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ABSTRACT

This work introduces a robot driven camera controlled by speech.
The SIMIS database of 20 recordings of real life surgical operations
serves as basis for analyses and noise modelling. To overcome low
recognition performance due to high noise levels during operations,
the vocabulary was chosen to be highly limited and multiple noise re-
duction methods have been investigated. We show that the use of fea-
ture enhancement techniques, such as Histogram Equalization or a
Switching Linear Dynamic Model capturing the dynamics of speech
show a remarkable improvement in recognition accuracy. Consid-
ering a severe condition of usage of the recognition system with all
appearing noise types, the mean accuracy can be raised from 89.67 %
to 91.16 % with SLDM, and to 95.50 % with HEQ enhancement.

Index Terms— Speech recognition, Speech enhancement,
Acoustic noise, Robustness, Biomedical equipment safety

1. INTRODUCTION

The opposition of laparoscopic surgery to open surgery points out
several distinct benefits as reduced pain, shorter hospitalization, and
quicker convalescence to the affected patient. However, the sur-
geon’s direct visual control gets lost and the view of the operating
field has to be displayed on a screen using a laparoscopic high-
resolution camera. It is common practice that, during laparoscopic
interventions the assistant surgeon holds the laparoscope for the op-
erating surgeon and positions the scope following the surgeon’s in-
structions. A result of this fact is an unstable and suboptimal camera
view, because the telescope is sometimes aimed incorrectly and vi-
brates due to the assistant’s hand trembling. In a long-lasting and
complex intervention, considering the worst case, this can result in
a patient injury since stress and fatigue start playing a major role. A
significant step towards the solution of this problem is the introduc-
tion of a telemanipulator system for guiding the telescope, aiming to
replace the assistant surgeon. Thereby, the design of a user-friendly
and intelligent human-robot interface to control the telemanipulator
plays an important role [1].
The majority of laparoscope positioning systems proposed so far
are based on input devices such as joysticks, foot pedals, and sim-
ilar human-robot interfaces. Although it improves the standard of
work for the surgeon, he is faced with additional burdens since he
already uses his hands or feet to control a variety of other surgical
tools. Therefore, the implementation of a voice control interface is
an effective approach to overcome these drawbacks since verbal in-
structions are natural for a human. There have been several laparo-

scope positioning systems that introduced voice control interfaces
[1, 2, 3, 4]. However, these systems could not achieve the required
accceptance since long reaction time, limited reliability, and a user
dependent interface made its use inappropriate. Emotional factors
derived from speech play a huge role in automatic speech recognition
to perform an online emotional model adaptation and overcome typ-
ical losses arising from emotionally coloured speech. Basing on this
fact we introduced the integration of social competence by acoustic
emotion recognition [5]. Although robustness could be improved by
integrating emotional factors the appearing background noises in the
operation room environment result in an insufficient reliability.
Therefore, we developed a novel speech control interface for the
newly designed SoloAssistTM (AktorMed, Barbing, Germany). The
salient feature of this interface is the presence of an improved noise
robustness towards the appearing background noises in medical op-
eration room environments. This work investigates different feature
enhancement algorithms, such as Cepstral Mean Subtraction (CMS)
, Histogram Equalization (HEQ) [6], and a model based feature
enhancement technique using a Switching Linear Dynamic Model
(SLDM) as introduced in [7]. Hereby, the investigation took place
based on real life recordings of minimal invasive surgeries in a med-
ical operation room in the Clinic r. d. Isar, Munich, Germany.
The organization of this paper is as follows: first, the SIMIS database
is introduced in sec. 2, next, stretegies to cope with noise are de-
tailed in sec. 3, in sec. 4 we discuss experiments and results before
concluding in sec. 5.

2. SIMIS DATABASE

To ensure the SIMIS (Speech in Minimal Invasive Surgery) database
as used in [5] to supply sufficient data, i.e. to be valuable and re-
liable, additional 10 live surgical operations were recorded. This
was done under the same conditions as in [5] to guarantee identical
conditions. The most important part concerning this work was to
capture all kinds of noise that appear in a real life operation room.
In general, 6 to 10 persons reside in the operation room during a
surgery consisting of the operating surgeon, 2 to 3 assistants, and
3 to 7 surgical nurses depending on the complexity of the surgical
intervention. These facts play an important role, since they greatly
influence the noise level during the operation. The type of surgeries
that have been recorded were all minimal invasive operations where
the SoloAssistTM positioning robot shall play a decisive role in the
future. All recorded operations had a length of approximately one
hour on average. The format used was 16 Bit, 16 kHz. The used
headset AKG C 444 L has a cardioid type polar pattern and a speech
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optimized frequency response. To avoid any additional burden to the
operating surgeon the headset was chosen to be wireless with a AKG
PT 40 sender and AKG SR 40 receiver.

The results of a semi-automated segmentation are illustrated in
Table 1.

Time & turns Total time Speech time Speech turns
# type [m:s] [m:s] [#]

3x fundoplicatio 211:04 56:27 1554
12 x gall 740:11 149:26 5064

4x sigma wedge 296:22 39:26 1919
1x stomach 71:01 15:18 306

Total 1 318:38 311:45 8 843

Table 1. Semi-automated segmentation results for the SIMIS
database giving the total time of each operation type and the cor-
responding speech time and turns, respectively.

Besides the comprehensive recordings of real life surgeries,
the commands to control the SoloAssistTM robot by speech were
recorded as well under exact same mic and room conditions, but
without an ongoing operation. The robot as described in [5] can be
completely controlled by the 15 prompts soloassist, left, right, up,
down, forward, backward, moveleft, moveright, moveup, movedown,
moveforward, movebackward, stop, and quit. The recordings of the
15 prompts, from now on referred to as keywords, were recorded
from 5 speakers (24 to 54 years). Hereby, each of the 15 keywords
was spoken 9 times by every speaker, resulting in 675 clean turns.
Each speaker was advised to change the speaking style when speak-
ing the prompts. The instruction was to speak every keyword three
times in the following ways: normal as in everyday life, faster,but
still well audible and recognizable, and slower.

The recordings that were done during the live operations needed
to be annotated in a way the ASR engine can benefit the most from,
i.e. train suitable models to ensure noise robustness. Table 1 shows
that for every recorded operation, only sparse speech time (approx-
imately 14 minutes per operation) exists. However, this speech was
used in this work to model extraneous utterances and extraneous
words that are not directed to the robot or any camera movements.
Transcription was done on word level to receive the desired data.
This has the great advantage, that speech used in the operation often
recurs and as a result, the annotated turns strongly qualify to be used
for a later garbage model.

Not less impact than the extraneous speech has the different ap-
pearing background noises during the operation. As the noise level
is relatively high during a surgical intervention, it is not possible
to model silence as it is done in conventional methods. Most of
the recordings represent nonspeech data containing different noise
types, thus it is an important task to describe the noise in a proper
way. Four different noise types could be chosen that describe the
appearing noise most suitable:

1. Standard background noise (std.bkgrd.): This noise type is
represented by permanently appearing noise provoked from
different machines running during the surgical interventions,
such as computers or artificial ventilation. In many cases this
noise type can be considered as stationary.

2. Instrument click noise (instr.click): As the name already

states, this noise type consists of noise caused by different
instruments during the surgery. This noise type is not to be
underestimated since it also encloses noises that are produced
by depositing surgical tools onto the table which is made of
metal in every case, thus producing a relatively high energy
noise.

3. Background talk (bkgrd.talk): Noises produced by persons
present during the operation, such as surgical assistants,
nurses, and students. Usually an amount of 6 to 10 persons
are present at one time, thus, the noise level can get high dur-
ing stress situations.

4. Stressed breath or cough (str.breath): This noise type is char-
acterized by loud breath noises or coughing by the surgeon
wearing the microphone or also by assistants standing close.
According to the gained experience this was one of the most
significant noise types.

Table 2 shows the statistical distribution of the different noise types
over the operation recordings. Herein, the total number of oc-
curences and a mean value for one operation can be seen. As the

Statistics Turns ∅ Turns/OP Distrib. Time
type [#] [#] [%] [m:s]

std.bkgrd. 19 855 993 57.9 583:07
instr.click 7 839 392 22.9 230:13
bkgrd.talk 3 015 151 8.8 88:31
str.breath 3 575 179 10.4 105:02

Total 34 284 1 715 100 1 006:53

Table 2. Statistical distribution of different noise types over opera-
tion recordings giving number of turns, the average number of turns
per operation, the distribution in percent, and the total time.

recognizer demands for utmost precision, it is inevitable to verify
the performance of the ASR engine by means of different testsets.
Therefore, different testsets were conceived and created on the basis
of superposing the clean keyword turns one to one by different noise
types and levels obtained from the recordings. In the following, each
testset that was created is explained. For each testset property, every
keyword was taken resulting in 675 noisy turns for each noise con-
dition.
The first three different superpositioning conditions were strictly re-
lated to the resulting Signal-To-Noise Ratio (SNR). It represents a
term for the power ratio between a signal and the background noise
and was calculated by

SNR = 10 log10

(
Pkeyword

Pnoise

)
dB (1)

whereas Pkeyword denotes the average power of the keyword
turn and Pnoise the average power of the noise turn. Based on Equa-
tion 1 three different SNR levels (high, medium, low) testsets were
created: with a resulting SNR that lies between -30 and -5 dB (mean
-9.4 dB), between -5 and 15 dB (mean 2.9 dB), and between 15 and
35 dB (mean 13.3 dB). The mean power was calculated for every
keyword turn and a list with all available nonspeech turns of the
recorded operations was checked for the mean energy of each turn
(calculated over the length of the recent keyword turn) that results in
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the desired SNR range. The list was accessed randomly to avoid us-
ing same noises multiple times. Due to the fact that the SNR level is
the only information to measure how the ASR engine performs under
noisy conditions so far, further four different testsets were conceived.
Hereby, the type of the noise appearing during the surgical operation
was taken into account. This way, the testing results will give more
information about what noise is most detrimental to the recognition
performance. The procedure performed to superpose the clean turns
was the same as above, except that the list with all nonspeech turns
was adjusted to gain four additional testsets with turns superposed
with each noise type described in Table 2. These lists were again ac-
cessed randomly to avoid having multiple turns superposed with the
same noise turn. The resulting testsets are the std.bkgrd. set (mean
11.9 dB), instr. click set (mean 5.5 dB), bkgrd. talk set (mean 7.4
dB), and str. breath set (mean -3.6 dB), again each having 675 super-
posed turns.

3. NOISE ROBUSTNESS

Three different feature enhancement techniques are considered in
this work selected basing on our experiences from [8]: simple Cep-
stral Mean Subtraction (CMS) , well known Histogram Equalization
(HEQ) [6] where the histogram of a feature is mapped onto a refer-
ence histogram, and a Switching Linear Dynamic Model (SLDM) as
introduced in [7] 1. Unlike CMS and HEQ, the feature enhancement
is hereby realized by models for speech and noise.

The modeling of noise is done by a simple Linear Dynamic
Model (LDM) obeying the system equation

xt = Axt−1 + b + gt. (2)

The Matrix A and the vector b hereby characterize how the noise
process evolves over time while gt is a zero-mean Gaussian noise
source driving the system.

Alternatively the LDM is defined by

p(xt|xt−1) = N (xt; Axt−1 + b, C) (3)

p(xT
1 ) = p(x1)

T∏
t=2

p(xt|xt−1) (4)

whereas N (xt; Axt−1 + b, C) represents a multivariate Gaus-
sian with mean vector Axt−1 + b and covariance matrix C, while T
is to be understood as the input sequence length.

A SLDM is used to model clean speech. Hereby the matrix A
and the vector b depend on a hidden state variable st at each time t
so that the SLDM can be described as

xt = A(st)xt−1 + b(st) + gt. (5)

This type of model is an appropriate solution to describe the evo-
lution of time-varying systems, e.g. the evolution of speech features
over time. Figure 1 shows the graphical representation of the SLDM
used to model clean speech.

Analogous to the LDM, the SLDM can be alternatively de-
scribed with the equations

p(xt, st|xt−1) = N (xt; A(st)xt−1 + b(st), C(st)) · p(st) (6)

p(xT
1 , sT

1 ) = p(x1, s1)
T∏

t=2

p(xt, st|xt−1). (7)

The parameters A(s), b(s), and C(s) are trained by using stan-
dard EM algorithm techniques (see [7]).

1We would like to thank Jasha Droppo for providing SLDM binaries.
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Fig. 1. SLDM used to model speech.
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Fig. 2. Observation model to relate noisy observations to hidden
speech and noise features.

The observation model illustrated in Figure 2 assumes that
speech xt and noise nt perform a linear mix in the time domain
resulting in a non-linear mix considering the cepstral feature space.

The SLDM modeling clean speech, as it shall be used, bears
a major problem regarding the computation of a posterior. As the
SLDM switches between the hidden states, i.e. can take any of
S hidden states at each single time step, this calculation becomes
intractable since there are ST possible state sequences for an
amount of T speech frames. In the case that the whole state
sequence is known, the problem would be easily solvable since
the SLDM would reduce to a time-varying LDM with one single
mixture component as a posterior. Since this is not the case in the
SLDM because the state sequence is unknown, a total of ST mixture
components, meaning one component for each possible sequence,
exist.
To overcome this intractable calculation, the Generalized Pseudo-

Bayesian (GPB) algorithm is applied to reduce the search space size.
The approximations that are made by GPB base on the assumption
that it is not of importance to keep track of distinct state histories,
i.e. whose differences occur more than r frames in the past. As
a result the posteriors can be reduced from ST to Sr (choosing
r � T ) which is a huge improvement in calculation performance
that can be illustrated by setting r = 1 meaning that the posterior is
reduced to S Gaussian components at each time step.

4. EXPERIMENTS AND RESULTS

Prior to experiments with respect to noise a baseline system was
optimized: the keyword models performed the best with 16 state
models and 3 Gaussian mixtures per state. As a further achievement
in performance the keyword models could be reduced to 9 models
plus 1 move model since multiple keywords were similar with the
only difference of a prepended move word. The separate move
model showed the best performance with 12 states and 3 Gaussian
mixtures per state.
After extensive investigation the model topology for the additional
garbage model was kept at a 10 state model with 3 Gaussian mixture
components per state. It was trained on speech recorded during the
operation which was of non-keyword type. Additionally a silence
model with a tee-state short-pause model was created and trained
on nonspeech turns from the operation recordings.

1216



The use of three different noise reduction methods has been de-
scribed above. Table 3 summarizes all the results obtained with the
different techniques. The column MC hereby represents matched
conditions, meaning that the recognizer was trained according to the
noise type to be tested on. Even though this mostly results in the best
performance, a use in a real life application is not quite suitable as
the occurrence of the noise is not easily predictable.

Acc. [%] MFC PLP NT∗ CMS HEQ SDM

clean 98.53 98.16 97.06 87.50 97.43 92.96
high SNR 92.59 92.96 97.06 81.99 95.96 92.52
med. SNR 90.49 90.49 95.22 79.78 95.22 90.15
low SNR 89.34 89.63 94.12 79.04 93.75 88.56

std.bkgrd 91.65 92.65 95.59 86.40 97.06 92.11
instr.klick 89.34 89.63 95.96 81.62 94.12 92.22
bkgrd.talk 89.71 89.71 94.85 80.51 94.41 88.42
str.breath 79.41 79.62 90.07 77.57 90.81 85.84

mean 90.13 90.36 94.99 81.80 94.84 90.35
W. mean 89.67 90.34 95.03 83.87 95.50 91.16

Table 3. Accuracies for different noise reduction methods and noise
types (cf. text): optimal model topology, each, and training on clean
speech except for training with noisy speech (NT∗): general noisy
training data (upper half), and matched conditions wrt. the exact
noise type (lower half). Test and training are always disjunctive.
Note that noisy training data reduces clean speech recognition per-
formance. SLDM (SDM in the table) use 32 states and the first and
last 10 frames per phrase for noise estimation. Weighted mean (W.
mean) incorporates distribution of the four located noise types. MFC
abbreviates MFCC.

Under noisy conditions the recognizer performance strongly de-
grades. This is especially the case for a high average SNR level
and an additive stressed breath or cough noise. CMS showed to be
definitely not suitable since it seems to subtract information that is
needed for recognition. HEQ and SLDM showed the best perfor-
mance although HEQ seems to be the enhancement technique to
choose since it outperforms all others. Given the percentage val-
ues of the noise occurrences in Table 2, a weighted accuracy value
(w.Accuracy) was additionally calculated for each of the accuracies
obtained with the four different testsets. On the basis of the weighted
mean values the fact that HEQ and SLDM represent the most suit-
able feature enhancement technique is pointed out explicitly. Note
that HEQ even surpasses matched conditions training in the case of
the noise type distribution weighted mean.

5. CONCLUSION

In this work a speech-based camera control in minimal invasive
surgery with emphasis on noise robustness has been implemented.
Guaranteeing the supply of noise robustness, multiple approaches
have been applied to the recorded data and its results are presented in
this work. To describe the appearing background noises adequately,
the recorded operations have been annotated where four main noise
types could be distinguished: standard background noise, instrument
click noise, background talk noise, and breath/cough noise. With the
optimal model topology an accuracy of 98.53 % can be achieved us-
ing a clean training and test set with MFCCs serving as features. The
accuracy strongly degrades using the noisy testsets where the key-
words are superposed with the noise types appearing in the operation

room. Changing the feature set from MFCC to PLP showed only
little to no improvement, wheras different speech enhancement tech-
niques showed great improvement except for Cepstral Mean Sub-
traction where the testing performed worse constantly. HEQ thereby
showed best improvement from 89.67 % to 95.50 % in the case of
noise. SLDM prove only second choice here opposing our expe-
rience from [8] in the automotive environment and the Consonant
Challenge 2008. Based on the gained knowledge about the noise
level and influence, a live recognizer working in open-microphone
mode was constructed with the optimal model topology obtained.
This recognizer is communicating with the surgical robot over the
UDP protocol realizing the movement control by speech.

Future work concerning noise reduction shall definitely base on
combining various methods. Another modification is the modeling
of noise: when using the SLDM for feature enhancement in this
work noise is modeled by a simple Gaussian mixture component. A
different modeling of noise, especially a different one for the spe-
cific noise types occurring, may have interesting impact on the per-
formance as one has to deal with non-stationary noise.

6. REFERENCES

[1] K. Seong-Young, J. Kim, K. Dong-Soo, and L. Woo-Jung, “In-
telligent interaction between surgeon and laparoscopic assistant
robot system,” in IEEE International Workshop on Robot and
Human Interactive Communication, 2005, pp. 60–65.

[2] M.E. Allaf, S.V. Jackman, P.G. Schulam, J.A. Cadeddu, B.R.
Lee, R.G. Moore, and L.R. Kavoussi, “Laparoscopic Visual
Field. Voice vs Foot Pedal Interfaces for Control of the AESOP
Robot,” in Surg. Endosc. 12 (12), 1998, pp. 1415–1418.

[3] G. F. Buess, A. Arezzo, M.O. Schurr, F. Ulmer, H. Fisher,
L. Gumb, T. Testa, and C. Nobman, “A New Remote-Controlled
Endoscope Positioning System for Endoscopic Solo Surgery.
The FIPS Endoarm,” in Surg. Endosc. 14 (4), 2000, pp. 395–
399.

[4] V.F. Munoz, C. Vara-Thorbeck, J.G. DeGabriel, J.F. Lozano,
E. Sanchez-Badajoz, A. Garcia-Cerezo, R. Toscano, and
A. Jimenez-Garrido, “A medical robotic assistant for mini-
mally invasive surgery,” in IEEE International Conference on
Robotics and Automation, 2000, vol. 3, pp. 2901–2906.

[5] B. Schuller, G. Rigoll, S. Can, and H. Feussner, “Emotion Sen-
sitive Speech Control for Human-Robot Interaction in Minimal
Invasive Surgery,” in Proc. 2008 IEEE International Sympo-
sium on Robot and Human Interactive Communication (RO-
MAN 2008), Munich, Germany, 2008, pp. 453–458, IEEE.

[6] A. de la Torre, A.M. Peinado, J.C. Segura, J.L. Perez-Cordoba,
M.C. Benitez, and A.J. Rubio, “Histogram equalization of
speech representation for robust speech recognition,” in IEEE
Transactions on Speech and Audio Processing, 2005, vol. 13,
pp. 355–366.

[7] J. Droppo and A. Acero, “Noise robust speech recognition
with a switching linear dynamic model,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2004,
vol. 1.
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