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Abstract—In this paper, the pessimistic multi letter common
randomness assisted secrecy capacity for the Arbitrarily Varying
Wiretap Channel (AVWC) under input and state constraints is
derived.

Index Terms—Active Eavesdroppers, AVWC, Constraints,
Physical Layer Secrecy

I. INTRODUCTION

Nowadays, information theoretic approaches to security
are intensively discussed as a complement to cryptographic
techniques. Such approaches jointly establish reliable commu-
nication and data confidentiality at the physical layer by taking
the properties of the noisy channel into account.

What most of the previous studies have in common is that
all channels (including those to a possible eavesdropper) are
assumed to be perfectly known to all users and fixed during the
entire duration of transmission. However, in practical systems,
Channel State Information (CSI) will always be limited due
to the nature of the wireless channel and estimation/feedback
inaccuracy. Furthermore, eavesdroppers will not provide any
information about their channels to the legitimate users be-
cause this would make eavesdropping even harder. In order
to design wireless systems resilient against failures caused
by nature (fading, noise, etc.) and robust against malicious
attacks, the correct system-theoretic model is the Compound
Channel (CC) and the Arbitrarily Varying Channel (AVC)
model, respectively. The CC model applies if the state of
the channel is constant for the duration of one codeword.
This is an advisable model for the random impairments of
nature, e.g., the quasi-static block fading channels. The AVC
model is suitable if each channel use is affected by a different
channel state. This correctly models malicious attacks, e.g.,
jamming attacks. In the literature, the characterization of the
secrecy capacity of AVWCs relies on methods introduced
by Ahlswede thirty years ago [1], [2], [3] and on methods
introduced by Csiszár and Narayan in [4], [5]. In [6] and [7]
the authors introduced the CC and the AVC, first. The author

in [2] described the capacity region in an AVC for the average
error probability and the maximum error probability condition
using different types of codes, deterministic, stochastic en-
coding, and common randomness assisted codes. Therefore,
two basic concepts, the Robustification Technique (RT) and
the Elimination Technique (ET) are developed. They are used
to derive a common randomness assisted code capacity for
an AVC from a deterministic code capacity of a CC, and
to derive the deterministic code capacity of an AVC starting
from the common randomness assisted code capacity of the
same AVC. One famous result, the so called ”Ahlswede’s
Dichotomy”, states that the deterministic code capacity of an
AVC equals its common randomness assisted code capacity or
equals zero. Unfortunately, the ET technique does not hold if
constraints are imposed. In [5] and [4], the authors introduce
conditions on input and state constraints and conclude that
the symmetrizability condition is necessary and sufficient in
the case of no constraints, to render the capacity zero. In
contrast to this, the authors are able to show that in the case of
constraints, the symmetrizability condition is no longer suffi-
cient, using a type-based proof technique. The authors consider
peak constraints in [5]. In [4], peak- and average constraints
are investigated. If the constraints are in an average sense,
only ε capacities are shown to exist or in other words only
a weak converse exists. In [8], the authors give an overview
of the topics of AVCs, CCs, deterministic codes and common
randomness assisted codes. The first who introduced the terms
of secrecy and information theory was Shannon, in his work
in [9]. The authors of [10], [11] and [12] continued that
approach by investigating the degraded and the non-degraded
Wiretap Channel (WTC) under the weak secrecy criterion and
extended the considerations to the Gaussian scenario. In [13],
[14] and [15], the authors have a look at WTCs with an active
eavesdropper, which results in the investigation of Compound
Wiretap Channels (CWCs) and AVWCs. In [13], the authors
establish a full coding theorem for the CWC under the strong
secrecy criterion. They compute a lower bound on the secrecy
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capacity under the condition of CSI at the encoder. This
bound equals the upper bound for general CWCs introduced
by Liang. In [13],there is a stronger secrecy requirement than
in [10], [11] and [12] and the maximum error probability
is taken into account. The authors use a decoder which is
robust against randomized encoding and prove a lower bound
of the secrecy capacity of a CWC without CSI. Furthermore,
a multiple-letter expression is provided. Additionally, hints
on the operational meaning of strong secrecy are provided.
By using the variational distance, the authors are able to
prove that the error probability and the information leakage to
the offender vanishes exponentially with the codeword block
length. In [16], the authors investigate the effects of active
attacks on wiretap channels and show that if the legitimate
channel possesses a bad averaged state such that the channel
is degraded with respect to the eavesdropping channel, secure
communication is not possible. In [14] the authors calculate
a lower bound on the common randomness assisted secrecy
capacity under an average error probability condition and with
the strong secrecy requirement in the presence of a ”best”
channel to the eavesdropper. They show that Ahlswede’s Di-
chotomy [2] holds under secrecy conditions. The deterministic
wiretap-code secrecy capacity is either zero in the case that the
channel to the legitimate receiver is symmetrizable, or equals
the common randomness assisted secrecy capacity. Using these
relations, a lower bound for the deterministic wiretap-code
secrecy capacity is given. Furthermore, upper bounds on the
deterministic wiretap-code secrecy capacity in the general
case are computed. So far, channels with states, without and
with secrecy requirements have been considered, such as the
CC, AVC, CWC, and AVWC. Only in the former case have
constraints been investigated. In the following, we will state
our notation in Section II, our system model in Section III, our
main result in Section IV, give a hint on the proof in Section
V and will discuss our result in Section VI.

II. NOTATION

We adapt our notation according to [17]. That means, all
logarithms are taken to the base 2. Equivalently, the exp {.}
function means 2{.}. Sets are denoted by calligraphic letters.
The cardinality of a set U is denoted by |U|. The set of all
probability measures on a set U is denoted by P(U). For
p ∈ P(U) we define pn ∈ P(Un) as pn(xn) =

∏
i p(xi).

The entropies, and mutual information terms will be written
in terms of the involved probability functions. For example

H(W |p) := −
∑
x,y

p(x)W (y|x) logW (y|x)

I(p;W ) := H(pW )−H(W |p).

Furthermore, let the type of a sequence sn = (s1, s2, ..., sn)
be the probability measure q ∈ P(S) defined by q(a) =
1
nN(a|sn), where N(a|sn) denotes the number of occurrences
of a in the sequence sn. The set of all possible types of length
n is denoted by Pn0 (S).

III. SYSTEM MODEL

We consider a common randomness assisted AVWC as
depicted in Fig. (1).

Definition 1 (Arbitrarily Varying Wiretap Channel). We
describe an AVWC by (X ,S,WY |X,S VZ|X,S ,Y,Z). The
family of channels to the legitimate receiver is W =
{W (Y |X, s), s ∈ S}, and the family of channels to the
illegitimate receiver is V = {V (Z|X, s), s ∈ S}. The channel
is memoryless in that sense, that the probability of receiving
the sequences yn = (y1, y2, ..., yn) and zn = (z1, z2, ..., zn),
when sending xn = (x1, x2, ..., xn) is

Wn(yn|xn, sn) =

n∏
i=1

W (yi|xi, si),

V n(zn|xn, sn) =

n∏
i=1

V (zi|xi, si).

The AVWC is then defined as the pair (W,V).

Furthermore, we assume that the input and the state spaces
are constrained.

Definition 2 (Peak Constraints [5], [4]). Let gup, glo be
nonnegative functions on X and lup, llo nonnegative functions
on S. Then we define

gup(x) :=
1

n

n∑
i=1

gup(xi) ≤ Γup, (1)

glo(x) :=
1

n

n∑
i=1

glo(xi) ≥ Γlo, (2)

lup(s) :=
1

n

n∑
i=1

lup(si) ≤ Λup, (3)

llo(s) :=
1

n

n∑
i=1

llo(si) ≥ Λlo, (4)

as the peak input-, and peak state constraints, respectively.

Remark 1 (Lower Bounds). In the literature, only upper
bounds for the sequences xn and sn are considered. The lower
bounds are usually assumed to be zero. We explicitly allow
the lower bounds to take values different from zero.

Definition 3 (Constrained State and Input Spaces). We define
the constrained state and input spaces as

Ln :=

{
sn ∈ Sn :

1

n

n∑
i=1

lup(si) ≤ Λup,

1

n

n∑
i=1

llo(si) ≥ Λlo

}
and

Gn :=

{
xn ∈ Xn :

1

n

n∑
i=1

gup(xi) ≤ Γup,

1

n

n∑
i=1

glo(xi) ≥ Γlo

}
.
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Fig. 1: System model.

Furthermore, we define the sets L̃n and G̃n as

L̃n :=

{
q ∈ Pn0 (S) :

∑
s∈S

q(s)lup(s) ≤ Λup,

∑
s∈S

q(s)llo(s) ≥ Λlo

}
and

G̃n :=

{
q ∈ Pn0 (X ) :

∑
x∈X

q(x)gup(x) ≤ Γup,

∑
x∈X

q(x)glo(x) ≥ Γlo

}
.

Definition 4 (Deterministic Wiretap-Code [2]). An (n, Jn)
deterministic wiretap-code Kn consists of a stochastic encoder
E : J → P(Gn) and mutually disjoint decoding sets
Dj : Yn → J , with message set J : {1, ..., Jn}. We denote
EWn(yn|j, sn) : Jn → P(Yn) and write

EWn(yn|j, sn) =
∑

xn∈Xn

E(xn|j)Wn(yn|xn, sn),

where we take only these encoders E(xn|j), whose outputs
xn lie in Gn. The average error e(Kn) can be expressed as

e(Kn) := max
sn∈Ln

1

Jn

Jn∑
j=1

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, sn)

= max
sn∈Ln

1

Jn

Jn∑
j=1

EWn(Dcj |j, sn).

Definition 5 (Common Randomness Assited Code [2]). An
(n, Jn,U , pU ) common randomness assisted code Kran

n con-
sists of a family of stochastic encoders Eu : J → Xn and
mutually disjoint decoding sets Dj,u : Yn → J with message
set J : {1, ..., Jn}, where u ∈ U has a distribution pU ∈
P(U). Again, we take only those encoders, whose outputs lie

in Gn. The average error over all possible (randomly chosen
deterministic wiretap) codebooks e(Kran

n ) can be written as

e(Kran
n ) := max

sn∈Ln

1

Jn

Jn∑
j=1

∑
u∈U

∑
xn∈Xn

Eu(xn|j)Wn(Dcj,u|xn, sn)pU (u).

Definition 6 (Achievable Common Randomness Assisted Se-
crecy Rate and Common Randomness Assisted Secrecy Ca-
pacity [17]). A nonnegative number RS is called an achievable
common randomness assisted secrecy rate for the AVWC if
there exists a sequence (Kran

n )∞n=1 of (n, Jn,U , pU ) common
randomness assisted codes, such that the following require-
ments are fulfilled

lim inf
n→∞

1

n
log Jn ≥ RS , (5)

lim
n→∞

e(Kran
u ) = 0, (6)

lim
n→∞

max
sn∈Ln

∑
u∈U

I(pJn ;EuV
n
sn)pU (u) = 0. (7)

The supremum of all achievable common randomness assisted
secrecy rates for the AVWC is called the common randomness
assisted secrecy capacity of the AVWC (W,V) and is denoted
by C ran

S (W,V).

Definition 7 (Enhanced Achievable Common Randomness
Assisted Secrecy Rate and Enhanced Common Randomness
Assisted Secrecy Capacity [17]). A nonnegative number RS
is called an achievable enhanced common randomness assisted
secrecy rate for the AVWC if there exists a sequence (Kran

n )∞n=1

of (n, Jn,U , pU ) common randomness assisted codes, such
that (6) and (5) hold and

lim
n→∞

max
sn∈Ln

max
u∈U

I(pJn ;EuV
n
sn) = 0 (8)

is fulfilled. The supremum of all achievable enhanced common
randomness assisted secrecy rates for the AVWC is called the
enhanced common randomness assisted secrecy capacity of
the AVWC (W,V) and is denoted by Ĉ ran

S (W,V).
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IV. COMMON RANDOMNESS CODE SECRECY CAPACITY
FOR THE AVWC WITH CONSTRAINTS

Let us now state our main result.

Theorem 1. The pessimistic enhanced common randomness
assisted secrecy capacity and the pessimistic common random-
ness assisted secrecy capacity for the AVWC with input and
state constraints as in (1), (2), (3) and (4) can be expressed
as

R∗S(W,V) := lim inf
k→∞

1

k
sup

Q⊂N finite
max
p∈P(Q)

max
Q:Q→G̃k(

min
t∈P(S)

I(p;QW k
t )− max

sk∈Lk

I(p;QV ksk)

)
, (9)

where maxsk∈Lk
I(p;QV ksk) can be further expressed as

max
sk∈Lk

I(p;QV ksk) = max
q̃k∈P(Lk)

I(p;QV kq̃k),

V kq̃k =
∑
sk∈Lk

q̃k(sk)V ksk ,

due to the convexity of mutual information in the channel.

V. SKETCH OF THE PROOF OF THEOREM 1

We follow the proof strategy of [17] and adapt it to the
case of input and state constraints. Due to the page limitation,
we only give a sketch of the proof. For more details, please
consult [17]. The results of the Method of Types and the
Chernoff-Hoeffding bound are widely used in the proof. First,
the achievable secrecy rate is shown for the mixed Compound-
Arbitrarily Varying Wiretap Channel (CAVWC). Then, using
a modification of Ahlswede’s RT we derive the achievable
secrecy rate for the AVWC.

Definition 8 (A Mixed Compound-Arbitrarily Varying
Wiretap Channel [17]). A CAVWC is a channel, which is
compound from transmitter to the legitimate receiver, but
which is arbitrarily varying from transmitter to the eaves-
dropper. Hence, we describe a CAVWC by (W,V) where
W = {Wq : q ∈ P(S)} and for every q ∈ P(S), Wq(y|s) :=∑
s∈S q(s)W (y|s, x) and V := {V (Z|X, s) : s ∈ S}. The

probability of receiving the sequences yn and zn when xn is
sent and the jammer’s choice is sn is

W
n
(yn|sn, xn) =

n∏
i=1

Wq(yi|xi),where q(s) := 1
nN(s|sn),

V n(zn|xn, sn) =

n∏
i=1

V (zi|xi, si).

This channel model will be used to derive the common
randomness assisted secrecy capacity for the AVWC with
constraints and is a tool for the proof.

Remark 2. Note that we do also include the case of different
state spaces for the channelsW and V , since one could define
the state space S : S1 × S2 such that s = (s1, s2).

Definition 9 (Deterministic Wiretap-Codes for the CAVWC
[17]). The difference to the definition before is that the channel
to the legitimate receiver is compound. Hence, the average
error probability changes to

es(Kn) := max
s∈S

1

Jn

Jn∑
j=1

∑
xn∈Xn

E(xn|j)Wn
s (Dcj |xn)

= max
s∈S

1

Jn

Jn∑
j=1

EWn
s (Dcj |j).

Definition 10 (Achievable Deterministic Secrecy Rate and
Deterministic Secrecy Capacity for the CAVWC [17]). A
nonnegative number RS is called an achievable deterministic
secrecy rate for the CAVWC if there exists a sequence
(Kn)∞n=1 of (n, Jn) deterministic wiretap-codes, such that the
following requirements are fulfilled

lim inf
n→∞

1

n
log Jn ≥ RS , (10)

lim
n→∞

es(Kn) = 0, (11)

lim
n→∞

max
sn∈Ln

I(pJn ;EV nsn) = 0. (12)

The supremum of all achievable deterministic secrecy rates for
the CAVWC is called the deterministic secrecy capacity of the
CAVWC (W,V) and is denoted by CS(W,V).

Remark 3 (From Compound to Arbitrary, [17]). Later, we
will use a modified version of Ahlswede’s RT [3], [2] to
obtain a random coding theorem for the AVWC from a
deterministic wiretap-coding theorem for the CAVWC. For
this we need an exponential decrease in the error probability
as the blocklength goes to infinity. Furthermore, we define
for a permutation π ∈ Πn, where Πn denotes the symmetric
group of permutations of {1, 2, ..., n} the stochastic encoder
Eπ obtained from a stochastic encoder E as

Eπ(xn|j) := E(π−1(xn)|j).

Definition 11 (Enhanced Achievable Deterministic Wiretap–
Code Secrecy Rate and Enhanced Deterministic Wiretap-Code
Secrecy Capacity for the CAVWC [17]). A nonnegative num-
ber RS is called an enhanced achievable deterministic secrecy
rate for the CAVWC if there exists a sequence (Kn)∞n=1 of
(n, Jn) deterministic wiretap-codes and a β > 0, such that
the following requirements are fulfilled

lim inf
n→∞

1

n
log Jn ≥ RS , (13)

lim sup
n→∞

− 1

n
log es(Kn) ≤ β, (14)

lim
n→∞

max
sn∈Ln

max
π∈Πn

I(pJn ;EπV nsn) = 0. (15)

The supremum of all enhanced achievable deterministic se-
crecy rates for the CAVWC is called the enhanced determin-
istic secrecy capacity of the CAVWC (W,V) and is denoted
by ĈS(W,V).
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The proof works as follows. First, the achievability for the
CAVWC is shown. This is done by the consideration of three
sub parts: The secrecy part, the existence of sufficiently many
confusing messages and the reliability part. Fix a blocklength
n and a probability distribution

p ∈ G̃ :=

{
p ∈ P(X ) :

∑
x

p(x)glo(x) ≥ Λlo + ε0,

∑
x

p(x)gup(x) ≤ Λup − ε0

}
.

For sufficiently large n and sufficiently small δ0 all sequences
xn ∈ T np,δ0 fulfill the input constraints. We randomly draw a
family of input words X := {Xjl : j ∈ Jn, l ∈ L∗n} according
to pn and let Jn := {1, 2, ..., Jn} and L∗n := {1, 2, ..., Ln}.
For an arbitrary, but positive τ1, let

Jn :=

⌊
exp

{
n

(
min
t∈P(S)

I(p;Wt)− max
q∈P(S)

I(p;Vq)− τ1
)}⌋

Ln :=

⌊
exp

{
n

(
max
q∈P(S)

I(p;Vq) +
τ1
4

)}⌋
To show that the secrecy requirements are fulfilled, we

modify the channel in a certain way, use the triangle inequality
in combination with the total variational distance and the
connection to the difference of entropies and will show later
that the modifications do not change the statements for the
original channel. Then, as in [17], we have to show that
the joint type of most codewords with a given sn ∈ Ln is
a product type. We prove the reliability for a finite subset
of all possible channels. Then we use an the Approximation
Lemma from Breiman, Blackwell and Thomasian (BBT) [7]
to show that codes with exponential error bounds on this
subset of channels are also applicable codes for the infinite
set of channels. Then we show that the probability that a code
simultaneously fulfills the three parts (secrecy requirement,
existence of sufficiently many confusing messages, reliability)
is close to one. Additionally, we show that by prefixing a
channel Q → G̃ the achievable rate is increased. Having
shown the achievability for the CAVWC, we can now derive
an achievable secrecy rate for the AVWC using the following
lemma.

Lemma 1 (Modification of Ahlswede’s RT [3]). If there exists
a function f : Ln → [0, 1] satisfying∑
sn∈Sn

f(sn)q(s1)q(s2)...q(sn) ≥ 1− ε, ∀q ∈ L̃n (16)

then
1

n!

∑
π∈Πn

f(π(sn)) ≥ 1− ε′, ∀sn ∈ Ln (17)

ε′ = (n+ 1)|S|ε. (18)

Proof. We follow [3] and start with a q fulfilling (16).

ε ≥ 1−
∑
sn∈Sn

f(sn)qn(sn) = 1−
∑
sn∈Sn

f(π(sn))qn(sn)

≥
∑
sn∈Ln

(1− f(π(sn)))qn(sn)

≥
∑

sn∈Ln:
sn∈T n

q

(
1− 1

n!

∑
π∈Πn

f(π(sn))

)
qn(sn),

where we take the sum of all sn ∈ Ln having the same type.

ε ≥

(
1− 1

n!

∑
π∈Πn

f(π(sn))

)
q(T nq )(

1

n!

∑
π∈Πn

f(π(sn))

)
≥ 1− (n+ 1)|S|ε, ∀sn ∈ Ln,

where the last step follows from the fact that
q(T nq )geq 1

(n+1)|S| .

For the converse, we follow the approach of [17].

VI. DISCUSSION

We gave a multi letter expression for the common random-
ness assisted secrecy capacity of an AVWC with input and
state constraints. We have seen that the proof technique of [17]
is applicable with some changes and adaptations. Nevertheless,
we have to be careful when proving the existence and conver-
gence of the limit of the multi letter expression. Ensuring that
the constraints are fulfilled for the whole interval we have to
start with sub intervals fulfilling the constraints, separately.
Otherwise, we cannot guarantee that the constraints still hold.
Next steps would be the consideration of deterministic wiretap
codes for the AVWC with input and state constraints and
a formula for the corresponding deterministic wiretap code
secrecy capacity. Here, we have to consider a phenomenon
called symmetrizability. Roughly speaking, if a channel is
symmetrizable, then a valid channel output can be emulated
by a malevolent attacker. In contrast to the case without input
and state constraints, the symmetrizability condition is not
sufficient to render the deterministic code capacity of an AVC
zero. So, we can consider common randomness as a network
resource to overcome not only a possible symmetrizable attack
of a malevolent attacker, but also to achieve higher secrecy
capacities than by using deterministic wiretap codes. Even
though the proof techniques by Ahlswede do not hold in the
case of constraints and in general different results may occur,
we expect a similar behavior according to the symmetrizability
and deterministic wiretap code secrecy rates for the AVWC
with constraints. Hence, we expect that the symmetrizability
condition is not sufficient in the case of a constrained AVWC,
as well. We believe, that an attacker has to spend costs on
symmetrizing the channel. These might be influenced by the
input distribution chosen at the channel input. If the costs are
too high then the attacker cannot symmetrize the channel.
But the achievable deterministic wiretap code secrecy rate
might even be strictly smaller than or equal to the common
randomness assisted secrecy capacity, even if it is positive, in
contrast to the case without constraints, where the dichotomous
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behavior applies, since the input distributions to achieve the
common randomness assisted secrecy capacity and to render
the channel not symmetrizable may be different. In this aspect,
we see again that the presence of common randomness at
the legitimate communication partners not only is a coun-
termeasure against attacks, but also provide higher secrecy
capacities. Additionally, we immediately see the difference to
the AVC with constraints but without secrecy requirements. If
no secrecy requirements are imposed on the system, it is easy
to show the existence and the convergence of the limit of the
capacity for infinite blocklengths by using Fekete’s lemma. If
the inequality

ak1 + ak2 ≤ ak1+k2

holds for every k1, k2 ∈ N, then the limit of limk→∞
1

k
ak

exists and can be expressed as

lim
k→∞

1

k
ak = sup

k∈N

ak
k
.

The product structure property of the state spaces is lost
when imposing constraints on the system. This does not affect
the mutual information term to the legitimate communication
partner Bob (and that is the reason why the results of [5]
hold). Unfortunately, this property is crucial when considering
the information leakage to the eavesdropper. When starting
with ak1 and ak2 with sequences sk1 and sk2 , both fulfilling
the constraints, it follows that for an ak1+k2 the sequence
sk1+k2 fulfills the constraints, too. The converse does not hold!
Hence, we can not upper bound the sum of two ak1 and ak2
with sequences sk1 and sk2 by ak1+k2 with sequence sk1+k2 ,
since the set Lk1+k2 is larger than the product set of Lk1 and
Lk2 and contains more elements (those elements, fulfilling the
constraints on the blocklength k1 + k2 but not necessarily on
the sub intervals k1 or k2). So while without constraints the
inequality

max
sk1∈Sk1

[
I(Q;Zk1

sk1
)
]

+ max
sk2∈Sk2

[
I(Q;Zk2

sk2
)
]

≥ max
sk1+k2∈Sk1+k2

[
I(Q;Zk1+k2

sk1+k2
)
]

holds, we can not conclude the same for the case when
constraints are imposed. So the inequality

max
sk1∈Lk1

[
I(Q;Zk1

sk1
)
]

+ max
sk2∈Lk2

[
I(Q;Zk2

sk2
)
]

≥ max
sk1+k2∈Lk1+k2

[
I(Q;Zk1+k2

sk1+k2
)
]

does not necessarily hold in general. Thus, we here encounter a
whole new problem while considering constraints and secrecy
requirements at the same time. Our tools are quite strong to
prove the achievability part of Theorem 1. The converse is
causing problems, such that we can only give a pessimistic
formula for the common randomness assisted secrecy capacity.
Thus, it has to be mentioned that our result is strictly weaker
than the results of [5], where no secrecy requirements are

imposed. It still has to be shown that the limit of the right
hand side of (9) exists and converges. Although we provide
a multi letter description of the common randomness assisted
secrecy capacity of an AVWC with input and state constraints,
only, we can formulate statements about crucial properties of
the AVWC such as the continuity or super additivity. Thus,
we provide a useful result which has to be adapted to the
case of deterministic wiretap codes. In future work, the joint
encoding over parallel AVWCs with input and state constraints
will be investigated. Recently, a phenomenon Super-Activation
has been proven to occur for parallel AVWCs. This is an
even stronger effect than the violation of additivity of the
zero-error capacity (Shannon conjectured additivity to hold
in 1956, the statement was disproven by Alon in 1998):
joint encoding on two parallel AVWCs which each have zero
deterministic secrecy capacity alone might provide a secrecy
capacity strictly larger than zero.
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