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Abstract—In the classical Secret-Key generation model, Com-
mon Randomness is generated by two terminals based on the
observation of correlated components of a common source, while
keeping it secret from a non-legitimate observer. It is assumed
that the statistics of the source are known to all participants. In
this work, the Secret-Key generation model based on a compound
source is studied where the source realization is unknown. The
protocol should guarantee the security and reliability of the gener-
ated Secret-Key, simultaneously for all possible realizations of the
compound source. A single-letter lower-bound of the Secret-Key
capacity is derived for the case where the public communication
rate is limited. Furthermore, a multi-letter capacity formula
is computed for the case where the public communication is
unconstrained.

I. INTRODUCTION

Current cryptographic approaches are dependent on the
computational capabilities of the terminals. By increasing
technological advances, the security of transmitted information
can not be guaranteed for sure. In contrast, an information
theoretic approach provides us with a framework for future
coding schemes which are independent of computational
capabilities of the eavesdroppers.

Information theoretic security was first introduced by Shan-
non in [1], in the so called one-time pad method where
each transmitting message is encrypted by a Secret-Key (SK).
Another step towards achieving communication security is to
generate a shared SK based on a common source. In this model,
two terminals observe correlated components of a common
source and communicate over a public noiseless channel to
generate a common SK, based on their knowledge. They
can encrypt subsequent communication using this SK. This
procedure is based on the generation of a Common Randomness
(CR)-based information which was first introduced in [2] and
later used by Maurer in [3], and Ahlswede and Csiszár in [4]
to determine the SK capacity. The SK sharing is further studied
in [5]–[7]. In practice, this kind of security can be integrated
in the physical layer of wireless systems and for instance take
advantage of the CR of the Ultra-Wideband (UWB) channel
impulse response between two terminals to generate a SK [8].

However, in all these models which were used for SK
generation, perfect knowledge of the source realization in the
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whole procedure was assumed. In a more general approach,
the source uncertainty should be taken into account where the
terminals do not have the knowledge of the actual realization
of the source. While compound source coding as a related
problem, was studied in [9], [10], an achievable SK rate for
a compound Discrete Memoryless Multiple Source (DMMS)
{(X,Ys, Zs)}s∈S was given in [11]. In [12], the compound
DMMS {(Xs, Ys)}s∈S without an eavesdropper was studied
and the SK capacity was computed. Finally in [13], an
achievable SK rate for a channel model with Arbitrarily Varying
Channel (AVC) states at the eavesdropper was derived.

In this work, a SK generation model for a compound
DMMS with one-way communication in presence of an
eavesdropper is studied. The terminals observe a compound
source S := {XY Z, s}s∈S := {(Xs, Ys, Zs)}s∈S and two of
them generate a shared SK by only a one-way communication
over a public noiseless channel while keeping it secret from the
third terminal (eavesdropper). As the source realization index
s ∈ S is unknown to the terminals, an estimation method such
as hypothesis testing is incorporated to find the marginal source
index of the transmitter. This approach is used to generalize
the model in [5], [7, Section 17.3] to the compound setup.

In Section II, the general model for SK generation is
presented. Section III gives the main results followed by a short
proof sketch. A single-letter lower-bound for the SK capacity is
derived when the communication rate over the public channel
is constrained. A multi-letter SK capacity formula is computed
as well for the case where the public communication rate is
unconstrained. A summary of formal proofs for the main results
is given in Section IV. Finally, Section V concludes the paper.

Notation: For the typical sequences and their related sets
the same definitions as in [7, Chapters 2 and 17] are taken.
1A(·) denotes the indicator function for a set A. For any
function f , the cardinal number of the range of the function
is denoted by ‖f‖. Random Variables (RVs) are denoted by
capital letters (e.g. Xn, U, · · · ), their realization by small letters
(e.g. xn, u, · · · ), their range (alphabet) by script letters (e.g.
Xn,U , · · · ), and their Probability Distribution (PD) by Roman
letters (e.g. PXn ,PU , · · · ). All alphabets corresponding to RVs
are supposed to be finite. H(X) and I(X;Y ) represent the en-
tropy of a RV X and the mutual information between X and Y
respectively. h(a) with a ∈ [0, 1] is the binary entropy function
and is given by h(a) := −a log a− (1− a) log(1− a). Finally,
X − Y − Z denotes a Markov chain for RVs X , Y , and Z.
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Fig. 1. SK generation protocol for compound DMMS model.

II. SK GENERATION MODEL

Figure 1 shows the SK generation model which is
used throughout this work. Transmitter (Alice), receiver
(Bob) and eavesdropper (Eve) observe a compound DMMS
S = {XY Z, s}s∈S for time duration n ∈ N. Therefore, RVs
Xn
s , Y

n
s , and Zns represent their initial knowledge for the

source state s ∈ S. It is assumed that all terminals know
the set of source states S as well as its statistics with PDs
{PXY Z,s}s∈S . However, they do not have the knowledge of
the actual realization s ∈ S of the source. The next definition
describes the SK generation model which is studied through
out this work.

Definition 1. The SK generation model consists of a transmitter
(Alice), a receiver (Bob), an eavesdropper (Eve), a compound
DMMS which generates their initial knowledge, and a public
noiseless communication channel between all terminals. The
source is given for a finite set of states S, by a sequence of
generic RVs S = {XY Z, s}s∈S taking their values in the
finite set X × Y × Z .

As RVs Xn
s and Y ns are correlated, Alice and Bob may

generate some CR-based information by communicating over
the public channel. In this work, only a one-way communication
over the public channel is allowed. The following definition
gives a more precise description of this procedure.

Definition 2. A one-way SK generation protocol for the model
which is given in Definition 1 with source S = {XY Z, s}s∈S
consists of the following two steps:

• After observing Xn
s , Alice transmits fc(Xn

s ) to Bob over
the public noiseless channel. fc is a deterministic function
of Xn

s and is called public communication function.
• Next, Alice generates a SK, represented by a RV KA,

based on her knowledge Xn
s and Bob generates a

SK, represented by a RV KB, based on his knowledge
(Y ns , fc(X

n
s )). KA and KB take their values in K.

Similarly as in [7, Problem 17.15(a)], it can be shown that
a randomized fc does not increase the SK rate and capacity.

As the communication over the public channel is also
received by Eve, this should not reveal any information about
the SK. Moreover, the generated SK should have a uniform
distribution. Combining these two criteria together leads to
a compact notation which was first introduced in [6] and is
called security index.

Definition 3. For RVs KA and V , taking value in the sets K
and V respectively, the security index is given by

S(KA|V ) := log(|K|)−H(KA) + I(KA;V ).

KA represents the SK and V Eve’s knowledge. This short
notation is a powerful tool which guarantees both the strong
secrecy [14] and uniformity of the generated SK.

The next definition uses this concept to define an achievable
SK rate and capacity. Similarly as in [4], [7], the communication
rate constraint is also part of the achievability definition. This
is because, in a realistic model, the information exchange rate
between the terminals is restricted.

Definition 4. A real number Rsk ≥ 0 is an achievable SK rate
for the model in Definition 1 with source S = {XY Z, s}s∈S
and a one-way communication over the public noiseless channel
with rate constraint Γ ∈ (0,+∞], if and only if, for all δ > 0,
and all n ∈ N large enough, there exists a SK generation
protocol with public communication function fc, giving rise to
the RVs KA and KB with values in K, for which it holds:
• 1

n log ‖fc‖ < Γ + δ,

• Rsk <
1
n log |K|+ δ,

• ∀s ∈ S, Pr(KA 6= KB) < δ,

• ∀s ∈ S, S(KA|Zns , fc(Xn
s )) < δ.

The SK capacity Csk(S,Γ) for this model is defined to
be the supremum of all achievable SK rates. If there is no
communication rate constraint i.e. Γ = ∞, then the first
condition in the definition is inactive and the capacity is simply
denoted by Csk(S).

In the following, a subset of the compound set S is defined.
This definition is required for stating the results in Section III.

Definition 5. Let for the source S = {XY Z, s}s∈S , Ŝ be
the set of all possible states of marginal RV X . For a given
marginal state ŝ ∈ Ŝ , corresponding to the RV Xŝ, the set of
all possible joint source states is given by

I(ŝ) :=
{
s ∈ S :∀x ∈ X ,∑

y∈Y

∑
z∈Z

PXY Z,s(x, y, z) = PXŝ(x)
}
.

III. SK CAPACITY RESULTS AND LOWER-BOUND

In this section, a single-letter SK capacity lower-bound
as well as a multi-letter SK capacity representation for the
compound DMMS model is presented and a short proof sketch
is provided for the first result. For Theorem 1, the capacity
lower-bound is given as a function of public communication
rate constraint.
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Theorem 1. For a compound DMMS model with source
S = {XY Z, s}s∈S and a one-way communication over a
public noiseless channel with constraint Γ ∈ (0,∞], it holds:

Csk(S,Γ) ≥ min
ŝ∈Ŝ

max
Uŝ,Vŝ{

min
s∈I(ŝ)

I(Vŝ;Ys|Uŝ)− max
s∈I(ŝ)

I(Vŝ;Zs|Uŝ)
}
, (1)

where the outer max is taken over all RVs Uŝ and Vŝ such
that it holds:

∀s ∈ I(ŝ), Uŝ − Vŝ −Xŝ − Y Z, s and

max
s∈I(ŝ)

I(Uŝ;Xŝ|Ys) + max
s∈I(ŝ)

I(Vŝ;Xŝ|UY, s) < Γ.

Proof sketch: To achieve the SK rate in (1), Alice estimates
her marginal state ŝ ∈ Ŝ by hypothesis testing such that
the estimation error is exponentially small [15]. Similarly as
in [12], she sends it along with other information related to
her observation to Bob. In Figure 1, this is denoted by fc(Xn

s ).
It can be shown that the protocol guarantees all the conditions
of Definition 4 for achievability.

Given an estimated marginal source state of Alice ŝ ∈ Ŝ , the
joint source state s is not necessarily known to the terminals.
However, by Definition 5, it is known that s ∈ I(ŝ). For the
correctly estimated state of Alice, say ŝ ∈ Ŝ, Lemma 1 from
Section IV assures that Alice and Bob can generate a CR
which is universal for all possible source states s ∈ I(ŝ).

Furthermore, the coding scheme in Lemma 1, should work
with respect to the given communication rate constraint Γ > 0.

Finally, as seen in Figure 1, Alice and Bob generate their SKs
KA and KB based on this CR-based information using a SK
generator. However, fc(Xn

s ) is also received by Eve. Lemma 2,
again from Section IV, assures the existence of a SK generator
which guarantees the strong secrecy and uniformity of the SK
KA, for all possible s ∈ I(ŝ), even if the estimation RV Ŝs
which is a part of the transmitted message fc(Xn

s ), reveals
some information about the SK.

Next, a multi-letter SK capacity formula is computed for
the case where no communication rate constraint is given.

Theorem 2. For a compound DMMS model with source
S = {XY Z, s}s∈S and a one-way communication over a
public noiseless channel, it holds:

Csk(S) = lim
n→∞

1

n
min
ŝ∈Ŝ

max
Uŝ,Vŝ{

min
s∈I(ŝ)

I(Vŝ;Y
n
s |Uŝ)− max

s∈I(ŝ)
I(Vŝ;Z

n
s |Uŝ)

}
, (2)

where the outer max is taken over all RVs Uŝ and Vŝ such
that it holds:

∀s ∈ I(ŝ), Uŝ − Vŝ −Xn
ŝ − Y nZn,s.

IV. PROOFS

In the following, Lemmas 1 and 2 for compound sets are
presented. The proofs are similar to the non-compound versions
which are available in [7, Chapter 17], [5], [16]. In Lemma 1, if

the values in the equations (3)-(6) are not integers, the smallest
integer which is larger than the given expression is taken.

Lemma 1. Let δ > 0 and σ > ζ > 0 be all in R and
sufficiently small. Let ŝ ∈ Ŝ be given and for all s ∈ I(ŝ), the
Markov chains Uŝ − Vŝ −Xŝ − Ys hold. Consider Nŝ,1Nŝ,2
sequences unij(ŝ) ∈ Un, chosen independently by PUnŝ where

i ∈ I :=
{

1, 2, · · · , Nŝ,1
}
, j ∈ J :=

{
1, 2, · · · , Nŝ,2

}
,

Nŝ,1 := exp
[
n
(

max
s∈I(ŝ)

I(Uŝ;Xŝ|Ys) + 3δ
)]
, (3)

Nŝ,2 := exp
[
n
(

min
s∈I(ŝ)

I(Uŝ;Ys)− 2δ
)]
. (4)

For each unij(ŝ), consider Nŝ,3Nŝ,4 sequences vijpq
n
(ŝ) ∈ Vn,

chosen conditionally independently by PnVŝ|Uŝ(·|u
n
ij(ŝ)) where,

p ∈ P :=
{

1, 2, · · · , Nŝ,3
}
, q ∈ Q :=

{
1, 2, · · · , Nŝ,4

}
,

Nŝ,3 := exp
[
n
(

max
s∈I(ŝ)

I(Vŝ;Xŝ|UY, s) + 3δ
)]
, (5)

Nŝ,4 := exp
[
n
(

min
s∈I(ŝ)

I(Vŝ;Ys|Uŝ)− 2δ
)]
. (6)

Assume that all random sequences {unij(ŝ)}(i,j)∈I×J and
{vijpq

n
(ŝ)}(p,q)∈P×Q are known to Alice and Bob. Then it holds:

a) For n ∈ N sufficiently large, there exist encoder functions
f̂ : T → I and ĝ : T → J , with a probability approaching 1,
doubly exponentially fast where

T :=
{
xn ∈ Xn : T n[UX,ŝ]ζ(x

n) 6= ∅
}
, (7)

and if f̂(xn) = i, ĝ(xn) = j then (unij(ŝ), x
n) ∈ T n[UX,ŝ]ζ .

Alice encodes her observation xn ∈ T by these functions to
the sequence unij(ŝ).

Furthermore, for functions f̂ and ĝ, extending them to
f : Xn → I ∪ {0} and g : Xn → J ∪ {0} such that

∀xn ∈ T , f(xn) = f̂(xn), g(xn) = ĝ(xn),

∀xn 6∈ T , f(xn) = g(xn) = 0,

there exists a decoder g̃ : I × Ŝ × Yn → J , with which
Bob can reconstruct g(xn) from (f(xn), ŝ, yn), with an error
probability approaching 0, exponentially fast for all s ∈ I(ŝ).

b) For each f and g from part a), and n ∈ N sufficiently
large, there exist functions ϕ̂ : T → P and ρ̂ : T → Q with
a probability approaching 1, doubly exponentially fast, such
that if f̂(xn) = i, ĝ(xn) = j, ϕ̂(xn) = p, ρ̂(xn) = q
then (unij(ŝ), v

ij
pq
n
(ŝ), xn) ∈ T n[UVX,ŝ]σ. Alice encodes her

observation xn ∈ T by these functions to the sequence vijpq
n
(ŝ).

Furthermore, for functions ϕ̂ and ρ̂, extending them to
ϕ : Xn → P ∪ {0} and ρ : Xn → Q∪ {0} such that

∀xn ∈ T , ϕ(xn) = ϕ̂(xn), ρ(xn) = ρ̂(xn),

∀xn 6∈ T , ϕ(xn) = ρ(xn) = 0,

there exists a decoder ρ̃ : I × J × P × Ŝ × Yn → Q,
with which Bob can reconstruct ρ(xn) from
(f(xn), g(xn), ϕ(xn), ŝ, yn), with an error probability
approaching 0, exponentially fast for all s ∈ I(ŝ).
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Lemma 2. Let ŝ ∈ Ŝ be given and C,Ds, and Ŝs with
s ∈ I(ŝ) be RVs taking value in C,D, and Ŝ respectively.
Assume α ∈ (0, 16 ] and η ∈ (0, 13 ] with α ≤ η are given and
for all s ∈ I(ŝ), there exist sets Bs ⊂ C × D with

∀(c, d) ∈ Bs, PCD,s|Ŝs(c, d|ŝ) <
1

α|Bs|
,

PCD,s|Ŝs(Bs|ŝ) ≥ 1− (η2 − α2).

Furthermore, define the sets Bs,d :=
{
c ∈ C : (c, d) ∈ Bs

}
and Ds :=

{
d ∈ D : Bs,d 6= ∅

}
, and assume

k∈N, k < α6 min
s∈I(ŝ),d∈Ds

|Bs,d| , k<
e1/α

2|D| |I(ŝ)|
. (8)

Then, there exists a SK generator κ : C → {1, 2, · · · , k} such
that for all s∈I(ŝ),

S(κ(C)|Ds, Ŝs= ŝ)≤(α+ 2η) log k + h(α+ η), (9)

with a probability at least 1−2k |I(ŝ)| |D| e−
α5 min |Bs,d|

k where
the min in the exponent is taken over all s ∈ I(ŝ) and d ∈ Ds.

In the following, short proofs of Theorems 1 and 2 are
presented. Similar techniques which are used for deriving the
non-compound SK capacity in [7, Section 17.3], [5] are used
in the following proofs and extended to the compound setup.

Proof of Theorem 1. The proof is divided into two parts:

Part a) Assume min
s∈I(ŝ)

I(Uŝ;Ys) > max
s∈I(ŝ)

I(Uŝ;Zs) and define

R′sk := min
s∈I(ŝ)

I(Uŝ;Ys)− max
s∈I(ŝ)

I(Uŝ;Zs).

We show that R′sk is achievable for RV Uŝ satisfying

Uŝ −Xŝ − Y Z, s and max
s∈I(ŝ)

I(Uŝ;Xŝ|Ys) < Γ. (10)

As explained in Section III, Alice estimates her marginal
statistic by hypothesis testing. Assume ŝ ∈ Ŝ is the index corre-
sponding to the correct decision and for all other s̃ ∈ Ŝ − {ŝ}
a wrong decision is made. In the rest of the proof, it is shown
that all conditions of Definition 4 are satisfied.

Let s ∈ S be given and the resulting estimated marginal
state be denoted by the RV Ŝs taking value in Ŝ and having
the PD PŜs . Therefore, it holds by [15] and [7, Problem 2.13b]

PŜs(ŝ) ≥ 1− exp(−nc0), (11)

∀s̃ ∈ Ŝ − {ŝ}, PŜs(s̃) ≤ exp(−nc1), (12)

for some c0, c1 > 0. Next, Alice sends her estimated marginal
source state to Bob over the public noiseless channel.

Assume 0 < ξ < ζ < σ, and δ > 0 are all in R. For the case
that hypothesis testing has led to the correct decision, it holds
that s ∈ I(ŝ). Moreover, the independently generated Nŝ,1Nŝ,2
sequences unij(ŝ) ∈ Un from Lemma 1a) are known to both
Alice and Bob. Based on this sequences, Lemma 1a) implies
the existence of the encoder functions f : Xn → I ∪ {0} and
g : Xn → J ∪ {0} with the given properties. Alice sends
also the index f(xn) = i of unij(ŝ) to Bob over the public

channel. Again Lemma 1a) implies the existence of a decoder
g̃ : I × Ŝ × Yn → J , with which Bob can reconstruct g(xn)
from (f(xn), ŝ, yn) with an error probability approaching 0,
exponentially fast for all s ∈ I(ŝ). For all other estimation
results leading to a wrong decision, the probability of happening
an error is given by (12) which is also exponentially small.

The whole message which is sent over the public channel
is represented by the RV fc(X

n
ŝ ) = (f(Xn

ŝ ), Ŝs). For the
communication rate 1

n log ‖fc‖ from Definition 4, it holds that

1

n
log ‖fc‖ = max

s∈I(ŝ)
I(Uŝ;Xŝ|Ys) + 3δ +

1

n
log |Ŝ| < Γ+ 3δ,

where the equality follows by (3) and the inequality by (10).
After the index g(xn) = j is reconstructed by Bob, both

Alice and Bob may generate their SK, based on this CR-based
data. Thus, it remains to show that there exists a SK generator
κ : J → {1, 2 · · · , k}, giving rise to the RV KA = κ(g(Xn

ŝ )),
which satisfies the security condition of Definition 4. Define

Ts :=
{

(xn, zn) : xn∈T , (unf(xn)g(xn)(ŝ), x
n, zn)∈T n[UXZ,s]σ

}
,

C := g(Xn
ŝ ), Ds :=

(
f(Xn

ŝ ), Zns ,1Ts(X
n
ŝ , Z

n
s )
)
,

Bs :=
{(
j, (i, zn, 1)

)
: (i, j) ∈ I × J , zn ∈ T n[Zs]ξ,

T n[UXZ,s]σ(unij(ŝ), z
n) 6= ∅

}
,

where the set T was given in (7). In the following, it is shown
that all conditions of Lemma 2 are satisfied.

PCD,s|Ŝs(Bs|ŝ) =
∑

(j,(i,zn,1))∈Bs

PCD,s|Ŝs
(
j, (i, zn, 1)|ŝ

)
≥ 1− 1

1− exp(−nc0)

[
PXns Zns (T c

s ) + PZns (T n[Zs]ξ
c)
]

≥ 1− exp(−nc2)

1− exp(−nc0)
≥ 1− exp(−nc3),

for some c2, c3 > 0 and n sufficiently large. Define α and η
for some arbitrary τ > 0 as follows

α := exp(−n(δ + 5τ)), η := exp(−nδ). (13)

This implies for n large enough and δ and τ sufficiently small

PCD,s|Ŝs(Bs|ŝ) ≥ 1− (η2 − α2).

Similar as in [7, Section 17.3], it can be shown that for ξ
and ζ sufficiently small and n large enough,

|Bs| ≤ exp
[
n
(
H(Zs) + τ

)]
×

exp
[
n
(
I(Uŝ;Xŝ) + δ − I(Uŝ;Zs) + τ

)]
. (14)

Furthermore, for all (j, (i, zn, 1)) ∈ Bs, it holds that(
1− exp(−nc0)

)
· PCD,s|Ŝs

(
j, (i, zn, 1)|ŝ

)
(15)

≤ exp
[
n
(
H(Xŝ|UZ, s) + τ

)]
exp

[
− n

(
H(XZ, s)− τ

)]
,

where the inequality follows from (11). Finally by (14), (15),
and definition of α in (13), it follows that

|Bs|PCD,s|Ŝs
(
j, (i, zn, 1)|ŝ

)
α ≤ exp(−nτ)

1− exp(−nc0)
< 1.
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Therefore, Lemma 2 implies that there exists a SK generator
function κ : J → {1, 2, · · · , k} such that (9) holds. Hence,

S
(
KA

∣∣ f(Xn
ŝ ), Zns ,1Ts(X

n
ŝ , Z

n
s ), Ŝs = ŝ

)
≤ (α+ 2η) log k + h(α+ η)

≤ n · exp(−nc4) + exp(−nc4) ≤ exp(−nc5), (16)

for some c4, c5 > 0 and KA = κ(g(Xn
ŝ )). Therefore in

total, for all estimation results which may lead to a correct or
incorrect decision, it holds that

S
(
KA

∣∣ f(Xn
ŝ ), Zns ,1Ts(X

n
ŝ , Z

n
s ), Ŝs

)
= PŜs(ŝ)S

(
KA|Zns , f(Xn

ŝ ),1Ts(X
n
ŝ , Z

n
s ), Ŝs = ŝ

)
+∑

s̃∈Ŝ−{ŝ}

PŜs(s̃)S
(
KA|Zns , f(Xn

ŝ ),1Ts(X
n
ŝ , Z

n
s ), Ŝs= s̃

)
≤ exp(−nc5) + n · exp(−nc6) ≤ exp(−nc7),

for some c6, c7 > 0. The inequality is a result of (16) and (12).
Finally, k should also satisfy the conditions in (8). Therefore,

similarly as in [7, Section 17.3], it can be shown that for τ > 0
and ζ > 0 both sufficiently small and n large enough,

min
s∈I(ŝ),d∈Ds

|Bs,d| ≥ min
s∈I(ŝ),d∈Ds

∣∣∣{j : unij(ŝ) ∈ T n[UZ,s]ζ(z
n)
}∣∣∣

≥ exp
[
n
(
R′sk − 2δ − τ

)]
.

Part b) It may be assumed that

min
s∈I(ŝ)

I(Uŝ;Ys) ≤ max
s∈I(ŝ)

I(Uŝ;Zs). (17)

Because otherwise, it follows that

Rsk := min
s∈I(ŝ)

I(Vŝ;Ys|Uŝ)− max
s∈I(ŝ)

I(Vŝ;Zs|Uŝ)

≤ min
s∈I(ŝ)

I(Vŝ;Ys)− max
s∈I(ŝ)

I(Vŝ;Zs)

−
[

min
s∈I(ŝ)

I(Uŝ;Ys)− max
s∈I(ŝ)

I(Uŝ;Zs)
]
,

and by part a) of this lemma, Rsk would be achievable.
The SK rate Rsk can be shown to be achievable for the case

when (17) holds and Rsk > 0. The proof is very similar to
part a) of this proof, by using Lemma 1b) and Lemma 2.

Proof of Theorem 2. The direct part of the proof is trivial and
follows using Theorem 1 and Fekete’s lemma [17]. For the
converse let Rsk > 0 be an achievable SK rate. Next, Alice
sends a message fc(Xn

ŝ ) to Bob over the public channel and
generates a SK represented by KA. It holds by Fano’s inequality
and Definitions 3 and 4 that for all ε > 0 and n large enough,

1

n
log|K| < 1

n

[
min
s∈I(ŝ)

H
(
KA|Zns , fc(Xn

ŝ )
)
−

max
s∈I(ŝ)

H
(
KA|Y ns , fc(Xn

ŝ )
)]

+
1

n
ε log |K|+ 1

n
+ ε.

For δ > 0, ε′ = ε/(1− ε) + δ, n sufficiently large, and by
Definition 4, it implies that

Rsk <
1

n
log |K|+ δ ≤ 1

1− ε
· 1

n

[
min
s∈I(ŝ)

I
(
KA;Y ns |fc(Xn

ŝ )
)

− max
s∈I(ŝ)

I
(
KA;Zns |fc(Xn

ŝ )
)]

+ ε′.

Set RVs Uŝ := fc(X
n
ŝ ) and Vŝ := (fc(X

n
ŝ ),KA). It holds

by definition of Uŝ and Vŝ that I(Xn
ŝ ;Uŝ|Vŝ) = 0. Furthermore,

As fc(Xn
ŝ ) and KA are both functions of Xn

ŝ , it implies that
I(Y ns , Z

n
s ;UV, ŝ|Xn

ŝ ) = 0 which proves the Markov chain.
Furthermore, take the maximum with respect to Uŝ and Vŝ.

Finally, because ŝ ∈ Ŝ was chosen arbitrarily, taking ε and ε′

sufficiently small and n large enough, completes the proof.

V. CONCLUSION

The SK generation protocol which was introduced in this
work used a two phase approach to achieve the given SK
rate. In the first step, Alice estimated her state and sent this
along with other information, which was obtained from her
observation, to Bob. Although, this information is also received
by Eve, it was shown that the strong secrecy is still guaranteed.
In the second step, Bob used this information including the
estimated state of Alice to reconstruct the SK. A single-letter
lower-bound for the SK capacity was derived while the one-way
public communication rate between Alice and Bob was kept
low by a given upper-bound. This result was further extended
to a multi-letter SK capacity formula.
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