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Zusammenfassung

Die Entwicklung fehlertoleranter Echtzeitsysteme ist sehr komplex. Die Sys-
teme müssen nicht nur Echtzeitbedingungen einhalten, sondern ihre Funktion-
alität auch unter dem Einfluss von durch die Hardware und/oder die Software
bedingten Fehlern erbringen. Um in einem System Fehlertoleranz zu erlangen,
muss Redundanz eingesetzt werden. Diese wird häufig durch Verwendung von
mehreren Rechnern in einem verteilten System erzielt.

Um die wachsende Komplexität der Software zu beherrschen, werden in der In-
formatik modellbasierte Entwicklungswerkzeuge eingesetzt. Die existierenden
Werkzeuge beschränken sich dabei jedoch zumeist auf die Modellierung und
Generierung der Anwendungsfunktionalität. Code für nicht-funktionale As-
pekte wie Fehlertoleranzmechanismen, Kommunikation oder Scheduling wird
nicht generiert. Diese Aspekte sind jedoch für einen Großteil der Komplexität
verantwortlich.

Diese Arbeit stellt daher ein Entwicklungswerkzeug für fehlertolerante Echtzeit-
systeme vor, welches die Generierung von Code zur Umsetzung dieser nicht-
funktionalen Aspekte unterstützt. Dadurch werden existierende Entwick-
lungswerkzeuge ideal ergänzt. Der Beitrag dieser Arbeit liegt insbesondere
in der Ausarbeitung von geeigneten Modellen zur Beschreibung und Code-
generierung fehlertoleranter Systeme. Unter anderem erlauben die vorgestell-
ten Modelle die formale Spezifikation der Hardwarearchitektur, eine präzise
Definition der Softwarekomponenten und ihres zeitlichen Verhaltens, die ein-
deutige Festlegung von Fehlerannahmen, sowie die Auswahl geeigneter Fehler-
toleranzmechanismen.

Unter Verwendung eines vorlagenbasierten Codegenerators wird der
entsprechende Code erzeugt. Die Erweiterungsmöglichkeiten des Codegenera-
tors bieten eine Lösung für die vorherrschende Heterogenität der verwendeten
Ausführungsplattformen. Die Arbeit stellt eine generische Softwarearchitektur
vor und diskutiert die Umsetzung bekannter Fehlertoleranzmechanismen.
Zudem wird aufgezeigt, wie formale Methoden zur Verifikation integriert
werden können.

Anhand von zwei aussagekräftigen Anwendungen werden schließlich die
Vorteile des Ansatzes hervorgehoben. Die erste Anwendung zeigt, dass auch
Systeme mit Regelungszeiten im Bereich von wenigen Millisekunden basierend
auf Standardhardware unterstützt werden. Die zweite Anwendung demon-
striert, wie durch eine Kombination mit existierenden Werkzeugen eines der
wesentlichen Ziele im Bereich Software Engineering erreicht werden kann: die
hundertprozentig modellbasierte Entwicklung - hier im Kontext von verteilten,
fehlertoleranten Systemen.
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Abstract

The design of fault-tolerant real-time systems is a complex task. The system
must not only satisfy real-time requirements, but it must also deliver the spec-
ified functionality in the presence of both hardware and software faults. To
achieve fault-tolerance, the system has to use redundancy. This redundancy
is usually achieved by replicating hardware units and executing the application
within a distributed system.

Model-based design tools promise to reduce the complexity of the design
process by raising the abstraction level. However, most of the existing tools fo-
cus only on functional aspects. Code realizing non-functional requirements such
as fault-tolerance mechanisms, communication, and scheduling is not targeted.
However, this type of code makes up the majority of the code of a fault-tolerant
real-time system.

This work presents a model-based development tool for the design of fault-
tolerant real-time systems. The tool focuses on the code generation of non-
functional requirements and therefore complements existing tools. The major
contribution of this thesis is the presentation of adequate models that can be
used to model fault-tolerant systems and generate the code automatically. These
models comprise a formal description of the hardware architecture, the soft-
ware components and their temporal behavior, the fault assumptions, and the
selected fault-tolerance mechanisms.

Using a template-based code generator, the fault-tolerant real-time system is
generated. The template-based code generator allows an easy expansion of
the code generation functionality and therefore offers a solution to handle the
heterogeneity of fault-tolerant systems. The thesis presents a generic architec-
ture for fault-tolerant systems and discusses the realization of well-known fault-
tolerance mechanisms in this context. Finally, the thesis outlines how formal
methods can be integrated to prove the correctness of the generated code.

Two complementary applications are used to demonstrate the practicability of
the approach. One application points out that control times in the range of a few
milliseconds can be achieved using standard hardware. The second applica-
tion demonstrates that by combining different tools, one major goal in software
engineering can be achieved: the development of a complex and distributed
embedded system in a complete model-based way.
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CHAPTER 1

Introduction

Contents
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Background and Motivation

Significant advances of semiconductor technology with a drastic increase of perfor-
mance and a decline of the prizes accelerate the replacement of mechanical and hy-
draulic solutions by computer-based control systems. In general, these systems must
satisfy two requirements: they must meet hard real-time constraints, but also tolerate
both physical faults (in hardware) and design faults (in hardware or software). The rea-
son for these requirements is the application area of such systems: the systems control
physical processes. An incorrect or delayed result may lead to monetary loss, damage,
or even an endangerment of life. The systems must therefore be fault-tolerant real-time
systems.

Experiences, for example in the avionic industry with fly-by-wire, demonstrated the
feasibility of replacing mechanical and hydraulic solutions by computer based control
systems [Phi03]. However, the development of such fault-tolerant real-time software is
much more time- and cost consuming (by a factor of 20-30 [Nil04]) than the develop-
ment of standard information systems with a comparable complexity. This additional
effort can be explained by the system’s architecture. Redundancy must be applied to
achieve fault-tolerance. The redundancy is usually achieved by executing replicated
software units within a distributed system [Pow94]. Fault-tolerant systems are there-
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1. Introduction

fore typically distributed and very often based on heterogeneous hardware. Because
the complexity of such systems is dramatically increasing, the traditional way to im-
plement fault-tolerant systems from scratch is not feasible anymore [VSK05].

The main fault-tolerance mechanisms were already developed between the 1950’s and
the 1970’s [ALR01, Pra96]. However, state of the art is the re-invention of the wheel.
Due to the necessity to adapt the fault-tolerance mechanisms to application require-
ments, there are only a few approaches to reuse mechanisms to reach fault-tolerance.
Most of these approaches are based on specialized, very expensive hardware, such as
the Siemens Simatic S7 [HO05, HG05]. Software implemented fault-tolerance (SWIFT)
[BSW+00, RCV+05] offers a more flexible approach. However, these approaches are
often very restrictive in their application domain or in the tolerated faults. A typical
restriction is, for instance, the assumption that all components behave fail-silent.

Component-based development [Szy02] offers a reduction of the development com-
plexity by reusing components designed for fault-tolerant systems. Several research
projects, such as GUARD [PABD+99] or DEAR-COTS [PVW04], use this approach.
However, these approaches require the application developer to have in-depth knowl-
edge on the concrete implementation of the components.

Computer aided software engineering (CASE) tools are one solution to address this
problem. The topic of this thesis is the design of an adequate tool chain for fault-
tolerant real-time systems. This goal is not new: already in 1988, Stankovic asked for
a coherent treatment of correctness, timeliness, and fault tolerance in distributed com-
puting [Sta88]. The goal of this thesis is that programming fault-tolerant systems using
the presented tool chain becomes almost as easy as the development of classical non-
fault-tolerant systems. Similar to an operating system, a fault-tolerant layer should be
provided that delivers the necessary services to the application. This approach resem-
bles the requirements stated by Stankovic:

The operating system must provide basic support for guaranteeing real-time
constraints, supporting fault tolerance and distribution, and integrating time-
constrained resource allocations and scheduling across a spectrum of resource types,
including sensor processing, communications, CPU, memory, and other forms of
I/O [Sta88].

The approach should be based on the use of commercial-off-the-shelf (COTS) compo-
nents, instead of relying on expensive, specialized hardware. Since a generic layer is
not feasible due the heterogeneity of fault-tolerant systems, the idea is to generate the
layer based on a high-level description of the application. Arora [AK98a] stated that
the generation of components that add fault-tolerant properties to the system would
reduce the complexity of the design process drastically. The approach is similar to the
one of TinyOS. TinyOS is a highly adaptable middleware/operating system with ad-
equate development tools for sensor networks. Analog to TinyOS, the tool should be
used for the development of fault-tolerant real-time systems. Hence, the tool is named
FTOS. The name may be misleading: code generated by FTOS should not necessarily
replace an operating system. For general purpose processors with sufficient resources,
the generated code is typically based on a real-time operating system. For more con-
strained hardware in contrast, the generated code may as well replace the operating
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1. Introduction

system. The main idea of this thesis and FTOS is that the fault-tolerance layer is gener-
ated tailored for the used hardware and the application. High-level descriptions of the
system are used to extract the necessary information.

The model-based development paradigm [MM03] shares the same goals. For standard
computer systems, it has become state of the art in software engineering. It helps on
the one hand to cope with the increasing complexity of software systems by raising the
level of abstraction and accelerates the development process by offering extensive code
generation abilities. Therefore, the model-based paradigm is a suitable basis for the
intended goal.

Different model-based tools are available for the development of embedded systems.
However, these tools do not reflect the requirements posed by development processes
of fault-tolerant real-time systems. The majority of the tools does not provide exten-
sive code generation. One reason is the lack of precision in the semantics of the used
models. The Unified Modeling Language (UML) [Obj07b] for example lacks the pre-
cision and rigor needed for extensive code generation [JSEB04]. Domain-specific tools
like Matlab/Simulink [Bar05] or SCADE [DSMG04] offer code generation, but are lim-
ited to the generation of platform independent code like ANSI-C. Due to the limitation
to platform independent code, these tools cover only the application functionality of
embedded systems. In contrast, non-functional aspects such as fault-tolerance mech-
anisms, distribution, or temporal behavior are rarely covered and if so only for some
specific hardware platforms or operating systems.

Nevertheless, exactly these non-functional aspects introduce most of the software com-
plexity of fault-tolerant systems. A major reason, why these aspects are not covered
by existing tools, is that the related code cannot be implemented without platform de-
pendent operations or operating system calls. Therefore, the implementation depends
on the concrete platform used. However, the deployed platforms, which is the com-
bination of hardware components and an operating system, are highly heterogeneous.
It is obvious that it is impossible to design a code generator that supports a priori all
possible platforms. Nevertheless, this intrinsic heterogeneity of embedded systems
is the primary challenge, as well as the ultimate justification for model-based design
[SSBG03].

A solution to handle the heterogeneity is to design an expandable tool chain. A
template-based code generator offers this expandability, as shown in [BKS05b, BKS06a].
It allows the addition of new templates to support further platforms, even by the appli-
cation developer. Nevertheless, the expandability of the code generation functionality
alone is not sufficient. Additionally, the modeling tools must be designed in an ex-
pandable way to allow the definition of additional fault-tolerance mechanisms. An
expansion of the modeling language should of course not affect existing solutions. The
required degree of expandability can be achieved by using a template-based meta code
generator [VSK05]. This approach combines the advantages of both the model-based
and component based approaches [TCC05].

The models used for code generation should be based on a high abstraction level and
hide low-level implementation details. This is especially important as different stake-
holders typically take part in the development of fault-tolerant systems. The models

3
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should provide an unambiguous and precise specification of the system, to be a mean
for the communication between different experts. Several requirements have to be sat-
isfied by the modeling language to be suited for the domain of fault-tolerant real-time
systems. These requirements are discussed in this thesis and a domain specific lan-
guage [Lan66, Ram97], which satisfies these requirements, is presented.

Different fault assumptions are another reason why the reuse of components is so dif-
ficult. Fault assumptions describe the effect and probability of faults that have to be
taken into account when designing a component. If a developer wants to reuse a
component, he has to carefully analyze, if the fault assumptions of the own system
are consistent with the assumptions used during the implementation of the compo-
nent. This is a major reason, why the different component-based approaches require
in-depth knowledge of the components. To automate the component selection as in-
tended by this thesis, two requirements must be fulfilled. First, the fault assumptions
must be specified formally and unambiguously. Second, formal methods must be ap-
plied to verify the consistency of the assumptions. The thesis points out how both of
these requirements can be satisfied.

To demonstrate the practicability of the presented approach, two example applications
are used. The first application is a balanced rod using switched solenoids. This ap-
plication has stringent requirements on the control response times (in the range of few
milliseconds) and is implemented on a triple-modular redundancy architecture. By
this application, the efficiency of the generated code can be demonstrated. The second
application is an elevator application consisting of a hot-standby system realizing the
control logic and several field processors performing the I/O operations. This applica-
tion demonstrates the possibility to use the tool to develop a complex distributed sys-
tem. In addition, the thesis points out that by combining FTOS with other model-based
tools to design the application functionality one major goal in software engineering
can be achieved: the development of a complex and distributed embedded system in a
complete model-based way.

The remainder of this chapter is composed as follows: the goals of this thesis are sum-
marized in Section 1.2. Section 1.3 highlights the main contributions of this thesis.
Concluding this chapter, an overview of this thesis is given in Section 1.4.

1.2 Goals of this Thesis

After motivating the topic of this thesis, the main goals are summarized in this section.
As already stated in the title, the primary goal is the design and implementation of
a model-based tool with a sound formal basis for the development of fault-tolerant
real-time systems. Since there are a number of tools available for the development of
the functionality of embedded systems, this thesis handles the automatic generation
of code for non-functional aspects, in particular the generation of the fault-tolerance
mechanisms.

Thereby, the goal of this thesis is to come up with a two-phased design methodology as
introduced by Kopetz and Bauer [KB03] to complement existing tools. This methodol-
ogy consists of an architecture design phase and a component implementation phase.

4



1. Introduction

In the architecture design phase, the developer can specify the interactions among the
distributed application components, the temporal behavior, and the deployed fault-
tolerance mechanisms. The components realizing the application functionality have to
be implemented by the application developer. This can be done by using existing de-
velopment tools. The glue code (run-time system) to combine the components and to
realize the non-functional aspects is generated based on the models of the architecture
design phase.

By adding code for non-functional aspects automatically to the application, the over-
head of implementing standard applications as fault-tolerant should be reduced to a
minimum. The current overhead is predominantly a result of the different low level
details for the realization of non-functional aspects. The major challenge in this context
is the formulation of adequate models that allow both a high-level description hiding
low-level implementation details and an extensive code generation.

Another important goal is to design an approach that is not restricted with respect
to the tolerated faults or that requires the use of specialized hardware. The initial
tool should support standard fault-tolerance mechanisms based on commercial-off-the-
shelf hardware. Nevertheless, the tool should also allow expansions to support addi-
tional hardware platforms or new fault-tolerance mechanisms. To avoid a repeated
re-implementation, it must be possible to add these new functionalities guaranteeing
reusability.

Reusability of components used in fault-tolerant systems is complicated due to the po-
tential of different fault assumptions. Components that rely on different assumptions
may compromise the correctness of the system. Therefore, it is necessary to employ
formal methods to prove the correctness of the generated code. Finally, the results
should be validated by the use of meaningful example applications.

1.3 Main Contributions of this Thesis

The result of this thesis is a model-based tool for the development of fault-tolerant real-
time systems called FTOS. The contributions fall into four different categories:

1. Presentation of a model-based development process including an adequate tool
chain for the development of fault-tolerant real-time systems

2. Formulation of an adequate modeling language for the precise specification of
these systems

3. Integration of formal methods for an automated verification

4. Exemplary realization of standard fault-tolerance mechanisms and other impor-
tant system aspects, as well as the realization of meaningful demonstrator appli-
cations

In this thesis, a consistent, model-based development process including the tool FTOS
for the development of the non-functional aspects of fault-tolerant real-time systems is
presented. The different phases of the development and code generation are identified
and realized within FTOS. The fact that experts of different domains take part in the de-
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1. Introduction

velopment is reflected both in the development process and in the presented modeling
language.

This modeling language is based on domain-specific meta-models. The thesis identifies
the requirements that have to be satisfied by these meta-models and presents appropri-
ate meta-models. Sastry pointed out that one must address the design of the whole sys-
tem to increase the productivity [SSBG03]. Relevant aspects for fault-tolerant systems
are of physical (hardware), functional (software), environmental (faults), and concep-
tual (fault-tolerance mechanisms) nature. The thesis presents meta-models for each of
these aspects and defines the relationship between them. The most important features
of these meta-models are the use of an appropriate execution model in the software
meta-model, a formal specification of the fault assumptions in the fault model, and a
high-level description of the fault-tolerance mechanisms in the fault-tolerance meta-
model.

As execution model, the concept of logical execution times that was proposed in the
project Giotto [HHK03] is used. This concept is modified to match the requirements
of fault-tolerant control systems. The most important changes are the introduction of
sequential executions and global ports. A detailed description of these changes can be
found in Section 4.4. A fault meta-model forces the user to specify the assumptions on
the expected faults in an unambiguous way. This contrasts the current state of the art,
where the assumptions are specified informally, typically by some textual description.
The specification is based on application-independent fault effects.

Based on the thorough definition of the model´s execution semantics and the effect of
faults, formal methods can be integrated to automate and verify the correct selection of
fault-tolerance mechanisms. The concrete implementation of the fault-tolerance mech-
anisms can be specified in a formal way using the predefined fault effects. The result-
ing formal model reflects the behavior of the generated mechanism in the presence of
faults. A mismatch between different fault assumptions can be detected automatically.
Since the verification is not the primary focus in this work, a simplified prototype is im-
plemented that integrates formal methods in FTOS and allows the verification of basic
properties. In particular, a black box approach with respect to the application function-
ality was used. To get an overall valid proof, the behavior of the different components
realizing the application´s functionality must be integrated as well. This work will be
done in a separate thesis based on the presented results.

The code generator of FTOS is designed using the component-based paradigm. Tem-
plates provide solutions for different aspects of the system for a specific platform and
can be selected and adapted by the code generator. This approach realizes on the one
hand the required expandability and increases on the other hand the reusability. Stan-
dard fault-tolerance mechanisms are analyzed in this thesis and the building blocks are
identified. Starting from the concept to describe the fault-tolerance mechanisms as a
set of detectors and correctors as suggested by Arora et al. [AG93, AK98b], the thesis
augments and concretizes this concept. Besides the implementation of major fault-
tolerance mechanisms such as triple-modular redundancy, hot-standby, and rollback
recovery [Pra96], the thesis also focuses on the realization of an appropriate schedul-
ing scheme. The result is a scheduling algorithm that combines the advantages both
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of Earliest-Deadline-First [LL73] and Cyclic Executive [BS88], namely robustness and
fault-tolerance.

Two complementary applications are used to highlight the advantages of the presented
approach to generate very efficient code and to cope with the inherent distribution of
fault-tolerant real-time systems.

1.4 Structure of this Thesis

The thesis is composed of seven parts discussing the different aspects. After this intro-
duction, the thesis continues with a definition of the relevant terms and a description
of the different concepts in Chapter 2. Furthermore, the chapter introduces a formal
basis that is used in the following to formalize the different concepts.

Chapter 3 presents the development process of the tool. The focus is on the techniques
used for modeling and validating the models, as well as on the code generation and the
verification.

Chapter 4 describes the used meta-models. It starts by identifying the requirements
that need to be satisfied in the context of fault-tolerant real-time systems. Afterwards,
the different meta-models of FTOS are explained. Solutions for all described require-
ments are presented. For illustration purpose, the concrete models of the two example
applications are discussed.

In the following chapter 5, a generic software architecture for the generated run-time
system is presented. The run-time system executes the application components imple-
mented by the developer in accordance with the specified model and realizes the fault-
tolerance mechanisms. The components of the run-time system are identified and their
functionality is explained. The focal point lies on the realization of the fault-tolerance
mechanism and the realization of an adequate scheduling. The benefits of the intro-
duced approach are described at the end of this chapter by evaluating the outcomes of
the demonstrator applications.

Finally, Chapter 6 discusses the verification of the generated run-time system. The main
idea is to define a formal model that reflects the behavior of the generated components.
Using a SMT (Satisfiability Modulo Theories) solver, different properties of the system
can be proven automatically. The chapter points out the feasibility of this approach
to prove the correct selection and implementation of fault-tolerance mechanisms with
respect to the fault assumptions.

The thesis is concluded with a summary of the main results of this thesis. In addition,
several starting points for future research are identified.

For interested readers, Appendix A provides an overview about the related work men-
tioned in this thesis.
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CHAPTER 2

Background: Fault-Tolerant Computing

Contents
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Formal Specification of the System . . . . . . . . . . . . . . . . . . . . 15

This chapter gives an introduction into the concepts related to fault-tolerance mecha-
nisms and defines the most important terms used in this thesis. In addition, a formal
model of systems, faults, and fault-tolerance mechanisms is presented. This model is
used as the basis for the formal verification of the generated run-time system.

2.1 Definitions

This section starts with some definitions to explain the terms used in this thesis and to
provide the reader with a basic understanding of the different concepts. The definitions
in this section are mostly based on Avizienis et al. [ALRL04], Pradhan [Pra96], and Lee
[LA90].

A system s can be interpreted as a set of interacting components C. Following [LA90], a
component is any identifiable mechanism with a specific behavior at its interface. The
interface is defined as the logical place between the component and its environment,
which can consist of one or more components. The execution of a component C can
be threatened by faults, errors, and failures. The easiest way to illustrate the different
notion of the terms fault, error, and failure is by explaining the differences using the
three-universe model [Pra96]. This model, an adaptation of the four-universe model
introduced by Avizienis [Avi82], describes the different phases of the evolution from a
fault to a failure.

The first universe is the physical universe, where faults occur.
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2. Background: Fault-Tolerant Computing

Definition 1 A Fault is a physical defect, imperfection, or flaw that occurs within some hard-
ware or software component [Pra96].

Faults can be dormant for a long time and not influence the execution of the component.
When a fault is activated, the effects can be observed in the informational universe.

Definition 2 An Error is the manifestation of a fault [Pra96].

Errors can be detected by the component itself, if some rules are defined to evaluate
the state of the component. However, these tests may not be able to identify the cause
of the error, the fault. Initially, errors are only reflected in parts of the component’s
state. If the error is not detected early enough by the component, the error may cause a
subsequent failure.

Definition 3 A Failure of a component occurs when the component deviates from the specified
behavior [LA90].

Therefore, the third universe is the external universe, where the deviation from the
expected behavior of a component can be observed. Consequently, a failure is the event
that can be detected by interacting components. Thereby, a failure of a component can
be a fault to its environment.

There are various reasons for faults. For instance, a fault can be a design fault, a physi-
cal fault, or an operational fault. While design faults are always active, physical faults
are activated spontaneously with a certain probability. Typically, this probability is as-
sumed to be constant and denoted by λ. Faults can also be classified according to their
effect. The effect can either be in the value domain or in the time domain [PCD91].
Faults in the time domain are, for example, lost or delayed messages in a commu-
nication channel, but also additional messages. Faults in the value domain are e.g.
erroneous results or bit flips in a message.

Fault-tolerance is the technique to guarantee that despite the presence of faults, a sys-
tem provides the specified behavior to its outer boundaries [Lap85]. Fault-tolerance
is always based on the effective deployment of redundancy, additional means that are
not necessary to provide the specified behavior in the absence of faults. Different types
of redundancy can be used ranging from software or data redundancy, to time and
hardware redundancy.

In this context, it is important to note that a mere replication allows only the toleration
of operational physical faults. Design diversity must be employed [AC77] to be able
to tolerate design faults. This is of course a very cost-intensive approach. Using code
generators, which support the generation of different versions of components realizing
recurring functionality, helps to make this approach more feasible. Even if the correct
type and level of redundancy is selected, it is important to guarantee that a fault does
not affect all redundant components, but is rather contained.

Definition 4 A Fault Containment Unit (FCU) [HTBSL78], often also called fault contain-
ment region, is the set of components that are affected by a specific fault.
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It is the task of the fault-tolerance mechanisms to prevent the fault effects (errors) from
spreading to other components than the components of the FCU. In contrast to other
approaches like [Kop06], FTOS allows the hierarchical composition of FCUs. This en-
ables the developer to define detailed fault-tolerance mechanisms for each fault con-
tainment unit. One example is that potentially erroneous memory might be tolerated
by replicating the variables, while other faults affecting the computational unit that
contains the memory might be tolerated at the level of this computational unit.

The different possible concepts for fault-tolerance mechanisms are known since the
1950’s due to the unreliability of the components at that time [ALR01]. In general, one
can divide the applied fault-tolerance mechanisms into four groups:

Definition 5 Error detection allows the detection and localization of errors.

Detecting an error is the first step to fault-tolerance. After an error is detected, the com-
ponent has to analyze the affected subcomponents and the error type. This is essential
to perform error recovery.

Definition 6 Error recovery transforms a system state that contains one or more errors into
a state without detected errors [ALR01].

There are different mechanisms to perform error recovery. The two most prominent
types are rollback and rollforward recovery. Rollback is realized by restoring a pre-
vious state of the component [Pra96]. This state was saved in a checkpoint before the
component detected the error. Rollback recovery is a rather simple approach; the only
difficulties arise in designing and generating the checkpoints. Especially, if several
components must be set back, the realization may become tricky. Rollforward recovery
uses application knowledge to compute a new, correct state out of the erroneous state.
Usually, this transformation implicates a reduced quality of service.

Regardless of the concrete error recovery mechanism, it is essential to ensure that the
same fault is not activated again.

Definition 7 Error handling prevents local faults from being activated again.

To correctly perform the error handling, the first step is the localization of the error and
the identification of the cause, the fault. Within the second step, the fault is isolated
by excluding the affected component from further interactions with other components.
The affected component might be replaced by spare components. Further possibili-
ties are to use other components to deliver the functionality in addition to the already
delivered functionality or to degrade the system (graceful degradation). The isolated
component can then be repaired, typically by an external agent.

If a sufficient level of redundancy is employed in the system, explicit error detection is
not required. Instead one can use error masking:

Definition 8 Error masking guarantees that programs continually satisfy their intended
specification, even in the presence of faults [AK98a].
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Typical examples for error masking are hot-redundant systems: several redundant
units are executed in parallel. By comparing results, errors can be detected. If the mas-
ter unit is affected by an error, another correct unit immediately takes over the master’s
task. The erroneous unit is excluded and can be repaired in the following. After a suc-
cessful repair, it is necessary to reintegrate the repaired unit into the system to preserve
the intended dependability:

Definition 9 Integration allows a repaired component to resume with its intended behavior
and interaction.

For a successful integration, the state synchronization is essential: all participating
units must agree on a new system state. The correct implementation of the state syn-
chronization is a very important, but also complicated, step.

Which of the above presented types of fault-tolerance mechanisms are applied depends
on the dependency goals and on the fault assumption. Altogether, six objectives of
dependability can be defined: availability, reliability, safety, confidentiality, integrity,
and maintainability. This thesis focuses on safety and reliability, as they are the main
goals of most systems. However, the proposed concepts can also be augmented and
exploited to reach the other goals.

Definition 10 Safety is the probability S(t) that a system either performs its function cor-
rectly or discontinues its function in a manner that does not disrupt the operations of other
systems or compromise the safety of any people associated with the system [Pra96].

Having safety as a goal might lead to the fact that a system is rather brought into a
safe mode, typically an emergency stop, instead of continuing to deliver the specified
function when the correct behavior cannot be guaranteed. This is the main difference
in comparison to reliability:

Definition 11 Reliability of a system is a function of time R(t) defined as the conditional
probability that the system performs correctly throughout the interval of time [t0, t] given that
the system was performing correctly at time t0. [Pra96]

If the fault rate λ of a system s is assumed to be constant, the reliability Rs of s can be
derived from Rs(t) = e−λ·(t−t0).

As indicated, the concepts safety and reliability are contrary in the sense that a focus
on safety might decrease the reliability and vice versa. Using hardware redundancy is
a good example. A duplexed system, meaning that two redundant units are executed
in parallel, can be used to achieve reliability or safety. Reliability can be achieved by
executing both units in parallel and performing self-tests. If an error is detected, the
affected unit is switched off and the other unit takes over the control of the system. In
contrast, both units would compare their result to achieve safety. If a deviation in the
result is detected, the system switches into fail-safe mode. Of course, the fail-safe mode
must be described in the specification as well. A fault-tolerant component always tries
to provide the normal/intended behavior. However, it might not be possible to deliver
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Figure 2.1: Reliability of Redundant Systems without Integration

this behavior in the presence of different faults. In such a case, the component should
indicate an internal error to the environment and fail in a way that the environment
is not harmed. This exceptional behavior [LA90, Lam81] must also be defined in the
component’s specification.

A classical example to combine reliability and safety is the use of a triple-modular-
redundancy (TMR) architecture. Three redundant units are operated in parallel. With
three correct units, the system performs a safe and reliable execution. If one unit fails,
the two remaining units can continue with a safe, but not reliable execution. If again
one unit fails or both units cannot agree on a consistent result, the system switches
into fail-safe mode. Integration is an essential part in such systems. Without repair and
integration, there exists a point in time, when the reliability of a TMR system falls under
the reliability of a single-component system. This fact can be pointed out easily. For
each of the components, the probability R that a component performs correctly within
the period [0, t] decreases with the increase of t. Assuming a constant failure rate λ,
the probability is R = e−λt. Therefore, one can determine the point in time T, when the
reliability falls under 0.5. For simplicity reasons, the reliability of the redundant units
is assumed to be equal. The reliability of the TMR system R3 can then be calculated
by

R3(t) = R1(t)3 + 3 ·R1(t)2 · (1−R1(t)) (2.1)

It is obvious that if t > T⇒ R1(t) < 0.5⇒ R1(t) > R3(t). This fact can also be general-
ized for m-out-of-n-Systems, where at least m components of n redundant components
must work correctly:

Rn(t) =
n∑

k=m

(
n
k

)
Rk

1 · (1−R1)n−k (2.2)

The reliability of the different systems is also depicted in Figure 2.1. Of course, it may
not even be possible to guarantee the exceptional behavior, if the number of faults
exceeds a certain bound. How many faults of a specific type can be tolerated depends
on the used mechanism, the type, and degree of redundancy used. However, it is not
useful to select the type of redundancy without carefully analyzing the application.
Different types of faults may never occur or are very improbable due to the concrete
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Figure 2.2: Fault-Tolerance Concepts

application scenario. A bit flip in a communication channel due to radiation effects
may be a relevant issue for systems that are operating in outer space or for air crafts,
but for a car the probability is negligible. The result of this analysis process is a fault-
hypothesis.

Definition 12 The fault hypothesis contains the assumptions about possible faults, their
probability and effects to the components of the system.

The assumed behavior of the affected components ranges from fail-stop [SS83], where
the components simply stop providing services to other components, to Byzantine
faults [LSP82, DHSZ03], where the components can exhibit arbitrary, even malicious
behavior. The fault hypothesis FH can in principle be divided into two parts FH1, FH2.
For less severe faults specified in FH1, the system is required to perform the expected
behavior. This requirement comprehends both that the behavior BC of a component
C under the presence of faults specified in FH1 is functionally consistent and tempo-
rally acceptably consistent (since fault handling costs time) with the specification S
[Web88].

FH1 ⇒ BC ≡funct S ∧ BC
∼=temp S (2.3)

For many real-time applications however, the components must behave temporally
equivalent regardless of the presence of active faults. For such systems, only error
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masking techniques are applicable. This is the reason, why the focal point of this thesis
is on these techniques.

If the number or type of faults exceed the assumed numbers specified in FH1, it is im-
portant to design the system in a way that it can detect these failures and switch into
a fail-safe or emergency mode. The number and type of faults that should at least be
detected are specified in FH2. Figure 2.2 illustrates the discussed concepts. The system
starts operating as described in the specification. If a fault is activated, the system’s
state is influenced by the effect of the fault. In the figure, it is assumed that the system
is still performing as intended, but that the state of the system is then erroneous. How-
ever, it is also possible that the system fails immediately when a fault is activated. In the
following, the system might detect the error, if the fault is covered by the fault hypoth-
esis by performing tests. If the system detects an error, the system handles the error
directly and repairs the system’s state or switch into fail-safe mode. The system might
be able to switch back from the fail-safe mode to the intended operation by applying
error recovery actions or by external maintenance. It is however also possible that the
error cannot be detected and that the system transitions immediately or subsequently
to a state that violates the specification.

2.2 Formal Specification of the System

Based on the previous introduction of the most important terms and concepts of fault-
tolerant computing, this section specifies a formal model of a fault-tolerant system in-
cluding faults and mechanisms used to reach fault-tolerance. Based on the work of
Arora et al.[AG93, AK98b], a formal framework is presented that can be used to spec-
ify the concepts introduced in this thesis formally. Major changes compared to the work
of Arora et al. are to emphasize the component based nature of the discussed systems
and to introduce concepts with respect to time.

2.2.1 System and State

A system S = (V, Π) can be described by a finite set of variables V and a finite set of
processes Π. The domain Di is finite for each variable vi. A state s of the system S is
the valuation (d1, ...dn) with di ∈ Di of the program variables in V. A transition is a
function tr : Vin → Vout that transforms a state s into the resulting state s′ by changing
the values of the variables in the set Vout ⊆ V based on the values of the variables in the
set Vin ⊆ V.

2.2.2 Component

The system is build up by a set of components C. A set of variables Vc ∈ V is associated
with each component c ∈ C. Vc = Vc,internal ∪ Vc,interface ∪ Vc,environment is composed
by three distinct variable sets, the set of internal variables Vc,internal, the set of interface
variables Vc,interface, and the set of environment variables Vc,environment. The internal
variables can only be accessed and altered by Πc. The interface variables are used for

15



2. Background: Fault-Tolerant Computing

component interaction and can be accessed by all interacting processes. The environ-
ment variables are the variables that are shared between the component and the envi-
ronment of the complete system. This set can be again divided into the input variables
Vc,input that are read from the environment and the output variables that are written to
the environment Vc,output.

Components can also be structured in a hierarchical way. A component c ∈ C
may consist of several subcomponents c1, ..., cn ⊂ C. The set of interface variables
Vc,interface ⊆

⋃
1≤i≤n Vci,interface of c is a subset of the interface variables of its subcom-

ponents c1...cn. The set of environment variables Vc,environment =
⋃

1≤i≤n Vci,environment
is the union set of all environment variables of the subcomponents.

2.2.3 Process

The functional behavior of a component c ∈ C is reflected by a corresponding process
Πc. Let Vinterface = {vc′ |vc′ ∈ Vc′,interface ∧ c′ ∈ C} be the set of all interface vari-
ables. Πc is specified as a finite set of operations of the form guard→ transition,
where guard : Vguard → B is a Boolean expression over a subset Vguard ⊆ Vc ∪ Vinterface
and transition : Vin → Vout is the appendant transition with Vin ⊆ Vc ∪ Vinterface and
Vout ⊆ Vc ∪ Vinterface. The thesis refers to the old value of a variable by v and to the
new value by the primed variable v′.

Processes are expected to be deterministic, meaning that for each state s at most one
guard can evaluate true. This condition can of course be implemented easily by using
one variable as a program counter and including this variable into the guard expres-
sion.

However by allowing different processes to coexist simultaneously, non-determinism is
introduced. There is no semantics, which process will perform its operation, if several
processes have an enabled operation. While non-determinism should be excluded for
the normal execution of the system, it is irreplaceable to model faults as Section 2.2.6
points out. The interplay between different processes describing the system can easily
be implemented in a deterministic way by specifying adequate guards. To reach this
goal, one might need auxiliary interface variables or use the value of time for time-
triggered systems.

2.2.4 Time

The time is similar to the components reflected by one process ΠTime realizing the time
progress and a variable vtime containing the current time. ΠTime reflects the logical time
and cannot be affected by any faults. In contrast, the local time on the individual com-
putational nodes is derived from components describing the behavior of the clocks
used in the system, the related process, and its variables. The transitions can describe
their temporal behavior by adapting the local time variable.
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2.2.5 Specification and Predicates

Until now, the system is only considered in the absence of faults and without any fault-
tolerance mechanisms. The first step to reach fault-tolerance is to translate the specifi-
cation into a set of properties that must be valid for the application. While Arora et al.
use computations, sequences of subsequent states, to express safety properties, the the-
sis uses state predicates P to express properties. A state predicate is a Boolean function
over a set of variables VP ⊂ V. Since the specification is defined implementation inde-
pendent, the set of variables VP ⊆ ∀c∈C ∪ Vc,environment is a subset of all variables that can
be observed by the environment of the system.

To express also temporal properties, it may be necessary to define auxiliary variables
that record the progress of the environment variables over time. By explicitly stating
these variables, a potentially unnecessary tracking of all variables can be avoided. In
general, only very few variables are needed for the history state [AK98a]. In addition,
liveness specifications can easily be expressed by state predicates using the time process
Πtime instead of having to use complex liveness specifications, like the definition of
Alpern and Schneider [AS85].

The transitive closure defines the fault-free system as depicted in Figure 2.2. It is de-
fined as all states that can be reached beginning from some start states sstart. For all
states within this transitive closure, the state predicates P describing the intended op-
eration must be true.

2.2.6 Faults

The introduction of faults is straightforward and modeled as a component FH. The com-
ponent is described as a set of variables Vc,FH and processes ΠFH that perform actions in
accordance to the fault hypothesis. The effects of a fault depend on the type of the
affected component and are limited by the assumptions contained in the fault hypothe-
sis. Due to the non-deterministic behavior of processes, the non-deterministic behavior
of certain fault types can be perfectly matched. The propagation of an error depends
in turn on the interaction between the different components and their implementation.
Therefore, it is necessary to define the behavior of a component in the presence of faults.
This can be done easily by changing the actions of Πc for a specific component. Changes
can be the introduction of new actions or the addition of conditions to a guard. Both,
the additional elements and the new actions, can be based on the variables Vc and Vc,FH.
A good example is fail-stop [AK98a]: an auxiliary variable upc denoting the fault status
of a component c can be introduced. For all actions of Pc, the guard is expanded with a
condition ¬upc to restrict the execution only to the states, where the component is not
affected by a fail-stop fault.

To allow a reuse of the components and their formal specification PC, it is necessary to
define the set of potential fault effects for the component class explicitly in advance.
Section 4.5 points out the solutions of this thesis for this issue.
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2.2.7 Fault-Tolerance Mechanism

Kulkarni and Arora [Kul99, AK98b, AK98a] pointed out that it is sufficient to use De-
tectors and Correctors to reach fault-tolerance. Detectors d : Vd ⊆ V→ B are Boolean
functions that monitor the variables of the system and can detect errors. Using the de-
finition of predicates, a predicate D (detector) detects a predicate E (erroneous state), if
the following conditions are satisfied for all possible sequences s0, s1, ...:

• Safeness: ∀i ≥ 0 : D(si) ⇒ E(si). This condition requires that, if the detector de-
tects an erroneous state, the decision has to be correct. False positives are not
accepted.

• Eventual Detection: ∀i ≥ 0 : E(si) ⇒ ∃j ≥ i : D(sj) ∨ ¬E(sj). This condition re-
quires that a detector will eventually detect a permanent erroneous state.

• Stability: ∀i ≥ 0 : D(si) ⇒ D(si+1) ∨ ¬E(si+1). The detector is also required to
be stable: it should not signal the disappearance of an error, if the error is still
present.

As the detection of erroneous states is highly-application dependent, the application
developer has to specify most of the tests that should be applied. FTOS provides several
standard tests that can be configured by the developer. The selection of appropriate
tests and their configuration can be done at a very abstract level.

Correctors are implemented by actions guard→ transition that transform an erro-
neous system into a system with correct state. The actions are triggered by a detected
error. This notion is however very abstract, as a corrector may transform the system
into an arbitrary state. While this approach is correct from a theoretical point of view,
the system should of course continue the execution in a state that is most appropriate
for the current erroneous state. The selection of this state can be forced by restricting the
state changes through state predicates based on variables representing the state history.
However, this approach complicates the specification of these state predicates.

In FTOS the notion of a corrector is concretized and augmented. Similar to Arora, the
fault tolerance mechanisms are defined as actions guard→ transition. However, dif-
ferent types of classes of mechanisms are introduced to support the goal of a generic
approach. The main idea is to distinguish between operations that are executed online
and operations that are executed offline. The concept of error treatment operations re-
flects the ideas of correctors. Error treatment operations describe the reactions of the
system, when new errors are detected. The operation may be based on previously exe-
cuted proactive operations, which are operations that are executed during the system
execution to generate information redundancy, e.g. in the form of checkpoints. The in-
troduction of proactive operations allows the separation of fault-tolerance concepts and
application logic. Erroneous components are usually excluded from the system opera-
tion and can perform error recovery operations offline. After a successful completion
of the recovery operations, the erroneous components can be integrated to guarantee
the achievement of the reliability goals. The integration operations perform the state
synchronization.
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This chapter presents a holistic overview of the approach and gives an introduction into
basic concepts of FTOS. FTOS is used to model the system and to generate the code re-
lated to non-functional aspects. The phases of a standard development process that
are supported by FTOS are depicted in Figure 3.1. The designer is supported during
system design by providing a specification language. FTOS validates the models and
generates a tailored run-time system that provides the functionality for fault-tolerance
mechanisms, communication within the distributed system, scheduling, and I/O oper-
ations. The components realizing the application functionality have to be implemented
by the developer. A number of tools are available that can support the developer in this
task.

This chapter is intended to provide an overview of FTOS and to identify the devel-
opment steps. It starts by identifying the requirements that have to be satisfied by
FTOS to achieve the intended goals. Based on these requirements, the basic concepts
of FTOS are discussed and the different development steps are presented. At the end
of the chapter, two applications are presented that are used to illustrate the introduced
concepts.
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3.1 Requirements on the Tool

This section identifies and discusses the main requirements on tools used for the model-
based development of fault-tolerant real-time systems. As already stated in the intro-
duction of this chapter, various tools are available for the development of embedded
systems. Several of them are discussed in Appendix A. However, these tools focus
mostly on the application functionality. Code realizing non-functional aspects in a
fault-tolerant, non-monolithic real-time system has to be implemented manually. This
code is necessary to realize fault-tolerance mechanisms, communication within the dis-
tributed system, I/O operations, scheduling, and process management. The main rea-
son, why the generation of such code is not covered by existing tools, is the platform de-
pendency of these mechanisms. The realization depends on the used operating system
and hardware and cannot be implemented using platform independent programming
languages like ANSI-C. Due to the great heterogeneity of used hardware and operating
systems [SSBG03, Lee00], it is not possible to implement a code generator that supports
a priori all possible combinations. This leads to the first requirement:

Requirement 1 The code generator must be expandable (even for the application developer) to
support additional platforms and arbitrary programming languages.

Providing simple means to expand the code generation is the first step to get a useful
generation tool for fault-tolerant real-time systems. However, an easy expansion of the
code generation alone is not sufficient, since the initial modeling language can not cover
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all possible mechanisms that one might want to realize utilizing the development tool.
For instance, the tool supports the most important fault-tolerance mechanisms such
as active and passive replication or rollback recovery. However, there are of course
many other mechanisms that might be suitable as well. To support a new mechanism,
the modeling language must be expanded to allow the specification of the required
information. The same is true for the automatic generation of I/O operations. If in
different projects the same device is used repeatedly, it might be reasonable to add
generation functionality to the code generator to support this device. In case the class
of the device is not supported in the current version, one might need to add a new
device class with certain parameters in the modeling language. Therefore, the second
requirement that must be satisfied by the tool is:

Requirement 2 The modeling language must be easily expandable.

It is important that expansions of the modeling language or the code generator must
not affect the existing parts of the code generator. By allowing the expansion of meta-
model and code generation functionality, the code generator can be adjusted to the re-
quirements of the company or developer group using the tool. Such groups comprise
typically different stakeholders, such as real-time system experts, hardware experts,
safety manager and domain experts. This fact can be exploited similar to the approach
in component-based approaches [Szy02, ABPG05]. The responsibility for different as-
pects of the code generation functionality can be assigned to dedicated experts. To
support this approach, the third requirement must be satisfied:

Requirement 3 The code generation functionality must be separated into modules to allow an
independent implementation of solutions for different aspects.

In addition, the multitude of different experts causes problems. Having different back-
grounds and using different approaches, the interaction and communication between
different experts plays an important role. Models are a natural connection factor. To
ease the communication process, the used models must be simple, intuitive, and unam-
biguous. This requirement is even more strengthened by the fact that the models are
used for extensive code generation. Many modeling languages such as UML [Obj07b]
lack the precision and rigor needed for extensive code generation [JSEB04]. This leads
to the next requirement:

Requirement 4 The specification/modeling language must have explicit and unambiguous
(execution) semantics.

Since this requirement is very extensive, this issue is discussed separately in Chapter
4. Explicit and unambiguous models reduce the probability of design errors. However,
the tool must support means to prove the correctness of the system. These proofs must
be integrated in two dimensions: model validation and code verification. For the first
issue, extensive tests must be employed:

Requirement 5 Tests have to be integrated in the tool to check the validity of the model.
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In addition, there must be high assurance in the generated code. In fault-tolerant sys-
tem, especially the correct implementation of components taking into account the fault
hypothesis is important. The same functionality might be implemented in different
ways, if other assumptions on faults are used. Therefore, it is necessary to verify the
generated code:

Requirement 6 The tool should include formal methods to ensure a high assurance in the
generated code.

3.2 Template-Based Code Generation and Development
Steps

This section enumerates the concepts used to satisfy the requirements stated in the
previous section. Furthermore, the resulting tool is presented and the different compo-
nents are explained.

The main requirement is an easy expandability of the code generator with respect to
generation functionality and modeling language. The first requirement can be solved
by leveraging template-based code generation [SSG91, BFVY96], as it was pointed out
in the context of the predecessor of FTOS called Zerberus [BKS06b]. The concept of a
template-based code generation is depicted in Figure 3.2. Instead of having one mono-
lithic code generation kernel that encapsulates all the code generation functionality,
template-based code generators consist of a code generation core and templates en-
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capsulating the generation functionality. A template can realize a certain aspect of the
fault-tolerant real-time system or can be used to combine further templates to finally
form a complete run-time system. Thus, the input of the code generator consists not
only of the model, but also of a set of templates. The task of the code generator is to
analyze the model, select a suitable set of templates and to adapt these templates to
application requirements.

The advantages of this approach are obvious: new templates can be added easily. These
templates can realize new aspects of the system, e.g. support new hardware or a new
fault-tolerance mechanism, but can also be used to generate code in a different target
language. It is even possible to generate natural language to provide necessary doc-
umentation. Another advantage of this approach is that the complexity of the code
generator can be reduced significantly. This is in particular very important when using
the code generator for safety-critical system development. Very often, code genera-
tors are by far more complex than the generated programs. Thus, the certification of
a code generator becomes usually too expensive. In addition, any changes of the code
generator to expand the code generation functionality lead to the necessity of a new
certification of the whole code generator. In contrast, template-based code generation
solves this problem. The complexity of the code generation core can be reduced to a
minimum. Furthermore, the addition of new templates only leads to a new evalua-
tion of the affected templates, while other templates can be used without a repeated
certification.

In addition, the concept of templates fulfills inherently the request for modularity. Sys-
tem engineers can define a generic software architecture and specify the interfaces be-
tween the different components. Experts can use their expertise to realize templates
solving specific aspects of the complete system. Safety engineers can identify the
important components of the system and add appropriate mechanisms to guarantee
safety and reliability.

However, the concept of templates does not address the expandability concerning the
modeling language. A solution is the use of a meta-code generation framework. Sev-
eral of these frameworks are available such as openArchitectureWare [EVHK], An-
droMDA1 or MetaEdit2. These code generators allow the definition of modeling lan-
guages in the form of user-defined meta-models. The concept of these frameworks is
depicted in Figure 3.3. Based on a meta-modeling language, the developer of the code
generator can define a meta-model. In the example of the figure, a meta-model for fi-
nite state machines is described. The meta-modeling language is typically based on
the class diagram notation and allows the definition of classes, references, attributes,
and data types. Based on the meta-model, the application developer can define a con-
crete model. The support of object oriented concepts such as inheritance [GR83] and
polymorphism [CW85] is a key factor to simplify the expansion of the modeling lan-
guage / meta-model. By introducing new sub classes e.g. for a specific device class,
the modeling language can be expanded straightforward. In addition, the concept of
polymorphism allows this expansion by specifying a code generation function for that
specific sub class. Other code generation functions can be left unchanged.

1http://www.andromda.org/
2http://www.metacase.com/
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Instead of augmenting the code generator Zerberus to support meta-modeling, FTOS is
based on openArchitectureWare3 (oAW) [VSK05]. The meta-models used in FTOS are
described in Chapter 4.

The final two requirements are satisfied by incorporating model validation rules and
formal verification. The validation rules are directly included in the code generation
process. The verification is more complex. Since FTOS does not focus on a specific
target language like Whalen et al. [WH99b], it is not possible to formalize the trans-
lation between modeling and target language. Furthermore, the verification must also
be suited to support the expandability of the code generator. This dilemma is solved
by specifying the formal behavior of a template. Based on this formal description, the
formal model of the developed system can be generated in parallel to the original code
generation process. Important properties can be verified by integrating formal verifi-
cation tools. A detailed description of this approach can be found in Chapter 6.

The complete tool chain is depicted in Figure 3.4. Based on meta-models realizing the
domain specific language, the developer team can specify the concrete system models.
FTOS uses four meta-models to describe the different aspects of fault-tolerant systems.
The modeling tool incorporated within oAW allows the specification of the models us-
ing graphical notations. Therefore, syntactical errors are excluded by design. Neverthe-
less, it is necessary to check the semantic correctness of the models. This model valida-

3http://www.openarchitectureware.org/
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tion is realized in the next step. The validated models are then combined to one model.
In addition to the mere combination, supplementary information is computed in this
step to simplify the code generation. Some validation rules test the interaction between
different models. These rules are checked after the model transformation. Finally, the
validated, expanded, and combined model is used for code generation. The code gen-
erator selects appropriate templates to solve application aspects and adopts these tem-
plates to application requirements. The result is a tailored run-time system including
mechanisms for scheduling, inter-process communication, fault-tolerance mechanisms,
and synchronization. Furthermore, user implemented code that realizes the function-
ality for the application, such as a controller function, is embedded into the generated
code. In parallel to this code generation, a formal model of the system is generated that
can be used for formal verification. The individual steps are explained in more detail
in the following section.

3.3 Code Generation Process

3.3.1 Modeling

The modeling activities in oAW are based on the Eclipse Modeling Framework (EMF)
[BSM+03]. This modeling framework is used both for the definition of the meta-models
and for the definition of the concrete models. The previous section already indicated
that it is useful to split up the models into sub-models to describe the different aspects
separately. This technique increases the simplicity of the models and the separation
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of concerns. A detailed description of the used meta-models and their relation can be
found in Section 4.

3.3.2 Validation

Semantic design errors have to be detected in early design phases. Therefore, several
tests are formulated to check the validity of the specified models. The specification
of these tests is supported in oAW by offering the validation language CHECK, an
equivalent to the object constraint language (OCL) [Obj03] available for UML. Tests
in CHECK are specified as formulas in First-Order Logic. One example for a test is
depicted in Figure 3.5. This test checks whether each communication point (port) is
read by at least one software component (actor). Other examples are tests to check the
reachability of all application modes or to ensure the absence of constructs in the model
that could introduce non-determinism.

3.3.3 Model-To-Model Transformation

The next step after the model validation is the combination of the different models.
The resulting model is used for the code generation. To simplify the code generation,
further information, which is already implicitly contained in the models, can be com-
puted and added explicitly. One classical example is the handling of references: if the
model contains an unidirectional reference, it might be useful to also add a reverse
reference. This approach decreases on the one hand the error-proneness of the initial
model, since directed references are in contrast to bidirectional references much easier
to maintain for the developer. On the other hand, the code generator benefits from the
bidirectional references. Model-to-Model (M2M)-Transformation is supported in oAW
by offering the functional programming language EXTEND. In Figure 3.5, the result of
the M2M transformation is depicted for a communication point. The M2M transforma-
tion computes the number of software components using the communication point and
the number of relevant electronic control units. Further examples for the M2M trans-
formation are discussed during the presentation of the used models in Chapter 4.

3.3.4 Code Generation

The code generation is based on templates, as described before. Templates represent
the actual code generation ability and can be added easily. A template can be used to
solve a certain aspect or to combine the results of different templates to form a run-time
system. Most templates are platform dependent in the sense that they offer a solution
only for a certain combination of hardware, operating system, and programming lan-
guage. Therefore, also the correct selection of adequate templates is necessary.

oAW uses for the implementation of templates the XPand language. This language is
very simplistic. It offers the statements DEFINE to declare a new code generation func-
tion and EXPAND to call other generation functions during the code generation. An im-
portant feature of oAW is the support of polymorphism to guarantee an easy expansion
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of the code generation ability. To specify the control flow of the code generation, the
commands FOR/FOREACH and IF/ELSE can be used. The FOREACH statement is used to
generate code for each object of a certain type that is declared within the model. Finally,
the commands FILE and ENDFILE allow the management of the generated files.

The code generation technique itself is simple: the adaptation of the templates to the
model is performed using a technique similar to preprocessor macros. Text sequences
between the different XPand commands are directly copied to the generated files and
variables allow the access to objects and their attributes. A description of the code
generation technique can be found in [BKS06a]. Figure 3.5 shows one example for a
template that is used to generate code for the declared communication points.

3.3.5 Verification

Formal verification is in particular of great importance for fault-tolerant systems to ver-
ify the correct implementation of mechanisms with respect to the fault hypothesis. Two
components realizing the same functionality may be implemented in different ways, if
the fault assumptions differ. However, the fault assumption of the system that should
be developed does not necessarily match the fault assumption used for the implemen-
tation of the available templates. It is therefore necessary to assure the interoperability
of different components for a specific application context. The main idea to solve this
issue is to use a formal description of the components behavior. As presented in Chap-
ter 4, the meta-model provides means to describe the behavior of components in the
presence of faults. Because the formal description must be specified by template devel-
opers that have typically no expertise in formal verification, it is necessary to limit the
required knowledge. This goal is achieved by using BoogiePL [DL05] for the specifica-
tion. BoogiePL is actually an intermediate language for program analysis and program
verification and resembles imperative programming languages. Developers have to
learn very few concepts in order to be able to implement a formal specification. Based
on this specification, the code generation tool generates a formal model of the complete
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Figure 3.6: Demonstrator 1 - Balanced Rod

system. This formal model can be used to verify certain properties of the system by
using a SMT (Satisfiability Modulo Theories) solver. More details on this approach are
given in Chapter 6.

3.3.6 Code Generation Result

Usually, the generated files contain source code for an arbitrary programming lan-
guage. But since oAW is not restricted to one specific output language, it is also pos-
sible to generate documents in natural language. This can be useful, if documents for
certification issues or user-manuals are required. Currently, FTOS provides templates
for the generation of executable run-time systems for two different platforms. These
systems include code for the timely-correct execution of the application, for process
management and scheduling, as well as communication (interprocess, interprocessor)
functionality. In addition, the selected fault-tolerance mechanisms are realized by the
run-time system. The actual code realizing the application functionality, like control
functions, is not covered by the tool and has to be implemented by the developer. An
overview of the generated code can be found in Chapter 5. A concrete example for the
whole process is depicted in Figure 3.5.

3.4 Demonstrators

Two demonstrators are discussed in this thesis to point out the potential of the pre-
sented approach. The first demonstrator is a balanced rod using switched solenoids.
The second demonstrator is an elevator control.

Balanced Rod

The balanced rod is depicted in Figure 3.6. The control application is implemented on
a triple-modular redundancy (TMR) architecture guaranteeing safety and reliability of
the system. The goal of this setup is to demonstrate the ability of the approach to gener-
ate efficient code. For a successful control of the application, the control response times
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Figure 3.7: Demonstrator 2 - Elevator

must be in the range of a few milliseconds. Within this period, the sensor inputs must
be processed, the control response calculated and voted within the TMR system, and fi-
nally the result must be output to the environment. The exclusion of erroneous nodes,
the selection of a master, the temporal synchronization, and the integration of previ-
ously excluded nodes must also be realized within each time slot. The demonstrator
results show the feasibility of FTOS for this application area.

Elevator Control

The setup of the elevator control demonstrator is depicted in Figure 3.7. The system
consists of two control nodes executing the elevator control and several microcontroller
(in the following called field controllers) realizing the interaction with the sensors and
actuators. All computation nodes are connected via a Controller Area Network (CAN).
This application is intended to point out the possibility to use FTOS for the develop-
ment of complex, heterogeneous, and distributed systems. Furthermore, Furthermore,
the example shows that FTOS can be combined with other model-based tools to achieve
an integrated model-based approach.
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Adequate Meta-Models
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This chapter presents the meta-models used in FTOS. The formulation of adequate
meta-models is the key factor in designing a domain specific code generator. There-
fore, the chapter starts by gathering the requirements. The general concepts and an
overview of the used meta-models are discussed in Section 4.2. In the subsequent sec-
tions, the different meta-models are explained in detail. At the end of this chapter,
Section 4.7 summarizes the concepts.

4.1 Requirements on the Meta-Model

Several requirements have to be fulfilled by the meta-model to achieve the identified
goals. Bondavalli [BFLS01] pointed out that most design practices in the domain of
fault-tolerant computing suffer from partial approaches. Instead of restricting the ap-
proach on some aspects of the whole system, it is important to come up with a sys-
tem engineering approach [SSBG03]. This approach must comprise various aspects:
information about the hardware components must be available to generate adequate
code. The topology of the network must be known to realize mechanisms related to
distributed computing. The software components, their interaction and the tempo-
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ral behavior is required to generate a tailored run-time system including scheduling.
The developer must have the possibility to specify the fault-tolerance mechanisms that
should be added. The concrete implementation depends on information about the fault
assumptions. Together, this forms the first requirement:

Requirement 1 The meta-model must allow the specification of different aspects: the hard-
ware architecture, a description of the software components, the fault hypothesis, and the fault-
tolerance mechanism.

Typically, these aspects are specified by different experts involved in the project: hard-
ware specialists, experts in the application domain, system engineers and safety ex-
perts. It is necessary that all experts involved in the modeling task are able to un-
derstand the different concepts. Therefore, a high abstraction level is recommended.
However, the possibility to raise the level of abstraction is limited by the necessity to
automate the code generation: the model must be generative [KSLB03].

Requirement 2 The right level of abstraction must be chosen to guarantee on the one hand
the comprehensibility, but to preserve on the other hand the possibility to generate code. In
particular, the meta-model must have clear and unambiguous semantics.

While the requirement of unambiguous semantics is common for all models designed
for code generation, there are also several requirements arising from the intended do-
main of fault-tolerant real-time systems. The timing behavior plays an important role
in such systems [Sta88, Lee05]. Due to the fact that fault-tolerant systems typically
consist of concurrent processes, the execution semantics of the models must be clearly
specified to avoid race conditions.

Requirement 3 The used model must have clear execution semantics and must contain ex-
plicit information about the temporal behavior.

With respect to the generation of fault-tolerance mechanisms, additional requirements
have to be satisfied by the model. Fischer, for example, showed the impossibility of
reaching consensus in asynchronous systems [FLP85]. Consensus protocols however
are the foundation of major distributed fault-tolerance mechanisms. It is also not suf-
ficient to use algorithms, such as in the area of the Paxos problem [Lam98], that reach
a consensus eventually. This would contradict the requirements of real-time systems.
An adequate model of computation has to simplify the implementation of fault-tolerant
systems significantly [WLG+78].

Requirement 4 The model of computation must be suited for the realization of distributed
fault-tolerance mechanisms.

As already mentioned, most of the fault-tolerance mechanisms are based on some form
of consensus. To automate consensus algorithms, it is necessary to extract information
about the state of one unit. The same requirement arises in the context of state synchro-
nization during integration. It is therefore necessary to identify the components of the
model that reflect the state of the system.
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Requirement 5 The state and the functional behavior of the system must be separated within
the model to allow state synchronization and voting.

By separating the state from the behavior, it is possible to automatically identify the
state values that must be compared during voting/consensus or state synchronization.
In order to perform a successful voting, it is also necessary to achieve replica determin-
ism [Pol94, PBWB00]. A system is said to be deterministic, if for each possible state, and each
set of inputs, a unique set of outputs and next state of the system can be determined [Lap93].
It is already difficult to achieve determinism in the context of embedded system, but
replica determinism is even harder. Replica determinism describes the fact that two
replicas behave the same in the absence of errors. This becomes a hard problem, if the
replicas are executed in a distributed system. Non-determinism is introduced in such
systems for example by small clock synchronization errors or by receiving events in a
different order. Similarly, design diversity among replicas [Vog88] may lead to non-
determinism. However, design diversity must be supported to allow the toleration of
design errors. Therefore, one can state the following requirement:

Requirement 6 The model must offer replica determinism without restricting design diversity
among replicas.

The previous requirements target the system during correct execution. To support the
correct implementation of the mechanisms, it is however important to have knowl-
edge about the faults that need to be tolerated by the system. The tool must therefore
force the developer to state the fault assumptions. Unfortunately, the state of the art
to record these assumptions is based on textual, very often ambiguous documents. In
contrast, precise and unambiguous fault assumptions are required to support a correct
code generation and verification.

Requirement 7 The model must support a precise and unambiguous specification of the fault
assumptions.

Based on this knowledge, it must be possible to integrate formal methods to show the
correctness of the models and the generated code. Bondavalli [BFLS01] pointed out
that the formal verification of non-functional aspects is a key issue in the design of
fault-tolerant systems. The models must be descriptive [KSLB03]:

Requirement 8 The model must allow formal analysis, verification, and validation.

4.2 Overview: Used Meta-Models

After stating the requirements, this section provides an overview on the used models.
Bondavalli pointed out that for the design of fault-tolerant systems a system view is
required [BFLS01]. Since the different aspects are mostly orthogonal to each other, it
is however not useful to create one global meta-model. Instead the thesis proposes to
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decompose the meta-model into different sub-models. This approach also reflects the
fact that different stakeholders are involved in the development. Each expert group is
then responsible for their sub-model. By defining the interfaces of the different models
in an unambiguous way the system approach becomes feasible. In the area of fault-
tolerant computing, four different aspects / sub-models can be identified:

• A Hardware Architecture model specifies the relevant information about the
hardware components and the network topology.

• A Software Model describing the software components, their interaction, and the
temporal behavior.

• A Fault Hypothesis contains all assumptions about the expected faults, their ef-
fects, and the expected fault configurations.

• A Fault-Tolerance Mechanism model specifies the mechanisms that should be
employed to tolerate the expected faults and to guarantee the safe and/or reliable
execution of the system.

For all these aspects, FTOS provides according meta-models. The meta-model design
was directed by the two goals simplicity of the models and effectiveness with respect
to code generation. These goals were reached by focusing on the specific characteristics
of fault-tolerant real-time systems and by the formulation of a domain-specific meta-
model. The potential conflict between simplicity and effectiveness is solved by using
the M2M transformation.

The relation between the different sub-models is depicted in Figure 4.1. The approach
differs from the standard model-driven architecture (MDA) as suggested by the OMG
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[MM03] in the sense that FTOS starts with the hardware architecture. In contrast, in
MDA the developer starts with a platform independent model. This model is then
iteratively refined and augmented with platform specific details. Nevertheless, this
strategy is not appropriate for modeling fault-tolerant systems. The first phase in the
development process of fault-tolerant system is the analysis phase. Within this phase,
the safety/reliability requirements are analyzed. These requirements determine the
used fault-tolerance mechanisms and the hardware architecture. In this respect, the
hardware architecture is already known, when the developers start the modeling phase
in FTOS. Nevertheless, FTOS tries to preserve the benefits of a platform independent
software design by restricting the platform dependencies to a minimum. At functional
level, the developer has to make no assumptions at all about the platform. The only
platform dependencies are the concrete software-hardware mapping and other op-
tional information such as worst-case execution times. This information is however
only required for the concrete implementation. Provided that the enough hardware re-
sources are available to execute the system, the system behaves the same independent
of the concrete platform in the absence of faults.

Based on the hardware and software, the developer can specify the fault hypothesis.
This model contains assumptions about expected faults and their impact on hardware
or software components. The approach forces the user to specify all assumptions in
an unambiguous way. This is especially important, since the implementation of fault-
tolerance mechanisms depends on the concrete fault assumptions [Kop06].

Finally, the developer can specify the fault-tolerance mechanisms. For this meta-model,
FTOS augments the work of Arora and Kulkarni [AK98b, Kul99], which points out that
Detectors and Correctors are enough to provide fault-tolerance. However, this model
is not sufficient to provide an automatic generation of fault-tolerance mechanisms, be-
cause relying only on detectors and correctors would lead to a mixing between appli-
cation logic and fault-tolerance mechanisms. Besides detectors and correctors, FTOS
introduces therefore concepts for pro-active operations, off-line error recovery, and in-
tegration.

Preliminary Definitions

The following chapters give some details on the used meta-models. The meta-models
define different classes that can be instantiated by the user in a concrete model. For
each class, ClassName refers to the set of specified instances in the model. The abstract
syntax defines the attributes and references of a specific instance. Most classes have
a unique identifier (name) as attribute. In this case, the thesis refers to the instance
simply by the identifier. An attribute is accessed in object oriented style: name.attr
denotes the value of the attribute attr of the instance name.

The cardinality of an attribute or reference is indicated by the name. Each at-
tribute / reference starting with a capital letter refers to a set that can consist
of more than one element. All sets in FTOS are totally ordered. The relation
contains ⊆ Element∗ × Element determines whether an element is contained in a set.
The function pos : Element∗ × Element→ N calculates the position of the element in
the ordered set. Sets are defined recursively and each set is again an element. The
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contains relation is similarly defined recursively. A set s contains an element e, if e
is a direct element or is contained in one of the direct elements of s. If the element is
contained recursively in a set, the function pos refers to the position of the direct ele-
ment in the ordered set that contains the element recursively. To simplify the access on
elements of the set, the operator get : Element∗ × N → Element is available. get(s, n)
returns the (n + 1)th element of the ordered set s.

4.3 Hardware Model

The motivation to specify the hardware architecture is two-fold. First, it is used similar
to the concept of targets in Ptolemy Classic[BHLM94] to encapsulate knowledge about
the specific platform. All information required for the proper selection and adoption of
adequate software components, as well as for the realization of distributed mechanisms
is contained in the model. This includes information about the computational units,
the available devices, and information about the network topology, as well as used
network protocols. Second, the information in the hardware model is also used for a
formal verification of the whole system. The model defines the components that may
in general be affected by faults. The information, which components are potentially
affected by a fault, is contained in the fault meta-model.

A number of other modeling languages are available that cover hardware aspects such
as the structure diagrams in the System Modeling Language (SysML) [Obj07a] or the
Architecture Analysis & Design Language (AADL) [SAE04, FGHL04]. Most of the in-
formation contained in these models is not intended for the implementation of the
software, which is the primary goal in FTOS. Therefore, FTOS proposes a simplified
hardware model that is easy to comprehend and that contains only the necessary infor-
mation.

4.3.1 Main Concepts

Figure 4.2 shows the structure of the hardware meta-model. At the highest level of
abstraction, FTOS allows the definition of two objects: the computational units, in the
following called electronic control units (ECUs), and networks.

Electronic Control Unit (ECU): The computational units are described by the class
ECU. The abstract syntax for an ECU instance is (e, os, language, CPUs, Devices, clock)
∈ ECU, where e is the unique name of the unit, os defines the operating system running
on the unit (if any), language refers to the programming language used for the run-time
system and the additional references specify the included CPUs (CPUs ⊆ CPU), devices
(Devices ⊆ Device) and the clock clock ∈ Clock. The information is used to generate
a tailored run-time system for each such unit. The information on the used operating
system and programming language are the initial criteria for the selection of an ade-
quate run-time system framework.

Devices: One goal of FTOS is to automate the generation of the I/O functionality.
This goal is achieved by defining several device classes in FTOS. To allow an easy ex-
pansion, FTOS uses the concept of class hierarchy supported by oAW. The basic sub
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Figure 4.2: Hardware Meta-Model Structure

class for a device has the abstract syntax (d) ∈ Device and describes only the unique
name d of the device instance. Further sub classes are added and define the addi-
tional information required for automatic code generation. Examples for such de-
vice classes are DataAcquisitionBoard and EthernetInterface. The code synthe-
sis is based on templates for each of these subclasses. The design of templates is
simplified by the support of polymorphism in oAW. In addition, FTOS provides the
sub class UserDefinedDevice to allow the use of new devices without having to ex-
pand the code generator and modeling tool. The abstract syntax for an instance is
(d, init, delete) ∈ UserDefinedDevice and refers in addition to the inherited name d
to two functions init and delete that have to be implemented by the developer to
initialize and delete the device.

Clock Synchronization: Section 4.4 presents the used model of computation, the con-
cept of logical execution times. This concept requires a global time basis. Therefore,
clock synchronization must be realized. The necessary information for the clock syn-
chronization is contained in the definition of the clock components. The abstract syntax
for a clock definition is (c, ticks, role, drift, ε) ∈ Clock and defines an unique name
c, the clock rate ticks, the upper bound for the drift rate drift, the upper bound for
the synchronization error ε, and the role within the synchronization role. The role de-
fines whether the value of the clock is used for the clock synchronization. The concrete
algorithm is described in Chapter 5.

Network: The definition of the network topology, the used network protocols, and
other information is necessary for a correct implementation of mechanisms realizing
the communication in the distributed system. FTOS uses again a class hierarchy to
allow an easy expansion regarding additional network protocols. Figure 4.3 shows
the concepts in the context of Ethernet networks. The model forces the developer to
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Figure 4.3: UML Model of the Network Aspects in the Hardware Meta-Model (simpli-
fied)

specify the exact topology by defining point-to-point links. This is very important in the
context of fault-tolerant systems, since the different components of the network might
be affected by errors. Only with knowledge about the exact topology, the effects of
erroneous components can be determined exactly. The protocol specific classes contain
additional information such as IP addresses for Ethernet or message identifiers for the
Controller Area Network (CAN) protocol.

4.3.2 Hardware Model for Example Applications

The definition of the hardware model is straightforward. The TMR application con-
trolling the rod consists of three ECUs that are connected by Switched Ethernet. Each
unit is a standard desktop computer with an INTEL Pentium as processor. VxWorks 6.3
from Wind River1 is selected as the operating system and C as the programming lan-
guage. The interaction of the units with the environment is realized by data acquisition
boards. Each unit has its own board, a ME2600 from Meilhaus, to measure the current
position of the rod and output the result. The concrete model for the TMR application
is depicted in Figure 4.4.

The model of the elevator application is more complex due to the higher number of
control units that are used in the system. The control logic is realized by two standard
desktop computers equipped with an INTEL Pentium Processor. Similar to the TMR
application example, these units are running VxWorks 6.3. Besides the two control
units, six ECUs are used to realize the interaction with the elevator hardware. On each
floor, a board equipped with an AT90CAN128 [Atm07] processor performs the I/O
operations. No operating system is used; the run-time system provides all necessary
functionality. All units are connected via a CAN network.

1http://www.windriver.com/
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Figure 4.4: Graphical Representation of the Hardware Model

4.4 Software Model

The software model and especially its model of computation play a central role in
FTOS. It is evident that the formulation of an adequate model can drastically simplify
the implementation of the run-time system. This fact is also reflected in the require-
ments, where a majority targets issues related to the software model. The focus of the
software meta-model is therefore to simplify the design of concurrent real-time systems
and to be suited as foundation for the addition of fault-tolerance mechanisms. Standard
approaches to design real-time systems treat timing and parallelism only in an indirect
way and try to solve the problems with low-level constructs such as threads, priori-
ties and semaphores [Lee06, GHI+06]. Even experts feel that the design of real-time
systems becomes too complicated when using low-level constructs:

I believed that fine-grained concurrency was much too difficult for me. In my ar-
rogance I thought that others might have difficulties as well. (Tony Hoare - Laser
Summer School 2007)

By raising the abstraction level from fine-grained concurrency to coarse-grained con-
currency, this problem can be mitigated. In the following, the different concepts and
design decisions are explained.

4.4.1 Main Concepts

This section presents the main concepts of the software model. Different projects were
analyzed to gather existing solutions. Ptolemy [Lee03] provides a good overview on
possible models of computation. Especially, Henzinger’s project Giotto [HHK03] in-
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fluenced the design of the meta-model. There are several follow-up projects of Giotto
amongst others TDL [FFPT05] and HTL [GHI+06]. In addition, several fault-tolerance
frameworks, e.g. DEAR-COTS [VCP+00] and TTA [KB03], were analyzed. Appendix
A describes this related work for interested readers. The main concepts of the resulting
software meta-model are listed below and are explained in more detail in the follow-
ing.

1. Actor-Oriented Design: The application is interpreted as a set of concurrent soft-
ware components. Actors reflect the application functionality.

2. Global Ports: Ports are used as communication points and are defined globally.
They reflect the state of the system. The run-time system implements the neces-
sary communication in the distributed system including consensus protocols.

3. Concept of Logical Execution Time (LET): A time-triggered approach is chosen
as model of computation. The developer has to specify the logical start and stop
time of the actors. The physical execution is realized by the scheduling compo-
nent.

4. Mode Management: the developer can specify different schedules reflecting the
possible application modes. The current schedule that should be executed is de-
termined by a function, which is modeled by a finite state machine. The run-time
system guarantees the consistent selection of the schedule within the distributed
system.

Actor-Oriented Design

The main task of the software model is the identification of the software components
that realize the application functionality and their interaction. The actor-oriented de-
sign by Agha [Agh86, AMST97] describes a system as a set of inherently concurrent
software components and is therefore a good starting point. In contrast to Agha’s work,
FTOS restricts the communication concept between actors. While Agha’s actors have
an independent thread of control and use asynchronous message passing for commu-
nication, FTOS uses ports that are explained in more detail in the next section. The
communication between the different actors is strongly restricted to guarantee deter-
minism. Furthermore, actors in FTOS do not necessarily have to have an own thread
of control. Only components with non-negligible execution times can be (depending
on the implementation of the run-time system) executed within an own thread. These
components are called Tasks.

Task: The tasks implement the actual application functionality. The abstract syntax for
defining a task is (t, function, Reads, Writes, cpu, wcet) ∈ Task. Each task is identified
by a unique name t. The attribute function refers to the task function that has to be
implemented by the developer. It maps the values of the inputs Reads ⊆ Port to the
values of the output Writes ⊆ Port. Besides the platform independent information, the
developer has to map the actors to the relevant hardware devices. The task mapping
is specified by the attribute cpu ∈ CPU. In addition to the mapping, the developer can
state the worst case execution time (WCET) [Wil03] wcet ∈ Q. The specification of the
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WCET is optional, but recommended if more than one task is executed in parallel on
one ECU, and used by FTOS to realize a fault-tolerant scheduling scheme.

Two assumptions are made on the task function:

1. Simple Task Model [Kop97]: functions consist of sequential code without syn-
chronization points.

2. Referential Transparency: functions are state-less.

The first requirement has two consequences: by banning synchronization points, prob-
lems such as priority inversion [LR80] and race conditions are excluded by design.
This minimizes the implementation complexity and allows the implementation using
platform independent languages. Therefore, there are no constraints regarding the pro-
gramming language in contrast to other approaches, such as DEAR-COTS.

The second requirement can be motivated by the strict separation of the state from the
functional behavior. All information reflecting the system state must be available to
guarantee a correct implementation of voting and state synchronization protocols.

The two requirements enable FTOS to consider each function as black box. FTOS gen-
erates a stub that is responsible for the synchronization with the run-time system based
on the task definition. The developer can therefore implement the task function without
considering details about the applied fault-tolerance mechanisms, the used hardware
or operating system. Thus, the intended goal of a two-phased design methodology is
achieved.

Input and Output: The components realizing the interaction with the environment are
called Input and Output actors. In contrast to approaches such as Giotto and HTL,
the code for these components is generated by FTOS and has not to be implemented
by the developer of the system. The execution of input and output actors is assumed
to be instantaneous, similar to the synchrony assumption in synchronous languages
[BCE+03]. To legitimate this assumption, the execution time must be negligible. Since
different information might be necessary for code generation, FTOS uses inheritance
and sub-classes for the definition of the different input and output types analog to the
concepts used for the device definition.

The abstract syntax is (i, Writes, sensor) ∈ Input for a basic input declaration and
(o, Reads, actuator) ∈ Output for a basic output declaration . In both cases, the de-
veloper has to specify a unique name i and o, respectively. The result of an input
invocation is written to Writes ⊆ Port, the output is performed using the values of
the port set Reads ⊆ Port. Similar to tasks, the input and output objects have to be
mapped to the according hardware device, denoted by sensor ∈ Device respectively
actuator ∈ Device. Since the code is generated automatically, no function or informa-
tion about worst case execution time is required.

Several additional properties can be defined for the individual sub-classes. The sub
class AnalogInput augments the base class for example with an additional property
number. By number the developer can specify the analog in-port of the referenced data
acquisition board that should be used. Analog to the device class hierarchy, FTOS pro-
vides two sub classes that allow the definition of user defined input / output actors.
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Global Port

Ports are used for the communication between the different actors. Several concepts of
FTOS are achieved by ports:

1. Deterministic Access: The access on ports is performed time-triggered. If write
accesses on one port are scheduled, the developer has to identify a unification
strategy.

2. Reflection of System State: the values of ports represent the state of the system
and can be used for voting and state synchronization protocols.

3. Abstraction of Communication: the communication within the distributed sys-
tem is abstracted by the concept of ports.

4. Support of Heterogeneous Platforms: actors executed on different platforms
(hardware, operating system, programming language) are able to communicate
via ports. The conversion is realized by the run-time system.

The abstract syntax for a port declaration is (p, type, init, rep, unify, const) ∈ Port
and consists of a unique name p, the platform-independent type of the port type, an
initial value init, a Boolean value denoting the replication type rep, the unifying strat-
egy unify and a Boolean value const denoting whether the port is a constant.

To guarantee a deterministic execution, the actors can access the port only at their log-
ical start and end. For input and output actors the implementation is trivial, as the
execution is assumed to be instantaneous. In case of tasks, the read operations are per-
formed at the logical start of a task by copying the values of the ports into the memory
of the task. At the logical end of a task, the write operations are performed by copying
the results from the task’s memory into the relevant ports. For this purpose, private
ports Pt are created for a task t within the generated task stub. This approach avoids
the necessity for sophisticated data objects as required in other approaches, e.g. DEAR-
COTS. Simultaneous write accesses on a single port must of course be handled by the
system to guarantee consistency. While simultaneous write accesses are forbidden for
example in HTL, they are very common in fault-tolerant systems due to actor replica-
tion. FTOS offers two possibilities to reach consistency: unifying strategies and port
replication. Unifying strategies define a precise action to calculate a unique value out
of redundant results, analog to composite operators in Esterel [BG92]. Possible strate-
gies are the calculation of an average value, the selection of the median or an arbitrary
value. The idea behind port replication is explained below.

The values of ports reflect the state of the system. This is the reason for the difference
between the port concept of FTOS and the concept used in Giotto and TDL. In the latter
approaches, a port is assigned to a specific actor and the communication is realized by
communication channels. However, the approach of using local ports is not suitable
for fault-tolerant systems. Figure 4.5 shows an example that gives an intuitive reason.
Three tasks are replicated to achieve fault-tolerance. An output actor uses the result of
the redundant tasks. However, it is not obvious which port should be read by the out-
put actor. The concepts of global ports and of unification strategies solve this dilemma.
Similar to HTL and its concept of communicators and task ports, a port is a discrete
component. The values of the declared ports reflect the state of the system (besides the
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Figure 4.5: Local Ports vs. Global Ports

current logical time and the set of active modes). Port values are in general consistent
within the distributed system.

The communication is realized by the concept of ports in a transparent way, analog to
the shared data objects in combination with the communication manager in DEAR-
COTS. The developer can simply define two actors running on different hosts that
communicate via ports. The communication is realized by the run-time system. This
realization is complicated by the possibility of faults. Therefore, consensus protocols
are required to guarantee a consistent execution within the distributed system. These
protocols might require several communication rounds. One advantage of the time-
triggered approach is that the number of required rounds is bounded. The concrete
number of rounds depends on the fault assumptions. To lower the number of com-
munication rounds, FTOS offers possibilities to differentiate between the necessity to
reach a strictly consistent value and a steady, but probably imprecise adaptation. For
this purpose, FTOS offers two possibilities for each unification strategy, see Figure 4.6.
AVERAGE_CONCENSUS is used to calculate a consistent average value out of all correct re-
sults. In contrast, the strategy AVERAGE is used to calculate similarly an average value
out of the correct results, but due to message loss, the individual set of ECUs may not
agree on this set and might have a slightly different result. The developer can decide
which of the different possibilities meets the requirements of the application.

However, even the reduced complexity of the imprecise protocols might not be neces-
sary when redundant actors are reading the results from yet other redundant actors.
Figure 4.7 gives an example. Instead of performing a voting round both after the ex-
ecution of the input actors and after the execution of the task function, it might be
useful to perform only one voting round after the task execution. One possibility to
avoid the first consensus round is to specify unique ports for each of the redundant
branches. However, this is not practicable because the ports have nevertheless a se-
mantic relationship that might be exploited for example during state synchronization.
FTOS solves this problem by introducing local port replication. A replicated port be-
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Figure 4.6: Unifying Strategy for Ports
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Figure 4.7: Standard Ports vs. Replicated Ports

haves similar to a standard port, but only local access operations are performed. No
communication or consensus execution is therefore necessary for this type of port. This
approach resembles the concepts of internal outputs in DEAR-COTS.

Concept of Logical Execution Time

Henzinger [Hen04] emphasized the importance of an adequate model of computation
to simplify the design and implementation of embedded software. Lee [Lee00] pointed
out that the composition of components should have consistent and non-conflicting
temporal properties. Especially in the context of fault-tolerant systems, where different
experts are involved in the development of the system, a simple execution model is
essential. Ptolemy provides a good overview on the different models of computation
[Lee03]. An execution model that fulfils these requirements is the concept of logical
execution times (LET) as proposed by Henzinger in the context of Giotto [HHK03].
Figure 4.8 points out the general concept. Instead of using the physical execution time,
all computations logically take a fixed amount of time [Kir02]. The logical start and
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stop times are specified by the developer within a schedule. At the logical start of a task
t ∈ Task, the values of the variables t.Reads ⊆ Port are copied into the task’s memory.
The results are copied back into the variables of t.Writes ⊆ Port at the logical end
of task t. The physical execution of the task on the CPU becomes transparent to the
application developer and is managed by the run-time system.

The major advantage of logical execution time is the existence of previously known
points in time, when fault-tolerance mechanisms are executed. Using the time-
triggered interaction scheme between the different components, message loss or addi-
tional messages are directly discovered. The implementation of fault-tolerance mecha-
nisms is therefore simplified.

In addition, there are several other advantages: problems such as race conditions are
excluded by design and flexibility with respect to replica diversity is guaranteed. Fig-
ure 4.9 explains why race conditions are excluded: independent of the actual time when
task t1 finishes its computation, task t2 will only read the new result every odd exe-
cution. Another important advantage of the concept of logical execution time is the
provided flexibility with respect to replica diversity. Since the physical execution is ab-
stracted, the tasks must only behave similarly at the logical level. This increases the
flexibility with respect to replica determinism.
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Mode Management

An application can have different execution modes. Each mode is associated with a
schedule that defines the execution times for various actors. In general, the system ex-
ecutes the schedule of the current mode exactly once (one mode cycle) and determines
the next mode afterwards. By switching the mode, the schedule may change and also
different actors may be executed. The main concepts of FTOS to support the mode
management are:

1. Use of State Machines: state machines are used to model mode switch functions

2. Distributed Mode Management: the run-time system guarantees a consistent
mode decision on all correct nodes

3. Job Concept: several independent jobs can be executed within the system, each
referring to its own mode

4. Introduction of Sequential Execution: instead of using only periodic executions
of actors, FTOS allows the definition of arbitrary time-triggered schedules

5. Definition of Replication Types: the developer can easily specify components that
are executed in passive, semi-active or active mode

Mode switches define the transitions between different modes. FTOS uses state ma-
chines to model the mode switch function instead of relying on functions implemented
by the developer as it is for example the case in Giotto. This technique of combining
different types of models of computation on different levels of abstraction, here logical
execution times and finite state machines, is called modal models [Lee03]. The major
benefit of the approach to use state machines in contrast to a function implemented by
the developer is the availability of information that can be used for optimization.

The use of modes is restricted in most other approaches: Giotto allows only exactly one
mode to be active at a time. However, many control applications perform independent
application missions at a time. Each mission might have different operational modes
that are independent from the modes of other missions. By insisting on the limitation
of at most one active mode, for each possible combination of mission modes, an ap-
plication mode has to be defined. This leads to an exponential increase in the number
of modes. Furthermore, non-harmonic mode switches have to be introduced to switch
the mode during a mode cycle. TDL and HTL introduce modules to solve this prob-
lem. Modules are a set of actors and a set of modes. The modes between different
modules are independent. However, the modules are restricted in both approaches in
their physical dimension. Only actors executed on one ECU can be contained in one
module. Distributed mode switches have to be realized by the application developer
himself. This is acceptable for most applications where mode switches are rather rare.
In fault-tolerant systems however, the importance of different execution modes is much
higher [RC04]. Besides the application modes, a variety of administrative modes, such
as fault-recovery or emergency mode, have to be implemented in fault-tolerant appli-
cations. Due to the distributed nature of fault-tolerant systems, the different units must
perform consistent mode switches even in the presence of faults. Therefore, the real-
ization of distributed fault-tolerance mechanisms is a necessity for FTOS.
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To cope with this problem, FTOS introduces the concept of a job. A job is similar to
the modules of TDL and HTL a set of modes. Each mode references a schedule. How-
ever, the set of referred actors is not restricted to actors executed on only one ECU.
The abstract syntax for a job is (j, start, Modes, change, idleTime) ∈ Job. A job with
a unique name j can consist of several modes modes ⊆ Mode, where start ∈ Modes is
the start mode of the job. The state machine change ∈ StateMachine evaluates po-
tential mode changes. The decision can be based on port values and ports can also
be written to implement for instance a counter functionality. The state machine may
also determine that currently no mode should be executed. The transitions of a state
machine can be specified in a platform independent way using a notation similar to
LaTeX. The time interval until the next evaluation is denoted by idleTime. A mode
declaration (m, schedule, duration) defines a unique name n, the according schedule
schedule ∈ Schedule and the duration of one mode cycle duration. Besides applica-
tion modes, a job may also contain administrative modes. These modes are not reached
by a standard state transition, but rather invoked as reactions to detected errors.

A schedule defines the execution time for different actors. Instead of relying only on
periodic executions, it can be useful to have sequential executions. A good example
is a task performing some preprocessing before sending some values to a task on an-
other ECU to save bandwidth. FTOS provides three different types of schedules that
are defined as sub classes of the Schedule. The class Schedule is again a sub class of
ScheduleReference to allow a recursive definition of schedules.

The declaration of a StandardExecution schedule has the abstract syntax
(s, Item) ∈ StandardExecution and defines a unique name s and a schedule list
Item ⊂ ScheduleReference. All items in the list are executed.

In contrast, an AlternativeExecution schedule allows the definition of a list of
schedules where at most one schedule is executed at a time. The abstract
syntax is (s, Schedules, trigger) ∈ AlternativeExecution. The trigger object
trigger ∈ Trigger evaluates which schedule sched ∈ Schedules is executed. The
definition of a trigger function is similar to the definition of state transitions. The
function can read and also write ports.

The third option is the definition of parallel executions that are especially use-
ful to describe the execution of replicas. The abstract syntax for a parallel execu-
tion object is (s, type, Replica) ∈ ParallelExecution. The schedules referenced by
Replica ⊂ Schedule are executed according to the replication type. Three main repli-
cation approaches are addressed in the literature [PCD91]:

• Passive replication: only one replica is executed at a time. If an error is detected,
the active replica is excluded and a spare replica is activated. The approach is also
known as cold redundancy or primary backup.

• Active replication: all replicas are executed at a time. The approach is also known
as hot redundancy.

• Semi-active replication: similar to active replication all replicas are executed ex-
cept the output operations. A master is selected that performs the output exclu-
sively.
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Declaration of Task PIDController1

Declaration of Input In1 (Class: AnalogInput)

Declaration of Output Out1 (Class: AnalogOutput)

Figure 4.10: Examples of Actors in TMR Control System

All these different possibilities can be specified directly in FTOS by the re-
dundancy type type. Possible values are None, ColdRedundancy for pas-
sive replication, HotRedundancySingleOutput for semi-active replication and
HotRedundancyMultipleOutput for active replication 2.

The different types of schedules can be nested arbitrarily. In addition to
other schedules, StandardExecution schedules can also contain actor references.
For each type of actor, an own sub class is defined. The abstract syntax of
the abstract base class ActorReference, a sub class of ScheduleReference, is
(actor, start, guard) ∈ ActorReference and defines the logical start time start ∈ Q,
the relevant actor actor and a trigger guard ∈ Trigger that evaluates whether the item
should be executed. The class TaskReference adds an additional attribute stop ∈ Q
that specifies the logical stop time.
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4.4.2 Software Models of the Demonstrators

Actors of the Balanced Rod and Elevator Control System

The definition of the required actors is straightforward. In the TMR example, the PID
control function is replicated on three redundant control units. Therefore, three tasks
PID_CONTROLLER1, PID_CONTROLLER2, and PID_CONTROLLER3 are defined. Each task is
assigned to one CPU.

For the interaction with the environment, actors to measure the current position of
the rod and to control the voltage of the solenoids have to be defined. These ac-
tors are based on the data acquisition boards specified in the hardware model. Three
AnalogInput actors and three AnalogOutput actors are defined to realize the measure-
ment respectively the control. The models for a task, an input and an output actor are
depicted in Figure 4.10.

The elevator example is realized analog to the TMR example. For each input and output
operation a discrete actor is specified. The elevator setup is depicted in Figure 4.11.

2These differing terms are used due to the fact that the definition of semi-active and active replication in
the literature is inconsistent.
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On each floor there are two sensors to detect the status of the door (open, close), a
light barrier to detect persons at the sill, two buttons to request the elevator and three
contacts to determine the position of the cabin. In addition, the current floor of the cabin
can be displayed by seven-segment display and the moving direction of the elevator is
indicated by two LEDs. Summarily, each microcontroller controlling a floor has eight
sensors and 3 actuators. The micro controller controlling the cabin has one actuator.
Using an additional micro controller, the panel inside the cabin is simulated. Four
buttons are available for the individual floors and for each floor a LED displays whether
a request is pending. Each of the sensors and actuators is represented by an actor.
Therefore, the model contains 36 input actors and 17 output actors for each elevator.
Two redundant tasks implement the control function. In addition, six task functions
are defined for each micro controller. These tasks perform the emergency mode, if both
control units fail.

Ports

For the TMR control system, it is necessary to analyze the control function in more de-
tail. The tasks implement a proportional-integral-derivative (PID) controller. A PID
control function tries to minimize the deviation e(t) between a measured process vari-
able and a desired set point. As the name implies, the PID controller consists of three
terms. The proportional term Kp · e(t) changes the output proportional to the current
error. The integral term Ki ·

∫ t

0
e(τ)dτ helps to eliminate steady-state errors. To improve

the stability of the control process, an integral term Kd · de(t)/dt is used. Altogether,
the PID controller task function implements the following function (discretized version
of PID controller):

f(ti) = Kp · e(ti) + Ki ·
i∑

τ=0

e(τ) + Kd ·
(
e(ti)− e(ti−1)

)
(4.1)

The results of the input actors are written to a port InputPort. To calculate the error
e(t), the set point can be realized as a constant port SetPoint. Alternatively, the set
point can be hard-coded in the function. To calculate the derivative and integral terms,
additional ports are necessary, because internal variables are not allowed. These ports
ErrorSum and LastValue are required to calculate the error sum and the difference
between the current position and the previous position. The result of the PID controller
function is written to the port Result, which is read by the output actor. The data flow
for one control unit is depicted in Figure 4.12.

The next step is to select an appropriate mechanism to cope with multiple write ac-
cesses. To minimize the communication overhead, it is useful to restrict the number of
transmitted variables and the number of communication rounds. The first approach is
certainly to replicate the port InputPort locally on each ECU to avoid the first consen-
sus round. The port Result must be definitely used during voting. Interestingly, this
is also true for ErrorSum. This can be motivated by analyzing the PID function. Within
the port ErrorSum, the sum of the measured error is stored. The calculation of this error
is based on the result of an analog input. Due to the impossibility of a perfect sensor
calibration, there will always be a small deviation in the computed error of the differ-
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Figure 4.12: Software Model Example: PID Control Application

ent units. This seems at first glance acceptable, since a small deviation on the output
does not harm the system. However, this small deviation will quickly sum up in the
value ErrorSum. Finally, it will lead to the fact that the results of the three replicated
units drift from each other unboundedly. Therefore, the port ErrorSum must be also
considered during the consensus operation. Because small differences are acceptable,
it is sufficient to select the calculation of an average value without consensus as the
unification strategy.

The port concept allows a simple definition of the required variables in the elevator
model. For each input and output actor, an according port is specified. The control
function operates on these ports and uses an additional port to store the current state
of the elevator (position, moving direction). This additional port needs not to be com-
pared, as only fail-silent behavior is expected. For all other ports, an arbitrary unifying
strategy can be selected.

Jobs, Modes and Schedules

For the TMR control, only one job is specified. The job defines one mode that con-
trols the rod. The schedule of this mode refers to a ParallelExecution schedule that
consists of three redundant schedules. These schedules are operated using semi-active
replication. In each redundant schedule, the timing of the individual item is specified.
At logical time 0ms (relative to the begin of the mode cycle) the input is executed. The
according task is logically also started at time 0ms. The logical end of the task execution
is 2.5ms. At the same logical moment, the analog output is performed.

The elevator control is more interesting. In principle, there are four different modes
of operation: initialization (start mode), normal operation and two emergency modes.
During initialization the system transfers the elevator to an initial position (e.g. moving
the elevator to the ground floor). The normal operation mode provides the expected
elevator service. The emergency modes transfer the elevator into a fail-safe position
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(e.g. moving the elevator to the next level) and then stop the service afterwards. This
operation is conducted either by the control units, if a field controller fails, or by the
field controllers if the two control units fail.

Nevertheless, it is not useful to map each of the modes of operation to an individual
mode. In general, modes should only be used if different sets of actors are involved
and/or the schedule changes. A reason for this recommendation is the overhead of
modes. As all participating nodes have to agree on the current executed task, the rel-
evant information must be available on and processed by each node. In the context of
the elevator application, this would imply that every controller would have to monitor
every other node. However, it is obvious that only the control units should monitor
all field controllers and the other control unit, while the field controllers only need to
monitor the two control units. If only one actor function should be changed, as it is
the case in the elevator example, the change should be realized within the application
logic. FTOS supports this application-dependent specification by several means that
are discussed in Section 4.6.

Summarily, it is good practice to realize the elevator control with only two modes: one
mode combining the initialization, normal operation, and emergency mode conducted
by the control units and the other implementing the emergency mode conducted by
the different field controllers. Figure 4.13 depicts the two modes including the sub-
modes realized in application logic. No transition between the two modes is specified
in the software model, as the transition is triggered by the detection of errors. These
fault-tolerance related transitions are specified in the fault-tolerance model.

The schedule for the first mode consists of the execution of all input actors at time 0ms.
Subsequently, the two control tasks are executed in parallel execution on the control
units. As replication paradigm, active replication is chosen. The logical execution is
performed from 0ms to 50ms. Finally, the output operations are performed at time 50ms.
The second task is defined analog to the first mode, but replaces the tasks of the control
units by the spare tasks executed on the field controllers.

4.4.3 Execution Order of Logically Simultaneous Actions

Using the concept of logical execution time, it is common to specify several actions to be
performed at the same logical moment. However, the execution order of the different
actions is important for the correctness of the system. An example is the TMR applica-
tion. The task should read the sensor result at the logical time 0ms and therefore start
its execution after the input function is executed. A similar condition can be stated for
the logical time 2.5ms. First, the task should publish its result and afterwards the out-
put should be executed. FTOS uses the concept of micro time to reflect this execution
order. The micro time specifies for each type of action, when the action is executed in
comparison to actions of another type. Actions of the same type can be executed in ar-
bitrary order. The microTime attribute is added to the ScheduleReference class during
M2M transformation.

Besides starting and stopping tasks and executing input and output actors, the run-time
system must perform several other actions. The results of the individual actors might
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(conducted by control units)

(conducted by field controllers)

Figure 4.13: Elevator - Modes and Transitions including Sub-Modes

need to be transferred to other ECUs and unifying operators must handle redundant
results. In addition, triggers need to be executed to evaluate whether an actor or a
complete sequence should be executed. These triggers may be executed at different
positions within a logical moment. Triggers associated with a concrete actor (guard) are
evaluated directly before the execution of the according actor types. Triggers associated
with a complete sequence are executed once at the beginning of this sequence, meaning
before the earliest element of the sequence. The exact position is computed during
M2M transformation, which is explained in detail in the next section. Figure 4.14 shows
the different actions and their order. Single actions, such as the logical end of a task, are
split up into different steps. In the following, these steps are explained in more detail:

1. Task Completion: The first steps at a logical moment are used to terminate the
execution of tasks that logically complete in this moment. If the task could not
complete its physical execution on time, an error flag is raised (see fault-tolerance
mechanisms). If the task was able to complete the execution, send operations are
executed to propagate the result, if necessary. Finally, the task results are copied
into the global ports taking into account potential unifying operators.

2. Trigger Execution (before Output): Triggers associated with an output element
are executed next. The according ports are read, the trigger function is executed
and results concerning ports (if any) are written. The write access of a trigger is
limited to a port that is locally replicated and exclusively accessed by this trigger.
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Figure 4.14: Execution Order of Logically Simultaneous Actions

The port therefore serves as private variable. This constraint is used to avoid
additional communication rounds and is tested during model validation.

3. Output Execution: The execution of output actors is the next phase at a logical
moment. For each output actor, the relevant trigger results are evaluated. Only
if all associated triggers signal a positive evaluation, the actor execution is per-
formed. For all positively assessed actors, the associated port values are read
and the output function is executed. This execution is performed synchronously
within the systems execution. The execution of the output actors completes logi-
cally a round in the sense of Giotto.

4. Trigger Execution (before Input): At the begin of the next round, triggers are
again executed. During this phase, all triggers associated with input actors that
are scheduled for this logical moment are evaluated.

5. Input Execution: Similar to the output phase, the input execution starts with an
evaluation of the associated triggers. Afterwards, the positively assessed input
actors are executed. A communication phase realizes the propagation of the re-
sult, if necessary. The input results are then published (copied into the according
ports) taking into account potential unifying operators.

6. Trigger Execution (before Task): After the input execution, the third trigger phase
is carried out. During this phase, all triggers associated with tasks that are sched-
uled for this logical moment are executed.

7. Task Start: The last phase at a moment is dedicated to the logical start of tasks.
For all task references with a start time that matches the logical time, the trigger
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outcomes are evaluated. For all positively assessed ports, the values of the ports
in the Read set are copied into the private ports of the task and the task reference
is passed to the scheduler to realize the physical execution.

Using this execution order, the system can be built straightforward. However, due to
the potentially nested schedules and some information that is only implicitly contained,
e.g. trigger information, the specified schedule must be simplified and sequentialized.
This simplification is done during the M2M transformation that is explained in the next
section.

4.4.4 Model-To-Model Transformation in the Context of the Software
Model

Especially the software model contains a lot of implicit information. On the one hand,
this simplifies the modeling phase, but complicates the code generation on the other
hand. The task of the Model-To-Model (M2M) transformation is to compute this infor-
mation and to add this information to the combined model. One example is the con-
cept of ports. Ports are defined globally without specifying which ECUs need to have
a copy of the port object. During M2M transformation, the port class is augmented by
two additional references ReadECUs ⊆ ECU and WriteECUs ⊆ ECU that refer to the ECUs
executing actors that read respectively write the port value. Other examples are the ex-
pansion of the actor class with a reference ecu ∈ ECU denoting the executing ECU and
the expansion of the job class with a similar reference ECUs ⊆ ECU denoting the ECUs
that execute parts of the job. All references are of course bidirectional references. The
ECU class is for example augmented with a reference Job ⊆ Job denoting the executed
jobs.

This section illustrates the concept of the M2M transformation using the calculation of
an expanded schedule as an example. Besides the already contained explicit informa-
tion about the execution times of the individual actors, the schedule should also contain
information about

• Execution Conditions beyond Guards,

• Points in Time for Trigger Evaluation,

• Network Communication and

• Execution of Unifying Operators.

The goal of the M2M transformation is to produce for each mode a sequential schedule
containing the information listed above. The model transformation is performed in
several steps:

1. Resolve AlternativeExecution and ParallelExecution Schedules

2. Determine Points in Time for Trigger Execution

3. Determine Network Communication Elements

4. Determine Publish Objects

5. Calculate Local Schedules

6. Sort Schedule
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In the following, the individual steps are explained in more detail. For simplification
reasons, the system is assumed to contain exactly one mode.

Resolve AlternativeExecution and ParallelExecution Schedules

The first step to produce a sequential schedule is to resolve the speci-
fied AlternativeExecution and ParallelExecution schedules. The class
ActorReference is augmented with a reference TriggerList that references trig-
ger condition objects. The abstract syntax of a trigger condition instance is
(trigger, value) ∈ TriggerConditions. The actor reference is only executed if the
result of the referenced trigger matches the specified value value for all trigger
conditions in TriggerList.

TriggerList can be calculated as follows. In the first step, each ParallelExecution ob-
ject is augmented with a trigger trigger realizing the voting decision. The trigger
functionality is generated during M2M transformation of the fault-tolerance model and
specifies which replica (passive replication) or which replica’s output elements (semi-
active replication) is executed.

The second step computes all relevant AlternativeExecution relA(r) and ParallelExe-
cution schedules relP(r) for a specific schedule reference r:

∀r ∈(ScheduleReference) :
relA(r) = {a ∈ AlternativeExecution | a.contains(r) = true}
relP (r) = {p ∈ ParallelExecution | p.contains(r) = true}

(4.2)

A trigger result refers always to the position of the elements in the associated ordered
set that should be executed. The list of trigger conditions r.TriggerList for a schedule
reference r is derived by the following equation:

r.T riggerList =
{(tr, v) | (∃s ∈ relA : s.trigger = tr ∧ v = pos(s.schedules, r))∨

((∃s ∈ relP : s.trigger = tr ∧ v = pos(s.schedules, r)
∧ s.type(ColdRedundancy))∨

((∃s ∈ relP : s.trigger = tr ∧ v = pos(s.schedules, r)
∧ s.type(HotRedundancySingleOutput) ∧ r ∈ OutputReference)∨

(tr = r.guard ∧ r.guard 6= bot ∧ v = 0)}
(4.3)

By adding the trigger conditions directly to the individual items, it is possible to define
a new schedule s ∈ StandardExecution that contains all actor references, but no other
schedule.

Determine Points in Time for Trigger Execution

The execution of all elements previously contained in an AlternativeExecution schedule
a, depends on the result of the associated trigger. The trigger is evaluated in every
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mode cycle exactly once before the execution of the first associated element. The exact
execution time can be derived analyzing the associated elements. The first step is to
find the set of earliest elements:

earliest(a) = {e | e ∈ a.elem : ∀j ∈ a.elem : e.start ≤ j.start} (4.4)

The logical point in time for the trigger execution start is defined by
get(earliest(a), 0).start. The exact schedule position microTime of the trigger
depends on the types of elements contained in earliest(a):

microT ime =


BeforeOutput ,∃o ∈ OutputReference : earliest.contains(o)
BeforeInput ,¬(∃o ∈ OutputReference : earliest.contains(o))

∧∃i ∈ InputReference : earliest.contains(i)
BeforeTask , otherwise

(4.5)
For each trigger associated with an AlternativeExecution, an instance (trigger, start,
microTime, ECU) ∈ TriggerReference of the TriggerReference class is inserted in the
schedule. ECU references all ECUs that contain actors that are influenced by the trigger
decision. The computation is straightforward and omitted, similar to the addition of
the trigger reference for guards.

Determine Network Communication Elements

The local results of an input or task execution may be required on another ECU. There-
fore, additional communication objects (p, ar) ∈ CommunicationReference have to be
added to the schedule, where ar ∈ ActorReference refers to the actor reference pro-
viding the result and p ∈ Port refers to the written actor. The communication objects
CR that need to be added to the schedule are derived by the following equation:

CR = {(p, ar) | p ∈ Ports ∧ ar ∈ (InputReference ∪ TaskReference)∧
∧ !p.isReplicated

∧ p ∈ ar.actor.Writes

∃ecu ∈ p.ReadECUs

∧ ecu 6= ar.actor.ecu}

(4.6)

Determine Publish Objects

The last elements that need to be added to the schedule are publish objects. The ab-
stract syntax of this object is (p, AR) ∈ Publish. The publish object realizes the update
operation of the value of port p under consideration of the relevant unifying strategy.
The set AR contains the according actor references that contribute relevant results. The
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set of publish objects Pub is derived from the following equation:

Pub = {(p, IR) | p ∈ Ports∧!p.isReplicated ∧ IR ⊆ InputReference

∧ (∀i, i′ ∈ IR : p ∈ i.actor.Writes ∧ i.start = i′.start)
∧ ¬(∃i′ ∈ InputReference \ IR,∃i ∈ IR : i.start = i′.start

∧ p ∈ i′.actor.Writes)}
∪{(p, IR) | p ∈ Ports ∧ p.isReplicated ∧ IR ⊆ InputReference

∧ (∀i, i′ ∈ TR : p ∈ i.actor.Writes ∧ i.start = i′.start ∧ i.ecu = i′.ecu)
∧ ¬(∃i′ ∈ InputReference \ IR,∃i ∈ IR : i.start = i′.start

∧ i.ecu = i′.ecu ∧ p ∈ i′.actor.Writes)}
∪{(p, TR) | p ∈ Ports∧!p.isReplicated ∧ TR ⊆ TaskReference

∧ (∀t, t′ ∈ TR : p ∈ t.actor.Writes ∧ t.stop = t′.stop)
∧ ¬(∃t′ ∈ TaskReference \ TR,∃t ∈ TR : t.stop = t′.stop

∧ p ∈ t′.actor.Writes)}
∪{(p, TR) | p ∈ Ports ∧ p.isReplicated ∧ TR ⊆ TaskReference

∧ (∀t, t′ ∈ TR : p ∈ t.actor.Writes ∧ t.stop = t′.stop ∧ t.cpu = t′.cpu)
∧ ¬(∃t′ ∈ TaskReference \ TR,∃t ∈ TR : t.stop = t′.stop

∧ t.ecu = t′.ecu ∧ p ∈ t′.actor.Writes)}
(4.7)

Calculate Local Schedules

The result of the previous steps is a flattened schedule that considers also non-
functional aspects. This global schedule must be mapped into local schedules for each
ECU. Only elements that are related to an ECU are copied into the local schedule. The
local schedule schedule(e, Sched) for an ECU e and a global schedule Sched is calcu-
lated as follows:

schedule(e, Sched) ={t ∈ TaskReference | t ∈ Sched ∧ t.ecu = e}
∪ {i ∈ InputReference | i ∈ Sched ∧ i.ecu = e}
∪ {o ∈ OutputReference | o ∈ Sched ∧ o.ecu = e}
∪ {tr ∈ TriggerReference | tr ∈ Sched ∧ e ∈ tr.ECU}
∪ {cr ∈ CommunicationReference | cr ∈ Sched ∧
¬cr.p.isReplicated ∧ (cr.ar.actor.ecu = e ∨ e ∈ cr.p.ReadECUs)}
∪ {pub ∈ Publish | pub ∈ Sched ∧ e ∈ pub.p.ReadECUs ∧
¬cr.p.isReplicated ∨ (cr.AR.get(0).actor.ecu = e)}

(4.8)

Sort Schedule

The last step sorts the local schedule, a set of schedule references, according to the
execution time. The order of elements at the same logical moment depends on the value
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of the microTime attribute. The only peculiarity is the handling of the communication
references. Since the communication medium is not infinitely fast and also temporal
synchronization imprecision has to be considered, the receiver has to wait for up to the
maximal latency plus the maximal synchronization imprecision until the message is
received. Therefore, the local schedule executes first all send operations and then starts
with the receive operations to minimize the required time.

4.4.5 Operational Semantics

This section presents a precise definition of the operational semantics. For reasons of
simplicity, the explanation is restricted to a system consisting of only one job. Since race
conditions are excluded by design, further jobs can be executed logically in parallel.
The actual sequence of actions can be derived by merging the parallel sequences. The
fault-tolerance mechanisms are not considered in this section. If a fault is detected, the
system is simply aborted. The actual handling of faults is explained in the context of
the fault-tolerance model.

Program Configuration

Analog to Giotto, a program configuration Cj, e = (m, δ, µδ, v, trigger, τ) for a job j on
an ECU e ∈ ECU consists of a mode m ∈ j.Modes, the current logical moment δ ∈ Q, the
current micro time µδ ∈ N, a valuation of the ports v for the set of relevant global and
private ports, the decisions of all triggers trigger : Trigger→ N and a time stamp
τ ∈ Q. The relevant local schedule for mode m on ECU e is defined by Schede,m.

The set of relevant ports is determined by the global ports that are read by actors or
triggers on the ECU Pe and the set of relevant private ports Ppriv,e = Plocal,e ∪ Pcomm,e.
The private ports Pt = Pt,read ∪ Pt,write for a task t reflect the variables in the task
stub used for the copy operations at the logical start and end of the task execu-
tion. Furthermore, also private ports Pi for each input i are required to store
the tentative input results. The set of relevant local private ports on an ECU e is
Plocal,e =

⋃
t∈Taskse Pt ∪

⋃
i∈Inpute Pi. In addition, the relevant results of actors executed

on other ECUs are needed as well. These results are received by the communication in-
terface and stored in Pcomm,e = {cr.p | cr ∈ CommunicationReferences ∧ cr ∈ Schede,m
∧cr.ar.actor.ecu 6= e}. Private ports have the same attributes than global ports, but in
addition an attribute referring to the actor identifier.

Micro Steps

Analog to Giotto’s micro steps, micro steps are defined for FTOS. A micro step at
the logical moment δ executes all actions scheduled at time delta with a specific
micro time µδ. In contrast to Giotto, each of the micro steps can be executed inde-
pendently of the other micro steps. This gives a maximum flexibility regarding pro-
gram changes: the system can jump to an arbitrary program counter (δ, µδ) as reac-
tion towards the detection of an error. The initial program configuration is defined by
(j.start, 0, 0, Init(v), ∗, 0). Before starting the program execution, each ECU tries to
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integrate into the potentially running system and copy the program configuration from
other units. Only if the system is currently not running, the ECU tries to synchronize
with other ready ECUs and start the system execution as soon as enough ECUs are
available. The required ECUs are defined in the fault model.

For a given program configuration Cj,e = (m, δ, µδ, v, trigger, τ), the successor config-
uration C′j, e results from one of the following steps:

1. [Stop Task, µδ = 0]: Let Stop = {t ∈ Task | tr ∈ TaskReference ∧ tr ∈ Schede,m∧
tr.stop = δ ∧ (∀(tr, cond) ∈ tr.TriggerList : cond = trigger(tr))} be the set
of tasks that complete their execution at the logical moment δ. For each task
t ∈ Stop, the run-time system checks whether the physical execution of t was
successfully completed. Let µδ′ = −1 if a deadline violation is detected by the
scheduler (to abort the execution) or µδ′ = 1 otherwise.

For all completed tasks t ∈ Stop, the result of the task execution is available in
the private ports Pt. Let

v′(p) =

{
t.function(v(Pt,read))(p) ,∃t ∈ Stop : p ∈ Pt,write

v(p) , otherwise
(4.9)

be the valuation function that agrees with the results of the completed tasks in
their private write ports and otherwise with v(t). The successor configuration is
obtained by C′j,e = (m, δ, µδ′, v′, trigger, τ).

2. [1st Send Phase, µδ = 1]: Let Send = {cr ∈ CommunicationReference|
cr ∈ Schede,m ∧ cr.ar.actor.ecu = e∧ cr.ar ∈ TaskReference ∧ cr.ar.stop = δ
∧(∀(tr, cond) ∈ cr.ar.TriggerList : cond = trigger(tr))} be the set of mes-
sages that should be sent at this program point. The set of messages is handed to
the networking component for further processing. Whether the communication
is actually executed depends on the networking component that might perform
optimizations, for instance by skipping a message, if the value of the port did not
change. Consensus protocols are performed by the networking component, if
required. The successor configuration is obtained by C′j,e = (m, δ, 2, v, trigger, τ).

3. [1st Receive Phase, µδ = 2]: Let Receive = {cr ∈ CommunicationReference|
cr.ar ∈ TaskReference ∧ cr ∈ Schede,m ∧ cr.ar.actor.ecu! = e ∧ cr.ar.stop = δ}
be the set of messages that should be received at this program point. Let
val(cr.p)be the received value. If no message is received, let val(cr.p) = v(p).
Let

v′(p) =

{
val(p) ,∃cr ∈ Receive : p = cr.p

v(p) , otherwise
(4.10)

be the valuation function that agrees with the received values for all private ports
Portscr.ar,cr.p ⊆ {Ppriv_comm,e | cr ∈ recMsgs} and with v otherwise. The succes-
sor configuration for this step is C′j,e = (m, δ, 3, v′, trigger, τ).

4. [Task Publish Phase, µδ = 3]: Let Pub = {pub ∈ Publish | pub.ar.get(0)
∈ TaskReference ∧ pub.ar.get(0).stop = δ} be the set of publish objects that
refer to task stop events at time δ. For each publish object pub ∈ Pub, let
Ppub = {p ∈ Ppriv,e | pub.p.p = p.p ∧ ∃a ∈ pub.AR.actor : p ∈ a.writes} be the set
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of relevant tentative results. Let

v′(p) =

{
pub.p.unify(Ppub) ,∃pub ∈ Pub : p = pub.p

v(p) , otherwise
(4.11)

the valuation function that considers the results of the publish operations for all
port associated with the publish operations in Pub and with v otherwise. For ports
without unifying strategy, the identity function is added as unifying strategy.
Each unifying strategy is designed to handle flexible numbers of result to cope
with fault effects. Results from actors that are assumed to be erroneous are not
considered. If no correct result for one publish object is available, the execution is
aborted by setting µδ′ = −1, otherwise µδ′ is set to 4. The successor configuration
C′ for the fourth step is C′j,e = (m, δ, µδ′, v′, trigger, τ).

5. [Output Trigger Phase, µδ = 4]: The triggers that were not evaluated during
the current model cycle and whose results influence the execution of an out-
put scheduled at the logical time δ are evaluated during this step. The set
of triggers is defined by OutTrigger = {t ∈ Trigger|∃tr ∈ TriggerReference∧
tr.trigger = t ∧ tr ∈ Schede,m ∧ tr.start= δ∧ tr.microTime = BeforeOutput}.
Let

trigger′(t) =

{
trigger.function(v(t.Reads))(t) , t ∈ OutTrigger

trigger(t) , otherwise
(4.12)

be the valuation function that refers to the trigger results. The function is gener-
ated during the M2M transformation based on the information contained in the
model. Let

v′(p) =

{
trigger.function(v(t.Reads))(p) ,∃t ∈ OutTrigger : p ∈ trigger.Writes

v(p) , otherwise

(4.13)
be the valuation function that updates the ports with the results of the trig-

ger execution. The successor state for the output trigger phase is defined by
C′j,e = (m, δ, 5, v′, trigger′, τ).

6. [Output Phase, µδ = 5]: Let Enabled = {o ∈ Output|∃or ∈ OutputReference :
o = or.output∧ or ∈ Schede,m ∧ or.start = δ ∧ (∀(tr, cond) ∈ or.TriggerList :
cond = trigger(tr))} be the set of enabled outputs that should be executed at
this logical moment. The execution of the output actors in Enabled is based on
the values of the relevant port, but has no influence on the program execution,
because only environment variables are changed. The successor configuration is
defined by C′j,e = (m, δ, 6, v, trigger, τ).

7. [Input Trigger Phase, µδ = 6]: Analog to the output trigger phase, the
triggers that were not evaluated during the current model cycle and
whose results influence the execution of an input scheduled at the logi-
cal time δ are evaluated during this step. The set of triggers is defined by
InputTrigger = {t ∈ Trigger|∃tr ∈ TriggerReference ∧ tr.trigger = t∧
tr ∈ Schede,m ∧ tr.start = δ∧ tr.microTime = BeforeInput}. Let trigger’(t)
and v’(p) be functions that are defined analog to the functions in the output
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trigger phase. The successor state for the input trigger phase is defined by
C′j,e = (m, δ, 7, v′, trigger′, τ).

8. [Input Phase, µδ = 7]: Let Enabled = {i ∈ Input|∃ ir ∈ InputReference :
i = ir.input∧ ir ∈ Schede,m ∧ ir.start = δ ∧ ∀(tr, cond) ∈ ir.TriggerList :
cond = trigger(tr)} be the set of enabled inputs that should be executed at this
logical moment. Let

v′(p) =

{
i.function()(p) ,∃i ∈ Enabled ∧ p ∈ Pi

v(p) , otherwise
(4.14)

be the valuation function that agrees with the new results of the inputs in the rel-
evant private ports and with v otherwise. The successor configuration is obtained
by C′j,e = (m, δ, 8, v′, trigger, τ).

9. [2nd Send Phase, µδ = 8]: The second send phase is performed ana-
log to the first send phase. Let Send = {cr ∈ CommunicationReference|
cr ∈ Schede,m ∧ cr.ar.actor.ecu = e∧ cr.ar ∈ InputReference ∧ cr.ar.start
= δ ∧ (∀(tr, cond) ∈ cr.ar.TriggerList : cond = trigger(tr))} be the set of
messages that should be sent at this program point. The successor configuration
is obtained by C′j,e = (m, δ, 9, v, trigger, τ).

10. [2nd Receive Phase, µδ = 9]: Let Receive = {cr ∈ CommunicationReference|
cr.ar ∈ InputReference ∧ cr ∈ Schede,m ∧ cr.ar.actor.ecu 6= e ∧ cr.ar.start
= δ} be the set of messages that should be received at this program point. Let
val(cr.p)be the received value. If no message is received, let val(cr.p) = v(p).
The new valuation function v′ can be calculated analog to the first receive phase.
The successor configuration for this step is C′j,e = (m, δ, 10, v′, trigger, τ).

11. [Input Publish Phase, µδ = 10]: Let Pub = {pub ∈ Publish | pub.ar.get(0)
∈ InputReference ∧ pub.ar.get(0).start = δ} be the set of publish objects that
refer to input operations at the logical moment. Let v′ be the new valuation
function that is defined analog to the task publish phase and considers the
publish objects pub ∈ Pub. Let µδ′ = −1 if for at least publish object, no valid
results is available and µδ′ = 11 otherwise. The successor state is obtained by
C′j,e = (m, δ, µδ′, v′, trigger, τ).

12. [Task Trigger Phase, µδ = 11]: Analog to the other trigger phases, the trig-
gers that were not evaluated during the current model cycle and whose
results influence the execution of a task start scheduled for the logical
moment are evaluated during this step. The set of triggers is defined
by TaskTrigger = {t ∈ Trigger|∃tr ∈ TriggerReference ∧ tr.trigger = t∧
tr ∈ Schede,m ∧ tr.time = δ∧ tr.microTime = BeforeTask}. Let trigger’(t)
and v’(p) be functions that are defined analog to the functions in the other
trigger phases. The successor state for the task trigger phase is defined by
C′j,e = (m, δ, 12, v′, trigger′, τ).

13. [Start Task, µδ = 12]: Let Start = {t ∈ Task | tr ∈ TaskReference ∧ tr ∈
Schede,m∧ tr.start = δ ∧ (∀(tr, cond) ∈ tr.TriggerList : cond = trigger(tr))}
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be the set of tasks that need to be started at this logical moment. Let

v′(p) =

{
v(pg) ,∃t ∈ Start,∃pg ∈ Pe : p ∈ Pt,read ∧ pg.p = p.p

v(p) , otherwise
(4.15)

be the valuation function that realizes the copy operation of the values of the
global ports into the input ports of the tasks that are started logically. The physical
execution of the task function is realized by the scheduler. The task set Start
is send to the scheduler, which is responsible for the physical execution. The
successor state for the task start phase is defined by C′j,e = (m, δ, 13, v′, trigger, τ).

14. [Wait For Next Logical Moment, µδ = 13]: The last action of the system at
a logical moment is to wait for the next point in time, when the system
should be executed. This point in time can be derived by finding the earliest
next element sr ∈ Schede,m : (sr.start > δ ∨ sr.stop > δ) ∧ ¬(∃sr′ ∈ Schede,m:
(sr.start > δ ∨ sr.stop > δ) ∧ pos(Schede,m, sr′) < pos(Schede,m, sr′)). If no
next element is available (sr = ⊥), the system waits for the end of the mode cycle
or for the end of the idle time. Let

δ′ =


sr.start− δ , sr 6= ⊥sr.start > δ

sr.stop− δ , sr 6= ⊥sr.start ≤ δ

m.duration− δ , sr = ⊥ ∧m 6= ⊥
j.idleT ime , otherwise

(4.16)

The system execution is suspended for the time interval ε = δ′ − δ. Let
µδ′ = 0 if sr 6= ⊥, and µδ = 14 otherwise. The successor state is defined by
C′j,e = (m, δ′, µδ, v, trigger, τ + ε).

15. [Determination of Next Mode, µδ = 14]: The last action of the mode
cycle is to determine the next mode that should be executed. Let
m′ = j.change.function(m, v(j.change.Reads)) be the new mode calculated by
the mode change function generated during M2M transformation based on the
finite state automaton specified in the software model. Let

v′(p) =

{
j.change.function(m, v(j.change.Reads))(p) , p ∈ j.change.Writes

v(p) , otherwise

(4.17)
be the valuation function that refers to the results of the mode change function
for all ports written by this function and to v otherwise. Let µδ′ = 0 if the system
executes a mode m′ 6= ⊥ and µδ′ = 13 otherwise. The successor state of the mode
determination phase is defined by C′j,e = (m′, 0, µδ′, v′, trigger, τ).

4.5 Fault Model

The implementation of the different fault-tolerance mechanisms depends on the proba-
bility, type and location of the possible faults. The assumptions about the fault behavior
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of the individual components are contained in the fault hypothesis, which is a result of
the system’s analysis phase. The fault hypothesis states the types and numbers of faults
that have to be tolerated by the system. It is therefore the most important document in
the design of fault-tolerant systems [Kop06].

The information contained in the fault hypothesis can be used in three ways: to define
appropriate fault-tolerance mechanisms, to select concrete components realizing the
run-time system, and to verify the concrete implementation of the generated run-time
system with respect to the assumed faults. In general, the fault hypothesis should
contain the following information:

• Location of potential faults: The fault hypothesis must state which components
can be affected by a fault.

• Effect of a fault: The consequences of the activation of a fault have to be stated.
The effects range from fail-silent behavior such as a lost message to arbitrary ef-
fects such as bit corruption in memory.

• Type of potential faults: Besides the effect, also the failure mode must be specified.
Possible modes are permanent, soft-permanent or transient failures.

• Probability of the faults: Information about the probability of a fault activation is
necessary to assess the reliability / safety of a system.

• Assumptions: It is not useful to design the system for all possible fault config-
urations, because some might be very improbable. The fault hypothesis must
therefore state basic assumptions such as the maximal number of faults that need
to be handled in parallel.

State of the Art

A number of techniques and tools are available to support the developer during the
safety analysis phase. Examples for techniques are the fault tree analysis [VGRH81], the
Hazard and Operability Analysis (HAZOP) [MNP95], and the failure mode and effect
analysis (FMEA) [Rei79]. These techniques help in identifying the initial faults / de-
tecting hazards and are based on (semi-)formal methods. However, the resulting fault
hypothesis is usually documented only in textual form. Very often the information is
spread over different documents and important assumptions made during implemen-
tation are not documented or only within the code. Furthermore, the fault hypothesis
is often mixed with fault-tolerance mechanisms.

Figure 4.15 gives an example for the fault hypothesis of TTA [Kop06]. As the fault
hypothesis is designed for applications using TTA, it is designed in a generic way. One
typical problem of textual fault hypothesis is redundancy. Assumption 3, for example,
is further refined in assumptions 6 and 7 without referring to each other. Another
issue is the spreading of information: the assumption that each node forms a FCU is
specified in the first assumption. Further assumptions on the failure behavior of a node
can be found in assumptions 3, 5, 6 and 7. Another problem is ambiguity: by the term
arbitrary failure different developers might think of different fault effects. Furthermore,
the hypothesis contains already implementation details. Assumptions 8 to 12 are no
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1. A node computer forms a single FCR.

2. A communication channel including the central guardian forms a single FCR.

3. A node computer can fail in an arbitrary failure mode.

4. A central guardian distributes the message received from the node computers. It can fail to dis-
tribute the messages, but cannot generate messages on its own.

5. The permanent failure rate of a node or the central guardian is in the order of 100 FITa {...}

6. The transient failure rate of a node is in the order of 100.000 FIT {...}

7. One out of about fifty failures of a node computer is non-fail silent.

8. The central guardian transforms the non-fail silent and the slightly-out-of-specification (SOS)
failures of the node computers in the temporal domain to fail-silent failures in the temporal domain
{...}

9. The detection of a single error is performed by a membership algorithm. The error detection latency
is less than two TDMA rounds.

10. The detection of multiple errors is performed by a clique avoidance algorithm. The detection la-
tency is less than two TDMA rounds.

11. The system can recover from a single transient fault within two TDMA rounds.

12. The system can recover from a massive transient that destroys the clock synchronization within 8
TDMA rounds after the transient has disappeared.

13. The state repair time of an application takes an application specific amount of time which must be
derived from knowledge about the application software.

aFailures in Time: the number of failures in 109 hours

Figure 4.15: Example of a Textual Fault Hypothesis [Kop06]

assumptions on faults, but statements about the implementation of the fault-tolerance
mechanisms.

It is obvious that in the context of FTOS a formal approach is required. However, most
available approaches use application logic for the formal specification which contra-
dicts the goal of generality of FTOS. Arora et al. [AG93], for instance, add fault transi-
tions directly at application level. In contrast, the goal of FTOS is to describe the fault
hypothesis in a formal, unambiguous way based on an application independent fault
effects.

4.5.1 Main Concepts

The main concepts of the fault model are to rely on generic fault effects instead of
application-specific faults and to force the developer to state all fault assumptions ex-
plicitly. The model consists of

• A definition of the fault containment units (FCU),
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• The effect of the assumed faults on components of the FCU,

• The fault configurations that need to be considered, and

• The assumptions on the activation of faults.

Fault Containment Unit (FCU)

A fault containment unit (FCU) [HTBSL78] defines the components (the region) that
may be affected by a set of faults. Within the FCU, the faults must be handled by
fault-tolerance mechanisms to ensure that resulting erroneous values do not propagate
beyond the boundaries of the FCU.

Some authors distinguish between fault and error containment and accordingly be-
tween fault and error containment regions/units [BS05]. According to the distinction,
the first term refers to the components that are directly affected by a fault, while the
second term refers to the components that are affected by the resulting error. Fault
containment can be achieved by physical separation of the individual fault contain-
ment units to exclude common cause failures. Error containment is done by additional
mechanisms, e.g. tests or voters, implemented in software or hardware. The thesis uses
the term fault containment unit in the classical sense [HTBSL78, Kop06] as all compo-
nents that might be affected by faults and their resulting errors.

The abstract syntax of a FCU is (f, Components, Behavior, Children, silence) ∈ FCU.
The definition describes the set of components Components that form the FCU f.
Components can comprise both hardware and software components that were defined
in the hardware and software model. To simplify the specification, only the highest-
level component must be specified, all sub components are automatically included.
A FCU consisting of an ECU e comprises for example all hardware components of
the ECU and all actors executed on e. The fault effects are specified at component
level using the Behavior ⊆ ComponentBehavior reference. The abstract syntax to de-
scribe the behavior of a set of components is (C, F) ∈ ComponentBehavior. It describes
the set of components C ⊆ Components that may be affected by the faults specified in
F ⊆ Fault.

In contrast to other approaches [Kop06] that require fault containment units to be dis-
tinct, FTOS allows a hierarchical arrangement of FCUs. This is necessary because the
fault-tolerance mechanisms are triggered in FTOS by changes of the state of the FCUs.
Therefore, a hierarchical arrangement allows a more sophisticated error reaction. The
activation of a specific fault, e.g. a wrong sensor result, can be tolerated directly, e.g.
by taking the previous measurement result, while the activation of an arbitrary fault of
one of the components of the ECU can lead to the exclusion of this module in a TMR
system.

In principle, the fault containment requirement demands that the behavior at the
boundaries is consistent with the specified behavior. However, it might not be possible
to maintain this behavior in the presence of erroneous components. A typical approach
is to switch into fail-silence mode, meaning that all interactions observed at the FCU
boundary are correct, but that some interactions might be inhibited due to detected
errors. However, the implementation of the adjacent regions depends on the failure be-
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havior of the FCU. A network can for example be designed to form a FCU that provides
a reliable communication. This assumption simplifies the implementation of consen-
sus protocols. If on the other hand, the FCU does not provide reliable communication,
but may also behave fail-silent, the consensus protocol design gets more complex. The
information, whether a FCU is assumed to be reliable or if also fail-silent behavior has
to be considered, is specified in the attribute silence.

Fault and Fault Effects

Most approaches describe a fault by the application-specific causes. With knowledge
about the application, the effect can be derived. A broken communication link or a
short-circuit are causes that lead to the loss of a message. Radiation may lead to mes-
sage corruption. It is obvious that there are a number of application specific causes.
Hence, the approach on describing the causes is not useful for a generic approach. In-
stead, the idea of FTOS is to rely on application-independent fault effects. The abstract
syntax of the fault class is (effect, extent, mode, duration, probability) ∈ Fault.
The main attribute is the definition of the effect. FTOS provides for each compo-
nent type a list of possible, generic fault effects. For network components for exam-
ple, FTOS defines seven different fault effects as suggested in the international stan-
dard IEC 61508 [Int98]: DataCorruption, TimeDelay, DeletedTelegram, Repetition,
InsertedTelegram, ResequencedTelegram, AddressingError, Masquerade. Also com-
binations of different effects are possible: a fault with an arbitrary effect for example
combines all possible fault effects of the contained components and can be specified
with Arbitrary conveniently. This solves also one previously mentioned problem: the
arbitrary behavior is unambiguously specified using this concept.

Another important property of a fault is the extent of the effect. The valid values of
extent depend on the specific effect. For example, one can describe the amount of
bits that may be corrupted, if effect = DataCorruption. Furthermore, the developer
can specify the fault mode mode. Possible values are Permanent, SoftPermanent, or
Transient. The difference between a permanent and a soft permanent is the persis-
tence of a failure. In the context of memory, a permanent DataCorruption would be a
bit that is always high or low. A soft permanent DataCorruption would be a bit-flip
that becomes obsolete the next time the bit is written. For transient faults, the developer
can specify the length of the activation period. The probability of a fault probability
can be used to assess whether the reliability / safety of a system design meets the re-
quirements.

Fault Configurations Sets

Besides the definition of the different faults and their effects, information about the
number of faults that need to be tolerated simultaneously is important. This informa-
tion is the major foundation for the selection of appropriate fault-tolerance mechanisms
and the necessary degree of redundancy.

FTOS uses fault configuration sets to describe the different fault states of a system. A
fault configuration specifies the set of correct and the set of erroneous FCUs. The re-
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{ FCU1, FCU2, FCU3 }

{ FCU1, FCU2 } { FCU1, FCU3 } { FCU2, FCU3 }

{ FCU1} { FCU2 } { FCU3 }

{  }

Figure 4.16: Haase Diagram of Possible Fault Configurations

lationship between the different fault configurations can be denoted by a lattice. The
configuration consisting of only correct FCUs is the top element; the configuration con-
sisting of only faulty FCUs the bottom element of this lattice. Figure 4.16 depicts a
Haase diagram for a system consisting of three units FCU1, FCU2, and FCU3. The sets in
the figure denote the correct FCUs. The activation of a fault leads to a fault configu-
ration in a level below the current fault configuration. The successful recovery from a
fault leads to a fault configuration in the level above the current fault configuration.

Fault configurations play an important role, as they may represent different operational
modes. An example is a triple modular redundancy system using semi-active replica-
tion, where each replica forms one fault containment unit. The possible fault config-
urations are depicted in Figure 4.16. If no implementation details about the master
selection process are known, each fault configuration represents one operational mode.
The upper level consists of the fault configuration {FCU1, FCU2, FCU3}, where all repli-
cas can serve as master and the system is executed reliable and safe forms exactly one
operational mode. At the next level, the master can be selected out of the correct repli-
cas and the system is executed in safe mode. Here three different operational modes
are available due to the three sets of correct nodes. The same is true for the third level,
where the correct unit switches into fail-safe state.

However, some fault configurations may be so unlikely that they are not considered
during system design. In FTOS, the developer has to specify all fault configurations
that should be considered. Because the number of fault configurations grows exponen-
tially with the number of FCUs, FTOS allows to define sets of fault configurations. Each
set represents a relevant system mode. A fault configuration set is described by the ab-
stract syntax (fc, Correct, Erroneous, Implicit, start) ∈ FaultConfigurationSet. It
can be interpreted as a function that maps a subset Correct ∪ Erroneous ⊆ FCU of fault
containment units to a Boolean value. If a fault configuration is active, all units in
Correct are assumed to be correct, while all units in Erroneous are erroneous.

Several fault configurations can be combined to form one set. The first possibility is
to not specify the fault state of a certain FCU. In addition, the developer can spec-
ify so-called implicit configurations by Implicit ⊆ ImplicitConfiguration. An im-
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plicit configuration (FCUs, min, max) ∈ ImplicitConfiguration describes a set of FCUs
FCUs ⊆ FCU and the assumed minimal min ∈ N and maximal max ∈ N number of faulty
units at a time. It is important that no fault configuration is contained in two distinct
fault configuration sets. This is validated by FTOS during the model validation phase.
Finally, the Boolean value start determines whether the system is allowed to start the
execution, if the system assumes the relevant fault configuration set to be active.

Fault Activation Assumption

Besides the assumptions on the number of parallel faults, also assumptions on the tem-
poral activation of faults are very important. These assumptions are typically made
during the implementation phase and not documented thoroughly. A common ex-
ample is the assumption that during the reaction of a system to the activation of one
fault, no other fault is activated. This assumption contains of course much knowledge
about the real implementation: the detection latency and the duration of the reaction.
Since the fault hypothesis should be independent of the concrete implementation, this
approach is not reasonable. Even worse, it is not possible to have this knowledge in
component-based approaches, since the concrete implementation is not known.

In FTOS, the developer is forced to state these assumptions explicitly. Analog to
mean-time between failure (MTBF) assumptions, FTOS requires the developer to state
the least-time between failure (LTBF) (FCUSet, duration) ∈ LTBF assumptions with
fcuSet ⊆ FCU. A LTBF object defines the minimal time duration that passes between
the activation of faults in the set of fault containment units FCUSet. Based on these
assumptions, FTOS can automatically derive the allowed maximal time for failure re-
covery and other information necessary for implementation.

4.5.2 Fault Hypothesis Examples

This section discusses the fault hypothesis of the demonstrator, but starts with the dis-
cussion of the previous example for a fault hypothesis in Figure 4.15. By the concept
of FCUs, FTOS forces the developer to specify all faults related with components of
one FCU in the context of this FCU object. This avoids the problem of distributed
assumptions, redundancy and further refinements for one component. Using the con-
cepts of fault effects and the class ComponentBehavior, the developer can specify the
assumptions in a detailed way. As some information is missing or ambiguous, the for-
malization of the example is complicated. One example is the assumption 7. Here it is
not clear, whether this assumption refers to the assumption 5 and 6, or only to 6. The
initial assumptions made to validate stated fault-tolerance mechanisms specified in as-
sumptions 8-12 are not contained in the fault hypothesis. Therefore, it is not possible to
formalize the underlying assumptions. The formalized version is specified in a generic
way analog to the initial fault hypothesis. It is depicted including the textual interpreta-
tion in Figure 4.17. The major benefits are the centralization of the different assumption,
the unambiguous specification, and the concrete definition of the fault effects. The lat-
ter benefit may not be obvious since both the formal and the textual hypothesis use the
term Arbitrary. However, Arbitrary faults are in FTOS simply the combination of all
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1. A node computer forms a single FCR. The node computer can fail in an arbitrary failure mode.
The rate of permanent arbitrary failures is 2 FIT and of permanent fail-silent failures 98 FIT. The
rate of transient arbitrary failures is 2.000 FIT; the rate of transient fail-silent failures is 98.000
FIT.
∀e ∈ ECU :
∃fcu ∈ FCU : fcu.Cf = e ∧
∃cb ∈ fcu.Behavior,∃f ∈ cb.F : f.effect = Arbitrary∧
f.mode = Permanent ∧ f.probability = 2FIT

∃cb ∈ fcu.Behavior,∃f ∈ cb.F : f.effect = FailSilent∧
f.mode = Permanent ∧ f.probability = 98FIT

∃cb ∈ fcu.Behavior,∃f ∈ cb.F : f.effect = Arbitrary∧
f.mode = Transient ∧ f.probability = 2.000FIT

∃cb ∈ fcu.Behavior,∃f ∈ cb.F : f.effect = FailSilent∧
f.mode = Transient ∧ f.probability = 98.000FIT

2. A communication channel including the central guardian guardian (modeled as a network) forms
a single FCR. The guardian can be affected by faults with fail-silence effect. The rate for permanent
failures is 100 FIT.
∀n ∈ Network :
∃fcu ∈ FCU : fcu.component = {n} ∧
∀g ∈ Guardian : contains(n, g) ⇒

(∃cb ∈ fcu.Behavior : g ∈ cb.C ∧ (∃f ∈ cb.F : f.effect = DeletedTelegram∧
f.mode = Permanent ∧ f.probability = 100FIT))

Figure 4.17: Fault Hypothesis - Formalized Version

possible fault effect types defined for the specific component. Hence, the term has an
unambiguously meaning.

Fault Assumptions for Demonstrators

In the following, the assumptions for both applications are summarized. In both ap-
plications, each ECU forms a FCU. The assumed failures cover measurement errors
and fail-silent behavior of the ECUs. Wrong task results are not assumed, otherwise
software diversity would have to be applied. In addition to the FCUs for each ECU, a
fourth FCU is specified in the elevator application to describe the failure behavior of
the network. Here, transient fail-silent behavior (DeletedTelegram) is assumed. For
the elevator application, the network is assumed to be reliable.

For the TMR application, only one failure at a time is assumed. Hence, the relevant
fault configurations for the rod application are Correct, FailureUnit1, FailureUnit2
and FailureUnit3 and refer to the two upper levels of the Haase Diagram depicted in
Figure 4.16. No assumptions are made on the status of the network FCU. However, a
very important assumption is made with respect to the activation of network faults. By
the use of an LTBF object, the minimum time between two lost messages is assumed to
be 10ms. The relevance of this assumption is described in Chapter 5.

The fault model of the elevator application specifies three relevant fault configuration
sets:
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FieldFailure

Correct

ControlFailure

Correct:{level0,level1,level2,level3,motor}
Implicit: {ecu1,ecu2}, 0,1

Implicit: {level0,level1,level2,level3,motor}.1,5
Implicit: {ecu1,ecu2}, 0,1

Correct:{level0,level1,level2,level3,motor}
Erroneous: {ecu1,ecu2}

Figure 4.18: Considered Fault Configurations in the Elevator Example

• Correct: a configuration set with at least one correct control unit and correct field
controllers,

• FieldFailure: a set with at least one correct control unit, but with an arbitrary
non-zero number of erroneous field controllers, and

• ControlFailure: a set with no correct control unit, but correct field controllers.

These sets are depicted in Figure 4.18. LTBF assumptions are not specified.

4.5.3 Model-To-Model Transformation in the Context of the Fault Model

This section discusses the calculation of relevant FCUs for a fault configuration set
during the M2M transformation. Section 4.6 points out that the fault-tolerance mech-
anisms are selected at run-time based on the currently active fault configuration set
fc ∈ FaultConfigurationSet. However, not all fault configurations are relevant for
the execution on one node, so that the node only has to determine whether the system
is within a relevant fault configuration set FC ∈ FaultConfigurationSet. One obvious
approach is to monitor all FCUs that FC refers to. This set Rel(FC) is derived from the
equation:

Rel(FC) = FC.correct ∪ FC.erroneous
⋃

i∈FC.Implicit

i.fcuSet (4.18)

However, this set might contain more FCUs than necessary. The reason is that some
fault configurations might be too unlikely to be considered and are therefore not con-
tained in the set of fault configuration sets. The system must not take these fault config-
urations into account, and therefore it is sufficient to distinguish between the reachable
fault configuration sets. The restriction of the number of FCUs becomes useful when
optimizing the system performance by avoiding unnecessary tests.

For illustration purpose, the elevator application can be used. Figure 4.19 depicts the
fault configuration of the elevator application again, but adds the direct edges of the
Haase diagram between the fault configuration sets. The label of the edges specifies the
FCUs that can trigger the transition between two fault configuration steps by changing
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FieldFailure

Correct

ControlFailure

Correct:{level0,level1,level2,level3,motor}
Implicit: {ecu1,ecu2}, 0,1

Implicit: {level0,level1,level2,level3,motor},1,5
Implicit: {ecu1,ecu2}, 0,1

Correct:{level0,level1,level2,level3,motor}
Erroneous: {ecu1,ecu2} level0,level1,level2,

level3,motor

ecu1, 
ecu2

Figure 4.19: Fault Configurations and Transitions in Elevator Example

its value. The relevant set of FCUs, that is required to determine whether a fault con-
figuration is active, is the union of all FCUs specified in the relevant edge labels. In
the example, the activation of ControlFailure can be determined by only monitoring
the status of the FCUs ecu1 and ecu2. Likewise, the activation of FieldFailure can be
determined by monitoring the status of the FCUs of the field controllers. In contrast,
the status of all FCUs must be monitored to determine whether Correct is active.

The calculation of the edges is straightforward to implement and as a side effect also
the disjunction of the different fault configuration sets can be tested. For illustration,
another approach is simpler. The set of relevant fault containment units of a fault con-
figuration set can be calculated using the set of ignored fault configurations FCignored,
which is derived from the following formula:

FCignored =
⋂

FC∈FaultConfigurationSet

FC (4.19)

For optimization issues, the fault configuration set FC can be generalized to a set FC′.
The optimal set FCopt(FC) is the fault configuration set with a minimal number of refer-
enced fault containment units. Let |FC.fcu| denote the number of FCUs that need to be
monitored.

FCopt(FC) =(FC ⊆ FCopt ⊆ FC ∪ FCignored)∧
∀FC′ 6=FCoptFC ⊆ FC ′ ⊆ FC ∪ FCignored → |FCopt.fcu| < |FC ′.fcu|

(4.20)

In the elevator example, the set of impossible fault configurations FCignored can be cal-
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culated as follows:

FCignored =Correct ∧ ControlFailure ∧ FieldFailure

=
(
{ecu1, ecu2}(2, 2) ∨ {field}(1 : 5)

)
∧

(
{ecu1, ecu2}(0, 1) ∨ {field}(1 : 5)

)
∧

(
{ecu1, ecu2}(2, 2) ∨ {field}(0 : 0)

)
=

(
{ecu1, ecu2}(2, 2)

)
∧

(
{ecu1, ecu2}(0, 1) ∨ {field}(1 : 5)

)
={ecu1, ecu2}(2, 2) ∧ {field}(1 : 5)

(4.21)

In combination with ControlFailure a generalized fault configuration set is
ControlFailure ∪ FCignored = {ecu1, ecu2}(2, 2). Hence, only the status of the two
control units must be monitored to determine the activation of ControlFailure. The
relevance of this optimization is pointed out in the next section.

4.6 Fault-Tolerance Model

The fault-tolerance model specifies the employed fault-tolerance mechanisms and con-
tains information required for correct implementation. The fault-tolerance mechanisms
are specified using basic building blocks. This approach allows the reuse of the differ-
ent components and the easy addition of further fault-tolerance mechanisms.

4.6.1 Main Concepts

Most of the approaches to achieve fault-tolerance mechanisms are based on the con-
cept of detectors and correctors introduced by Kulkarni and Arora [Kul99, AK98b].
The model is very simple: detectors detect errors in the system and correctors trans-
form the system into a correct state. This model is however not suitable for a generic
approach as offline error recovery of discarded replicas is not considered by this model.
Therefore, Schepers [Sch90] introduced a concept consisting of three phases: detection,
treatment and recovery. Treatment comprehends all mechanisms that are performed
online to retain a safe and/or reliable execution of the system. A typical example is the
switch to a redundant channel, if the primary channel is assumed to be faulty. In con-
trast, recovery describes operations that are performed offline by excluded, erroneous
components. In addition, recovery describes the mechanisms to integrate a successfully
recovered component into the running system. These three phases fit perfectly into the
concepts of FTOS. The first two phases can be executed synchronously during system
execution and real-time guarantees can be provided. Most of the mechanisms can be
implemented generically with little configuration information that can be extracted out
of adequate models. The third phase in contrast is typically very application depen-
dent. Here, FTOS provides only standard mechanisms such as rebooting a faulty unit
or restarting a component.

However, even this concept is not detailed enough for the goals of FTOS, as also proac-
tive operations are required. Proactive operations describe additional program oper-
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Figure 4.20: Concept of Fault-Tolerance Mechanism

ations that are not necessary for the specified application functionality, but are used
to generate additional information that might be useful when an error is detected. A
prominent example is the creation of checkpoints that can be used for rollback recovery.
Other approaches require these operations to be executed within the application logic.
However, this leads to an undesirable merge of application logic and fault-tolerance
mechanisms and can be avoided by the explicit declaration of proactive operations in
the fault-tolerance model.

In summary, the fault-tolerance concept in FTOS consists of four different mechanism
types: proactive operations, error detection, online error treatment and offline error re-
covery. The relationship between the different types is illustrated in Figure 4.20. Proac-
tive and error detection operations are integrated into the schedule and executed dur-
ing the system’s execution. Error detection is performed by using a set of tests. Each
test monitors one or more FCUs. If at least one associated tests assumes the FCU to
be faulty, the status of the FCU is set to false. Whenever the status of a FCU changes,
the system determines the active fault configuration set. Changes of this set can trigger
reactions by the system, the error treatment. It is performed online, but can lead to the
exclusion of erroneous components. These excluded components can perform recovery
operations offline followed by tests to check the correctness of the repaired component.
If successful, the component can request the integration into the running system. The
integration can again lead to a change of the active fault configuration set and might
trigger a new round of reactions.
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4.6.2 Basic Building Blocks

As discussed in the previous section, the fault-tolerance mechanisms are based on four
different concepts, namely proactive operations, error detection, error treatment, and
error recovery. This section presents the different components that are currently avail-
able in FTOS and discusses interesting modeling details.

Proactive Operations

Proactive operations are actions that are performed during normal system execution to
generate some information that is required in case the system has to tolerate an error in
the future. The most prominent example is checkpointing, the only proactive operation
currently supported in FTOS. A checkpoint stores the state of a system at a specific
point in time. The main advantage of the mechanism is its simplicity; the disadvantage
is that only transient and soft permanent faults can be tolerated.

FTOS allows the definition of checkpoints at the level of a job. A check-
point object (Scheduled, Ports, number) ∈ Checkpoint describes the program
counters Scheduled ⊆ ProgramCounter when a checkpoint should be cre-
ated, the set of ports ports ⊆ Port that need to be stored in the check-
point and the number of maximal checkpoints number. A program counter
(job, mode, time, microTime) ∈ ProgramCounter describes the exact point within the
schedule of a mode mode ∈ Mode within a job job ∈ Job. For the exact determination of
the program counter, the position microTime at a logical moment time ∈ Q has to be
determined. The micro time is a simplified version of the micro time object used in the
expanded model and has only three possible values: BeforeInput, BeforeTask, and
BeforeOutput.

Error Detection

Knowing that a failure has occurred is more important than the actual failure
[RM00].

This quote emphasizes the importance of error detection. Error detection is performed
by the specification of tests that check the presence of errors. The literature pro-
poses a variety of tests including control voters, plausibility tests, heartbeats, lifelocks,
flow/distributed signature [MM88] and data signatures. Within FTOS, several of these
tests are integrated and class inheritance and polymorphism allow an easy addition of
further tests.

The abstract syntax of the test base class is (Scheduled, Monitors) ∈ Test and defines
the execution times Scheduled ⊆ ProgramCounter, when the tests should be executed,
and the set of monitored FCUs Monitors ⊆ FCU. For the majority of the tests, this infor-
mation can be automatically derived during M2M-transformation. Nevertheless, this
information can also be explicitly set if tests should only be executed at specific points
in time or if the set of monitored FCUs is not obvious.

Port Tests: Many tests focus on the port values as the state of the application is reflected
in the concept of ports. In general, one can divide two different types of port tests:
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absolute tests and relative tests. Absolute tests determine the status of the monitored
FCUs by using a single result, while relative tests compare redundant results. FTOS
allows the definition of both tests.

An absolute port test can be defined by (Scheduled, Monitors, port, min, max, dev)
∈ TestPortAbsolute. If no program counter is specified, the test is executed every
time the port value is written. Similar, the status of the FCU of the writing actor is eval-
uated, if no FCUs are specified in Monitors explicitly. Using absolute tests, often also
called plausibility test, the developer can specify a minimal value min ∈ Q, a maximal
value max ∈ Q, and a maximal deviation dev ∈ Q between two adjacent port values.
The success of an absolute port test is determined by the following equation:

(min = ⊥ ∨min ≤ v′(port)) ∧ (max = ⊥ ∨max ≥ v′(port))
∧(dev = ⊥ ∨ dev ≥ |v′(port)− v(port)|)

(4.22)

where v′(port) is the new value of the port and v(port) the old value.
The abstract syntax for relative tests is (Scheduled, Monitors, port, abs, rel, stringency)
∈ TestPortRelative. Instead of one FCU, the test monitors the FCUs of all actors ac-
cessing the port simultaneously, if Monitors is not specified. The redundant results can
be compared using an absolute value abs ∈ Q or a relative value rel ∈ Q. If both abs
and rel are specified, only one condition must be satisfied. Two results vi, vj agree on
the value of port p if:

agree(vi, vj) =


(max(|vi|, |vj |) ∗ rel) ≥ |vi − vj | , abs = ⊥
abs ≥ |vi − vj |) , rel = ⊥(
((max(|vi|, |vj |) ∗ rel) ≥ |vi − vj |) ∨ (abs ≥ |vi − vj |)

)
, otherwise

(4.23)

By the attribute stringency the developer can define the required rate of result confor-
mance. Possible values are Majority, AbsoluteMajority and Unanimity. For Majority
all results that agree on the result and form a majority are assumed to be correct. If
stringency = AbsoluteMajority, the number of results that agree on a value must be
greater than the number of expected results divided by two. The most stringent type is
Unanimity, where all expected results must agree on the value.

Let Vres={v0,v1,...vn−1} be the set of expected results for port port that should be evalu-
ated. Based on the definition of the agree function in Equation 4.23, the set of results
Vi ⊆ Vres that match with vi is derived by the following equation:

Vi = {vj ∈ Vres|agree(vi, vj) (4.24)

The correctness ci of a result vi is derived by the following equation:

ci =


∀vj ∈ Vres : |Vi| > |Vj | ∨ agree(vi, vj) , stringency = Majority

|Vi| = n ∨ (∃vj ∈ Vres : |Vj | > |Vres|/2 ∧ agree(vi, vj)) , stringency = Unanimity

|Vi| > n/2 ∨ (∃vj ∈ Vres : |Vj | > |Vres|/2 ∧ agree(vi, vj)) , otherwise

(4.25)
This definition accepts also border cases in the sense that two values that are assumed
to be correct agree may not agree with each other. If this behavior is undesirable, one
can easily define new values for the stringency attribute and define appropriate test
implementations.
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Liveness Tests: The second important class besides tests on ports is the class
of liveness tests. Liveness tests are based on periodical heartbeat signals, mes-
sages send from one component to another to signal liveness. In FTOS, heart-
beats are implemented at the level of ECU components. Using a liveness test ob-
ject (Scheduled, Monitors, ecu, evalPeriod) ∈ TestLiveness, the developer can spec-
ify the ECU ecu that should be tested. The test is performed on every ECU affected
by the outcome of the liveness test (see Section 4.6.3). To save bandwidth, system mes-
sages are considered for this test. The observed unit checks at every program point
time whether a message was send to the observing nodes during the elapsed evalua-
tion interval evalPeriod. Only if no message was sent to one of the observing units, an
additional heartbeat signal is send. The observing units simply check the existence of
a message during the evaluation interval, when the system reaches a program counter
defined in Scheduled.

Tests Based on Application Logic: Most of the fault-tolerance frameworks support
the detection of faults by monitoring the behavior of replicas. However, tests that
require application logic cannot be integrated or require an adaptation of the appli-
cation code [KBWI99]. An example of useful application dependent tests are tests
based on control flow signatures [MM88]. Control flow signatures define a sequence
of correct messages/results. To test these sequences, a n-step history of the system
state is required. To reduce the amount of required memory, a sophisticated analy-
sis is necessary. Another problem is that the definition of correct sequences based
on the whole system state is usually difficult. FTOS tackles both issues by allowing
the definition of user defined tests. These tests can easily be modeled using state
machines and the code generator can produce efficient code. The abstract syntax is
(time, Monitors, Read, Write, statemachine) ∈ TestUserDefined. The ports that are
accessed by the state machine are specified by a set of ports Read. Internal results can
be written to a set of ports Write, which are only allowed to be used by the state ma-
chine. The execution of the state machine is invoked at every logical time time. As
user defined tests can monitor arbitrary FCUs, at least one FCU must be specified in
Monitors. The status of the referred FCUs can be accessed and written analog to the
ports in Read and Write.

Error Treatment

The online error treatment mechanisms reflect the concept of correctors as defined by
Arora and Kulkarni [AK98b]. In contrast to the application-dependent approach of
Arora and Kulkarni, FTOS provides generic error treatment operations. The correc-
tors proposed by Arora and Kulkarni are again transitions that are triggered by the
activation of a guard, in the context of this thesis a test result. The transitions update
the system state by updating the values of some variables. The variables reflect both
application variables and the program counter.

Therefore, two basic operations can be defined to achieve fault-tolerance: port / trig-
ger result updates and changes of the program counter. The new position, where ex-
ecution of the system should be continued can be specified using a program counter
pc ∈ ProgramCounter. A port update (p, function, Reads) ∈ PortUpdate specifies a
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function function that is used to calculate a new value for the port p. The function
can be specified analog to transition functions in state machines and is based on the
values of the ports Reads. To guarantee determinism the ports contained in Reads are
not allowed to be updated at the same time.

Based on these two basic fault-tolerance mechanisms, it is possible to define generic
fault-tolerance mechanisms that reflect the standard mechanisms known from litera-
ture. The currently supported mechanisms are discussed in the following.

Replica Management: Passive and semi-active replication is supported by the de-
finition of a replica management object. The abstract syntax for such an object is
(parallel, min, failsafe, Updates) ∈ ReplicaManagement. A replica management ob-
ject automates the consistent determination of a master for a parallel execution sched-
ule parallel ∈ ParallelExecution. The decision is computed every time tests are
performed that check the correctness of the associated FCUs. The realization of the
replica management is based on triggers. In Section 4.4.4, the transformation of the
parallel execution schedule into a sequential schedule and the generation of an accord-
ing trigger was discussed. The trigger is based on a newly generated port that contains
the ID of the master.

Every time a status of the involved FCUs changes, the master is computed again. The
selection of the master depends on the implementation, but it is guaranteed to be
unique for the whole system. In addition to the selection of a new master, the system
excludes the erroneous replica for error recovery, if the FCU is related to an ECU.

For semi-active replication, the developer has to decide whether safety or reliability
should be achieved. If safety is the main goal, the system switches into fail-safe mode
as soon as some errors are detected. Instead, a reliable system tries to keep the sys-
tem running until the last replica fails. Whether safety, reliability, or a combination
of both is targeted can be specified by the min attribute. min specifies the minimal
number of components that must be correct to continue the system’s execution in the
current application mode. If the number of correct replicas falls below min, the sys-
tem is either stopped or continued in fail safe-mode. The fail-safe mode is defined
by failsafe ∈ ProgramCounter and specifies the program counter where the system
execution should continue its operation. In addition, it might be necessary to up-
date some ports. The relevant information can be specified by the use of port updates
Updates ⊆ PortUpdate.

Rollback: Rollback operations are obviously simple port updates and a change
of the program counter. However, the values for the ports and the new pro-
gram counter cannot be determined at development phase, but depend on the
previous state, which is stored within a checkpoint. The definition of a rollback
operation (Trigger, Corrects, checkpoint, Testr, failsafe, Updates) ∈ Rollback
defines the relevant checkpoint object checkpoint and the fault configuration
sets Trigger ⊆ FaultConfigurationSet. Every time, a fault configuration set
fc ∈ Activation becomes active in the system, the system is rolled back to the last
checkpoint created by checkpoint ∈ Checkpoint. The operation is assumed to repair
some system state. The success of the rollback operation can be checked by additional
tests specified by Testr ⊆ Test. The FCUs that are assumed to be repaired by the
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rollback operation are stated in Corrects ⊆ FCU. All test results associated with these
fault containment units are reset, if the additional tests are successfully evaluated. If in
contrast the additional tests fail, the rollback operation is repeated.

If no checkpoint is available that can be used for the rollback operation, the system is
either stopped or switch to a fail-safe mode if available. The realization is analog to the
mechanisms used for replica management.

User Defined Reaction: Finally, some applications might need application-
specific mechanisms beyond the generic mechanisms previously presented.
Examples are graceful degradation or rollforward. To specify these mecha-
nisms, FTOS provides the user defined treatment class. The abstract syntax is
(Trigger, Previous, Time, continue, Updates, Excludes) ∈ TreatmentUserDefined.
The reaction is triggered whenever the active fault configuration set changes
from one set specified in Previous ⊆ FaultConfigurationSet to a set in
Trigger ⊆ FaultConfigurationSet. The definition of the previously active fault
configuration set allows to define both upgrade and downgrade operations. Using the
set of program counters Time ⊆ ProgramCounter, the reaction can be made dependent
on the current program counter. The new program counter, where the system should
continue the operation is specified by continue ∈ ProgramCounter. If continue = ⊥,
the job is stopped. Analog to the other mechanisms, the Updates reference allows the
definition of functions to update port values. In addition, the developer can specify
FCUs that should be excluded from operation to perform fault recovery.

Error Recovery

The term error recovery comprises all mechanisms in FTOS that are performed offline
to recover from a recently detected error. The recovery is performed in two phases:
recovery and integration.

Recovery: The mechanisms for error recovery are described for each FCU by defin-
ing a recovery object. It is important to note that only FCUs referring to ECUs can be
excluded. All other units must be excluded by changing to another schedule. The ab-
stract syntax of this class is (fcu, Action, Testr, Integration) ∈ ErrorRecovery. Each
object describes the actions Action ⊆ RecoveryAction performed to recover the FCU
fcu ∈ FCU. The recovery actions are very often application dependent and range from
a simple restart of the program to the transmission of an email to the maintenance per-
sonnel. FTOS provides only the basic mechanisms, but offers an interface to define
application-specific actions. A recovery action (action, max, function) is described as
the combination of an action action ∈ ActionType, the maximal error count max and
an optional function name function. Possible values of action are Reboot, Restart,
Shutdown, Ignore and UserDefined. Reboot leads to the reboot of the FCU. Restart
denotes the software restart of the according component and Shutdown simply leads
to the stop of the execution. Ignore is in a sense not a real recovery operation and as-
sumes that the system will recover when continuing the execution. Chapter 5 discusses
the use of the Ignore operation.

If several recovery actions are specified, the selection depends on the attribute max. For
each FCU with more than one recovery action, an error counter is implemented. The
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run-time system selects the action with the lowest max value that is greater or equal
than the current error count. The counter is only reset if the ECU is rebooted. A more
sophisticated error counter, which considers for instance also the intervals between
different errors, can be added easily.

The successful completion of the recovery action is checked by the tests specified in
Testr ∈ Test. If successful, the run-time system proceeds with the integration into the
running system.

Integration The integration of repaired or new components is complicated because of
the amnesia state [Pow94]. The components have no knowledge of the system state and
therefore a state synchronization has to be performed. The literature [PCD91, Rus96,
BGG+98] points out that the design of a generic state synchronization is difficult, since
the state is very application specific. Therefore, most fault-tolerance approaches such
as DEAR-COTS do not support integration at system level [PVW04].

However, all objects that contain some state information are specified explicitly in
the models of FTOS. The developer can determine the exact information required
for a successful integration by specifying integration objects. The abstract syntax is
(Pi, Triggeri, Testi, Pre, Entry, continue, Updates, Reset) ∈ Integration. Relevant
information can be contained in ports, in triggers, and in test results. The values of
the ports Pi ⊆ Port are required to get a consistent application state, the results of the
triggers Triggeri ⊆ Trigger to guarantee a correct execution, and the results of tests
Testi to guarantee the test consistency and a consistent determination of the current
fault configuration.

Furthermore, the developer can restrict the integration by specifying a set of fault
configuration sets Pre ⊆ FaultConfigurationSet and a set of program counters
Entry ⊆ ProgramCounter. Only if one fault configuration set fc ∈ Pre is active and
the system is at one program counter pc ∈ Entry, the integration can be performed. A
requirement for a successful integration is that at the time of integration no relevant
task is executing within the running system that may influence the success of the inte-
gration negatively. This condition is checked during model validation.

Regarding the effect of integration, FTOS distinguishes between silent and non-silent
integration. In silent integration, the running system simply forwards the required in-
formation including the current program counter. The integrating unit can vote on the
incoming information, if some information is sent from more than one unit. If suc-
cessful, the integrating ECU can start participating in the execution, but is first not
recognized as repaired. The real integration is done during the subsequent tests, when
the running system updates the test results reflecting the state of the integrating unit.
The other possibility is non-silent integration. A non-silent integration influences the
execution of the system directly and requires that the reaction of the system is consis-
tent. Therefore, the non-silent integration consists of two phases [PABD+99]. The first
phase is analog to the silent-integration. However, the running system waits for the
integrating unit to signal the integration success. If successful, the system may change
the program counter to continue ∈ ProgramCounter, update some port values accord-
ing to Updates ⊆ PortUpdate and reset the test results Reset ⊆ Test that are related

80



4. Adequate Meta-Models

to the integrating unit. The non-silent integration can be used to reverse a preceding
graceful degradation.

4.6.3 Model-To-Model Transformation in the Context of the
Fault-Tolerance Model

This section discusses some important aspects of the M2M transformation in the con-
text of the fault-tolerance model. The transformation computes for example the points
in time for the execution and the monitored FCUs for each test, if this information is
not specified by the developer. The relevant transformations are straightforward and
omitted here. Further transformation rules compute the set of relevant fault-tolerance
mechanisms for each ECU e. This set contains all relevant pro-active operations, tests,
treatment operations, and recovery actions. This section illustrates the transformation
using the computation of the relevant treatment operations for one unit.
An ECU e is affected by an error treatment, if the behavior (schedule and ports read
by actors executed on e) of the ECU is influenced by the result of a test. Replica man-
agement objects affect the execution of a control unit if an actor is directly affected, if a
fail-safe mode is specified and the job is also executed on the ECU, or if a relevant port
is updated. Similarly, a rollback operation affects the associated job and therefore the
ECUs executing this job. The only exceptions are rollback operations with a checkpoint
that is executed at only one point in the schedule. In this case, only some ports may be
updated and hence only ports are affected that read some of these ports. A user defined
reaction is added similar to the other treatment objects if it affects a relevant port or job.
The set of error treatment objects is derived by the following equation:

ErrorTreatmente =
{rm ∈ ReplicaManagement | rm.parallel.type = ColdRedundancy∧

∃a ∈ ActorReference,∃s ∈ rm.parallel : a.actor.ecu = e ∧ s.contains(a)}∪
{rm ∈ ReplicaManagement | rm.parallel.type = HotRedundancySingleOutput∧

∃o ∈ OutputReference,∃s ∈ rm.parallel : o.actor.ecu = e ∧ s.contains(o)}∪
{rm ∈ ReplicaManagement | rm.failsafe 6= ⊥∧

contains(e.Jobs, rm.failsafe.job)}∪
{rm ∈ ReplicaManagement | rm.Updates 6= ⊥∧

∃up ∈ rm.Updates : contains(up.p.ReadEcus, e)}∪
{rb ∈ Rollback | |rb.checkpoint.Scheduled| > 1∧

contains(e.Jobs, rm.scheduled.get(0).job)}∪
{rb ∈ Rollback | |rb.checkpoint.Scheduled| = 0∧

∃p ∈ rb.Ports : contains(p.ReadEcus, e)}∪
{rb ∈ Rollback | rb.failsafe 6= ⊥∧

contains(e.Jobs, rb.failsafe.job)}∪
{rm ∈ Rollback | rb.Updates 6= ⊥∧

∃up ∈ rb.Updates : contains(up.p.ReadEcus, e)}∪
{ud ∈ TreatmentUserDefined | contains(e.Jobs, ud.T ime.get(0).job}∪
{ud ∈ TreatmentUserDefined | ∃p ∈ ud.Ports : contains(p.ReadEcus, e)}

(4.26)
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Based on the set ErrorTreatmente, the relevant set of fault configuration sets FCe can
be computed. The set contains all fault configuration sets that are referenced by the
error treatment object. The set FCe, in turn, allows the calculation of the relevant FCUs
FCUe. Finally, the set of relevant tests Teste is calculated by the tests monitoring the
FCUs in FCUe. In addition, the set of ports is expanded with additional ports that are
used to save the information of the different checkpoints.

4.6.4 Operational Semantics

Based on the information contained in the fault and fault-tolerance model, the sched-
ule calculated during the M2M transformation of the software model is expanded by
operations related to fault-tolerance mechanisms. This section defines the additional
phases and discusses the concrete actions.

The implementation is performed in four phases reflecting the error detection (phase
1), error treatment (phase 2), integration (phase 3), and pro-active operations (phase 4).
These four phases are inserted again at three points in the schedule according to the
value of the microTime attribute of the related program counter: before input related
schedule operations, before task related schedule operations or before output related
schedule operations. The resulting schedule phases are depicted in Figure 4.21.

In the following, the different phases are formally specified. Without loss of general-
ity, the description is based on the fault-tolerance mechanism phase before the output
phase. The other phases can be directly derived from this description.

As a reminder, the state of a job j on an ECU e is described by the program configu-
ration Cj,e = (m, δ, µδ, v, trigger, τ). The relevant local schedule for mode m on ECU e
was defined by schede,m. In the context of the fault-tolerance mechanisms, this configu-
ration is expanded by the valuation function test : Test× FCU→ B that expresses the
result of a test with respect to the monitored FCUs. True represents the correctness as-
sumption, False the assumption that the FCU is erroneous. In addition, the currently
assumed fault configuration set is reflected in fc ∈ FaultConfigurationSet. There-
fore, the expanded program configuration is Cj,e = (m, δ, µδ, v, trigger, test, fc, τ).
It is important to note that test and fc only reflects the system assumptions on the
fault state of the system and may not match the real fault state. This implies that the
system steps described in Section 4.4.5 have no influence on test and fc.

The micro time µδ assigned for the individual steps is of course changed by the in-
troduction of the fault-tolerance mechanism phases. In the following, the order of the
sequence is based on the order in Figure 4.21.
The operation of the different fault-tolerance steps can be described as follows:

1. [1st Test Phase, µδ = 4]: Let T = {t ∈ Teste|∃pc ∈ t.Scheduled : pc.mode = m
∧pc.time = δ ∧ pc.microTime = BeforeOutput} be the set of tests that need to
be executed at that logical moment. Let

test′(t, f) =

{
t.function()(f) ,∃t ∈ T ∧ f ∈ t.Monitors

test(t, f) , otherwise
(4.27)
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Figure 4.21: Additional Schedule Phases for Fault-Tolerance Mechanisms
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be the test valuation function after the performance of the tests. The parame-
ters for a specific test function depend on the type of the test and are omit-
ted here for simplicity reasons. The successor configuration is obtained by
C′j,e = (m, δ, 5, v, trigger, test′, fc, τ).

2. [1st Treatment Phase, µδ = 5: Let fcu be a function to determine the status of all
FCUs f ∈ FCUe with fcu(f) =

∧
∀t:f∈t.Monitors test(t, f). Let

FC = {fc ∈ FaultConfigurationSet|
∀f ∈ fc.Correct : fcu(f)∧
∀f ∈ fc.Erroneous : ¬fcu(f)∧
∀im ∈ fc.Implicit : im.min <= |{f ∈ im.FCUs|fcu(f)}| <= im.max}

(4.28)

be the active fault configurations set. If FC = ∅, the actual number of faults ex-
ceeds the assumptions specified in the fault hypothesis and the system execution
is aborted by setting µδ′ = −1. Otherwise, the set must contain exactly one ele-
ment, due to the requirement that the fault configuration sets are not overlapping.
Let fc′ be this element. If fc′ 6= fc, the fault configuration set has changed and an
error treatment must be initiated. The validation rules demand that for a certain
combination of previous configuration fc, current configuration fc′ and current
program counter pc at most one treatment object tr ∈ ErrorTreatment exists.
Without loss of generality, tr is assumed to be of type TreatmentUserDefined.
Let δ′ be tr.pc.time if a new fault configuration set is active and tr is defined and
δ′ = δ otherwise. Let m′ be the new mode tr.pc.mode if a new fault configuration
set is active and there exists a treatment operation tr and otherwise m′ = m.
µδ′ can be derived from the following equation:

µδ′ =


tr.pc.time, fc′ 6= fc ∧ tr 6= ⊥ ∧ ¬(e.fcu ∈ tr.Excludes)
−1, fc′ 6= fc ∧ ¬(e ∈ tr.Excludes) ∨ FC = ∅
6, otherwise

(4.29)

It is important to mention that tr.pc.microTime is adapted from the simplified
micro time model in the fault-tolerance model to the augmented micro time
model during M2M transformation. The abort of the system operation is fol-
lowed by recovery operations as specified in the fault-tolerance model. As these
operations are not executed within the system operation and are typically user-
defined, they are not formalized. Let

v′(p) =

{
u.function(v(u.Reads))(p) , tr 6= ⊥ ∧ ∃u ∈ tr.Updates : p = u.port

v(p) , otherwise

(4.30)
be the valuation function that agrees in case of a new fault configuration set with
all port updates described in tr and with v(p) otherwise. The new configuration
is determined by C′j,e = (m′, δ′, µδ′, v′, trigger, test, fc′, τ).
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3. [1st Integration Phase, µδ = 6]: Let IP = {ip ∈ Integration | contains(Pre, fc)
∧(∃t ∈ entry : t.mode = m ∧ t.time = δ ∧ t.microTime = µδ)} the set of possible
integration objects. If IP 6= ∅, the system checks whether an integration request
ip ∈ Integration was registered in the network component. If an open request
is pending, the system sends the values of the required ports ip.Pi ∩ Pe avail-
able on the ECU, the decisions of triggers ip.Triggeri ∩ Triggere, the results
of tests ip.Testi ∩ Teste, and the program counter pc to the integrating unit i.
The integrating unit compares the different system configurations and adopts the
result. A successful integration is signaled to the network component by the sig-
nal ip.success for non-silent integration. The system supports the integration
of only one ECU at a time, since this is sufficient for nearly all fault-tolerant sys-
tems. Let FCUi be the set of all FCUs associated with i (FCUs of all hardware
components contained in i and actors executed on i). Let

test′(t, f) =


true , t ∈ Reset ∧ contains(FCUi, f) ∧ f ∈ t.Monitors∧

ip.success

test(t, f) , otherwise

(4.31)
be the status determination function that resets all test results for tests contained
in Reset that reference an FCU associated with i. Let

FC = {fc ∈ FaultConfigurationSet|
∀f ∈ fc.Correct : fcu(f)∧
∀f ∈ fc.Erroneous : ¬fcu(f)∧
∀im ∈ fc.Implicit : im.min <= |{f ∈ im.FCUs|fcu(f)}| <= im.max}

(4.32)

be the new active fault configurations set. Due to the requirement that only one
fault configurations set can be active at a time, the set consists of exactly one
element. Let fc′ = FC.get(0) be this element, if the non-silent integration was
successful and fc′ = fc otherwise. Let

v′(p) =

{
u.function(v(u.Reads))(p) ,∃u ∈ i.Updates : p = u.port ∧ ip.success

v(p) , otherwise

(4.33)
be the valuation function that updates the port values in case of a successful
non-silent integration. For a successful non-silent integration, let m′ be the new
mode as specified in ip.consec.mode if ip.consec 6= ⊥, δ′ be the new time that is
ip.consec.time if ip.consec 6= ⊥ and let µδ be ip.consec.microTime respectively
7. The successor configuration is obtained by C′j,e = (m′, δ′, µδ′, v, trigger, test′,
fc′, τ) for non-silent and by C′j, e = (m, δ, 7, v, trigger, test, fc, τ) for silent inte-
gration.

4. |1st Proactive Operation Phase, µδ = 7]: Let CP = {cp ∈ CheckPoint | cp.mode
= m ∧ cp.time = δ ∧ t.microTime = µδ)} be the set of current checkpoints. For
each checkpoint cp ∈ CP, let Pcp be the ports that were allocated during M2M
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Figure 4.22: Elevator - Interaction of Software Model and Fault-Tolerance Mechanism

transformation to store the different checkpoints. For simplification reasons,
let fcp : Portse × Mode×Q → Pcp be the storage function that saves the relevant
ports, the currently executed mode and the logical time to the checkpoint ports.
Let v′ be the valuation function that agrees for each checkpoint cp with fcp on
the values of Pcp and with v otherwise. The successor configuration of this step is
specified by C′j,e = (m, δ, 8, v′, trigger, test, fc, τ)

4.6.5 Fault-Tolerance Mechanism in Example Applications

This section gives an overview on the used mechanisms for the demonstrators. The
application controlling the rod uses a relative test (Result, ε,−1, AbsoluteMajority)
to detect errors in the value domain. Due to inconsistencies caused by the analog mea-
surement and small synchronization errors, a bit-by-bit comparison is not applicable.
This problem can be solved by defining a small toleration interval ε. As test stringency,
absolute majority is selected. Furthermore, a liveness test has to be defined to detect
fail-stop failures. The error treatment is based on replica management. The parallel ex-
ecution of the software model is referenced. At least two elements have to be available.
The error recovery is based on rebooting the unit. The integration into the running
system is performed at the logical time 0 before the input operation.

Figure 4.22 demonstrates the concept in the context of the elevator example. In sec-
tion 4.4, the different modes are described. The motivation to group the three sub
modes Init, Normal and FieldFailure into one mode is to avoid unnecessary tests
within the field controllers as their behavior is not changed in one of these modes.
However to realize this grouping, it is necessary to signal the existence of failures of
the field controllers to the application logic. This was initially not foreseen due to the
strict separation of application logic and fault-tolerance mechanisms. By defining an
user defined fault-tolerance mechanism, this is however possible. Whenever the active
fault configuration is switched to FieldFailure, the system performs an user defined
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fault-tolerance mechanism that simply updates a special port FieldFailure to 1 that is
interpreted by the task function. Vice versa, whenever all field controllers are assumed
to be correct, the system updates the port to 0.

Another user defined fault-tolerance mechanism realizes the mode switch if both con-
trol units fail. Alternatively one could also use a replica management object with 1 as
minimal number and a fail-safe mode. Finally, only the fault configuration Correct is
marked as startable. This adds a condition to the system start, as depicted in Figure
4.22.

The used tests are all liveness tests. Due to the optimization of the relevant FCUs to
determine the active fault configuration, the field controllers only have to monitor the
two control units. In contrast, the two control units must monitor all ECUs because
they are affected by the port updates.

The importance of the different integration types can be pointed out in the elevator
application. In general, the integration is performed silently. However, in one case a
non-silent integration is required. If both control units previously failed, the system
should start immediately with its standard operation if a control unit can successfully
integrate. The relevant program counter is set to the begin of the Standard_Operation
schedule. The associated liveness test of the integrating unit is reset. A port update sets
the variables that are only available on the control units to the initial values.

4.7 Summary

This summarizes the main concepts of the meta-model provided by FTOS. The meta-
model consists of four sub meta-models used to describe the hardware architecture, the
software components and their interaction, the expected faults, and the fault-tolerance
mechanisms.

The hardware model identifies the hardware components and the network topology. It
is used to select the run-time system. By exploiting the object-oriented concepts class
inheritance and polymorphism, the expandability of the hardware model with respect
to additional hardware devices and communication protocols is guaranteed.

The software model guarantees determinism by the use of logical execution times (LET)
and global ports. The concept LET hides the physical execution and its low-level im-
plementation. Global ports hide the realization of the distributed execution of the soft-
ware components and provide means to specify consensus requirements in an abstract
way. The concepts of jobs and modes allow the specification of sophisticated execution
schemes.

The fault model forces the developer to specify the fault assumptions in a formal way.
In contrast to other approaches, the fault hypothesis is not restricted to a limited num-
ber of faults and fault types. Instead of relying on the specification of faults, FTOS
uses the more general concept to describe faults by their application-independent ef-
fect. Therefore, the fault model can be used both for the correct implementation of the
fault-tolerance mechanisms and the verification of the system.

The concrete fault-tolerance mechanisms that should be applied in the system are de-
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fined in the fault-tolerance model. FTOS uses four building blocks to define the fault-
tolerance mechanisms, namely error detection, online error treatment, offline error re-
covery, and pro-active operations. This concept allows the composition of different
components to realize classical fault-tolerance mechanisms, such as hot-standby, triple-
modular redundancy, or rollback recovery. On the other hand, also sophisticated appli-
cation specific fault-tolerant mechanisms can be modeled with a very high abstraction
level without compromising the possibility of extensive code generation.

The approach can be used for both developers with expertise in fault-tolerant systems
and novices. Experts benefit especially from the extensive code generation, which is
pointed out in Chapter 5. The major advantage for novices is the high abstraction level
and the formulation of the different configuration possibilities in the models. In this
sense, the model points out the typical pitfalls and provides the solutions. The ease
of learning the different concepts was proved by using the tool FTOS in the lab course
Real-Time Systems. The students had to implement a simplified version of the elevator
example. Although the concepts of FTOS were only discussed briefly, all students were
able to implement a running application within 90 minutes.
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This chapter discusses the realization of the different concepts introduced in the meta-
model. The literature proposes various implementations for the different components
required in fault-tolerant real-time systems [Pra96]. Therefore, it is not the goal of this
thesis to invent new mechanisms, but to point out how these mechanisms can be im-
plemented in a generic way exploiting the concepts of the used modeling language.
The chapter starts with a brief overview on the run-time system architecture, the indi-
vidual components and their roles. In the following, three components are discussed
in more detail: the communication component, the fault-tolerance component, and the
scheduling component. The chapter is concluded with a discussion of the available
prototypes and the experiences made with the demonstrator applications.

5.1 Run-Time System Architecture

Figure 5.1 illustrates the generic architecture of a run-time system for an ECU and iden-
tifies the principal components. The arrows represent the data flow between the differ-
ent components.

The central component is the system logic that coordinates the system execution. From
a functional point of view, the main task is to logically start and stop the application
tasks according to the specified schedule, to execute I/O operations, and to trigger the
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Figure 5.1: Run-time System Architecture

network communication. Mode switches and triggers must be evaluated to select the
correct set of actors that have to be executed. The execution of the system logic is per-
formed time-triggered and reflects the timing constraints expressed in the model. The
realization of the system logic is straightforward. The sequential schedule computed
during M2M transformation can be mapped directly to the related operations. All pos-
sible branches are known in advance. Hence, the implementation is analog to the code
synthesis for a finite state automaton.

To achieve fault-tolerance, the system logic has to monitor the status of the relevant
fault containment units and needs to trigger appropriate actions, if an error is detected
or a new/repaired unit is integrated. The functionality for the fault-tolerance mecha-
nisms is provided by the fault-tolerance component. This component is explained in
detail in Section 5.3.

A clock component provides the local time base. The clock synchronization is realized
by the communication component.

The application tasks are realized as separate components encapsulating the applica-
tion functionality. The system logic performs the logical task start and task stop by
copying the parameters from the global ports to the task’s local ports and vice versa. A
port component realizes the management and allocation of these variables. Besides the
ports specified in the software model, several additional ports are added to realize the
communication between the run-time components.
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The actual physical assignment of the CPU to a task is realized by the scheduling com-
ponent. The different possibilities to realize this component are discussed in detail in
Section 5.4. However, it is important to note that although the logical execution is per-
formed time-triggered, the scheduling component can be implemented either time- or
event-triggered [HHK03].

The interaction with the environment is performed by I/O components that realize all
I/O operations that are not related to network operations. The I/O components are
passive in the way that they are triggered by the system logic. The communication is
realized by an own component, the communication component. Besides the network-
related I/O operations, this component also realizes the communication within the dis-
tributed system. Analog to the scheduling component, this component can be imple-
mented using either time- or event-triggered communication protocols. The realization
is discussed in more detail in Section 5.2.

Finally, a debug/monitoring component, usually not integrated in the run-time system,
can be added for monitoring purposes. This component is designed in a way that the
system’s behavior is not influenced. It can be used to log the system execution.

5.2 Communication Component

The communication component has three tasks: besides its obvious role to realize the
communication within the distributed system and with the environment, it has to per-
form the clock synchronization and to manage liveness signals. The latter task is dis-
cussed in Section 5.3.

The communication within the distributed system can be performed both event- and
time-triggered. Based on the information contained in the model, it is possible to com-
pute a time-triggered communication schedule [Far06]. Nevertheless, FTOS supports
also event-triggered protocols to minimize the restrictions. It is important to point out
that even for an event-triggered design of the communication component, knowledge
about the send and receive events is available due to the time-triggered execution of
the system logic that triggers the send operation. The only requirement on the commu-
nication protocol is that the message latency has an upper bound for a given network
load. This condition is satisfied by most standard communication protocols used in
the domain of embedded system such as Switched Ethernet or Controller Area Net-
work (CAN). Templates to support both protocols are available; an integration of the
time-triggered protocol (TTP) [TTT03] into FTOS is planned.

The second task of the communication component is clock synchronization. Clock
synchronization is one of the key features required to design a fault-tolerant system
[WLG+78]. Two conditions must be fulfilled by a clock synchronization algorithm
[PABD+99]:

• The agreement condition requires that the skew between the local time of non-
faulty nodes is bounded.

• The accuracy condition requires that the local clocks of all non-faulty nodes have
a bounded drift with respect to real time.
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If the communication protocol does not provide a service for clock synchronization,
an appropriate solution can be realized on top of the network stack. Ramanathan et
al. [RSB90] proposed two different algorithms: the convergence averaging algorithm
and the convergence nonaveraging algorithm. The convergence averaging algorithm
is based on a periodical exchange of the local clock values. The new value of the local
clock can be set to the average or median value of all clock values [LMS85, LWL88].
In the convergence nonaveraging algorithm, each node takes over the role as system
synchronizer periodically. Both algorithms require an additional round solely for the
purpose of clock synchronization.

In the context of this work, this additional round can be avoided by exploiting the avail-
able knowledge about the points in time when communication is performed. Based on
the expected and the actual arrival time of the individual messages, the deviation of
the local clock from the logical global clock can be estimated [SS97].

The upper bound of the clock synchronization imprecision is dominated by the un-
certainty of transmission delay for time-triggered communication. For event-triggered
communication, the effects of potential simultaneously sent messages must be addi-
tionally considered. Another limiting factor for the clock synchronization is the clock
resolution. Taking all these factors into account, a maximal synchronization skew be-
low 200µs using Switched Ethernet and the standard real-time clock in VxWorks can
be achieved in run-time systems generated with FTOS.

To tolerate f faulty clocks, Lamport et al. pointed out that the network must consist
of at least n nodes, with n > 3f [LMS85]. By the use of authenticated messages, the
number of required nodes can be reduced to n > 2f [ST87, CF94]. The used algorithm
consists of two phases. During the first phase, the arrival time is attached to each in-
coming message. The message is discarded if the message is not within the expected
time frame. The reception and storage of network messages must be performed with
a high priority to guarantee a correct estimation of the arrival time. The second phase
of the algorithm is invoked periodically and checks the deviation between the local
and the logical global clock. For this purpose, all messages within the buffer are ana-
lyzed and the difference between the expected reception time and the actual reception
time is calculated. Only messages from ECUs that take part in the clock synchroniza-
tion, which is stated in the hardware model, are considered. The number of senders is
counted to detect a fault of the own component. If enough valid messages are received,
the local clock can be adjusted. To avoid permanent adjustments, a threshold ρ is in-
troduced that must be exceeded before the local clock is updated. The initial temporal
synchronization is based on an algorithm similar to the start-up algorithm in TTP/C
[TTT03].

5.3 Fault-Tolerance Component

This section discusses the realization of the fault-tolerance mechanisms in more de-
tails. The implementation is significantly simplified by the concepts of the model-
ing language. This section points out the remaining subtleties. In general, the pre-
sented models allow a sophisticated and unconstrained specification of fault-tolerant
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systems. The provision of a set of templates that support all possible combinations of
fault-tolerance mechanisms would require much effort and would be not reasonable, as
several combinations might never be used. When analyzing fault-tolerant systems, one
can observe typical patterns of fault-tolerant mechanisms that are employed within one
system. Examples are the use of replication with graceful degradation, if the number
of faults exceeds the assumed number, or the use of rollback recovery in combination
with graceful degradation. Other combinations such as using active replication in com-
bination with rollback recovery are rare and are therefore currently not supported by
existing templates. However due to the easy expandability, new templates can easily
be integrated into FTOS, if required. To guarantee a maximal support of the different
possible combinations, the provided templates are similar to the model split up into the
four areas: error detection, error treatment, error recovery and pro-active operations.
In the following, interesting details about the realization are discussed.

5.3.1 Tests

Algorithm 1: Voting - 1st Round

matrix=initializeMatrix;1

sendResult();2

while timeout do3

//receive voting messages until timeout;4

addMessage(buffer,receiveVotingMessages());5

end6

for all pairs of results i,j in buffer do7

result=compareResults(i,j);8

updateMatrix(matrix,result,i,j);9

end10

The first step in fault-tolerant systems is to detect errors. FTOS supports currently
three different test categories: timing tests, test on port values, as well as liveliness
tests. The major challenge is the consistency requirement [BSW+00]. All ECUs that
execute a test must reach a consistent result to guarantee a consistent reaction. This
leads to the necessity to execute consensus protocols, if a consistent decision may be
compromised by faults. The exact design of the consensus protocol strongly depends
on the possible faults. In this sense, the section can only provide solutions for some
specific fault assumptions.

The first algorithm is proposed to realize relative tests. If no faults may affect the cor-
rect transmission of the redundant results, the implementation is straight forward and
can be realized according to Equation 4.23. If however faults need to be considered, ad-
equate consensus protocols need to be applied. In general, each ECU starts by sending
the local results to the relevant ECUs. In the following, the ECUs perform consensus
protocols that match the requirements stated in the unifying operation and the consis-
tency requirement for the test result. Here, an algorithm is proposed that realizes the
consensus protocols for systems with rare communication faults and for ports, where
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consistent values are not necessarily required. The proposed protocol is executed in
two rounds and accepts the loss of at least one message.

The first round starts with a send/receive phase and in the following an initial agree-
ment matrix is depicted. A possible realization is depicted in Algorithm 1. The as-
sumption for this algorithm is that every node executing the test also contributes one
result. This is the case for (semi-) active replication systems.

The second round is used to compensate possible message loss. Instead of resending
the port values, the participating ECUs can send the agreement matrix. This is of course
only possible, if no consistent port value is required. Sending the agreement matrix can
reduce the required network load and more important also increase the number of tol-
erated faults. The concrete number of tolerated faults depends on the concrete setting.
The agreement matrices can be combined by the OR operation, if no message corruption
and Byzantine errors are assumed. This assumption is common and used in various
projects [BSW+00]. The resulting matrix can be analyzed to check the correctness of the
different results. The required number ρ of agreeing results depends on the stringency
used. Algorithm 2 shows an implementation for AbsoluteMajority or Unanimity.

The discussion on the different assumptions emphasizes the necessity to verify the con-
crete implementation with respect to the fault hypothesis. Chapter 6 points out a solu-
tion by integrating formal methods into FTOS.

Algorithm 2: Voting - 2nd round

waitForRound2();1

sendMatrix(matrix);2

while timeout do3

m=receiveMatrix(); //receive results of 1st round4

matrix=or(matrix,m);5

end6

for each line i in matrix do7

sum=sumUpLine(i); //check correctness of i8

if sum< ρ then9

notifyError(i);10

end11

end12

The implementation of liveness tests must also consider communication faults for a
correct implementation. For a reliable network, the system can use system application
messages instead of additional life sign messages to signal the availability to the moni-
toring nodes. The network component stores the time when the last message was sent
to a monitoring node in an auxiliary variable. When the system reaches a program
counter with a liveness test, the system simply checks, whether at least one message
was sent during the evaluation period to all monitoring ECUs. If no message was sent
to one monitoring node, an additional life sign is sent. If on the other hand an unreli-
able network is used, each ECU must be sure that all monitoring ECUs received at least
one message within the past evaluation interval. Therefore, the use of an additional
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life sign including a consensus phase is usually required. The concrete implementation
depends again on the fault hypothesis.

5.3.2 Error Treatment

The system can react to detected errors in three different ways: switching to a cor-
rect replica (redundancy management), recover from the effects of a transient fault by
restoring a previous state and repeating the execution (rollback recovery), or switching
into a degraded mode by changing the program counter and/or the values of some
variables of the system. All these mechanisms can be implemented trivially in FTOS,
due to the time-triggered nature, the available previous knowledge, and the test con-
sistency. In the following, the most important aspects are briefly highlighted.

Redundancy Management

Using hardware or software redundancy in the form of passive, semi-active or active
replication is the main concept used in hard real-time systems. Especially (semi-) ac-
tive replication provides possibilities to mask errors without taking time delays into
account. Switching to a correct replica (master selection) in passive or semi-active repli-
cation can be implemented easily using the trigger concept. In general, the problems in
the context of redundancy management are the realization of state synchronization in
cold-standby systems, the timely recognition of failures, the consolidation of the out-
put, and the handling of event-based inputs. The first two problems are solved by the
concepts of the model: the separation of states and the time-triggered execution.

The purpose of output consolidation is to map the replicated logical outputs of each
channel onto the actual physical outputs, in such a way that the latter is in an error
free or in a safe position [PABD+99]. The output consolidation is the ultimate error
confinement barrier. All components after the output consolidation form of course a
single-point of failure and must therefore be designed carefully. It is inevitable that the
output technique has to be realized in an application-specific manner. Therefore, most
of the research projects leave this problem to the developer. In contrast, FTOS allows a
flexible output for replicated systems. By selecting the replication type, the developer
can specify, whether all correct or only one correct replica should perform the output.
The test consistency guarantees a consistent selection of the acting replicas. Failures
of these replicas after the decision can be detected by additional tests. These tests can
easily be integrated, as well as appropriate reactions. Of course, this approach assumes
fail-silent behavior of the hardware executing the run-time system or the toleration of
temporarily wrong outputs by the controlled system.

Another problem is the handling of event-based inputs in (semi-)active replication. If
the event occurs, while the ECUs are executing the input actors, some ECUs might
observe the event, whereas others might observe the event not until the next round.
The standard solution is to execute a consensus phase for the input results. However,
this additional consensus phase requires time that might not be available. FTOS solves
this problem by the IGNORE reaction for fault recovery. The minority of both groups is
assumed to be erroneous and therefore cannot perform output operations. However,
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the affected ECUs continue their operation and the system states will converge in the
following rounds. By the appropriate use of error counters, real errors are treated in a
correct way. However, this approach is only valid if no mode changes are triggered by
the incoming events that might lead to a partition of the system into two subsystems
with different schedules.

Rollback Recovery

In case of a transient or intermittent fault, a repeated execution of some function can
overcome the error [RLT78]. This strategy is called rollback recovery. Instead of exe-
cuting the same function again, it can also be promising to use some other function or
to execute the function on another processing unit. In the model, this approach can be
realized by using passive replication in combination with checkpoints.

Rollback recovery is a rather simple approach; the only difficulties arise in designing
and generating the checkpoints. However, the creation of checkpoints becomes trivial
in FTOS due to the separation of state and functionality. Another common problem of
checkpointing is the domino effect [Ran75]. In asynchronous systems, each unit creates
checkpoints according to its own schedule. If one unit discovers an error and performs
a rollback operation, orphan or missing messages can be a result. To treat this problem,
the other units must also perform rollback operations, which can lead to a domino
effect. One obvious solution is the creation of a global checkpoint and a synchronously
performed rollback operation [BHMR95]. The realization of such a mechanism in a
time-triggered environment becomes trivial.

5.3.3 Error Recovery

The concrete mechanisms for the recovery of an erroneous unit are typically
application-dependent. Therefore, only the very basic mechanisms such as restart,
reboot or fail-stop are offered. An interesting point about error recovery is integration.
For integration, a successful state synchronization is the prerequisite. The state syn-
chronization covers the synchronization with the logical time and the transfer of the
system state in form of the values of related ports, trigger decisions, and test results.

FTOS supports both silent and non-silent integration. In silent integration, the running
system is not directly influenced by the integrating unit. The ECUs of the running sys-
tem simply check whether an integration request is pending and forward in case of a
pending request the required state information. The integration is done by the integrat-
ing unit itself and is realized logically during the subsequent tests that will eventually
lead to a full integration. To guarantee an enduring success of the integration, no rele-
vant tasks are allowed to be executed on the running ECUs at the time of integration.
Otherwise, the update of the port values at the end of the task execution could again
lead to an exclusion of the previously integrated unit. This condition can be checked
during model validation by analyzing the time schedule. A possibility to guarantee the
correctness of the received data is to perform voting on the transmitted data, if ECUs
are forwarding redundant state information to the integration unit.

Non-silent integration is performed, if the system state is affected directly by the in-
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tegration. Reasons can be the continuation of the system with a different program
counter or the update of test results / port values. The implementation can be done
analog to the state restoration concepts in GUARD [BCGG97, BGG+98]. The integrating
unit sends an integration request and waits for state synchronization messages (receive
state). When an integration request is observed and the running system reaches an in-
tegration point, the active units enter the send state. The integrating unit analyzes the
receive messages, perform tests to verify the consistency of the received state and sig-
nals the running system the successful completion of the integration. The execution of
the system is continued at the specified program counter or, if no program counter was
specified, at the current position.

5.4 Fault-Tolerant Scheduling

The scheduling component is a good example to outline the potential of optimiza-
tion with respect to the execution model. Bondavalli pointed out that design envi-
ronments are missing, which allow the designers to evaluate the impact of different
priority schemes and scheduling algorithms [BFLS01]. The philosophy of FTOS is con-
trary to this requirement in the sense that FTOS automates the appropriate selection
of scheduling parameters, as it was requested by Stankovic [Sta88]. The concept of
logical execution times enables this approach. Low-level implementation details are
abstracted and the concrete design of the scheduling algorithm can be realized by the
code generator.

This section discusses the implementation of scheduling algorithms that are potential
candidates for FTOS. The discussed algorithms comprise Earliest-Deadline First (EDF)
[LL73], Stack-based (SB) [TTT05], Fixed Priority (FP) scheduling, as well as Cyclic Ex-
ecutive (CE) [BS88]. Without loss of generality, the section assumes that the algorithms
are implemented on top of a standard priority-based scheduler. For each algorithm,
an implementation is discussed that exploits the characteristics of the execution model.
The assumptions are the following:

A1 The application consists of a fixed number of tasks.

A2 There are no precedence constraints and shared resources.

A3 For all tasks, the start time and deadline is known in advance.

A4 Worst case execution time (WCET) assumptions may be available.

The section points out that all algorithms can be implemented with constant run-time
O(1) for each scheduling decision independent from the number of tasks. All algo-
rithms, except Fixed Priority, can be implemented in a way that at most three priority
levels are required. Therefore, the algorithms can be executed also on platforms with
an operating system providing only a limited number of priority levels [SKS95]. The
algorithms are evaluated using several criteria with a focus on robustness and perfor-
mance. In the context of the research project TDL, a similar evaluation was performed
[Far06]. However, there was neither a discussion about the run-time overhead, nor a
consideration of WCET exceedance. At the end of this section, a scheduling algorithm
is presented that combines the advantages of EDF and CE.
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Figure 5.2: Component Interaction for Scheduling

5.4.1 Evaluation of Standard Scheduling Algorithms

This section discusses the implementation of four scheduling algorithms in the context
of the simple task model: Cyclic Executive (CE), Stack-Based (SB), Earliest-Deadline
First (EDF) and Fixed Priority (FP) scheduling. In all cases, preemptive scheduling is
used since non-preemptive scheduling is not adequate for control systems with tasks
having different periods. The main idea used to implement the algorithms on top of a
priority-based scheduler is depicted in Figure 5.2. The task of the scheduling compo-
nent is to select the appropriate task that should be currently executed on the CPU. For
the FP algorithm, no scheduling component is required. The scheduling component
can initiate the execution of a task by unblocking a semaphore, whereas no possibility
exists to stop a task during the execution of the task function. However, it is possible
to suspend the execution by manipulating the priorities. To realize the suspension, the
availability of two priority levels used for the scheduling is assumed: one priority level
(high) to execute the selected task and another priority level (low) to suspend previ-
ously started tasks. By the use of a notification service that is again implemented by
a semaphore, the task can signal its completion to the scheduling component. If the
scheduling component does not contain a list concerning the task timing, which is the
case in EDF scheduling, the system logic signals the logical start time of a task to the
scheduling component. Otherwise, only time signals are required. Vice versa, the sys-
tem logic is able to retrieve the states of the tasks including information about deadline
violations.

A simple example is used for the illustration of the different algorithms: a system con-
sisting of two tasks t1, t2 that are executed periodically. The logical execution time is
depicted in Figure 5.3. The duration of the mode cycle is 30ms, and the worst case exe-
cution times are WCET(t1) = 16ms and WCET(t2) = 4ms. The actual execution is assumed
to be 15ms and 3ms for task t1 respectively t2.
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Figure 5.3: Scheduling Example - Logical Execution Times
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Figure 5.4: Actual Execution using Fixed Priority Scheduling

Fixed Priority

The main advantage of Fixed Priority scheduling is its simplicity. A priority is assigned
to each task during code generation. To guarantee a correct assignment, information
about the WCET is required. In addition, the priority assignment is only possible if
enough priority levels are available.

The realization of Rate-Monotonic is straightforward. Since all task priorities can be cal-
culated offline, there is no need for a scheduling component. Thus, the start of the task
is directly performed by the system logic, e.g. by releasing a semaphore. By using a list
containing all finished tasks, the system logic can check, whether a task could complete
its execution on time. The execution in the context of the example is depicted in Fig-
ure 5.4. The assignment of the priorities can be achieved in this example according to
the Rate Monotonic [LL73] method: the task with the shortest period, here t2, receives
the highest priority. Therefore, t2 starts the computation at time T and interrupts the
execution of task t1 at the points in time T + 10ms and T + 20ms.

Earliest-Deadline-First Scheduling

Recently, the advantages of Earliest-Deadline-First (EDF) scheduling introduced by Liu
[LL73] in comparison to Fixed Priority were outlined by Buttazzo [But05]. The main
advantage of preemptive EDF is its optimality: a correct schedule is always found, if
one exists. The disadvantage is the implementation complexity, in case the scheduler
is developed on top of a kernel using a set of fixed priority levels. Buttazzo stated that
the implementation is not easy, nor efficient. The main problems identified were the ne-
cessity to remap priorities if not enough priority levels are available and the inefficient
management of the deadline queue.

In the context of FTOS, these problems can be easily avoided. Because synchronization
points are excluded by design, the system can select the task with the earliest deadline
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and execute this task without having to consider that the task could block. Therefore,
the system does not have to assign priorities for all tasks. The deadline management is
mitigated by the existence of discrete deadlines. Since all start times and deadlines are
known in advance and the number of deadlines is bounded, the run-time complexity
can be decreased significantly. It is actually possible to realize the deadline manage-
ment by data structures that allow the insertion of new tasks and the extraction of the
task with the earliest deadline in constant time O(1).

The EDF scheduling algorithm can be realized as follows: instead of assigning priorities
to all ready tasks t ∈ Tready based on their deadlines and starting all tasks, the proposed
algorithm starts the task te with the earliest deadline and assigns the priority high. All
other tasks remain blocked. If a new task tnew with an earlier deadline becomes ready
during the execution of the task te, the priority low is assigned to the currently running
task te. By assigning the high priority to tnew, the new task is now executed by the
priority-based scheduler. This procedure is repeated every time a new task with an
earlier deadline than the currently executed task becomes ready. If a task finishes its
execution, the task with the next deadline is unblocked, if necessary, and executed with
the priority high.

The implementation is depicted in Algorithm 3. The scheduler is invoked with an
empty set of ready tasks and executes a while loop waiting for some external event:
the incoming of a new task or the task completion. In case of a new task, the task is
inserted into the set of ready tasks and the task is marked as not started. If the deadline
of the new task is earlier than the deadline of the currently executed task, the latter is
suspended by assigning the low priority and the new task is started. Otherwise, the
scheduler does nothing. The event of a task completion triggers the removal of this
task and the selection of the task with the next deadline from the set of ready tasks.
The priority of the next task is set to the high priority and the task is unblocked, if
necessary.

For simplicity reasons, the exact data structure used for deadline management of the
ready tasks is not specified. The simplest solution is the use of a sorted list, but this
leads to an insertion complexity of O(n). Since the number of deadlines is limited, it is
much more efficient to use queues for the different deadlines and hash tables instead
of a sorted list. This reduces the complexity to O(1). In the example, task t2 starts
the execution because of the earlier deadline in comparison with task t1. The CPU
is assigned to task t1 after the completion of the first task execution of t2. At time
T + 10ms, task t2 interrupts task t1. This is not the case at time T + 20ms because now
both tasks have the same deadline. The actual execution is depicted in Figure 5.5.

Stack-Based Scheduling

The time-triggered operating system TTPOS [TTT05] uses stack-based scheduling as
scheduling strategy. It is important to mention that the used notion of stack-based
scheduling contradicts the more general notion of Baker [Bak91]. For stack-based
scheduling, a task definition list (TADL) defines the points in time, when a task is
started. The term stack-based scheduling is derived from the algorithm strategy: all
tasks that were started, but could not yet complete, are stored within a stack. Only
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Algorithm 3: Earliest-Deadline First Scheduler

Tready := newEDFQueue();1

Started := newTaskStatusArray();2

te := ⊥;3

tnew := ⊥;4

e := ⊥;5

while true do6

e := waitForEvent();7

if (e.isNewTask()) then8

tnew := getTask(e);9

Started[tnew] := false;10

Tready.insert(tnew);11

if (te.deadline > tnew.deadline) then12

setPrio(te, low);13

te := tnew;14

setPrio(te, high);15

unblock(te);16

Started[te] := true;17

end18

else te completed the execution19

Tready.remove(te);20

if (Tready = ∅) then21

te := ⊥;22

else23

te := Tready.getMin();24

setPrio(te, high);25

if (!Started[te] then26

unblock(te);27

Started[te] := true;28

end29

end30

31

end32

1

2

Figure 5.5: Actual Execution using Earliest-Deadline-First Scheduling

101



5. Realization

1

2

Figure 5.6: Actual Execution using Stack-Based Scheduling

the task on top of the stack is executed, all other tasks are suspended. A new task is
always inserted on top of the stack. After task completion, the task is removed from the
stack. The task definition list can be calculated during code generation, but information
about the WCET is required [FM98]. The idea is to simulate the EDF execution using
the WCET assumptions.

The design of this scheduling algorithm on top of a priority-driven scheduler of a com-
mon operating system is easy: the scheduler simply waits for the next start time or the
completion of the task currently running. If a new task starts, the scheduler assigns the
priority high to the new task, unblocks the task and sets the priority of the currently
executed task to low. If a task is completed, the priority of the previously executed task
is raised to high. The management of the stack is trivial.

The actual execution is depicted in Figure 5.6. The according TADL has the following
entries:
T + 0 : t2
T + 4 : t1
T + 10 : t2
T + 24 : t2

Cyclic Executive Scheduling

Cyclic Executive [BS88] is a time-triggered scheduling algorithm. The execution time
is partitioned into slots, which are assigned to the tasks. The main advantages are the
low online overhead and the guaranteed execution time for each task. The realization
of CE is similar to the Stack Based solution. The execution plan can be calculated by
simulating an EDF execution using the WCET assumptions. In addition, the results can
be remanufactured to avoid unnecessary context switches. The result of the generation
process is a list containing all start and continuation times of the tasks chronologically
ordered. The online execution is similar to Stack-Based scheduling with the exception
that no dynamic stack is needed at run-time. The actual execution in the example is
depicted in Figure 5.7.

5.4.2 Evaluation

This section evaluates the proposed algorithms with respect to implementation com-
plexity, run-time overhead and robustness.
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Figure 5.7: Actual Execution using Cyclic Executive Scheduling

Task Number 5 10 20 50 100
EDF 6,0 5,9 5,4 5,3 5,9
FP 2,2 2,1 1,8 1,6 2,2
CE 5,6 5,6 5,7 5,8 6,6
SB 5,7 5,7 5,8 5,9 6,7

Table 5.1: Average Time for a Scheduler Decision in µs

Implementation Complexity and Run-Time Overhead: All algorithms can easily be
implemented. Fixed Priority requires no scheduling component at all. The implemen-
tation of EDF is a little bit more complex, but easily manageable. While the implemen-
tation of SB and CE is simpler, these algorithms require tools to generate the execution
plan. Since this plan generation is based on the simulation using EDF, none of the
algorithms SB, CE, or EDF is superior.

The same result can be observed with respect to the run-time overhead. Table 5.1 shows
the experimental results: the average time to schedule one task (starting and stopping
a task) including the code of the system (not included in CE and SB) and scheduling
component (not included in FP). For the benchmarks, a VxWorks 6.3 operating sys-
tem running on an Intel Pentium IV (1,6 GHz) processor was used. Different task sets
were applied to test the behavior of the algorithms. The benchmarks show the advan-
tages of FP in comparison to the other algorithms. It is of course the fastest algorithm,
since no scheduling component is required. The decrease in the average time for a
scheduling decision for FP and EDF can be explained by the declining influence of
the execution time spent for the system component in comparison to the overall spent
execution time. This explains also the difference in comparison to SB and CE, since
for these benchmarks no system component was included. The reason, why SB and
CE consume a similar amount of time in comparison to EDF despite the lower imple-
mentation complexity, is the different implementation of the operating system calls.
VxWorks implements a semaphore operation much faster than the wait operation for
a timed signal. Operating system internals are also responsible for the increase of the
average time for 100 tasks for all algorithms.
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Figure 5.8: Scheduling Failure

Robustness

One main requirement in fault-tolerant systems is robustness. The system should tol-
erate WCET exceedance if possible. Due to the optimality of EDF, it will always find a
schedule, if one exists. This is not true for FP, SB or CE. Figure 5.8 points out one possi-
ble scenario where CE and SB fail. The plan consists of two tasks t1,t2 with WCET 4ms
and a deadline d1 = d2 = 10ms. A possible execution plan is to split up the available
execution time into two slots of length 5ms. If the actual execution times are e1 = 3ms
and e2 = 6ms, both algorithms fail to find a valid schedule, although a valid execution
plan exists. A similar example can be constructed for FP.

Another aspect of robustness is that correct tasks should not be negatively influenced
by erroneous tasks. It is obvious that plan-based scheduling is the best solution to
solve this problem. Since every task has its own execution slots, no task can influence
the other tasks. This is not true for EDF [But05], RM, and stack-based scheduling.

Summary of Evaluation

To conclude this section, the evaluation results are summarized. Interestingly, SB,
which is currently used in time-triggered systems, turned out to be the worst choice.
Concerning the implementation complexity and the benchmark results, the ideal algo-
rithm is FP. Its implementation is trivial, and due to the fixed priorities, the run-time
system overhead is minimized. Disadvantages of FP are the need of WCET informa-
tion and the lack of robustness. EDF can be implemented without WCET information
and without compromising the system performance. Due to its optimality, EDF is an
ideal solution if no information about WCET is available. If information about WCET
is available and erroneous tasks are assumed to exceed the scheduled time, CE should
be preferred. Recapitulating, a combination of plan-based scheduling and EDF would
be the best solution: EDF with guaranteed time slots. This solution is discussed in the
next section.

5.4.3 Earliest-Deadline-First with Guaranteed Time Slots

In the previous section, different scheduling algorithms were discussed and the advan-
tages of both Earliest-Deadline-First (EDF) and Cyclic Executive (CE) were identified.
While EDF allows a toleration of WCET violations, if a possible schedule is available,
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other tasks might be affected by an erroneous task. In contrast, CE isolates the different
tasks and avoids any influence, but is inflexible if some time is left that can be used by
the exceeding task to complete its execution. The problem resembles the requirement
to schedule periodic hard real-time tasks and aperiodic soft real-time tasks. In FTOS,
the additional time that is required by a task exceeding its WCET can be handled sim-
ilar to the time required by an aperiodic task. The literature proposes two different
solutions for this problem: background scheduling [Liu00] or slack stealing algorithms
[CC89, LRT92]. The background scheduling approach executes the erroneous tasks,
whenever no other task is scheduled. However, this approach may delay the execu-
tion and lead to an unnecessary violation of a deadline. A more promising approach
is the use of slack stealing algorithms. The term slack denotes the maximum time in-
terval for which the remaining slots can be postponed without violating any deadline.
Slots can also be shifted forward, if one periodic task completes its execution earlier
than expected. The obtained slack can be used later on for tasks exceeding their WCET.
In summary, the perfect solution is to use flexible slots that can be shifted to front to
reclaim unused processor time or shifted backwards, if a task exceeds its WCET and
some slack is left. This approach resembles the concept of slot shifting [Foh95, IF99].

To realize this approach, the run-time system has to efficiently keep track of the remain-
ing slack. Tia [Tia95] proposed an algorithm to reduce the run-time overhead by using
a pre-computed slack table. However, this algorithm requires an overhead of O(n) to
calculate the current slack for a system with n tasks.

This thesis points out that the complexity can be further reduced to O(1) by continu-
ously updating the slack. Without loss of generality, each task is assumed to be exe-
cuted exactly once within a schedule. In addition, the tasks are assumed to be ordered
by their deadline. The initial slack σi(0) for task ti can be calculated and precomputed
by the following equation [Tia95]:

σi(0) = di −
∑

dk≤di

ek (5.1)

In the equation above, di refers to the deadline of ti and ei specifies its assumed
(worst-case) execution time. For an interval [dj, dk], the initial slack can be denoted
by ω(j; k) = minj≤i≤k(σi(0)).

Figure 5.9 shows an example that is used in the following as running example. The
schedule consists of five tasks. The start time si, execution time ei, deadline di, and
initial slack is specified in Table 5.2.

Based on the initial slack, the current slack can be computed: every time a task is ex-
ecuted with a later deadline, the processor idles, or a task exceeds its scheduled time,
the slack decreases. In general, the following information must be available to compute
the current slack for each task:

1. Total processor idle time I: The idle time of the processor since the start of the
execution plan.

2. Overrun O: The extra time spend for tasks exceeding their WCET assumptions

3. Gain gi: The unused processor time by task ti

4. Execution Time ξi: The completed portion of each task ti
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Figure 5.9: Example used for Slack Calculation

Task si ei di σi

t1 0 1 4 3
t2 4 2 8 5
t3 8 1 12 1
t4 0 5 12 1
t5 0 2 12 1

Table 5.2: Start Times, Execution Times and Deadlines in Example Used for Slack Cal-
culation

At time τ , the slack of each task ti with di > τ can be calculated by the following
equation:

σi(τ) = σi(0) +
∑

dk≤di

gk − I −O −
∑

dk>di

ξk (5.2)

All unused execution time of tasks that have a deadline not later than the deadline of
task ti is added. The total idle time and the total spend overload is subtracted, as well
as the sum of all processor time spend for tasks with a later deadline. The current slack
of the system is then again the minimum of all slacks. This brute force computation has
a complexity of O(n).

The main idea to reduce this complexity is to calculate the slack for intervals instead for
each task. The intervals are defined by the start times and deadlines of the tasks. In the
running example, the relevant intervals are [0, 4], [4, 8] and [8, 12]. At the boundary of
an interval τ , the preceding interval includes all deadlines di = τ , while the subsequent
interval includes the start times sj = τ . To guarantee a correct scheduling, all tasks with
a deadline equal to the end of the interval must get the scheduled processor time that
is specified by their WCET assumption. For a specific interval I[τ, τ ′], EI refers to the
execution time of all tasks with a deadline equal to τ ′.

EI[τ,τ ′] =
∑

t∈Task:dt=τ ′

et (5.3)
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Figure 5.10: Worst Case Execution Plan

In addition, some execution time must be spend for tasks with a later deadline, if sub-
sequent intervals do not provide enough processor time to schedule all tasks with a
relevant deadline. This additional time LI can be derived from the following equa-
tion:

LI[τ,τ ′] =

{
0, τ ′ − τ − EI[τ,τ ′]) < 0

min
(
τ ′ − τ − EI[τ,τ ′ ]

,
∑

I[t,t′]:τ
′<t′(EI[t,t′] + SI[t,t′] − (t′ − t))

)
, otherwise

(5.4)
The interval I[τ,τ ′] can not execute any later task, if the required execution time EI[τ,τ ′]

exceeds the available execution time τ − τ ′. If otherwise some execution time is left,
LI is the minimum of the available and the required time. The remaining processor
time in each interval is the slack SI that can be used for tasks exceeding their WCET
assumption:

SI[τ,τ ′] = min(0, τ ′ − τ − EI[τ,τ ′] − LI[τ,τ ′]) (5.5)

The above listed equations are only valid, if a valid execution plan exists. A graphical
representation illustrates the meaning of the equations. The required time for sched-
uled tasks within one interval and the resulting initial slack time of each interval can be
derived from the worst case execution plan. This plan refers to an execution plan that
depletes all available slack immediately. The worst case execution plan for the running
example is depicted in Figure 5.10. The required processor time within the intervals is 1
for I1, 2 for I2, and 8 for I3. As each interval is only 4 time units long, it is necessary to
execute a task with a deadline later than 4 in interval I1 for two time units and similarly
a task with a deadline later than 8 in interval I2 for two time units. The initial slack of
interval I1 is 1, for the other intervals zero. The slack time can be used for tasks ex-
ceeding their WCET. If no such task is available, it can be used to execute other started
tasks in a pro-active way to increase the slack of subsequent intervals. The slack time of
the current interval decreases, if additional tasks are executed in a pro-active way, the
processor is assigned to a task that exceeded its WCET assumption, or if the processor
is idle.
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The computation of the initial slack is straightforward starting with the precomputed
execution plan based on the assumed WCET. The worst case execution plan can be
derived starting from the end of the execution plan. For each interval all time slots
are shifted to the back. The remaining free time slots are filled by shifting time slots
from other intervals into this slot under consideration of the start times. If no time
slot is found for the free slot, a slack time slot is created. Due to the deadline driven
approach, the order of each item is not important.

The calculation of the slack time for the intervals can be performed in O(1) at run-time.
For a scheduling decision only the slack time of the current interval is required instead
of having to determine the minimum of the slacks of all tasks.

Another difference results from the different goals of integrating aperiodic tasks and
tolerating WCET violations. While response time is the major goal when integrating
aperiodic tasks, the goal in tolerating WCET violations is the avoidance of deadline
violations. Therefore, the assignment of additional time for exceeding tasks can be
deferred until no other task with a deadline earlier or equal to the deadline of the ex-
ceeding task is available. This helps to minimize context switches.

Algorithm

The concrete algorithm is similar to the presented EDF algorithm. Each task is man-
aged in a struct (t, et, at, it). The difference is that besides deadlines, the scheduled
execution time et, the already spent processor time at, and the relevant interval it has
to be available for each task.

In addition to the standard queue Tedf containing the tasks that need to be scheduled,
an overrun queue To is used to store all tasks that have exceeded their WCET assump-
tions and could not complete their execution. The management of this queue is similar
to the queue used for standard tasks and is ordered by deadlines.

Information about each interval i is contained in variables EI, LI, SI, and AI. The latter
specifies the time that was already assigned to a task with a deadline in I. The cur-
rently executed interval is specified in variable i, a pointer tc refers to the currently
executed task. Finally, variable τ denotes the time, when the execution of the currently
executed task was started and time refers to the current time. Variable extra is used
to sum up the processor time spent for pro-active execution, as this time increases the
slack of subsequent intervals. In fact, the slack time variables SI are not required for
this algorithm, but used for illustration purpose. The initialization of the algorithm is
described in Algorithm 4. After the initialization, the algorithm performs an infinite
loop that executes in four phases:

1. Execution of tasks with a deadline equal to the interval end: During this execu-
tion, the tasks are executed according to the scheduled time. Tasks exceeding their
WCET assumption are put into the overrun queue To. If a task releases the proces-
sor earlier than expected, the slack increases by the amount of unspent time. The
code of the first phase is specified in Algorithm 5.

2. Execution of tasks with a deadline later to complete LI: This phase is similar to the
first phase - if a task releases the processor time earlier than expected, the slack
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Algorithm 4: EDF with Guaranteed Execution Times - Initialization

Tedf := newEDFQueue();1

To := newEDFQueue();2

tc := ⊥;3

v := ⊥;4

τ := ⊥;5

extra := 0;6

i := getFirstInterval(Tedf);7

newInterval := false;8

forall j ∈ Intervals do9

Lj := getPrecomputedExectionTime(j);10

Lj := getPrecomputedExectionTimeForLaterIntervals(j);11

Sj := getPrecomputedSlack(j);12

Aj:=0;13

end14

time of the current interval increases by the unspent time. Tasks exceeding their
WCET assumptions are put into the overrun queue. In addition, the variables Ai
have to be updated (see Algorithm 6).

3. Proactive-execution of tasks or assignment of additional processor time to tasks
in To: The scheduler selects the task with the earliest deadline in the queues Tedf
and To and executes this task. To minimize the number of context switches, the
scheduler prefers tasks within the queue Tedf. The slack of the current interval
decreases during the execution of the third phase. Variable extra is used to sum
up the additional time spent for pro-active operation. For tasks of the queue Tedf,
the relevant variables AI and at have to be updated, unless the task violates the
WCET assumption. The code is specified in Algorithm 7.

Algorithm 5: EDF with Guaranteed Execution Times - 1st phase

tc := Tedf.getMin();1

while tc.it = i do 1st phase2

setPrio(tc.t, high);3

τ := time;4

ret := timedWait(Semschedule, tc.et − tc.at);5

setPrio(tc.t, low);6

Tedf.remove(tc);7

if !ret then task exceeded WCET8

To.insert(tc);9

else update slack if task finished computation earlier10

Si := Si + (tc.et − tc.at)− (time− τ);11

tc := Tedf.getMin();12

end13
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Algorithm 6: EDF with Guaranteed Execution Times - 2nd phase

while Li > 0 do 2nd phase1

setPrio(tc.t, high);2

τ := time;3

if Li > tc.et − tc.at then task can be finished before expiration of Li4

ret := timedWait(Semschedule, tc.et − tc.at);5

setPrio(tc.t, low);6

Tedf.remove(tc);7

Api := Api + tc.et − tc.at;8

if !ret then task exceeded WCET9

To.insert(tc);10

else update slack if task finished computation earlier11

Si := Si + (tc.et − tc.at)− (time− τ);12

Li := Li − (tc.et − tc.at);13

else14

ret := timedWait(Semschedule, Li); // execute tc for time Li15

setPrio(tc.t, low);16

if !ret then task did not finish17

Api := Api + Li;18

tc.at := tc.at + Li;19

Li := 0;20

else task finished computation earlier21

Tedf.remove(tc);22

Li := Li − (tc.et − tc.at);23

Si := Si + (tc.et − tc.at)− (time− τ);24

Api := Api + (tc.et − tc.at);25

26

end27

tc := Tedf.getMin();28

end29

4. Preparation phase for next interval: at the end of an interval, the variables con-
cerning the current interval are reset. The interval is changed to the next interval
and the slack time, the additional processing time L, and variable extra are up-
dated. The new slack time results from the available processing time (time span
between begin and end of the interval), the remaining time to complete tasks
with a deadline equal to the end of this schedule and the required time for the
execution of future tasks. The concrete operations are listed in Algorithm 8.

For reasons of simplicity, the algorithm assumes that the whole execution of the sched-
ule component is performed in zero time. Therefore, the execution of a task can only be
interrupted during the third phase. Deadline violations are detected and handled by
analyzing the state of the task.

Summary: Within this section, different scheduling algorithms were evaluated for the
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Algorithm 7: EDF with Guaranteed Execution Times - 3rd phase

while true do 3rd phase: will be aborted by system logic1

v := To.getMin();2

tc := Tedf.get();3

τ := time;4

if (tc = ⊥ ∨ (v! = ⊥ ∧ v.dt < tc.dt)) then execute exceeding task5

setPrio(v.t, high);6

ret := wait(Semschedule);7

setPrio(v.t, low);8

Si := Si − (time− τ);9

if !newInterval then task completed10

To.remove(tc);11

end12

else if tc! = ⊥ then perform pro-active execution of tasks in Tedf13

setPrio(tc.t, high);14

ret := timedWait(Semschedule, tc.et − tc.at);15

setPrio(tc.t, low);16

Si := Si − (time− τ);17

if newInterval then signal to start next interval18

Api := Api + time− τ ;19

tc.at := tc.at + time− τ ;20

extra := extra + time− τ ;21

else22

Tedf.remove(tc);23

Api := Api + tc.et − tc.at;24

extra := extra + tc.et − tc.at;25

if !ret then execution time expired26

To.insert(tc);27

end28

end29

else no task contained in both queues30

Wait(Semschedule) ; // wait for next interval31

Si := Si − (time− τ);32

if newInterval then33

newInterval := false;34

break; // complete round35

end36

end37
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Algorithm 8: EDF with Guaranteed Execution Times - Preparation of Next In-
terval

Li := getPrecomputedExectionTimeForLaterIntervals(i);1

Si := getPrecomputedSlack(i, Tedf);2

Ai:=0;3

i := getNextInterval(i);4

if i = getFirstInterval() then5

extra := 0;6

else7

extra := extra− Ai;8

Li := max(0, Li − extra);9

Si := i.end− i.begin− ((Ei − Ai) + Li);10

end11

use in FTOS. As a result, three different algorithms seem to be most adequate. If a
scheduling plan for fixed priorities exists and no WCET violations are expected, rate
monotonic is a perfect solution. If no such plan exists or no WCET information is avail-
able, Earliest-Deadline-First should be applied. If WCET information is available, the
perfect solution is to use an algorithm based on EDF with guaranteed execution times.
This algorithm combines both the tolerance of WCET violations of EDF and the fault
containment of CE.

5.5 Evaluation

This section discusses the available prototypes and outcomes of the demonstrator ap-
plications. Templates for two different run-time systems are available. The first run-
time system is a generic, POSIX [COR94] compatible run-time system that requires the
availability of a real-time operating system. The used operating system is currently
VxWorks 6.3 1. The second run-time system is designed especially for constrained plat-
forms. The targeted hardware platform is an Atmel AT90CAN128 processor [Atm07].
Since no operating system is used, the run-time system is dependent of the hardware,
but can be highly optimized.

The run-time systems are generated tailored for the specific application to reduce the
overhead penalties of the middleware approach. A good example for the optimization
is the application-specific selection of an optimal scheduler. In comparison to other
middleware approaches, the overhead is significantly decreased. Unfortunately, there
are not many solutions available that can be used for a direct comparison. The overhead
of the middleware used in HTL is estimated by 60 to 300µs per time instant. In contrast,
the overhead of FTOS is in the range of few microseconds. Of course, these numbers
include in both approaches not the overhead required for network communication.
The much better performance of FTOS in comparison to HTL can be explained by the
virtual machine approach of HTL. While HTL uses a generic virtual machine that is also

1http://www.windriver.com/
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used in Giotto, FTOS points out that it is practicable to generated an efficient run-time
system.

The TMR example is used to point out the efficiency of the code. The application is
implemented with a control rate of 400Hz. However, this control rate is admittedly
at the upper bound. The clock synchronization is implemented on top of the network
stack to avoid the use of specialized hardware. Therefore, the clock synchronization
bound is in the range of some hundred microseconds. To achieve a significant lower
bound, one must use specialized hardware. The limited clock resolution can be handled
by using external hardware timers. Furthermore, it is useful to use a time-triggered
communication protocol that implements the clock synchronization within the network
stack. To implement these improvements, templates to support the Time-Triggered
Protocol (TTP) [TTT03] are currently under development.

The elevator application points out the feasibility to generate code for distributed sys-
tems. Not all templates are currently implemented, but first prototypes are available.
However, all the models are available so that the major benefits are apparent.

The generated source code consists of 12000 lines of code for one control unit of the
elevator application. This number seems to be very high, but can be justified with the
huge amount of driver code. The code for these drivers consists of more than 9000 lines
of code. The footprint of the compiled run-time system is between 110 kB for the TMR
application and 200 kB for the control unit of the elevator application.

The modeling complexity is kept to a minimum by the high abstraction level. The
models for the TMR application consist of totally 105 objects (hardware model: 20,
software model: 42, fault model: 26, fault-tolerance model: 17). For a better illustration
of the complexity: the related XML files generated by the development tool consist of
less than 200 lines of code. The code realizing the PID control function, which needs to
be implemented by the developer using C as programming language, consists of only
21 lines.

In the context of the elevator application, the goal of a complete model-based develop-
ment process is actually reached. The models consist of 336 objects (40, 215, 27, 54) and
less than 700 lines of xml code. Besides these models that are used for the generation of
the application’s non-functional aspects, the application functionality is also modeled.
For this purpose, another modeling tool called EasyLab2 is used. The task functions
are modeled by finite state automatons. Combining these tools results in an integrated
model-based approach.

2http://easykit.informatik.tu-muenchen.de/
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CHAPTER 6

Verification
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Formal verification is an important topic for the development of fault-tolerant embed-
ded systems [BFLS01]. Testing, as the standard validation technique, can only limit the
failure probability to 10−4 failures per hour. The typical value for safety-critical systems
that has to be achieved is however a mean time between failures (MTBF) of 109 hours
[Sur94]. It is obviously impossible to gain confidence about such a system by testing
[LS93].

Formal methods are mathematically based techniques that offer a rigorous way to an-
alyze systems [CW96]. However, the application of these methods requires expertise
in formal techniques. This is the major reason, why formal methods are not used to an
extent, as it would be useful. The integration of formal methods into model-based
development tools can minimize these drawbacks and help to improve the quality.
The existing approaches such as the integration of formal methods in EsterelStudio
[BKS03] or Matlab [BPT07] are usually applied at the modeling level. However this
approach is for FTOS not applicable, since the model only defines the techniques, but
does not dictate the concrete implementation. Therefore not only the models, but also
the templates used for the code generation have to be verified. Since FTOS is based on
a component/template-based approach, it is important to ensure that the components
(generated from the templates) do not interfere in an unanticipated way and that the
resulting behavior reflects the intended behavior [AK98a]. Unfortunately, the verifi-
cation of a correct interaction between different components is very hard to achieve.
Especially in fault-tolerant systems, the effects of possible faults must be carefully in-
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Figure 6.1: Approach for Formal Verification

vestigated, since the used components do not necessarily have to be based on the same
fault assumptions.

The integration of formal verification in FTOS is by itself a topic for a separate thesis.
Therefore, this chapter presents some general ideas on how to integrate formal verifi-
cation. Grunske et al. [GKR05] identified two important issues that are the topic of this
chapter:

• How to specify the failure behavior of a component, when its usage and environ-
ment are unknown?

• How to evaluate the safety properties for a system built with components?

This chapter presents answers to both questions. The fault hypothesis plays an im-
portant role in this process. Two components realizing the same functionality may be
designed in different ways if they are based on different fault assumptions. Examples
are the different solutions for consensus depending whether only fail-silent or arbitrary
(Byzantine) faults must be tolerated. This chapter points out how template designer
can formally specify the behavior of the developed templates. As these designers are
usually no experts in formal methods, the goal in FTOS is to minimize the necessary
expertise regarding formal verification. Based on the ideas of this section, a first pro-
totype for a formal verification is integrated into FTOS. The prototype considers the
behavior of generated components only and treats task functions as black box. The
experiences with the prototype are presented at the end of this chapter.

6.1 Concept for Formal Verification

The main idea to integrate formal verification in FTOS is to define for each template,
an additional template that specifies the formal behavior of the generated component
in the presence of faults. One additional template is used to simulate the fault injection
according to the fault model. Based on these formal specifications, the system and a
formal specification of the system can be generated in parallel. The template developer
can specify different formal assumptions and requirements that are evaluated by the
use of a SMT1 solver. The approach is depicted in Figure 6.1.

1Satisfiability Modulo Theories
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For a first prototype, the interactions of the components are examined with respect to
the behavior in the presence of faults. The application logic is not considered. The
formal specification of the components can be based on the fault meta-model. It can
be limited to the behavior concerning possible faults and the resulting errors (error
propagation, error containment, error mitigation).

The major assumption for the validity of this approach is of course the consistency of
the original template and the template describing the formal behavior. Therefore, the
specification of the formal behavior of a component must be done thoroughly. To min-
imize the probability of inconsistency, the complexity of the specification has to be re-
duced. A major factor in the reduction of the complexity is the high level of abstraction
in FTOS. Due to the specification of well-defined interaction interfaces of the run-time
system’s components and the time-triggered execution model, the possible error prop-
agation is already restricted. Only the possible fault effects of hardware and software
components that interact directly with the template/component have to be considered.
If a developer designs for example a template for the scheduling component, the rele-
vant fault effects are the fault states of the tasks, the ECU and its components. By using
assertions, the developer can also specify several fault assumptions that were used dur-
ing the implementation of a component . This helps to further minimize the modeling
complexity.

Different approaches use for instance temporal logic properties to prove the correctness
of fault-tolerant systems [BFS00, Lam02]. However, these approaches required good
knowledge in formal methods. As the template developer will typically have only
little knowledge in this area, this approach is not feasible. To reduce the required ex-
pertise, the main goal is to use a formal specification language that resembles common
programming languages and does only introduce few additional concepts. BoogiePL
[DL05] is such a specification language. It is an intermediate language for program
analysis and program verification and resembles imperative programming languages.
Very few concepts must be learned to understand the language and to be able to imple-
ment a formal specification. The additional constructs include an assertion command
assert to specify conditions that must be satisfied by the system. The constructs havoc
and goto allow the introduction of non-determinism. These constructs can be used
to simulate the application behavior (e.g. the selection of a mode in the mode switch
function), to introduce the activation of faults or to simulate uncertainty in the context
of error propagation. By the command assume, verification paths can be aborted that
are assumed to be not relevant. BoogiePL programs can be verified by using the SMT
solver Z3 [dMB08].

6.2 Formal Specification of the System

This section discusses the translation of the different models into a formal model based
on the formalism discussed in Chapter 2.
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Hardware Model

The hardware model describes the set of hardware components CHW ∈ C used in the
system. In the formal model, these components are treated as passive components.
This means that each process of a hardware component Πc with c ∈ CHW contains no
actions. The variables Vc reflect the fault state of the hardware component and are
explained later.

Software Model

The software model can be translated into a formal model to allow formal verifica-
tion. The relevant set of components associated with the software model consists of
components CTask for each task and components that realize the run-time system. On
each ECU e, there are three run-time components: the system component csystem,e, the
communication component cnetwork,e, and the schedule component cschedule,e. In the
following, the actions and variables of these components are defined.

Each task component ct ∈ CTask describes a task implemented by the applica-
tion developer. As in the current version the task function is regarded as black
box, internal variables and the concrete actions are not defined. It is sufficient
to interpret the task component ct as a component with private ports as inter-
face variables Vct = Vt,read ∪ Vt,write and one action simulating the task function
at :: cpuassign,t.cpu = t→ ft(Vt,read)(Vt,write). For the current prototype, the function
will simply relay erroneous input parameters. In addition, the task can also introduce
new errors (erroneous results, deadline violation) according to the fault model. The
guard specifies that the function can only complete its execution if the CPU is assigned
to the task. Internal intermediate steps do not have to be considered due to the concept
of simple tasks and the execution model.

The system component csystem,e realizes the operational behavior as specified in Sec-
tion 4.4.5. The component uses internal variables Vcsystem,e = Vtrigger,e ∪ Vports,e to store
trigger decisions and to realize the global ports. In addition, two variables are used to
store the current micro time (vδ) and the local time (vtime,e). The actions can be derived
from the description of the operational semantics.

The network component cnetwork,e realizes the communication between the different
ECUs. The concrete implementation and actions depend on the communication pro-
tocol used. Its formal specification is omitted here. The provided interface variables
Vcnetwork,e,interface = Vrem_priv_ports,e implement the remote private ports for each com-
munication reference.

Finally, the scheduling component cschedule,e controls the assignment of available CPUs
to tasks. The concrete behavior depends on the implementation, but several variables
are defined to realize the interface. To set the status of the tasks concerning schedu-
lability, the interface variable vschedule,t ∈ Vschedule,Tasks is used. Possible values are
Blocked, Started and Completed. The assignment of a CPU to a task is realized by the
interface variables cpuassign,t.cpu ∈ Vschedule,CPUs.
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Fault Model

Based on the information contained in the fault model, the formal specification of the
system can easily be augmented. This augmentation is carried out in three phases.

The first phase augments all existing components with additional interface variables
Vstatus describing the fault status of the component. This augmentation depends on
the component type and the fault effects specified for this type. In addition, for each
variable vp,C reflecting a private, global or communication port p within component C, a
new variable vpstatus,C is added denoting the state of this port. Possible values for these
port state variables are currently Correct and Erroneous.

In the second phase, the fault activation/injection is formally specified by an own com-
ponent CFI. The corresponding process ΠFI realizes the fault injection according to the
fault assumptions. Internal variables VFI are used to realize constraints of the form
constraint : VFI ∪ Vstatus ∪ {vtime} → B. The internal variables VFI contain informa-
tion about the time of the last injected fault of a certain type. In combination with the
current time contained in vtime, constraints regarding the period between the activa-
tion of different faults are realized. Also the number of currently active faults can be
constrained by analyzing already existing faults in VFI. The fault injection transitions
are of the form: transition : VFI ∪ {vtime} → VFI ∪ Vstatus. Faults can be activated or
transient faults can be removed from the system. The actions contained in ΠFI are then
of the form constraint→ transition and comply with the assumptions of the fault
model.

The last step is the definition of the error propagation. For each component, the existing
actions of the different components are augmented with respect to the guard and/or
the transition to reflect the behavior in the context of faults/errors. In addition, also
new actions are introduced. The definition of the error propagation for a component
depends on the own fault state and of the fault states of the interacting components and
relevant ports that are read. The augmentation is of course implementation dependent
and has to be defined by the template developer.

Fault-Tolerance Model

The addition of fault-tolerance mechanisms expands the system and the communica-
tion components. A set of variables is added to the system components. It contains
Boolean variables reflecting the test results. Additional variables are created for the
realization of checkpoints and to reflect the master decision of replica management
objects. All these variables are only used for the realization of the fault-tolerance mech-
anisms and do not affect the standard operation of the error-free system.

In addition, the system components are augmented with additional actions realizing
the test execution, the error treatment, the integration and the pro-active operations as
discussed in Section 4.6.4. Test actions update the Boolean test variables. A change of
the fault configuration, denoted in the status variables, can trigger the execution of an
error reaction. An error reaction is, similar to standard actions, an action of the form
r : 〈grd〉 → 〈stmt〉. The guard grd = trigger ∧ grd′ of this action is a combination of
a trigger statement specifying the enabling change of the fault configuration and a
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guard grd′ specifying an enabling condition based on the application logic. Thus, the
reaction depends on the previous and the active fault configuration, as well as on the
current application status and in particular the program counter. The statement stmt
updates one or more variables of the system. The concrete actions can be derived from
the operational semantics.

In addition to the system component, also the network component is augmented to
support integration and liveness tests. An additional set of variables is used to sig-
nal integration requests, the successful completion of the integration and to store the
receive time of the last message from observed control units. The concrete actions de-
pend on the implementation of the component. The schedule component is left un-
changed.

6.3 Prototype

This section discusses a first prototype. For reasons of simplicity, this prototype ignores
the different fault effects and only distinguished between correct and erroneous com-
ponents. Additional assumptions such as a simplified handling of time are used to
quickly develop the first prototype. The main idea of the prototype is to demonstrate
the general feasibility of this approach, but also to verify the validity of the consensus
protocol used in the context of the triple-modular redundancy application.

General Framework

The formal verification is based on a generic framework that reflects the error state of
the different hardware and software components and the time. For each hardware or
software component c, a variable sc denotes the error state. In general, the values for
this status variable depend on the component type. The basic set of possible values is
defined in the fault meta-model, but further values for different types are defined to
reflect error propagation. This can be illustrated using ports as example. In the model,
ports represent a logical component that cannot be affected by a fault directly. However,
a port can of course be affected by error propagation through corrupted memory or by
a lost network message. Therefore, additional error states have to be defined for each
component type. In the current version, only Boolean error states are used.

In addition to the error status of the individual components, the generic framework
represents a variable τ that reflects the time. The local time for each ECU is reflected by
internal variables of the concrete clock-related components. The definition of the fault
injection function is more complex. Figure 6.2 shows the begin of the template defining
the fault injection function. The function is executed in three phases. Within the first
phase, the status of each variable is randomly set to a new fault state using the havoc
command under consideration of the LTBF and failure mode constraints. In the second
phase, the state of each FCU is calculated. The active fault configuration is determined
in phase 3. Paths with fault configurations that are not considered in the fault model
are aborted by the use of the assume command. In general, the activation of faults is of
course a non-deterministic process. To achieve a realistic mapping, the fault injection
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Figure 6.2: Formal Specification of Fault Injection Function

can be implemented as a parallel process. However, this approach would lead to a
dramatic state explosion inside the verification tool. Therefore, the approach is based
on a manual fault injection. The template designer can call the fault injection function,
whenever a change of the error status of a component might have effects.

Component Specification

The formal specification of the different templates for the run-time system components
is straightforward. Based on the variables denoting the error state, the developer can
specify the behavior of the component and the effect on the error state of involved
components. By using the assert statement, the developer can state conditions that
have to be satisfied by the system. In the context of the voting algorithm, the relevant
component tests whether a consistent decision is reached. The effects of the component
execution on the local and global time can be specified by using the relevant variables.
This is important to make use of the Least Time Between Failure assumptions stated in
the fault model.

Specification of Application-Specific Requirements

It should also be possible to evaluate application specific requirements besides the re-
quirements that are listed in the formal specification of the run-time system compo-
nents. A typical requirement is that no output is performed based on an erroneous
port value. However, these requirements cannot be specified application-independent,
since some applications might also tolerate a temporarily erroneous output operation.
To specify the application specific requirements, the application developer currently
has to add the assumptions at the correct position within the generated formal spec-
ification. A more developer-friendly possibility to state such requirements within the
modeling phase is future work.
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Experiences

Using the formal verification introduces an easy mean to verify the correct selection
of appropriate fault-tolerance mechanisms in the context of a specific fault hypothe-
sis. For most of the implemented components, one can find a solution in the literature
with a correctness proof. However, these proofs are usually based on a specific fault
hypothesis and it remains unclear whether some modifications might jeopardize the
correctness of the solution. In the concrete example of the voter, it was not clear how
many communication faults could be accepted by the presented solution for voting
and how other faults would influence the correctness. The prototype allows an easy
and efficient way to get the correct numbers.

Based on the formal specification of the templates, a formal model of the whole appli-
cation is generated. This model contains about 1000 lines of code and consists of about
150 different variables for the TMR application. The high abstraction level and the de-
terminism of the application in the absence of faults lead to an optimal performance of
the verification process and avoid the common problem of state explosion. Using the
very efficient SMT solver Z3, the correctness of the system could be proved in negligible
time (less than one second). These numbers demonstrate that the approach is feasible.
Of course, the required time for the verification process will increase if sophisticated
error states instead of Boolean error states are used. One drawback of BoogiePL and
Z3 is the concept to perform the verification at procedural level. While this helps to
keep the verification process small and fast, the counter examples are only presented
for one component. Nevertheless, to be really useful, the counter example should in-
clude information about the whole trace through the involved components. Therefore,
the prototype currently combines the formal behavior of all components into one block
and verifies the complete block. The only exception is the fault injection function. This
function is treated separate, because inlining would lead to a dramatic increase of the
generate lines of code. The applied abstractions of Z3 are another problem. Loops for
example are analyzed in a pessimistic way. To reach a useful result, one must unroll
the loop if a requirement should be verified that requires the verification of the system
executing several loop cycles.

In summary, the experience with the first prototype is positive. Due to the clear con-
cepts of FTOS and the ease of learning BoogiePL, the integration of formal methods is
straightforward. Besides the formal verification of different properties, a major bene-
fit of the formal specification is the increased understanding in the complete system.
This helps not only to design correct code, but to also implement the system more effi-
ciently.

Besides the integration of sophisticated error types, the next prototype will focus on the
presentation of counter examples. These counter examples are currently presented at
the level of BoogiePL. However, to be really useful, the feedback should be performed
at the modeling level.
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Conclusion

This thesis discusses the design of a model-based development process including au-
tomatic code generation for fault-tolerant real-time systems. The major focus of the
developed tool FTOS lies on the generation of code realizing non-functional aspects.
These aspects, such as fault-tolerance mechanisms, communication within the distrib-
uted system, and scheduling, cause most of the software complexity of these systems.
The presented approach complements existing tools in an optimal way, in the sense
that existing tools focus predominantly on functional aspects. The predicted benefits
of the approach are pointed out using two demonstrators. A system controlling an ele-
vator that consists of a hot-standby system to realize the application logic and several
field controllers to perform I/O operations is implemented without writing a single
line of code by using FTOS and another tool used to model the application function-
ality. Another demonstrator proves the feasibility of the approach, if hard real-time
requirements with control response time in the range of few milliseconds have to be
achieved.

The efficiency of the code and the possibility to generate code for heterogeneous plat-
forms is obtained by using a template-based code generator. Templates realize indi-
vidual solutions for a certain aspect of the system and a set of platforms. The code
generator selects the relevant templates, adapts these templates according to applica-
tion requirements, and can therefore tailor an optimized run-time system.

The major contribution of this thesis is the formulation of an adequate modeling lan-
guage. This language is on the one hand abstract enough to simplify the modeling
process, but has on the other hand explicit execution semantics to support the code
generation. The unique feature of FTOS is the addition of fault-tolerance in a complete
model-based way. Other approaches based on components require that the applica-
tion developer selects and configures the concrete components. This typically requires
good knowledge about implementation details. In contrast, FTOS is designed both for
experts and novices in the field of fault-tolerant systems. Experts benefit from the ex-
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tensive code generation; novices from the possibility to model fault-tolerant systems at
a very high level. Furthermore, the different parameters for the fault-tolerance mecha-
nisms help to avoid typical pitfalls during the design of such systems.

To achieve a system-oriented approach, the modeling language combines several differ-
ent aspects. It allows the definition of the hardware architecture, the software compo-
nents, their interaction and timing constraints, the fault assumptions, and the selection
of fault-tolerance mechanisms.

The software model is based on the concept of logical execution time. For each execu-
tion of a component, the user specifies the logical start and stop times. This paradigm
helps to abstract from low-level details on the implementation of the scheduling, but
guarantees a deterministic execution of the system. The thesis points out that the imple-
mentation of the various mechanisms required for fault-tolerant systems in a generic
way is simplified by exploiting this paradigm. Amongst others, the thesis discusses
implementations of the major fault-tolerance mechanisms such as passive, semi-active
and active replication, rollback, and rollforward recovery. In addition, a scheduling
algorithm was introduced that combines the optimality of Earliest-Deadline-First with
the robustness of Cyclic Executive.

To cope with the issue of different fault assumptions, the modeling language forces the
user to formally specify the assumptions using a generic description. This approach
allows the appropriate selection of adequate templates and allows the integration of
formal methods to prove the overall correctness. A first prototype is implemented, that
integrates formal verification based on a SMT (Satisfiability Modulo Theories) solver in
FTOS.

Future Work

An obvious point for future work is to continue with the integration of formal meth-
ods. The current prototype is based on very simple fault effects and was primarily
designed to prove the overall concept. Future work will be on the integration of both
sophisticated fault effects and on the integration of the application functionality, which
is currently regarded as black box.

Another important future work is the use of FTOS in industrial applications. Cur-
rently, one application in the context of railway systems is implemented with FTOS.
The used fault-tolerance mechanisms are based on a triple-modular-redundancy archi-
tecture. Initial results indicate a significant reduction of development time.

A very important issue in computer science in general is multicore computing. The
advantages of multicore computing in the area of dependability are obvious. The ap-
plication tasks can be separated physically and executed on distinct cores. Amongst
others, this can be exploited to execute software with different criticality levels on one
processor. However, the research in this area is not mature and a lot of interesting and
challenging questions have to be answered. Nevertheless, the tool FTOS is already de-
signed to support multicore computing, so that it should be easily possible to support
multicore processors. The design of adequate concepts and templates to exploit the
new features of such architectures is a very interesting topic for future research.
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Related Work - Modeling Tools, Code Generators and
Frameworks

Several modeling languages and code generators target the area of embedded systems.
The tools differ in the number of covered aspect, such as application logic, hardware
architecture, deployment diagrams and timing aspects, the tool support and the code
generation possibilities. In addition, there are some frameworks that are targeted for
fault-tolerant systems. The following sections give an overview of existing tools and
reference the related work of this thesis.

A.1 Unified Modeling Language

Certainly the most important modeling language is the Unified Modeling Language
(UML) [Obj07b]. UML was initially designed for standard information systems, but
was recently adapted for modeling embedded, fault-tolerant real-time systems by the
introduction of adequate profiles.

The UML Profile for Modeling Quality of Service and Fault-Tolerance Characteris-
tics and Mechanisms [Obj04a] provides several frameworks to describe fault-tolerant
systems, quality of service and risk assessment. The focus of the fault-tolerance frame-
work is to model software redundancy/replication. The risk assessment framework
allows the identification of potential threats and weaknesses, unwanted incidents, risk
mitigation and treatments.

Timing and scheduling aspects can be described by using the Schedulability, Per-
formance and Time (SPT) profile [Obj04b]. The profile covers the modeling of re-
sources, time, concurrency, schedulability and performance. Within the European
project High Integrity Distributed Object-Oriented Real-Time Systems (HIDOORS)
[MLJ03, VSWH02], SPT profile compliant mechanisms for modeling safety-critical, em-
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bedded real-time applications were introduced. The new profile MARTE [Obj07c] is
intended to replace the SPT profile.

Several other projects such as OMEGA [Hoo02], FLEXICON [MEG+04], or books
[Dou99, IC02, LMS03, Mar06] presented solutions for modeling embedded real-time
systems using UML.

However, all of these solutions focus on specific aspects and do not cover all necessary
aspects for modeling fault-tolerant real-time systems [ZBL07]. Furthermore, there are
no adequate code generators available to support code synthesis for more sophisticated
models than class diagrams and state charts [KGG+06]. The reason is the lack of precise
semantics of the UML models [JSEB04, BGP07].

A.2 Domain-Specific Tools

A.2.1 Commercial Tools

A number of tools are available that promote the model-based design of embedded
software including code generation. However, these tools focus mainly on the func-
tional aspects.

Matlab/Simulink [Bar05] by Mathworks focuses on the development of algorithms
for data visualization, analysis and numeric computation. C code can be generated
by using the Real-Time Workshop. Features of distributed systems like networking or
process management are not covered by the Real-Time Workshop.

SCADE [DSMG04] by Esterel Technologies is a tool for code generation of safety-
critical applications based on synchronous languages like Esterel[BG92] or Lustre
[CPHP87]. The main idea of SCADE is to generate sequential code to avoid problems
like race conditions. Therefore, features like networking and process management are
not covered.

Statemate [HLN+90] provides a set of modeling languages to specify the application
functionality. The most important concepts are statecharts and data flow graphs. Non-
functional aspects or the realization of a distributed execution are not supported by the
code generator.

Due to the focus on functional aspects, the tools are the prefect counterpart for the
developed tool FTOS. FTOS can be used to design the middleware to execute the appli-
cation code developed with the mentioned tools. One remaining problem is the request
for referential transparency for all task functions. Here, it is necessary to avoid model-
ing constructs that lead to internal variables in the generated code. The integration of
FTOS and SCADE is currently in progress.

A.2.2 Tools from Academia

The design of the FTOS model was significantly influenced by the Ptolemy project
[Lee03] from UC Berkeley. Ptolemy describes different models of computation, includ-
ing their combination (modal models) and code generation support. FTOS adopted
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the concept of actor-oriented design from Ptolemy and examined different models of
computation.

Giotto[HHK03], another project from UC Berkeley, is used for the platform-
independent specification of real-time systems. It is based on the concept of Logical
Execution Times and the simple task model [Kop97]. Tasks are used to realize the
application logic and are executed periodically. The communication between tasks
is realized by local ports (ports attached to a task) and drivers. Drivers realize the
communication between different ports and are executed in logically zero time. The
code for drivers has to be implemented by the developer. Similarly, the developer can
also implement sensor and actuator drivers that realize the communication with the
environment. To allow a flexible design, Giotto introduces the concept of modes and
guards. In contrast to FTOS, only one mode can be active at a time.

Virtual machines are used to reach the goal of platform independence. The result of the
compilation process of the Giotto program is embedded code (E-Code) [HKMM02].
This E-Code is executed on a corresponding virtual machine, the E-Machine. For
scheduling, the E-Machine may pass the tasks to the scheduler of the operating sys-
tem. Alternatively, it may use another virtual machine, the S-Machine, for scheduling.
The S-Machine interprets scheduling code (S-Code) [HKM03]. The approach has the
advantage that the platform independent application execution (E-Code) and physical
execution (S-Code) are separated [KSH05].

The Timed Definition Language (TDL) [FFPT05, FP07] is a successor of Giotto and
adds a component model and full support for distribution. The component model al-
lows the decomposition of the whole program into distinct subprograms. The different
components, called modules, can have different active modes, thus resolving the re-
striction of Giotto. However, a module is limited to one hardware node. Mode changes
affecting several nodes have to be realized by the developer. To simplify the application
design, the code for drivers is generated in TDL by the design tools. However, sensor
and actuator functions must still be implemented by the application developer.

To support distribution, TDL allows a mapping of modules to hardware nodes, de-
noted as electronic control units (ECU) and generates code for the time-triggered com-
munication protocol FlexRay [Far06].

The Hierarchical Timing Language (HTL) [GHI+06] is another successor of Giotto. It
adds similar to TDL the concepts of modules to support different modes to be active
at a time. However, these modules are again restricted on one node. Communicators
are used to realize the communication between the different modules. This concept
resembles the concept of global ports used in FTOS. The communication between dif-
ferent computational nodes should be supported by the tool, but must be currently
implemented by the developer.

A.3 Meta-Modeling Frameworks

Recently, meta-modeling frameworks, such as openArchitectureWare (oAW) [VSK05],
the General Modeling Environment (GME) [LMB+01], or MetaEdit [Tol04b, met07],
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became very popular for developing embedded software [Tol04a, SV06]. Meta-
Modeling Frameworks allow the specification of domain-specific meta-models that can
be used to specify concrete models describing a concrete application. Typical examples
for the used meta-modeling language are OMG’s MetaObject Facility (MOF) [Obj06]
used by GME or the Eclipse Modeling Framework (EMF) [BSM+03] used by oAW. The
meta-modeling languages are usually based on the UML class diagram notation. It is
possible to constrain the design possibilities by defining rules. For this purpose, lan-
guages to define constraints, such as OMG’s Object Constraint Language (OCL) [Obj03]
or the CHECK language [EFH+07] in oAW, are incorporated into the frameworks.

Although the projects in the context of meta-modeling frameworks demonstrate the ad-
vantages of the approach, there are only view projects targeting fault-tolerant systems.
AIM (Architecture Information Modeling) [RP07] is a generic, extensible platform for
modeling software and systems in multi-team environment with a particular focus on
the high integrity real-time systems domain. AIM specifies its own meta-modeling
framework based on MOF. The developers can specify different meta-models, e.g. a
meta-model describing the system architecture or a meta-model describing the imple-
mentation of the system in ADA. The meta-models can be reused in different projects.
The main focus of the project is on the construction of a consistent database for the sys-
tem models, the integration of different views [iee00, MEH01] including their graphi-
cal notation and the definition of rules to maintain and check consistency of different
views. Since no concrete meta-models are pre-defined, the integration of code genera-
tors is not possible.

A.4 Code Generators

Whalen and Heimdahl [WH99b, WH99a] identified the requirements for high-integrity
code generation. However, these requirements are predominantly of academic nature.
For example, the requirement that both the model and the code must have well-defined
syntax and semantics raises a major challenge as there are hardly any production-ready
programming languages with well-defined semantics. Even the authors admit that this
is a major problem. Their solution is to use an automaton based specification language
[HL96], similar to statecharts [Har87]. As target language, a very small subset of stan-
dard imperative programming languages called SIMPL is used. Only the most essen-
tial operations like constructs for variables, constants, functions, procedures, basic and
composite (array and record) types. Control flow statements such as break, goto, con-
tinue, or early return and pointers are not allowed [WH99b]. Thus, the potential of
code generation using this target language is very restricted. Especially system level
aspects can not be implemented using these languages.

A.5 Fault-Tolerance Infrastructures

Different research projects proposed frameworks for the development of fault-tolerant
systems. Chameleon is a software implemented fault tolerance (SIFT) infrastructure
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to achieve reliability in a heterogeneous, distributed system [KBWI99]. The intended
systems are networked applications. The major goals are the provision of run-time
adaptability and the support of different criticality requirements. The fault-tolerance
is achieved by ARMOR (adaptive reconfigurable mobile objects for reliability) com-
ponents that can be added to a non-fault-tolerant application. Different fault-tolerant
configurations can be achieved by supporting a fine-grained composability. Techniques
such as control flow signatures [MM88], data signatures or smart heartbeats are used
for error detection. A four-level detection hierarchy is used to optimize the error detec-
tion and the related overhead. The levels range from inter-component error detection
(Level 1) to error detection between replicated ARMORs distributed on different nodes
(Level 4). Different optimization techniques can be applied to get a trade-off between
overhead and error detection latency.

While some goals are shared with this thesis, there are however different drawbacks.
The software components realizing the application functionality have to be adapted
to be used in combination with the ARMORs. This leads to a mix of the application
functionality and the fault-tolerance aspects. The achieved error detection latency in
the range of several seconds is not acceptable in the context of real-time systems and
there are no mechanisms to guarantee a timely predictable behavior.

The Delta-4 approach [PCD91] emphasizes the tight relationship between distribution
and fault-tolerance. The approach is restricted to the replication of software compo-
nents that share no common memory and interact using explicit messages. The basic
units of fault-tolerance are nodes of a distributed computing system. Besides fail-silent
faults, also fail-uncontrolled faults are considered. Fail-silence with respect to faults in
the time domain is achieved by special hardware components, called network attach-
ment controllers (NAC), similar to TTP. Faults in the value domain can be tolerated by
implementing voters and using active replication (hot-standby). In case of fail-silent
nodes, Delta-4 proposes the use of either active, passive (cold-standby) or semi-active
replication. The disadvantages of Delta-4 are the necessity to use special hardware
components and the restriction on hardware replication to achieve fault-tolerance.

The Generic Upgradable Architecture for Real-time Dependable (GUARDS)
[PABD+99] presents a component-based approach to achieve fault-tolerance. The
project proposes an architecture that is suited for dependable systems. The imple-
mentation of the mechanisms has to be realized by the application developer. The
process is supported by a development and validation environment. It is based on
software implemented fault-tolerance to cope with the unreliability of underlying
COTS components. The fault-tolerance mechanisms are based on a two-level repli-
cation: replicated hosts using shared memory for communication and second level
using an interchannel communication network (ICN). The fault-tolerance mechanisms
are constrained on this replication mechanism, which restricts the flexibility of this
approach. Model-based techniques are used for the evaluation of the system. The
design tool HRT-HOOD addresses the problem of executing replicated components
within a distributed system [BW94]. For GUARDS, HRT-HOOD was expanded by the
concept of virtual nodes to support the design of distributed systems. The generation
of code is partially supported, e.g. by the generation of exchange tables. However,
the framework does not integrate the techniques into one common approach, but uses
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them separately. The only linking between the dependability and the real-time models
are written documents [BFLS01].

The project Distributed Embedded ARchitecture using COTS components DEAR-
COTS [VCP+00, PVW04] proposes the use of a component based architecture. Using
a simple and transparent programming model, the low-level implementation details
of distribution and replication are abstracted from the programmer. The replication
of software components is supported by the use of the timely computing base (TCB)
[VC02] and timed messages [PBWB00]. Using TCB, a deterministic execution of the
replicated components can be guaranteed, even in preemptive multitasking environ-
ments. The details required for replication and distribution must be specified in a sec-
ond configuration phase. Components are used to structure the replication units and
to allow system configuration. Components can be distributed over several hosts and
be replicated. Shared data objects handle the different versions of data objects based
on the release time of the data to guarantee replica determinism. A replica manager
handles the monitoring of the different replicated objects and is also responsible for
consistency. The techniques to reach a consistent result out of redundant results are
not specified in DEAR-COTS and left to the implementation of the replica manager.
The communication manager provides appropriate communication algorithms [PV00].
The selection and configuration of these components must be done by the application
developer in a second phase. An automated selection using a model-based approach is
not intended.

Another weakness is the restriction on the problem of fault-tolerance aspects. Hetero-
geneous platforms are not supported by DEAR-COTS [PVW04]. Like the other ap-
proaches, DEAR-COTS is restricted to replication to achieve fault-tolerance and does
not support the toleration of application design faults.

The Time-Triggered Architecture (TTA) [KB03] focuses on fault-tolerant communi-
cation. TTA is a framework for the design and implementation of distributed fault-
tolerant applications with a focus on the automotive and aviation industry. TTA pro-
vides different services such as predictable communication with small latency, clock
synchronization and membership service [KGR91]. The approach is based on a hard-
ware solution, the so-called TTP/C controller [TTT03], running the TTP protocol. TTP
realizes time-triggered communication on redundant communication channels. Be-
cause TTA concentrates only on fault-tolerant communication, the implementation of
mechanisms for the toleration of other error sources has to be done by the developer
itself. Another disadvantage of TTA is the restriction on specialized hardware.
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