliest time point a patient entered the study. Note
that conditional estimates of the survival function for left truncated data have little
meaning when the risk set Rleft

i is small, which usually occurs for early time points
(small values of ti). In such cases, the Kaplan-Meier estimate should be limited to
larger survival times:

Ŝα(t) =
∏

{i|α≤ti≤t}

(
1− di
|Rleft

i |

)
if t1 ≤ t, (2.23)

where 0 < α ≤ t.

Example 2.7. Figure 2.5 depicts conditional and unconditional estimates of the survival
function using data of the Channing house retirement community that was introduced in
example 2.1 on page 14. The unconditional estimate (dashed line) does not attribute the
fact that people have to reach a certain age to enter the retirement community, therefore
it ignores people that died earlier and overestimates survival probabilities compared
to the conditional estimator (solid line). In contrast, the conditional survival curve
considers the age of people when entering the community and thus is an appropriate
estimator for left truncated and right censored survival data.
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Right Truncation

Estimation in the presence of right truncation, i.e., when individuals experiencing an
event after truncation time ν are excluded from the study, follows a similar approach.
Researchers are often confronted with right truncated data when studying infectious
diseases in a retrospective study. The canonical example is AIDS, because subjects
infected with HIV remain infected indefinitely and may eventually develop AIDS.
In addition, individuals not infected with HIV will never get AIDS. Participants
are enrolled in the study if they were diagnosed with the disease of interest in the
chronological time interval [0; ν], otherwise a subject cannot be observed. The i-th
individual is associated with the time of infection ui and the time ti between infection
and diagnosis of the disease, called lag, which is of primary interest. Because data is
right truncated, ui + ti < ν for all patients (i = 1, . . . , n).

Let T and U denote independent continuous non-negative random variables representing
the lag and time of infection, respectively. The objective is to estimate the cumulative
distribution function of the lag T , denoted by F (t) = P (T ≤ t). In general, F (t) itself
is unidentifiable, because subjects with t > ν cannot be observed. Instead, it is only
possible to estimate the conditional cumulative distribution function

G(t) = F (t)
F (tmax)

= P (T ≤ t | T ≤ tmax), (2.24)

where tmax = maxi=1,...,n ti is the longest observed time between infection and onset.
G(t) can be estimated by transforming right truncated into left truncated data as
proposed by Lagakos et al. [182].

Consider the reverse time S = ν−T and the relation U +T ≤ ν. The latter is satisfied
if and only if U ≤ S, which leads to the conclusion that it is only possible to observe
subjects where 0 ≤ U ≤ S ≤ ν, or equivalently that S is left truncated by U .

Definition 2.8. Let Rright
i = {j | tj ≤ ti ≤ ν − uj} denote the set of patients with

lag smaller or equal to ti and time of infection smaller or equal to si = ν − ti, then
the non-parametric estimator of G(t) by Lagakos et al. [182] is given by

Ĝ(t) =
∏

{i|t≤ti≤tmax}

(
1− di

|Rright
i |

)
. (2.25)

For practical purposes, Ĝ(t) can be computed by applying the Kaplan-Meier estimator
for left truncated data in eq. (2.22) to transformed observations with survival time
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Figure 2.6: Non-parametric estimates of conditional cumulative distribution function P (T <
t | T ≤ 8) and the unconditional cumulative distribution function P (T < t).
Data contains 258 adults and 37 children infected with HIV as described in
example 2.2 [182]. Time was measured in three month intervals.

t∗i = −ti and time of entry l∗i = −(ν − ui):

Ŝ(−t) =
∏

{i|−tmax≤t∗i≤−t}

(
1− di
|{j | t∗j ≥ t∗i ≥ l∗j}|

)

=
∏

{i|t≤ti≤tmax}

(
1− di
|{j | tj ≤ ti ≤ ν − uj}|

)
= Ĝ(t).

Note, that the above estimator is only applicable if transformed observations are only
left truncated, but not right censored (δi = 1 for i = 1, . . . , n).

Example 2.8. Returning to the AIDS dataset described in example 2.2 on page 14, the
non-parametric estimator (2.25) can be used to estimate the conditional cumulative
distribution function P (T < t | T ≤ ν). The time was measured in years and discretized
into three months intervals, therefore ν = 8 denotes the end of study period. Figure 2.6
depicts estimates of P (T < t | T ≤ 8) for 258 adults and 37 children. Comparing the
unconditional (right) to the conditional (left) estimate clearly shows that the rate of
events was overestimated when ignoring right truncation.

2.5 Hypothesis Testing

When analyzing survival data, it is common for researchers to investigate whether
survival times differ between groups of patients. In the simplest case, researchers are
studying two groups of patients – such as treatment versus placebo or males versus
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females. A comparison of more than two groups usually arises if researchers want
to determine how good a diagnostic model is in identifying low, medium and high
risk patients. A first attempt might be the visual comparison of estimated survival
functions of the respective patient groups. This provides a first impression on how
well groups are separated with respect to survival, but does not provide a quantitative
answer regarding the extent of differences or whether the differences are merely due to
chance. Instead, it is preferred to perform statistical tests that systematically assess
the differences between survival functions.

2.5.1 Two-Sample Log-Rank Test

When comparing two groups of patients with survival function S1(t) and S2(t), the
objective is to compare the null hypothesis

H0 : S1(t) = S2(t), ∀0 ≤ t ≤ τ (patients of group 1 & 2 have identical prognosis)

against one of the alternatives

H1 : ∃0 ≤ t ≤ τ | S1(t) > S2(t) (group 1 has better prognosis than group 2),
H2 : ∃0 ≤ t ≤ τ | S1(t) < S2(t) (group 1 has worse prognosis than group 2),
H3 : ∃0 ≤ t ≤ τ | S1(t) 6= S2(t) (patients of group 1 & 2 have different prognosis),

where τ is the largest time point where all groups have at least one event-free subject.
Because of censoring, traditional non-parametric tests such as the Wilcoxon test [317]
or Mann-Whitney U test [206] cannot be applied. Instead, special tests that account
for censoring are preferred.

The log-rank test (or Mantel-Haenszel test) is the most commonly employed non-
parametric test for comparing survival distributions [207, 208]. It can be applied
under the assumption of non-informative censoring – survival times are independent of
censoring times – and if survival curves do not cross. The test statistic is based on
computing the difference between the observed number of events and the expected
number of events at every distinct time point of an observed event. When considering
two groups, the expected number of events can be obtained by multiplying the number
of individuals at risk in group 1 by the proportion of the total number of individuals
experiencing an event at time ti in both groups. Next, I will provide a formal definition
of the two-sample log-rank test.

Definition 2.9: Two-Sample Log-Rank Test [207, 208]. Given a set of m distinct
time points of events, for group 1, let d1i denote the number of events at time ti and
r1i = |R1i| the size of the risk set at time ti, i.e., the set of patients that are still
event-free shortly before time point ti (i = 1, . . . ,m). For group 2, d2i and r2i are
defined similarly. The total number of events di, and the total number of individuals
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at risk ri at time ti are defined as di = d1i + d2i and ri = r1i + r2i. Under the null
hypothesis, d1i follows the hypergeometric distribution. Consequently, the expected
number of events e1i in group 1 and its variance σ2

1i is given by

E(d1i) = e1i = r1i

(
di
ri

)
(2.26)

Var(d1i) = σ2
1i = r1i

ri
· r2i

ri

(
ri − di
ri − 1

)
di. (2.27)

The test statistic X2 of the two-sample log-rank test is the difference between the
overall number of observed events in group 1 (d1i) and the overall number of expected
events (e1i):

X2 = (∑m
i=1 (d1i − e1i))2

∑m
i=1 σ

2
1i

. (2.28)

Under the null hypothesis, X2 is approximately χ2-distributed with 1 degree of
freedom. The null hypothesis should be rejected in favor of the one-sided alternative
S1(t) < S2(t) at significance level α if X2 is larger than the upper α quantile of the
χ2-distribution with 1 degree of freedom [176, p. 207].

2.5.2 Log-Rank Test for More Than Two Groups

If the survival distribution of more than two groups are to be compared, the log-rank
test described above can be extended [233]. In this case, the objective is to determine
whether the null hypothesis that patients in all groups have identical prognosis should
be rejected in favor of the alternative that survival among some groups is significantly
different:

H0 : S1(t) = S2(t) = · · · = SK(t), ∀0 ≤ t ≤ τ

versus
H1 : at least two of the survival functions Sj(t) are not equal for some 0 ≤ t ≤ τ .

Definition 2.10: Extended Log-Rank Test [233]. Given survival data for K groups
(K ≥ 2), let m denote total number of unique time points of events among all groups.
The number of expected events at time ti in the k-th group can be defined similar to
the two-sample log-rank test as

eki = rki

(
di
ri

)
, (2.29)

where rki denotes the number of patients of the k-th group at risk at time point
ti, di = d1i + · · · + dKi the overall number of events at ti, and ri = r1i + · · · + rKi
the overall number of patients at risk. The test statistic is based on the following

27



2 Survival Analysis

quantity of the k-th group
Zk =

m∑

i=1
(dki − eki) , (2.30)

and its variance

σ2
kk =

m∑

i=1

rki
ri

(
1− rki

ri

)(
ri − di
ri − 1

)
di (2.31)

σ2
kg = −

m∑

i=1

rki
ri
· rgi
ri

(
ri − di
ri − 1

)
di, k 6= g, (2.32)

where k, g = 1, . . . , K. Finally, the test statistic can be computed by selecting any
K−1 of the Zk’s and constructing the corresponding estimate of the (K−1)×(K−1)
covariance matrix Σ:

X2 = Z>Σ−1Z (2.33)
where Z = (Z1(t), · · · , ZK−1(t))>. Under the null hypothesis, X2 follows a χ2-
distribution with K − 1 degrees of freedom, therefore, the null hypothesis is rejected
at significance level α if X2 is larger than the upper α quantile of the χ2-distribution
with K − 1 degrees of freedom [176, p. 207].

2.5.3 Alternative Tests

The log-rank test gives equal weight to all distinct event times, therefore, it is most
powerful when survival curves are parallel, i.e., the hazards are proportional. If
researchers are more interested in detecting differences in survival distributions occurring
early or late, the log-rank test can be extended by incorporating a non-negative, time-
dependent weight function w(ti) into the test statistic.

Definition 2.11. The k-th element of the vector Z of the extendend log-rank test
statistic (2.33) becomes

Zk =
m∑

i=1
w(ti) [dki − eki] , (2.34)

and entries in the covariance matrix

σ2
kk =

m∑

i=1
w(ti)2

[
rki
ri

(
1− rki

ri

)(
ri − di
ri − 1

)
di

]
(2.35)

σ2
kg = −

m∑

i=1
w(ti)2

[
rki
ri
· rgi
ri

(
ri − di
ri − 1

)
di

]
, k 6= g. (2.36)

Fleming and Harrington [102] proposed a general class of weight functions defined as

wρ,γ(ti) = Ŝ(ti)ρ(1− Ŝ(ti))γ, ρ ≥ 0, γ ≥ 0, (2.37)
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Table 2.1: Weight functions used in various test statistics for comparing survival distribu-
tions.

Test Statistic w(ti)

Log-Rank [207] 1
Gehan [108] ri

Tarone and Ware [284] √
ri

Peto and Peto [233] S̃(ti) =
∏
{j|tj≤ti} (1− dj/(rj + 1))

Fleming and Harrington [102] Ŝ(ti)ρ(1− Ŝ(ti))γ

where Ŝ is the Kaplan-Meier estimator (2.19) in the pooled sample. When setting
ρ = 1 and γ = 0, the weight function emphasizes deviations at early times, whereas
for ρ = 0 and γ = 1 late time points receive more weight. If ρ and γ are set to zero,
all time points receive a constant weight as in the case of the log-rank test described
above. Additional options for the weight function are summarized in table 2.1.
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3 Predictive Models for Survival
Analysis

The Kaplan-Meier and Nelson-Aalen estimator of the survival function and cumulative
hazard function described in section 2.4 are non-parametric estimators that do not take
into account patient characteristics when estimating survival curves. In this chapter, I
will review survival models for right censored survival data that take into account a set
of features or covariates to estimate a patient’s risk of experiencing an adverse event. I
will start by explaining classical models from statistics, namely the accelerated failure
time model and Cox’s proportional hazards model and continue by describing models
that borrow ideas from machine learning, namely support vector machines, gradient
boosting, and random forests.

I will show that most models build upon the set of basic concepts defined in chapter 2.
The training data D for all models consists of n patients, characterized by an observable
time yi = min(ti, ci) > 0, a binary event indicator δi = I(ti ≤ ci), and a p-dimensional
feature vector xi = (xi1, . . . , xip)> ∈ Rp:

D = {(xi, yi, δi)}ni=1.

3.1 Accelerated Failure Time Model

Definition 3.1: Accelerated Failure Time Model. In the accelerated failure time
(AFT) model (see e.g. [68, 176, 210, 269]), the survival function of an individual
described by the feature vector x ∈ Rp at time t is equal to a baseline survival
function S0, evaluated at time t · exp(−x>β), i.e.,

S(t|x) = S0(t exp(−x>β)), (3.1)

where β ∈ Rp represents the model’s coefficients.

From eq. (3.1) it is evident that features decelerate (if exp(−x>β) < 1) or accelerate (if
exp(−x>β) > 1) the time to an event with respect to the baseline survival function.
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Lemma 3.1. The cumulative distribution function F (t|x), the probability density
function f(t|x), and the hazard function h(t|x) of the accelerated failure time model
can be represented in form of the respective baseline functions (indicated by a subscript
zero):

F (t|x) = F0(t exp(−x>β)), (3.2)
f(t|x) = f0(t exp(−x>β)) exp(−x>β), (3.3)
h(t|x) = h0(t exp(−x>β)) exp(−x>β). (3.4)

Proof. All equalities can be directly derived from definitions in eqs. (2.9) to (2.11) (see
section 2.3.3 on page 18). The formulation for F (t|x) can be obtained by substituting
the definition of the survival function in eq. (2.2) into (3.2). Taking the derivative of
(3.2) with respect to t leads to the definition of f(t|x):

d

dt
F0(t exp(−x>β)) = d

dt
F (t|x)

f0(t exp(−x>β)) exp(−x>β) = f(t|x).
(3.5)

Finally, starting with (3.1) and applying eq. (2.10) reveals the hazard function of the
accelerated failure time model:

S(t|x) = S0(t exp(−x>β))
f(t|x)
h(t|x) = f0(t exp(−x>β))

h0(t exp(−x>β))

h(t|x) = f(t|x)h0(t exp(−x>β))
f0(t exp(−x>β))

= f(t|x)h0(t exp(−x>β))
f(t|x) exp(x>β)

= h0(t exp(−x>β)) exp(−x>β).

(3.6)

Alternatively, the accelerated failure time model is often formulated as a linear model
of the logarithm of the survival time:

log t = β0 + x>β + ε

⇔ t = exp(β0 + ε) exp(x>β)
⇔ t exp(−x>β) = exp(β0 + ε),

(3.7)

where β0 ∈ R is an intercept and β are the coefficients. The formulation as a linear
model can be obtained from eq. (3.1) by letting S0(t) be the survival function of
exp(β0 + ε).
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3.1 Accelerated Failure Time Model

If the distribution of the baseline survival function, or equivalently the error term ε,
remains unspecified, the model is called semiparametric accelerated failure time model,
which I will focus on here. Given a set of n patients, the semiparametric accelerated
failure time model is defined as

log ti = β0 + x>i β + εi, ∀i = 1, . . . , n, (3.8)

where the error terms εi are independent and identically distributed random variables.
A naive approach would be to obtain estimates of the coefficients via ordinary least
squares, however, due to right censoring it is only possible to observe yi = min(ti, ci),
therefore the ordinary least squares solution is only unbiased if all individuals are
uncensored (δi = 1 ∀i = 1, . . . , n). Next, I will describe two methods to estimate β0
and β in the accelerated failure time model: the Buckley-James estimator, and the
inverse probability of censoring weighted least squares estimator.

3.1.1 Buckley-James Estimator

For the remainder of this section, I will use ti, ci, and yi to denote the logarithmic
transformation of the survival time, censoring time, and observed time, respectively.
Buckley and James [41] replaced the log survival time ti of censored observations in
eq. (3.8) by E(ti|ti > ci,xi), which is equivalent to imputing survival times of censored
records from the conditional expectation given an individual’s time of censoring and
feature vector. Consequently, the linear model in eq. (3.8) distinguishes between
uncensored and censored samples:

ti = δiyi + (1− δi)E(ti|ti > yi,xi). (3.9)

Note that for censored records yi = ci, because only the time of censoring ci can be
observed. The conditional expectation has the form

E(ti|ti > ci,xi) = β0 + x>i β + E(εi|εi > ci − β0 − x>i β)

= β0 + x>i β +
∫ ∞

ci−β0−x>i β

(
u

1− F (ci − β0 − x>i β)

)
dF (u)

(3.10)

where the function F is the cumulative distribution function of T − β0 − x>i β. The
function F (t) can be estimated by the Kaplan-Meier estimator (2.19) based on data
{ti − β0 − x>i β, δi}ni=1 as described below.

Definition 3.2: Buckley-James estimator [41]. Let ri = yi− β̂0−x>i β̂ denote the
residual of the i-th sample with respect to the current estimates of β0 and β, and
let Ŝ(ri) denote the Kaplan-Meier estimator of 1− F (ri) for the i-th residual, and
∆S(ri) the step size of the Kaplan-Meier estimator at ri. By using Kaplan-Meier
estimates in place of 1−F (·) in (3.10), the survival time of censored subjects can be
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3 Predictive Models for Survival Analysis

imputed by
t̃i = β̂0 + x>i β̂ +

n∑

k=1
δkwik

(
yk − β̂0 − x>k β̂

)
, (3.11)

with

wik =




∆Ŝ(rk)[Ŝ(ri)]−1 if ri < rk,

0 else.
(3.12)

Substituting eq. (3.11) into eq. (3.9), the survival time t̃i used in least-squares
regression for right-censored data following Buckley and James [41] is

t̃i = δiti + (1− δi)
[
β̂0 + x>i β̂ +

n∑

k=1
δkwik

(
ck − β̂0 − x>k β̂

)]
. (3.13)

Once the survival times of censored records have been imputed, an obvious choice
would be to use ordinary least squares with the imputed outcomes to obtain estimates
of the coefficients. Assuming both the features and the response are centered, i.e.,
n−1∑n

i=1 xi = 0p and n−1∑n
i=1 t̃i = 0, the ordinary least squares estimates of β0 and β

are the solution to
−X>(t̃− β0 −Xβ) = 0, (3.14)

with t̃ = (t̃1, . . . , t̃n)>. However, imputed survival times t̃i depend on the unknown
coefficients β0 and β, which makes eq. (3.14) neither continuous nor monotone in β0
and β [163].

Jin et al. [163] employed an iterative expectation maximization algorithm that first
imputes survival times given an initial estimate of the coefficients, and then updates
the coefficients by the ordinary least squares solution as

β̂
new =

(
X>X

)−1
X>t̃, (3.15)

β̂0
new = 1

n

n∑

i=1
t̃i −Xβ̂

new
. (3.16)

They proposed to use a Gehan-type estimator [108] to obtain the initial estimate of
the coefficients by solving the convex optimization problem

min
β0,β

n∑

i=1

n∑

j=1
δi max(0, rj − ri) =

n∑

i=1

n∑

j=1
δi max(0, yj − x>j β − yi + x>i β). (3.17)

3.1.2 Inverse Probability of Censoring Weighted Least Squares

Stute [281] proposed an alternative to the Buckley-James estimator described in the
previous section. Let the censoring mechanism be described by the conditional censoring
survivor function G(c | x) = P (C > c | x). Instead of imputing survival times of
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3.2 Cox’s Proportional Hazards Model

censored subjects, he assigned each sample a weight ωi proportional to the inverse
probability of being censored after time yi, given the feature vector xi:

ωi = δi

Ĝ(yi | xi)
, (3.18)

where Ĝ(·) is an estimator of the conditional censoring survivor function and random
censoring is assumed to ensure G(·) > 0. By considering sample weights ωi and applying
a logarithmic transformation to the observed time points, the objective becomes

argmin
β0,β

1
n

n∑

i=1
ωi(log yi − β0 − x>i β). (3.19)

Due to the form of the weights in eq. (3.18), the algorithm is referred to as inverse
probability of censoring (IPC) weighted least squares [49, 240, 301].
Note. By assumption, G(Y | x) ≥ G(T | x) > 0 holds; hence, the weights ωi always
exist. In situations where the assumption of random censoring does not hold, Ĝ(c | x)
is not guaranteed to be strictly positive. For instance, this could be the case for type
I censoring, i.e., when the time of censoring is fixed in advance, because events after
the end of the study could never be observed. In addition, it is often assumed, for
practical purposes, that censoring is independent of the features, i.e., G(c | x) = G(c),
which allows using the non-parametric Kaplan-Meier estimator (2.19) based on data
D = {(yi, 1− δi)}ni=1 to estimate Ĝ(yi | xi) in eq. (3.18).

Penalized AFT Models

Finally, I want to mention that both the Buckley-James estimator as well as IPC
weighted least squares have been extended to include a Least Absolute Shrinkage and
Selection Operator (LASSO; [288]) or elastic net penalty [332], which makes the AFT
model suitable for high-dimensional data. An AFT model with LASSO penalty based
on IPC weights was proposed in [152], and based on the Buckley-James estimator in
[164]. Extensions to the elastic net penalty have been discussed in [87, 308]. For a
more detailed discussion on penalized models see section 3.2.5 (page 43).

3.2 Cox’s Proportional Hazards Model

Cox’s proportional hazards model [67] is a linear semiparametric model for right
censored survival data. It is by far the most cited predictive survival model [303],
because it is a fundamental tool in clinical research to identify risk factors of a particular
disease. Several extensions to the Cox model have been proposed to adapt it to data
with multicolinearities and high-dimensional feature vectors.
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3.2.1 The Proportional Hazards Model

Definition 3.3: Cox’s Proportional Hazards Model. Cox’s proportional hazards
model [67] models the hazard function of the i-th patient, conditional on the feature
vector xi ∈ Rp, as the product of an unspecified baseline hazard function h0 and an
exponential function of the linear model x>i β:

h(t|xi1, . . . , xip) = h0(t) exp



p∑

j=1
xijβj


⇔ log h(t|xi)

h0(t) = x>i β, (3.20)

where β ∈ Rp are the coefficients associated with each of the p features, and no
intercept term is included in the model.

The baseline hazard function h0 only depends on the time t, whereas the exponential
is independent of time and only depends on the covariates xi. Thus, h0 is used to
represent changes in risk over time and is the hazard function if one would ignore all
features. An alternative interpretation of Cox’s proportional hazards model [67] is that
the linear model x>i β denotes the log ratio of the i-th individual’s hazard function to
the baseline hazard function (see the right hand side of eq. (3.20)).

The ratio of the hazard functions of two individuals, the so-called hazard ratio, can be
interpreted similar to the odds ratio in logistic regression. For any two feature vectors
x1 and x2, the hazard ratio is given by

h(t|x1)
h(t|x2) = h0(t) exp(x>1 β)

h0(t) exp(x>2 β) = exp(x>1 β − x>2 β) = exp



p∑

j=1
(x1j − x2j)βj


 . (3.21)

If all features are fixed and only the j-th feature is incremented by 1, the hazard ratio
simplifies to

h(t|x1, . . . , xj, . . . , xp)
h(t|x1, . . . , xj + 1, . . . , xp)

= exp (βj) . (3.22)

In the general case in eq. (3.21) as well as the specific case in eq. (3.22), the hazard
ratio is a constant independent of time, which is referred to as the proportional hazards
assumption. In other words, the proportional hazards assumption means that the ratio
of the “risk” (hazard) of experiencing an event of two subjects is constant over time.
Hence, Cox’s proportional hazards model [67] can only accurately estimate survival if
the proportional hazards assumption holds.

Example 3.1. Once the coefficients β have been estimated from training data D, their
values provide information about their effect on the hazard. For illustration, assume
that there is only a single binary feature that denotes whether a patient was treated
with a newly developed drug (xi1 = 1) or received a placebo (xi1 = 0). When comparing
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3.2 Cox’s Proportional Hazards Model

a patient receiving the new drug to patient receiving the placebo, the hazard ratio
becomes

h(t|x11 = 1)
h(t|x21 = 0) = exp(β1)⇔ log

(
h(t|x11 = 1)
h(t|x21 = 0)

)
= β1.

If the new drug is ineffective, h(t|x11 = 1) = h(t|x21 = 0) and the coefficient β1 would
be zero. If the new drug is protective of the disease, h(t|x11 = 1) < h(t|x21 = 0) and
β1 < 0. Finally, if the new drug is harmful, h(t|x11 = 1) > h(t|x21 = 0) and β1 > 0.
Therefore, the sign of the coefficient indicates whether the new drug has a negative or
positive impact on survival.

3.2.2 Model Fitting

Fitting Cox’s proportional hazards model (3.20) is achieved by maximizing a partial
likelihood function with respect to the coefficients β using the Newton-Raphson
algorithm. I will first derive the full likelihood function, followed by describing the
partial likelihood function and the details of its maximization.

Full Likelihood Function

The main assumption for all likelihood-based estimators from survival data is that
survival time and censoring time are independent, which is a requirement for non-
parametric estimators described in section 2.4 as well. Assuming samples are indepen-
dently and identically distributed, the general form of the likelihood function for m
distinct time points is defined as

L(β) =
m∏

i=1
P (T = ti),

where P (T = ti) is the probability of an event at time point ti.

In practice, the exact time point ti of an event is only known for a subset of patients,
whereas for the remaining patients only the time of censoring ci is known. As before,
let T and C denote a non-negative random variable representing the survival time
and censoring time, respectively, then only Y = min(T,C) can be observed. When
constructing the likelihood, it is necessary to consider that the time of an event is only
partially known for censored records, whereas the exact time of an event is known for
uncensored records. Thus, the training data D can be decomposed into two disjoint sets
D = T ∪ C, where T contains all subjects that experienced an event, and C contains
all subjects that are right censored, which yields the likelihood function

L(β) =
∏

i∈T
P (Y = ti ∩ δi = 1)

∏

i∈C
P (Y = ci ∩ δi = 0).
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A censored record only provides information about the probability P (T > ci), whereas
an uncensored record provides information with respect to P (T = ti). For i ∈ T ,

P (Y = ti ∩ δi = 1) = P (Y = ti | δi = 1)P (δi = 1)
= P (T = ti | T ≤ ci)P (T ≤ ci))

= f(ti)
F (ti)

F (ti) = f(ti)
(3.23)

and for i ∈ C,
P (Y = ti ∩ δi = 0) = P (T > ci) = S(ci). (3.24)

Consequently, the likelihood function for right censored survival data can be compactly
expressed as

L(β) =
m∏

i=1
[f(yi)]δi [S(yi)]1−δi (3.25)

Substituting f(t) = h(t)S(t) and S(t) = exp(−H(t)) from eqs. (2.10) and (2.11) into
eq. (3.25) yields an alternative definition of the full likelihood function of the form

L(β) =
m∏

i=1
[h(yi)S(yi)]δi [exp(−H(yi))]1−δi

=
m∏

i=1
[h(yi) exp(−H(yi))]δi [exp(−H(yi))]1−δi

=
m∏

i=1
[h(yi)]δi exp(−H(yi)).

(3.26)

Partial Likelihood Function Without Tied Survival Times

When substituting the definition of the hazard function h(t) and the cumulative hazard
function H(t) of Cox’s proportional hazards model (3.20) into eq. (3.26), optimization
has be to performed with respect to β and the unknown baseline hazard function h0(t).
This is generally not possible and led to the proposition of Cox [67] to only include
conditional probabilities in the likelihood function. I will first present Cox’s original
formulation, which assumes that there are no ties in survival times, and subsequently
describe suitable estimators for data with tied survival times.

The quantity of interest is the probability that the i-th individual experiences an event
at time ti, given that there is one event at time point ti. This conditional probability
can be defined in terms of the exponential function in eq. (3.20) such that the baseline
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3.2 Cox’s Proportional Hazards Model

hazard function can be eliminated from the likelihood function [176, p. 257]:

P (subject experiences event at yi | one event at yi)

=P (subject experiences event at yi | event-free up to yi)
P (one event at yi | event-free up to yi)

= h(yi|xi)∑n
j=1 I(yj ≥ yi)h(yj|xj)

= h0(yi) exp(x>i β)
∑n
j=1 I(yj ≥ yi)h0(yj) exp(x>j β)

= exp(x>i β)
∑n
j=1 I(yj ≥ yi) exp(x>j β) = exp(x>i β)

∑
j∈Ri exp(x>j β) ,

(3.27)

where I(·) is the indicator function and Ri = {j | yj ≥ yi} is the risk set, i.e., the set
of patients who remained event-free shortly before time point yi. By multiplying the
conditional likelihood from above for all patients who experienced an event, Cox [67]
constructed the partial likelihood function

PL(β) =
n∏

i=1

[
exp(x>i β)

∑
j∈Ri exp(x>j β)

]δi
. (3.28)

Optimization

Instead of maximizing the partial likelihood function, it is numerically more stable to
maximize the log partial likelihood function instead:

logPL(β) =
n∑

i=1
δi


x>i β − log


∑

j∈Ri
exp(x>j β)




 . (3.29)

The log partial likelihood function is convex in β, hence the Newton-Raphson algorithm
can be employed to obtain estimates β̂ of the coefficients from training data (see
algorithm 3.1).

Before deriving the gradient and Hessian of the log partial likelihood function, additional
notations are required. Let X = [x1, . . . ,xn]> denote the n× p matrix of all feature
vectors, and 1lRi ∈ {0, 1}n the indicator vector of the risk set, such that the j-th element
of 1lRi is 1 if yj ≥ yi and zero otherwise. Moreover, X̄ i = diag(1lRi)X is a modified
version of X, where rows corresponding to individuals that are not in the risk set Ri

are set to zero. Finally, let wi ∈ R be the denominator of the conditional probability
(3.27): wi = ∑

j∈Ri exp(x>j β) = 1l>Ri exp(Xβ).

The first-order derivative of the log partial likelihood function (3.29) is defined as

∂ logPL(β)
∂βk

=
n∑

i=1
δi

[
xik −

∑
j∈Ri exp(x>j β)xjk∑
j∈Ri exp(x>j β)

]

=
n∑

i=1
δi

[
xik −

∑
j∈Ri exp(x>j β)xjk

wi

]
,

(3.30)
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which can be written in matrix form as

∂ logPL(β)
∂β

=
n∑

i=1
δi

[
xi −

1
wi
X̄>i diag(exp(Xβ))1ln

]
. (3.31)

The diagonal elements of the Hessian matrix are defined as

∂2 logPL(β)
∂β2

k

= −
n∑

i=1

δi
w2
i





∑

j∈Ri
exp(x>j β)x2

jk


wi −


∑

j∈Ri
exp(x>j β)xjk




2



= −
n∑

i=1
δi



∑
j∈Ri exp(x>j β)x2

jk

wi
−
(∑

j∈Ri exp(x>j β)xjk
wi

)2
 ,

(3.32)

and the off-diagonal elements as

∂2 logPL(β)
∂βk∂βv

= −
n∑

i=1

δi
w2
i


∑

j∈Ri
exp(x>j β)xjkxjv


wi

− δi
w2
i


∑

j∈Ri
exp(x>j β)xjk




∑

j∈Ri
exp(x>j β)xjv




= −
n∑

i=1
δi

∑
j∈Ri exp(x>j β)xjkxjv

wi

− δi
(∑

j∈Ri exp(x>j β)xjk
wi

)(∑
j∈Ri exp(x>j β)xjv

wi

)

= −
n∑

i=1

δi
w2
i


wi


∑

j∈Ri
exp(x>j β)xjkxjv


−


∑

j∈Ri
exp(x>j β)xjk




∑

j∈Ri
exp(x>j β)xjv






(3.33)

In matrix form, the second-order derivative becomes

∂2 logPL(β)
∂β∂β>

=
n∑

i=1

δi
w2
i

X̄>i
[
wi · diag(exp(Xβ))− exp(Xβ) exp(Xβ)>

]
X̄ i. (3.34)

Partial Likelihood Function When Ties Are Present

The original formulation of the partial likelihood function by Cox [67] did not consider
ties in survival times. In practice however, ties in survival times are common because
survival times cannot be recorded with arbitrary precision; in most clinical trials,
survival times are recorded in days, thus the survival times of people experiencing
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3.2 Cox’s Proportional Hazards Model

Algorithm 3.1: Maximization of log partial likelihood function (3.29) of Cox’s propor-
tional hazards model using Newton-Raphson algorithm.
Input: Training data D = {(xi, yi, δi)}ni=1.
Output: Estimate of coefficients β̂.

1 β0 ← 0p
2 t← 0
3 while not converged do
4 Compute Newton step

∆β =
(
∂2 − logPL(β)

∂β∂β>

)−1
∂ − logPL(β)

∂β

with β = βt.
5 Update βt+1 ← βt −∆β
6 t← t+ 1
7 end
8 β̂ ← βt

an event on the same day are indistinguishable. In this case, the partial likelihood
function has to consider all possible ways patients with identical survival times can
be ordered, which amounts to m! (m factorial) possible permutations [73]. Hence,
computing the exact partial likelihood in the presence of tied survival times quickly
becomes intractable.

Breslow [40] proposed a straightforward extension of the partial likelihood function
(3.28) by simply treating tied survival times as distinct:

PLBreslow(β) =
m∏

i=1




exp(x>i β)
[∑

j∈Ri exp(x>j β)
]di




δi

, (3.35)

where m is the total number of distinct time points and di the number of events at
time point ti.

An alternative formulation that is closer to the exact partial likelihood when many ties
are present was proposed by Efron [81]:

PLEfron(β) =
m∏

i=1


 exp(x>i β)
∏di
k=1

[∑
j∈Ri exp(x>j β)− k−1

di

∑
j∈Di exp(x>j β)

]



δi

, (3.36)

where Di = {j | tj = ti ∧ δj = 1} is the set of patients who have experienced an event
at time point ti, and di = |Di| its cardinality.
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3.2.3 Estimation of Survival Function

Once the coefficients β of Cox’s proportional hazards model have been estimated, it is
often of interest to estimate the survival function of new patients, based on the fitted
model. Estimation of an individual’s survival function with feature vector xnew ∈ Rp

is based on the definition of the survival function in eq. (2.11), i.e., S(t | xnew) =
exp(−H(t | xnew)).

Starting from the definition of the cumulative hazard function (2.8) and substituting
the hazard function (3.20), the cumulative hazard function for Cox’s proportional
hazards model can be expressed as

H(t | xnew) =
∫ t

0
h(u | xnew)du

=
∫ t

0
h0(u) exp(x>newβ)du

= exp(x>newβ)
∫ t

0
h0(u)du

= exp(x>newβ)H0(t).

(3.37)

By re-substituting eq. (3.37) into eq. (2.11), the survival function for Cox’s proportional
hazards model becomes

S(t | xnew) = exp(−H(t | xnew))
= exp(− exp(x>newβ)H0(t))

= [exp(−H0(t))]exp(x>newβ)

= S0(t)exp(x>newβ).

(3.38)

Consequently, the only quantity that needs to be estimated is the baseline survival
function S0(t) = exp(−H0(t)). Rather than using an exact maximum likelihood
estimator of S0(t), it is common to use the approximate estimator proposed by Breslow
[40], which is defined as

Ŝ0(t) = exp(−Ĥ0(t)) (3.39)

Ĥ0(t) =
∑

{i|ti≤t}

di∑
j∈Ri exp(x>j β) . (3.40)

Note that Breslow’s estimator of the cumulative baseline hazard function simplifies to
the Nelson-Aalen estimator in eq. (2.20) when β = 0p.

3.2.4 Stratified Proportional Hazards Model

One of the limitations of Cox’s proportional hazards model in eq. (3.20) is the propor-
tional hazards assumption, i.e., for any two feature vectors x1 and x2, the ratio of their
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corresponding hazard functions is constant for all time points. This assumption can be
relaxed by dividing patients into K non-overlapping groups, called strata, according to
some observed characteristic such as age or sex. The coefficients still remain the same
across all strata, but each stratum is characterized by an independent baseline hazard
function h0k(t). Formally, the hazard function of the i-th individual in stratum k is
defined as [176, pp. 308-312]:

h(t|xi, k) = h0k(t) exp
(
x>i β

)
, k = 1, . . . , K. (3.41)

As a result, the proportional hazards assumption is only required to hold for subjects
within the same stratum, but not for subjects in different strata. The simplest form of
stratification splits patients according to one categorical variable or one continuous
variable, after it has been discretized (e.g. age < 60 and age ≥ 60). It is also possible
to stratify on multiple variables, which results in one stratum for each combination of
the categories from all variables. For instance, if one would stratify by sex and age,
four strata would be created. The disadvantage of stratification is that the model
cannot estimate a coefficient for the stratification variable anymore, which means its
importance cannot be determined by the model.

Estimation of the coefficients in the stratified Cox’s proportional hazards model can be
carried out as described in section 3.2.2, with the only difference that risk sets Ri are
now stratum specific. The partial likelihood function for m strata is given by

PLStratified(β) =
K∏

k=1
PLk(β), (3.42)

where PLk(β) is the partial likelihood function in eq. (3.35) or (3.36) that only considers
subjects in the k-th stratum [176, pp. 308-312].

3.2.5 Penalized Models

The classical Cox’s proportional hazards model described in eq. (3.20) works well
if there are no multicolinearities and the training data contains more samples than
features. However, in many situations these conditions are violated. For instance, when
building a survival model from gene expression data, the number of features is in the
range of thousands, while the number of patients is usually below one thousand, and
expression levels of some genes are highly correlated with each other. To overcome
this limitation, the partial likelihood can be augmented by a `1 (LASSO) or `2 (ridge)
penalty [288, 306]:

logPLLASSO(β) = logPL(β)− λ1

p∑

j=1
|βj| (3.43)

logPLRidge(β) = logPL(β)− λ2

2

p∑

j=1
β2
j , (3.44)
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where λ1 > 0 and λ2 > 0 are hyper-parameters that determine the amount of regular-
ization. Due to the non-differentiability at zero, the LASSO penalty effectively limits
the complexity of the model by shrinking coefficients towards zero and setting some
features exactly to zero, which makes it suitable for high-dimensional data and when
p > n. Therefore, Cox’s proportional hazards model with the LASSO penalty has
feature selection embedded into its optimization. The hyper-parameter λ1 controls the
number of selected features – smaller values result in less non-zero coefficients. The
ridge penalty is fully differentiable, therefore it only shrinks coefficients towards zero,
but does not set them exactly to zero. It is most effective if survival data contains
features that are highly correlated with each other [332].

One issue with a LASSO-penalized Cox model is that the regularization parameter λ1
is applied to each coefficient equally, which leads to biased estimates of large coefficients
if λ1 is too big [328]. In addition, choosing a smaller value for λ1 to avoid the bias may
result in a model that is too complex, i.e., β is dense. The adaptive LASSO penalizes
large coefficients less than small coefficients to reduce the bias of the LASSO [328]. In
addition, it can be used to include prior knowledge about the importance of variables
by penalizing important variables less than putative unimportant variables. The log
partial likelihood of Cox’s proportional hazards model with adaptive LASSO penalty
is defined as

logPLA-LASSO(β) = logPL(β)− λ1

p∑

j=1
wj|βj|, (3.45)

where each feature is associated with a non-negative weight wj.

Another disadvantage of the `1 penalty is that it is only able to select n features if
the number of features p exceeds the number of samples n (p > n) [332]. Moreover, if
data contains a group of features that are highly correlated, the `1 penalty is going to
randomly choose one feature from this group. To alleviate these problems, Zou and
Hastie [332] proposed the elastic net penalty, which is a weighted combination between
the `1 and `2 penalty:

logPLElastic-net(β) = logPL(β)− λ

α

p∑

j=1
|βj|+

1− α
2

p∑

j=1
β2
j


 , (3.46)

where λ > 0 and α ∈ [0; 1] is the ratio between the LASSO and ridge penalty.

The group LASSO penalty [327] behaves similar to the regular LASSO penalty, but
couples the coefficients of a group of variables: either all variables of a group enter
the model (non-zero coefficients), or all variables are excluded (zero coefficients). This
behavior can be beneficial when a categorical variable is dummy coded and one wants
to include or exclude all of the dummy variables. The group LASSO splits all p features
into G non-overlapping groups and applies the `1-norm to the `2-norm of the coefficients
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of each individual group:

logPLG-LASSO(β) = logPL(β)− λ1

G∑

g=1

√
|Gg|

∑

j∈Gg
β2
j , (3.47)

where the set Gg contains the indices of coefficients belonging to the g-th group.

Optimization

The `2-penalized log partial likelihood function (3.44) is convex and differentiable, hence
the Newton-Rhapson method can be used to estimate the coefficients β for fixed λ2 (see
section 3.2.2). In contrast, penalties with a `1-norm are convex but non-differentiable,
which means Newton-Rhapson optimization cannot be applied. Next, I will describe
methods to optimize the log partial likelihood function with elastic net penalty (3.46),
which contains the LASSO as a special case (α = 1).

Moreover, a suitable value for λ is often unknown in advance and has to be determined
via cross-validation. Therefore, it would be computationally advantageous to efficiently
compute coefficients along a path of λ values. This can be achieved by starting with
a high λ value that sets all coefficients to zero and then incrementally decreasing
its value until all coefficients enter the model unpenalized (λ = 0). By using the
estimated coefficients β̂ of the previous value for λ as initialization for the optimization
with respect to the current λ, usually only a few iterations are required to find an
updated estimate. This procedure is called warm start and can be utilized in any of
the optimization schemes described below.

Park and Hastie [227] computed an entire solution path by exploiting the near piecewise
linearity of the coefficients along the path of λ values. They first approximated the
change in the coefficients when decreasing λ, which was subsequently used as starting
point for Newton’s method; their technique is part of the predictor-corrector method
class of algorithms for optimization. Goemann [113] solved eq. (3.46) by combining
gradient ascent optimization with the Newton–Raphson algorithm. Simon et al. [267]
used coordinate descent by reformulating eq. (3.46) as a weighted least squares problem.
In coordinate descent, optimization is performed with respect to a single coefficient
βj, while keeping the remaining coefficients fixed, which allows solving for βj via the
soft-thresholding operator, even if an `1 penalty is used. This procedure is repeated
multiple times for all coefficients until convergence. Alternatively, it is possible to
apply general optimization algorithms that are suitable in the presence of convex and
non-differentiable penalty functions, such as alternating direction method of multipliers
(ADMM; [32, 106, 112]) or fast iterative shrinkage-thresholding algorithm (FISTA;
[19]).
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3.3 Support Vector Machines for Survival Analysis

The main idea of the support vector machine (SVM) for binary classification is that
the hyperplane separating samples of the two classes should be positioned such that
the closest distance to the hyperplane from either class is maximized [64]. By following
similar ideas as in binary classification, Vapnik [305] and Herbrich et al. [138] applied the
maximum margin principal to regression and learning-to-rank problems, respectively.
In this section, I will describe three different extensions of support vector machines to
model right censored survival data. Evers and Messow [90] and Van Belle et al. [294]
cast it as a learning-to-rank problem by extending Rank SVM [138], Khan and Zubek
[172] and Shivaswamy et al. [264] cast it as a regression problem, and Eleuteri [85] and
Eleuteri and Taktak [86] as a quantile regression problem.

3.3.1 Using Ranking Constraints

The objective of Rank SVM is to learn a model that correctly ranks samples, grouped
by query, according to their relevance value [138]. Each of the n training samples
consists of a triplet (xi, qi, ri), where xi ∈ Rp is a feature vector, qi ∈ Q ⊂ Z, a query,
ri ∈ K ⊂ R a relevance level, and i = 1, . . . , n. During training, the coefficients
w ∈ Rp are learned such that the predicted ordering of samples, within each query,
approximates the ordering according to the actual relevance levels (samples belonging
to different queries are not compared).

Definition 3.4: Linear Rank SVM. Let P = {(i, j) | qi = qj ∧ ri > rj}ni,j=1 be the
set of comparable pairs, then linear Rank SVM optimizes the objective

min
w

1
2‖w‖

2
2 + γ

∑

(i,j)∈P
ξij

subject to w>xi −w>xj ≥ 1− ξij, ∀(i, j) ∈ P ,
ξij ≥ 0, ∀(i, j) ∈ P ,

(3.48)

where γ > 0 is a regularization parameter and ξij are the slack variables. Alternatively,
eq. (3.48) can be expressed as an unconstrained optimization problem as

min
w

1
2‖w‖

2
2 + γ

∑

(i,j)∈P
max(0, 1−w>(xi − xj)). (3.49)

With respect to survival analysis, training data consists of triplets (xi, yi, δi) and the
objective is to rank patients according to their survival time. Because of right censoring,
the only observable quantity is yi = min(ti, ci), where ti is the time of an event and ci
the time of censoring. Therefore, a pairwise comparison is only valid if the patient with
the lower observed time yi experienced an event (is uncensored). Formally, the set of

46
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comparable pairs P is given by P = {(i, j) | yi > yj ∧ δj = 1}ni,j=1, where it is assumed
that all observed time points are unique [90, 294]. It is easy to see that the survival
support vector machine simplifies to Rank SVM with a single query if all records are
uncensored.

Optimization can be carried out by transforming the ranking objective into a classifica-
tion objective and using a standard dual SVM solver [234]. This requires to explicitly
construct all pairwise differences x̃ij = xi − xj for all pairs (i, j) ∈ P together with
the corresponding label

ỹij =



−1 if yi < yj,

+1 if yi > yj.

The disadvantage of this approach is that it requires O(n2) space and O(pn4) time for
training, which is only feasible for small datasets. Van Belle et al. [295] addressed this
problem by first clustering data according to observed times and limiting the number
of comparable pairs. Instead of considering all uncensored samples j as candidate in
the pair (i, j), they confined j to uncensored samples that are among the k nearest
neighbors of i:

Pk-NN = {(i, j) | yi > yj ∧ δj = 1 ∧ j is k nearest neighbor of i}ni,j=1.

Setting k = 1 reduces the maximum number of constraints to n and only maximizes
the margin between adjacent comparable pairs. In this case, the i-th sample is only
compared to the largest uncensored sample j with yi > yj, which yields the set

P1-NN = {(i, j) | yi > yj ∧ δj = 1 ∧ @k : yi > yk > yj ∧ δk = 1}ni,j=1. (3.50)

The work in [296] is based on the set P1-NN and a modification of the maximum-
margin constraint in eq. (3.48). Instead of maximizing the margin between comparable
pairs, authors of [296] searched for a monotonically increasing transformation function
h with minimum Lipschitz constant 0 ≤ l < ∞ such that h(w>xi) − h(w>xj) ≤
l(w>xi −w>xj). They showed that this corresponds to replacing 1 on the right side
of the first constraint in eq. (3.48) by the term yi − yj, resulting in the optimization
problem

min
w

1
2‖w‖

2
2 + γ

n∑

i=1
ξi

subject to w>xi −w>xj ≥ yi − yj − ξi, ∀(i, j) ∈ P1-NN,

ξi ≥ 0, ∀i = 1, . . . , n.

(3.51)

By using P1-NN instead of the full set in the minimization problem (3.51), the time
complexity of training reduces from O(pn4) to O(pn2).
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3.3.2 Using Regression Constraints

Instead of formulating survival analysis as a ranking problem, as described above, it can
be addressed as a regression problem as well. In this case, models adapt the ε-insensitive
loss used in support vector regression [305]. The idea is that the contribution of samples
with small residuals, i.e., low prediction error, are ignored by the loss function.

Definition 3.5: Linear Support Vector Regression. The objective function for
linear support vector regression is given by

min
w,b

1
2‖w‖

2
2 + γ

n∑

i=1
∆ε(yi − (w>xi + b)), (3.52)

where ∆ε(r) = max(0, |r| − ε), ε > 0 is the size of the insensitive region, γ > 0 is a
regularization parameter, and b ∈ R is the intercept or bias term. Alternatively, the
constrained optimization problem is defined as

min
w,b

1
2‖w‖

2
2 + γ

n∑

i=1
(ξi + ξ∗i )

subject to yi − (w>xi + b) ≤ ε+ ξi, ∀i = 1, . . . , n,
w>xi + b− yi ≤ ε+ ξ∗i , ∀i = 1, . . . , n,
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . , n.

(3.53)

where ξi and ξ∗i are slack variables. The first constraint ensures that predictions that
are at most ε smaller than the actual value yi have no influence, and the second
constraint that predictions that are at most ε greater than yi have no influence.

For survival data, the exact time of an event is only known for individuals who
have experienced an event (δi = 1), but not for those censored (δi = 0). Therefore,
the constraints in eq. (3.53) have to be updated to consider right censored records.
Shivaswamy et al. [264] proposed a modification of support vector regression for right
censored survival data by disregarding the first constraint in eq. (3.53) for right censored
observations, because the time of censoring only provides a lower bound on the time of
an event. Similarly, for left censored records, the time of censoring provides an upper
bound and therefore the second constraint in eq. (3.53) should be disregarded.

Definition 3.6: SVCR. Let T = {i | δi = 1} denote the set of uncensored records,
Cright = {i | δi = 0} the set of right censored records and Cleft = {i | δi = −1}
the set of left censored records. The training data can be split into two sets; first,
L = T ∪ Cright contains all subjects with a finite lower bound on survival time, and
second, U = T ∪ Cleft contains all subjects with a finite upper bound. The objective

48



3.3 Support Vector Machines for Survival Analysis

of support vector regression for censored targets (SVCR; [264]) is defined as

min
w,b

1
2‖w‖

2
2 + γ


∑

i∈L
ξi +

∑

j∈U
ξ∗j




subject to yi − (w>xi + b) ≤ ε+ ξi, ∀i ∈ L,
w>xj + b− yj ≤ ε+ ξ∗j , ∀j ∈ U ,
ξi ≥ 0, ∀i ∈ L,
ξ∗j ≥ 0, ∀j ∈ U .

(3.54)

If there are no censored records, T = L = U and the objective reduces to the one of
regular support vector regression in eq. (3.53).

An alternative formulation based on support vector regression was proposed by Khan
and Zubek [172]. In contrast to the approach proposed in [264], they introduced an
assymmetrical ε-insensitive loss with different margins for censored and uncensored
patients. Instead of a single parameter ε, the objective function relies on four different
parameters: εe, ε∗e > 0 define the upper and lower bound of the insensitive area for
uncensored records, and εc, ε∗c > 0 define the upper and lower bound of the insensitive
area for censored records. In addition, the regularization parameter γ is replaced by
four parameters, one for each type of error: 1) γe > 0 for uncensored records with
predicted time ŷi less than the actual survival time yi, 2) γ∗e > 0 for uncensored records
with ŷi > yi, 3) γc > 0 for censored records with ŷi < yi, and 4) γ∗c > 0 for censored
records with ŷi > yi.

Definition 3.7: SVRc. Let si = I(δi 6= 0) denote whether a patient’s record is
censored, then γi = siγc + (1− si)γe denotes the conditional regularization parameter
for predictions that are less than the actual survival time with respect to the upper
bound εi = siεc + (1− si)εe. Analogously, γ∗i denotes the conditional regularization
parameter for predictions that are greater than the actual survival time with respect
to the lower bound ε∗i . The objective of support vector regression for censored data
(SVRc; [172]) is defined as

min
w,b

1
2‖w‖

2
2 +

n∑

i=1
(γiξi + γ∗i ξ

∗
i )

subject to yi − (w>xi + b) ≤ εi + ξi, ∀i = 1, . . . , n,
w>xi + b− yi ≤ ε∗i + ξ∗i , ∀i = 1, . . . , n,
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . , n.

(3.55)

Note that SVCR in eq. (3.54) does not penalize predictions that are greater than the
observed time of censoring for right censored samples, whereas SVRc in eq. (3.55)
penalizes predictions that exceed the actual time of censoring by more than ε∗c by γ∗c .
Therefore, Khan and Zubek [172] suggested that predictions greater than the time of
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y − ŷ

Loss

0
−ε ε

γ γ

(a) SVCR loss (3.54) for events (δi = 1).

y − ŷ

Loss

0
−ε∗e εe

γ∗e

γe

(b) SVRc loss (3.55) for events (δi = 1).

y − ŷ

Loss

0
ε

γ

(c) SVCR loss (3.54) for censored samples
(δi = 0).

y − ŷ

Loss

0
−ε∗c εc

γ∗c

γc

(d) SVRc loss (3.55) for censored samples
(δi = 0).

Figure 3.1: Graphical representation of loss functions used by SVCR [264] in eq. (3.54)
and SVRc [172] in eq. (3.55). For uncensored records, SVCR uses a symmetric
ε-insensitive loss function (a), whereas SVRc penalizes predictions that exceed
the actual survival time by more than ε∗e or that are at least εe below the actual
survival time (b). For censored records, SVCR does not penalize predictions
that are greater than the time of censoring (c). In contrast, SVRc penalizes
predictions that exceed the time of censoring by more than ε∗c (d). For SVRc,
Khan and Zubek [172] suggest that ε∗c > εe > ε∗e = εc and γ∗c < γe < γ∗e = γc,
which holds in the example shown here too.
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right censoring should be penalized less than predictions smaller than the time of right
censoring. They recommended the following relationship between the hyper-parameters:
ε∗c > εe > ε∗e = εc and γ∗c < γe < γ∗e = γc. Figure 3.1 illustrates the differences between
the loss function employed by Shivaswamy et al. [264] and Khan and Zubek [172].

Both the optimization problem (3.54) and (3.55) have O(n) constraints, which is
less than in the case of survival support vector machine with ranking constraints in
section 3.3.1.

3.3.3 Using Hybrid Ranking and Regression Constraints

One disadvantage of models based on ranking constraints described in section 3.3.1
is that they only provide a relative ordering of patients with respect to their survival
time in the prediction phase. For a given set of patients, the model only predicts in
which order subjects are expected to experience an event, but it does not provide any
information about the time of an event. The latter is only captured by regression models
presented in section 3.3.2. Van Belle et al. [297] combined models (3.51) and (3.54) to
obtain a hybrid model, which includes both ranking and regression constraints:

min
w,b

1
2‖w‖

2
2 + γ


∑

i∈L
ξi +

∑

j∈U
ξ∗j


+ θ

n∑

i=1
ζi

subject to yi − (w>xi + b) ≤ ε+ ξi, ∀i ∈ L,
w>xj + b− yj ≤ ε+ ξ∗j , ∀j ∈ U ,
w>xi −w>xj ≥ yi − yj − ζi, ∀i ∈ P1-NN,

ξi ≥ 0, ∀i ∈ L,
ξ∗j ≥ 0, ∀j ∈ U ,
ζi ≥ 0, ∀i = 1, . . . , n.

(3.56)

The optimization problem (3.56) has O(n) constraints due to using P1-NN in the ranking
constraint.

3.3.4 Using Quantile Regression Loss

Let T denote a continuous non-negative random variable corresponding to a patient’s
survival time with cumulative distribution function FT (t) = P (T ≤ t), and let κ ∈ [0; 1].
The κ-th quantile of T , denoted by QT (κ), is given by

QT (κ) = F−1
T (κ) = inf{t ∈ T | FT (t) ≥ κ}.
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From the definition of the survival function (2.2), it follows that the κ-th quantile of T
is identical to the (1− κ)-th quantile of S(t) = 1−F (t), which suggests estimating the
survival function S(t) via quantile regression.

Definition 3.8: Quantile Regression. In quantile regression [177, 178], the objective
is to estimate the conditional quantile function QT |X(κ,x) for a pair of continuous
random variables (T,X) with unknown joint distribution, where x ∈ X = X1×· · ·×
Xp. The conditional quantile function QT |X(κ,x) : X → R is given by

QT |X(κ,x) = F−1
T (κ|X = x) = inf{t ∈ T | FT (t|X = x) ≥ κ},

where FT (·|X = x) is the conditional cumulative distribution function of T , given
X = x.

Koenker and Bassett [178] showed that the κ-th quantile of a sample y1, . . . yn can be
estimated by

min
q∈R

n∑

i=1
ρκ(yi − q), (3.57)

where

ρκ(r) =




(κ− 1)r if r < 0,
κr if r ≥ 0,

which has been adopted by Takeuchi et al. [282] to yield their empirical conditional
quantile estimator:

min
w,b

1
2‖w‖

2
2 + γ

n

n∑

i=1
ρκ(yi − (w>xi + b)). (3.58)

Equation (3.58) can be expressed as a constrained optimization problem as

min
w,b

1
2‖w‖

2
2 + γ

n

n∑

i=1
κξi + (1− κ)ξ∗i

subject to yi − (w>xi + b) ≤ ξi, ∀i = 1, . . . , n,
w>xi + b− yi ≤ ξ∗i , ∀i = 1, . . . , n,
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . , n.

(3.59)

In [85, 86], the authors extended the constrained optimization problem (3.59) to be
applicable to right censored survival data – under the assumption that survival time
and censoring time are conditionally independent, given the features – by introducing
an inverse probability of censoring weighted (IPCW) loss function [49, 240, 301].
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Definition 3.9: Quantile Regression for Right Censored Survival Data via Sup-
port Vector Machines. Let T and C denote continuous random variables repre-
senting the survival time and censoring time, and let x be a p-dimensional feature
vector. In practice, it is only possible to observe Y = min(T,C) and the event
indicator δ = I(T ≤ C). The estimator (3.59) can be extended to partially observed
survival data by assigning each sample a weight ωi proportional to the inverse proba-
bility of being censored after time yi, given the feature vector x (see section 3.1.2 on
page 34). By including weights ωi into the objective (3.59) and applying a logarithmic
transformation to the observed time points Y , the objective becomes

min
w,b

1
2‖w‖

2
2 + γ

n

n∑

i=1
ωi [κξi + (1− κ)ξ∗i ]

subject to log yi − (w>xi + b) ≤ ξi, ∀i = 1, . . . , n,
w>xi + b− log yi ≤ ξ∗i , ∀i = 1, . . . , n,
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . , n.

(3.60)

Eleuteri [85] assumed that censoring is independent of the features and used the
non-parametric Kaplan-Meier estimator to compute the weights ωi.
Note. Quantile regression models for censored data have been proposed outside of
support vector machines as well (e.g. [101]).

3.3.5 Non-linear Extension

The support vector machine based on ranking constraints (see section 3.3.1), regression
constraints (see section 3.3.2), and quantile regression loss (see section 3.3.4) all assume
a linear decision function f(x) = w>x+ b with coefficients w ∈ Rp and constant bias
term b ∈ R. However, if data becomes increasingly more complex, a non-linear decision
function is often preferred. To obtain a non-linear decision function in the support
vector machine framework, feature vectors are mapped into a higher dimensional
(possible infinite dimensional) Hilbert space H via the mapping function φ, defined
as φ : X → H, where X is the domain of x (usually X ⊂ Rp). Performing training
on the transformed data results in a linear decision function in the Hilbert space H:
fH(x) = w>Hφ(x) + b.
Example 3.2. If the mapping function from R2 to R3 is defined as φ((x1, x2)>) =
(x2

1,
√

2x1x2, x
2
2)>, the decision function becomes
fH(x) = w>Hφ(x) + b = w1x

2
1 + w2

√
2x1x2 + w3x

2
2 + b.

The decision boundary given by fH(x) = 0 represents a conic section (ellipse, parabola
or hyperbola) in R2. For instance, with wH = (1, 0, 1)> and b = −1, the decision
boundary is a unit circle:

fH(x) = 0⇔ x2
1 + x2

2 = 1.
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Obviously, explicitly transforming data into a higher-dimensional space, especially if it
is infinite dimensional, can be prohibitive. This can be avoided by using the Kernel
trick [5, 31], which exploits that a kernel function k : X × X → R directly computes
the inner product in H:

k(x, z) = 〈φ(x), φ(z)〉H
The kernel function k gives rise to a reproducing kernel Hilbert space (RKHS) of
functions f : X → R, denoted as Hk. Thus, the minimization problems from above
can be extended to the non-linear case by solving

min
f∈Hk

1
2‖f‖

2
Hk + γ

n∑

i=1
L(yi, δi, f(xi) + b), (3.61)

where ‖·‖Hk is a norm in Hk, induced by the inner product 〈·, ·〉Hk , and L is one of the
convex loss functions used in eqs. (3.48), (3.51), (3.54) to (3.56) and (3.59). It can be
shown [173, 307] that under mild conditions there exists a finite-dimensional solution
to (3.61) of the form

f(z) =
n∑

i=1
βik(xi, z), (3.62)

which is known as the representer theorem [173].

Dual Optimization

Traditionally, training maximum-margin models consists of solving a constrained
optimization problem that involves a convex loss function, which is called the primal
objective function. A primal optimization problem is converted into a dual optimization
problem by augmenting the primal objective function with additional terms representing
the constraints, the so-called Lagrange multipliers (see e.g. [33]). In the context of
support vector machines, the dual problem can usually be expressed in form of inner
products of the training data, which in turn enables the use of kernel functions. I will
demonstrate this technique based on the survival support vector machine with ranking
constraints in eq. (3.48).

The first step consists of constructing the Lagrangian primal function Lp of (3.48):

LP (w, ξ,α,α′) =1
2‖w‖

2
2 + γ

∑

(i,j)∈P
ξij

−
∑

(i,j)∈P
αij(w>(xi − xj)− 1 + ξij)−

∑

(i,j)∈P
α′ijξij,

(3.63)

where αij, α′ij ≥ 0 are the dual variables. The Karush-Kuhn-Tucker conditions [33,
169, 179] state sufficient conditions for which the minimum of (3.48) with respect to w
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coincides with the maximum of (3.63) with respect to α and α′ (the duality gap is
zero), they are:

∂LP (w, ξ,α,α′)
∂w

= w −
∑

(i,j)∈P
αij(xi − xj) = 0, (3.64)

∂LP (w, ξ,α,α′)
∂ξij

= γ − αij − α′ij = 0, (3.65)

w>(xi − xj)− 1 + ξij ≥ 0, ∀(i, j) ∈ P , (3.66)
ξij ≥ 0, ∀(i, j) ∈ P , (3.67)

αij(w>(xi − xj)− 1 + ξij) = 0, ∀(i, j) ∈ P , (3.68)
α′ijξij = 0, ∀(i, j) ∈ P , (3.69)
αij ≥ 0, ∀(i, j) ∈ P , (3.70)
α′ij ≥ 0, ∀(i, j) ∈ P . (3.71)

Plugging eqs. (3.64) and (3.69) into (3.63), parameters w, ξ and α′ can be eliminated
and the result is the Lagrangian dual function

LD(α) =1
2

∑

(i,j)∈P

∑

(u,v)∈P
αijαuv〈xi − xj,xu − xv〉

−
∑

(i,j)∈P

∑

(u,v)∈P
αijαuv〈xi − xj,xu − xv〉+

∑

(i,j)∈P
αij

=
∑

(i,j)∈P
αij −

1
2

∑

(i,j)∈P

∑

(u,v)∈P
αijαuv〈xi − xj,xu − xv〉.

(3.72)

Equation (3.72) can be written in matrix form by introducing a |P| × n sparse matrix
A that encodes comparable pairs of samples. For each pair in P, there is one row in
A that is all zero except for two entries corresponding to the associated pair in P :

(i, j) ∈ P ⇒ ∃k ∈ {1, . . . ,m} | Akl =





1 if l = i,

−1 if l = j,

0 else,
(3.73)

where l = 1, . . . , n and m = |P|. Based on the above definition, the dual optimization
problem for linear survival support vector machines with ranking constraints (3.72)
can be rewritten as

max
α

α>1lm −
1
2α
>AXX>A>α

subject to 0 ≤ αij ≤ γ, ∀(i, j) ∈ P ,
(3.74)

where α ∈ Rm are the coefficients and the constraints are due to eqs. (3.65) and (3.71).
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The extension to the non-linear case is straightforward by replacing every x with its
transformation φ(x) and noting that 〈φ(x), φ(z)〉Hk = k(x, z). LetK denote the n×n
kernel matrix with entries Ki,j = k(xi,xj), then the dual optimization problem for
non-linear survival support vector machines with ranking constraints is

max
α

α>1lm −
1
2α
>AKA>α

subject to 0 ≤ αij ≤ γ, ∀(i, j) ∈ P .
(3.75)

Given a new set of data points z1, . . . ,zN , the k-th predicted risk score can be computed
by

f̂(zk) =
∑

(i,j)∈PSV

αij(k(xi, zk)− k(xj, zk)),

where PSV is the set of pairs for which αij > 0, i.e., the support pairs. Let K∗ ∈ RN×n

be the kernel matrix with entriesK∗i,j = k(zi,xj), then the prediction can be expressed
in matrix form as

f̂(z1, . . . ,zN) = K∗A>SVαSV, (3.76)

where αSV is a vector of mSV non-zero dual coefficients and ASV ∈ {−1, 0, 1}mSV,n is
the matrix A used during training, but restricted to rows corresponding to pairs in
PSV.
Note. Instead of storing mSV dual coefficients, it is possible to just store n coefficients
of A>SVαSV. Consequently, the prediction step requires nN evaluations of the kernel
function and nN operations to compute all risk scores.

Primal Optimization

Although a non-linear decision function is commonly obtained by performing opti-
mization in the dual, Chapelle [53] showed that a non-linear extension is also possible
by considering an unconstrained optimization problem and applying the representer
theorem directly. For a convex loss function L, one has to solve

min
β,b

β>Kβ + γ
n∑

i=1
L(yi,Kiβ + b), (3.77)

where β = (β1, . . . , βn)> is the vector of coefficients, and Ki denotes the i-th row
vector of the kernel matrix K.

Regarding the unconstrained optimization problem (3.49) for survival support vector
machines with ranking constraints, the objective with a non-linear decision boundary
becomes

min
β

β>Kβ + γ
∑

(i,j)∈P
max(0, 1−Kiβ +Kjβ). (3.78)
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The prediction step simply becomes

f̂(z) =
n∑

i=1
βik(xi, z),

which corresponds to the result (3.62) of the representer theorem.
Note. Converting a linear model to a non-linear model via the kernel trick demonstrated
above is not limited to maximum-margin models. For instance, Cox’s proportional
hazards model has been extended to the non-linear case following the same ideas [48,
192].

Mercer’s Conditions

Now the question arises which kernel functions can be used to efficiently compute the
inner product? The answer can be derived from Mercer’s theorem and the theory of
integral equations [212].

Theorem 3.1: Mercer’s conditions [66, 305]. Let k : X ×X → R be an inner product
in some Hilbert space H. The function k can be represented as

k(xi,xj) =
∞∑

q=1
aqφq(xi)φq(xj), (3.79)

with positive coefficients aq and linearly independent functions φq(x), if the necessary
and sufficient condition

∫

X

∫

X
k(u, v)g(u)g(v)dudv ≥ 0 (3.80)

holds for all functions g 6= 0 with finite L2 norm

‖g‖2
L2 =

∫

X
g2(u)du <∞.

In other words, if Mercer’s conditions hold, k(xi,xj) corresponds to a dot product
in some higher dimensional (possible infinite dimensional) feature space H. The
positivity condition (3.80) is equivalent to the condition that the kernel matrix K with
entries Ki,j = k(xi,xj) is positive semidefinite for any collection of feature vectors
{x1, . . . ,xn} [277].
Table 3.1 provides an overview of popular kernel functions. The hyperbolic tangent or
sigmoid kernel deserves special consideration, because it is in fact a kernel that does not
satisfy Mercer’s conditions, but still has been used successfully in many applications.
The problem was first observed by [305] and later on proven in [226, 270]. It also
sparked research in the area of learning with indefinite kernels [201, 224].
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Table 3.1: Examples of common kernel functions. †: Although, the sigmoid kernel was
considered a valid kernel function in the beginning, it can be shown that it is
not a kernel function that satisfies Mercer’s conditions for all parameters c and κ
[226, 270].

Kernel Definition Parameters

Polynomial (〈xi,xj〉+ c)d d ∈ N, c ≥ 0
Hyperbolic tangent/Sigmoid† tanh(c+ κ〈xi,xj〉) c, κ ∈ R
Radial basis function exp(−‖xi − xj‖2

2/(2σ2)) σ > 0

Example 3.3. Let us consider a polynomial kernel of degree two (d = 2, c = 0) applied
to two feature vectors xi,xj ∈ R2 and the mapping function φ defined in example 3.2
above. By explicitly computing the result of the polynomial kernel, the connection to
example 3.2, where a mapping function was defined explicitly, will become apparent:

k(xi,xj) = 〈xi,xj〉2 = (xi1xj1 + xi2xj2)2

= x2
i1x

2
j1 + 2xi1xj1xi2xj2 + x2

i2x
2
j2

= (x2
i1,
√

2xi1xi2, x2
i2)(x2

j1,
√

2xj1xj2, x2
j2)>

= 〈φ(xi), φ(xj)〉.
The example shows that a polynomial kernel of degree two maps feature vectors into
a finite three dimensional Euclidean space, where the inner product is computed. In
the general case, any homogeneous polynomial kernel of degree d projects data from a
p-dimensional space into a Euclidean space H of dimension

(
p+d−1
d

)
[46, Theorem 4].

Instead of proofing Mercer’s conditions for every kernel, it is possible to combine
existing kernel functions to form a new kernel function satisfying Mercer’s conditions.
Corollaries in [271] show that positive linear combinations of kernels, products of
kernels and integrals of kernels are permitted.
Corollary 3.1. Let k1 and k2 be kernel functions satisfying Mercer’s conditions and
c1, c2 ≥ 0 two constants, then

k(xi,xj) = c1k1(xi,xj) + c2k2(xi,xj)
satisfies Mercer’s conditions [271, Corollary 3].
Corollary 3.2. Let k1 and k2 be kernel functions satisfying Mercer’s conditions, then

k(xi,xj) = k1(xi,xj)k2(xi,xj),
satisfies Mercer’s conditions [271, Corollary 5].
Corollary 3.3. Let s(xi,xj) be a function on X × X such that

k(xi,xj) =
∫

X
s(xi,u)s(xj,u)du,

then k satisfies Mercer’s conditions [271, Corollary 4].
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Clinical Kernel

General kernel functions as those presented in table 3.1 often yield good results when
the scale of features is similar, otherwise features with generally higher values would
dominate features with lower values in the computation of the kernel. Therefore, it is
often suggested to standardize features to have mean 0 and variance 1. Clinical data is
often a heterogeneous mix of features with different statistical properties. For instance,
age is usually below 100, ethnicity is a categorical variable with multiple levels, and
the concentration of total cholesterol in the blood is in the range of 130 to 200mg/dl
for healthy patients [278]. In particular, the numerical coding of categorical variables
determines how similar two feature vectors are. Assuming ethnicity can take on any of
the four values White, Black, Asian and Other, which are coded from zero to four, then
a White person would be considered more similar to a Black person than to an Asian
person. In general, no apparent ordering of races exists that justifies such a similarity.
In contrast, similarities based on ordered categorical variables, such as low, medium,
high, behave more like continuous variables. Consequently, employing standard kernel
functions would lead to an inadequate measure of similarity.

Daemen et al. [70] addressed this problem by defining a kernel function that explicitly
distinguishes between continuous, ordinal and categorical features. They proposed an
additive kernel composed of p kernel functions that yield similarities in the interval
[0, 1]:

k(xi,xj) = 1
p

p∑

v=1
kv(xiv, xjv), (3.81)

where the definition of kernel function kv depends on the type of the v-th feature. For
categorical features, the kernel function between the i-th and j-th subject’s value is
defined as the Kronecker delta function:

kunorderd(x, z) =




1 if x = z,

0 else,
(3.82)

and for continuous and ordinal variables the kernel function becomes

kordered(x, z) = r − |x− z|
r

, (3.83)

where r denotes the range of continuous values or the number of categories minus 1 for
ordinal variables. The range r can either be estimated from data or can be specified
based on prior knowledge such as the maximum grade in the Gleason scoring system
for prostate cancer [111].
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3.4 Boosting

I will begin this section describing gradient boosting as a general concept without
explicitly specifying a loss function to minimize. For simplicity, I will consider an
arbitrary loss that only depends on one variable y in sections 3.4.1 and 3.4.3. In
section 3.4.4, I will explain how gradient boosting can be used for survival analysis by
defining suitable loss functions for right censored survival data.

3.4.1 Functional Gradient Descent

Gradient boosting is a versatile framework for optimizing arbitrary loss functions via
functional gradient descent [104]. With fully uncensored data consisting of feature
vectors x and response y, the objective is to find a function f that minimizes the
expected loss with respect to a loss function L(y, ŷ):

argmin
f(·)

E [L(y, f(x))] , (3.84)

where the expectation is over the joint distribution over all (x, y)-pairs. In gradient
boosting, the function f is assumed to be an additive model of the form

f(x) =
M∑

m=1
βmg(x;θm),

where M > 0 denotes the size of the ensemble, and βm ∈ R is a weighting term. The
function g is called a base learner and is parameterized by the vector θ. Individual
base learners of f differ in the configuration of their parameters θ, which is indicated
by a subscript m.

To solve eq. (3.84), gradient boosting is extending the concept of steepest descent
in parameter space to the function space. Algorithm 3.2 summarizes the traditional
steepest descent algorithm to find coefficients w that minimize a differentiable loss
function Φ(w). It is easy to see that the final solution w is constructed from summing
up M individual steps or “boosts.”

Gradient boosting obtains the solution to eq. (3.84) by solving the following empirical
risk minimization problem based on n training samples:

argmin
f(·)

1
n

n∑

i=1
L(yi, f(xi)). (3.85)

Instead of optimizing with respect to w in Euclidean space, gradient boosting considers
the function f(x) to be a parameter and applies gradient descent in function space.
Algorithm 3.3 provides the details of the gradient boosting algorithm.
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Algorithm 3.2: Steepest descent in Euclidean space.
Input: Differentiable loss function Φ, number of steps M > 0, starting point w(0).
Output: Coefficients w =

∑M
m=0 ρm∆w(m).

1 for m← 1 to M do
2 Compute negative gradient and evaluate it at w(m−1) to obtain search direction ∆w(m):

∆w(m)
j = −

[
∂Φ(w)
∂wj

]

w=w(m−1)
, ∀j = 1, . . . , p.

3 Determine step size ρm > 0 along direction ∆w(m) via line search:

ρm = argmin
ρ

Φ
(
w(m−1) + ρ∆w(m)

)
.

4 Update coefficients: w(m) = w(m−1) + ρm∆w(m).
5 end

It leverages the additive structure of the function f(x) by constructing it in a greedy
stagewise manner instead of optimizing it with respect to all base learners concurrently,
i.e., it performs

(β̂m, θ̂m) = argmin
β,θ

n∑

i=1
L(yi, f (m−1)(xi) + βg(xi;θ)), for m = 1, . . . ,M,

rather than

{(β̂m, θ̂m)}Mm=1 = argmin
{(β′m,θ′m)}Mm=1

n∑

i=1
L(yi,

M∑

m=1
β′mg(xi;θ′m)).

Starting from an initial estimate of f (0), which usually is a constant, a base learner is
fitted to the negative gradient of a loss function L, evaluated at the current estimate
f (0). The resulting base learner is subsequently used to update the estimate f̂ by
adding it to f (0). This procedure is repeated until a stopping criterion or the maximum
number of iterations is reached. Therefore, the final estimate f̂(x) is an ensemble of
M + 1 base learners:

f̂(x) =
M∑

m=0
βmg(x; θm). (3.86)

3.4.2 Regularization

The complexity of the final ensemble is determined by 1) the total number of iterations
M , which corresponds to its size, and 2) the learning rate ν. The choice of M and
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Algorithm 3.3: Gradient boosting with Shrinkage.
Input: Differentiable loss function L, training data D = {(xi, yi}ni=1, number of steps

M > 0, learning rate 0 < ν ≤ 1.
Output: Additive ensemble of base learners f̂(x) = f̂ (0)(x) +

∑M
m=1 νρmg(x;θm).

1 Initialize first base learner:

f̂ (0)(x) = argmin
u∈R

N∑

i=1
L(yi, u).

2 for m← 1 to M do
3 Compute negative gradient and evaluate it at f̂ (m−1)(x) to obtain “pseudoresponses” ỹi:

ỹi = −
[
∂L(yi, f(xi))

∂f(xi)

]

f(x)=f̂ (m−1)(x)
, ∀i = 1, . . . , n.

4 Fit base learner g(·) to the “pseudoresponses”:

(âm, θ̂m) = argmin
a,θ

n∑

i=1
(ỹi − ag(xi;θ))2 .

5 Determine step size ρ > 0 by line search:

ρm = argmin
ρ

n∑

i=1
L(yi, f̂ (m−1)(xi) + ρg(xi; θ̂m)).

6 Update approximation: f̂ (m)(x) = f̂ (m−1)(x) + νρmg(x; θ̂m)).
7 end

ν has considerable impact on the generalization performance of the ensemble due
to the well known bias-variance tradeoff: with increasing model complexity the bias
towards the training data increases while the variance on unseen data increases (see
e.g. [131]). In particular without shrinkage (ν = 1), Friedman [104] observed that
overfitting already occurs after relatively small number of iterations; Friedman suggested
ν ∈ {0.25, 0.125, 0.06}. Moreover, ν and M are strongly connected, choosing smaller
values for ν suggests increasing the value for M . Optimal values are usually determined
by cross-validation.

In addition to shrinkage, stochastic gradient boosting [105] can be employed to remedy
overfitting. Stochastic gradient boosting [105] is based on injecting randomness into
training of the ensemble similar to another popular ensemble method: bootstrap
aggregation or “bagging” [35, 36]. Instead of fitting each base learner to the whole
training data consisting of n samples, each gradient descent step is based on a different
subset of the training data (see line 4 of algorithm 3.3). As in bagging [35], samples
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that have not been used in the current iteration can be used to obtain an out-of-bag
error, which can be used to monitor convergence. For each iteration, Friedman [105]
suggested drawing a subsample without replacement of approximately half the size of
the full training data, because of its similarity to drawing a bootstrap sample (with
replacement) [44, 103]. As a side effect, the time needed for each iteration is lowered
due to subsampling as well.

Rashmi and Gilad-Bachrach [238] proposed another alternative to shrinkage, inspired
by the success of dropout, which is used to regularize neural networks by randomly
removing units during training [15, 144]. Whereas traditional gradient boosting
considers all previously fitted base learners at each gradient descent step, Rashmi and
Gilad-Bachrach [238] proposed to drop a randomly selected set of base learners at each
iteration. The updated gradient boosting algorithm using dropout instead of shrinkage
is depicted in algorithm 3.4.

Line 7 ensures that there always is at least one base learner that is dropped. Care has
to be taken when adding a new base learner to the ensemble. If in one iteration K
base learners are dropped, a new base learner will try to compensate for the dropped
base learners too. Therefore, its influence is going to be K times higher than each
of the dropped base learners, which can be corrected by assigning it the weight K−1.
Whereas in original gradient boosting (without shrinkage) the contribution of each
base learner is only determined once via line search (see line 5 in algorithm 3.3), the
contribution of dropped base learners has to be adjusted when using dropout, because
they overlap with the new base learner. Formally, in the m-th iteration the contribution
of all dropped base learners and the newly added base learner should be scaled by a
factor η such that the following equality holds:

∑

k∈Dm
ρk = η


ρm +

∑

k∈Dm
ρk


 , (3.87)

which yields η = (∑k∈Dm ρk) / (ρm +∑
k∈Dm ρk). If no line search is performed, ρm = 1

and ρk = 1 ∀k ∈ Dm and the scaling factor simplifies to η = |Dm|/(1 + |Dm|), which
is the case in algorithm 3.3. Finally, dropout can also be combined with stochastic
gradient boosting.

3.4.3 Common Base Learners

The choice of a base learner is not pre-determined in gradient boosting and constitutes
another hyper-parameter. Due to the greedy stagewise nature of gradient boosting,
it is usually preferred to employ simple models that are fast to train, because errors
can be compensated for by base learners in later iterations. Common choices include
regression trees [39] and componentwise least squares [45].
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Algorithm 3.4: Gradient boosting with dropout.
Input: Differentiable loss function L, training data D = {(xi, yi}ni=1, number of steps

M > 0, dropout rate 0 < ε < 1.
Output: Additive ensemble of base learners f̂(x).

1 Initialize first base learner:

f̂ (0)(x) = argmin
u∈R

N∑

i=1
L(yi, u).

2 b = 1lm
3 for m← 1 to M do
4 if m > 1 then
5 Dm ← Randomly selected subset of m− 1 base learners, such that each previously

constructed base learner is included with probability ε.
6 if Dm = ∅ then
7 Dm ← Randomly drawn integer from [1;m− 1].
8 end
9 else

10 Dm ← ∅
11 end
12 Drop base learners in Dm from ensemble, yielding model ĝ(x):

ĝ(x)←
m−1∑

k=1
k/∈Dm

bk · g(x;θk).

13 Compute negative gradient and evaluate it at ĝ(x) to obtain “pseudoresponses” ỹi:

ỹi = −
[
∂L(yi, f(xi))

∂f(xi)

]

f(x)=ĝ(x)
, ∀i = 1, . . . , n.

14 Fit base learner g(·) to the “pseudoresponses”:

(âm, θ̂m) = argmin
a,θ

n∑

i=1
(ỹi − ag(xi;θ))2 .

15 bm ← 1/(|D|+ 1) /* Store scaling factor */
16 foreach k ∈ Dm do
17 bk ← bk · |Dm||Dm|+1 /* Update scaling factor of dropped base learner */
18 end
19 end
20 f̂(x) = f̂ (0)(x) +

∑M
m=1 bmg(x;θm)
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Regression Trees

A major advantage of regression trees is that they can naturally deal with data consisting
of features with varying statistical properties (continuous, ordinal, or categorical). To
speed up training, they are often randomized [37] or restricted to just two leaf nodes
(so called “stumps”). A “stump” splits the data based on a single variable only and
does not consider interactions between features, whereas a tree of d levels considers
interactions up to order d − 1. Typically, the range of d is within [4; 8] and can be
determined via cross-validation [129]. A regression tree with axis-aligned splits is built
in a top-down greedy manner by splitting the data into two subsets according to split
point τ of variable j such that the squared error in the two subsets is minimized:

min
j,τ


min
cleft

∑

i∈{k|xkj≤τ}
(ỹi − cleft)2 + min

cright

∑

i∈{k|xkj>τ}
(ỹi − cright)2


 . (3.88)

This process is repeated recursively until the desired depth of the tree is reached or
the number of samples reaching a node is too low to justify splitting the data again.
Each leaf is associated with a prediction model, which is constructed from samples that
reached that leaf; in the simplest case, it is just the average “pseudoresponse” ỹi of all
samples in the leaf. During prediction, a new data point is guided through the tree
according to the split criterion in the inner nodes until a leaf node is reached and the
corresponding leaf model is applied. Therefore, a regression tree with J leaves itself is
an additive model of the form

g(x;θm) =
J∑

j=1
θmjI(x ∈ Rmj),

where θmj denotes the parameters of j-th leaf model and the indicator function denotes
whether x reached the j-th leaf node. Consequently, when using regression trees, the
ensemble f̂(x) is in fact extended by J base learners in each gradient descent step.

Componentwise Least Squares

Componentwise least squares [45] is based on ordinary linear least squares with only
a single feature. At each gradient descent step, the feature that reduces the squared
error with respect to the “pseudoresponse” the most is selected. Thus, fitting a base
learner in line 4 of algorithm 3.3 comes down to solving

j∗m = argmin
j=1,...,p

n∑

i=1
(ỹi − α̂jxij)2 , (3.89)

where α̂j denotes the ordinary least squares solution

α̂j =
∑n
i=1 xij ỹi∑n
i=1 x

2
ij

. (3.90)
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The parameters of the base learner in the m-th iteration are a vector with p components
that is all zero except at position j∗m:

θ̂m =
(
0, . . . , 0, α̂j∗m , 0, . . . , 0

)>
.

The resulting ensemble after M iterations is then given by

f̂(x) =
M∑

m=1
ν · α̂j∗mxj∗m =

M∑

m=1
ν · x>θ̂m = x>

(
M∑

m=1
ν · θ̂m

)
. (3.91)

Starting with an initial model θ0, usually of all zeros, only a single coefficient in
the vector θ ∈ Rp is updated in each step. In particular, if the loss function L is
the squared error loss, the solution of gradient boosting with infinitesimally learning
rate ν approximates the LASSO solution [287], thus resulting in a model that has
feature selection embedded [43, 83, 129]. Because of its similarity to the LASSO, using
componentwise least squares as a base learner is especially suitable when dealing with
high-dimensional data [42].

Note that the linear model in eq. (3.91) does not explicitly contain an intercept term,
but it can be easily extended by adding an additional feature of all ones to accommodate
the intercept. Finally, componentwise smoothing spline follow a similar concept as
componentwise least squares but add more flexibility due to fitting a smoothed curve
to individual features rather than a linear model [45].

Likelihood-based Boosting

Likelihood-based boosting [290, 291] can be used to fit generalized additive models
and generalized linear models via gradient boosting. The objective in likelihood-based
boosting is to maximize the log-likelihood function LL(θ) of a generalized linear
model, which includes, among others, least squares, logistic regression, and Cox’s
proportional hazards model [67]. Instead of repeatedly fitting a base learner to the
negative gradient of a loss function, evaluated at the previous iteration’s estimate,
likelihood-based boosting takes a single Newton step in each iteration and accounts for
previous iterations by introducing an offset variable into the log-likelihood function.
Partial likelihood-based boosting behaves similar to componentwise least squares in the
sense that only a single coefficient is updated via one Newton step in each iteration,
which leads to sparse solutions [291]. Tutz and Binder [291] showed that their proposed
procedure is not limited to merely updating a single feature in each iteration but can
also be employed to force updates of certain groups of features, such as mandatory
features or features that encode a single categorical variable. Algorithm 3.5 presents
partial likelihood-based boosting, which I will detail next.

The main principle of algorithm 3.5 is that only a single coefficient is updated in
each iteration. It is important to point out that the core of the method is line 4,
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Algorithm 3.5: Partial likelihood-based boosting.
Input: Penalized, restricted log-likelihood LLjλ, training data D = {(xi, yi}ni=1, number of

steps M > 0.
Output: Additive ensemble of base learners f̂(x) = x>θ̂M .

1 Initialize θ̂0 = 0p and η̂0 = 0n.
2 for m← 1 to M do
3 for j ← 1 to p do /* Iterate over features */
4 Compute gradient gj and Hessian Hj of penalized log-likelihood restricted to the

j-th feature LLjλ and evaluate them at θ = 0p and offsets η̂m−1 of the previous
iteration:

gj =
[
∂LLjλ(θ; η̂m−1)

∂θj

]

θ=0p

, Hj =
[
∂2LLjλ(θ; η̂m−1)

∂θ2
j

]

θ=0p

.

5 Perform one Newton step to obtain update for the j-th coefficient:

α̂j = − (Hj)−1 gj .

ûj = (0, . . . , 0, α̂j , 0, . . . , 0)>
6 end
7 j∗ = argminj=1,...,p−2 · LLjλ(ûj ; η̂m−1) /* Select the best update */
8 θ̂m = θ̂m−1 + ûj∗ /* Update ensemble */
9 η̂m = η̂m−1 +Xûj∗ /* Update offset */

10 end

where gradient and Hessian of a penalized log-likelihood function, restricted to the
j-th coefficient, are computed. The penalized, restricted log-likelihood function has
the form

LLjλ(θ;η) = LLj(θj;η)− λ

2θ
>Pθ, (3.92)

where LLj(θj;η) denotes the restricted likelihood function that dropped all but the
j-th feature, η = (η1, . . . , ηn)> ∈ Rn denotes a vector of offset terms, P ∈ Rp×p a
structured penalty (usually the identity), and λ > 0 a regularization parameter. Each
possible update is in effect obtained via a single Newton step starting from the estimate
θ = 0p (see line 5 of algorithm 3.5). Taking a single Newton step is sufficient because
each iteration only requires fitting a weak learner, and starting the Newton step from
the origin is possible because the offset already accounts for previous updates. After
computing all possible updates, the one maximizing the improvement in deviance is
selected and applied to the coefficients of the additive model. Note that likelihood-based
boosting always applies the full update and does not shrink it as gradient boosting in
algorithm 3.3 does. Instead, the regularization parameter λ controls the size of the
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updates and should be chosen large enough such that the update in each iteration is
small [28].

3.4.4 Boosting Methods for Survival Analysis

In this section, I will describe models for survival analysis that optimize their particular
loss function via gradient boosting. The main difference between the models presented
in this section is the choice of loss function. Some authors perform boosting based
on the negative log partial likelihood of Cox’s proportional hazards model [28, 193,
239], based on the accelerated failure time model [148, 253, 310], or they derive a loss
function from evaluation measures [25, 211].

Based on Cox’s Proportional Hazards Model

The earliest approach by Ridgeway [239] used boosting to construct an additive model
that maximizes the log partial likelihood function of Cox’s proportional hazards model
[67]; thereby replacing the linear model in eq. (3.29) with an additive model f(x):

logPL(f) =
n∑

i=1
δi


f(xi)− log


∑

j∈Ri
exp(f(xj))




 . (3.93)

Equation (3.93) is maximized with respect to the model f , which is performed in
function space via gradient boosting following algorithm 3.3. The gradient with respect
to f(xk) is given by

∂ logPL(f)
∂f(xk)

= δk −
n∑

i=1
δi
I(yk ≥ yi) exp(f(xk))∑

j∈Ri exp(f(xj))
. (3.94)

In the m-th iteration, a base learner is fit to the “pseudoresponses” ỹk corresponding
to the negative gradient of the negative log partial likelihood evaluated at the previous
estimate f̂ (m−1):

ỹk = δk −
n∑

i=1
δi
I(yk ≥ yi) exp(f̂ (m−1)(xk))
∑
j∈Ri exp(f̂ (m−1)(xj))

, ∀k = 1, . . . , n. (3.95)

Ridgeway [239] chose regression “stumps” as base learners during optimization. Li and
Luan [193] follow the same approach as Ridgeway [239], but used componentwise cubic
smoothing splines as base learners [45].

Binder and Schumacher [28] optimized the loss function (3.93) too, but performed
optimization via likelihood-based boosting instead (see algorithm 3.5). To account
for the offset terms η in the log partial likelihood function, they used a modified
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unpenalized log partial likelihood function, which accommodates the offset term and is
restricted to the j-th feature:

LLj(θj;η) =
n∑

i=1
δi


ηi + xijθj − log


∑

k∈Ri
exp(ηk + xkjθj)




 . (3.96)

The first- and second-order partial derivatives of LLj(θj;η) with respect to the j-th
coefficient are

∂LLj(θj;η)
∂θj

=
n∑

i=1
δi

[
xij −

∑
k∈Ri exp(ηk + xkjθj)xkj∑
k∈Ri exp(ηk + xkjθj)

]

∂2LLj(θj;η)
∂θ2

j

= −
n∑

i=1
δi



∑
k∈Ri exp(ηk + xkjθj)x2

kj∑
k∈Ri exp(ηk + xkjθj)

−
(∑

k∈Ri exp(ηk + xkjθj)xkj∑
k∈Ri exp(ηk + xkjθj)

)2

 .

Finally, the update for the j-th coefficient (see line 5 of algorithm 3.5) can be computed
by

α̂j = −
(
∂2LLj(θj;η)

∂θ2
j

− λ
)−1

∂LLj(θj;η)
∂θj

, (3.97)

where θj is evaluated at the origin.

To select the best update in line 7 of algorithm 3.5, Binder and Schumacher [28] used a
modified score statistic based on the first-order Taylor approximation of the penalized
log-likelihood function about 0, which yields

LLjλ(ûj;η) ≈ LLj(0p;η) + ∂LLj(θj;η)
∂θj

(α̂j − 0)

= LLk(0p;η) + ∂LLj(θj;η)
∂θj

(
−∂

2LLj(θj;η)
∂θ2

j

+ λ

)−1
∂LLj(θj;η)

∂θj
,

where α̂j is the j-th element of ûj defined in (3.97) and gradient and Hessian are
evaluated at θj = 0. To determine the best update, the constant first term can
be ignored and the remaining quantities are already available from computing the
Newton step, which avoids additional computational costs to compute the full penalized
log-likelihood function, especially for high-dimensional data. Line 7 of algorithm 3.5
becomes

j∗ = argmin
j=1,...,p

(
∂LLj(θj;η)

∂θj

)2 (
∂2LLj(θj;η)

∂θ2
j

− λ
)−1

. (3.98)

Based on Accelerated Failure Time Model

Hothorn et al. [148] extended boosting of the squared error loss to censored data by
introducing inverse probability of censoring weights into the fitting process of base
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learners. Each sample i is associated with a weight ωi proportional to the inverse
probability of being censored after time yi, given its set of features xi (see section 3.1.2
on page 34). By including inverse probability of censoring weights into the optimization
step in line 4 of algorithm 3.3, one obtains

(âm, θ̂m) = argmin
a,θ

n∑

i=1
ωi (ỹi − ag(xi;θ))2 . (3.99)

They assumed that censoring is independent of the features and used the non-parametric
Kaplan-Meier estimator (2.19) to compute the weights. Moreover, they employed
componentwise weighted least squares [45] as base learner, but any base learner that
takes into account sample weights could be used.

Wang and Wang [310] optimized the squared error loss as well, but accounted for
censoring using the imputation approach of Buckley and James [41] (cf. section 3.1.1
on page 33). In the m-th gradient descent iteration, the survival times of censored
patients are imputed based on the estimate f̂ (m−1) of the previous iteration and the
corresponding residuals ri = yi− f̂ (m−1)(xi). Imputed survival times t̃(m)

i are computed
by

t̃
(m)
i = δiti + (1− δi)

[
f̂ (m−1)(xi) +

n∑

k=1
δkwikrk

]
, (3.100)

with

wik =




∆Ŝ(rk)[Ŝ(ri)]−1 if ri < rk,

0 else.
(3.101)

Next, a base learner is fit to the negative gradient of the squared error loss with respect
to the imputed survival times t̃(m)

i and then the estimate f̂(x) is updated. These two
steps are repeated until convergence or estimates oscillate due to discontinuities in the
step function obtained by the Kaplan-Meier estimator [167]. Wang and Wang [310]
experimented with componentwise least squares, componentwise smoothing splines,
and regression trees as base learners and compared their approach against the boosting
method in [148] as well as penalized least squares methods [152, 308].

In contrast to the previous two approaches, Schmid and Hothorn [253] applied gradient
boosting to the fully parametric accelerated failure time model, for which the baseline
survival function needs to be specified. The advantage is that optimization can be
performed via maximum likelihood.

Based on Evaluation Measure

Finally, I will present two approaches that are not based on existing linear models
for survival analysis, but on performance measures that usually assess a model’s fit
or predictive capabilities. The loss function optimized by Benner [25] is based on the
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Brier score for censored data (see [117] and section 3.7.3 on page 89). They estimated
an additive model f(x) to predict the probability of remaining event-free up to time t
by minimizing the following loss function

LtBrier(f) =
n∑

i=1
I(yi ≤ t ∧ δi = 1)(0− f(xi))2

Ĝ(yi)
+ I(δi > t)(1− f(xi))2

Ĝ(t)
, (3.102)

where Ĝ(c) denotes the Kaplan-Meier estimator (2.19) of P (C > c), i.e., the probability
of being censored after time point c. The gradient of the loss function LtBrier with
respect to f(xk) is given by

∂LtBrier(f)
∂f(xk)

= 2
(
I(yk ≤ t ∧ δk = 1)0− f(xk)

Ĝ(yk)
+ I(δk > t)1− f(xk)

Ĝ(t)

)
. (3.103)

Benner [25] constructed their ensemble by fitting regression trees to the “pseudore-
sponses.”

Mayr and Schmid [211] proposed to apply gradient boosting to a smoothed version
of the concordance index by Uno et al. [292] (cf. section 3.7.1 on page 84). They
maximized the following loss function:

LCI(f) =
n∑

i=1

n∑

j=1
wij

[
1 + exp

(
f(xj)− f(xi)

σ

)]−1

,

wij = ω2
i I(yi < yj)∑n

u=1
∑n
v=1 ω

2
uI(yu < yv)

,

(3.104)

where ωi are inverse probability of censoring (IPC) weights (see section 3.1.2 on page 34),
and σ > 0 is a hyper-parameter that controls the smoothness of the approximation of
the indicator function. The gradient of the loss function can be derived as

∂LCI(f)
∂f(xk)

=
n∑

i=1

wki exp((f(xi)− f(xk))/σ)
σ (1 + exp((f(xi)− f(xk))/σ))2

− wik exp((f(xk)− f(xi))/σ)
σ (1 + exp((f(xk)− f(xi))/σ))2 (3.105)

They employed componentwise least squares as base learner and used the Kaplan-Meier
estimator (2.19) to compute IPC weights.

3.5 Tree-based Methods for Survival Analysis

3.5.1 Recursive Partitioning

The survival models I described previously can all be trained by solving a – usually
convex – optimization problem. If the relationship between features and survival time
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Algorithm 3.6: Recursive training of tree-based methods with axis-aligned splits.
1 Function SplitNode(D)

Input: Training data D = {(xi, yi, δi)}ni=1.
Output: Leaf modelsM.

2 if split is allowed then
3 for j = 1 to p do /* Iterate over features */
4 τj ← GetCutPoint({xij}ni=1)

5 I(j)
L ← {i | xij ≤ τj}ni=1

6 I(j)
R ← {i | xij > τj}ni=1

7 ρj ← SplitCriterion(D, I(j)
L , I(j)

R )
8 end
9 j∗ = argmaxj=1,...,n ρj /* Determine best split */

10 DL ← {(xi, yi, δi) | i ∈ I(j∗)
L }

11 DR ← {(xi, yi, δi) | i ∈ I(j∗)
R }

12 M← SplitNode(DL) ∪ SplitNode(DR)
13 else
14 M← CreateLeafModel(D)
15 end
16 return Leaf modelsM
17 end

is described by a linear model, the overall model and effects of features on survival
can be easily interpreted. Although such models can also be used with more complex
data that includes non-linear effects and interactions between features, these properties
have to be manually defined by the analyst for the model to consider. Depending
on the level of complexity, researchers might be forced to try many different model
formulations, which is cumbersome. In these situations, tree-based methods often offer
a better alternative because of their ability to automatically handle certain types of
non-linearities and interactions. Tree-based methods for survival analysis are based
on the seminal work of Breiman et al. [39] on Classification and Regression Trees
(CART).

A tree-based survival model is described by a hierarchical binary tree consisting of
internal nodes, which divide subjects into subgroups, and leaf nodes, which contain
predictive models specific to the particular subgroup of patients that reached that
node. As mentioned in section 3.4.3 (page 65) on regression trees, a tree model can
also be interpreted as being additive in its leaf models. Tree-based methods have two
properties that sets them apart from survival models I described above: 1) a tree
can naturally handle features with different statistical properties (continuous, ordinal,
categorical), and 2) a tree of depth d automatically considers interactions up to order
d− 1 [129].
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When constructing a tree, the training data is split into J disjoint partitions in a
greedy top to bottom manner, resulting in J leaf models (see algorithm 3.6). To avoid
overfitting, it is often necessary to limit the depth of the tree or the number of leaf
nodes. This can be achieved by explicitly specifying the extent of a tree or by defining
the minimum number of samples that are sufficient to justify another split. From
algorithm 3.6 it is clear that training is in essence determined by the choice of split
criterion and leaf model, which I will describe next.

3.5.2 Split Criteria

Several authors proposed criteria for splitting nodes in a survival tree, which are based
on determining the difference in survival in the left and right child node, represented
by scalar ρ. Ultimately, the split maximizing ρ is carried out and the same procedure
is applied to the resulting child nodes. Table 3.2 provides an overview of the split
criteria I will explain in more detail below.

Let J ⊆ {1, . . . , K} indicate the set of J = |J | terminal nodes of a tree with K nodes.
The set Ik with 1 ≤ k ≤ K indicates the samples assigned to the k-th node. When
splitting a parent node into two child nodes, sets IL and IR denote the samples that
are assigned to the left and right child node; nL = |IL|, nR = |IR|, and nP = nL + nR
indicate the number of samples in the left, right, and parent node, respectively. The
super- or subscripts P , L, and R indicate whether a function or value is computed
with respect to samples in the parent node, left child node, and right child node,
respectively.

The earliest split criterion was based on measuring the L1-Wasserstein distance between
Kaplan–Meier estimated survival functions ŜL and ŜR of child nodes [116]. It represents
the area between estimated survival functions ŜL and ŜR, and is computed by

ρj =
∫ tmax

0
|ŜL(t)− ŜR(t)|dt, (3.106)

with tmax = min(max{yi|δi = 1}nLi=1,max{yi|δi = 1}nRi=1) being the maximum event time
for which both ŜL and ŜR are defined.

When the objective is to determine whether survival functions of child nodes differ from
each other, it is natural to use any of the statistical tests presented in section 2.5 on
page 25. LeBlanc and Crowley [189] used the log-rank test statistic [207], Segal [261]
the test statistic by Tarone and Ware [284], and Ciampi et al. [57] the test statistic by
Gehan [108]. In each case, the quality of a split corresponds to the value of the test
statistic X2 in eq. (2.33) computed with respect to the corresponding weight function
in table 2.1. To ease computation when computing the log-rank test, LeBlanc and
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Table 3.2: Overview of split criteria to construct tree-based models for survival analysis.

References Split Criteria

Gordon and Olshen [116] Maximum L1-Wasserstein distance between Kaplan–Meier
estimated survival functions.

LeBlanc and Crowley [189] Max. log-rank test statistic (see section 2.5).
Ishwaran and Kogalur [157] and
LeBlanc and Crowley [189]

Max. approximated log-rank test statistic.

Segal [261] Max. extended log-rank test statistic by Tarone and Ware
(see section 2.5).

Ciampi et al. [57] Max. extended log-rank test statistic by Gehan (see
section 2.5).

Hothorn and Lausen [149] Min. p-value of maximally selected log-rank score statistic.
Keleş and Segal [171] and
Therneau et al. [286]

Max. improvement in within-node homogeneity based on
martingale or deviance residuals of null Cox model.

Davis and Anderson [71] Max. likelihood of exponential model with constant
hazard rate in child nodes.

LeBlanc and Crowley [188] Max. reduction in deviance of a full likelihood Cox model.
Zhang [329] Max. reduction in impurity with respect to observed

times and event indicators in child nodes.
Ishwaran and Kogalur [157] and
Ishwaran et al. [159]

Split that preserves conversation-of-events principle the
most.

Jin et al. [162] Max. difference in restricted mean survival times between
child nodes.

Schmid et al. [255] Max. Harrell’s concordance index.
Cho and Hong [56] Max. reduction in absolute distance to within-node

median survival time.
Molinaro et al. [214] Max. reduction in within-node variance with respect to

IPC weighted survival times.

Crowley [189] proposed to approximate the numerator of the log-rank test statistic
(2.28) by

(
mP∑

i=1
dLi − rLi

dLi + dRi
rLi + rRi

)2

=
(
mP∑

i=1
dLi −

nP∑

k=1
I(xkj ≤ τ)ĤP (yk)

)2

, (3.107)

where mP denotes the number of distinct event times in the parent node, dLi and rLi
the number of events and patients at risk at time ti in the left child node, respectively,
and ĤP (·) the Nelson-Aalen estimator (2.20) with respect to samples in the parent
node. Variables dRi and rRi are defined analogous with respect to samples in the right
child node. This approximation was further refined by Ishwaran and Kogalur [157]
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leading to the following approximation of the log-rank statistic

X2 =
(∑mP

i=1 dLi + dRi)
(∑mP

i=1 dLi −
∑nP
k=1 I(xkj ≤ τ)ĤP (yk)

)2

(∑nP
k=1 I(xkj ≤ τ)ĤP (yk)

) (∑mP
i=1 (dLi + dRi)−

∑nP
k=1 I(xkj ≤ τ)ĤP (yk)

) .

(3.108)
The advantage is that it is sufficient to compute the Nelson-Aalen estimator ĤP (·)
once for the parent node when evaluating multiple possible splits.

Hothorn and Lausen [149] formulated the search for the best split as a test with the
null hypothesis

H0 : F (ti | xij ≤ τ) = F (ti | xij > τ), ∀t, τ ∈ R, 1 ≤ j ≤ p,

against the alternative that there is at least one feature j and one cut point τ that
results in two distinguishable subgroups. If for each combination of cut point and
feature a two-sample linear rank statistic Sj,τ is computed, the objective amounts to

max
j=1,...,p

max
τ
|Sj,τ |. (3.109)

They showed that, under the null hypothesis, the maximally selected rank statistic
(3.109) follows a multivariate normal distribution that depends on the correlation
between two-sample linear rank statistics. In a last step, they adjusted the p-value
for the number of possible splits and the different scales of features. The split with
the lowest adjusted p-value is selected. Let γk = ∑nP

i=1 I(yi ≤ yk) be the number of
samples that are censored or experienced an event up to time yk. The standardized
test statistic Sj,τ can be computed from log-rank scores ai by

ai = δi −
γi∑

k=1

δj
nP − γk + 1 , ∀i = 1, . . . , nP ,

Sj,τ =
∑nP
i=1 I(xij ≤ τ)(ai − nLµa(P ))√

nL
(
1− nL

nP

)
σ2
a(P )

,

where µa(P ) and σ2
a(P ) denote the sample mean and sample variance of all log-rank

scores of samples in the parent node [149, 157]. The combination of feature and
threshold that maximizes |Sj,τ | is selected.

Therneau et al. [286] first suggested deriving martingale residuals from a null Cox
model – one that does not consider any features – and use them to build a regression
tree. Later, Keleş and Segal [171] formalized the idea, leading to the split criterion

nLnR
nP


 1
nL

∑

i∈IL
r(i)− 1

nR

∑

i∈IR
r(i)




2

, (3.110)
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where r(i) are either martingale or deviance residuals from a null Cox model:

rMR(i) = δi − ĤP (yi), (3.111)

rDEV(i) = sign(rMR(i))
√
−2(rMR(i) + δi log(δi − rMR(i))). (3.112)

Davis and Anderson [71] proposed a split criterion based on the log-likelihood of an
exponential model with constant hazard rate. The log-likelihood of the k-th node is
defined as

LL(k) =

∑

i∈Ik
δi


−


∑

i∈Ik
δi


 log

(∑
i∈Ik δi∑
i∈Ik yi

)
. (3.113)

Care has to be taken when a node only contains censored samples, which would result in
log 0; instead, the logarithm is replaced by log(0.5∑i∈Ik yi). The split that maximizes
the log-likelihood in both child nodes is selected.

The split criterion by LeBlanc and Crowley [188] selects the split with the greatest
reduction in deviance of a full likelihood Cox model (see section 3.2.2 on page 37).
Instead of using the exponential of a linear model, each terminal node k ∈ J contains
its specific Cox model with hazard function h(t) = θkh0(t), where θk > 0 is the constant
model of the k-th node that represent the relative risk of samples within that node.1
The full likelihood (cf. section 3.2.2 on page 37) of a tree with terminal nodes J is

∏

k∈J

∏

i∈Ik
(h0(yi)θk)δi exp(−H0(yi)).

To estimate the baseline cumulative hazard function H0(·) and the parameter θk an
iterative procedure needs to be applied, starting with θk = 1, ∀k = 1, . . . , K,

Ĥ0(t) =
∑

{i|ti≤t}

di
∑
k∈J

∑
j∈Ik I(yj ≥ ti)θ̂k

, (3.114)

θ̂k =
∑
i∈Ik δi∑

i∈Ik Ĥ0(yi)
, (3.115)

where Ĥ0(t) is Breslow’s estimator (see section 3.2.3 on page 42) based on the estimate
θ̂k of the previous iteration. In [188], estimates were approximated by the result after
the first iteration is completed. Finally, the improvement in deviance is computed in
analogy to the reduction in variance of regular regression trees:

ρj = 1
n


∑

i∈IP
dev(i, P )−

∑

i∈IL
dev(i, L)−

∑

i∈IR
dev(i, R)


 , (3.116)

dev(i, k) = 2
[
δi log

(
δi

Ĥ0(yi)θ̂k

)
− (δi − Ĥ0(yi)θ̂k)

]
, (3.117)

1θk plays the same role as the exponential of a linear model exp(x>β) in the Cox model.
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where dev(i, k) is the deviance residual of the i-th sample in node k and 0 · log 0 = 0.
The split with the largest improvement is ultimately selected.

Zhang [329] explored a different idea to define a split criterion for survival trees. Rather
than basing the split criterion on well known identities in survival analysis such as
the log-rank test or Cox model, their motivation comes from “the observation that an
ideally homogeneous node should consist of subjects whose observed times are close
and who are mostly censored or mostly uncensored” [329, p. 306]. They introduce
an impurity measure that is a weighted sum of two elements: 1) a scaled variance
estimator with respect to observed times, and 2) Shannon’s entropy with respect to
the event indicator:

impurity(k) = w1

∑
i∈Ik (yi − µy(k))2

∑
i∈Ik y

2
i

+ w2 (−pk log2 pk − (1− pk) log2(1− pk)) ,
(3.118)

where w1, w2 are hyper-parameters and pk = n−1
k

∑
i∈Ik(1 − δi) is the proportion of

censoring in node k. The split that results in the highest reduction in impurity is
selected.

The split criterion proposed in [157, 159] is motivated from the conservation-of-events
principle, which states “that the sum of the estimated cumulative hazard function over
the observed time points (deaths and censored values) must equal the total number of
deaths” [157, p. 26]. The deviation from the conservation-of-events principle in node k
is measured by

∆CoE(k, ymax) = |
∑

i∈Ik
I(yi ≤ ymax)Ĥk(yi)−

∑

i∈Ik
I(yi ≤ ymax)δi|. (3.119)

By iterating over all possible values for ymax for each child node, their split criterion
determines how well the conservation-of-events principle is preserved. Assuming samples
in each node are sorted such that y1 ≤ y2 ≤ · · · ≤ ynk , then the split criterion can be
computed by

ρj =

1 + 1

nP

∑

k∈{L,R}
nk

nk−1∑

i=1
∆CoE(k, yi)



−1

. (3.120)

The inverse is applied, because well separated child nodes would result in small values
for ∆CoE(k, yi). The split with the maximum value for ρj is selected (j = 1, . . . , p).

Jin et al. [162] proposed a splitting criterion that finds a split such that the difference
in restricted mean survival time RMST(t) =

∫ t
0 S(u)du is maximized between child

nodes. The change in within-node variance of restricted mean survival time can be
computed by

ρj = nLnR
nP (nL + nR)

(∫ tmax
L

0
ŜL(u)du−

∫ tmax
R

0
ŜR(u)du

)2

, (3.121)
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where ŜL is the Kaplan-Meier estimate (2.19) of the survival function in the left child
node and tmax

L = max{yi | i ∈ IL} is the maximum observed time point in the left child
node (analogous for ŜR and tmax

R with respect to the right child node).

Schmid et al. [255] suggested to use Harrell’s concordance index – a common evaluation
measure for survival models (cf. section 3.7.1 on page 84) – as split criterion. To
determine the goodness of a split with respect to the j-th feature, the ratio of the
number of concordant to discordant pairs is computed with respect to the binary risk
estimate f̂(xu) = I(u ∈ IR) = I(xuj > τ):

ĉj =
∑
u6=v δuI(yu < yv)Ψ(u, v)
∑
u6=v δuI(yu < yv)

,

Ψ(u, v) =





1 if xuj > τ and xvj ≤ τ ,

0.5 if I(xuj > τ) = I(xvj > τ),
0 else.

(3.122)

The function Ψ(u, v) accounts for tied risk estimates, i.e., samples assigned to the
same child node, by assigning them the value 0.5. The final split criterion is ρj =
max(1 − ĉj, ĉj). In their experiments, Schmid et al. compared their proposed split
criterion to log-rank splitting in a random survival forest (see section 3.6 on page 79).
They concluded that splitting based on Harrell’s concordance index is superior to
log-rank splitting for datasets that are characterized by small sample size and high
amount of censoring, whereas it was inferior when many unrelated features existed and
the signal-to-noise ratio was small.

In [56], median regression trees for right censored survival data have been proposed.
Their split criterion is based on the improvement in absolute distance to the within-node
median survival time. To account for censoring, they impute survival times of censored
patients using the Buckley-James estimator (see section 3.1.1 on page 33). Instead
of employing greedy search to find the optimal feature and cut point of a split, they
separate the two tasks following the approach of Loh and Shih [197].

Finally, Molinaro et al. [214] proposed a general framework to construct a survival tree
based on inverse probability of censoring (IPC) weights (see section 3.1.2 on page 34).
Therefore, building a survival tree is identical to building a regression tree, except
that each sample is assigned an IPC weight. Nodes are split based on the within-node
variance as impurity measure, which is the standard for regression trees [39].

3.5.3 Missing Data

Many real-world datasets are affected by missing values: the complete list of features
is only available for a subset of samples in the dataset and for the remaining samples
one or more features have not been recorded and therefore are missing. Commonly,
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missing values are addressed in a pre-processing step that fills in the missing values,
but tree-based methods can be adapted to be aware of missing values during training
and prediction.

Missing values in categorical variables can be accounted for by introducing an additional
“missing” category, which eliminates all missing values and training can continue as
usual. Alternatively, surrogate splits are applicable to both continuous-valued and
categorical features [39, 130]. During training, the quality of a split based on the j-th
feature is only evaluated with respect to samples where the j-th feature is available.
Once the optimal feature with respect to the split criterion is found, one or more
surrogate splits are defined that mimic that split. A surrogate split should approximate
the split on the original feature and cut point, but use a different feature and cut point,
thus exploiting correlations between features.

Let j∗ and τ ∗ denote the feature and cut point corresponding to the optimal split.
Finding a surrogate split can be formulated as a binary classification problem, where
samples are assigned labels according to which child node they were assigned to.
Accordingly, the objective is to find an alternative feature j and cut point τ that
minimize the misclassification error [285]:

argmin
τ,j 6=j∗

1
nP


∑

i∈IL
I(xij > τ) +

∑

i∈IR
I(xij ≤ τ)


 , (3.123)

where IL and IR are computed with respect to the optimal split based on feature
j∗ and cut point τ ∗. In addition to computing the error of possible surrogate splits,
a “blind split” is considered as fallback. A “blind split” assigns a sample always to
the child node with the higher number of samples, and its misclassification error is
min(nL/nP , nR/nP ) [285]. Suitable surrogate splits are given by all features and cut
points with misclassification error less than the “blind split”.

The list of surrogate splits for each node is stored such that it can be accessed during
prediction. If a new sample with missing covariate j reaches a node that splits based
on j, the surrogate split with the smallest misclassification error (3.123) is applied, or if
that feature is missing as well, the surrogate split with second smallest misclassification
error, and so forth. If the features of all possible surrogate splits are missing, a “blind
split” is carried out as the last resort.

3.6 Random Survival Forest

3.6.1 Ensemble of Survival Trees

A random forest is an ensemble of multiple, de-correlated tree-based learners; it was
originally proposed for classification and regression tasks by Breiman [37]. Construction
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of individual trees in a random forest closely follows the process for regular classification
and regression trees with some key differences to ensure that trees are de-correlated: 1)
each tree is built on a different bootstrap sample of the original training data, and 2)
at each node, the split criterion is only evaluated for a randomly selected subset of
features and thresholds. Randomizing the computation of the split criterion is the main
reason why construction a survival tree remains computationally feasible even with
high-dimensional data. Predictions are formed by aggregating predictions of individual
trees in the ensemble.

Ishwaran et al. [158] created an ensemble of relative risk trees [188] following Breiman’s
random forest framework [37]. Their ensemble consisted of many unpruned trees, which
were constructed as described by LeBlanc and Crowley [188] (their split criterion using
the deviance of a full likelihood Cox model was described in the previous section).
The prediction f̂(x) of a single tree corresponds to the full relative risk estimate θ̂k
associated with the leaf node reached by x. A full relative risk estimate is obtained
by repeatedly applying eqs. (3.114) and (3.115) until convergence. The ensemble
prediction is the average relative risk prediction across all trees.

Hothorn et al. [148] constructed a random forest for survival analysis by using inverse
probability of censoring weights when constructing individual trees [214]. Since leaf
models correspond to mean log survival times of samples in that leaf, the ensemble
prediction f̂(x) is the weighted average of mean log survival times with respect to all
samples in leafs reached by x.

Ishwaran et al. [159] proposed random survival forests using a split criterion and
aggregation procedure inspired by the conservation-of-events principle described in
section 3.5.2 (page 73). After training B trees on B bootstrap samples of the original
training data, each terminal node of each tree contains an estimate Ĥk(t) of the
cumulative hazard function via the Nelson-Aalen estimator (2.20). Let Ĥb(t|x) denote
the estimated cumulative hazard function in the leaf node of the b-th tree that x was
assigned to. The ensemble prediction f̂RSF(x) (referred to as ensemble mortality in
[159]) can be obtained by averaging estimated cumulative hazard functions from all
trees in the ensemble and computing the sum of the averaged CHF over all m observed
time points:

f̂RSF(x) =
m∑

i=1

1
B

B∑

b=1
Ĥb(yi|x). (3.124)

Due to the conservation-of-events principle, f̂RSF(x) is an estimate of the expected
total number of deaths for subjects with covariates x.

80



3.6 Random Survival Forest

3.6.2 Variable Importance

In clinical research, the impact and the role of covariates in a disease are often of
primary interest, whereas the mere predictive capability of a model plays a secondary
role. Information about variable importance is readily available from linear models
such as Cox’s proportional hazards model (see section 3.2 on page 35), because each
feature is assigned a weight that directly reflects its importance (assuming there are no
scale differences between features). Although the random survival forest is likely to
achieve higher predictive performance than a linear model, the influence of features in
the decision process are not directly accessible. In particular, if data is to be analyzed
that consists of a high number of features with little or no impact on survival, studying
feature importances provides valuable information about the most important factors in
a disease. In this section, I will describe basic measures of variable importance that
can be retrieved from any random survival forest (or any other type of forest).

A crude measure of variable importance arises when simply counting the number of
times a variable was selected for a split. A slightly more powerful measure can be
obtained by considering the value of the split statistic ρj at each split and tree. The
importance of variable j is the sum of split statistics ρj, aggregated over all nodes of
all trees [132]. Breiman [37] suggested an alternative measure of variable importance
based on out-of-bag (OOB) samples, i.e., samples that were not part of a particular
bootstrap sample a tree in the ensemble was trained with. First, OOB samples are
dropped down the respective trees of the forest to obtain an estimate EOOB of the
ensemble error. Next, the values of the j-th feature are randomly permuted to remove
any correlation to the outcome variable and the forest is applied to the altered OOB
samples to obtain the error Ej. If variable j is a good predictor of the outcome, the
error Ej is going to be significantly larger than EOOB. Consequently, the variable
importance of the j-th feature is the difference between the OOB error before and after
permutation, EOOB − Ej.

Note that the forest is not re-trained after permuting variable j; any connection
between the j-th feature and the outcome is only broken in the OOB samples, not
during construction of the forest. An alternative description of the permutation
procedure that emphasizes this is that an OOB sample is randomly assigned to a child
node if the split depends on the j-th feature [159]. If one would re-train the forest,
EOOB−Ej would be the difference in prediction error between a forest that had access
to the j-th feature and a forest where the j-th feature was unavailable. If the dataset
contains a variable that is correlated with the j-th feature, re-training would probably
compensate for the removal of the j-th feature by increasing the importance of the
other variable, and EOOB − Ej would be small [159].

In all cases, the importance of a variable depends on the choice of split criterion.
In particular, if a split criterion is biased towards variables of certain properties,
the measure of variable importance will be biased as well. For instance, it is well

81



3 Predictive Models for Survival Analysis

documented that using the Gini index as split criterion for classification yields a biased
variable importance measure in the presence of variables with many categories or with
high correlation to other features [221, 222, 279, 280].

3.6.3 Missing Data

A random forest can be applied to samples with missing values by computing surrogate
splits (see section 3.5.3 on page 78) in the individual trees of the ensemble. However,
using surrogate splits in a forest can be problematic because of the randomness in
selecting candidate variables in each node and the computational costs involved in
finding surrogate splits. Instead, Breiman and Cutler [38] proposed an imputation
approach that relies on the proximity measure defined in eq. (3.125) below.

Definition 3.10: Proximity. Let B be the number of trees and Ib,v the set of samples
that arrived at the v-th leaf node of the b-th tree. The proximity between samples
i and j is the number of times feature vectors xi and xj coincide in the same leaf
node:

prox(xi,xj) = 1
B

B∑

b=1

Jb∑

v=1
I(xi ∈ Ib,v ∧ xj ∈ Ib,v), (3.125)

where Jb is the total number of leaf nodes of the b-th tree.

Missing values are imputed by iteratively constructing a random forest based on
imputed data, starting with a rough imputation. For instance, missing values in
continuous features can be imputed by the mean or median of all non-missing samples,
and categorical variables can be imputed by the mode of all non-missing samples. After
training a random forest with the imputed values, the missing values are re-imputed
based on the proximity (3.125) between samples in the data. Continuous values are
imputed by the proximity-weighted average of all non-missing samples, and categorical
values are imputed by the value that occurs most frequently among all non-missing
samples, where frequencies are proximity weighted. Now, the forest is re-trained again
and the imputation procedure is repeated until imputed values converge to a stable
estimate.

Ishwaran et al. [159] argued that the imputation method by Breiman and Cutler [38]
does not account for missing values during testing and that it results in biased OOB
error and variable importance estimates. The method by Ishwaran et al. [159] imputes
missing values from non-missing in-bag samples each time a node is split. For simplicity,
I assume that only a single feature contains missing values, but the algorithm below
can be easily extended if more than one feature has missing values.

For the k-th node in a tree with K nodes, let X(k,j) denote a vector of non-missing
values of the j-th feature from in-bag samples reaching node k. When growing a
tree, at each node, the missing values in the j-th feature are imputed by randomly
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drawing a value from the empirical distribution function of X(k,j). After the optimal
split has been determined, missing values are reset in the child nodes and imputation
is repeated as above. During testing, a new sample x is sent down each tree in the
ensemble until a split that depends on a missing feature in x is encountered. If the j-th
feature is missing, its value is imputed by randomly drawing from the same empirical
distribution function ofX(k,j) used during training. The final imputation consists of the
average imputed value across all trees (for continuous features), or the most frequently
imputed value (for categorical features). Depending on the amount of missing values,
the imputation process by Ishwaran et al. [159] can be iteratively repeated as in [38] to
improve imputation accuracy.

3.7 Evaluation Measures

Once a survival model has been trained, it is necessary to determine how well the
model is expected to perform on new data that was not used for building the model.

Definition 3.11: True error rate and expected true error. Let f̂D denote a model
that was estimated from data D = {(xi, yi, δi)}ni=1, and L a loss function that
measures the discrepancy between the actual outcome y0 and the predicted outcome
f̂D(x0). Following [131], the true error rate of f̂D on a new example (x0, y0) drawn
from the joint distribution of (X, Y ) is

Err(f̂D) = E(x0,y0)∼(X,Y )
[
L(y0, f̂D(x0)) | f̂D,D

]
, (3.126)

where the model f̂D and the training data D are fixed and only (x0, y0) is random.
Alternative names for the true error rate are generalization error, prediction error,
test error or extra-sample error [82, 84, 131]. Averaging the true error rate over
training sets D, yields the expected true error

Err(f̂D) = ED(Err(f̂D)). (3.127)

Estimating (3.126) would be preferred, because it provides information on how well
a model trained on samples in D generalizes to an independent sample x0. However,
methods such as cross-validation and the bootstrap estimate the expected true error
(3.127), i.e., they consider the expectation over multiple training sets rather than a
fixed training set [82, 84, 131]. In this section, I will focus on characteristics of L to
assess the difference between actual survival times and predicted survival times. Due to
censoring – it is only possible to observe Y = min(T,C) – regular metrics such as the
root mean squared error cannot be employed. Hence, evaluation measures for survival
models need to be aware of censoring.
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3.7.1 Concordance Index

The concordance index (c index) is a measure of rank correlation between predictions
f̂(x) and observed time points y that is closely related to Kendall’s τ [127, 128].
The concordance index by Harrell et al. [127, 128] is the ratio of correctly ordered
(concordant) pairs to comparable pairs. Two patients i and j are comparable if the
patient with lower observed time y experienced an event, i.e., if yi < yj and δi = 1. The
set P = {(i, j) | yi < yj ∧ δi = 1}ni,j=1 comprises all comparable pairs. A comparable
pair (i, j) is concordant if the estimated risk by a survival model f̂ is higher for subjects
with lower survival time, i.e., f̂(xi) > f̂(xj) ∧ yi < yj, otherwise the pair is discordant.
Harrell et al. [127, 128] proposed to estimate the probability P (f̂(xi) > f̂(xj) | ti < tj)
by the ratio of concordant to comparable pairs by

ĉHarrell = 1
|P|

∑

(i,j)∈P
I(f̂(xi) > f̂(xj)). (3.128)

The c index is within the interval [0; 1] and is identical to the area under the receiver
operating characteristics (ROC) curve [125, 232] if the outcome is binary and no
censoring is present [127]. A random model has a c index of 0.5 and an optimal model
of 1.0.

Uno et al. [292] observed that the estimate ĉHarrell depends on the distribution of
censoring times in the test data, which leads to biased estimates of the true concordance
index. They addressed this problem by including inverse probability of censoring
weights (see section 3.1.2 on page 34) into the estimator. Instead of estimating
the probability P (f̂(xi) > f̂(xj) | ti < tj), they estimated the truncated probability
P (f̂(xi) > f̂(xj) | ti < tj∧ti < τ), where τ > 0 corresponds to a manually defined time
point such that the probability of censoring is guaranteed to be non-zero: P (C > τ ) > 0.
The set of comparable samples in the interval [0; τ ] is defined as Pτ = {(i, j) | yi <
yj ∧ yi < τ ∧ δi = 1}ni,j=1. They constructed their estimator by weighting each sample
in the comparison by the inverse probability of censoring weight ωi as defined in
eq. (3.18):

ĉUno(τ) = 1
∑

(i,j)∈Pτ
ω2
i

∑

(i,j)∈Pτ
ω2
i I(f̂(xi) > f̂(xj)). (3.129)

To compute the weights ωi, they assumed that censoring is independent of the features
(random censoring) and used the non-parametric Kaplan-Meier estimator (2.19) to
estimate the conditional censoring survivor function. Uno et al. [292] showed that
ĉUno(τ) is a consistent estimator.

The estimators (3.128) and (3.129) do not account for situations when risk scores are
tied, but both can be easily extended to account for ties by replacing the indicator
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function in the numerator with

Ψ(i, j) =





1 if f̂(xi) > f̂(xj),
0.5 if f̂(xi) = f̂(xj) and i 6= j,

0 else.
(3.130)

3.7.2 Time-dependent Area under the Curve

The area under the receiver operating characteristics curve (ROC) is a popular perfor-
mance measure for binary classification tasks [125, 232]. In the medical domain, it is
often used to determine how well estimated risk scores can separate diseased patients
(cases) from healthy patients (controls). Given a model f̂ that predicts continues risk
scores, i.e., f̂(x) ∈ R, the ROC curve plots the false positive rate (1 - specificity)
against the true positive rate (sensitivity) for every threshold τ ∈ R:

Se(τ) = P (f̂(xi) > τ | di = 1),
Sp(τ) = P (f̂(xi) ≤ τ | di = 0),
ROC = {(1− Sp(τ), Se(τ))}τ ∈R,

where Se(τ) and Sp(τ) represent the sensitivity and specificity at threshold τ , and
di = 1 and di = 0 indicate that the i-th patient is diseased and healthy. Sensitivity
and specificity can be estimated from a confusion table as

Ŝe(τ) =
∑n
i=1 I(f̂(xi) > τ)I(di = 1)

∑n
i=1 I(di = 1) = true positives

true positives + false negatives ,

Ŝp(τ) =
∑n
i=1 I(f̂(xi) ≤ τ)I(di = 0)

∑n
i=1 I(di = 0) = true negatives

true negatives + false positives .

When extending the ROC curve to continuous outcomes, in particular survival time, a
patient’s disease status is typically not fixed and changes over time: at enrollment a
subject is usually healthy, but may be diseased at some later time point. Consequently,
sensitivity and specificity become time-dependent measures. Several definitions of
time-dependent sensitivity and specificity exist in the literature; they differ in the
definition of “cases” and “controls” at time point t.

Following Heagerty et al. [134] and Heagerty and Zheng [135], incident cases are
defined as individuals that experience an event at time t (ti = t) and cumulative cases
as individuals that experienced an event prior to or at time t (ti ≤ t). In addition,
static controls are all subjects that experienced an event after a fixed time point t∗
(ti > t∗) and dynamic controls are those with ti > t. Based on the aforementioned
definitions, three different time-dependent ROC curves can be defined together with
their corresponding area under the time-dependent ROC curve (AUROC).
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Quantities based on incident and cumulative cases are indicated by a superscript I and
C, respectively, and quantities based on static and dynamic controls by a superscript S
and D.

Definition 3.12: Cumulative-dynamic ROC curve [134].

SeC(τ, t) = P (f̂(xi) > τ | ti ≤ t),
SpD(τ, t) = P (f̂(xi) ≤ τ | ti > t),

ROCC/D(t) = {(1− SpD(τ), SeC(τ))}τ ∈R,
AUROCC/D(t) = P (f̂(xi) > f̂(xj) | ti ≤ t ∧ tj > t).

(3.131)

Definition 3.13: Incident-dynamic ROC curve [135].

SeI(τ, t) = P (f̂(xi) > τ | ti = t),
ROC I/D(t) = {(1− SpD(τ), SeI(τ))}τ ∈R,

AUROC I/D(t) = P (f̂(xi) > f̂(xj) | ti = t ∧ tj > t).
(3.132)

Definition 3.14: Incident-static ROC curve [89, 268].

SpS(τ, t) = P (f̂(xi) ≤ τ | ti > t∗),
ROC I/S(t) = {(1− SpS(τ), SeI(τ))}τ ∈R,

AUROC I/S(t) = P (f̂(xi) > f̂(xj) | ti = t ∧ tj > t∗).
(3.133)

I will now focus on the cumulative-dynamic ROC curve and briefly present the estimator
of AUROCC/D(t) proposed in [153, 293]. The estimators of cumulative-dynamic
sensitivity and specificity by Hung and Chiang [153] and Uno et al. [293] are based on
assigning observations inverse probability of censoring (IPC) weights (see section 3.1.2
on page 34), which leads to

ŜeC(τ, t) =
∑n
i=1 I(f̂(xi) > τ)I(yi ≤ t)ωi∑n

i=1 I(yi ≤ t)ωi
, (3.134)

ŜpD(τ, t) =
∑n
i=1 I(f̂(xi) ≤ τ)I(yi > t)

∑n
i=1 I(yi > t) . (3.135)

The estimator of the time-dependent specificity simplifies to the naïve estimator because
IPC weights correspond to 1/Ĝ(t) for all observations and cancel each other out [29].
Using the result of Satten and Datta [250], the denominator in the estimator of
the sensitivity (3.134) is equivalent to n(1 − ŜT (t)), because n−1∑n

i=1 I(yi ≤ t)ωi =
1− ŜT (t), with ŜT (t) being the Kaplan-Meier estimator (2.19) of P (T > t). Moreover,
ŜY (t) = n−1∑n

i=1 I(yi > t) denotes the estimator of P (Y > t). By substituting both
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Ŝp(τk, t) = Ŝp(τk−1, t)

Figure 3.2: Example of time-dependent ROC curve. Bullets indicate individual points on
the ROC curve with the associated threshold τ . Dashed horizontal lines mark
the contribution of false negatives to the area under the ROC curve. The dotted
line represents a random model.

formulations into eqs. (3.134) and (3.135), the estimators become

ŜeC(τ, t) =
∑n
i=1 I(f̂(xi) > τ)I(yi ≤ t)ωi

n(1− ŜT (t))
, (3.136)

ŜpD(τ, t) =
∑n
i=1 I(f̂(xi) ≤ τ)I(yi > t)

nŜY (t)
. (3.137)

The area under the cumulative-dynamic ROC curve AUROCC/D(t) can be estimated
from ŜeC(τ, t) and ŜpD(τ, t) by computing the sum over rectangular areas with width
corresponding to the increase in specificity and height corresponding to the loss in
sensitivity (see fig. 3.2). If there are no ties in observed time points yi and in predicted
scores f̂(xi) for all i = 1, . . . , n, the area under the curve increases with every false
negative and remains the same for each false positive. Thus, a single increment of the
area under the ROC curve is equivalent to the area of a rectangle with width ŜpD(τk, t)
and height ŜeC(τk, t)− ŜeC(τk−1, t) (see gray box in fig. 3.2). Assuming τk > τk−1, the

87



3 Predictive Models for Survival Analysis

k-th update of the area under the ROC curve has the form
(

ŜeC(τk−1, t)− ŜeC(τk, t)
)

ŜpD(τk, t)

=


∑n
i=1 I(f̂(xi) > τk−1)I(yi ≤ t)ωi −

∑n
i=1 I(f̂(xi) > τk)I(yi ≤ t)ωi

n(1− ŜT (t))


 ŜpD(τk, t)

=


∑n
i=1

(
I(f̂(xi) > τk−1)− I(f̂(xi) > τk)

)
I(yi ≤ t)ωi

n(1− ŜT (t))


 ŜpD(τk, t)

=
(
I(yk ≤ t)ωk
n(1− ŜT (t))

)
ŜpD(τk, t)

=
(
I(yk ≤ t)ωk
n(1− ŜT (t))

)

∑n
i=1 I(f̂(xi) ≤ τk)I(yi > t)

nŜY (t)


 ,

where I(f̂(xi) > τk) − I(f̂(xi) > τk−1) is one for i = k and zero otherwise. The
latter arises from the assumption that risk scores are unique: when going from τk−1 =
f̂(xk−1) to the next greater threshold τk = f̂(xk), only the k-th sample switches from
being predicted negative to being predicted positive and all other samples remain
unchanged.

Finally, an estimator of the area under the cumulative-dynamic ROC curve can be
obtained by iterating over all n unique thresholds and summing up the corresponding
rectangular areas [153, 293]:

̂AUROC
C/D

(t) =
n∑

i=1

(
Ŝe(f̂(xi−1), t)− Ŝe(f̂(xi), t)

)
Ŝp(f̂(xi), t)

=
n∑

i=1

(
I(yi ≤ t)ωi
n(1− ŜT (t))

)

∑n
j=1 I(f̂(xj) ≤ f̂(xi))I(yj > t)

nŜY (t)




=
∑n
i=1

∑n
j=1 I(yi ≤ t)I(yj > t)I(f̂(xj) ≤ f̂(xi))ωi

n2ŜY (t)(1− ŜT (t))
.

(3.138)

The area under the cumulative-dynamic ROC curve can also be summarized over
multiple time points by integrating over all time points t [183, 254]:

cC/D = ET (AUROCC/D(T )) =
∫

t
AUROCC/D(t)f(t)dt, (3.139)

where f(t) denotes the probability density function of survival time T .
Note. The above summary statistic is motivated by Heagerty and Zheng [135], who
suggested the following summary statistic for the area under the incident-dynamic
ROC curve:

c I/D =
∫

t
AUROC I/D2f(t)S(t)dt. (3.140)
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They showed that c I/D equals the probability P (f̂(xi) > f̂(xj) | ti < tj), which is
estimated by the concordance index of Harrell et al. [127, 128] and Uno et al. [292]
as well. Therefore, c I/D corresponds to the time-independent concordance index and
provides an alternative interpretation of the concordance index.

3.7.3 Brier Score

Graf et al. [117] proposed the time-dependent Brier score for right censored data. Let
π̂(t|x) be the predicted probability of remaining event-free up to time point t for a
patient with covariates x. The time-dependent Brier score is the mean squared error
at time point t:

E
[
(I(T > t)− π̂(t|x))2

]
.

Due to right censoring, they split the mean squared error into three terms:

1. yi ≤ t ∧ δi = 1,
2. yi > t,
3. yi ≤ t ∧ δi = 0

In the first case, an event occurred before the time point t and the indicator function
I(yi > t) is zero; the squared error becomes (0− π̂(t|x))2. In the second case, an event
or censoring occurs after time t, resulting in the squared error (1− π̂(t|x))2. In the last
case, the sample was censored before time point t, which means it is unknown if an
event occurred; an error cannot be calculated. Finally, to account for censoring, Graf
et al. weighted individual contributions to the overall error by the inverse probability
of censoring weight 1/Ĝ(t), estimated by the Kaplan-Meier estimator (2.19):

BScensored(t) = 1
n

n∑

i=1
I(yi ≤ t∧δi = 1)(0− π̂(t|xi))2

Ĝ(yi)
+I(yi > t)(1− π̂(t|xi))2

Ĝ(t)
, (3.141)

where they assume no tied event times and random censoring. Note that t has to be
chosen such that P (C > t) > 0 is guaranteed, otherwise the result is undefined due to
division by zero. To compute the time-dependent Brier score over multiple time points
in the interval [0; τ ], BScensored(t) can be integrated over some time-dependent weight
function w(t):

IBS =
∫ τ

0
BScensored(t)dw(t). (3.142)

Graf et al. [117] suggested two weight functions: w(t) = t/τ , and w(t) = (1− Ŝ(t))(1−
Ŝ(τ))−1, where Ŝ(t) is an estimate of the marginal survival function. For practical
purposes, obtaining the estimate ŵ(t) is straightforward if IBS is estimated by the
trapezoidal rule [141].
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Most learning algorithms assume that every sample has a valid value for every feature
in the dataset. However, in clinical data this is often not the case: the amount of
information varies between patients. A value can be missing for a myriad of reasons: a
patient refused to answer a particular question or did not remember the exact answer
to a question, a particular diagnostic test was not performed purposely or could not
be carried out, recording or storing the information was erroneous, and so forth. In
particular, if data is collected over a long period of time or from multiple institutions,
missing values are common. In this scenario, missing data often occurs in blocks, for
instance, if a diagnostic test was not available for patients that enrolled early in the
study or one institution did not perform a particular set of measurements. To address
the missing data problem, one can choose from three options:

1. discard all samples that contain one or more missing value (complete case
analysis),

2. adopt learning algorithm to explicitly allow missing values in the data,
3. fill-in missing values (imputation).

Complete case analysis is the simplest approach, but also associated with several
limitations that often render it inappropriate [195]. First of all, it reduces the number
of samples that are available for training, which leads to higher uncertainty in a model’s
parameter estimates. Second, the model is going to be biased if dropped samples differ
systematically from samples that remained in the training data. In choosing the second
option, an existing method is adopted to be applicable to data with missing values.
Therefore, it requires detailed knowledge about the method and leads to a solution that
is specifically tailored to that particular survival model. Examples of this approach are
surrogate splits in survival trees (see section 3.5.3 on page 78) and built-in imputation
in random survival forests (see section 3.6.3 on page 82). In this chapter, I will focus
on approaches addressing the missing data problem through imputation, in particular
multiple imputation.

Note. Processes related to censoring and those related to missing data can be unified,
which leads to the more general concept of coarsened data [137]. For the remainder of
this chapter, I assume that only features, but not the outcome (survival time), contain
missing values.
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4.1 Missing Data Generating Processes

Rubin [246] described three general mechanisms that lead to missing data from a
probabilistic point of view. He assumes a probability distribution R that generates
missing values and formalizes the dependency structure between the missing value
generating process, the observed data and the missing data.

Let R be a set of random variables that determine the mechanism of missingness. R
can be treated as a matrix of size identical to the data X with elements either 1 or 0,
depending on whether the corresponding value is observed or missing. A full dataset
X ∈ Rn×p can be partitioned into an observed part Xobs and a missing part Xmis via
the indicator matrix R. Moreover, let Z denote a set of features that have no missing
values and Y the dependent variable(s).

Definition 4.1: Missing completely at random. The missing data generating pro-
cess is called missing completely at random (MCAR) if the pattern of missingness is
independent of the observed data as well as the missing data [246]:

P (R |X) = P (R). (4.1)

Definition 4.2: Missing at random. If the pattern of missingness is only independent
of the missing data, but not the observed data, the missing data generating process
is called missing at random (MAR) [246]:

P (R |X) = P (R |Xobs). (4.2)

Definition 4.3: Missing not at random. If neither MCAR nor MAR holds, the
pattern of missingness depends on the observed data as well as the missing data and
is called missing not at random (MNAR) [246]:

P (R |X) = P (R |Xobs,Xmis). (4.3)

The missing completely at random (MCAR) assumption is the strongest, because
missing values should be unrelated to any factors – observed or unobserved – in the
data generation process. Moreover, MCAR is the only scenario where complete-case
analysis does not lead to biased estimates [195]. In contrast, missing values in the
missing not at random (MNAR) scenario depend on observed and unobserved variables
and will lead to biased estimates if not accounted for [195, 246]. In the missing at
random (MAR) mechanism, a missing value can only arise if it depends on another
observed value, but not on the missing value itself. In particular, the set of observed
data Xobs may be different for each patient and therefore missing values may depend
on different factors. In addition, the missing data mechanisms above can be grouped
into two groups: ignorable and non-ignorable missing data. Data that is MCAR or
MAR is referred to as ignorable missing data, and data that is MNAR as non-ignorable
or informative missing data.

92



4.2 Multiple Imputation

Example 4.1. To provide an intuition about MCAR, MAR and MNAR, consider an
example presented in [136] about a study investigating the efficacy of programs to
educate people about cardiovascular risks at their work place [114]. The body mass
index (BMI) of all participants in the study was measured at baseline, and 3, 6, and
12 months after the initial assessment. If the BMI could not be recorded because
participants were attending an off-site meeting at the time the measurement was
scheduled, the missing data would follow the MCAR mechanism. If instead some
subjects with high BMI at baseline did not attend follow-up measurements, disregarding
whether they put on weight or lost weight since the last measurement, the missing
data would follow the MAR mechanism – the reason for missing a measurement was
recorded. Finally, missing values are MNAR if participants decided not to attend a
follow-up if they gained weight since the last measurement. In such a case, a missing
value would arise due to unknown factors that have not been recorded.

In practice, the MCAR assumption is often unlikely to hold and most work focuses on
the situation were missing data is due to the MAR mechanism. Unfortunately, given
only observed data, the MAR and MNAR scenarios are indistinguishable from each
other without additional assumptions, which means the MAR assumption is untestable
[109, 195].

4.2 Multiple Imputation

Multiple imputation [246, 247] describes a class of algorithms that propose m > 1
plausible values for each missing value, resulting in m datasets without missing values,
which can subsequently be analyzed by traditional methods for complete data. In the
end, estimates from individual models are combined to form an overall model. The
main advantage of multiple imputation is that it accounts for the uncertainty about
the imputed value.

Multiple imputation builds on the MAR assumption by drawing values from the
conditional distribution P (Xmis |Xobs,Z,Y , θ̂) to impute missing values, where θ̂ are
parameter estimates of interest. If only a single feature is affected by missing values,
Rubin [246] described an approach that first constructs a maximum likelihood estimate
θ̂ from all complete samplesXobs and then draws m plausible parameters θ(1), . . . ,θ(m)

from the observed-data posterior distribution P (θ | Xobs,Z,Y ). Imputations for
missing data are obtained by drawing from P (Xmis |Xobs,Z,Y ,θ

(k)) for k = 1, . . . ,m
[252]. For instance, if the vector θ̂ = β̂MLE ∈ Rp contains estimated coefficients
of a regression model and U ∈ Rp×p is the corresponding covariance matrix, the
posterior distribution P (β | Xobs,Z,Y ) can be approximated by the multivariate
normal distribution: θ(k) ∼ Np(β̂MLE,U) [246]. In more complex settings, techniques
such as Markov Chain Monte Carlo have to be used to draw from P (β |Xobs,Z,Y ).
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Finally, the process above is repeated m times, yielding m datasets that differ in the
imputed values.

After generating m datasets without missing values, traditional survival models for
complete data can be trained on each of the m datasets. Since each model will have its
own estimated parameters, the final task consists of combining those estimates into an
overall estimate. Rubin’s rule [246] defines a procedure to pool the estimates θ̂(k) and
their covariance matrices U (k) from m imputed datasets under the assumption that

(θ̂ − θ) ∼ N (0,U),

where θ are the unknown population parameters, θ̂ their complete data estimates
and U the associated variance estimate. The overall estimate θ̄ of θ from m imputed
datasets is

θ̄ = 1
m

m∑

k=1
θ̂

(k)
, (4.4)

and the associated covariance matrix can be obtained by calculating the within-
imputation variance Ū and the between-imputation variance B:

Ū = 1
m

m∑

k=1
U (j) (4.5)

B = 1
m− 1

m∑

k=1
(θ̂(k) − θ̄)(θ̂(k) − θ̄)> (4.6)

Var(θ̄) = Ū + m+ 1
m

B. (4.7)

4.2.1 Multivariate Imputation using Chained Equations

Multivariate Imputation using Chained Equations (MICE) is a method for multiple
imputation that is based on Gibbs sampling to draw from the multivariate distribution
P (Xmis | Xobs,Z,Y , θ̂) [298–300]. In contrast to joint modeling [251], where a
parametric multivariate density P (X|Φ) with unknown parameters Φ is constructed
to describe the full data, Gibbs sampling uses conditional distributions P (X(j) |
X(−j),Z,Y ,θj) for each of the p features, with X(j) being a vector corresponding to
the j-th column of X and X(−j) being identical to X with the j-th column removed
(j = 1, . . . , p). An important advantage of MICE is that it simplifies handling data
consisting of variables of different type (continuous, ordinal, or categorical), because it
does not require specifying a joint distribution across all types, which may be difficult
to specify and is unfeasible with high-dimensional data [299]. Moreover, having an
imputation model for each variable ensures consistency among variables that are derived
from other variables in the data. For instance, there is a well defined relationship
between the body mass index and weight and height, which should hold for imputed
data too [298].
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To create a single imputed dataset, MICE repeatedly draws from a Gibbs sampler. It
first imputes missing values by randomly sampling with replacement from the observed
data Xobs. Next, missing values in the first feature are imputed by constructing an
imputation model based on non-missing entries of the first feature (X(1)

obs), values for
the remaining p− 1 features (X(−1)

t−1 ), values of features without missing values (Z),
and the dependent variable Y , which corresponds to the following draws:

θ
(1)
t ∼ P

(
θ(1) |X(1)

obs,X
(2)
t−1, . . . ,X

(p)
t−1,Z,Y

)
,

X
(1)
t ∼ P

(
X

(1)
mis |X(1)

obs,X
(2)
t−1, . . . ,X

(p)
t−1,Z,Y ,θ

(1)
t

)
,

where X(j)
t−1 denotes the values of the j-th feature, observed and imputed, from the

previous iteration. The same process is repeated for the second feature, where the
imputation model is based on non-missing entries of the second feature (X(2)

obs), and
values of features 1, 3, . . . , p, which includes the previously imputed values of the first
feature:

θ
(2)
t ∼ P

(
θ(2) |X(2)

obs,X
(1)
t ,X

(3)
t−1, . . . ,X

(p)
t−1,Z,Y

)
,

X
(2)
t ∼ P

(
X

(2)
mis |X(2)

obs,X
(1)
t ,X

(3)
t−1, . . . ,X

(p)
t−1,Z,Y ,θ

(2)
t

)
.

The remaining features with missing values are imputed following the same scheme.
Thus, the imputation model of the p-th feature is based on all previous imputations in
this iteration:

θ
(p)
t ∼ P

(
θ(p) |X(p)

obs,X
(1)
t , . . . ,X

(p−1)
t ,Z,Y

)
,

X
(p)
t ∼ P

(
X

(p)
mis |X(p)

obs,X
(1)
t , . . . ,X

(p−1)
t ,Z,Y ,θ

(p)
t

)
,

which completes the t-th iteration. The process of sequential imputation is repeated
multiple times, usually between 5 and 20 times, to yield one imputed dataset [299].
By using different starting values and running m imputation procedures in parallel,
one obtains m imputed datasets that can be analyzed with complete data methods.
Regarding an adequate number of imputations, White et al. [316, p. 388] suggested
“the rule of thumb that m should be at least equal to the percentage of incomplete
cases.”

4.2.2 Imputation Models

In the description of the MICE algorithm in the previous section, the imputation
model, which is used to impute missing values of the j-th feature, remained unspecified.
Because MICE imputes values sequentially by iterating over all features, the choice
of imputation model depends on the type of the j-th feature. Common choices are
linear regression or predictive mean matching for continuous values, multinomial
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logistic regression for categorical features, and the proportional odds model for ordered
categorical features [246]. An overview of univariate imputation methods is presented
in [298, 316].

The limitation of simple univariate imputation models is that non-linear effects and
interactions between features have to be defined manually to obtain unbiased imputa-
tions [61, 260]. In addition, these models are unsuitable for high-dimensional data or
data with highly correlated features. Classification and regression trees (CART; [39])
offer a suitable alternative, because they can automatically consider interaction effects
and their recursive structure allows constructing subgroup-specific imputation models
in the leaf nodes. For instance, a tree with two leaf nodes and a split according to
gender would use separate imputation models for male and female patients.

Burgette and Reiter [47] proposed to use CART as imputation model for continuous
features. For the j-th feature, a tree predicting values of the j-th feature is trained,
using all samples where the j-th feature is available. To impute a missing value of one
sample, the feature vector consisting of the p− 1 other features is dropped down the
tree and the imputed value is randomly sampled from the empirical distribution of the
j-th feature from observed samples that reached the corresponding leaf node. A similar
approach can be used to impute categorical missing values by using a classification
tree instead of a regression tree.

The idea can also be extended to random forests, which are an ensemble of randomized
classification or regression trees [37]. Stekhoven and Bühlmann [275] constructed a
random forest to predict values of the j-th feature from all samples where the relevant
feature was observed. Their imputation procedure simply consists of using the predicted
value of the forest without incorporating additional randomness. Shah et al. [262]
experimentally showed that both the CART approach [47] as well as the random forest
approach [275] resulted in biased parameter estimates of Cox’s proportional hazards
model. Therefore, Shah et al. [262] proposed a modification where the imputed value
is non-deterministic. For categorical features, they proposed to impute missing values
from a forest by randomly picking a tree from the ensemble and using its prediction as
imputed value. For continuous values, their imputation consisted of “random draws
from independent normal distributions centered on conditional means predicted using
random forest” [262, p. 765]. Yet another imputation model based on random forests
was proposed by Doove et al. [79]. They suggested to first record the leaf nodes of all
trees that were reached by a sample with missing j-th feature. Next, they constructed
the empirical distribution of the j-th feature by combining all observed samples from
the previously recorded leaf nodes. The imputed value is selected by randomly sampling
from the resulting empirical distribution of the j-th feature.
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4.2.3 Multiple Imputation for the Cox Model

White and Royston [315] studied using MICE for survival data when survival time
follows Cox’s proportional hazards model [67]. They investigated different approaches
to incorporate the survival time into an imputation model: survival time as is, log-
transformation of survival time, squared transformation of survival time, and an
estimate of the cumulative baseline hazard function instead of the survival time. With
respect to the latter, they proposed three alternatives to estimate the cumulative
baseline hazard function: non-parametricly using the Nelson-Aalen estimator (2.20) or
via Cox’s proportional hazards model that is updated in each, or every k-th iteration
of MICE. They suggested to build imputation models based on the event indicator δi
and the value of the Nelson-Aalen estimator of the cumulative baseline hazard function
Ĥ(yi)[315].
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5 Fast Training of Survival Support
Vector Machine with Ranking
Constraints

I will begin this chapter by having a closer look at existing training algorithms for
survival support vector machines presented in section 3.3.1 (page 46) and by highlighting
some weaknesses of these approaches. Initially, I will focus on improving training of
models with linear decision function, which is largely based on work by Lee and Lin
[190] and Pölsterl et al. [236], until section section 5.6, where I will show that similar
ideas can be used to efficiently train non-linear models via the kernel trick. Finally, I
will demonstrate the advantage of the improved training algorithm on synthetic and
real-world data in section 5.7.

5.1 Analysis of Existing Approaches

First, let me repeat the definition of the objective function of ranking-based survival
support vector machines in eq. (3.48) on page 46:

min
w

1
2‖w‖

2
2 + γ

∑

(i,j)∈P
ξij

subject to w>xi −w>xj ≥ 1− ξij, ∀(i, j) ∈ P ,
ξij ≥ 0, ∀(i, j) ∈ P .

The corresponding dual function (3.74) on page 55 has the form

max
α

α>1lm −
1
2α
>AXX>A>α

subject to 0 ≤ αij ≤ γ, ∀(i, j) ∈ P ,

where m = |P| and A is a m × n sparse matrix that encodes comparable pairs in
P = {(i, j) | yi > yj ∧ δj = 1}ni=1.

The main disadvantage of ranking-based techniques is that their objective function
(3.48) depends on the size of the set P, which scales quadratically in the number of
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(A) Time |P| = 3

(B) Time |P| = 9

Figure 5.1: Comparable pairs between uncensored (black) and censored (white) samples.

training samples. Without censoring, all pairwise comparisons have to be considered
during training and the size of P is

(
n
2

)
= n(n− 1)/2. Consequently, the optimization

problem in eq. (3.48) consists of a quadratic number of constraints with respect to
the number of training samples. If part of the survival times are censored, the size
of P depends on the amount of uncensored records and the order of observed time
points, censored and uncensored. Let ne indicate the number of events in a dataset of n
samples, then the size of |P| is at least ne(ne−1)/2. This situation arises if all censored
subjects drop out before the first event was observed, hence, all uncensored records are
incomparable to all censored records (see top of fig. 5.1). If the situation is reversed
and the first time point of censoring occurs after the last time point of an observed
event, all uncensored records can be compared with all censored records, which means
|P| = ne(ne − 1)/2 + ne(n− ne) (see bottom of fig. 5.1). By expressing ne as ne = qen,
with qe being the percentage of events, the minimum size of P is qen(qen− 1)/2 and
the maximum size is qen2 − qen(qen+ 1)/2. This shows that in both cases |P| is of the
order of O(qen2) and the number of constraints in the optimization problem (3.48) is
squared in the number of samples in the presence of right censoring, too.

Evers and Messow [90] and Van Belle et al. [294] solved the optimization problem
in eq. (3.48) by constructing the Lagrangian dual function in eq. (3.74) and using a
standard solver for convex quadratic programming, such as the sequential minimal
optimization (SMO) algorithm [234]. The dual function depends on a quadratic number
of constraints and requires space in the order of O(qen2) to construct the matrix A.
Consequently, training requires O(pq2

en
4) time, which is intractable with medium to

large sized datasets. In addition, finding a good approximate solution to the dual
does not necessarily result in a good solution for the primal, which is of primary
interest. Hush et al. [154, Theorem 2] proved that in order to obtain a solution to
the primal objective function that approximates the optimal primal solution by εprimal,
the error of the approximate dual solution has to be O(γ−1ε2

primal), where γ > 0 is the
regularization parameter that weights the influence of the loss function. Therefore,
algorithms optimizing the dual objective function result in a slow convergence rate in
the primal objective function.
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Authors in [295] tackled the high space and time complexity of ranking-based survival
support vector machines by restricting the number of constraints involved in the
optimization problem, such that the new optimization problem approximates the
original one. They first clustered subjects according to survival time, and only included
those constraints that involved the k nearest neighbors in survival time for each
individual. Setting k = 1 reduces the training time to O(pq2

en
2). This idea was adopted

in [297], albeit for a slightly different objective function (cf. section 3.3.1 on page 46).

Although this approach does lower the training time, its solution differs from the one
obtained by solving the full optimization problem. Interestingly, in the absence of
censoring, a survival support vector machine with ranking constraints is equivalent
to Rank SVM [138], for which Airola et al. [4] and Lee and Lin [190] proposed the
use of order statistics trees to obtain training algorithms with lower time and space
complexity than the naïve approach currently used to train a survival support vector
machine [90, 294].

In the remainder of this chapter, I will show that the work in [190] can be adapted to
efficiently train a survival support vector machine on right censored data with a time
and space complexity independent of the size of P, despite considering a quadratic
number of constraints in the objective function. The improved optimization scheme
uses truncated Newton optimization to minimize the objective function in the primal
rather than the dual and avoids explicitly constructing the matrix A by employing
order statistics trees.

5.2 Survival Support Vector Machine with Squared
Hinge Loss

First, I will make a slight change regarding the objective function. The loss function
of the unconstrained optimization problem of survival SVM with ranking constraints
in eq. (3.49) on page 46 uses the non-differentiable hinge loss. Instead, I will use the
differentiable squared hinge loss, which allows employing gradient descent methods to
minimize the unconstrained optimization problem. Figure 5.2 illustrates the difference
between the loss functions.

Definition 5.1. Given training data D = {(xi, yi, δi)}ni=1 and the set of comparable
pairs P = {(i, j) | yi > yj ∧ δj = 1}ni=1, the objective function of ranking-based linear
survival support vector machine with squared hinge loss is defined as

R(w) = 1
2w

>w + γ

2
∑

i,j∈P
max(0, 1− (w>xi −w>xj))2,
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Loss

wT (xi − xj)
0−3 −2 −1 1 2 3

Figure 5.2: Comparison of squared hinge loss (solid and dashed line) and hinge loss (dotted
line). The solid and dotted line correspond to regularization parameter γ set to
1, and the dashed line to γ = 0.5.

where w ∈ Rp are the coefficients and γ > 0 is a regularization parameter. Alterna-
tively, the objective function can be expressed in matrix form as

R(w) = 1
2w

>w + γ

2 (1lm −AXw)>Dw (1lm −AXw) , (5.1)

where A ∈ Rm×n is a sparse matrix with Ak,i = 1 and Ak,j = −1 if (i, j) ∈ P and
zero otherwise. Dw is a m×m diagonale matrix that has an entry for each (i, j) ∈ P
that indicates whether this pair is a support vector, i.e., 1 − (w>xi −w>xj) > 0
[190]. For the k-th item of P , representing the pair (i, j), the corresponding entry in
Dw is defined as

(Dw)k,k =




1 if w>xj > w>xi − 1,
0 else.

(5.2)

The risk score of experiencing an event for a new data point xnew can be estimated
by f̂(xnew) = ŵ>xnew with ŵ = argminR(w).

By using the squared hinge loss, the resulting objective function is differentiable and
convex in w, which enables the use of Newton’s method to minimize it with respect to
w. One update in Newton’s method with step size µ becomes

wnew = w − µ
(
∂2R(w)
∂w∂w>

)−1
∂R(w)
∂w

(5.3)

with partial derivatives

∂R(w)
∂w

= w + γX>
(
A>DwAXw −A>Dw1lm

)
(5.4)

∂2R(w)
∂w∂w>

= Ip + γX>A>DwAX. (5.5)
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To obtain the second-order derivative, I used the generalized Hessian, because R(w) is
not twice differentiable at w [170].

Note that the expression A>DwA appears in the objective function, its first- and
second-order derivative. Multiplying A> with the diagonale matrix Dw has the
effect that rows not corresponding to support vectors – pairs (i, j) ∈ P for which
1 − (w>xi −w>xj) < 0 – are dropped from the matrix A. Thus, A>DwA can be
simplified by expressing it in terms of a new matrix Aw ∈ {−1, 0, 1}mw,n:

A>DwA = A>wAw,

where mw denotes the number of support vectors, which is equivalent to the number
of pairs (i, j) ∈ P – rows of A – with w>xj > w>xi − 1.

Definition 5.2. Equation (5.1) can be re-formulated using Aw to eliminate Dw.

R(w) = 1
2w

>w + γ

2
(
1l>mDw −w>X>A>Dw

)
(1lm −AXw)

= 1
2w

>w + γ

2
(
mw − 2w>X>A>D1lm +w>X>A>DwAXw

)

= 1
2w

>w + γ

2
(
mw +w>X>

(
A>wAwXw − 2A>w1lmw

))
.

(5.6)

The corresponding first- and second-order partial derivatives have the form

∂R(w)
∂w

= w + γX>
(
A>wAwXw −A>w1lmw

)
, (5.7)

∂2R(w)
∂w∂w>

= Ip + γX>A>wAwX. (5.8)

Although the new formulation is slightly more compact, the main disadvantage from
survival support vector machine with hinge loss still applies: The matrix Aw has a
size of O(qen2), which means computing the Hessian requires O(mwp

2 + mwn + p)
operations, rendering training with only a few thousand samples intractable.

5.3 Truncated Newton Optimization

Medical research is often challenging due to high-dimensional data: a patient’s health
record comprises several hundred features, and microarray data consists of several
thousand measurements. In these applications, explicitly computing and storing the
Hessian matrix constitutes an additional obstacle that makes training prohibitive.
Computing and inverting the full Hessian matrix can be avoided when employing a
truncated Newton method (see algorithm 5.1) that uses a linear conjugate gradient
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Algorithm 5.1: Survival Support Vector Machine Training.
Input: Training data D = {(xi, yi, δi)}ni=1, hyper-parameter γ > 0.
Output: Coefficients w.

1 Randomly resolve ties in survival times yi ∀i ∈ {1, . . . , n}.
2 w0 ← 0p
3 t← 0
4 while not converged do
5 Use conjugate gradient to determine search direction u =

(
∂2R(w)
∂w∂w>

)−1 ∂R(w)
∂w with

w = wt

6 Choose step size µ by backtracking line search.
7 Update wt+1 ← wt + µu
8 t← t+ 1
9 end

10 w ← wt

method to compute the search direction [74, 170, 205]. This approach only requires
the computation of the Hessian-vector product Hv, which can be computed by

Hv = v + γX>A>wAwXv. (5.9)

Thus, the complexity of a single conjugate gradient iteration is O(np+mw + p), when
multiplying from the right, which is lower than O(mwp

2 +mwn+ p) to obtain the full
Hessian matrix.

5.3.1 Efficient Calculation of Search Direction

The complexity of a single conjugate gradient iteration to determine the search direction
still depends on the matrix Aw, which has to be recomputed each time w changes,
because the set of support vectors might have changed. Constructing Aw requires
iterating over all comparable pairs, being of order qen2. Therefore, the complexity of
learning a new model is still quadratic in the number of samples.

Next, I will derive an improved algorithm that avoids constructing Aw explicitly. The
solution arises by deriving the conditions under which an entry in Aw is non-zero,
which subsequently suggests a compact representation of an entry in A>wAw and leads
to an efficient optimization scheme that is independent of the size of P .

Proposition 5.1. For k ∈ {1, . . . ,mw} and q ∈ {1, . . . , n}, (Aw)k,q = 1 if all the
following conditions are satisfied:

(a) survival time of q-th sample is lower than survival time of some sample s ∈
{1, . . . , n} (s outlives q): yq < ys.
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(b) the q-th sample is uncensored: δq = 1.
(c) the pair (s, q) ∈ P is a support vector: w>xs < w>xq + 1.

Proposition 5.2. For k ∈ {1, . . . ,mw} and q ∈ {1, . . . , n}, (Aw)k,q = −1 if all the
following conditions are satisfied:

(a) survival time of q-th sample is higher than survival time of some sample s ∈
{1, . . . , n} (q outlives s): yq > ys.

(b) the s-th sample is uncensored: δs = 1.
(c) the pair (q, s) ∈ P is a support vector: w>xs > w>xq − 1.

Proof. Note that the only difference between both propositions is the order of samples
s and q with respect to their survival times. Thus, the first proposition can be
transformed into the second by swaping s and q, and vice versa. Conditions (a) and (b)
are directly derived from the definition of A. Each row of A and Aw contains exactly
one element that is 1, one element that is -1, and the rest is all zeros. For each pair of
samples (row of A), the sample with the shorter survival time is assigned 1, and the
other sample -1, which is reflected by condition (a). In addition, each pair must be
comparable, i.e., the sample with the shorter survival time must be uncensored, which
leads to condition (b). Finally, condition (c) is due to the multiplication ADw that
restricts rows of A to pairs of samples that are support vectors.

If proposition 5.1 or 5.2 holds, the result of the multiplication (Aw)k,i · (Aw)k,j is either
1 (if i = j) or -1 (if i 6= j), for k ∈ {1, . . . ,mw} and i, j ∈ {1, . . . , n}. In the latter
case, the conditions of propositions 5.1 and 5.2 are equivalent. Combining all cases,
the product (Aw)k,i · (Aw)k,j is defined as

1. (Aw)k,i · (Aw)k,j = 1 if i = j and
a) (Aw)k,i = (Aw)k,j = 1, and proposition 5.1 holds for q = i,
b) or (Aw)k,i = (Aw)k,j = −1, and proposition 5.2 holds for q = i,

2. (Aw)k,i · (Aw)k,j = −1 if i 6= j and
a) (Aw)k,i = 1, (Aw)k,j = −1, and proposition 5.1 holds for q = i, s = j ⇔

proposition 5.2 holds for q = j, s = i,
b) or (Aw)k,i = −1, (Aw)k,j = 1, and proposition 5.1 holds for q = j, s = i, ⇔

proposition 5.2 holds for q = i, s = j,

3. otherwise (Aw)k,i · (Aw)k,j = 0.

To compactly express the element
(
A>wAw

)
i,j
, I define sets SV+

i and SV−i that represent
propositions 5.1 and 5.2.

SV+
i = {s | ys > yi ∧w>xs < w>xi + 1 ∧ δi = 1} l+i = |SV+

i |
SV−i = {s | ys < yi ∧w>xs > w>xi − 1 ∧ δs = 1} l−i = |SV−i |
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This allows expressing an entry of A>wAw in the compact form

(A>wAw)i,j =
mw∑

k=1
(Aw)k,i(Aw)k,j

=





l+i + l−i if i = j,

−1 if i 6= j, and j ∈ SV+
i or j ∈ SV−i ,

0 else,

(5.10)

where the second case is due to only one addend being non-zero, because each pair of
samples is compared only once.

The term A>wAwXv is part of the objective function, its gradient, and the Hessian-
vector product. The i-th entry of the resulting vector can be computed based on the
formulation in eq. (5.10):

(A>wAwXv)i = (l+i + l−i )x>i v −
∑

s∈SV+
i

xsv −
∑

s∈SV−i

xsv

= (l+i + l−i )x>i v − σ+
i − σ−i ,

(5.11)

which leads to

X>A>wAwXv = X>




(l+1 + l−1 )x>1 v − (σ+
1 + σ−1 )

...
(l+n + l−n )x>nv − (σ+

n + σ−n )


 . (5.12)

Additionally, the objective function and its gradient contain the term A>w1lmw , where
one component is computed as

(A>w1lmw)i = |SV+
i ∪ SV−i |

= |{(s, t) | yt < yi < ys ∧ δt = 1 ∧ δi = 1 ∧
w>xs − 1 < w>xi < w>xt + 1}|

= l−i − l+i .

(5.13)

By substituting (5.12) and (5.13) together with mw = ∑n
i=1 l

+
i = ∑n

i=1 l
−
i into (5.6),

(5.7), and (5.9), all terms that depend on Aw during optimization can be eliminated.
Assuming l+i , l−i , σ+

i , and σ−i have been computed already, the complexity of evaluating
the objective function, gradient, and Hessian-vector product is now O(np+ p). Subse-
quently, I will discuss an efficient method to obtain these values using order statistics
trees.

5.3.2 Improving Optimization by Order Statistics Trees

The main difficulty in constructing the sets SV+
i and SV−i stems from the fact that

their elements depend on the order of observed time points yi as well as the order of
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Figure 5.3: Example illustrating how the set SV+
i can be constructed using an order statistics

tree. Yellow nodes indicate elements of SV+
i and red nodes indicate new elements

that have been added to the tree. Arrows below the table indicate the maximum
index that is considered when updating a tree, which occurs if i is 1, 2 and 6.

i 1 2 3 4 5 6 7 8 9

wT xi -0.7 -0.1 0.15 0.2 0.3 0.8 1.6 1.7 2.3
yi 1 9 6 5 8 2 7 3 4
δi 0 0 1 0 1 1 1 0 0

i = 1 i = 2 i = 6

SV+
1 = ∅

6

5

1

9

SV+
2 = ∅

6

5

2

1

8

9

SV+
3 = {2, 5}

6

5

2

1

8

9

SV+
4 = ∅

6

5

2

1

8

9

SV+
5 = {2}

6

5

2

1

8

9

SV+
6 = {2, 3, 4, 5, 7, 8}

6

5

2

1 3

8

7 9
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predictions w>xi. I refer to fig. 5.3, which illustrates an exemplary dataset of nine
patients and the corresponding values for w>xi, yi and δi, to provide some insight on
how both sets can be constructed.

Example 5.1. First, samples are sorted in ascending order according to w>xi, which
is already the case for the example in fig. 5.3. Starting from the left, the sets SV+

1
and SV+

2 are empty due to both subjects being censored, which violates condition (b)
of proposition 5.1. The first non-empty set occurs at i = 3 and has two elements:
SV+

3 = {s | ys > 6 ∧ w>xs < 1.15} = {2, 5}. The next set (i = 4) is again empty,
because of censoring, and SV+

5 = {s | ys > 8 ∧w>xs < 1.3} = {2}.

The example shows, that SV+
i is non-empty if and only if the i-th sample is uncensored,

and that SV+
i+1 can be constructed incrementally from the set SV+

i :

SV+
i+1 = {s|w>xs < w>xi+1 + 1 ∧ δi+1 = 1}

= {s|w>xs < w>xi + 1} ∪ {s|w>xi + 1 ≤ w>xs < w>xi+1 + 1 ∧ δi+1 = 1}.

Example 5.2. When constructing the set SV−i , the first element corresponds to the
subject with maximum w>xi, i.e., subject 9 in the example in fig. 5.3. Here, SV−9 = ∅,
because no element with w>xs > 1.3 satisfies conditions (a) and (b) of proposition 5.2.
For i = 8, SV−8 = {s | ys < 3 ∧w>xs > 0.7 ∧ δs = 1} = {6}. The sets SV−7 and SV−6
are again empty because conditions (a) and (b) of proposition 5.2 are violated, and
SV−5 = {s | ys < 8 ∧w>xs > −0.7 ∧ δs = 1} = {7, 6, 3}.

Again, the example shows that an incremental update rule can be constructed for
SV−i−1:

SV−i−1 ={s|w>xs > w>xi−1 − 1 ∧ δs = 1}
={s|w>xs > w>xi − 1 ∧ δs = 1}
∪ {s|w>xi − 1 ≥ w>xs > w>xi−1 − 1 ∧ δs = 1}.

To maintain the respective sets of relevant samples for computing SV+
i and SV−i , an

order statistics tree that sorts samples according to yi can be used. By storing values
of yi and w>xi in the tree, the quantities l+i , l−i , σ+

i , and σ−i , which are required to
compute the search direction, can be obtained in logarithmic time. Moreover, the
update rules outlined above allow incrementally constructing a single tree for each
set without the need of constructing one tree per subject from scratch. To obtain
SV+

i+1 from SV+
i , elements in the set {s | w>xi + 1 ≤ w>xs < w>xi+1 + 1} are

added to the tree, and similarly when constructing SV−i−1 from SV−i , elements from
{s | w>xi − 1 ≥ w>xs > w>xi−1 − 1 ∧ δs = 1} are added. Note that the incremental
update of SV−i+1 is not restricted by censoring, whereas for SV+

i−1 only ys and w>xs
corresponding to uncensored subjects are added. Hence, the order statistics tree to
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maintain SV−i is restricted to the survival times of uncensored samples, whereas the
tree to maintain SV+

i contains observed time points yi of all samples, disregarding
their censoring status.

Example 5.3. This idea is illustrated in fig. 5.3, which shows the steps to compute
SV+

i from an order statistics tree. Initially, the tree is empty and the update at i = 1
consists of adding all elements with w>xi < 0.3 (indicated by an arrow) to the tree.
Although constructing SV+

1 is trivial due to censoring, relevant elements are added
to the tree for future computations. At i = 2, SV+

2 is empty as well, but two new
elements with 0.3 ≤ w>xi < 1.3 are added to the tree (indicated by red nodes). Next,
the tree does not need to be updated, but the existing tree is used to obtain the set
{ys|ys > 6} in logarithmic time, which is possible due to the special structure of the
tree. The set SV+

4 is again trivial and constructing SV+
5 only requires searching for

{ys|ys > 8}. Finally, before SV+
6 can be computed, the tree has to be updated by

adding elements with 1.3 ≤ w>xi < 1.8. The procedure to construct SV−i is similar,
with the only difference that samples are processed in descending order of yi and only
values corresponding to uncensored samples are added.

Next, I will formally define order statistics trees and the algorithm to compute l+i , l−i ,
σ+
i , and σ−i .

Definition 5.3. An order statistics tree is a balanced binary search tree that stores
key-value pairs and has the following properties.

1. For an internal node x with left child left(x) and right child right(x):

key(left(x)) ≤ key(x) ≤ key(right(x)).

2. For n elements in the tree, the height of the tree is limited by O(log n).
3. Each node x in the tree stores two additional attributes “size” and “sum”.

a) size denotes the size of the subtree mounted at x:

size(x) =




0 if x = ∅,
size(left(x)) + size(right(x)) + 1 else.

b) sum denotes the sum of all values in the subtree mounted at x:

sum(x) =




0 if x = ∅,
sum(left(x)) + sum(right(x)) + value(x) else.

4. The correct value for above attributes is maintained after insertion.

Based on aforementioned definitions, algorithm 5.2 computes l+i , σ+
i , l−i and σ−i , where

the auxiliary function CountSmaller is defined in algorithm 5.3, and CountLarger
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Algorithm 5.2: Efficient computation of l+i , l−i , σ+
i , and σ−i .

Input: Training data D = {(xi, yi, δi)}ni=1, coefficient vectors w and v.
Output: l+i , l

−
i , σ

+
i , and σ

−
i ∀i ∈ {1, . . . , n}.

1 Sort all w>xi in ascending order, such that w>xπ(1) ≤ · · · ≤ w>xπ(n).
2 T ← an empty order statistics tree
3 j ← 1
4 for i← 1 to n do
5 while j ≤ n and w>xπ(j) < w

>xπ(i) + 1 do
6 Insert (yπ(j),x

>
π(j)v) into T

7 j ← j + 1
8 end
9 if δπ(i) = 1 then

10 (l+π(i), σ
+
π(i))← CountLarger(root of T , yπ(i))

11 else
12 (l+π(i), σ

+
π(i))← (0, 0)

13 end
14 end
15 j ← n
16 T ← an empty order statistic tree
17 for i← n to 1 do
18 while j ≥ 1 and w>xπ(j) > w

>xπ(i) − 1 do
19 if δπ(j) = 1 then Insert (yπ(j),x

>
π(j)v) into T

20 j ← j − 1
21 end
22 (l−π(i), σ

−
π(i))← CountSmaller(root of T , yπ(i))

23 end

works in a similar manner. The complexity of these functions corresponds to the
complexity of finding an element in a binary search tree, which is O(log n). Hence, the
overall complexity of algorithm 5.2 is O(n log n), and the Hessian-vector product in
(5.9) can be carried out in O(np+ p+ n log n), after sorting according to w>xi, which
costs O(n log n). Thus, one conjugate gradient iteration does not depend on the size of
the set of comparable pairs P anymore, which scales quadratically in the number of
samples. Finally, the overall complexity of training a ranking-based survival support
vector machine as outlined in algorithm 5.1 is

[O(n log n) +O(np+ p+ n log n)] · N̄CG ·NNewton, (5.14)

where N̄CG and NNewton are the average number of conjugate gradient iterations and
the total number of Newton updates, respectively.
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Algorithm 5.3: CountSmaller
1 Function CountSmaller(x, yi)

Input: node x in order statistics tree, survival time yi.
Output: l−i (number of uncensored samples with ys < yi), and σ−i =

∑
s∈SV−i

x>i v.

2 if x = ∅ then
3 l−i ← 0;σ−i ← 0
4 else if key(x) = yi then
5 l−i ← size(left(x))
6 σ−i ← sum(left(y))
7 else if key(x) < yi then
8 (l−i , σ

−
i )← CountSmaller(right(x), yi)

9 l−i ← l−i + size(x)− size(right(x))
10 σ−i ← σ−i + sum(x)− sum(right(x))
11 else // key(x) > yi
12 (l−i , σ

−
i )← CountSmaller(left(x), yi)

13 end
14 return l−i , σ

−
i

15 end

5.4 Survival Analysis as Regression Problem

Instead of treating survival analysis as a ranking problem, authors have proposed
regression-based approaches using an absolute loss as well [172, 264] (cf. section 3.3.2
on page 48). A regression model, in contrast to a ranking-based model, can predict
the exact time of an event. Training algorithms for such a model need to be aware
of censored patient records as well. For right censored observations – those who did
not experience an event – no information about the correctness of predicted survival
times beyond the time of censoring is available. A valid error can only be computed for
patients who experienced an event during the study period, or if the predicted survival
time is too early, i.e., before the time of censoring. Experiments in [297] revealed that
survival models based on ε-insensitive support vector regression worked equally well
if the insensitive zone is set to zero. Hence, the regression objective simplifies to an
ordinary least square problem with `2 penalty and the additional consideration of right
censoring.

RRegr.(w, b) = 1
2w

>w + γ

2

n∑

i=1
(ζw,b(yi,xi, δi))2 , (5.15)

ζw,b(yi,xi, δi) =




max(0, yi −w>xi − b) if δi = 0,
yi −w>xi − b if δi = 1,

(5.16)

where b ∈ R is the intercept.
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Let Rw,b be a diagonal matrix with the i-th element being 1 if yi > w>xi + b or δi = 1,
and zero otherwise. The objective function can be expressed in matrix form as

RRegr.(w, b) = 1
2w

>w + γ

2 (y −Xw − b1ln)>Rw,b (y −Xw − b1ln) . (5.17)

The function RRegr. is differentiable and convex in w and b, thus truncated Newton
optimization offers an efficient way to minimize it (cf. algorithm 5.1). Its derivatives
with respect to the coefficients w have the form

∂RRegr.(w, b)
∂w

= w + γX>Rw,b (Xw + b1ln − y) (5.18)

∂2RRegr.(w, b)
∂w∂w>

= Ip + γX>Rw,bX. (5.19)

The intercept b constitutes an additional parameter that has to be considered during
optimization. Derivatives involving b have are given by

∂RRegr.(w, b)
∂b

= γ1l>nRw,b(Xw + b1ln − y) (5.20)

∂2RRegr.(w, b)
∂b∂b

= γ1l>nRw,b1ln = γ|SV| (5.21)

∂2RRegr.(w, b)
∂b∂wk

= γ
∑

i∈SV
xik = γ

(
1l>nRw,bX

)
k

(5.22)

where SV = {i | yi > w>xi + b ∨ δi = 1}. The Hessian-vector product Hv can be
computed by combining eqs. (5.19), (5.21) and (5.22):

Hv =

 0 0>p

0p Ip


v + γ


 |SV| 1l>nRw,bX

X>Rw,b1ln X>Rw,bX


v. (5.23)

5.5 Hybrid Model

Due to the convexity of the ranking as well as the regression objective function it is
straightforward to create a hybrid model that combines both objectives; its objective
function is defined as

Rhybrid(w, b) = 1
2w

>w + γ

2


α

∑

i,j∈P
max(0, 1− (w>xi −w>xj))2

+ (1− α)
n∑

i=1
(ζw,b(yi,xi, δi))2

]
. (5.24)

The hyper-parameter α ∈ [0, 1] controls the relative weight of the regression and
ranking objective. If α = 1, it reduces to the ranking objective, and if α = 0, to the
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regression objective. The objective function Rhybrid can be minimized by combining
the gradient information from the ranking objective in eq. (5.7) and the regression
objective in eqs. (5.18) and (5.20). The resulting gradient of the hybrid model has the
following form:

∇Rhybrid(w, b) =

 0
w


+ γα


 0
X>

(
A>wAwXw −A>w1lmw

)



+ γ(1− α)

 1l>nRw,b(Xw + b1ln − y)
X>Rw,b (Xw + b1ln − y)




Similarly, the Hessian-vector product with respect to the hybrid model reveals itself by
combining eqs. (5.9) and (5.23):

Hv =

 0 0>p

0p Ip


v + γα


 0 0>p

0p X>A>wAwX


v

+ γ(1− α)

 |SV| 1l>nRw,bX

X>Rw,b1ln X>Rw,bX


v.

Since the ranking and regression part are nicely separated in the gradient and Hessian-
vector product, the same efficient optimization scheme as presented in section 5.3.2
can be used to compute the second addend concerning the ranking-based loss in the
gradient as well as the Hessian-vector product. As a result, training a hybrid model
has the same time complexity as training a purely ranking-based model.

5.6 Non-linear Extension

5.6.1 Ranking-based Model

Pölsterl et al. [236] proposed to obtain a non-linear survival model using the same
optimization scheme as above, but with training data transformed by Kernel PCA
[257]. This approach was originally applied to Rank SVM by Chapelle and Keerthi [54].
They observed that when projecting training samples into a high-dimensional feature
space H, it is not necessary to consider the full space H, but merely the subspace
F ⊂ H spanned by the n training samples, which has at most n dimensions. Kernel
PCA [257] constructs an orthonormal basis of F and subsequently allows projecting
samples into the space F . When using Kernel PCA with a non-linear kernel function
and applying the linear survival model to data projected into F , the decision boundary
will be non-linear in the original feature space.
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Here, I will pursue an alternative approach based on results in [53], which I briefly
mentioned in section 3.3.5 (page 56) already. Chapelle [53] showed that linear models
based on arbitrary convex loss functions can be extended to non-linear models without
performing minimization of the loss in the dual. The idea was picked up by Kuo et
al. [180], who proposed a non-linear Rank SVM model that directly optimizes the
non-linear objective function in the primal. It is natural to also apply this approach to
ranking-based survival support vector machines, which I will describe next.

The main idea to obtain a non-linear decision function is that the objective function is
reformulated with respect to finding a function f from a reproducing kernel Hilbert
space Hk with associated kernel function k:

min
f∈Hk

1
2‖f‖

2
Hk + γ

2
∑

(i,j)∈P
max(0, 1− (f(xi)− f(xj)))2 (5.25)

Using the representer theorem (see section 3.3.5 on page 53), the function f can be
expressed as f(z) = ∑n

i=1 βik(xi, z), which results in the following formulation of the
objective function:

1
2

n∑

i=1

n∑

j=1
βiβjk(xi,xj) + γ

2
∑

(i,j)∈P
max

(
0, 1−

(
n∑

l=1
βlk(xl,xi)−

n∑

l=1
βlk(xl,xj)

))2

=1
2

n∑

i=1

n∑

j=1
βiβjk(xi,xj) + γ

2
∑

(i,j)∈P
max

(
0, 1−

n∑

l=1
βl(k(xl,xi)− k(xl,xj))

)2

,

where the norm ‖f‖2
Hk can be computed by using the reproducing kernel property

f(z) = 〈f, k(z, ·)〉 and 〈k(z, ·), k(z′, ·)〉 = k(z, z′).

With respect to Rank SVM, Yu et al. [325] formulated the transition to the non-linear
case with the help of the representer theorem as well, but they performed optimization
in the dual and altered the objective function to force sparsity in the coefficients β. In
contrast, Kuo et al. [180] directly optimized the primal without altering the objective
function. I will follow the same approach.

First, I reformulate the objective function in matrix form through the n× n symmetric
positive definite kernel matrix K with entries Ki,j = k(xi,xj):

R(β) = 1
2β
>Kβ + γ

2 (1lm −AKβ)>Dβ (1lm −AKβ) , (5.26)

where I used Dβ
∧= Dw to emphasize that the set of support vectors now depends on

the coefficients β = (β1, . . . , βn)>, i.e., the k-th diagonal element is defined as

(Dβ)k,k =




1 if f(xj) > f(xi)− 1⇔Kjβ >Kiβ − 1,
0 else,
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where Ki denotes the i-th row of kernel matrix K.

The objective function (5.26) of non-linear ranking-based survival support vector
machine is similar to the linear model in eq. (5.1). In fact, R(β) is differentiable
and convex with respect to β as well, which allows employing truncated Newton
optimization. The first- and second-order derivative have the form

∂R(β)
∂β

= Kβ − γ(AK)>Dβ (1lm −AKβ)

= Kβ + γK>
(
A>DβAKβ −A>Dβ1lm

)

∂2R(β)
∂β∂β>

= K + γK>A>DβAK

As in the linear case, the product A>DβA can be expressed more compactly through
the matrix Aβ

∧= Aw and mβ
∧= mw, which yields

R(β) = 1
2β
>Kβ + γ

2
(
mβ + β>K

(
A>βAβKβ − 2A>β 1lmβ

))
(5.27)

∂R(β)
∂β

= Kβ + γK
(
A>βAβKβ −Aβ1lmβ

)
(5.28)

∂2R(β)
∂β∂β>

= K + γKA>βAβK, (5.29)

where the generalized Hessian is used in the second derivative, because R(β) is not
twice differentiable at β [170].

Notice that gradient and Hessian share properties that were already addressed in
section 5.3.2 by employing order statistic trees; most importantly, computing the search
direction requires constructing the matrix Aβ, which requires O(qen2) space. Thus,
the dependency on the matrix Aβ can be removed by using the result in eq. (5.12):

KA>βAβKv = K




(l+1 + l−1 )K1v − (σ+
1 + σ−1 )

...
(l+n + l−n )Knv − (σ+

n + σ−n )


 , (5.30)

where σ+
i = ∑

s∈SV+
i
Ksv, σ−i = ∑

s∈SV−i
Ksv.

5.6.2 Regression-based and Hybrid Model

The regression objective (5.15) can be extended to incorporate a non-linear model
following a similar scheme. As in (5.25), the objective function is now minimized with
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respect to a function f from a reproducing kernel Hilbert space Hk with associated
kernel function k:

min
f∈Hk,b∈R

1
2‖f‖

2
Hk + γ

2

n∑

i=1
[δi(yi − f(xi)− b) + (1− δi) max(0, yi − f(xi)− b)]2

The main difference to the ranking-based model is that the regression model contains
an additional, unpenalized intercept term, which is not part of the function f and has
to be considered separately. By applying the representer theorem (see section 3.3.5 on
page 53) the objective functions becomes

RRegr.(β, b) = 1
2β
>Kβ + γ

2 (y −Kβ − b1ln)>Rβ,b (y −Kβ − b1ln) . (5.31)

Partial derivatives of (5.31) with respect to the coefficients β are given by

∂RRegr.(β, b)
∂β

= Kβ + γKRβ,b(Kβ + b1ln − y) (5.32)

∂2RRegr.(β, b)
∂β∂β>

= K + γKRβ,bK, (5.33)

and derivatives involving the intercept b are given by

∂RRegr.(β, b)
∂b

= γ1l>nRβ,b(Kβ + b1ln − y) (5.34)

∂2RRegr.(β, b)
∂b∂b

= γ1l>nRβ,b1ln = |SV| (5.35)

∂2RRegr.(β, b)
∂b∂βk

= γ
∑

i∈SV
k(xi,xk) = γ

(
1l>nRβ,bK

)
k
. (5.36)

The objective function for a non-linear hybrid model is simply a combination of the
ranking loss in eq. (5.26) and the regression loss in eq. (5.31):

Rhybrid(β, b) = 1
2β
>Kβ + γ

2
[
α (1lm −AKβ)>Dβ (1lm −AKβ)

+ (1− α) (y −Kβ − b1ln)>Rβ,b (y −Kβ − b1ln)
]
. (5.37)

Minimization of Rhybrid(β, b) can be carried out via truncated Newton optimization by
combining the first- and second-order derivatives of non-linear ranking and non-linear
regression losses, similar to the linear hybrid model in section 5.5.

5.6.3 Complexity

The main difference to the optimization scheme of the linear model is the requirement
to store the n× n kernel matrix K. If K cannot be stored in memory, computing the
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productKiv requires n evaluations of the kernel function and n operations to compute
the product. If evaluating the kernel function costs O(p), the overall complexity is
O(n2p). Thus, computing the Hessian-vector product in the non-linear case consists of
three steps, which have the following complexities:

1. O(n3p) to compute Kiv for all i = 1, . . . , n,
2. O(n log n) to sort samples according to values of Kiv,
3. O(n2 + n+ n log n) to calculate the Hessian-vector product via (5.30).

This clearly shows that computing the sum over all comparable pairs is no longer the
most time consuming task in minimizing the non-linear objective function, as it was
when minimizing the linear objective. Instead, computing Kv requires much more
time and is the dominating factor in minimizing eq. (5.26).

If the number of samples in the training data is small, the kernel matrix can be
computed once and stored in memory thereafter, which results in a one-time cost of
O(n2p). It reduces the costs to compute Kv to O(n2) and the remaining costs remain
the same. Although pre-computing the kernel matrix is an improvement, computing
Kv in each conjugate gradient iteration remains the bottleneck. The overall complexity
of training a non-linear ranking-based survival support vector machine with truncated
Newton optimization and order statistics trees is

O(n2p) +
[
O(n log n) +O(n2 + n+ n log n)

]
· N̄CG ·NNewton. (5.38)

Note that direct optimization of the non-linear objective function is preferred over the
approach in [236], where Kernel PCA was used to transform the data before training,
because the complexity of Kernel PCA is O(n2p) to construct the kernel matrix and
O(n3) to perform singular value decomposition.

Finally, Kuo et al. [180] observed that minimizing eq. (5.26) for large sample size is
feasible by splitting the whole training data into a number of blocks such that the
overall minimization problem can be split into smaller subproblems. Therefore, instead
of maintaining one large kernel matrix, it is split into several blocks, which are small
enough to remain in memory, and each subproblem is addressed individually.

5.7 Comparison of Survival Support Vector Machines

5.7.1 Datasets

Synthetic Data

Synthetic survival data of varying size was generated following [21]. Each dataset
consisted of one uniformly distributed feature in the interval [18; 89], denoting age,
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one binary variable denoting sex, drawn from a binomial distribution with probability
0.5, and a categorical variable with three equally distributed levels. In addition, ten
numeric features were sampled from a multivariate normal distribution N10(µ, I10)
with mean µ = (0, 0, 0.3, 0.15, 0.8, 0.67, 0.2, 0, 0.12, 0.3)>. Survival times ti were drawn
from a Weibull distribution with k = 1 (constant hazard rate) and λ = 0.9 according
to the formula presented in [21]:

ti =
(
− log ui

λ exp(f(xi))

)1/k

,

where ui is uniformly distributed within [0; 1], f(·) denotes a linear or non-linear
model that relates the features to the survival time (see below), and xi is the fourteen-
dimensional feature vector of the i-th subject. The censoring time ci was drawn from a
uniform distribution in the interval [0; τ ], where τ was chosen such that about 20% of
survival times were censored.

This data generation scheme was used to generated 100 pairs of train and test data of
1,500 samples from either a linear or a non-linear model f(·). Survival times in the test
data were not subject to censoring to eliminate the effect of censoring on estimating
the performance.

The linear model was defined as

f(x) = 0.05xage + 0.8xsex + 0.03xC2 + 0.3xC3 − 0.1xN2 + 0.6xN3 + xN5

− 0.9xN6 + 0.09xN8 + 0.03xN9 + 0.3xN10, (5.39)

where C2 and C3 indicate the coefficients corresponding to dummy codes of a categorical
feature with three categories and N1 to N10 to continuous features sampled from a
multivariate normal distribution. Note that the first, fourth and seventh numeric
feature are associated with a zero coefficient, thus do not affect the survival time.
Multiple datasets were generated by multiplying the coefficients by a random scaling
factor uniformly drawn from [−1; 1].

The non-linear model consisted of the same coefficients, but combined features non-
linearly:

f(x) = 0.05xage + 0.8xsex + 0.03x2
N1 + 0.3x−2

N2 − 0.1xN7 + 0.6xN4/xN2
+ xN1/xN8 − 0.9 tanh(xN6)/xN5 + 0.09xC1/xsex + 0.03xC2/xsex + 0.3xC3/xsex. (5.40)

Real Data

In the second set of experiments the focus was on determining the performance of
methods on six real-world datasets of varying size, number of features, and amount of
censoring (see table 5.1). The Framingham Offspring and the coronary artery disease
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Table 5.1: Overview of datasets used in comparison of ranking-based survival support vector
machines.

Dataset n p Events Outcome

AIDS study [146] 1, 151 11 96 (8.3%) AIDS defining event
—– — 26 (2.3%) Death

Breast cancer [77] 198 80 51 (25.8%) Distant metastases
Coronary artery disease [217] 1, 106 56 149 (13.5%) Myocardial infarction

or death
Framingham Offspring [166] 4, 892 150 1,166 (23.8%) Coronary vessel disease
Veteran’s Lung Cancer [165] 137 6 128 (93.4%) Death
Worcester Heart Attack Study [146] 500 14 215 (43.0%) Death

data contained missing values, which were imputed first using multivariate imputation
using chained equations with random forest models for imputation of continuous as
well as categorical variables (see section 4.2.1 on page 94 and [79, 299]). To ease
computational resources for validation and since the missing values problem was not
the focus, one multiple imputed dataset was randomly picked and analyzed. Finally, I
normalized continuous variables to have zero mean and unit variance.

5.7.2 Computational Efficiency

The first set of experiments studies the question how the theoretical analysis of runtime
complexities translates to actual training times for datasets of different size. Three
minimization schemes of ranking-based linear support vector machines are included in
the experiments: 1) the simple formulation in eq. (5.1), 2) the alternative formulation
in eq. (5.6), and 3) the efficient proposed formulation in eq. (5.12).1

Figure 5.4 shows the lowest training time of ten repetitions in wall time using truncated
Newton optimization to minimize the objective function (5.1). The simple and improved
optimization scheme failed with more than 20,000 samples because of excessive memory
requirements due to explicitly constructing the sparse matrix A and Aw, respectively.
For all datasets, optimization converged after less than 20 iterations. Although A has
to be constructed only once for the simple optimization scheme, training time quickly
degenerates because it repeatedly has to be multiplied by Xw, which takes O(mn)
time. The improved optimization updates Aw after each iteration of Newton’s method,
but only needs to perform O(mwn) operations when multiplied by Xw, which results

1All experiments were carried out on a machine with Intel R© CoreTM i7-4600U CPU, 12GB of RAM
and the following Python packages: Python 3.4.3, numpy 1.10.1, scipy 0.16.0, numexpr 2.4.4,
cython 0.23.4, cvxopt 1.1.7, and scikit-learn 0.16.1, where numpy, scipy, numexpr and scikit-learn
were compiled with support for the Intel R© Math Kernel Library 11.1.
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Figure 5.4: Training time in seconds of truncated Newton optimization to minimize different
formulations of the objective function of linear support vector machines with
ranking constraints. Simple refers to the objective function in (5.1) and Improved
to the one in (5.6). Proposed refers to the efficient formulation in (5.12) with
red-black trees or AVL trees.

in a lower training time. Using order statistics trees, the training time and memory
requirements can be lowered significantly; for very large datasets, red-black trees were
superior to AVL trees.

5.7.3 Prediction Performance

Experiments presented in this section focus on evaluating the predictive performance of
ranking-based survival support vector machines on 100 synthetically generated datasets
as well as six real-world data sets. The three survival support vector machine models
proposed here (ranking, regression, and hybrid) were compared against

1. Cox’s proportional hazards model [67] with `2 (ridge) penalty (see section 3.2 on
page 35),

2. ranking-based survival SVM with hinge loss [90, 294] (see section 3.3.1 on page 46),
3. ranking-based survival SVM with minimum Lipschitz constant [296] (see sec-

tion 3.3.1 on page 46).

The regularization parameter γ for survival SVM controls the weight of the (squared)
hinge loss, whereas for Cox’s proportional hazards model, λ = γ−1 controls the weight
of the `2 penalty. Optimal hyper-parameters were determined via grid search by
evaluating each configuration using ten random 80%/20% splits of the training data.
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The parameters that on average performed best across these ten partitions – according
to Harrell’s concordance index [127, 128] – were ultimately selected and the model was
re-trained on the full training data using optimal parameters. In the grid search, γ
and λ were chosen from the set {2−12, 2−10, . . . , 212}. Similar for α, which ranged from
0.05 to 0.95 in steps of 0.05. The maximum number of iterations of Newton’s method
was two hundred.

Synthetic Data

The first set of experiments on synthetic data served as a reference on how survival
support vector machines compare to each other in a controlled setup. Figure 5.5
summarizes the results on 100 synthetically generated datasets, where all survival times
in the test data were uncensored, which leads to unbiased and consistent estimates
of the concordance index (see section 3.7 on page 83). In the simple setting, where
survival times were generated from a linear model, all the models performed equally
well, except for a survival support vector machine with radial basis function (RBF)
kernel. Using an RBF kernel to model non-linear relationships was advantageous when
data generation was indeed based on a non-linear model, which is evident from the
right part of fig. 5.5. The experiments on non-linear synthetic data also revealed that
results of a survival support vector machine with RBF kernel were associated with
a high degree of instability. On some datasets, using an RBF kernel resulted in a
performance increase of up to 0.117 points in concordance index compared to the
linear model, whereas on other datasets no increase could be observed. Nevertheless,
a survival support vector machine with RBF kernel never performed worse than its
linear counterpart: On average, models with RBF kernel achieved a 0.074 points higher
concordance index. I also want to mention that the hyper-parameter of the RBF kernel
was fixed to its default value (σ2 = 0.5) and not optimized during grid search, therefore
additional improvements could be possible for the non-linear survival support vector
machine.

Regression. In addition to evaluating survival support vector machines with respect
to concordance of predictions and ground truth, I evaluated the regression-based (α = 0)
and hybrid model (α ∈ {0.1, 0.2, . . . , 0.9}) in sections 5.4 and 5.5 with respect to the
root mean squared error (RMSE) on the test set. An `2-penalized accelerated failure
time model using inverse probability of censoring weights was used as baseline (see
section 3.1.2 on page 34). Figure 5.6 summarizes the results. I observed that median
RMSE was relatively high for all three models; it ranged between 273 days for the
regression-based objective to 355 days for the accelerated failure time model. Results
also show that RMSE was associated with an unusually larger variance. This can be
explained by the fact that survival times in the test data were not censored, which
resulted in a small portion of outliers with survival times more than ten standard
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Figure 5.5: Performance of ranking-based survival support vector machines and Cox’s
proportional hazards model on 100 synthetically generated datasets.

deviations from the mean. Naturally, errors with respect to these outliers dominate
the RMSE. The concordance index is not affected by outliers, because it only considers
the order according to survival time.

Real Data

In this section, I will discuss results on six real-world datasets using 5-fold cross-
validation (including grid search for each fold). In these experiments, test data
contained censored samples, which is why performance was measured by Harrell’s
and Uno’s concordance index [127, 292] as well as the integrated area under the time-
dependent, cumulative-dynamic ROC curve [153, 293], refer to section 3.7 (page 83)
for details. The area under the time-dependent ROC curve was evaluated at time
points corresponding to the 10%, 20%, . . . , 80% percentile of the observed time points
in the complete dataset. For Uno’s concordance index the truncation time was the
80% percentile of the observed time points in the complete dataset.

Results from all experiments are shown in table 5.2. In general, performance measures
correlated well and I did not observe any instance were considering a different per-
formance measure would have led to a drastically different result. For the most part,
the results on real-world data reflect the outcome of experiments on synthetic data
described above. All linear survival support vector machines performed comparably in
all but two experiments.

On the breast cancer dataset, models based on minimizing the Lipschitz constant
(Minlip) performed worse than models that minimize the (squared) hinge loss. In
addition to the difference in loss function, the Minlip model does not consider all
pairwise relationships between subjects to learn a ranking-based survival model – it
only considers the nearest uncensored sample with smaller survival time. The breast
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Figure 5.6: Performance of regression-based and hybrid survival support vector machines and
accelerated failure time (AFT) model on 100 synthetically generated datasets.
Far outliers are now shown.

cancer dataset is characterized by a relatively small sample size (198 patients) and
a high amount of censoring (74.2%). Therefore, training a Minlip model is based
on a set of constraints that is much smaller than what is available to models using
the (squared) hinge loss, which ultimately leads to a model that generalizes badly.
This result indicates that the proposed efficient optimization scheme can leverage all
comparable pairs in the data and lead to a superior predictive survival model.

Interestingly, the relation is reversed when considering results on the coronary artery
disease data, where Minlip outperformed the other models. Although the amount of
censoring was even higher (86.5%), it contained a larger number of patients such that
the total number of comparable pairs in the Minlip model was probably sufficient.
Moreover, using an RBF kernel or hybrid model performed better than a linear ranking-
based model, but did not reach the level of performance observed for the Minlip model.
A possible explanation could be that the data is particularly noisy and reducing the
number of constraints in the optimization problem leads to better generalization.

When considering the comparison of linear survival support vector machine models to
Cox’s proportional hazards model, experiments on three datasets stand out. Linear
survival support vector machines outperformed Cox models on the breast cancer dataset,
whereas Cox models outperformed all other models on the coronary artery disease data.
Results from the AIDS study with death as outcome revealed a weaker advantage of
Cox’s proportional hazards model: despite the increase in performance in Harrell’s and
Uno’s c index, the difference in the integrated area under the ROC curve was only
minor.

With respect to the hybrid model, the results indicate it performed similar to a purely
ranking-based model, except for the breast cancer and coronary artery disease data,
where the hybrid model performed worse and better, respectively. I could not reproduce
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Table 5.2: Results on six real-world datasets, reported as the average performance across all
folds of 5-fold cross-validation. iAUC: integrated area under the time-dependent,
cumulative-dynamic ROC curve.

SSVM SSVM SSVM Minlip SSVM Cox
(RBF) (hybrid) (linear) (linear) (hinge) (linear)

AIDS study (death)
Harrell’s c 0.746 0.773 0.775 0.775 0.773 0.784
Uno’s c 0.736 0.766 0.763 0.759 0.762 0.777
iAUC 0.771 0.774 0.802 0.787 0.801 0.805

AIDS study (AIDS)
Harrell’s c 0.759 0.769 0.767 0.771 0.770 0.770
Uno’s c 0.752 0.759 0.759 0.763 0.764 0.764
iAUC 0.759 0.796 0.766 0.774 0.771 0.771

Breast cancer
Harrell’s c 0.652 0.632 0.663 0.633 0.661 0.654
Uno’s c 0.632 0.621 0.650 0.619 0.650 0.644
iAUC 0.690 0.639 0.682 0.641 0.674 0.662

Coronary artery disease
Harrell’s c 0.739 0.733 0.706 0.756 0.714 0.768
Uno’s c 0.745 0.735 0.708 0.755 0.718 0.760
iAUC 0.753 0.743 0.716 0.769 0.725 0.777

Framingham Offspring
Harrell’s c 0.778 0.782 0.780 0.780 0.780 0.785
Uno’s c 0.732 0.706 0.699 0.730 0.699 0.742
iAUC 0.827 0.831 0.829 0.829 0.829 0.832

Veteran’s
Harrell’s c 0.676 0.714 0.716 0.707 0.713 0.716
Uno’s c 0.668 0.710 0.711 0.700 0.709 0.713
iAUC 0.740 0.781 0.783 0.777 0.783 0.780

WHAS
Harrell’s c 0.768 0.767 0.770 0.766 0.772 0.770
Uno’s c 0.773 0.771 0.775 0.771 0.776 0.773
iAUC 0.799 0.792 0.796 0.794 0.798 0.796

the results in [297], where hybrid models outperformed ranking-based models. The
main difference to the hybrid model here and in [297] is that Van Belle et al. combined
the regular hinge loss of the Minlip model in eq. (3.51) (page 47) for ranking with
the absolute loss for regression, which are both less sensitive to outliers than squared
hinge loss and squared error. This problem could be alleviated by introducing sample
weights to reduce the influence of outliers in the objective function.

For the remaining experiments, all performance measures agreed that linear survival
models performed comparably.
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5.7.4 Conclusion

I proposed an efficient method for training ranking-based and regression-based survival
support vector machines. My algorithm accounts for right censoring of patient records
and avoids explicitly constructing a matrix of pairwise constraints – quadratic in the
number of samples – by using order statistic trees. I experimentally showed that the
reduced time and space complexity allow efficient training of survival support vector
machines based on millions of patients, which would otherwise not been possible on
commodity hardware. In addition to its high efficiency, the algorithm can be easily
adapted for training non-linear as well as hybrid ranking and regression survival support
vector machines. This opens up the opportunity to build survival models from large
sets of medical records to study the impact of particular factors on a disease or to
predict patients’ survival.

An implementation of the training algorithm for the survival support vector machine pre-
sented in this chapter is available at http://dx.doi.org/10.5281/zenodo.27733.
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6 Survival Analysis For
High-Dimensional, Heterogeneous
Medical Data

Medical data, such as electronic health records, often consist of a large set of heteroge-
neous variables, collected from different sources, such as demographics, disease history,
medication, allergies, biomarkers, medical images, or genetic markers; each of which of-
fers a different partial view on a patient’s state. Moreover, statistical properties among
aforementioned sources are inherently different: information about a patient’s disease
history is often obtained in form of a questionnaire, whereas biomarker measurements
denote the concentration of metabolites in the blood; the first is categorical, whereas the
second is continuous valued. When analyzing such data, researchers and practitioners
are confronted with two problems: 1) the curse of dimensionality – the number of
samples required to adequately sample the feature space is increasing exponentially in
the number of dimensions – and 2) the heterogeneity in features’ sources and statistical
properties.

In this chapter, I will focus on two general groups of algorithms for dimensionality
reduction, namely feature selection and feature extraction, and investigate how well
these algorithms perform in a wide range of scenarios. In the experiments, I will
evaluate 10 combinations of feature extraction methods and 8 survival models with and
without intrinsic feature selection in the context of survival analysis on three clinical
datasets, which provides empirical evidence when algorithms are expected to perform
well or poorly.

6.1 Dimensionality Reduction Methods

Feature selection methods assign each feature a value of importance, which is used
to filter the set of features, whereas feature extraction methods constructs a new set
of features by (non-)linearly combining existing features. Next, I will briefly review
methods from both groups of algorithms with a focus on medical applications and
survival analysis; for a more general overview, see e.g. [120, 248, 302].
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6.1.1 Feature Selection

Wrapper Methods

Feature selection methods can be broadly divided into three categories: filter methods,
wrapper methods and embedded methods [120, 248]. Early feature selection approaches
belong to the group of wrapper methods. In univariate feature selection, a subset of
features is chosen by individually assessing the importance of each feature, for instance,
via the p-value of the Wald statistic of Cox’s proportional hazards model [67]. By
fitting individual univariate models and computing the corresponding p-values, each
feature in a dataset can be assigned an importance value. Ultimately, features with
a p-value below a certain threshold get selected. The obvious disadvantage of this
approach is that features are considered independently from each other, which could
lead to selecting redundant features. Moreover, by repeatedly applying the Wald-test
to determine the importance of features gives rise to the multiple testing problem
[76].

Stepwise forward feature selection is a multivariate feature selection method that starts
with a single-feature model, which is incrementally extended by one additional feature
[175]. Commonly, the feature that improves the model fit the most is selected, based
on either the p-value of the Wald-test, as in the univariate case, Akaike’s information
criterion [6], the Bayesian information criterion [259], or the ratio between the likelihood
of the current and the extended Cox model [146]. This process is repeated until adding
a feature does not improve the model anymore. Similarly, backward selection starts
with a model containing all features and at each step removes the least important
feature [175]. For both approaches, the number of comparisons is even higher than in
the univariate case, and therefore the impact of multiple testing increases [76].

Due to the high number of comparisons required, univariate, forward, and backward
selection, are unsuitable when confronted with many variables, especially when the
number of features exceeds the number of samples. Therefore, I will focus on embedded
feature selection instead.

Embedded Methods

Shrinkage methods for Cox’s proportional hazards model augment its partial likelihood
function by penalizing coefficients that deviate from zero (see section 3.2.5 on page 43).
Using the `2 norm of the coefficients as penalty leads to ridge regression [306], the `1
norm yields the Least Absolute Shrinkage and Selection Operator (LASSO) [288], and
the weighted sum of the `1 and `2 norm results in the elastic net penalty [332]. The
adaptive LASSO is based on the `1 norm, but penalizes large coefficients less than
small coefficients to reduce the bias of the LASSO [328]. Fan and Li showed that the
Smoothly Clipped Absolute Deviation (SCAD) penalty satisfies “the mathematical
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conditions for unbiasedness, sparsity, and continuity” [91, p. 1350] and is preferred over
the LASSO. Penalized Cox models select features in the training data by shrinking
a subset of coefficients towards zero and thus features with non-zero coefficients are
selected.

As mentioned in sections 3.4 and 3.6 (pages 60 and 79), ensemble methods can be
used for feature selection as well. A random survival forest [159] accounts for high-
dimensional data by considering a random subset of features to determine the best
split, thus dramatically reducing the computational costs. Alternatively, gradient
boosting constructs an additive model of many weak estimators by functional gradient
descent [104]. Models based on gradient boosting differ in the overall loss function
that is optimized and the choice of base learners. If base learners are suitable for
high-dimensional data, the overall ensemble is well adapted to these situations as
well. Here, I will focus on the negative log partial likelihood of Cox’s proportional
hazards model as loss function [239], and randomized regression trees [37, 39] and
componentwise least squares [45] as base learners.

6.1.2 Feature Extraction

Singleview Spectral Embedding

Feature selection methods have been well established in survival analysis, but little
work investigated the vast amount of feature extraction methods for dimensionality
reduction. Many feature extraction methods were originally proposed for computer
vision problems, where data often has more than 100,000 features as well as samples.
Note that techniques in manifold learning are considered feature extraction methods
too.

Most feature extraction methods are based on spectral decomposition and therefore all
require the construction of a matrix that encodes global and/or local relations between
data points. Principal component analysis (PCA) [147] considers the relationship
between samples on a global scale. First, PCA computes an eigenvalue decomposition of
the covariance matrix estimated from the training data. The resulting eigenvectors form
the basis of a new space, whose dimensionality can be limited by only selecting d < p
eigenvectors corresponding to the d largest eigenvalues. The resulting transformation
is linear, but can be extended to the non-linear case via the kernel trick, which yields
Kernel PCA [257].

When the neighborhood of a sample is only defined locally, a n×n neighborhood graph
has to be constructed that encodes the neighborhood of each sample. A common choice
to measure locality is a k nearest neighbor search based on the Euclidean distance
between samples. Using the neighborhood graph, the goal is to find a projection of the
data to a low-dimensional space that preserves local neighborhoods as defined in the
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high-dimensional space (the process is also referred to as low-dimensional embedding).
Laplacian Eigenmaps (LE; [20]) results in a non-linear transformation of the data,
whereas Locality Preserving Projections (LPP; [133]) in a linear transformation. In
both cases, a low-dimensional representation can be obtained by limiting the number
of eigenvectors after spectral decomposition of the (normalized) graph Laplacian
associated with the neighborhood graph.

Feature extraction methods mentioned above assume that feature vectors originate from
a common vector space and are called singleview spectral embedding methods. Thus,
singleview algorithms are not aware of distinct sources of information and statistical
properties they imply – which vary heavily in the case of medical records.

Multiview Spectral Embedding

Dimensionality reduction in the presence of multiple independent groups of features
with distinct statistical properties (called views) has been addressed by multiview
spectral embedding (MVSE) methods. The earliest work on multiview dimensionality
reduction was presented by Long et al. [198], where a separate spectral embedding for
each view was constructed, followed by finding a global low-dimensional representation
that approximates view-specific embeddings. The approach in [150] differs in using
a semi-supervised dimensionality reduction method for each view, and in linearly
transforming view-specific embeddings into the common representation. Multiview
spectral embedding [322] avoids an initial view-specific embedding and applies an
objective function that finds a non-linear, “low-dimensional and sufficiently smooth
embedding over all views simultaneously” [322, p. 1438] as well as the amount of
complementarity among views. They first constructed a low-dimensional representation
using Laplacian Eigenmaps [20] for each view independently, followed by a global
coordinate alignment to ensure that low-dimensional embeddings in different views
are consistent with each other in the global context. A linearization of the objective
function used in MVSE was proposed in [194]. A further extension of MVSE takes
into account a sample’s class label when constructing the neighborhood graph [196].
Thus, only samples of the same class are connected with each other. Grassmannian
regularized structured multiview embedding augments the MVSE objective with three
additional terms [309]. The first term measures the distance between graph Laplacians
to discover disagreement between views, the second term is used to alleviate the trivial
solution of the embedding depending on a single view, and the last term is a structured
sparsity penalty to achieve better separation between samples of different classes in
the low-dimensional embedding.

Yu et al. [326] constructed the neighborhood graph in a supervised manner and used
a linear transformation of the high-dimensional data resembling [194]. Gui et al.
[119] augmented the linear MVSE objective of Yu et al. [326] with two additional
terms. The first term accounts for correlations between any two views, and the second
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term performs feature selection, such that the embedding depends on a subset of
features only. In [124], view-specific low-dimensional representations were constructed,
followed by approximating the concatenation of all low-dimensional embeddings by
matrix factorization and imposing structured sparsity. An adaption of locally linear
embedding (LLE) [244] for multiple views was presented in [263]. In contrast to MVSE,
the authors used LLE to construct view-specific low-dimensional embeddings. Authors
in [145] utilized a hypergraph instead of pairwise distances to model relationships
between samples. They constructed a multiview hypergraph Laplacian matrix, which
was decomposed to obtain the low-dimensional representation. Different from the
previous approaches, which were based on spectral decomposition, Xie et al. [323]
extended t-distributed stochastic neighbor embedding to the multiview domain.

6.1.3 Methods for Medical Applications

Most feature extraction methods described in the previous section were developed for
image processing tasks and evaluated with respect to the classification accuracy after
dimensionality reduction. Next, I will present related work with respect to the medical
domain.

Dimensionality reduction for gene expression data without including additional patient
data from other sources and focusing on classification problems was investigated in [18,
225]. Partial Cox regression [191] is an extension of partial least squares to censored
survival data; it has been proposed to analyze gene expression data. A modification
that is less sensitive to outliers was proposed by Nguyen and Javier [220]. Supervised
principal component analysis only uses features that are correlated with survival time
when computing principal components [17]. In “pre-conditioning” [228], supervised
principal component analysis is first used to obtain a denoised outcome variable, which
subsequently replaces the actual outcome when fitting a survival model with embedded
feature selection. Perry et al. [231] analyzed text data from medical records of pediatric
patients. They proposed supervised Laplacian Eigenmaps, which combines Laplacian
Eigenmaps with a supervised loss function. Random indexing for dimensionality
reduction of electronic health records to predict adverse drug reactions was proposed
in [168].

Finally, several authors implemented comparative studies of feature selection and
feature extraction methods for survival analysis in the past. A comparison of penalized
Cox models with focus on low-dimensional data was presented in [7, 237], where the
latter studied gradient boosting methods as well. Regarding applications of survival
analysis for microarray data, Benner et al. [26] and Ma et al. [204] compared penalized
Cox models, Schumacher et al. [258] analyzed univariate feature selection, partial Cox
regression, and the LASSO, and van Wieringen et al. [304] studied the performance
of penalized Cox models, partial Cox regression, ensemble methods, and supervised
principal component analysis. De Bin et al. [72] investigated univariate feature selection,
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forward stepwise selection, the LASSO, and boosting when combining low-dimensional
clinical data with high-dimensional omics data.

In contrast to [18, 168, 225, 231], the focus in my work is on survival analysis rather than
classification. Moreover, I will not consider the problem of survival analysis applied to
data with more features than samples (p� n), which has been extensively studied in
the context of microarray data already [26, 220, 258, 304]. The work presented by De
Bin et al. [72] is the closest to mine, because they explicitly consider heterogeneous data
consisting of low-dimensional clinical predictors and high-dimensional gene expression
data. However, they did not include feature extraction methods in their experiments.
The primary goal of this work is to study feature extraction methods in the presence
of heterogeneous data, i.e., if information is collected from several sources resulting
in distinct groups of features and feature vectors that are a mix of real-valued and
categorical predictors.

6.2 Multiview Spectral Embedding For Survival
Analysis

When it comes to survival data, single- and multiview spectral embedding cannot be
applied as is. First, constructing a neighborhood graph based on the Euclidean distance
between samples is unsuitable for medical records, because feature vectors are a mix of
real-valued and discrete variables, which is not considered by the Euclidean distance.
Second, features constructed by non-linear embedding techniques are of limited use,
because of their lack of interpretability.

When projecting data into a low-dimensional space, the exact relationship to the original
features is unknown. Thus, given a model’s coefficients derived from a low-dimensional
representation of the data, it is impossible to infer the effect of the original features
on survival time. Moreover, when predicting survival of a new patient, it is unknown
where the associated feature vector lies with respect to an existing low-dimensional
manifold, obtained from the training data. Thus, although non-linear feature extraction
techniques may improve predictive performance, their result may be of limited use
when the objective is to identify factors or biological pathways that are most decisive
for diagnosis. In contrast, when using linear instead of non-linear feature extraction
methods, the transformation model simplifies and the connection to the original features
can be defined exactly.

Multiview spectral embedding methods, linear and non-linear, may constitute a valuable
alternative to singleview methods, because they provide a measure of relevance for each
group of features (view). Here, a view corresponds to a feature’s broader context, such
as disease history, allergies, and so forth. In addition, multiview spectral embedding
could be advantageous, because it distinguishes between features originating from
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different views with different properties, as demonstrated by several applications in
computer vision outlined in section 6.1.2.

Therefore, my focus in this chapter will be on multiview spectral embedding and
how it can be applied to heterogeneous medical records for survival analysis. I will
demonstrate that random survival forests provide a meaningful measure of locality
when feature vectors are a mix of continuous and categorical features. Moreover, I
will formulate two constraints on the neighborhood graph that incorporate censoring
and survival times of patients, respectively. To mitigate the out-of-sample problem of
non-linear multiview spectral embedding methods, I propose an interpolation approach
that incorporates view importance.

6.2.1 Singleview Spectral Embedding

The objective of singleview spectral embedding, such as Laplacian Eigenmaps [20],
is to find a low-dimensional non-linear embedding Q = [q1, . . . , qn]> ∈ Rn×d of data
X = [x1, . . . ,xn]> ∈ Rn×p (d < p), given local neighborhood relations of data points as
encoded by the pairwise affinities W i,j between any two samples i and j. The affinity
matrix W ∈ Rn×n represents the neighborhood graph such that W i,j 6= 0 if and only
if the i-th sample is among the k nearest neighbors of j, or j is one of the k nearest
neighbors of i. Thus, the objective function of singleview spectral embedding is defined
as

argmin
Q

n∑

i=1

n∑

j=1
‖qi − qj‖2W i,j = argmin

Q
tr
(
Q>LQ

)
, (6.1)

where L denotes the normalized graph Laplacian, which is derived from the affinity
matrix W :

L = In −D−
1
2WD−

1
2 , (6.2)

where D is a diagonal matrix with elements Di,i = ∑n
j=1W i,j, i.e., the degree of the

i-th node. Note that this formulation is usually only valid if there are no isolated
vertices in the neighborhood graphW , otherwise one obtains separate low-dimensional
embeddings for the disjoint parts of the graph.

6.2.2 Multiview Spectral Embedding

In the presence of m independent views, it is assumed that the matrix X ∈ Rn×p

arises from the concatenation of m independent views X(k) ∈ Rn×pk , with 1 ≤ pk < p
∀k ∈ {1, . . . ,m} such that p = ∑m

k=1 pk. Thus, the objective function of multiview
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spectral embedding (MVSE) is a linear combination of the objective in (6.1) with
non-negative weights α = (α1, . . . , αm)>:

argmin
α,Q(1),...,Q(m)

m∑

k=1
αk

n∑

i=1

n∑

j=1
‖q(k)

i − q(k)
j ‖2W

(k)
i,j

= argmin
α,Q(1),...,Q(m)

m∑

k=1
αktr

((
Q(k)

)>
L(k)Q(k)

)
,

(6.3)

whereW (k), Q(k), and L(k) denote the affinity matrix, low-dimensional embedding and
normalized graph Laplacian of the k-th view, respectively.

Next, I assume that views complement each other and that features of one view are
sufficient to extract a smooth manifold. Instead of finding a low-dimensional embedding
for each view separately, the new objective leverages the complementary nature of views
by seeking a global embedding that is consistent with all views. Therefore, finding
a low-dimensional embedding Q from all m views simultaneously corresponds to the
following optimization problem:

argmin
Q,α

m∑

k=1
αktr

(
Q>L(k)Q

)
. (6.4)

However, the minimum would simply correspond to the view k∗ with the minimum
tr
(
Q>L(k∗)Q

)
and all weights set to zero except αk∗ = 1; essentially ignoring those

views that offer complementary information. This problem can be alleviated by
replacing α with αr in (6.4), which encourages αk values to be close to each other,
because ∑m

k=1 α
r
k is minimized by αk = m−1 ∀k ∈ {1, . . . ,m} [308]. The hyper-

parameter r > 1 controls whether weights are distributed equally: a large value results
in weights αk being close to each other, whereas a value close to 1 leads to a single
view being selected and the rest being ignored.

The final objective function of MVSE [322] is defined as:

argmin
Q,α

m∑

k=1
αrktr

(
Q>L(k)Q

)

subject to Q>Q = Id,
m∑

k=1
αk = 1, αk ≥ 0.

(6.5)

The orthogonality constraint on Q is required to uniquely determine the solution.

For solving (6.5), I employed the optimization scheme proposed in [322] that alternates
between finding the best low-dimensional embedding Q, while keeping α fixed, and
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Algorithm 6.1: Multiview spectral embedding algorithm for survival analysis.
Input: Training data D(k) = {(x(k)

i , yi, δi)}ni=1 for each of the m views, number of nearest
neighbors, dimension d of the low-dimensional embedding, and complementary
factor r > 1.

Output: View-specific weights α, low-dimensional embedding Q ∈ Rn×d.
1 foreach k ∈ {1, . . . ,m} do
2 Train a random survival forest using data D(k) from the k-th view.
3 Retrieve (un)constrained sparse affinity matrix W (k) from the trained forest according

to (6.9), (6.10), or (6.11).
4 Compute normalized Laplacian L(k) as in (6.2).
5 end
6 Initialize αk = m−1 ∀k ∈ {1, . . . ,m}.
7 repeat
8 Construct average normalized Laplacian matrix L̄ =

∑m
k=1 α

r
kL

(k).
9 Update low-dimensional embedding Q using (6.6).

10 foreach k ∈ {1, . . . ,m} do
11 Update view-specific weight αk according to (6.7).
12 end
13 Normalize α by setting αk = αk/

∑m
j=1 αj , ∀k ∈ {1, . . . ,m}.

14 until convergence
15 Train survival model with low-dimensional embedding Q, event indicators δ and observed

times y.

finding the best α, while keeping Q fixed:

Q∗ = argmin
Q

tr
(
Q>L̄Q

)
subject to Q>Q = Id, (6.6)

α∗k =
1/
(
tr
(
Q>L(k)Q

)) 1
r−1

∑m
j=1 1/ (tr(Q>L(j)Q))

1
r−1

, (6.7)

where L̄ = ∑m
k=1 α

r
kL

(k) in (6.6) is the weighted average of view-specific normalized
Laplacian matrices. The solution to (6.6) is given by the d eigenvectors corresponding
to the d smallest eigenvalues of L̄ [322]. Equations (6.6) and (6.7) are computed
repeatably until convergence. The result is the d-dimensional embedding Q and
the view-specific weights α after the last iteration. Finally, the low-dimensional
representation Q substitutes the original feature vectors X when training a survival
model. Algorithm 6.1 summarizes all steps of multiview spectral embedding for survival
analysis – steps regarding the construction of the neighborhood graph are discussed in
detail below.
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6.2.3 Construction of Neighborhood Graph

In contrast to applications in image processing, biomedical applications are characterized
by a highly heterogeneous set of features with varying properties, and the analysis of time
until an adverse event occurs (survival analysis), rather than the mere occurrence of an
event. Both aspects have to be considered when characterizing local neighborhoods.

The first step in solving the objective function (6.5), is to construct a sparse symmetric
affinity matrix W (k) for each view, which subsequently is used to form a normalized
graph Laplacian L(k) according to (6.2). Traditionally, neighborhoods are defined based
on the Euclidean distance between feature vectors, such that two samples i and j are
connected if feature vector xi is among the k nearest neighbors of xj, or vice versa.
Next, a Gaussian weighting function (heat kernel) is used to compute the weights of
these edges: W i,j = exp(−‖xi − xj‖2/2σ2).

However, this approach has several drawbacks. First, it is subject to the curse of
dimensionality, because distances between samples vanish in high-dimensional Euclidean
space, leading to poorly defined local neighborhoods [27]. In fact, this is a major
limitation of all spectral dimensionality reduction techniques that are based on local
neighborhoods of samples [22, 23]. Secondly, the Euclidean distance is unsuitable
if feature vectors are a mix of real-valued and discrete variables, because it ignores
different statistical properties of features.

To alleviate these problems, I used a random survival forest [159] to obtain the affinity
matrix for each view. The advantages of this approach are: 1) it can naturally deal
with heterogeneous data, 2) it takes into account the survival time when computing
similarities, and 3) it is less affected by the curse of dimensionality. Based on affinities
derived from a random survival forest, I define three alternatives to construct the
neighborhood graph W (k): 1) without any constraints on edges, 2) prohibiting edges
between censored and uncensored samples, and 3) constraining edges to individuals
with similar survival times.

Unconstrained Linking. Instead of using the Euclidean distance, I defined the dis-
tance between samples as the number of times two samples coincided in the same
leaf node in a random survival forest, trained on data of the k-th view: D(k) =
{(x(k)

i , yi, δi)}ni=1. Based on the definition of proximity in a random survival forest
in eq. (3.125) on page 82, the distance between samples i and j for the k-th view is
defined as

d(k)
RSF(xi,xj) = 1− prox(k)(x(k)

i ,x
(k)
j )

= 1− 1
B

B∑

b=1

Jb∑

v=1
I(x(k)

i ∈ I(k)
b,v ∧ x(k)

j ∈ I(k)
b,v ),

(6.8)
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where B is the total number of trees in the forest, Jb the number of leaf nodes of the
b-th tree and I(k)

b,v the set of samples that arrived at the v-th leaf node of the b-th
tree.

Finally, an undirected k nearest neighbor graph and the associated sparse symmetric
affinity matrix W (k) can be constructed as follows:

(J (k))i,j =




exp
(
−(d(k)

RSF(xi,xj))2/2σ2
)

if j ∈ kNN(i),
0 otherwise,

W (k) = 1
2

((
J (k)

)>
+ J (k)

)
,

(6.9)

where the k nearest neighbor search uses d(k)
RSF as its distance function.

Constrained Linking by Censoring. In classification problems, it is believed that
samples of different classes do not share the same underlying manifold. Consequently,
one adds a constraint to the construction of the neighborhood graph prohibiting
connections between samples of different classes. For a binary classification problem, the
graph would consist of two components, resulting in two low-dimensional embeddings,
one for each class. For instance when comparing diseased to healthy patients, the
constraint forces the low-dimensional representations of samples corresponding to
diseased patients to be mapped close to each other and far apart from samples
corresponding to healthy patients.

In contrast to classification, supervised information in survival analysis consists of the
event indicator δi as well as the observed time yi, and each could be used to construct
a supervised neighborhood graph. The naïve approach considers the event indicator as
a class label and thus the neighborhood graph is split into two disjoint partitions, one
denoting patients, who experienced an event (δi = 1), and the other denoting patients
with censored survival time (δi = 0). Accordingly, eq. (6.9) becomes

(J (k))i,j =




exp
(
−(d(k)

RSF(xi,xj))2/2σ2
)

if j ∈ kNN(i) ∧ δi = δj,

0 otherwise.
(6.10)

Constrained Linking by Observed Time. The previous approach disregards patients’
survival time and can lead to implausible neighborhood relations, especially if one
assumes random censoring, i.e., censoring is independent of survival time. Moreover,
it is undesirable that samples corresponding to two patients with vastly different
survival times could be connected to each other. Consider an example based on the
coronary artery disease dataset used in the experiments in section 6.3, where physicians
studied the time until death after treatment. If a patient dies during or shortly after
intervention, this is most likely due to complications during the procedure. In contrast,
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if death occurs after a patient has been released from the hospital, the cause is most
likely not related to the actual procedure anymore [219]. Therefore, a preferable
technique to supervised neighborhood graph construction considers survival time rather
than censoring. Here, I discretized the observed time yi by assigning each patient
a label according to which percentile she belonged to and used that information to
restrict the nearest neighbor search in (6.9). By defining an additional hyper-parameter
ν ∈ N that corresponds to the number of percentiles to use, eq. (6.9) can be modified
to yield

(J (k))i,j =




exp
(
−(d(k)

RSF(xi,xj))2/2σ2
)

if j ∈ kNN(i) ∧ percν(yi) = percν(yj),
0 otherwise,

(6.11)
where percν(y) returns the percentile y lies in.

6.2.4 Applying Survival Model to Unseen Data Points

After training a survival model based on a low-dimensional representation of the original
training according to algorithm 6.1, the model should be able to predict survival for
previously unseen patients too. Consequently, a new feature vector has to be projected
into the low-dimensional space constructed from the training data first. However,
algorithm 6.1 performs a non-linear transformation of the input data, which means
that the location of a previously unseen sample on the low-dimensional manifold that
represents the training data is unknown. I explored two solutions to this issue: 1)
converting the non-linear transformation in (6.5) into a linear one, and 2) interpolating
between low-dimensional representations of samples in the original training data.

Linear Spectral Embedding. Equation (6.5) can be modified by representing a low-
dimensional representation Q as a linear transformation U ∈ Rp×d of the input data
X: Q = XU . Instead of directly minimizing with respect to Q, the objective function
is minimized with respect to U , resulting in the optimization problem

argmin
U ,α

m∑

k=1
αrktr

(
X>U>L(k)XU

)

subject to U>X>XU = Id,
m∑

k=1
αk = 1, αk ≥ 0.

(6.12)

Training a survival model based on a linear transformation is analogous to algorithm 6.1,
except that (6.12) replaces (6.6) in line 9. The low-dimensional representation qnew of
a new sample xnew ∈ Rp can be obtained by multiplication with the transformation
matrix U :

qnew = U>xnew.
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Interpolation of Low-Dimensional Representations. In the second approach, I
retained the non-linear transformation and used interpolation to estimate the location
of a new sample in embedding space. I defined the low-dimensional representation qnew
of a new sample xnew as the weighted average of the low-dimensional representations
qi of training samples:

qnew =
n∑

i=1
wiqi subject to

n∑

i=1
wi = 1.

The weight wi > 0 denotes the similarity between xnew and the i-th training sample,
which can be efficiently retrieved from random survival forests that were used to
construct view-specific affinity matrices W (k) according to (6.9), (6.10), or (6.11).

In the context of random survival forests, the proximity measure in eq. (3.125) (page 82)
provides an efficient way to estimate the similarity between a new point and all n
samples of the training data. Consider the k-th of m views and the corresponding
subset of features x(k)

new ∈ Rpk . The similarity w(k)
i of the i-th training sample to a new

sample with respect to the k-th view is defined as

w
(k)
i =

exp
(
−(prox(k)(x(k)

new,x
(k)
i ))2

)

∑n
j=1 exp

(
−(prox(k)(x(k)

new,x
(k)
j ))2

) , ∀i = 1, . . . , n, (6.13)

where prox(k) denotes the proximity derived from the random survival forest that was
used to construct the affinity matrix W (k). Finally, when considering the similarity
of xnew to the training data according to all the m views and accounting for varying
importances of views, the combined weight has the form

wi =
m∑

k=1
αkw

(k)
i , ∀i = 1, . . . , n. (6.14)

Note that Criminisi et al. [69] proposed a similar interpolation scheme applicable to
manifold forests in the singleview setting.

6.3 Evaluation of Feature Extraction and Feature
Selection Method

In this section, I will demonstrate the utility of singleview and multiview spectral
embedding algorithms for survival analysis. My evaluation is based on comparing the
performance of survival models, trained on a low-dimensional representation of the
training data, to survival models with and without embedded feature selection. The
experiments serve as empirical evidence to answer the following questions:
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1. whether multiview spectral embedding is more favorable than singleview spectral
embedding,

2. whether non-linear single and multiview spectral embedding algorithms can
improve the capabilities of a linear survival model,

3. whether this improvement is comparable to that of a non-linear survival model
with embedded feature selection,

4. whether my proposed technique to construct neighborhood graphs from survival
data accurately preserves local neighborhoods,

5. and whether view-specific weights of MVSE provide insight into which group of
features plays an important role in a particular disease.

Next, I will provide a full list of evaluated methods and justify my choice of methods.

6.3.1 Evaluation Setup

In total, experiments comprised 10 feature extraction methods and 8 survival models, 6
of which with embedded feature selection (see tables 6.1 and 6.2). First, I will describe
feature extraction methods used in the experiments followed by feature selection
methods.

Feature Extraction Methods

With respect to multiview spectral embedding (MVSE), I included the non-linear
objective function (6.5) and its linear sibling (6.12). Both MVSE algorithms were
paired with three different neighborhood graph construction algorithms: 1) without
constraining edges in the graph as in (6.9), 2) by constraining edges by samples’
censoring indicator according to (6.10), and 3) by constraining edges by observed time
following eq. (6.10). Hence, six variations of MVSE were included in the experiments.

To determine how MVSE techniques compare to singleview methods, i.e., those using
the concatenation of all views, Principal Component Analysis [147], Kernel PCA [257],
Laplacian Eigenmaps [20], and Locality Preserving Projections [133] were included in
the experiments. Each of these baseline methods has different properties (see table 6.1)
and served a specific purpose in the evaluation of MVSE methods and answering the
questions posed above.

Laplacian Eigenmaps (LE) builds a non-linear transformation and served as singleview
baseline to non-linear MVSE, whereas Locality Preserving Projections (LPP), which
transforms data linearly, was used as baseline to linear MVSE. Together, (non-)linear
MVSE, LE and LPP were used to investigate questions 1 to 3. The objective function
of all four algorithms tries to preserve the local neighborhood of samples and hence
requires that the underlying manifold is densely sampled to avoid holes in the manifold.

140



6.3 Evaluation of Feature Extraction and Feature Selection Method

Table 6.1: Characteristics of feature extraction methods used in the experiments.

Method Neighborhood Transformation Views

Principal Component Analysis (PCA) global linear single
Kernel PCA global non-linear single
Locality Preserving Projections (LPP) local linear single
Laplacian Eigenmaps (LE) local non-linear single
Multiview Spectral Embedding (MVSE) local non-linear multiple
Linear Multiview Spectral Embedding local linear multiple

Principal Component Analysis (PCA) and Kernel PCA consider relationships globally
and are less affected by this problem. Therefore, they were used to determine whether
local neighborhoods derived from a random survival forest can capture the underlying
manifold of the data better or worse than a global approach (question 4). Finally, the
comparison of non-linear to linear feature extraction techniques (single- or multiview)
allows determining whether the proposed interpolation scheme in section 6.2.4 can
accurately determine the location of new samples on the manifold of the training
data.

Each feature extraction method mentioned above and in table 6.1 was combined with
a survival model without embedded feature selection, which was trained on the low-
dimensional representation obtained via one of these methods. This provides a fair
comparison to answer question 3 – how well survival models perform after feature
extraction compared to survival models with embedded feature selection. For this
purpose, and to handle multicollinearity in the data, I chose ranking-based linear
survival support vector machine as described in chapter 5 (page 99).

Feature Selection Methods

Feature selection methods are an alternative to feature extraction methods when
dealing with high-dimensional data. In the experiments I considered survival models
with embedded feature selection; they are summarized in table 6.2.

I included Cox’s proportional hazards model [67], because it is the standard for
analyzing time-to-event data (see section 3.2 on page 35). When combined with a
ridge penalty it can be applied to datasets with correlated features, but it does not
perform feature selection. If a LASSO penalty is used, the coefficients of a subset of
features will be set exactly to zero and features corresponding to non-zero coefficients
are selected. Moreover, I included two ensemble methods: random survival forest [159]
and gradient boosting [105], which are explained in more detail in sections 3.4 and 3.6
(pages 60 and 79), respectively. Gradient boosting was used to minimize the negative
log partial likelihood (3.29) of Cox’s proportional hazards model [239] with randomized
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Table 6.2: Characteristics of survival models used in the experiments.

Method Type Feature Selection

Survival SVM (SSVM) linear no
Cox’s proportional hazards model (ridge) linear no
Cox’s proportional hazards model (LASSO) linear yes
Gradient Boosting (trees) non-linear yes
Gradient Boosting (least squares) linear yes
Random Survival Forest (RSF) non-linear yes

regression trees [37, 39] or componentwise least squares [45] as base learners. The latter
is especially well suited for high-dimensional data, because in each gradient boosting
iteration it only selects a single feature and behaves similar to the LASSO [42]. To
avoid overfitting of gradient boosting models, I considered stochastic gradient boosting
[105] and dropout [238]. The former fits each base learner to a different subset of the
training data, and the latter only considers a randomly selected subset of previously
fitted base learners in each iteration.

Validation Scheme

The aforementioned dimensionality reduction methods depend on one or more hyper-
parameters that might affect their performance. Therefore, the training phase of
each algorithm was augmented by a hyper-parameter search. Hyper-parameters were
optimized via grid search by evaluating each configuration using ten random 80%/20%
splits of the training data. The parameters that on average performed best across these
ten partitions were ultimately selected and the model was re-trained on the full training
data using optimal parameters. Results are presented as the mean performance of
5-fold cross-validation.

The number of nearest neighbors used to compute the affinity matrix in (6.9) was
set to the logarithm of the number of samples in the respective dataset, as suggested
in [202]. For the complementary factor r of multiview spectral embedding in (6.5)
and (6.12), I chose to sample more densely close to 1, because small values affect the
distribution of weights among views more than large values. When constructing the
neighborhood graph, I used a random survival forest with 100 trees and fixed the
minimum node size to three. The kernel function used in Kernel PCA was the negative
exponential of the distance defined in eq. (6.8). A full list of models’ hyper-parameters
used in the experiments is available in appendix A.1. The performance of all methods
was estimated by Harrell’s concordance index (c index; see [127] and section 3.7.1 on
page 84).
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Table 6.3: Overview of datasets used in the experiments. Size denotes the number of samples
and the number of features of the dataset. Follow-Up refers to the median follow-
up time after enrollment. A detailed description of the views and features they
comprised is available in appendix A.2.

Dataset Outcome Size Views Events Follow-Up

Coronary artery disease [217] Myocardial
infarction or
death

1, 233× 60 5 196
(15.9%)

4.3 years

Breast cancer [77] Distant
metastases

198× 80 2 62
(31.3%)

14.0 years

Framingham Offspring [166] Coronary
vessel disease

4, 892× 150 7 1, 166
(23.8%)

34.6 years

Datasets

Experimental evaluation of all methods was based on three different clinical datasets
listed in table 6.3. The coronary artery disease data consisted of patients who underwent
coronary revascularization procedures for treatment of coronary artery disease [217];
the outcome of interest was the composite of death of any cause and myocardial
infarction. The dataset comprised five views: demographics and disease history (12
features), laboratory biomarkers (4 features), angiographic measurements (31 features),
medications (6 features), and extent of disease (7 features).

The breast cancer dataset was provided by Desmedt et al. [77] and consisted of
microarray experiments from primary breast tumors and was used to validate the
prognositic value of a 76-gene signature.1 Expression levels of the 76 genes formed one
view and demographic information (4 features) a second view. The objective was to
predict the development of distant metastases.

The third dataset was based on data from the Framingham Offspring Study [166], which
is a cohort study to investigate risk factors and trends in cardiovascular disease over
time. Data consisted of seven views: demographics and disease history (24 features),
lipid panel (25 features), laboratory biomarkers (32 features), medication (16 features),
menopause (6 features), life-style (17 features), and electrocardiography (30 features).
The outcome was the presence of coronary vessel disease before December 31, 2007
(time of censoring).

Missing values in the coronary artery disease and Framingham Offspring data were
imputed using multivariate imputation using chained equations with random forest
models (see [79, 299] and section 4.2.1 on page 94). To ease computational resources for
validation and since the missing values problem was not the focus, I randomly picked

1The dataset is available at http://www.ncbi.nlm.nih.gov/geo under accession number GSE7390.
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Figure 6.1: Harrell’s concordance index of 5-fold cross-validation after hyper-parameter
search. Horizontal bars indicate the average performance across all folds, and
vertical markers the performance of individual folds. If not mentioned otherwise,
a linear survival support vector machine was chosen as survival model for feature
extraction methods.

one multiple imputed dataset, which was used for all subsequent analyses. Finally,
continuous variables were normalized to have zero mean and unit variance.

6.3.2 Results

I will briefly summarize the results depicted in figs. 6.1 and 6.2, which serve as basis
for the subsequent discussion concerning the questions posed earlier on page 139.

Survival models trained on the breast cancer dataset (fig. 6.1 left) generally performed
modestly with mean c index below 0.7 for all experiments, except gradient boosting
with regression trees as base learners and using dropout. Interestingly, the results show
that combining survival SVM with any feature extraction method resulted in a loss of
predictive performance when compared to the baseline (without any dimensionality
reduction). Moreover, I observed that linear singleview spectral embedding techniques
(PCA, LPP) performed considerably worse than their non-linear counterparts (Kernel
PCA, LE). For the remaining single- and multiview algorithms, the performance was
comparable.

Results on the coronary artery disease dataset (fig. 6.1 right) looked quite different.
Here, all feature extraction methods resulted in an improved mean c index, except LPP
and unconstrained non-linear MVSE. Kernel PCA and LE, both non-linear methods,
performed equally well and better than their linear counterparts PCA and LPP, respec-
tively. In the multiview setting, the choice of neighborhood graph construction made
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no considerable difference when using linear MVSE, in contrast to non-linear MVSE,
where restricting links in the neighborhood graph to patients with similar survival time
resulted in a considerably better performance than alternative methods (unconstrained,
constrained by event indicator). Nevertheless, the performance difference between
the best performing variants of linear and non-linear MVSE was minor, and both
were outperformed by Kernel PCA and LE. Overall, non-linear survival models with
embedded feature selection, namely random survival forest and gradient boosting with
regression trees as base learners, performed best.

Experiments using the Framingham Offspring dataset revealed that all methods achieved
a fair performance and that the performance differences among methods was smaller
compared to results on the other two datasets (fig. 6.2 top left). In addition, the
variance among cross-validation folds was considerably lower compared to the other
experiments. Most notably, the performance of non-linear MVSE trailed the remaining
methods. As for the coronary artery disease dataset, random survival forest and
gradient boosting performed best.

6.3.3 Predictive Performance

Based on results presented in the previous section, I will now return to questions 1-3 on
page 139 regarding the performance differences between single- and multiview spectral
embedding as well as feature selection methods.

Question 1. Surprisingly, results indicate that ignoring the original source of features
and simply assuming features originate from a common vector space does not decrease
predictive performance, as is evident by the results of LE and LPP compared to MVSE.
Therefore, I have to conclude that a multiview approach did not provide any benefits
over singleview algorithms when considering the performance of survival models after
dimensionality reduction.

This result is orthogonal to works presented in section 6.1.2, where experiments were
carried out with respect to various classification problems in computer vision. I see three
main differences to my experiments: 1) datasets in computer vision are usually much
larger than in the medical domain, 2) the vast majority of image descriptors produce
continuous valued feature, i.e., feature vectors are homogeneous, and 3) previous
experiments were focusing on classification problems and encompassed performance
measures other than the ones used here to judge the benefits of multiview spectral
embedding algorithms. Considering these differences, it is not surprising that previous
results do not apply when studying survival analysis.
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Figure 6.2: Harrell’s concordance index of methods on random subsamples of varying size
of the Framingham Offspring dataset.
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Question 2. Turning to the second question, whether non-linear spectral embedding
algorithms can improve the capabilities of a linear survival model. Results in figs. 6.1
and 6.2 do not convey a clear message with respect to this question. Whereas all feature
extraction methods failed on the breast cancer dataset (fig. 6.1 left), they did improve
the performance of linear survival SVM on the remaining two datasets (fig. 6.1 right,
and fig. 6.2 top left). In my experiments, the breast cancer dataset was the one with
the least number of samples, whereas the next bigger dataset was almost by an order
of magnitude larger (1,233 patients for the coronary artery disease data). Therefore,
a possible reason for the poor performance of spectral embedding algorithms could
be the amount of data. Usually, if more data is available, the underlying manifold
can be sampled more densely, which leads to a more accurate recovery. To determine
whether feature extraction methods fail due to the number of samples in the data and
not due to one dataset being more difficult than the other, I performed another set of
experiments by randomly subsampling the Framingham Offspring dataset to 200, 500,
1000, 1500, and 2000 patients and recording the performance of all nineteen methods
on each subsample. Figure 6.2 summarizes the results on all five subsets.

The results clearly indicate that dataset size plays a crucial role in the performance
of methods. With only 200 patients, the performance differences between methods
were most pronounced, ranging between mean c index of 0.554 (linear MVSE) and
0.726 (Cox’s proportional hazards model with LASSO penalty). In addition, results
are characterized by a high variance between cross-validation folds for all methods.
With increasing number of patients, the overall performance increased, and differences
between methods as well as between cross-validation folds decreased. Consequently,
most feature extraction methods can only succeed if a sufficient number of samples
from the underlying manifold are available. In particular, I experienced that linear
MVSE suffers from numerical instabilities and convergence problems with small sample
sizes, which is evident from results with respect to the subsample with 200 patients
(fig. 6.2 bottom right), where its performance is close to random guessing (c index =
0.5). Problems related to recovering the smallest eigenvalues have been discussed by
Van Der Maaten et al. [302] too.

In addition to problems caused by small sample size, the presence of noise or uneven
sampling of the underlying manifold can be an issue for spectral embedding algorithms.
In particular, feature extraction methods relying on local neighborhoods (LE, LPP,
MVSE) are subject to these effects. If the underlying manifold is corrupted by noise,
global methods are likely to give better results than local methods [245]. Alternatively,
one could use empty region graphs instead of k nearest neighbor graphs to define
local neighborhoods [63]. To investigate whether results are affected by noise and
whether the proposed definition of locality based on random survival forest is suitable,
I compared the performance of local methods to the performance of global methods,
namely PCA and Kernel PCA. Experiments revealed no systematic impairment of local
methods and hence I concluded that my proposed neighborhood graph construction
scheme properly captures locality of heterogeneous feature vectors.
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Figure 6.3: Comparison of methods with the Nemenyi post-hoc test [75] on the full and
subsampled Framingham Offspring dataset. Methods are sorted by average rank
(left to right) and groups of methods that are not significantly different (p-value
> 0.05) are connected.

Question 3. Question 3 concerns the comparison of survival models trained on a
low-dimensional representation of the training data to survival models with embedded
feature selection. The experiments revealed that feature selection methods proved to be
more stable than feature extraction methods with small samples sizes. Generally, the
performance difference between feature selection methods was relatively small. Methods
specifically designed to achieve sparsity in the number of features – Cox’s proportional
hazards model with LASSO penalty, gradient boosting with componentwise least
squares, and random survival forest – excelled if the ratio between number of features
and samples was close to one.

Moreover, I investigated whether one or more methods significantly outperformed the
others, disregarding the size of the dataset. Hence, I combined the cross-validation
results of all five subsampled datasets as well as the original Framingham Offspring
data and determined whether any two survival models significantly differ from each
other using Friedman’s test and the Nemenyi post-hoc test [75]. Figure 6.3 shows that
nine pairwise comparisons resulted in significant differences at significance level 0.05
(adjusted for multiple testing). First, linear MVSE constrained by event indicator per-
formed significantly worse than 3 alternative methods: random survival forest, gradient
boosting with shrinkage and componentwise least squares, and Cox’s proportional
hazards model with LASSO penalty. Moreover, random survival forest performed
significantly better than the remaining variations of linear MVSE (unconstrained and
constrained by survival time). Lastly, the linear survival support vector machine was
outperformed by gradient boosting with shrinkage and componentwise least squares as
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Figure 6.4: Comparison of survival models trained on low-dimensional embedding of Locality
Preserving Projections and Laplacian Eigenmaps. Neighborhood graphs were
either constructed according to the Euclidean distance among samples (and
applying the heat kernel), or by Random Survival Forests (RSF) according to
eq. (6.9).

well as random survival forest. From these results, I concluded that overall the most
reliable choice are ensemble methods: random survival forest or gradient boosting with
componentwise least squares as base learner.

6.3.4 Neighborhood Graph Construction

Now I will focus on question 4 concerning the construction of a neighborhood graph
from heterogeneous survival data with random survival forests. In the last paragraph
with respect to question 2 on page 147, I already mentioned that feature extraction
methods operating on global and local scale performed comparably, which is evidence
that local neighborhoods can be accurately captured by a random survival forest.
Results indicate that constraining edges in the neighborhood graph slightly improved
the concordance index if survival models were paired with non-linear MVSE, but not if
paired with linear MVSE. However, experiments provided no clear indication whether
constraining neighborhoods to patients with identical event indicator or similar survival
time is preferred.

In addition, I investigated the performance of survival models if trained on a low-
dimensional embedding of the training data, computed from the Euclidean distance
between samples. Results in fig. 6.4 demonstrate that using random survival forests for
constructing the neighborhood graph performs as good as the Euclidean distance and
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is the preferred choice when analyzing small sample size data. The difference between
LE methods is larger compared to LPP methods, because LE uses the same distance
measure during training and during prediction – to interpolate the location of a new
sample on the manifold. If an improper distance measure is used, its error will be
amplified, which is evident from results of LE in fig. 6.4.

Finally, I proposed using random survival forests to address the out-of-sample problem
of non-linear spectral embedding methods. In my experiments, the performance of non-
linear methods was overall superior to its linear counterparts, i.e., LE outperformed LPP
and non-linear MVSE outperformed linear MVSE, which strengthens my observations
from the comparison of LE with RSF-based distance to LE with Euclidean distance.
Hence, I concluded that the proposed interpolation scheme accurately determines the
location of new data points on the existing manifold of the training data.

6.3.5 The Utility of Views’ Coefficients to Identify Clinical
Markers

Next, I will turn to question 5 that studies whether view-specific weights α in the MVSE
algorithm provide insight into which group of features (view) plays the most important
role in a particular disease. For clinical purposes, the predictive performance is not
the only factor in determining whether a method is suitable or not, as outlined in the
beginning of section 6.2 on page 132. Often the primary objective is to identify factors
and biological pathways that are most decisive in diagnosing a disease. Therefore,
methods should be able to robustly identify the most important group of features.

As mentioned in section 6.2.2, setting the complementary factor r to a value close to 1
results in assigning more weight to a single view when solving eq. (6.5). Therefore, I
performed a set of experiments to investigate whether view-specific weights αk can be
used to select clinically meaningful views. Experiments consisted of repeatedly learning
a low-dimensional embedding on 50 subsamples of size equal to 50% of datasets’ original
size (drawn without replacement) and recording coefficients α. The complementary
factor r was gradually lowered from 5.0 to 1.1 in steps of 0.1, while keeping the
remaining hyper-parameters fixed (number of nearest neighbors, dimensionality of
embedding).

Figure 6.5 demonstrates the results on the coronary artery disease data2 and shows the
effect of the complementary factor r as it gets closer to 1. With r being large, weights
α are assigned roughly equally to all views and as r → 1, more weight is assigned to a
single view. Furthermore, linear and non-linear MVSE associated the highest weight
to different views. Linear MVSE picked the angiography view as the most important
view, disregarding constraints on the neighborhood graph. In contrast, the choice of

2Results with respect to the Framingham Offspring data can be found in appendix A.3 on page 196.
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Figure 6.5: Value of view-specific coefficients for varying complementary factor. The com-
plementary factor r in multiview spectral embedding (MVSE) was chosen to be
r ∈ {1.1, 1.2, . . . , 4.9, 5}. Solid lines indicate the path of view-specific coefficients
in 50 random subsamples of the coronary artery disease data. The average
coefficient across all subsamples is indicated by dashed lines.
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Figure 6.6: Coefficients of Cox’s proportional hazards model with group LASSO penalty.
Solid lines indicate the path of coefficients across 20 fixed values of the regular-
ization parameter λ from 50 random subsamples of the coronary artery disease
data. The average coefficient across all subsamples is indicated by bold lines.
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constraint made a substantial difference with non-linear MVSE. Medication was the
most important view when constraining connections in the neighborhood graph, but
results differed dramatically for unconstrained non-linear MVSE; it showed a high
degree of instability in assigning one view the highest importance across subsamples
– alternating between the extent of disease, biomarkers and medications. A possible
explanation for the highly unstable results might be that local neighborhoods are
badly preserved among multiple subsamples of the data. Thus, when repeatedly
subsampling the data, the local neighborhood of samples might have changed and
led to a different embedding and ultimately to different view-specific coefficients.
Constraining connections in the neighborhood graph seemed to improve the overall
stability of non-linear MVSE.

Furthermore, I compared the importance of views determined by MVSE to those
determined by Cox’s proportional hazards model with group LASSO penalty (see
[327] and section 3.2.5 on page 43). The group LASSO behaves similar to the regular
LASSO penalty, but couples the coefficients of a group of variables: either all variables
of a group enter the model (non-zero coefficients), or all variables are excluded (zero
coefficients). Thus, I grouped features according to their associated view and ran the
same experiment as above. Figure 6.6 depicts the paths of coefficients for all features,
separated by view. In the predominant number of runs (> 92%), the demographics
and disease history, and angiographic measurements view got “activated” first, and
medications last, which is in accordance with results obtained from linear MVSE in
fig. 6.5. In addition, current treatment guidelines for coronary artery disease (e.g. [318])
stress the importance of angiographic measurements in determining optimal treatment.
Therefore, I believe that view-specific weights of linear MVSE can potentially provide
valuable insight into the most important factors of a disease of interest. With respect
to non-linear MVSE, I am not aware of any clinical study that would support the
finding that medications outweigh all other factors, which led me to conclude that
results of non-linear MVSE are ultimately implausible.

6.3.6 Conclusion

At the beginning of section 6.3 (page 139), I posed five questions concerning single-
and multiview spectral embedding methods. I investigated these questions by imple-
menting a comprehensive empirical study of 19 feature selection and feature extraction
algorithms for building survival models from heterogeneous medical records. From
these experiments I arrived at the following conclusions:

1. the performance difference between survival models paired with singleview spec-
tral embedding algorithms and those paired with multiview spectral embedding
algorithms was minor when using random survival forests to construct neighbor-
hood graphs,
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2. feature extraction methods are a valuable alternative to feature selection methods
if the main interest is in improving predictive performance and if the dataset
is large enough such that the number of samples is sufficient to describe the
underlying manifold – in the experiments presented here, using less than 500
patients led to poor results,

3. embedded feature selection is the preferred choice for datasets with small sample
size, because, in this situation, spectral embedding algorithms suffer from an
insufficient number of samples from the underlying manifold,

4. random survival forests can be used to address two of the main problems en-
countered with methods based on spectral embedding: neighborhood graph
construction in the presence of heterogeneous feature vectors and out-of-sample
extension for new data points,

5. linear MVSE provides insight into the relevance of views similar to Cox’s propor-
tional hazards model with group LASSO penalty, which could potentially help to
understand a view’s role in a particular disease.
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7 Predicting Survival of Prostate
Cancer Patients

7.1 Prostate Cancer DREAM Challenge

7.1.1 Overview

Prostate cancer is currently associated with the highest incidence rate of all cancer
types among men in Europe [95] and the United States of America [265]. It is estimated
that prostate cancer accounts for 22.8% of new cancer cases in Europe and 26% of new
cases in the U.S. each year [95, 265]. Among all cancer deaths, an estimated 9-10% are
due to prostate cancer each year, which ranks the mortality rate of prostate cancer
second after lung cancer in the U.S. [265], and third after lung cancer and colon/rectum
cancer in Europe [95].

Depending on the stage of prostate cancer, treatments include surgery, radiation therapy,
chemotherapy, and hormone therapy. The latter prevents the cancer from growing by
lowering levels of androgens, which are a class of steroid hormones (e.g. testosterone).
For instance, drugs blocking androgen receptors or the production of androgens in
the andrenal glands reduce androgens to castrate levels and thus limit cancer growth.
Although androgen deprivation therapy (ADT) is often successful in the early stages of
therapy, in 10-20% of prostate cancer patients the cancer will inevitably progress from
castrate-sensitive to castrate-resistant within 5 years [174]. The median survival time
of individuals with castrate-resistant prostate cancer (CRPC) is typically less than 2
years [62, 174]. In addition, bone metastasis are often an attendant symptom of CRPC,
which further complicates treatment [174]. Today, a number of treatment regimes
have been developed for patients with metastatic castration-resistant prostate cancer,
including chemo- and radiation therapy (docetaxel, cabazitaxel and radium-223) and
agents affecting the immune system (sipuleucel-T) or androgen pathways (abiraterone
and enzalutamide) [62, 223]. Despite these advances, the impact on survival still
remains modest – improvements are typically measured in months – and the optimal
sequence of therapies or combinations thereof are mostly unknown [62, 321].

The aim of the Prostate Cancer DREAM Challenge [65] was to expose the research
community to a large and curated set of patients with metastatic, castrate-resistant
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prostate cancer (mCRPC) to foster the development of new models that could ulti-
mately provide a better understanding of factors affecting overall survival of patients.
Participants had access to medical records of 1,600 mCRPC patients, including follow-
up, and were tasked with two different subchallenges during a three month period. The
first of two subchallenges focused on predicting overall survival, whereas the second
subchallenge focused on predicting treatment discontinuation due to adverse events.

7.1.2 Challenge Questions

Prediction of Survival

The objective of the first subchallenge was to build a prognostic model to predict overall
survival of mCRPC patients. The model proposed by Halabi et al. [121] was used a
baseline. They used Cox’s proportional hazards model with adaptive LASSO penalty
(see [328] and section 3.2.5 on page 43) to select nine out of 22 variables. Six out of the
nine variables corresponded to the concentration of biomarkers: lactate dehydrogenase,
albumin, hemoglobin, alkaline phosphatase and prostate-specific antigen. Moreover,
they included the Eastern Cooperative Oncology Group (ECOG) performance status,
current use of opioid analgesics and the disease site (metastasis in lymph nodes only, in
lymph nodes and bones, or any other visceral metastases). The model was constructed
from a set of 1,050 mCRPC patients and evaluated on an independent set of 942
men from a separate trial. The final model achieved an integrated area under the
time-dependent, cumulative-dynamic ROC curve of 0.76 on the hold-out data.

Models that were considered eligible for the first subchallenge had to demonstrate
statistical improvement in predicting overall survival compared to the model by Halabi
et al. [121]. Newly proposed models were evaluated based on two criteria: 1) how well
predicted risk scores rank patients according to actual survival time, and 2) how well
models predict the exact time of death. The first criteria was determined by the area
under the time-dependent, cumulative-dynamic ROC curve (see section 3.7 on page 83).
The second criteria was evaluated based on the root mean squared error (RMSE) with
respect to deceased patients in the test data. Whereas the first criteria corresponds to
a traditional evaluation measure for survival models, the second criteria evaluates the
exact number of days till death and is more challenging.

Participants could build their model from any information that can be extracted from
health records of 2,070 mCRPC patients. During the challenge, participants were
offered the opportunity to evaluate and refine their models on a small test set of
157 subjects. Evaluation was performed automatically and each team could submit
predictions of five models at three fixed dates during the challenge period. Hence,
participants could use the feedback to improve their methods for subchallenge one
while the challenge was ongoing.
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Figure 7.1: Overview of distribution of survival and censoring times in training data from
Memorial Sloan Kettering Cancer Center (MSKCC), Celgene and Sanofi. Num-
bers in brackets denote the total number of patients in the respective study, and
the dashed line is the median follow-up time in the AstraZeneca study, which
was used as independent test data.

Prediction of Treatment Discontinuation

The intent of the second subchallenge was to propose models that can predict whether
mCRPC patients treated with docetaxel – an agent used in chemotherapy – are going
to experience adverse events within three months after treatment began. Adverse
events can arise from side effects of chemotherapy, which may require discontinuation of
treatment if symptoms become life-threatening. Therefore, knowing the risk of severe
complications caused by chemotherapy would allow considering alternative treatment
options early. However, factors that lead to discontinuation of treatment are still
unknown and no published work proposed a model to predict discontinuation as of
the start of the Prostate Cancer DREAM Challenge [65]. Thus, no baseline model
was available for this subchallenge and models were solely compared based on the area
under precision-recall curve (AUCPR). Moreover, no intermediate evaluation on the
test data until the final submission was possible.

7.1.3 Data Description

Participants were provided access to patients’ health records from three separate phase
III clinical trials [34, 223, 283] for training, and data from an independent, unpublished
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clinical trial of 470 men for testing (values of dependent variables were held back and
not revealed to participants). An overview is depicted in fig. 7.1.

Patient’s health records comprised a wide range of clinical information: prior med-
ications, comorbidities, tumor measurements, laboratory tests, and vital signs (see
fig. 7.2). Most data was collected before the first treatment, except for tumor and
lab measurements, where data was collected after treatment began too. In all cases,
dates were provided as the number of days relative to the first treatment date, which
means negative values indicate a pre-treatment measurement. Due to the nature of the
overall data being collected from four individual clinical studies, there were considerable
differences among the four trials, which had to be addressed when constructing models.
For instance, there was a large disparity in the distribution of censoring and survival
times (see fig. 7.1). Moreover, not all studies recorded data to the same extent and
level of detail, which resulted in a high amount of missing values for some features as
well as inconsistencies in nomenclature.

In particular data contributed by the Memorial Sloan Kettering Cancer Center
(MSKCC) did not contain detailed information about a patient’s tumors and co-
morbidities (marked orange in fig. 7.2). For patients of this study only summary
information for a fixed set of tumor locations and a fixed list of medications were
accessible. Moreover, several attributes were not recorded in the AstraZeneca study,
which forms the test data, and consequently these attributes could not be used for
the final model (marked red in fig. 7.2). Table 7.1 provides a rough overview to which
extent and level of detail data was available from the four studies. Note that the
numbers do not reflect whether terms were consistent across all studies (e.g. for body
systems).

To build a model for any of the subchallenges, data had to be aggregated on a per
patient basis, inconsistencies had to be resolved, and a set of features had to be
composed that can be extracted from raw training data as well as raw test data. Next,
I will provide a detailed description on how these issues were addressed.

7.2 Extracting Features Describing Patient Records

7.2.1 Patient-level Aggregation

In a first step, I aggregated information stored in tables containing data about prior
medications, comorbidities, tumor measurements, laboratory tests, and vital signs.
To obtain a common set of features for all patients, I extracted features describing
medications, comorbidities, and so forth, based on how often they occurred in the
respective tables across all studies. This involved manually resolving inconsistencies
of terms used in different studies, because often there were subtle differences such as
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7 Predicting Survival of Prostate Cancer Patients

Table 7.1: Characteristics of data from four studies used in the Prostate Cancer DREAM
challenge. Values marked by an asterisk were only available in aggregated form.

MSKCC Celgene Sanofi AstraZeneca

Age
18− 64 111 171 219 160
65− 74 211 246 254 217
≥ 75 154 109 125 93

# of Comorbidities 13∗ 743 683 572
# of Body Systems/Organs 24∗ 25 25 25
# of High level group terms n.a. 194 183 168
# of High level terms n.a. 425 399 343
# of Lowest level terms n.a. 1,084 987 883

# of Lab tests 13 65 67 51
# of Medications/Therapies 585 646 685 488
# of Intended use 1,056 1,220 3 3
# of Chemical classes 241 230 318 232

# of Tumor tests n.a. 3 3 2
# of Tumor locations 19∗ 233 24 18

# of Vital measurements 2 7 6 3

abbreviations used in one study and the full name in other studies (e.g. “antiinfectives”
versus “antiinfect.”). Furthermore, some studies used a more detailed description
of terms whereas others only contained higher level information, which was most
prominent for medications (e.g. “antibiotics” versus “penicillins,” “cephalosporins” and
“other antibiotics”).

After computing features based on the most common terms for medications, comor-
bidities, and so forth, the set of features had to be refined such that features can be
computed for patients of most studies, in particular AstraZeneca, which was used for
testing. Data with respect to a particular laboratory test were often only available
from one study, but absent in other studies, which meant the lab test could not be used
for model building, because of the high amount of missing values when considering all
studies. The relevant set of features for each individual study was determined by only
considering features that satisfied the following criteria: 1) it was available for at least
70% of patients within that study, 2) it had more than one unique value, and 3) its
variance was higher than 0.001 (if continuous), or it had at least two categories that
occurred more than ten times in the study’s data (if categorical). Finally, taking the
intersection between all or a subset of these sets led to a common set of features, which
resulted in seven sets of features as indicated in table 7.2. Data used for imputation of
missing values included additional features that were not available for the test data
(AstraZeneca), which is why fewer features were available for training models than for

160



7.2 Extracting Features Describing Patient Records

Table 7.2: Different sets of features that were constructed by considering the intersection
between studies in the Prostate Cancer DREAM challenge. Features used during
imputation can be absent in the test data (AstraZeneca), whereas features for
testing must be present in training and test data. Complete cases refers to the
relative amount of samples free of missing values before imputation.

MSKCC Celgene Sanofi Samples Features Features Complete
(Imputation) (Testing) Cases

• • • 1,600 227 217 93.9%

• • 1,124 360 345 77.0%

• • 1,074 230 220 92.1%

• • 1,002 231 221 92.7%

• 598 382 350 64.0%

• 526 415 383 57.0%

• 476 242 223 78.8%

imputing missing values. Next, I will provide a more detailed description about features
describing medications, comorbidities, tumor measurements, lesion measurements, and
vital signs.

Medications. Chemical classes and routes of administration were manually grouped
into coarser groups than in the original data, which resulted in a total of 326 chemical
classes and 20 routes of administration, from which features describing the 88 most often
used chemical classes and the 5 most often used routes of administration were extracted.
Each binary feature indicated whether a patient was ever taking any medication of
this particular chemical class or route of administration. For six medications/therapies
– hormone therapy, opium alkaloids, gonadotropin-releasing hormones, glucocorticoids,
bisphosphonates, and anti-androgens – information about the duration of treatment
was available. The duration of hormone therapy, gonadotropin-releasing hormones
and anti-androgens was measured in one year intervals, whereas duration of opium
alkaloids and glucocorticoids was measured in monthly intervals. Moreover, I added
one binary feature describing whether a patient ever received medication for treatment
of adverse events and one continuous feature corresponding to the total number of
chemical classes a patient received.

Comorbidities. After resolving inconsistencies in the terms used to describe diagnoses,
a total of 1,010 terms remained, from which binary features denoting the presence of
each of the 67 most common comorbidities were extracted. Each of the binary features
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was associated with one additional feature representing the time of first occurrence,
relative to the reference day of the respective study. Finally, I explicitly added a feature
whether a patient experienced cancer pain and for how long, and the total number of
recorded comorbidities for each patient.

Lab Measurements. First, only measurements that were conducted prior to treatment
were considered when selecting the most common tests, because these denote baseline
levels before treatment began. From all 85 tests, the 55 most common tests were
selected. Multiple real-valued measurements were aggregated by computing the mean,
multiple categorical measurements by computing the mode. For 40 lab tests, definitions
of lower and/or upper bounds of a normal range were available and an additional
categorical feature was added indicating whether the aggregated mean measurement
was below, within, or above the respective reference range. Similarly, the date of
measurement was available for 53 out of all selected lab tests, which was used to create
another 53 features corresponding to the date of the first measurement, relative to
reference day.

Tumor Measurements. A suitable set of lesion locations was determined by only
considering records pre-dating the start of treatment and selecting the 9 most often
occurring locations out of a total of 211 locations. Aggregation was performed by
creating a categorical feature indicating whether no lesion, one lesion, or two or more
lesions were found in a particular location. Moreover, each location was associated with
a feature corresponding to the earliest day of assessment. Finally, the total number
of target lesions and non-target lesions as well as minimum and maximum lesion size
were extracted for each patient.

Vital Signs. Measurements were first converted to SI units and features describing
the finding and date of pre-treatment measurements were extracted for all 10 performed
tests. Multiple measurements per patient were aggregated by taking the mean.

7.2.2 Post-processing and Imputation

After extracting an initial set of features, post-processing was applied to adjust the
scale of features and to discard meaningless features. First, continuous features
with high skewness were log-transformed to obtain values more closely resembling a
normal distribution. Transformation was automated by systematically computing the
skewness of the empirical distribution and applying a log transformation if the skewness
exceeded a threshold τ ; I empirically chose τ = 1.4. Similarly, I applied an Anscombe
transformation [9] to features corresponding to counts such that transformed values
resembled a normal distribution. To reduce the impact of small changes in features
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corresponding to dates, I discretized those features by assigning each value a number
according to which quartile the value belonged to. In the last step, useless features were
discarded. A feature was considered useless if at least one of the following conditions
applied:

• it was missing for more than 30% of samples,
• it comprised only one unique value (excluding missing values),
• its variance was smaller than 0.001 (if continuous), or it contained only a single

category that occurred more than ten times in the training data (if categorical).

The number of remaining features after post-processing are summarized in column
“Feature (Imputation)” in table 7.2.

Imputation

Although most missing values could be eliminated by the relatively strict requirement
that all features are present for at least 70% of patients of each individual study,
between 6.1% and 43% of samples still contained one or more missing value (see the
right most column in table 7.2). Hence, imputation of missing values was required
before model-building.

To provide as much information as possible to the imputation process, I included
features that were not available for the test data, but for participants of one or more
other studies. Since data contained several hundred features, I opted for using a
random survival forest for imputation (see section 3.6.3 on page 82) rather than
multivariate imputation using chained equations, which would require considerably
more computational time.

Study-specific datasets were imputed first, because they had the most amount of
features available, followed by datasets consisting of subjects from multiple studies.
For imputation of the challenge’s test data (AstraZeneca), random survival forests were
used as well, except that features that were not available in the test data (excluding
dependent variables) were discarded from the training data (MSKCC, Celgene, Sanofi)
before training a random survival forest on top of it. Subsequently, the resulting forest
could be used to impute the test data.

Finally, all features that were absent in the test data were removed from imputed
datasets listed in table 7.2 (see column “Features (Testing)”) and the resulting training
and test data – free of missing values – was used for all subsequent steps in my analyses
(see appendix B.1 for a list of all features and their availability).
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7.3 Considerations Regarding Prostate Cancer
DREAM Challenge

I will now focus on the first subchallenge, where the objective was to develop models
predicting survival of mCRPC patients.

After extracting features from data of all four studies, a survival model has to be
trained on data from MSKCC, Celgene and Sanofi to predict survival of patients in
the AstraZeneca study. However, due to the training data consisting of subjects from
multiple clinical trials, several problems arise: 1) the median follow-up time differs
drastically among studies and consequently the amount of censoring as well (see fig. 7.1),
and 2) there are large differences in the set of features when considering data from a
single study or combinations of multiple studies (see table 7.2).

The latter presumably has the biggest impact on a model’s performance. If a model is
trained on data from all available individuals, the sample size is maximized, but the
number of features is restricted to the smallest common denominator of all studies. In
contrast, when only taking data from a single study, a model can leverage all available
features of that study, but is limited by a rather small sample size. The first approach
might achieve higher performance on the test data because of a larger sample size, but
also might miss out on important indicators. The second approach is characterized by
a higher risk of overfitting due to small sample size, but including additional features
might also increase the discriminatory performance. In addition to using data from all
or only a single study, it could be beneficial to consider a combination of two studies,
too. Even before choosing a particular survival model, one is confronted with the
question “which of these approaches is preferred to train a survival model?”

To address these issues, it clearly is indispensable to consider alternative approaches to
survival analysis beyond traditional models, such as Cox’s proportional hazards model
[67]. Next, I will first formulate heterogeneous survival ensembles, which were used in
the first subchallenge, and then re-visit the question stated above.

7.4 Heterogeneous Survival Ensembles

Ensemble models have been successfully applied in machine learning [37, 78, 126] and
survival analysis [148, 159, 239]. An ensemble comprises several base learners, whose
predictions are aggregated to form an overall prediction. Aggregating multiple base
learners provides an improvement over the prediction of a single base learner if base
learners’ predictions are accurate and at the same time diverse [78, 126]. The first
requirement states that a base learner has to be better than random guessing and the
second requirement that predictions of any two base learners must be uncorrelated.
For instance, random forests satisfy the second condition by training each tree on a
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bootstrap sample of the original training data and by randomizing the split criterion
in each node. It is easy to see that aggregating highly correlated predictions would not
lead to a better overall prediction.

The base learners in most ensemble methods correspond to the same model, e.g.,
survival trees in a random survival forest [159] or regression trees in gradient boosting
[104]. Caruana et al. [51] proposed heterogeneous ensembles, where base learners are
selected from a library of many different learning algorithms, such as support vector
machines, decision trees, k nearest neighbor classifiers and gradient boosting models.
In particular, the library itself can contain other (homogeneous) ensemble models such
that the overall model is an ensemble of ensembles. Following Caruana et al. [51],
constructing a heterogeneous ensemble consists of four steps:

1. Initialize an empty ensemble.
2. Update the ensemble by adding a model from the library that maximizes the

(extended) ensemble’s performance on an independent validation (hillclimb) set.
3. Repeat step 2 until the desired size of the ensemble is reached or all models in

the library have been added to the ensemble.
4. Prune ensemble by reducing it to the subset of base learners that together

maximize the performance on a validation (hillclimb) set.

By populating the library with a wide range of algorithms, the requirement of having
a diverse set of base learners is trivially satisfied, although each model can be trained
on a separate bootstrap sample of the training data as well. The requirement that
base learners should be accurate is addressed by the second step in the algorithm of
Caruana et al. [51] described above. Finally, the goal of the pruning step is to avoid
overfitting on the validation set and to discard base learners that are likely to provide
little benefit to the overall ensemble.

I adapted heterogeneous ensembles to build a large ensemble from a wide range of
survival models to predict survival of mCRPC patients in subchallenge one. The
main advantage of this approach is that it is not necessary to rely on a single survival
model and any assumptions or limitations that model may imply. To the best of
my knowledge, this is the first work that uses heterogeneous ensembles for survival
analysis.

7.4.1 Efficient Ensemble Selection

During construction of a heterogeneous ensemble, an arbitrary error or performance
measure can be optimized by selecting models from the library that maximize that
particular performance on a validation set. As a result, the training data needs to be
split into two non-overlapping parts: one part used to train base learners from the
library, and another part used as validation (hillclimb) set. In domains with small
sample size, which is the case for data from the Prostate Cancer DREAM challenge,
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this approach is problematic. Caruana et al. [50] observed that if the validation set is
small, the ensemble tends to overfit more easily, which becomes especially concerning
when the library is large. It would seem that heterogeneous ensembles are not adequate
in situations when training data is scarce. In the same paper, Caruana et al. [50, p. 3]
proposed a solution that “embed[s] cross-validation within ensemble selection so that
all of the training data can be used for the critical ensemble hillclimbing step.” Instead
of setting aside a separate validation set, they proposed to use cross-validated models
to determine the performance of a model from the library.

Definition 7.1: Cross-Validated Model. A cross-validated model is itself an ensem-
ble of identical models, termed siblings, each trained on a different subset of the
training data. It is constructed by splitting the training data into K equally sized
folds and training one identically parametrized model on data from each of the K
combinations of K−1 folds. Together, the resulting K siblings form a cross-validated
model.

To estimate the performance of a cross-validated model, the complete training data can
be used, because the prediction of a sample in the training data only comes from the
sibling that did not see the particular sample during training. Therefore, the estimated
performance based on all samples in the training data has the same properties as if one
used a separate validation set, but without reducing the size of the training data. If a
truly new data point is to be predicted, the prediction of a cross-validated model is
the average of the predictions of its siblings. Algorithm 7.1 summarizes steps to build
a heterogeneous ensemble from cross-validated survival models.

Note that if a cross-validated survival model is added to the ensemble, the ensemble
actually grows by K identically parametrized models of the same type – the siblings
(see line 13 in algorithm 7.1). Therefore, the prediction of an ensemble consisting of S
cross-validated models is in fact the average of K × S models.

7.4.2 Ensemble Pruning

The ensemble selection algorithm 7.1 described in the previous section only ensures
that base learners are accurate, but does not guarantee that predictions of base learners
are diverse, which is the second important requirement for ensemble methods [78, 126].
One of the earliest approaches was proposed by Margineant and Dietterich [209]. They
considered an ensemble of classifiers and used Cohen’s kappa [60] to estimate the degree
of disagreement of any pair of classifiers from the library on a validation set. Pruning
was achieved by sorting all pairs of base learners according to the kappa statistic and
picking S pairs with the lowest kappa statistic.

Here, predictions are real-valued, because they either correspond to a risk score or to
the time of death. Therefore, I adapted a method for pruning an ensemble of regression
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Algorithm 7.1: Ensemble Selection for Survival Analysis.
Input: Library of N base survival models, training data D, number of folds K, minimum

desired performance cmin.
Output: Ensemble of base survival models exceeding minimum performance.

1 M← ∅
2 for i← 1 to N do
3 Ci ← ∅
4 for k ← 1 to K do
5 Dktrain ← k-th training set
6 Dktest ← k-th test set
7 Mik ← Train k-th sibling of i-th survival model on Dktrain
8 ck ← Prediction of survival model Mik on Dktest
9 Ci ← Ci ∪ {(Dktest, ck)} /* Store prediction and associated ground truth */

10 end
11 c̄i ← Performance of i-th survival model based on predictions and ground truth in Ci
12 if c̄i ≥ cmin then
13 M←M∪ {(Mi1, . . . ,MiK , c̄i)} /* Store K siblings and performance of

i-th model */
14 end
15 end
16 return Base models inM

models that accounts for a base learner’s accuracy and its correlation to other base
learners [241]. I will first describe the method by Rooney et al. [241] when the objective
is to construct an ensemble of regression models (e.g. to predict the exact time of
death) and subsequently propose a modification that enables pruning ensembles of
survival models.

Pruning Regression Ensembles. Given a library of base learner, first, the perfor-
mance of each base learner is estimated either from a separate validation set or via
algorithm 7.1. To estimate a measure of diversity for a pair of regression models,
Rooney et al. [241] utilized a model’s residuals as a per-sample error measurement.
Given the residuals of two models on the same test data, it is straightforward to
obtain a measure of diversity by computing Pearson’s correlation coefficient. They
defined the diversity of a single model based on the correlation of its residuals to the
residuals of all other models in the ensemble and by counting how many correlation
coefficients exceeded a user-supplied threshold τcorr. The diversity score is then given
by subtracting the number of correlated models from the total number of models in the
ensemble and normalizing by the ensemble’s size. If a model is sufficiently correlated
with all other models, its diversity is zero, and if it is completely uncorrelated, its
diversity is one. Finally, Rooney et al. added the diversity score of each model to its
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Algorithm 7.2: Ensemble Pruning Algorithm of Rooney et al. [241].
Input: Set of base survival modelsM and their average cross-validation performance,

validation data Dval, desired size S of ensemble, correlation threshold τcorr.
Output: Aggregated predictions of S base survival models.

1 cmax ← Highest performance score of any model inM
2 if |M| > S then
3 C ← ∅
4 for i← 1 to |M| do
5 pi ← Prediction of data Dval using i-th base survival model inM
6 count← 0
7 for j ← 1 to |M| do
8 pj ← Prediction of data Dval using j-th base survival model inM
9 if i 6= j ∧ correlation(pi, pj ,Dval) ≥ τcorr then

10 count← count+ 1
11 end
12 end
13 di ← (|M| − count)/|M|
14 c̄i ← Average cross-validation performance of i-th survival model inM
15 C ← C ∪ {(i, c̄i/cmax + di)}
16 end
17 M∗ ← Top S survival models with highest score according to C
18 else
19 M∗ ←M
20 end
21 return Prediction of Dval by aggregating predictions of base learners in survival ensemble
M∗

accuracy score (measured relative to the best performing model in the ensemble) and
selected the top S base learners according to the combined accuracy-diversity score. A
generalized version of the algorithm by Rooney et al. [241] is depicted in algorithm 7.2,
where the correlation function would compute Pearson’s correlation coefficient between
residuals of the i-th and j-th model.

Pruning Survival Ensembles. The main difference of an ensemble of survival models
to an ensemble of regression models is that a per-sample error measurement, similar to
residuals in regression, generally does not exist. Instead, the prediction of a survival
model consists of a risk score of arbitrary scale and the ground truth of the time of an
event or the time of censoring. Obviously, a direct comparison of these values, e.g., by
computing the squared error, is not meaningful. Therefore, I propose two alternative
approaches: 1) computing Pearson’s correlation coefficient between predicted risk
scores, and 2) computing Kendall’s rank correlation coefficient (Kendall’s τ) between
predicted risk scores.
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In contrast to the correlation between residuals, both proposed correlation measures
for survival models are directly based on predicted risk scores and do not involve any
ground truth. I believe this is not a disadvantage, because the combined score in line 15
of algorithm 7.2 already accounts for a model’s accuracy, which could be estimated
by the concordance index or integrated area under the time-dependent ROC curve on
a validation set or using algorithm 7.1. In fact, since the diversity score for survival
models does not depend on ground truth, the pruning step can be postponed until
the prediction phase, under the assumption that prediction is always performed for a
set of samples and not a single sample. Consequently, the ensemble will not be static
anymore and is allowed to change if new test data is provided, resulting in a dynamic
ensemble.

In summary, for pruning an ensemble of survival models, algorithm 7.2 is applied
during prediction with the following modifications:

1. validation data Dval is replaced by feature vectors of the test data Xnew,
2. the performance score is based on the concordance index or integrated area under

the time-dependent, cumulative-dynamic ROC curve (see section 3.7 on page 83),
3. the correlation is computed from predicted risk scores either using Pearson’s

correlation coefficient or Kendall’s rank correlation coefficient.

The prediction of the final ensemble is the average predicted survival time of all its
members after pruning.
Note. Harrell’s concordance index (3.128) simplifies to Kendall’s rank correlation
coefficient in the absence of censoring.

7.5 Cross-Validation Results

I will now return to the question posed in section 7.3: Is it better to use all available
features of a single study, or is it better to use all available samples from all studies? I
want to emphasize that my results are entirely based on data from the Prostate Cancer
DREAM challenge, as such, my conclusions are by no means general suggestions for
arbitrary datasets.

7.5.1 Experiments

Since survival times of the AstraZeneca trial have not been revealed to participants, I will
restrict myself to data from the remaining three studies for the following experiments.
In the first experiment, I ran cross-validation on each of the possible combinations
of datasets in table 7.2. Thus, test and training data contained individuals from the
same combination of studies. In the second experiment, I used one of three datasets
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as hold-out data for testing and one or both of the remaining datasets for training.
This setup resembles the challenge more closely, where test data corresponded to a
separate study too. Each experiment was performed with each of the following six
survival models:

1. Cox’s proportional hazards model with ridge penalty (see [67] and section 3.2 on
page 35),

2. Ranking-based Survival Support Vector Machine (see [236] and chapter 5 on
page 99)
a) as linear model without any kernel,
b) or with clinical kernel (see [70] and section 3.3.5 on page 59),

3. (Stochastic) gradient boosting of negative log partial likelihood of Cox’s propor-
tional hazards model (see [239] and section 3.4 on page 60),
a) with randomized regression trees as base learners [37, 39],
b) or with componentwise least squares as base learners [45],

4. Random Survival Forest (see [159] and section 3.6 on page 79).

In addition, training of each survival model was wrapped by a grid search optimization
to find optimal hyper-parameters. For each possible configuration of hyper-parameters,
the complete training data was randomly split into 80% for training and 20% for
testing to estimate a model’s performance with respect to a particular hyper-parameter
configuration. The process was repeated for ten different splits of the training data.
Finally, a model was trained on the complete training data using the hyper-parameters
that on average performed the best across all ten repetitions. Performance was
estimated by Harrell’s concordance index [127, 128], since it was used in evaluation
of models submitted to the Prostate Cancer DREAM challenge too. All continuous
features were normalized to zero mean and unit variance.

7.5.2 Results of Within-In Study Validation

Figure 7.3 summarizes the results when performing cross-validation for any of the seven
datasets in table 7.2. Overall, the average concordance index ranged between 0.629
and 0.713 with a mean of 0.668. It is noteworthy that all classifiers but survival SVM
models performed best on data of the Celgene study, which comprised 526 subjects and
383 features, which was the highest number of features among all studies. A survival
SVM was likely at an disadvantage due to the high number of features and because
feature selection is not embedded into its training as for the remaining models. In fact,
survival SVM models performed worst on data from Celgene and Sanofi, which were
the datasets with the most features. SVM-based models performed best if data from at
least two studies were combined, which increased the number of samples and decreased
the number of features. Moreover, the results show that linear survival support vector

170



7.5 Cross-Validation Results

Co
x

m
od

el

Gr
ad

ien
tB

oo
sti

ng
(le

as
ts

qu
ar

es
)

Gr
ad

ien
tB

oo
sti

ng
(tr

ee
)

Ra
nd

om
Su

rv
iva

lF
or

es
t

Su
rv

iva
lS

VM
(c

lin
ica

lk
er

ne
l)

Su
rv

iva
lS

VM
(li

ne
ar

)

m
ea

n
mean

Sanofi

MSKCC & Sanofi

MSKCC & Celgene

MSKCC

Celgene & Sanofi

Celgene

All

0.681 0.674 0.669 0.681 0.663 0.64 0.668

0.666 0.661 0.65 0.665 0.648 0.629 0.653
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Figure 7.3: Cross-validation performance of survival models on data from Memorial Sloan
Kettering Cancer Center (MSKCC), Celgene and Sanofi as well as any combina-
tion of these datasets. The last column (mean) denotes the average performance
of all models on a particular data set and the last row (mean) denotes the
average performance of a particular model across all datasets. Numbers indicate
the average of Harrell’s concordance index across five cross-validation folds.

machines performed poorly. A considerable improvement could be achieved when
using kernel-based survival support vector machines with the clinical kernel, which is
especially useful if data is a mix of continuous, categorical and ordinal features. For
low-dimensional data, the kernel survival SVM could perform equally well or better
than gradient boosting models, but always lacked behind random survival forest.

When considering the performance of models across all datasets (last row in fig. 7.3),
random survival forest and Cox’s proportional hazards model stood out with an average
c index of 0.681, outperforming the runner-up gradient boosting with componentwise
least squares base learner. Random survival forest performed better than Cox’s
proportional hazards model on 4 out of 7 datasets and was tied on one dataset. The
results seem to indicate that a few datasets contain non-linearities, which are modeled
by random survival forest, but not by gradient boosting with componentwise least
squares and Cox’s proportional hazards model. Nevertheless, the latter performed as
well as random survival forest when averaging results over all datasets.
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7 Predicting Survival of Prostate Cancer Patients

Finally, I want to mention that 5 out of 6 survival models performed worst on the
Sanofi data. Although it contains the largest number of patients, its median follow-up
time is almost by a factor two larger than the next study and the overlap in the
distribution of censoring and survival times is rather small (see fig. 7.1). Moreover, the
amount of censoring in the Sanofi study is relatively low compared to the other studies.
Therefore, the observed drop in performance might stem from the fact that the bias
of Harrell’s concordance index usually increases as the amount of censoring increases
[11]. As an alternative, I considered the integrated area under the time-dependent,
cumulative-dynamic ROC curve [153, 293], which was used as alternative evaluation
measure in the Prostate Cancer DREAM Challenge. However, comparing the estimated
integrated area under the ROC curve across multiple datasets is not straightforward
when follow-up times differ largely among studies. If the integral is estimated from
time points that exceed the follow-up time of almost all patients, the inverse probability
of censoring weights used in the estimator (3.129) cannot be computed, because the
estimated probability of censoring at that time point becomes zero. On the other hand,
if time points are defined too conservatively, the follow-up period of most patients will
end after the last time point and the estimator would ignore a large portion of the
follow-up period.

In the training data of the Prostate Cancer DREAM challenge, the median follow-up
times were 279, 357 and 642.5 days for studies from Celegne, Memorial Sloan Kettering
Cancer Center and Sanofi, respectively. Hence, defining time points that lead to
adequate estimates of performance in all three datasets is challenging due to large
differences in the duration of follow-up periods (see fig. 7.1).

7.5.3 Results of Between Study Validation

In the second set of experiments, training data and testing data were from separate
studies, which resembles the setup of the Prostate Cancer DREAM challenge. Figure 7.4
summarizes the results of all experiments. Note that the number of features considered
in these experiments corresponded to the intersection between features of training and
test data.

Overall, the performance of models was in a similar range as in the previous set of
experiments, except if Sanofi data was used for testing. If performance was estimated
on the Sanofi data, models performed considerably worse compared to the remaining
datasets. I believe the reason for these results are similar to the cross-validation results
on the Sanofi data described in the previous section. The bias of Harrell’s concordance
index likely is one factor, the other that the follow-up times differed drastically between
training and testing in this setting. If the follow-up period is much shorter in the
training data than in the testing data, it is likely that models generalize badly for
time points that were never observed in the training data, which is only the case if the
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Figure 7.4: Performance results using hold-out data from Memorial Sloan Kettering Cancer
Center (MSKCC), Celgene and Sanofi. One study was used as hold-out data
(indicated by the name to the right of the arrow) and one or two of the remaining
studies as training data. Numbers indicate Harrell’s concordance index on the
hold-out data.

Sanofi data is used for testing, but not if data from Celgene or the Memorial Sloan
Kettering Cancer Center is used (cf. fig. 7.1).

The experiments also confirmed observations discussed in the previous section: 1) on
average, random survival forest performed better than gradient boosting and survival
SVM, and 2) using survival support vector machines with clinical kernel is preferred
over the linear model. Interestingly, all models, except linear survival SVM, performed
best when trained on the maximum number of available patient records, which is
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different from results in the previous section, where models trained on data with more
features performed better. Moreover, an unexpected result is that Cox’s proportional
hazards model was able to outperform many of the machine learning methods, including
random survival forest, which is able to implicitly model non-linear relationships that
are not considered by Cox’s proportional hazards model. The results show that models
with embedded feature selection (gradient boosting and random survival forest) are
not necessarily better than models that take into account all features (Cox model
and survival SVM), which is orthogonal to results in the previous section. A possible
explanation for this observation might be slight differences in the importance of features
between training and test data and considering more features compensates for that;
whereas a parsimonious model is unable to explain the test data well, as is evident from
the performance of gradient boosting with componentwise least squares base learner.

Conclusion

From the results presented in this and the previous section, I made the following
conclusions, which ultimately led to employing heterogeneous survival models:

1. survival support vector machine should be used in combination with the clinical
kernel,

2. increasing the number of samples is preferred over increasing the number of
features, especially if follow-up periods are large,

3. there is no single survival model that is clearly superior to all other survival
models.

7.6 Results of Prostate Cancer DREAM Challenge

In the previous section, I described results of internal cross-validation on data from
Memorial Sloan Kettering Cancer Center, Celgene and Sanofi. In this section, I
will illustrate results on the independent AstraZeneca trial. As such, evaluation was
performed by the Prostate Cancer DREAM challenge organizers during the final
submission round to determine the winners of individual subchallenges.

7.6.1 Evaluation Procedure

All predictions submitted to the first subchallenge were evaluated based on the inte-
grated area under the time-dependent, cumulative-dynamic ROC curve (see section 3.7
on page 83), integrated over time points every 6 months up to 30 months after the
first day of treatment. In addition, models that predict the exact time of death were
evaluated based on the root mean squared error (RMSE) with respect to deceased
patients in the test data.
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Instead of relying on a single performance estimate, the challenge’s final evaluation
was based on one thousand bootstrap samples of data from 313 patients from the
AstraZeneca study. Based on these bootstrap samples, several additional quantities
were computed, a p-value that tells whether a prediction is significantly different from
random, a Bayes factor that indicates the strength of evidence that a submission is
better than the model by Halabi et al. [121], and a Bayes factor that compares a model
to the overall best performing model.

Hypothesis Test. The p-value was obtained via permutation testing (see e.g. [115]).
The distribution of a performance score under the null hypothesis that a model’s
predictions are no different from a random model is constructed by randomly permuting
the labels in the test data and re-computing the performance of a model’s predictions.
By repeating this process several times, a one-sided p-value can be calculated as the
proportion of permutations where the estimated performance was higher than on the
original test data. Let f denote a model, D0 the original test data and D̃i the i-th
permuted test data. A p-value can be determined empirically by

p = 1
k

k∑

i=1
I(perf(f,D0) ≤ perf(f, D̃i)), (7.1)

where perf(f,D) is a function that computes a performance measure of a model f on
data D [115]. In the challenge’s context, k = 1000 and perf corresponded either to
the integrated area under the time-dependent ROC curve or the negative root mean
squared error.

Bayes Factor. The Bayes factor provides an alternative to traditional hypothesis
testing, which relies on p-values (see e.g. [311]). Given two models f1 and f2 and an
observed performance measure ρ of model f1, the Bayes factor B12 is defined as

B12 = P (ρ|f1)
P (ρ|f2) =

∫
P (ρ|θ)P (θ|f1)dθ

∫
P (ρ|θ)P (θ|f2)dθ , (7.2)

where P (ρ|f1) is the likelihood under model f1 and P (θ|f1) the prior distribution of θ,
with θ denoting the true performance of model f1 (analogous for P (ρ|f2) and P (θ|f2)).
Equation (7.2) shows that the Bayes factor is the ratio of the probability of observing
ρ under each of the models. In Bayesian terms, posterior beliefs (posterior odds) are
formed by multiplying prior beliefs (prior odds) by the Bayes factor [311]:

P (f1|ρ)
P (f2|ρ) = B12

P (f1)
P (f2) .

Thus, the Bayes factor is a measure of evidence: the larger the deviation from 1, the
stronger the evidence that prior beliefs must be updated. A common scale to interpret
the evidence is due to Jeffreys [160] and summarized in table 7.3.
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Table 7.3: Scale of evidence for Bayes factors as suggested in [160].

B12 Interpretation

< 10−1 Strong evidence for f2.
[10−1; 3−1] Moderate evidence for f2.

[3−1; 1] Weak evidence for f2.
[1; 3] Weak evidence for f1.
[3; 10] Moderate evidence for f1.
> 10 Strong evidence for f1.

In the Prostate Cancer DREAM challenge, the Bayes factor was used to determine if
there is sufficient evidence to argue that one model is superior or inferior to another
model. Models were considered as tied if the associated Bayes factor only indicated
weak evidence according to table 7.3. The Bayes factor was estimated from k = 1000
bootstrap samples Di of the test data D0 by

B̂12 =
∑k
i=0 I(perf(f1,Di) > perf(f2,Di))∑k
i=0 I(perf(f1,Di) ≤ perf(f2,Di))

. (7.3)

7.6.2 Results of Subchallenge 1a: Ranking Patients According to
Survival Time

Based on conclusions drawn from experiments on the challenge’s training data in
section 7.5, the final model was chosen to be a heterogeneous ensemble of different
survival models, trained on the combined data from all three studies to maximize the
amount of patients in the training data. Four of the models listed in section 7.5.1
formed the basis of the ensemble; linear survival support vector machines were excluded,
because they performed poorly when not combined with the clinical kernel. Cox’s
proportional hazards model had to be excluded, because I encountered numerical
problems in the optimization that could not be resolved before the conclusion of the
challenge. Due to all survival models having one or more hyper-parameters, I added the
same model multiple times, but each with a different hyper-parameter configuration, as
summarized in table 7.4 and described in more detail in appendix B.2. The vast majority
(1,728) of models in the library corresponded to gradient boosting with regression trees
as base learners, because regression trees had the most hyper-parameters. In total, the
library comprised 1,801 models. Performance was estimated based on cross-validated
models with five folds (see algorithm 7.1) and Harrell’s concordance index [127, 128].

After estimating the performance of all 1,801 models on the combined data from
all three studies, models with a c index below 0.66 were discarded, which left 999
candidate models to be evaluated during prediction. During prediction, the diversity of
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Table 7.4: Heterogeneous ensemble of survival models used in subchallenge 1a of the Prostate
Cancer DREAM challenge. All denotes the initial size of the ensemble, Pruned
the size after pruning models with Harrell’s concordance index below 0.66, and
Top 5% to the final size of the ensemble corresponding to the top 5% according
the combined accuracy and diversity score in algorithm 7.2.

Configurations

Survival Model All Pruned Top 5%

Gradient Boosted Cox Model (tree) 1,728 936 56
Gradient Boosted Cox Model (least squares) 36 36 7

Random Survival Forest 24 24 24
Ranking-based Survival SVM (clinical kernel) 13 3 3

∑
1,801 999 90

all remaining models was evaluated following algorithm 7.2, where Pearson’s correlation
coefficient and τcorr = 0.6 was used. The final ensemble was limited to the top 5% (90)
models based on the combined score of concordance index and diversity as summarized
in table 7.4.

Figure 7.5 depicts scatter plots comparing models’ performance and diversity. Most of
the gradient boosting models with regression trees as base learners were pruned because
their predictions were redundant to other models in the ensemble (upper left). In
contrast, all random survival models remained in the ensemble throughout (lower left).
The highest diversity was observed for gradient boosting models (mean = 0.279) and
the highest accuracy for random survival forests (mean = 0.679). The final ensemble
comprised all types of survival models in the library, strengthening my conclusion from
experiments in section 7.5.1 that there is no universally best survival model.

Figure 7.6 summarizes the performance of submitted models by all teams, evaluated
on the challenge’s test data consisting of 313 patients of the AstraZeneca study. As
expected, all models performed significantly better than random and 30 out of 51
models outperformed the baseline model by Halabi et al. [121] by achieving a Bayes
factor greater than 3. Results show that there was a clear winner in team FIMM-UTU
and that the performance of the remaining models were very close to each other; there
was merely a difference of 0.0171 points in integrated area under the ROC curve (iAUC)
between ranks 2 and 25.

The proposed heterogeneous ensemble of survival models by team CAMP achieved an
iAUC score of 0.7646 on the test data and was ranked 23rd according to iAUC and
20th according to Bayes factor with respect to the best model (FIMM-UTU). When
considering the Bayes factor of the proposed ensemble method to all other models,
there is only sufficient evidence (Bayes factor greater 3) that five models performed
better (marked italic bold in fig. 7.6). The Bayes factor to the top two models was
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Figure 7.5: Concordance index and diversity score of 999 survival models for subchallenge 1a.
The concordance index was evaluated by cross-validated models on the training
data from the Memorial Sloan Kettering Cancer Center, Celgene and Sanofi.
Diversity was computed based on Pearson’s correlation coefficient between
predicted risk scores for 313 patients of the AstraZeneca trial (final scoring set).

20.3 and 6.6 and ranged between 3 and 4 for the remaining three models. With respect
to the model by Halabi et al. [121], there was strong evidence (Bayes factor 12.2;
iAUC 0.7432) that heterogeneous ensembles of survival models could predict survival
of mCRPC patients more accurately.

7.6.3 Results of Subchallenge 1b: Predicting Exact Time of Death

In the second part of subchallenge one, participants were tasked with predicting the
exact time of death rather than ranking patients according to their survival time. As
for the first part of this subchallenge, the final model was a heterogeneous ensemble,
but based on a different library of models. Three models formed the basis of the
ensemble: gradient boosted accelerated failure time model [148] with randomized
regression trees [37, 39] or componentwise least squares as base learner [45], and hybrid
survival support vector machine (5.37) with clinical kernel [70, 236]. The library
contained several of these models with different hyper-parameter configurations as
summarized in table 7.5 (see appendix B.2 for a complete list). The ensemble was
constructed in a similar manner as the ensemble used for subchallenge 1a. Instead
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Figure 7.6: Final results of all 51 teams for subchallenge 1a. Models are sorted according
to the integrated area under the time-dependent, cumulative-dynamic ROC
curve (iAUC) on 313 patients of the AstraZeneca trial. Colors indicate groups
of models that performed similar to the top-performing model in that group
according to Bayes factor (weak evidence according to table 7.3). Submissions
in bold italic performed better than the proposed heterogeneous ensemble of
survival models (moderate or strong evidence). The baseline model by Halabi et
al. [121] is marked with an arrow. CAMP: Heterogeneous ensemble of survival
models. BF: Bayes factor of top-performing model compared to other models.
Figure is based on data courtesy of Tao Wang and the Prostate Cancer DREAM
challenge organizers.
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Table 7.5: Ensemble used in subchallenge 1b. All denotes the initial size of the ensemble,
Pruned the size after pruning models with a root mean squared error more than
15% above the error of the best performing model, and Top 5% to the final size
of the ensemble corresponding to the top 5% according the combined accuracy
and diversity score in algorithm 7.2. AFT: Accelerated Failure Time.

Configurations

Regression Model All Pruned Top 5%

Gradient Boosted AFT model (tree) 1,728 1,236 90
Gradient Boosted AFT model (least squares) 36 36 0

Hybrid Survival SVM (clinical kernel) 78 9 2
∑

1,842 1,281 92

of concordance index, I used the root mean squared error (RMSE) with respect to
all uncensored samples in the test data and converted it to an accuracy measure by
multiplying its reciprocal by the RMSE of the best performing model in the library,
i.e., accuracy(i) = (minj=1,...,S RMSE(j))/RMSE(i), where S is size of the library. In
addition, pruning by accuracy and diversity was performed during training following
algorithms 7.1 and 7.2 using Pearson’s correlation coefficient between models’ residuals
and setting cmin = 0.85 as well as τcorr = 0.6.

After evaluating the RMSE of all 1,842 models in the ensemble, models with an RMSE
more than 15% above the RMSE of the best performing model in the library were
discarded. The diversity score from the remaining 1,281 models was computed and
added to the accuracy score according to algorithm 7.2. The final ensemble comprised
only regression models that were among the top 5% (92) with respect to the combined
accuracy-diversity score. Individual pruning steps are summarized in table 7.5.

Figure 7.7 illustrates the RMSE and diversity of all models after the first pruning step.
In contrast to the ensemble of survival models used in the first part of subchallenge
one, the ensemble in this subchallenge was characterized by very little diversity: the
highest diversity was 0.064. In fact, all 92 models included in the final ensemble had a
diversity score below 0.001, which means that pruning was almost exclusively based on
the RMSE. Gradient boosting models with componentwise least squares base learners
were completely absent from the final ensemble and only two hybrid survival support
vector machine models had a sufficiently low RMSE to be among the top 5%.

The evaluation of all submitted models on the challenge’s final test data from the
AstraZeneca trial is summarized in fig. 7.8. In this subchallenge, the proposed hetero-
geneous ensemble of regression models achieved the lowest root mean squared error
(194.4) among all submissions. Similar to the results in the first part, the difference
in RMSE between the 1st placed model and the 25th placed model was less than 25.
With respect to my proposed winning model, there was insufficient evidence to state it
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Figure 7.7: Root mean squared error (RMSE) and diversity score of 1,281 regression models
for subchallenge 1b. The RMSE was evaluated by cross-validated models on
the training data from the Memorial Sloan Kettering Cancer Center, Celgene
and Sanofi. Diversity was computed based on Pearson’s correlation coefficient
between residuals on the training data.

outperformed all other models, because the comparison to five other models yielded a
Bayes factor less than three.

7.6.4 Discussion and Conclusion

In the Prostate Cancer DREAM challenge, participants were asked to develop novel
approaches to predict survival of metastatic, castrate-resistant prostate cancer patients
based on health records of 1,600 patients, combined from three phase III clinical trials.
To successfully complete this task, teams had to develop an end-to-end solution that
addresses several intermediate steps, from extracting patient-level features from raw
data, over imputing missing values, transforming and cleaning data, to eventually
training a predictive survival model. Teams’ final solutions were characterized by a
large diversity due to countless alternatives for each of these steps. Nevertheless, results
indicate that the predictive performance of most proposed solutions were statistically
indistinguishable from each other, despite a large variety in the choice of features and
algorithms that led to the final prediction.

My proposed solution was mostly based on data-driven techniques without including
much prior knowledge about prostate cancer in general. Of course, this is partly
attributed to the lack of detailed medical background in the field of prostate cancer,
which I had none before working on this challenge. In the first step, features were
derived from raw medical records by extracting as much information as possible such
that a patient’s state can be described accurately. Due the data being a combination
of four clinical trials, several issues were identified early on: 1) features contained
structured missingness, because some information was not recorded for a subset of
trials, 2) the duration of follow-up periods differed considerably among trials, and 3)
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Figure 7.8: Final results of all 51 teams for subchallenge 1b. Models are sorted according
to the root mean squared error (RMSE) on 313 patients of the AstraZeneca
trial. Colors indicate groups of models that performed similar to the top-
performing model in that group according to Bayes factor (weak evidence
according to table 7.3). Submissions in bold italic performed similar to the
proposed heterogeneous ensemble of regression models (weak evidence). CAMP:
Heterogeneous ensemble of regression models. BF: Bayes factor of top-performing
model compared to other models. Figure is based on data courtesy of Tao Wang
and the Prostate Cancer DREAM challenge organizers.
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studies used a slightly different nomenclature in describing medications, therapies and
comorbitities.

I addressed the first issue by partitioning the data into seven subsets based on the
extent of available features for a particular study, or the combination of data from
multiple studies (see section 7.2). Regarding the second issue, an extensive set of
experiments summarized in section 7.5 demonstrated that if the follow-up period of
patients used during training is much shorter than for patients in the test data, all
survival models generalize modestly, disregarding the amount of features available
during training. From these results, I concluded that it would be best to combine
data from all three clinical trials for the final prediction in order to maximize the
number of distinct time points a model has seen during training. Interestingly, the
winning team of subchallenge 1a completely excluded data from the Memorial Sloan
Kettering Cancer Center in their solution. They argued that it was too dissimilar to
data of the remaining three studies, including the test data [181]. Therefore, it would
be interesting to investigate unsupervised approaches proposed in chapter 6 that could
deduce a similarity or distance measure between patients. The resulting similarities
could be used to decrease the influence of outlying patients during training.

The second important conclusion from experiments in section 7.5 is that no survival
model clearly outperformed all other models in all the evaluated scenarios. To some
extent, this not surprising since the “no free lunch” theorem already states that the
average performance of any two algorithms averaged over all problems is equal [319,
320]. The theorem implies that if one algorithm outperforms another algorithm on
one problem, there must be a different problem were the relationship is reversed.
Therefore, instead of relying on a single survival model with a single hyper-parameter
configuration, I constructed a heterogeneous ensemble of several survival models with
different hyper-parameter configurations. In total, I considered a library consisting
of over 1,800 different models, which was pruned to ensure accuracy and diversity of
models as described in section 7.4.

The proposed ensemble approach was able to secure the win in subchallenge 1b, where
the task was to predict the exact time of death rather than providing a relative risk score,
which was the objective of subchallenge 1a. In subchallenge 1a, the ensemble approach
was significantly outperformed by models of five competing teams (see fig. 7.6). Due
to large differences in teams’ overall solutions it is difficult to pinpoint the reason for
the observed performance difference: it could be attributed to the choice of predictive
model, but also to choices made during pre-processing or filtering the data. From
my experience of the three intermediate scoring rounds before the final submission, I
would argue that identifying the correct subset of patients in the training data that
is most similar to the test data is more important than choosing a predictive model.
By training a survival model on data combined from three trials and applying it to
patients from a fourth trial, inconsistencies between studies inevitably lead to outliers
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with respect to the test data, which in turn diminishes the performance of a model – if
not addressed explicitly during training.

A possible explanation why the heterogeneous ensemble worked better for regression
than for survival analysis might be how predictions from members of the ensemble were
aggregated. In regression, the prediction is a continuous value that directly corresponds
to the time of death, which allows simple averaging of individual predictions. I
used the same approach to average predictions from survival models, despite slightly
different semantics between predictions of regression and survival models. Although
both predictions are real-valued, the prediction of a survival model does generally
not correspond to the time of death, but is a risk score on an arbitrary scale. A
homogeneous ensemble only consists of models of the same type, therefore predictions
can be aggregated by simply computing the average. A problem arises for heterogeneous
ensembles if the scale of predicted risk scores differs among models.

To illustrate the problem, consider an ensemble consisting of survival trees as used in a
random survival forest (see section 3.6 on page 79) and ranking-based linear survival
support vector machines (see chapter 5 on page 99). The prediction of the former
is based on the cumulative hazard function estimated from samples residing in leaf
nodes a new sample was assigned to. Thus, predictions are always positive due to the
definition of the cumulative hazard function in eq. (2.8). In contrast, the prediction
of a linear survival SVM is the inner product between a model’s vector of coefficients
and a sample’s feature vector, which can take on negative as well as positive values. It
is easy to see that, depending on the scale difference, simply averaging predicted risk
scores favors models with generally larger risk scores (in terms of absolute value) or
positive and negative predicted risk scores cancel each other out. Instead of simply
averaging risk scores, the problem could be alleviated if models’ risk scores were first
transformed into ranks, thereby putting them on a common scale, before averaging the
resulting ranks.

Conclusion

I proposed an end-to-end solution to predict survival of metastatic, castrate-resistant
prostate cancer patients based on features derived from medical records. In my opinion,
the most challenging part in the Prostate Cancer DREAM Challenge was to find a
suitable way to combine training data from three separate clinical trials such that
models still generalized well when applied to patients from an independent fourth study.
The main focus of the challenge was to develop new models that predict a patient’s
relative risk of death. I addressed this problem by proposing heterogeneous survival
ensembles, which are able to aggregate predictions from a wide variety of survival
models. Although the model was significantly outperformed by 5 out of 50 competing
solutions in subchallenge 1a, the proposed ensemble approach for subchallenge 1b could
predict the exact time of death more accurately than any other submitted model. I
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believe this result is encouraging and warrants further research in using heterogeneous
ensembles for survival analysis.

The code and documentation underlying the methods presented in this chapter can be
found at http://dx.doi.org/10.7303/syn3647478.
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8 Conclusion

I have addressed several important questions related to survival analysis using machine
learning techniques. First, I have introduced a much improved optimization algorithm
for linear ranking-based survival support vector machines. I have shown that training
is characterized by a lower time and space complexity than previous training algo-
rithms, without drawing upon an approximation of the objective function. Second, I
demonstrated that the same ideas can be used to obtain a non-linear decision boundary
by applying the representer theorem and performing optimization in the primal rather
than the dual. Moreover, it is straightforward to obtain a hybrid model that optimizes
a ranking loss and regression loss concurrently.

I studied feature extraction algorithms in the context of survival analysis with hetero-
geneous, high-dimensional feature vectors. I proposed utilizing random survival forests
to address two of the main problems encountered with feature extraction methods
based on spectral embedding: 1) neighborhood graph construction and 2) out-of-sample
extension. In addition, using a random survival forest to construct a neighborhood
graph offers the advantage that right censored survival times are taken into account. I
empirically evaluated 10 combinations of feature extraction methods and 8 survival
models, which led me to conclude that a survival model trained on a low-dimensional
embedding of the training data is a valuable alternative to a survival model with
embedded feature selection if the number of training samples is sufficient to describe
the underlying manifold. For small sample sizes (< 500), embedded feature selection
methods are preferred.

In my contributions to the Prostate Cancer DREAM Challenge, I introduced heteroge-
neous survival ensembles that build upon the diversity in available survival models.
When predicting the exact time of death of patients with metastatic, castrate-resistant
prostate cancer, my heterogeneous ensemble of gradient boosted accelerated failure
time models and hybrid survival support vector machines achieved the lowest prediction
error among all 51 submissions.

There are other research questions I have not presented in this dissertation. One
advantage of kernelized survival support vector machines is that it could be applied
to any kind of data as long as similarities can be captured by a suitable positive
definite kernel matrix. This offers interesting applications when training samples are
represented as structured objects rather than feature vectors. For instance, the gene
ontology [14] represents genes in an acylic graph according to the function of associated
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proteins. Thus, instead of merely using gene expression values as a vector, prior
information could be incorporated into the learning process by encoding expression
values in a graph representing genes’ biological functions. A similar concept was used
in [330], where prior knowledge about co-expression of genes was encoded in a graph
and used in a regularizer to Cox’s proportional hazards model. However, samples are
still presented as feature vectors and only the corresponding coefficients are constrained
by the graph. Graph-based representations are also common outside of omics data:
medical conditions are organized in the International Classification of Diseases (ICD),
treatments are organized in diagnosis-related groups, and RadLex [187] provides a
hierarchical nomenclature of radiology terms.

If a patient’s state is described by multiple structured objects, such as the ones described
above, another interesting problem arises. In the literature, this problem is often referred
to as multi-modality learning, which is often studied when combining imaging data
(e.g. ultrasound and computer tomography) from multiple imaging modalities (e.g.
[143, 289, 324]). If similarities between subjects are described by modality-specific
kernel matrices, multiple kernel learning can be used to obtain a kernel matrix that
fuses information from all modalities (e.g. [185, 274]). The resulting kernel matrix is a
weighted sum of modality-specific kernels and weights are learned during training. The
motivation of multiple kernel learning is similar to my motivation of using multiview
spectral embedding to combine information from multiple sources in chapter 6. To
my surprise, experiments did not show any apparent advantage of multiview spectral
embedding over singleview spectral embedding. It would be interesting to investigate
whether this observation holds for multiple kernel learning as well.

Finally, I investigated multi-task learning for survival analysis. Multi-task learning
algorithms explicitly model the scenario when observations in a dataset are clustered
into tasks and the relationship between features and survival time slightly differ from
task to task. For instance, consider a dataset collected from multiple centers. Usually,
such data will feature center-specific effects due to different protocols, treatments,
patient population, and so forth [8] – something I observed in the context of the
Prostate Cancer DREAM Challenge in chapter 7 too. A single model that does not
distinguish between centers (the tasks) would likely generalize badly, because estimated
coefficients are biased. In contrast, if a model is fit to data of each individual center,
the sample size would be rather small and lead to overfitting in the sense that the
model is ineffective when applied to data from a different center.

Multi-task learning tackles this problem by finding latent commonalities among centers
and modeling the center-specific effects that cannot be explained by a common model.
Formally, for an arbitrary loss function L and T tasks, the multi-task learning objective
is

argmin
w0,w1,...,wT

>∑

i=1
L(w0 +wt,Dt) +

>∑

t=0
λt‖wt‖2

2, (8.1)
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where λt > 0 is a task-specific regularization term, w0 are the coefficients representing
the commonality, and wt and Dt the coefficients and training data of the t-th task,
respectively. I experimented with this model by following techniques proposed by
Argyriou et al. [12] and Chapelle et al. [55]. Preliminary results using synthetic as
well as data from the Prostate Cancer DREAM Challenge showed promising results.
Multi-task survival models outperformed aggregate models (a single model for all
tasks) and independent models (one model for each task). However, a more elaborate
evaluation concerning the interplay between the number of tasks and number of samples
and its effect on the predictive performance is necessary. In addition, similar ideas
have been explored in statistics, where the commonality is modeled as a fixed effect
and the impact of individual tasks as random effect. With respect to survival analysis,
this is known as a frailty model (e.g. [80]).

I believe that the ongoing surge of medical data requires the development of novel
machine learning techniques to maintain the advancement of medical science, which is
expected to draw conclusions from massive amounts of clinical data. In this dissertation,
I contributed to the solution of this challenge by proposing new ideas to improve
learning from large, heterogeneous survival data. In particular, I demonstrated that
state-of-the-art methods in convex optimization significantly reduce training time and
space requirements of existing survival models, and that it is necessary to explicitly
consider survival time, censoring and that feature vectors are a mix of continuous and
categorical variables when applying feature extraction methods to overcome the curse
of dimensionality.
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Appendix A

Experiments Regarding Dimensionality
Reduction Methods

A.1 Hyper-Parameter Configurations

The list below provides a detailed list of hyper-parameter configurations used in the comparison
of feature extraction and feature selection methods in section 6.3.

∗: Only relevant if neighborhood graph was constructed by constraining edges between
patients of similar survival time. †: Only relevant if stochastic gradient boosting was
performed. ‡: Only relevant if gradient boosting with dropout was performed.

• Multview Spectral Embedding (40 configurations or 160 configurations∗):
– Complementary factor r: 1.1, 1.3, 1.5, 2, 6
– Dimensionality d of low-dimensional representation (relative to full data): 1%,

5%, 10%, 15%, 20%, 25%, 50%, 75%
– Number of nearest neighbors: log(# samples)
– Percentiles∗: [50]; [33, 66]; [25, 50, 75]; [20, 40, 60, 80]

• Laplacian Eigenmaps and Locality Preserving Projections (8 configurations):
– Dimensionality d of low-dimensional representation (relative to full data): 1%,

5%, 10%, 15%, 20%, 25%, 50%, 75%
– Number of nearest neighbors: log(# samples)

• Principal Component Analysis (8 configurations):
– Dimensionality d of low-dimensional representation (relative to full data): 1%,

5%, 10%, 15%, 20%, 25%, 50%, 75%
• Kernel PCA (8 configurations):

– Dimensionality d of low-dimensional representation (relative to full data): 1%,
5%, 10%, 15%, 20%, 25%, 50%, 75%

– Kernel function: k(xi,xj) = exp(−dRSF(xi,xj))
• Cox’s Proportional Hazards Model with `1 (LASSO) or `2 (ridge) penalty (13 configu-

rations):
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– Regularization weight λ: 2−12, 2−10, . . . , 212

• Survival Support Vector Machine (13 configurations):
– Weight γ of loss function: 2−12, 2−10, . . . , 212

• Random Survival Forest (24 configurations):
– Number of trees: 1,000
– Number of features to evaluate per split:

√
# features

– Number of candidate splits to evaluate per feature: 2, 5, 10, ∞
– Minimum number of samples in a terminal node: 3, 5, 10, 25, 50, 100

• Gradient boosting with regression tree as base learner (1,728 configurations† or 2,304
configurations‡):

– Number of iterations: 100, 500, 1000, 1500
– Subsampling percentage: 100%, 75%, 50%
– Learning rate†: 0.06, 0.125, 0.25
– Dropout rate‡: 10−4, 0.015, 0.03, 0.045
– Maximum number of leaf nodes: 5, 10, 20
– Minimum number of samples per split: 2, 5, 10, 20
– Maximum number of features to evaluate per split: all,

√
# features, 50%, 75%

• Gradient boosting with componentwise least squares as base learner (36 configurations†
or 48 configurations‡):

– Number of iterations: 100, 500, 1000, 1500
– Subsampling percentage: 100%, 75%, 50%
– Learning rate†: 0.06, 0.125, 0.25
– Dropout rate‡: 10−4, 0.015, 0.03, 0.045

A.2 Description of Datasets

Below is a list of features and their corresponding view from three clinical datasets used in
the experiments in section 6.3.

Table A.1: Views and their features of the breast cancer dataset [77].

View Feature

Demographics Age
Diameter of tumor (in mm)
Histopathological grading
Estrogen-receptor-positive tumor

Gene expression 76-gene signature according to Desmedt et al. [77]
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Table A.2: Views and their features of the coronary artery disease dataset [217].

View Feature

Angiographic measurements # of Lesions
(31 features) AHA/ACC class (max)

—— (min)
—— (mode)
Angulation (min)
—— (mode)
Bifurcation (max)
—— (min)
—— (mode)
Calcification (min)
—— (mode)
Chronic occlusion (min)
—— (mode)
Diameter stenosis (%; mean)
Eccentricity (max)
—— (min)
—— (mode)
Lesion in acute coronary syndrome (max)
—— (mode)
Lesion length (mm; mean)
Minimal luminal diameter (mm; mean)
Multivessel disease
Ostial location (max)
—— (mode)
Reference vessel diameter (mm; mean)
Restenotic lesion (min)
—— (mode)
TIMI flow grade before PCI (min)
—— (mode)
Tortuous vessel (min)
—— (mode)
Vessel treated (mode)

Laboratory biomarkers Creatinine (mg/dl)
(4 features) C-reactive protein (mg/l)

High-sensitivity troponin T (µg/l)
N-terminal pro–brain natriuretic peptide (ng/l)

Extent of disease Angina class
(7 features) Extent of coronary artery disease

Heart rate
Left ventricular ejection fraction (%)
New York Heart Association class
Reduced left ventricular function
ST-elevation myocardial infarction

Medications ACE inhibitor
(6 features) Acetylsalicylic acid

β-Blocker
Calcium antagonist

Continued on next page
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View Feature

Diuretics
Nitrate
Statin

Demographics/Disease history Age (years)
(12 features) Arterial hypertension

Body-mass index (kg/m2)
Diabetes
Family history of CAD
Hypercholesterolemia
Male
Previous coronary artery bypass grafting
Previous percutaneous coronary intervention
Previous myocardial infarction
Repeated revascularization
Smoking

Table A.3: Views and their features of the Framingham Offspring dataset [166]. All features were
collected from two exams, except those marked by *, which were only available for one
exam.

View Feature

Demographics/Disease history Age
(24 features) Ankle Edema

Chest Discomfort*

Diastolic Blood Pressure (by physician)
Diastolic Blood Pressure (by nurse)
Dyspnea Increase
Dyspnea on Exertion
Orthopnea*

Sex*

Systolic Blood Pressure (by 1st physician)
Systolic Blood Pressure (by 2nd physician)*

Systolic Blood Pressure (by nurse)
Treatment for Hypertension
Weight

Life-style Age Start Cigarette Smoking*

(17 features) Beer Intake per Week
Cholesterol Lowering Diet
Cocktails per Week
Diabetic Diet
Ever Smoked Cigarettes Regularly
Ever Smoked Regularly
No. of Cigarettes per Day
Wine Intake per Week

Lipid panel Total Plasma Cholesterol (in blood)
(25 features) Whole Plasma Appearance (in blood)

Lipids Whole Plasma Pre-Beta (in blood)*

Continued on next page
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View Feature

Fasting 12 Hrs
Fredrickson Classification
Pre-Beta Band*

Sinking Pre-Beta Band*

HDL Cholesterol
Infranate after 12 Hrs
LDL Cholesterol
Pre-Beta Bottom Fraction*

Pre-Beta Top Fraction*

Triglyceride
VLDL Cholesterol

Laboratory biomarkers Albumin
(32 features) Bilirubin

Bun
Calcium
Fasting
Globulin
HCT
HGB
LDH
MCH
MCHC
MCV
Phosphorus
SGOT
Total Protein
Uric Acid

Medication Anti-Cholesterol Agent
(16 features) Anti-Coagulants*

Bronchodilator Or Aerosol
Cardiac Glycosides
Diuretics-Hypertension
Hypotensive (excluding Diuretics)
Nitrites*

Thyroid
Tranquilizers

Menopause Age Period Stopped*

(6 features) Ever Taken Premarin*

Hysterectomy*

Oral Contraceptive*

Ovaries Removed*

Periods Stopped 1 Yr Or More*

Electrocardiography Clinical Reading
(30 features) Intraventricular Block: Bifascicular*

Intraventricular Block: Hemiblock
Intraventricular Block: Left*

Intraventricular Block: Right
Left Ventricular Hypertrophy

Continued on next page
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View Feature

Myocardial Infarction*

Non.specific ST-Segment Abnormality
Non-specific T-Wave Abnormality
Other ECG Abnormality*

P-R Interval
Premature Beats
QRS Angle With Sign
QRS Interval
QT Interval
Ventricular Rate
Wolff-Parkinson-White Syndrome

A.3 View-specific Coefficients for Framingham Offspring Dataset
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Figure A.1: Value of view-specific coefficients α in multiview spectral embedding (MVSE) for varying
complementary factor r ∈ {1.1, 1.2, . . . , 4.9, 5}. Solid lines indicate the path of view-
specific coefficients in 50 random subsamples of the Framingham Offspring data. The
average coefficient across all subsamples is indicated by dashed lines.
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Figure A.2: Coefficients of Cox’s proportional hazards model with group LASSO penalty. Solid lines
indicate the path of coefficients across 20 fixed values of the regularization parameter λ
from 50 random subsamples of the Framingham Offspring data. The average coefficient
across all subsamples is indicated by bold lines.
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Appendix B

Prostate Cancer DREAM Challenge
Data

B.1 Features

The tables below list all features extracted from patient records from three phase III clinical
trials used in the Prostate Cancer DREAM Challenge (see chapter 7): Memorial Sloan
Kettering Cancer Center (MSKCC), Celgene, and Sanofi [34, 223, 283].

B.1.1 Comorbitities

Table B.1: Extracted features corresponding to comorbitities. Only available for patients from
Celgene or Sanofi study.

Comorbitity

# of comorbidities
Anaemia
— date
Angina pectoris
Anxiety
— date
Appendicectomy
Arthralgia
— date
Arthritis
Asthenia
Asthma
Atrial fibrillation
Back pain
— date
Benign prostatic hyperplasia
Biopsy prostate
Bone pain

Continued on next page
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Comorbitity

— date
Bronchitis
Cancer pain
Cataract
Cholecystectomy
Chronic obstructive pulmonary disease
Constipation
— date
Coronary artery bypass
Coronary artery disease
Decreased appetite
Deep vein thrombosis
Depression
— date
Diabetes mellitus
— date
Diverticulum
Drug hypersensitivity
Dyspepsia
Dyspnoea
Dysuria
Erectile dysfunction
Fatigue
— date
Gastritis
Gastrooesophageal reflux disease
Gout
Gynaecomastia
Haematuria
Haemorrhoids
Hernia repair
Hiatus hernia
Hot flush
— date
Hydronephrosis
Hypercholesterolaemia
— date
Hyperlipidaemia
Hypertension
— date
Hypothyroidism
Inguinal hernia
Insomnia
— date
Metastases to bone
— date
Musculoskeletal pain
Myocardial infarction
Myocardial ischaemia
Nausea

Continued on next page
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Comorbitity

Nephrolithiasis
Nocturia
— date
Obesity
Oedema peripheral
Osteoarthritis
— date
Pain
Pain in extremity
Pollakiuria
— date
Renal cyst
Tobacco user
Tonsillectomy
Transient ischaemic attack
Urinary incontinence
Urinary retention

B.1.2 Medications

Table B.2: Extracted features corresponding to medications or therapies. Available for patients from
all studies.

Medication or Therapy

ACE inhibitors
Acetic acid derivatives and related substances
Adrenergics and oth.drugs for obstruct.airway dis.
Alpha adrenoreceptor antagonists
Alpha and beta blocking agents
Aminoalkyl ethers
Angiotensin II antagonists
Anilides
Anti androgens
— duration
Antibiotics
Antidepressants
Antihistamines
Antiinfectives
Antiinfl. prep. non steroids for topical use
Antiinflammatory agents non steroids
Antiinflammatory preparations non steroids for to
Antiinflammatory products for vaginal administrat.
Ascorbic acid vitamin C
Benzodiazepine related drugs
Benzothiazepine derivatives
Beta blocking agents
Biguanides
Bisphosphonates

Continued on next page
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Medication or Therapy

Bulk producers
Calcium
Corticosteroids
Coxibs
Cutaneous
Digitalis glycosides
Dihydropyridine derivatives
Diphenylpropylamine derivatives
Diuretics
Electrolyte solutions
Estrogens
Fenamates
Fluoroquinolones
Folic acid and derivatives
Glucocorticoids
Gonadotropin releasing hormones
H2 receptor antagonists
Heparins
HMG COA reductase inhibitors
Hormonotherapy
— duration
Imidazole derivatives
Insulins and analogues
Iron trivalent
Laxatives
Lipid modifying agents
Magnesium
Multivitamins
Non selective monoamine reuptake inhibitors
Opium alkaloids
Oral
Organic nitrates
Other agents for local oral treatment
Other antianemic preparations
Other antiemetics
Other antiepileptics
Other antineoplastic agents
Other cardiac preparations
Other dermatologicals
Other ophthalmologicals
Other opioids
Other plain vitamin preparations
Other urologicals
Phenothiazines
Phenylpiperidine derivatives
Platelet aggregation inhibitors excl. heparin
Potassium
Preparations inhibiting uric acid production
Preparations with salicylic acid derivatives
Progestogens

Continued on next page
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Medication or Therapy

Propionic acid derivatives
Propulsives
Proton pump inhibitors
Pyrazolones
Salicylic acid and derivatives
Selective beta 2 adrenoreceptor agonists
Selective serotonin reuptake inhibitors
Selenium
Serotonin antagonists
Softeners emollients
Sulfonamides
Testosterone 5 alpha reductase inhibitors
Thiazides
Thiazolidinediones
Thyroid hormones
Total chemical classes
Treatment for adverse event
Urinary antispasmodics
Vitamin B complex
Vitamin D and analogues
Vitamin K antagonists
Vitamins

B.1.3 Laboratory Measurements

Table B.3: Extracted features corresponding to laboratory measurements. •: Indicates that a
particular feature (row) was used in a particular dataset (column).

MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Alanine transaminase • • • • • • •
— date • • • • • • •
— range • • • • • • •
Albumin • • •
— date • • •
— range • • •
Alkaline phosphatase • • • • • • •
— date • • • • • • •
— range • • • • • • •
Aspartate
aminotransferase

• • • • • • •

— date • • • • • • •
— range • • • • • • •
Basophils •
— date •
— range •

Continued on next page
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MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Basophils-leukocytes
ratio

•

— date •
— range •
Calcium • • • • • • •
— date • • • • • • •
— range • • • • • • •
Creatinine • • • • • • •
— date • • • • • • •
— range • • • • • • •
Eosinophils •
— date •
— range •
Eosinophils-leukocytes
ratio

•

— date •
— range •
Hematocrit •
— date •
— range •
Hemoglobin • • • • • • •
— date • • • • • • •
— range • • • • • • •
Lactate dehydrogenase • • •
— date • • •
— range • • •
Lymphocytes •
— date •
— range •
Lymphocytes-
leukocytes
ratio

•

— date •
— range •
Magnesium • • •
— date • • •
— range • • •
Monocytes •
— date •
— range •
Monocytes-leukocytes
ratio

•

— date •
— range •
Neutrophils • • • • • • •
— date • • • • • • •
— range • • • • • • •
Neutrophils-leukocytes
ratio

•

Continued on next page
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MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

— date •
— range •
Phosphorus • • •
— date • • •
— range • • •
Platelet count • • • • • • •
— date • • • • • • •
— range • • • • • • •
Potasium • • •
— date • • •
— range • • •
Prostate specific
antigen

• • • • • • •

— date • • • • • • •
— range •
Red blood cells •
— date •
— range •
Sodium • • •
— date • • •
— range • • •
Testosterone • • •
— date • • •
— range • • •
Total bilirubin • • • • • • •
— date • • • • • • •
— range • • • • • • •
Total protein • • •
— date • • •
— range • • •
White blood cells • • • • • • •
— date • • • • • • •
— range • • • • • • •

B.1.4 Tumor Measurements

Table B.4: Extracted features corresponding to tumor measurements. •: Indicates that a particular
feature (row) was used in a particular dataset (column).

Celgene Sanofi Celgene
Sanofi

# non-target lesions • • •
# target lesions • • •
Adrenal • •
— date • •
Bladder • • •

Continued on next page
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Celgene Sanofi Celgene
Sanofi

Bone • • •
— date • • •
Liver • • •
— date • • •
Lungs • • •
— date • • •
Lymph nodes • • •
— nodes date • • •
Max lesion size • • •
Min lesion size • • •
Muscle or soft tissue • • •
Pleura • • •
Prostate • • •
– date • • •

B.1.5 Vital Signs

Table B.5: Extracted features corresponding to vital signs. •: Indicates that a particular feature
(row) was used in a particular dataset (column).

MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Date collected • • • • • • •
Diastolic blood pressure • • •
Pulse •
Systolic blood pressure • • •

B.1.6 Miscellaneous

Table B.6: List of features that were already available on a per patient level. •: Indicates that a
particular feature (row) was used in a particular dataset (column).

MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Abdominal lesion(s) • • • • • • •
ACE inhibitors • • • • • • •
Adrenal lesion(s) • • • • • • •
Age • • • • • • •
Alanine transaminase • • • • • • •
Albumin • • •
Alkaline phosphatase • • • • • • •
Analgesics • • • • • • •

Continued on next page

206



B.1 Features

MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Anti-androgens • • • • • • •
Anti-estrogens • • • • • • •
Aspartate
aminotransferase

• • • • • • •

Beta blocking agents • • • • • • •
Bilateral
lymphadenectomy

• • • • • • •

Bilateral orchidectomy • • • • • • •
Bisphosponate • • • • • • •
Bladder lesion(s) • • • • • • •
Blood and lymphatic
system

• • • • • • •

Body mass index • • • • • • •
Bone lesion(s) • • • • • • •
Calcium • • • • • • •
Cardiac disorders • • • • • • •
Cerebrovascular
accident

• • • • • • •

Chronic obstructive
pulmonary disease

• • • • • • •

Congenital, familial
and genetic

• • • • • • •

Congestive heart
failure

• • • • • • •

Corticosteroid • • • • • • •
Creatinine • • • • • • •
Deep venous
thrombosis

• • • • • • •

Diabetes • • • • • • •
Ear and labyrinth • • • • • • •
ECOG performance
status

• • • • • • •

Endocrine disorders • • • • • • •
Estrogens • • • • • • •
Eye disorders • • • • • • •
Gastroesophageal
reflux disease

• • • • • • •

Gastrointestinal bleed • • • • • • •
Gastrointestinal
disorders

• • • • • • •

Gen disord and admin
site

• • • • • • •

Glucocorticoids • • • • • • •
Gomadotropin • • • • • • •
Height • • • • • • •
Hemoglobin • • • • • • •
Hepatobiliary
disorders

• • • • • • •

HMG COA reductase
inhibitors

• • • • • • •

Imidazole • • • • • • •

Continued on next page
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MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Immune system
disorders

• • • • • • •

Infections and
infestations

• • • • • • •

Injury, poison and
procedural

• • • • • • •

Investigations • • • • • • •
Kidney lesion(s) • • • • • • •
Lactate dehydrogenase • • •
Liver lesion(s) • • • • • • •
Lung lesion(s) • • • • • • •
Lymph node lesion(s) • • • • • • •
Lymphocytes •
Magnesium • • •
Metabolism and
nutrition

• • • • • • •

Musc/skeletal and
connect tissue

• • • • • • •

Myocardial infarction • • • • • • •
Neoplasms benign,
malig and unspec

• • • • • • •

Nervous system
disorders

• • • • • • •

Neutrophils • • • • • • •
Non-target lesion(s) • • • • • • •
Orchidectomy • • • • • • •
Other lesion(s) • • • • • • •
Pathological bone
fractures

• • • • • • •

Peptic ulcer disease • • • • • • •
Phosphorus • • •
Platelet count • • • • • • •
Pleura lesion(s) • • • • • • •
Prostate lesion(s) • • • • • • •
Prostate specific
antigen

• • • • • • •

Prostatectomy • • • • • • •
Psychiatric disorders • • • • • • •
Pulmonary embolism • • • • • • •
Race • • • • • • •
Radiotherapy • • • • • • •
Red blood cells •
Region of the world • • • • • •
Renal and urinary
disorders

• • • • • • •

Resp, thoracic and
mediastinal

• • • • • • •

Skin and subcutaneous
tissue

• • • • • • •

Social circumstances • • • • • • •

Continued on next page
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MSKCC Celgene Sanofi MSKCC MSKCC Celgene MSKCC
Celgene Sanofi Sanofi Celgene

Sanofi

Soft tissue lesion(s) • • • • • • •
Spinal cord
compression

• • • • • • •

Surgical and medical
procedures

• • • • • • •

Target lesion(s) • • • • • • •
Testosterone •
Total bilirubin • • • • • • •
Total protein • • •
Treatment • • • • • • •
Turp • • • • • • •
Vascular disorders • • • • • • •
Visceral metastases • • • • • • •
Weight • • • • • • •
White blood cells • • • • • • •

B.2 Hyper-Parameter Configurations

The list below provides a detailed list of hyper-parameter configurations used to build a
heterogeneous ensemble of survival and regression models in the Prostate Cancer DREAM
challenge (see chapter 7).

• Cox proportional hazards model with ridge penalty (13 configurations):
– Penalty λ: 2−12, 2−10, . . . , 212

• Survival support vector machine (13 configurations):
– Penalty γ: 2−12, 2−10, . . . , 212

• Random survival forest (24 configurations):
– Number of of trees: 1,000
– Minimum number of samples in a terminal node: 3, 5, 10, 25, 50, 100
– Split criterion: log-rank splitting
– Number of candidate splits to evaluate per feature: 2, 5, 10, ∞

• Gradient boosting with regression tree as base learner (1,728 configurations):
– Number of iterations: 100, 500, 1000, 1500
– Subsampling percentage: 100%, 75%, 50%
– Learning rate: 0.06, 0.125, 0.25
– Maximum number of leaf nodes: 5, 10, 20
– Minimum number of samples per split: 2, 5, 10, 20
– Maximum number of features to evaluate per split: all,

√
# features, 50%, 75%

• Gradient boosting with componentwise least squares as base learner (36 configurations):
– Number of iterations: 100, 500, 1000, 1500
– Subsampling percentage: 100%, 75%, 50%
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– Learning rate: 0.06, 0.125, 0.25
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