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ABSTRACT

In this paper we propose a general, object-oriented software architecture for model-based visual tracking. The
library is general purpose with respect to object model, estimated pose parameters, visual modalities employed,
number of cameras and objects, and tracking methodology. The base class structure provides the necessary
building blocks for implementing a wide variety of both known and novel tracking systems, integrating different
visual modalities, like as color, motion, edge maps etc., in a multi-level fashion, ranging from pixel-level segmen-
tation, up to local features matching and maximum-likelihood object pose estimation. The proposed structure
allows integrating known data association algorithms for simultaneous, multiple object tracking tasks, as well as
data fusion techniques for robust, multi-sensor tracking; within these contexts, parallelization of each tracking
algorithm can as well be easily accomplished. Application of the proposed architecture is demonstrated through
the definition and practical implementation of several tasks, all specified in terms of a self-contained description
language.

Keywords: M odel-based Computer Vision, Object Tracking, Maximum-Likelihood Parameter Estimation,
Data Association, Multi-modal Data Fusion, Object Modeling

1. INTRODUCTION

Visual tracking consists in integrating fast computer vision and image understanding techniques, together with
sequential estimation methodologies (tracking), for the purpose of localizing one or more moving objects in a
video sequence. More or less detailed models can be used for this task, and an efficient integration of all available
information greatly enhances the quality of the estimation result.

Model-based visual tracking has application in many fields of interest, including robotics, man-machine
interfaces, video surveillance, computer-assisted surgery, navigation systems, and so on. Recent surveys about
the wide variety of techniques already proposed have been attempted in the literature.1, 2

The aim of this paper is to present an object-oriented, unifying software architecture, with a twofold goal:
on one side, to resume and provide some more insight about existing state-of-the-art visual tracking approaches
as well as to develop new ones, within a common framework; and at the same time to aid designing, describing
and specifying a tracking system in a self-contained fashion, by using a compact description vocabulary and a
few specifications of related parameters (system configuration).

The present work is organized as follows: Section 2 presents a high-level description of the library, motivated
by a general view of the problem; the basic visual processing tools and data structures are briefly discussed in
Section 3, while the model-related layer of the architecture is presented in more details in Section 4; Section 5
focuses on the main tracking pipeline for a single target and single sensor task, organized in agents and data
structures. Examples of individual systems instantiated within the proposed architecture are given in Section 6,
along with related experimental results; conclusions and planned improvements are finally given in Section 7.
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Figure 1. Single-target tracking flow diagram.

2. OVERVIEW OF THE TRACKING LIBRARY

In order to present the library, we start from a general discussion of model-based visual tracking. The general
form considered here for a single-sensor, single-target system is resumed in Fig. 1.

The main information data, flowing within the system at time t, are:

• The sensor signal, It

• The measurement variable, zt

• The object state, st

In a probabilistic framework, the tracking module follows the general Bayesian tracking scheme,3, 4 using
Bayes’ rule in order to update the state statistics st, by integrating the currently available measurement zt

together with the set Zt of all measurement up to time t, resumed by the last estimation st−1.

This scheme, when extended to multiple objects, cameras and visual modalities, directly leads to develop a
set of base classes that realize the desired functionalities in a pipeline fashion:

• A raw image (sensor data) is obtained from the cameras (input sensors)

• Images are processed in more or less complex ways (visual processing units), in order to provide more or
less abstract measurement vectors z, of the most variable nature (visual modalities) and complexity:
color blobs, motion fields, edge maps, LSE pose estimates, etc. There can be multiple processing units,
running in parallel on the same input data, each one providing a single or multiple measurements zi,t

• If required, simultaneous measurements from more cameras or modalities at each time can be synthesized
in a “supermeasurement” Zt before providing them to the tracker (static measurement fusion)

• In case of multiple objects and/or multiple measurements with uncertain origin, a measurement-to-
target association mechanism is required, before updating the state.

• Fused/associated measurements are fed into sequential estimators (trackers) in order to update the
state statistics of each independent object in a Bayesian framework (prediction-correction).

• Still in case of multiple cameras and/or visual modalities, the fusion process can take place after individual
state updates, by means of a dynamic fusion mechanism (track-to-track).
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• Predicted and updated states are provided as output for the user, for displaying the result and, if required,
for providing an initial guess to the next visual processing step (restrict search).

• At the beginning (t = 0) and in case of any track loss detection, an optional re-initialization module
is called, providing an external prior information for the Bayesian estimators.

In the above description, we put into evidence the on-line data and agents working within the pipeline; by
taking into account also the modeling items which may be required for this complex task, we finally organize our
structure in the following way, which will be detailed in the next Sections (Fig. 2)

Figure 2. The library functional structure.

• Visual processing and data structures

– Model-based vision algorithms

– Image processing tools

– Common data types (Matrix, Image, etc.) with internal manipulation and algebra functions

– Specialized data structures, related to individual features (local keypoints, elliptical blobs, etc.)

• Object Models

– Object shape and appearance

– Warp function and pose parameters

– Dynamic model

– Visual features for tracking

– Likelihood function (measurement model)

• Tracking Agents

– Input device

– Visual processing

– Static/Dynamic measurement fusion

– Measurement-to-target association
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– Sequential estimator (Tracker)

– Output

• Tracking Data

– Sensor data

– Measurement

– Object state

In what follows, the role and meaning of each layer and class will be detailed.

3. VISUAL PROCESSING AND DATA STRUCTURES

The first two layers include single image processing/understanding tools as well as general-purpose functions,
together with the associated data structures.

Utility and general-purpose functions in these layers include matrix and image manipulation, algebra, visu-
alization tools, visibility testing, least-squares optimization algorithms, and others as well.

Within the library, visual processing tools and data are organized in two main namespaces:

• Processing functions (model-free and model-based), operating at different levels: segmented pixel maps,
geometric features detection and matching, and object pose estimation tools

• Processing data: storage structures for model and image features: invariant keypoints (location and de-
scriptors), geometric primitives (lines, circles, elliptical blobs), etc.

Computer vision algorithms employ more or less generic model features, according to the required level of
abstraction and specificity of the output: for example, color segmentation may need only a reference histogram
in HSV space,5 while invariant keypoints matching6 require a database of reference features from one or more
views of the object, and a contour-based LSE pose estimation7 employs a full wireframe model of the shape.

For each algorithm, the output result is stored in a vector of specialized data structures: for example, a SIFT
database8 is stored as an array of structures, containing the 2D image coordinates and the respective invariant
descriptors. These structures, together with more common types (Matrix, Image) constitute the base layer of
Fig. 2.

4. MODEL LAYER

The object to be tracked, or the environment part (e.g. a ground-fixed marker), and the sensor device are
modeled with respect of the most relevant aspects for tracking.

4.1 Ground object shape

For each object, a shape model can be of any kind, ranging from simple planar shapes like a rectangle, up to
articulated structures with a skeleton, for modeling a human hand or a full body; the shape model can include
rigid as well as deformable parts.

In a general form, the base shape can be fully represented or approximated by a base triangular mesh, moving
an deforming in space according to the respective degrees of freedom. Articulated multi-body structures require
additional parameters (e.g. Denavit-Hartenberg), specifying the intermediate frame locations and degrees of
freedom between connected rigid bodies; this information can be stored as an additional skeleton model.

In this context, we call the base mesh and skeleton model also ground shape of the object, which is externally
provided in a general-purpose CAD format (e.g. a VRML description).

SPIE-IS&T/ Vol. 6813  681303-4
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Figure 3. Model informations for tracking.

4.2 Warp function and pose parameters

Pose parameters specify the allowed (or expected) degrees of freedom of all body parts with respect to the ground
shape, and they are included in the object model as well. Object motion and deformation is therefore compactly
represented by a more or less large vector p.

The choice of pose parameters leads to the definition of the warp function, mapping points x from body space
to sensor space y (image pixels), under a given hypothesis p:

y = W (x, p) (1)

According to the choice of a calibrated or uncalibrated camera model (4) the parameter p may include,
respectively, only the extrinsic part of the transformation (body-to-camera frame), or both extrinsic and intrinsic
parameters.

Several examples of warps can be found in the literature, of variable complexity and dimensionality; many of
them can be represented in homogeneous coordinates by the general form

y = P (p)x (2)

with P a pose-dependent projection matrix .9 Articulated models are described by multiple projection matrices
P (p, l) with l an integer index specifying the rigid body which x belongs to. And finally, more complex warps
for deformable objects are piece-wise defined, with P (p, x) depending also on the local point x.

In many situations, first derivatives of the Warp function w.r.t. the pose are also required

J(x, p) =
∂W

∂p

∣
∣
∣
∣
(x,p)

(3)

where J is a (2 × N) Jacobian matrix, with N the number of degrees of freedom. Computation of J is included
in this class as well, and usually available in exact (analytical) form.
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4.3 Sensor model

In a general tracking system the sensing device is a physical transducer, obtaining from the environment a raw
signal of variable nature (visual, acoustic, infrared, laser, thermal, and so on), which we call sensor data.

For calibrated CCD cameras, a sensor model is specified by the optical imaging parameters inside the intrinsic
calibration matrix Kint.9

When available, this information is included into the Warp function, which in this case is split into an extrinsic
and intrinsic mapping of the form

W (x, p) = KintText(p, x)x (4)

with Text the object-to-camera transformation matrix.

4.4 Object appearance model

Together with the geometric model for shape and motion, many algorithms need also a model of the object
appearance, specifying in more or less abstract terms how the object surface is expected to look like, from any
given viewpoint.

An appearance model can as well be more or less complex and object-specific, ranging from very simple
description of expected color statistics (“the surface at a given pose shows about a 70% green and 30% yellow
color distibution”), to more detailed, point-wise information about the texture pattern, up to multiple appearance
models, accounting also for light shading and reflectance effects (e.g. the AAM approach10, 11).

Appearance models can generally be specified through one or more reference images of the object of interest,
possibly together with texture coordinates of the base mesh.

If the appearance model includes only color or texture statistics information, the reference images are directly
used in order to build the statistics (for example, an histogram in HSV color space), which is used as visual
feature for tracking.5

When the appearance model includes a precise texture map, the reference images can be rendered by using
standard techniques (e.g. OpenGL) and more specific model features can be obtained.

4.5 Visual features for tracking

The visual features class contains all of the model information required by a given modality. Examples range
from reference histograms in color space to local invariant keypoints (e.g. SIFT8), model contour segments, a
large spatial distribution of textured surface points (template), and so on.

A visual feature set for a given modality always consists of an array of geometric primitives, each one specified
by a representative point in object space, together with a more or less specific descriptor, that may consist of a
local grey-level pattern, a segment position and orientation, an elliptical blob size and principal axis, etc.

Visual features are warped onto the sensor space under a pose hypothesis p, and matched with corresponding
features from the image I, in order to perform a matching task, to evaluate a probabilistic measure for tracking
(Likelihood function), or to directly maximize the likelihood in pose-space.

A database of visible-from-camera features is automatically obtained from the object ground shape and
appearance, and it can be pose-dependent: in fact, for some systems6 reference features can be pre-computed
and updated only after large rotational displacements of the camera view, while in other situations7 a visibility
test and features selection must be performed at each pose hypothesis.

In a tracking context, we also distinguish between off-line and on-line model features, where the latter are
updated directly from the image stream under the estimated pose, while the former are obtained from the
ground shape and appearance model only. Combining both informations generally leads to a better stability and
robustness for tracking, as demonstrated for example in Ref. 12 for the case of local keypoints.
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5. THE TRACKING PIPELINE (AGENTS AND DATA)

5.1 Visual processing and measurement
The input image is processed in more or less complex, eventually model-based ways, in order to obtain a more
refined information about the target, called measurement variable z.

As it can be seen from the literature, there are many different levels of complexity at which the visual
processor can operate.

Figure 4. Three possible visual processing levels for the same tracking task.

In our framework, we decide to classify them in three most significant categories, according to the degree of
abstraction of the resulting output z (see the example in Fig. 4).

1. Pixel-level : the raw image itself, or any kind of processing that produces information on a pixel basis,
like as a binary color segmentation, a point-wise motion field, a pixel-wise edge map (e.g. the output of a
Canny algorithm), etc.

2. Feature-level : the visual processor detects primitive shapes (connected segments, curves, elliptical blobs,
up to complex invariant keypoints) in the image, matches them to the model features, and provides the
result in a variable dimension array z

3. Object-level : z is a direct estimate of the object in pose-space p∗, obtained through an optimization
algorithm (typically a nonlinear least-squares estimation), which also requires the model features in order
to be performed. We observe here that the optimization of a cost functional C is in most cases equivalent
to a Maximum-Likelihood approach applied to a Gibbs distribution:13

zt = p∗ = min
p

C(p, It) = max
p

[exp (−λC(p, It))] (5)

In this case, we need to distinguish between this Likelihood function P (It| p) and the tracker Likelihood
P (z| s) defined next.

Generally speaking, the last processing type is also the most complex one and the most computationally
expensive, usually involving a nonlinear multivariate optimization problem, eventually requiring Jacobian ma-
trices. For this purpose, more general and robust similarity functions, other than standard LSE, are given by
M-estimators,14 Normalized Cross Correlation (NCC)15 or Mutual Information.16 The result of an object-level
measurement is also the most compact one, and directly commensurable with the object pose (z ∼ p).
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5.2 Sequential estimation module (Bayesian tracker)

Here the measurement variable zt is employed in order to update the current state estimate st through a Bayesian
prediction-correction scheme. This scheme can be here implemented with a Kalman Filter,17 an Extended
Kalman Filter or a Particle Filter,18 following the general Bayesian tracking scheme3

P
(

st|Zt
)

= kP (zt| st)
∫

st−1

P (st| st−1)P
(

st−1|Zt−1
)

(6)

where P (zt| st) is the current measurement Likelihood, P (st| st−1) is the object dynamical model, and k a
normalization term.

In a single-target, single-measurement scenario, only one tracker and one visual processor operate during the
whole sequence; in more general multitarget/multisensor environment multiple, parallel instances of each class are
present, and additional data association/fusion modules are required in order to solve the target-to-measurement
association issue, as well as to exploit redundant informations from the measurement set.19

For Bayesian tracking, two additional models are required.

5.2.1 Dynamical model

The object state vector s normally includes pose parameters p, possibly together with first or second time
derivatives (velocity, acceleration), all referred to the camera frame. Object dynamics are usually specified by
means of a time-dependent prediction function

st = f(st−1, ∆t, wt) (7)

where wt is a random variable with known distribution (process noise). This form is equivalent to the dual form
P (st| st−1).

The dynamic model is used in the Extended Kalman Filter in order to obtain the predicted state

s−t = f(st−1, ∆t, 0) (8)

together with its Jacobian matrices

Ft =
∂f

∂s

∣
∣
∣
∣
(st−1, ∆t, 0); Wt =

∂f

∂w

∣
∣
∣
∣
(st−1, ∆t, 0) (9)

for covariance prediction.

The same form (7) is also used in Particle Filters for simulating the drift process, by explicitly generating
the random component wt for Monte-Carlo sampling of the particle set.

A pre-defined set of standard linear models20 is built inside the library; all of these models can be used with
any pose representation (2D, 3D, articulated body, etc.), and the user can introduce a custom dynamical model,
always provided in the abstract form (7).

5.2.2 Likelihood model

The Likelihood function of the tracker is defined as a probabilistic measure of fit between the measured variable
zt associated to a given target, and a state hypothesis st. It is expressed as well in one of two equivalent forms:

• As a proability distribution P (zt| st), used by Particle Filters in order to update the particle weights.

• As a measurement function zt = h(st, vt) with random component vt of known statistics (measurement
noise); this form, with vt a Gaussian noise, is appropriate for an (E)KF implementation.
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Since the measurement can be of a very different type with respect to the state, the Likelihood model can
also have a much variable complexity, which is again related to the processing level used for tracking, (object-
feature- or pixel-level) and the visual modality employed (contour lines, points, color, etc.).

Generally speaking, as we can see a higher complexity of the visual processor is compensated by a lower
complexity of the tracker, and vice-versa.

In the Computer Vision literature, many likelihood models have been proposed and, as one can see from the
previous description, for the same problem different choices are possible, which are left to the experience of the
designer.

6. APPLICATION EXAMPLES AND EXPERIMENTS

In this Section, we provide a set of examples of individual tracking systems that have been instantiated using
our architecture, by means of a self-contained description language, directly referring to the classes depicted in
Fig. 2.

All of the experiments have been performed on a Desktop PC with a dual-core 3GHz Intel processor and a
programmable NVidia GPU, using standard FireWire cameras. The library is also platform-independent, and all
of the experiments have been run with the same performances on both Linux and Windows operating systems.

As a first case, we describe a Condensation contour tracker21 in 2D space. This corresponds to the following
instances of base classes:

• Task Description: 2D contour-based object tracking using Particle Filters and the Canny edge map

• Models

– Shape and Appearance: wireframe CAD model, without texture

– Visual Features: a set of points (x, y) sampled over the external model edges (silhouette), with
companion point indices (i → i + 1)22 for computing the image normals on-line

– Warp Function: 2D planar roto-translation and scale y = aR (θ)x + b

– State Representation: 4 pose parameters p = [a, θ, bx, by] and first time derivatives

– Object Dynamics : Constant velocity model (also called Continuous White Noise Acceleration20)

• Tracking Pipeline

– Sensor : Color camera with given pixel resolution, and uncalibrated acquisition model

– Visual Processing and Measurement : Canny edge detection, providing a pixel-level measurement z =
the binary edge map

– Likelihood Model : P (z| s) = Project the visual features at pose hypothesis s, search corresponding
points onto the edge map along the normals, and compute a multi-modal contour Likelihood21

– Bayesian Tracker : SIR Particle Filter, with deterministic resampling; single-target, single-modality,
without data association

– Output : Compute the sample average of the particle set s = (p, v), and display the projected CAD
model at estimated pose p

– Tracking Loss Detection: Compute the sample covariance Σ and check against a threshold value
det

(

Σ
)

< d; in case of loss, call the re-initialization procedure

– Re-initialization: Provide an initializing particle set, by sampling from a prior distribution P (s0); for
example, a large Gaussian around the image center, with suitable covariances for the 4 pose parameters
and velocities.
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Figure 6. Color-based particle filter.

Fig. 5 shows some results obtained with the above described system, for planar hand tracking; in this
application, a frame rate of 30 fps is obtained, where a set of 200 particles has been used, and each warp function
and likelihood computation does not require any visibility test.

Other examples of real-time tracking applications realized through our library are synthetically presented in
the following.

Fig. 6: a color-based Particle Filter5 using a single reference image (appearance model), and a simple
rectangular shape with planar warp (translation and scale). The visual feature is given by a two-dimensional
reference histogram in HSV color space, where the first two channels (H,S) only are collected from the appearance
image. Tracking is realized by means of single-target SIR Particle Pilter, by projecting the contour shape onto
the color image (pixel-level measurement z) and computing the likelihood as the Bhattacharyya distance between
expected and observed color histograms.5 Dynamics are modeled as simple Brownian motion, with a pose-only
state vector.

Fig. 7: a Kalman Filter tracker integrating motion and color; pose parameters are two-dimensional (x, y); two
visual processing modules act in parallel, providing motion segmentation with the motion history image,23 and
color segmentation using the Fisher linear discriminant vector24 in RGB color space. Both measurements z1, z2

are object-level, computed as the mass center of the respective segmented images. Dynamic data fusion19, 25 is
performed here by stacking the two measurements in a supermeasurement

Zt =
[

zt
1, z

t
2

]T

which is fed into a standard Kalman Filter for updating the target state st.

Fig. 8: frame-by-frame 3D pose estimation of a planar object, by matching invariant keypoints against a
single appearance model. The measurement for tracking is object-level, obtained after a nonlinear LSE estimation
of Euclidean roto-translation parameters, represented as a 6-dimensional Euclidean twist ,26 with calibrated

SPIE-IS&T/ Vol. 6813  681303-10
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Figure 7. Integrating color and motion through dynamic data fusion.

Figure 8. 3D Pose estimation with invariant keypoints - GPU-based implementation.

camera model. In this context, the tracker is a standard Kalman Filter with constant velocity dynamics. The
implementation of invariant keypoints detection and matching8 is done for speed purposes on the GPU, following
the paper in Ref. 27. This example also shows one multi-purpose hardware capability of the library.

Figure 9. Contour-based tracking by optimizing local color statistics.

Fig. 9: Color-based contour tracking with keypoint re-initialization. The contour tracker employs the color-
based CCD algorithm,28 implemented in the real-time version,29 providing a frame-rate of 25fps; as described in
Ref. 29, re-initialization in provided through keypoint detection and pose estimation, and track loss is detected
by computing an NCC index between off-line appearance and warped image pixels at the currently estimated

SPIE-IS&T/ Vol. 6813  681303-11
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pose. Measurements are object-level pose parameters, feeded into a Kalman Filter with CWNA motion model
for state estimation. The camera model is calibrated, and pose parameters are represented through the twist
vector.

Figure 10. Object tracking with edge-based least-squares pose estimation.

Fig. 10: LSE edge-based tracking of 3D objects. This system corresponds to the well-known object tracker
described in,7, 22 based on local least squares optimization of edge features in 3D space; as in the previous
example, an object-level measurement zt = p∗t is performed, by maximizing the standard (single-hypothesis)
contour Likelihood function shown in the picture on the left side, starting from the predicted pose hypothesis
p−t ; for this purpose, only nearest edge points are detected along the normals in order to evaluate the overall
error and its derivatives. 3D pose is represented again by a twist vector, and a Kalman Filter is employed for
tracking.

Figure 11. Template-based tracking by Mutual Information maximization.

Fig. 11: Template tracking by maximizing Mutual Information as robust similarity index, using a single
reference appearance under illumination changes; full details of the pose estimation algorithm are described in.16

The estimated object pose is again fed into a twist-based Kalman filter for tracking.

Fig. 12: Face tracking in 3D integrating contour and template features.30 This example shows a complimen-
tary data fusion,19 where the two visual modalities provide two disjoint parts of the full pose vector, namely
3D translation (contour) and rotation (template). The head contour is first estimated through the CCD algo-
rithm above mentioned, using an elliptical model with 3 translational degrees of freedom; head rotations are
subsequently estimated with fast Mutual Information template matching, working with the remaining degrees
of freedom.

Both features for tracking are off-line obtained from the full textured 3D mesh provided by the user.

7. CONCLUSION AND PLANNED IMPROVEMENTS

We presented a general architecture for model-based visual tracking with the purpose of casting the problem in a
common object-oriented framework, where a minimal number of classes and layers show to be sufficient for entail-
ing a wide variety of existing approaches, as well as for developing new ones. At the same time, the structure al-
lows multiple intances of base classes to work in parallel for distributed tracking in multi-camera/modality/object
tracking problems.

SPIE-IS&T/ Vol. 6813  681303-12
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Figure 12. 3D Face tracking integrating contour and template visual modalities.

In this framework, off-line models of the object shape, appearance, deformation and temporal dynamics need
to be externally provided, although in a common format throughout different tasks. Future developments of the
architecture are planned in the direction of building in fully- or semi-automatic ways the models required: for
example, 3D shape estimation from motion,9 automatic contour modeling,31 appearance model training,11 and
so on. The additional set of tools (generic recognition, classification, shape morphing, etc.) for object modeling
can be added to the base structure of Fig 2 as part of the model layer.

Another issue concerns the possibility of on-line adaptation of model features (template, local keypoints,
etc.), since for more robustness and adaptivity,12 it can be desired to update the appearance model directly
from the image stream It. This corresponds to an additional set of “model processing” tools, whose input is the
current image It and estimated state st information, where the image is back-warped into the object space, and
the on-line appearance model is updated accordingly; off-line and on-line features can then be easily combined
either within the Likelihood model, or the cost function to be optimized.
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