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Abstract

This thesis studies separating invariants of finite algebraic groups acting on affine vari-
eties through automorphisms. We investigate the question: what restrictions does the
existence of a separating set of small size, or a separating algebra with interesting struc-
tural properties impose on the group action.

Theorems of Serre, Dufresne, Kac-Watanabe and Gordeev, and Dufresne and Jeffries
on invariant rings and separating algebras of linear representations are extended to this
more general situation of possibly non-linear actions on varieties that need not be affine
spaces.

Under rather mild assumptions on the variety and the group action we prove that
polynomial separating algebras can exist only for reflection groups. On a side note
this leads to an application to the semigroup problem in multiplicative invariant theory.
Then we show that separating algebras which are complete intersections in a certain
codimension can exist only for 2-reflection groups. Later we discuss the minimal number
γsep of separating invariants and provide a new proof for its well-known upper bound.
Finally we prove that a separating set of a certain size can exist only for k-reflection
groups.

Several examples show that most of the assumptions on the group action and the
variety that we make cannot be dropped.

Zusammenfassung

Die vorliegende Arbeit behandelt separierende Invarianten endlicher algebraischer Grup-
pen, die auf affinen Varietäten durch Automorphismen operieren. Wir untersuchen die
Frage, welche Einschränkungen die Existenz einer separierenden Menge kleiner Mäch-
tigkeit oder einer separierenden Algebra mit interessanten strukturellen Eigenschaften
an die Gruppenoperation stellt.

Sätze von Serre, Dufresne, Kac-Watanabe und Gordeev, und Dufresne und Jeffries
über Invariantenringe bzw. separierende Algebren von linearen Darstellungen werden
übertragen auf die allgemeinere Situation von möglicherweise nicht-linearen Operationen
auf Varietäten, die keine affinen Räume sein müssen.

Unter gewissen Voraussetzungen an die Varietät und die Gruppenoperation zeigen
wir, dass separierende Algebren, die isomorph zu Polynomringen sind, nur für Spiege-
lungsgruppen existieren können. Dies führt in einer Nebenuntersuchung zu einer An-
wendung auf das Semigruppenproblem der multiplikativen Invariantentheorie. Danach
beweisen wir, dass separierende Algebren, die vollständige Durchschnitte in einer be-
stimmten Kodimension sind, nur für von 2-Reflektionen erzeugte Gruppen existieren
können. Später diskutieren wir die minimale Anzahl γsep separierender Invarianten
und geben einen neuen Beweis für ihre bekannte obere Schranke. Anschließend zeigen
wir, dass eine separierende Menge einer bestimmten vorgegebenen Größe nur für k-
Reflektionsgruppen existieren kann.

Mehrere Beispiele verdeutlichen, dass die nötigen Voraussetzungen an die Gruppen-
operation und die Varietät, die wir treffen, nicht weggelassen werden können.
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Introduction

Invariant theory studies the ring of those polynomial functions on an affine variety X
that are fixed under the action of a linear algebraic group G. This thesis considers the
case where G is a finite group and the action on X is given through automorphisms.
The invariant theory of finite groups is a subject in which there are both many classical
results and recent developments. It is presented in-depth in the books of Benson [Ben93],
Smith [Smi95], Neusel and Smith [NS10], and Campbell and Wehlau [CW11].

Hilbert’s famous finiteness theorem [Hil90] states that invariant rings of so-called
linearly reductive groups are always finitely generated algebras. In particular, this applies
to finite groups whose order is not divisible by the characteristic of the base field. Noether
[Noe26] gave a new proof for the finite generation of the invariant ring that works for all
finite groups independently of the characteristic of the field.

Although the minimal number of generators of the invariant ring K[X]G, considered
as an algebra over the base field K, is finite by these classical theorems, it can be very
large even for small groups and low-dimensional representations (see e.g. [KK12, Table
in Section 5]). Derksen and Kemper [DK02] introduced the definition of separating
invariants as a more general concept than generating invariants. A set of invariants is
called separating if it has the same property of separating the orbits as the whole invariant
ring. It has been known for a while that the minimal number γsep of separating invariants
is bounded above by 2n + 1 where n is the transcendence degree of the invariant ring.
In our case of finite groups n is just the dimension of the affine variety whose regular
functions we study.

Whenever polynomial invariants are used to distinguish equivalence classes of some
objects (and the equivalence relation can be described as lying in the same orbit of a
group action), it therefore makes sense to shift the focus on separating sets of invariants
rather than possibly much larger and more complicated sets of generating invariants.

This naturally leads to the question if separating sets of the smallest possible size
and separating algebras with ”good algebraic properties” exist for a given group action.
We formulate the following two questions explicitly.

(Q1) When does there exist a separating algebra A ⊆ K[X]G that is isomorphic to a
polynomial ring (which is equivalent to γsep = n)?

(Q2) When does there exist a separating algebra A ⊆ K[X]G that is a complete inter-
section (which includes the case γsep = n+ 1)?

Previous results.

In the case of a non-modular linear representation X = V of G the theorem of Shephard
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INTRODUCTION 2

and Todd [ST54], Chevalley [Che55], and Serre [Ser68] gives a complete answer for A =
K[V ]G to the first question. The theorem says that the invariang ring K[V ]G is a
polynomial ring if and only if G is generated by 1-reflections (i.e. by elements that
act as identity on a subspace of codimension 1 of V ), which are just called reflections
henceforth. Serre also proved that even in the modular case the invariant ring K[V ]G

can only be isomorphic to a polynomial ring if G is a reflection group. With a new
proof especially suitable for dealing with separating invariants Dufresne [Duf09] showed
that this theorem of Serre remains true if we replace the invariant ring K[V ]G by any
separating subalgebra A of K[V ]G.

For the second question a similar necessary condition was found by Kac and Watanabe
[KW82] and independently by Gordeev [Gor82]. They showed that the invariant ring
K[V ]G of a linear representation V of G can only be a complete intersection if G is
generated by 2-reflections (which are defined analogously to 1-reflections). This was
extended by Dufresne [Duf09] to graded separating subalgebras of K[V ]G.

Recently, Dufresne and Jeffries [DJ15] found a remarkable connection, in the case
of linear actions on n-dimensional affine spaces, between the size of a separating set of
invariants and the property of being a k-reflection group. They proved that if γsep =
n+ k − 1, then G is generated by k-reflections.

So while the case of linear actions on affine spaces was already covered pretty good,
not much was known about the general situation of actions on affine varieties through
automorphisms.

Structure of this thesis.

Chapter 1 shortly recalls some concepts of the invariant theory of finite groups which are
needed throughout this thesis. We prove the most important properties of the quotient
of X by G, define the so-called separating variety, and give different characterizations of
separating sets.

Chapter 2 tackles question (Q1). After recalling the concept of ”connectedness in
codimension k”, we relate the connectedness of the separating variety to group elements
which act as k-reflections. Using Hartshorne’s connectedness theorem we then prove
our main theorem concerning the problem of polynomial separating algebras (see main
results below). This leads to an application to the semigroup problem in multiplicative
invariant theory in Section 2.5.

To gain further results, the technique of completion is used frequently. Therefore, in
Chapter 3 we interrupt our study of separating algebras, and recall some properties of
complete Noetherian rings and modules which are needed in the later parts of this thesis.
A reader familiar with the theory of completions may wish to skip this chapter.

Chapter 4 concerns question (Q2). The simply-connectedness of the quotient is re-
lated to the property of being a k-reflection group. Purity theorems are used as a black
box to get the main results of this chapter.

In the fifth and final chapter we first provide a new proof for the well-known upper
bound γsep ≤ 2n+ 1. Then we show that the new results of Dufresne and Jeffries carry
over to actions on affine varieties as well.

An appendix containing the magma functions for several computations is added so
that the examples of this thesis could be reproduced more easily.
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Main results.

For a connected, Cohen-Macaulay variety X, and a group action generated by elements
having a fixed point we prove the following implication in Theorem 2.20: If there exists
a separating algebra A ⊆ K[X]G that is a polynomial ring, then G is generated by re-
flections on X. In the setting of multiplicative invariant theory we show in Theorem 2.27
that the invariant ring of an action on a lattice can only be a mixed Laurent polynomial
ring if G is generated by reflections.

Now let X be a connected, normal variety, and suppose that the action on X has
a fixed point. Under these assumptions we prove in Theorem 4.25: If there exists a
separating algebra A ⊆ K[X]G such that K[X]G is finite over A and such that A is a
complete intersection in codimension 2+cid(A), then G is generated by 2-reflections. For
a non-modular (at least 3-dimensional) non-trivial representation V = X of G this gives
as a corollary: If cid(K[V ]G) ≤ n − 3, then G \ {id} must contain an (n − 1)-reflection
(see Theorem 4.28). Furthermore, in Theorem 5.14 we prove that the result of Dufresne
and Jeffries holds under these assumptions as well: If there exists a separating set of size
n+ k − 1, then G is generated by k-reflections.
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Chapter 1

Basics from Invariant Theory

This chapter shortly recalls some of the basic concepts of the invariant theory of finite
groups with a clear emphasis on separating invariants. Let us start by fixing some
notation. Throughout this thesis we write K for the base field which is always assumed
to be algebraically closed (even though some results stay true if we drop this assumption
on K).

Furthermore, let G be a finite algebraic group and X an affine variety (both defined
over K) on which G acts (on the left) by automorphisms. Whenever it is convenient, we
will therefore view the elements of G as morphisms of affine varieties, more precisely, G
as a subgroup of Aut(X). We will refer to this setting briefly by calling X a G-variety.
The case mainly studied in invariant theory is when X is an affine space and G acts
linearly. Then of course X = Kn is a linear representation of G and we will usually write
V instead of X.

The coordinate ring K[X] is the K-algebra of all regular functions on X. The group
action on X induces an action on K[X] through K-algebra automorphisms as follows:

σ ∈ G, f ∈ K[X] ⇒ σ · f := f ◦ σ−1.

The elements fixed by this action form a subalgebra of K[X]:

K[X]G := {f ∈ K[X] | σ · f = f for all σ ∈ G},

which is usually called the invariant ring. The big advantage of a linear representation
V of G compared to an arbitrary G-variety is that in this situation the invariant ring
K[V ]G inherits the grading of the polynomial ring K[V ] = K[x1, . . . , xn].

On several occasions in this thesis we will use the well-known fact that the coordinate
ring of X is integral over the invariant ring. As the proof is very short, this might be
justification enough to include it here.

Proposition 1.1. The inclusion K[X]G ⊆ K[X] is an integral extension of rings.

Proof. Let f ∈ K[X]. Then f is a zero of the monic polynomial

P (t) :=
∏
σ∈G

(t− σf) ∈ (K[X])[t],

whose coefficients are the elementary symmetric polynomials in the σf and therefore
invariants. Hence P (t) lies in (K[X]G)[t] and provides an integral equation for f .

4
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The integrality of K[X] over K[X]G is key to Noether’s proof that the invariant ring
of a finite group is always finitely generated.

Theorem 1.2. (Noether [Noe26]) The invariant ring K[X]G is a finitely generated K-
algebra.

Since integral extensions of rings preserve the Krull dimension and since the tran-
scendence degree of a finitely generated K-algebra equals its dimension, we also get the
following corollary.

Corollary 1.3. The invariant ring K[X]G has transcendence degree

trdeg(K[X]G) = dim(X) =: n.

Next we collect a few facts about the quotient of X by G. Since K[X]G is a
finitely generated K-algebra, it corresponds to an affine variety X

//
G, and the inclusion

K[X]G ⊆ K[X] corresponds to a morphism of varieties

π : X → X
//
G,

which is called the quotient of X by G. Later in this thesis it will be necessary to
consider the quotient as a morphism of schemes (see Section 4.2). But if we stay in
the concept of affine varieties as Zariski-closed subsets of some affine space here, then of
course there is no canonical choice for the quotient X

//
G. It depends on the chosen set

of generators of K[X]G as a K-algebra, and is therefore not at all unique. But clearly, a
different choice of generators would give an isomorphic variety. So when talking about
the quotient, we will always implicitly assume that we fixed generators of K[X]G, say
K[X]G = K[f1, . . . , fm], so that X

//
G is then a subvariety of Km and the morphism

π : X → X
//
G is given by x 7→ (f1(x), . . . , fm(x)).

Of course, the above definition of X
//
G as an affine variety could also be made for

infinite groups if the invariant ring is finitely generated. For reductive groups this always
gives a categorical quotient of X by G (see [DK15, Section 2.3]). But in general, X

//
G

does not correspond to the topological orbit space, which is expressed by saying that it
need not be a geometric quotient. In our case of a finite group action, however, the
map π has these good properties. Let us prove the most important ones in the following
proposition.

Proposition 1.4. (a) The map π is surjective.

(b) The fibers of π are the orbits of G in X.

(c) The topology on Y = X
//
G is the quotient topology.

Proof. It follows from the lying-over lemma (see [Kem11, Theorem 8.12]) that π is sur-
jective.

Obviously, the map π is G-invariant. Now suppose that two points x, y ∈ X have
the same image. Let m and n be the maximal ideals of K[X] corresponding to x and y,
respectively. Take f ∈ m, i.e. a regular function on X with f(x) = 0. Since the orbit
product of f is an invariant, we have(∏

σ∈G
σf

)
(y) =

(∏
σ∈G

σf

)
(x) =

∏
σ∈G

(σf)(x) = 0.
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Hence there exists an element σ ∈ G with σf ∈ n. In total, this implies

m ⊆
⋃
σ∈G

σn,

which gives m ⊆ σn for some σ ∈ G, by the prime avoidance lemma (see [Kem11, Lemma
7.7]). We conclude m = σn by the maximality, and get x = σy. This proves (b).

For (c) we need to show that a subset A of Y is closed if and only if π−1(A) ⊆ X is
closed. One direction is clearly given by continuity of π. Moreover, once again by the
lying-over lemma, π is a closed map, as VX(I), the subvariety of X defined by an ideal
I ⊆ K[X], is mapped onto VY (IG). So if π−1(A) ⊆ X is closed, then

A = π(π−1(A))

is closed, too.

Remark 1.5. The statements of Proposition 1.4 are also true for the scheme morphism
π : Spec(K[X])→ Spec(K[X]G), p 7→ pG.

Part (b) from Proposition 1.4 can be rephrased as: ”The invariants separate the
orbits.” For if two points x, y ∈ X satisfy f(x) = f(y) for all f ∈ K[X]G, i.e. π(x) =
π(y), then they must lie in the same orbit.

The definition of separating sets of invariants was introduced by Derksen and Kemper
[DK02, Definition 2.3.8] as a more general concept than generating sets of invariants (by
which we always mean a set of K-algebra generators of K[X]G).

Definition 1.6. A subset S ⊆ K[X]G of the invariant ring is called separating if for
all x, y ∈ X we have: If there exists an invariant f ∈ K[X]G with f(x) 6= f(y), then
there exists an invariant g ∈ S with g(x) 6= g(y).

Following [Kem09], we write γsep for the smallest natural number m such that there
exists a separating subset of size m.

Proposition 1.7. Let A = K[g1, . . . , gr] ⊆ K[X]G be a finitely generated subalgebra.
So A can be viewed as the coordinate ring of an affine variety W ⊆ Kr and there is an
induced morphism θ : X

//
G→W . Then A is separating if and only if θ is injective.

Proof. The composition θ ◦ π corresponds to the inclusion A ⊆ K[X]. So for all x ∈ X
we have θ(π(x)) = (g1(x), . . . , gr(x)) and π(x) = (f1(x), . . . , fm(x)) where f1, . . . , fm
form a set of generating invariants. Hence Definition 1.6 reads as: The subalgebra A is
separating if and only if for all points x, y ∈ X with π(x) 6= π(y) we have θ(π(x)) 6=
θ(π(y)). But this condition is equivalent to θ being injective since π is surjective by
Proposition 1.4(a).

Remark 1.8. Injectivity of the map θ in Proposition 1.7 also implies injectivity of the
scheme morphism Spec(K[X]G) → Spec(A) induced by the inclusion A ⊆ K[X]G (see
the proof of [Duf09, Theorem 2.2]).

In addition, Proposition 1.7 together with the general lower bound of fiber dimension
(see [Kem11, Corollary 10.6]) leads to the following corollary.
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Corollary 1.9. A finitely generated, separating subalgebra A ⊆ K[X]G has dimension
n = dim(X). Futhermore, the lower bound γsep ≥ n holds.

Example 1.10. Let char(K) = 0 and let ζ be a primitive m-th root of unity in K. Then
G := 〈ζ〉 ⊆ K×, the cyclic group of order m, acts on V = K2 diagonally:

σ ∈ G,
(
x1

x2

)
∈ K2 ⇒ σ ·

(
x1

x2

)
:=

(
σx1

σx2

)
.

Here every σ ∈ G does not only act degree-preserving on K[V ], but even maps monomials
to scalar multiples of themselves. This is probably the easiest case in invariant theory
that one can hope for since now the invariant ring is just generated by those monomials
that are fixed by the group action. Therefore, a minimal set of homogeneous generators
of the invariant ring K[V ]G ⊆ K[x1, x2] is given by

M := {xm1 , xm−1
1 x2, x

m−2
1 x2

2, . . . , x
m
2 }.

Let us see that the smaller set

S := {xm1 , xm−1
1 x2, x

m
2 },

which does obviously not generate the invariant ring, is still a separating set. In the field
of fractions of K[V ]G we have for all 2 ≤ i ≤ m− 1:

xm−i1 xi2 =
(xm−1

1 x2)i

(xm1 )i−1
.

So the values of those monomials of M that are missing in S at a point a =

(
a1

a2

)
∈ V

can be recovered from S if a1 6= 0. But if a1 = 0, then these values are 0 anyway. Hence
S has exactly the same separating properties as K[V ]G. /

Definition 1.11. The separating variety Vsep of the G-action on X is defined to be
the following subvariety of X ×X:

Vsep := {(x, y) ∈ X ×X | f(x) = f(y) for all f ∈ K[X]G}.

The coordinate ring of X ×X is the tensor product K[X]⊗K K[X]. The projection
X ×X → X on the first coordinates corresponds to the inclusion homomorphism

ι : K[X]→ K[X]⊗K K[X], f 7→ f ⊗ 1. (1.0.1)

When studying separating varieties, the following map naturally comes into play:

δ : K[X]→ K[X]⊗K K[X], f 7→ f ⊗ 1− 1⊗ f. (1.0.2)

Following the notation of [Duf09] we will refer to 1.0.2 as the δ-map throughout this
thesis.

Proposition 1.12. The δ-map is K-linear, and with the notation as above δ and ι
satisfy:

δ(fg) = δ(f)ι(g) + ι(f)δ(g)− δ(f)δ(g).

In particular, δ(fg) lies in the ideal generated by δ(f) and δ(g) in K[X]⊗K K[X].
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Proof. The K-linearity is clear from the definition. Now for f , g ∈ K[X] an easy
calculation shows:

δ(fg) + δ(f)δ(g) = (fg)⊗ 1− 1⊗ (fg) + (f ⊗ 1− 1⊗ f)(g ⊗ 1− 1⊗ g) =

= (fg)⊗ 1− g ⊗ f + (fg)⊗ 1− f ⊗ g =

= (f ⊗ 1− 1⊗ f)(g ⊗ 1) + (g ⊗ 1− 1⊗ g)(f ⊗ 1) =

= δ(f)ι(g) + ι(f)δ(g).

Proposition 1.12 shows that the images under δ of all generating sets of invariants
generate the same ideal in K[X] ⊗K K[X]. Let us write Isep for this ideal, i.e. Isep =
(δ(K[X]G))K[X]⊗KK[X]. Definition 1.11 now reads as

Vsep := VX×X(Isep) := {(x, y) ∈ X ×X | h(x, y) = 0 for all h ∈ Isep}.

Furthermore, a set of invariants S ⊆ K[X]G is now separating if and only if the image of
S under the δ-map defines the subvariety Vsep ⊆ X ×X as its vanishing set. Since the
field K is assumed to be algebraically closed, Hilbert’s Nullstellensatz tells us that this
is equivalent to saying that the radical of the ideal generated by δ(S) and the radical of
Isep conincide. This is summarized in the following Proposition.

Proposition 1.13. Let S ⊆ K[X]G be a set of invariants. Then the following conditions
are equivalent:

(a) S is separating,

(b) VX×X(δ(S)) = Vsep,

(c)
√

(δ(S)) =
√
Isep.

In particular, this implies in a general context that there always exists a finite sepa-
rating set: Since the ring K[X]⊗KK[X] is Noetherian, there always exists a finite subset
{δ(f1), . . . , δ(fm)} of δ(K[X]G) generating the ideal Isep, which gives the separating set
S := {f1, . . . , fm}.

Of course, for finite groups this observation is superflous because there even is a finite
generating set by Theorem 1.2. For non-reductive groups, however, where the invariant
ring might not be finitely generated, this statement was part of the original motivation
to study separating invariants (see [DK02, Theorem 2.3.15]).

Example 1.14. We want to compare the ideals Isep,
√
Isep and J := (δ(S)) from Example

1.10 in the case m = 4. Let us avoid the tensor product notation here and write R :=
K[x1, x2, y1, y2] for the coordinate ring of V × V . The ideal Isep is generated by the
following set of homogeneous polynomials of degree 4:

δ(M) = {x4
1 − y4

1, x3
1x2 − y3

1y2, x2
1x

2
2 − y2

1y
2
2, x1x

3
2 − y1y

3
2, x4

2 − y4
2}.

So the polynomial x1y2 − x2y1 does not lie in Isep, but we have

(x1y2 − x2y1)4 = (y4
2 − x4

2)(x4
1 − y4

1)− 3(x2
1x

2
2 − y2

2y
2
1)2

− 4y1y
3
2(x3

1x2 − y3
1y2) + 4x1x

3
2(x3

1x2 − y3
1y2) ∈ Isep.
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Thus, Isep is not a radical ideal. In fact, a calculation (for example in magma [BCP97])
shows that

√
Isep = Isep + (x1y2 − x2y1). Since J is generated by

δ(S) = {x4
1 − y4

1, x3
1x2 − y3

1y2, x4
2 − y4

2},

we have strict inclusions in this example

J ( Isep (
√
Isep,

while a magma computation shows
√
J =

√
Isep. By Proposition 1.13, this confirms a

second time that S is a separating set. /



Chapter 2

Polynomial Rings as Separating
Algebras

The famous theorem of Shephard and Todd [ST54], Chevalley [Che55], and Serre [Ser68]
says that in the non-modular case (i.e. char(K) does not divide |G|) the invariant ring
of a linear representation V of G is a polynomial ring if and only if G is generated by
reflections (i.e. by elements that act as identity on a hyperplane of V ).

Serre also proved that even in the modular case the invariant ring K[V ]G can only
be isomorphic to a polynomial ring if G is a reflection group. In 2009, Dufresne [Duf09]
showed that this theorem remains true if we replace the invariant ring K[V ]G by any
separating subalgebra of K[V ]G.

An important step in Dufresne’s proof is her discovery how the connectedness in
codimension 1 of the separating variety implies that the group is a reflection group. The
proof relies on Hartshorne’s Connectedness Theorem. This chapter extends these meth-
ods from linear actions to actions on affine varieties and simultaneously from reflections
to k-reflections where k is not necessarily equal to 1.

A preprint containing the main results of this chapter was already posted on arXiv
[Rei13].

2.1 Connectedness in Codimension

This section recalls the topological concept of connectedness in a certain codimension
as it was introduced by Hartshorne [Har62]. In addition, in Proposition 2.7 we prove
that for Noetherian Jacobson rings connectedness in codimension k can be checked at
the localizations of the maximal ideals.

The (Krull) dimension of a topological space Y is the supremum of all lengths of
ascending chains of irreducible closed subsets of Y . For a closed subset A of Y there is
also the notion of its codimension in Y , given below.

Definition 2.1. Let Y be a topological space and Z ⊆ Y a closed irreducible subset. The
codimension of Z in Y , written as codimY (Z), is defined to be the supremum of all
lengths n ∈ N0 of ascending sequences

Z = Z0 ( Z1 ( . . . ( Zn−1 ( Zn

10
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of closed irreducible subsets Zi of Y . So codimY (Z) ∈ N0 ∪ {∞}. Furthermore, for any
non-empty closed subset A ⊆ Y we set

codimY (A) = min{codimY (Z) | Z ⊆ A irreducible and closed }.

In addition, we will use the convention codimY (∅) = dim(Y )+1 (together with dim(∅) =
−1).

Remark 2.2. (a) If A is a finite union of closed subsets, say

A =

n⋃
i=1

Ai

with Ai ⊆ Y closed, then the following formulas hold:

dim(A) = max{dim(Ai) | i = 1, . . . , n},
codimY (A) = min{codimY (Ai) | i = 1, . . . , n}.

(b) If Y is (the spectrum of the coordinate ring of) an equidimensional affine variety,
then for all closed subsets A of Y the formula

dim(A) + codimY (A) = dim(Y )

holds (see [Kem11, Corollary 8.23]).

Definition 2.3. For a non-negative integer k, a Noetherian topological space Y is called
connected in codimension k if for all closed subsets Z ⊆ Y with codimY (Z) > k the
space Y \ Z is connected.

Of course, being connected in codimension k implies being connected in codimension
k+ 1, so we have a chain of properties of Y . The strongest condition, Y being connected
in codimension 0, is equivalent to Y being irreducible (as we will see in the next proposi-
tion). If dim(Y ) <∞, then being connected in codimension dim(Y ) simply means being
connected.

Let us prove an important equivalent condition for connectedness in codimension k,
given by Hartshorne in [Har62, Prop. 1.1]), to which we will sometimes refer shortly as
”the irreducible components of Y intersect in codimension ≤ k”.

Proposition 2.4. Let Y be a Noetherian topological space and k ∈ N0. Then the fol-
lowing are equivalent:

(a) the space Y is connected in codimension k,

(b) for all irreducible components Y ′ and Y ′′ of Y there exists a finite sequence Y0, . . . , Yr
of irreducible components of Y with Y0 = Y ′, Yr = Y ′′ and

codimY (Yi ∩ Yi+1) ≤ k for i = 0, . . . , r − 1.
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Proof. Let M be the set of all irreducible components of Y (which is finite, because Y
is a Noetherian space), so that

Y =
⋃

Y ′∈M
Y ′.

First assume that Y is connected in codimension k and take Y ′ ∈M. Let N be the set
of all irreducible components Y ′′ of Y such that the condition in (b) is satisfied for Y ′

and Y ′′. Then we write
Y =

⋃
Y ′′∈N

Y ′′︸ ︷︷ ︸
=:A1

∪
⋃

Ỹ ∈M\N

Ỹ

︸ ︷︷ ︸
=:A2

as the union of two closed subsets A1, A2 of Y . In addition, we have

A1 ∩A2 =
⋃

Y ′′∈N , Ỹ ∈M\N

Y ′′ ∩ Ỹ .

The intersection of a component Y ′′ ∈ N with a component Ỹ ∈M\N must have codi-
mension larger than k. Otherwise we could extend a sequence of irreducible components
leading from Y ′ to Y ′′ in codimension ≤ k to a sequence from Y ′ to Ỹ which would
contradict Ỹ /∈ N . So by Remark 2.2(a), Z := A1 ∩ A2 has codimension larger than k,
as well. Therefore, by assumption, the space Y \Z is connected. But the decomposition

Y \ Z = (A1 \ Z) ∪ (A2 \ Z)

into closed, disjoint subsets would contradict the connectedness unless one of them is
empty. Obviously, Y ′ ⊆ A1, so A2 must be empty, and we get M = N , as desired.

Now assume that (b) is satisfied and take a closed subset Z ⊆ Y of codimension
larger than k. As non-empty open subsets of irreducible spaces are irreducible, too, for
all Y ′ ∈M either Y ′ \Z = ∅ or Y ′ \Z is an irreducible component of Y \Z. Assume by
contradiction that Y \ Z is the union of two closed, disjoint, non-empty subsets:

Y \ Z = (A1 \ Z) ∪ (A2 \ Z) with A1, A2 ⊆ Y closed. (2.1.1)

So for an irreducible component Y ′ \ Z of Y \ Z we get

Y ′ ⊆ A1 ∪A2 ∪ Z,

which shows Y ′ ⊆ Ai for one i (since Y ′ ⊆ Z would imply Y ′ \Z = ∅). Since A1 \Z and
A2 \ Z are non-empty and disjoint, there exist components Y ′, Y ′′ ∈ M with Y ′ ⊆ A1

and Y ′′ ⊆ A2. The intersection (Y ′ \ Z) ∩ (Y ′′ \ Z) must then be empty as 2.1.1 is a
disjoint union. Now (b) yields the existence of a sequence Y0, . . . , Yr ∈M with Y0 = Y ′,
Yr = Y ′′ and

codimY (Yi ∩ Yi+1) ≤ k for i = 0, . . . , r − 1.

Since codimY (Z) > k, the set (Yi ∩ Yi+1) \ Z cannot be empty. Therefore, Yi \ Z and
Yi+1 \ Z must both lie either in A1 or A2. But as this holds for all i, it contradicts the
assumption Y0 = Y ′ ⊆ A1 and Yr = Y ′′ ⊆ A2.
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Hartshorne also introduced the term ”locally connected in codimension k” by defining
local spaces of a general topological space. We will not follow this general path, but
restrict ourselves to the case of the spectrum of a ring R, where Spec(R) will be called
locally connected in codimension k if for all prime ideals p of R the spectrum of the
localization Rp is connected in codimension k. To show that for a connected space local
connectedness in codimension k implies global connectedness in codimension k, we need
the following lemma, which is just a paraphrase of [Har62, Lemma 1.2].

Lemma 2.5. Let R be a Noetherian ring with connected spectrum Y = Spec(R), and
let Z ⊆ Y be a closed subset of codimension ≥ 1 such that for all p ∈ Z the space
Spec(Rp) \ {pp} is connected. Then Y \ Z is connected.

Proof. Let p1, . . . , ps be the minimal prime ideals of R. They cannot lie in Z. Now
assume by contradiction that there exist closed subsets A1, A2 ⊆ Y with

Y \ Z = (A1 \ Z) ∪ (A2 \ Z), (2.1.2)

such that both Ai \ Z are non-empty, and satisfy

(A1 \ Z) ∩ (A2 \ Z) = ∅. (2.1.3)

Since p1, . . . , ps ∈ Y \ Z, we can assume p1, . . . , pr ∈ A1 \ Z and pr+1, . . . , ps ∈ A2 \ Z.
And as those are the minimal prime ideals of R, taking closures in 2.1.2 leads to

Y = Y \ Z = (A1 \ Z) ∪ (A2 \ Z) = A1 ∪A2. (2.1.4)

By assumption, Y is connected, so we get A1 ∩A2 6= ∅ and by 2.1.3 we have

A1 ∩A2 ⊆ Z.

Let q ∈ A1 ∩A2 be a prime ideal minimal among all elements of A1 ∩A2. We will show
that Spec(Rq) \ {qq} is disconnected, which would contradict the assumption on Z. Let
B = {p ∈ Spec(R) | p ⊆ q}, the homeomorphic image of Spec(Rq) in Y , then 2.1.4 shows
that

B \ {q} = (A1 ∩B) \ {q})︸ ︷︷ ︸
=:B1

∪ (A2 ∩B \ {q})︸ ︷︷ ︸
=:B2

is a union of closed subsets. Furthermore, the minimality of q in A1 ∩ A2 implies that
B1 ∩ B2 = ∅. In addition, q must contain at least one of the minimal prime ideals
p1, . . . , pr (since q ∈ A1), and at least one of the minimal prime ideals pr+1, . . . , ps (since
q ∈ A2). But q is neither of these pi (since q ∈ Z). This shows that both B1 and B2 are
non-empty, and we are done.

Corollary 2.6. Let R be a Noetherian ring with connected spectrum Y = Spec(R), and
let k be a non-negative integer such that Spec(R) is locally connected in codimension k.
Then Y is also connected in codimension k.
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Proof. Now let Z ⊆ Y be a closed subset of codimension larger than k (so in particular
≥ 1). Then for all prime ideals p ∈ Z we have

codimSpec(Rp)({pp}) = htR(p) ≥ codimSpec(R)(Z) > k,

where htR(p) is the height of p. As Spec(Rp) is assumed to be connected in codimension
k, it follows that Spec(Rp) \ {pp} is connected. So by Lemma 2.5, the space Y \ Z is
connected.

It should certainly not surprise that in Corollary 2.6 only the localizations at the
maximal ideals are necessary if R is an affine K-algebra. According to the following
proposition this is in fact true, since affine K-algebras are Noetherian Jacobson rings.

Proposition 2.7. Let R be a Noetherian Jacobson ring with connected spectrum Y =
Spec(R), and let k be a non-negative integer such that for all maximal ideals m of R the
spectrum of the localized ring Rm is connected in codimension k. Then Y is connected in
codimension k, too.

Proof. By Corollary 2.6, it suffices to show that for all prime ideals p of R the spectrum
of the localized ring Rp is connected in codimension k. So let p ∈ Spec(R).

The irreducible components of Spec(Rp) correspond to the minimal prime ideals
p0, . . . , pr of R which are contained in p. Denote by pr+1, . . . , ps the minimal prime of R
which are not contained in p. Let M be the following finite subset of Spec(R):

M = {pr+1, . . . , ps} ∪ {q ∈ Spec(R) | q is minimal over pi + pj

for some i, j ∈ {0, . . . , r} and q 6⊆ p},

and let I be the intersection of all prime ideals in M. So we have I 6⊆ p. Since p is an
intersection of maximal ideals, there must exist a maximal ideal m of R with p ⊆ m and
I 6⊆ m. In particular, m contains the same minimal prime ideals of R.

For all minimal prime ideals pi (with i ∈ {0, . . . , r}) let Zi, p and Zi,m be the corre-
sponding irreducible component of Spec(Rp) and Spec(Rm), respectively. Then for all
i, j ∈ {0, . . . , r} we have

codimSpec(Rp)(Zi, p ∩ Zj, p) = htRp((pi + pj)p)

= htRm((pi + pj)m)

= codimSpec(Rm)(Zi,m ∩ Zj,m),

where the secound equality is true since p and m contain the same minimal elements
of VSpec(R)(pi + pj) := {q ∈ Spec(R) | pi + pj ⊆ q}. So the irreducible components
of Spec(Rp) intersect in the same codimension as the corresponding components of
Spec(Rm). Therefore, by Proposition 2.4, connectedness in codimension k of Spec(Rm)
implies the same property for Spec(Rp).

2.2 Hartshorne’s Connectedness Theorem

This section recalls the definition of the Cohen-Macaulay defect and states Hartshorne’s
connectedness theorem in the form that we want to use.
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First let us recall the notion of the depth of an ideal I ( R in a Noetherian ring R.
A sequence of elements a1, . . . , an ∈ I is called R-regular if for i = 1, . . . , n we have:

ai is not a zero divisor on R/(a1, . . . , ai−1).

It can be shown that all maximal R-regular sequences in I have the same finite length,
which is called the I-depth of R and is denoted by depth(I, R) (see [Mat89, Theorem
16.7]), and that the inequality depth(I, R) ≤ htR(I) holds (see [Eis95, Proposition 18.2]).
If R is a Noetherian local ring with maximal ideal m, then depth(m, R) =: depth(R) is
simply called the depth of R, and the above inequality reads as depth(R) ≤ dim(R).

In his famous connectedness theorem Hartshorne could relate the connectedness prop-
erty of the spectrum of a Noetherian ring R to the depth of localizations of R.

Theorem 2.8. (Hartshorne [Har62]) Let R be a Noetherian ring and k ∈ N0. Sup-
pose that Spec(R) is connected and that for all p ∈ Spec(R) with htR(p) > k we have
depth(Rp) ≥ 2. Then Spec(R) is connected in codimension k.

Proof. In [Har62, Corollary 2.3] it is shown that Spec(R) is locally connected in codi-
mension k under this hypothesis. As Spec(R) is assumed to be connected, Corollary 2.6
implies that Spec(R) is connected in codimension k.

Definition 2.9. For a Noetherian local ring (R,m) the Cohen-Macaulay defect is
defined as

cmd(R) := dim(R)− depth(R) ∈ N0.

Lemma 2.10. Let (R,m) be a Noetherian local ring and I ( R a proper ideal. Then the
inequality

htR(I)− depth(I, R) ≤ dim(R)− depth(R)

holds. Furthermore, for every prime ideal p of R we have

cmd(Rp) ≤ cmd(R).

Proof. Let k := depth(R) and r := dim(R/I). Then we get

ExtiR(R/I, R) = 0 for i = 0, . . . , k − r − 1

by [Mat89, Theorem 17.1]. As depth(I, R) can be obtained from the vanishing of these
Ext-modules (again see [Mat89, Theorem 16.7]), the inequality

depth(I, R) ≥ k − r

follows. Together with

htR(I) + r = htR(I) + dim(R/I) ≤ dim(R)

this gives the first statement.
The second statement follows immediately since depth(p, R) ≤ depth(Rp) (localizing

an R-regular sequence in p gives an Rp-regular sequence in pp).
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Definition 2.11. For a Noetherian ring R the Cohen-Macaulay defect is defined as

cmd(R) := sup { cmd(Rp) | p ∈ Spec(R) } ∈ N0 ∪ {∞},

which is consistent with Definiton 2.9 by Lemma 2.10. Furthermore, R is called Cohen-
Macaulay if cmd(R) = 0.

Let us express a different version of Hartshorne’s connectedness theorem in terms of
the Cohen-Macaulay defect.

Corollary 2.12. Let R be a Noetherian ring. Suppose that Spec(R) is connected and
that k := cmd(R) is finite. Then Spec(R) is connected in codimension k + 1.

Proof. For p ∈ Spec(R) with htR(p) > k + 1 we have

k ≥ htR(p)− depth(Rp) ≥ k + 2− depth(Rp),

hence depth(Rp) ≥ 2, and the result follows with Theorem 2.8.

2.3 The Separating Variety and Reflections

We want to study the separating variety next. So for the entire section let G be a
finite group and let X be a G-variety with n := dim(X). Starting with the irreducible
components of Vsep, we will precisely see what its connectedness in codimension k means
for X and G.

Proposition 2.13. Let X =
⋃r
i=1Xi be decomposed into its irreducible components Xi.

Then for all i and for all σ ∈ G the subspace

Hσ,i := {(x, σx) | x ∈ Xi} ⊆ X ×X

is an irreducible component of Vsep, and Vsep is the union of all Hσ,i.

Proof. Since G is finite, the invariants separate the orbits (see Proposition 1.4). With
Definition 1.11 we see that two points x, y ∈ X lie in the same orbit if and only if
(x, y) ∈ Vsep. So the separating variety really is the graph of the action of G on X:

Vsep = {(x, σx) | x ∈ X, σ ∈ G}.

Hence Vsep is the union of all Hσ := {(x, σx) | x ∈ X}. Each Hσ is an affine variety
isomorphic to X, so it decomposes as

Hσ =
r⋃
i=1

Hσ,i

into its irreducible components.

Remark 2.14. With the notation of Proposition 2.13 we also see:

(a) Each Hσ,i is isomorphic to Xi. In particular, the separating variety has the same
dimension as X.
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(b) By Remark 2.2(a), codimX×X(Vsep) is the minimum of all codimX×X(Hσ,i). Since
codimX×X(Hσ,i) = codimXi×σXi(Hσ,i) = dimXi, the formula

codimX×X(Vsep) = min{dim(Xi) | i = 1, . . . , r}

holds. In particular, if X is equidimensional, then codimX×X(Vsep) = dim(X) =: n.

Definition 2.15. Let k be a natural number. An element σ ∈ G is called a k-reflection
if its fixed space Xσ := {x ∈ X | σx = x} has codimension at most k in X. For k = 1
we simply say that σ is a reflection.

Remark 2.16. For σ ∈ G let Iσ be the ideal in K[X] generated by all σf − f with
f ∈ K[X]. Then Iσ defines Xσ as a subvariety of X, hence σ is a k-reflection if and only
if htK[X](Iσ) ≤ k.

It was shown by Dufresne [Duf09, pf. of Theorem 1.1] that for a linear action con-
nectedness in codimension 1 of Vsep implies that the group is generated by 1-reflections.
In the following theorem we extend this to non-linear actions and to k > 1, and we also
add a converse, which will be needed in the next section.

Theorem 2.17. Let k be a natural number. Then the separating variety Vsep is connected
in codimension k if and only if X is connected in codimension k and G is generated by
k-reflections.

Proof. Again, let X =
⋃r
i=1Xi be decomposed into its irreducible components Xi, which

leads to the components Hσ,i of Vsep as seen in Proposition 2.13. First, we look at the
intersection of two components of Vsep to see which codimension arises. For σ, τ ∈ G
and indices i, j we have

Hσ,i ∩Hτ,j = {(x, y) | x ∈ Xi ∩Xj , y = σx = τx} ∼= (Xi ∩Xj)
τ−1σ.

We know from Remark 2.14 that dim(X) = n = dim(Vsep). In addition, we get

codimVsep(Hσ,i ∩Hτ,j) = codimX((Xi ∩Xj)
τ−1σ). (2.3.1)

Suppose Vsep is connected in codimension k. By assumption, for all σ ∈ G and i, j there
exists a sequence of irreducible components Hσ0,i0 , . . . , Hσs,is of Vsep with i0 = i, is =
j, σ0 = ι (the neutral element of G), σs = σ and

codimVsep
(
Hσl,il ∩Hσl+1,il+1

)
≤ k for 0 ≤ l ≤ s− 1. (2.3.2)

Putting (2.3.1) and (2.3.2) together leads to the inequality

codimX

(
Xil ∩Xil+1

)σ−1
l σl+1) ≤ k for 0 ≤ l ≤ s− 1. (2.3.3)

In particular, (2.3.3) shows that Xil ∩Xil+1
has codimension ≤ k. So we have a sequence

of irreducible components from Xi0 = Xi to Xis = Xj that intersect in codimension ≤ k,
hence X is connected in codimension k by Proposition 2.4.

Moreover, (2.3.3) implies that all Xσ−1
l σl+1 have codimension ≤ k, i.e. each σ−1

l σl+1

is a k-reflection. Using σ0 = ι and σs = σ we can write

σ = σ−1
0 σs = (σ−1

0 σ1) · (σ−1
1 σ2) · · · · · (σ−1

s−1σs)
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as a product of k-reflections.
So, we have proven the only-if-part by simply splitting 2.3.3 into two weaker conclusions.
It may therefore be surprising that the converse holds as well.

To prove it, let us start with indices i, j, and a sequence of components Xi0 , . . . , Xis

with Xi = Xi0 , Xj = Xis and codimX(
(
Xil ∩Xil+1

)
≤ k. Consequently, for σ ∈ G we

know from (2.3.1), that all Hσ,il ∩Hσ,il+1
have codimension ≤ k. So we already have a

sequence from Hσ,i to Hσ,j as desired.
Now take two elements σ′, σ′′ ∈ G. By assumption, there exist k-reflections

τ1, . . . , τs ∈ G with (σ′)−1σ′′ = τ1 · . . . · τs. Since for all l we have

min{codimX(Xτl
m) | m = 1, . . . , r} = codimX(Xτl) ≤ k,

for each τl there exists an il such that

codimX(Xτl
il

) ≤ k. (2.3.4)

If we write σ0 := σ′ and σl := σl−1τl for l = 1, . . . , s, then

σs = σ0 · τ1 · . . . · τs = σ′ · (σ′−1 · σ′′) = σ′′.

It follows from (2.3.1) together with (2.3.4) that

codimVsep(Hσl−1,il ∩Hσl,il) = codimX((Xil)
σ−1
l−1σl) = codimX((Xil)

τl) ≤ k.

We already saw how to construct a sequence of components from every Hσ,il to Hσ,il+1

as desired. Putting these together, for all i, j we can construct a sequence

Hσ0,i, . . . , Hσ0,i1 , Hσ1,i1 , . . . , Hσ1,i2 , Hσ2,i2 , . . . , Hσs,is , . . . , Hσs,j ,

from Hσ′,i to Hσ′′,j such that two successive components intersect in codimension ≤
k.

Since Vsep is required to be connected in the proof of the main theorem of this chapter,
Theorem 2.19, we specialize Theorem 2.17 to the case k = n = dim(X).

Corollary 2.18. The separating variety Vsep is connected if and only if X is connected
and G is generated by elements having a fixed point.

2.4 Main Result about Polynomial Separating Algebras

We will now combine Hartshorne’s connectedness theorem from Section 2.2 with our
results on Vsep from Section 2.3. Again for the entire section let G be a finite group and
X a G-variety with dim(X) = n. With the notation Isep from Chapter 1 the coordinate
ring of the separating variety is K[Vsep] = (K[X]⊗K K[X])/

√
Isep.

Theorem 2.19. Let X be connected, and let G be generated by elements having a fixed
point. Write R = K[X]⊗K K[X] and define

k := min {cmd(R/J) | J ⊆ R an ideal with
√
J =

√
Isep}.

Then G is generated by (k + 1)-reflections.
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Proof. The assumptions on X and the action of G imply that Vsep is connected by Corol-
lary 2.18. Let J be an ideal in R with

√
J =

√
Isep and k = cmd(R/J). Corollary 2.12

tells us now that Spec(R/J), which is homeomorphic to Spec(K[Vsep]), is connected in
codimension k+1. Of course, it is equivalent to say that Vsep is connected in codimension
k + 1. Therefore, by Theorem 2.17, G is generated by (k + 1)-reflections.

Example 1.14 showed that Isep need not be radical. Furthermore, in Example 2.22,
we will see that neither Isep nor

√
Isep must have the smallest Cohen-Macaulay defect

among all ideals J ⊆ K[X] ⊗K K[X] with
√
J =

√
Isep. In particular, the number k

in Theorem 2.19 need not be the Cohen-Macaulay defect of K[Vsep]. Since an ideal is
called set-theoretically Cohen-Macaulay if there exists a Cohen-Macaulay ideal with the
same radical (cf. [SW07]), we propose to call this number the set-theoretical Cohen-
Macaulay defect of Vsep.

To the best of my knowledge, no algorithm is known to compute the set-theoretical
Cohen-Macaulay defect of a Noetherian ring. This might be the reason why I could not
find an example in which this number is not the minimal m such that G is generated by
(m+ 1)-reflections. However, there are surprisingly many examples (like Example 2.22)
in which these two numbers coincide.

Theorem 2.20. Let X be connected and Cohen-Macaulay, and let G be generated by
elements having a fixed point. If γsep = n (see Definition 1.6), then G is generated by
reflections.

Proof. Since X is Cohen-Macaulay, it follows that X ×X is Cohen-Macaulay, too. We
use [WITO69] as a reference for that. In addition, X is connected, so X and X ×X are
also equidimensional, since local Cohen-Macaulay rings are equidimensional (see [Eis95,
Corollary 18.11]).

Now let {f1, . . . , fn} be a set of separating invariants. Using the δ-map (defined in
1.0.2) this separating set defines the following ideal in K[X]⊗K K[X]:

J := (δ(f1), . . . , δ(fn)) . (2.4.1)

By Proposition 1.13, J has the same radical as Isep. Hence we have

ht(J) = ht(
√
Isep) = codimX×X(Vsep) = n, (2.4.2)

by Remark 2.14. Since K[X]⊗K K[X] is Cohen-Macaulay, 2.4.1 and 2.4.2 imply that J
is generated by a (K[X] ⊗K K[X])-regular sequence. Therefore, (K[X] ⊗K K[X])/J is
Cohen-Macaulay as well (see [Eis95, Proposition 18.13]). Now we can use Theorem 2.19
with k = 0.

Remark 2.21. Of course, the assumptions on X and G in Theorem 2.19 and Theorem
2.20 are satisfied if X = V is a linear representation of G.

Dufresne [Duf09] gave an example of a representation for which the invariant ring
is not a polynomial ring, but still γsep equals n. This suggested that the choice of J
in Theorem 2.19 matters. The following example illustrates this point as it results in
various Cohen-Macaulay defects. It is taken from Kemper’s et al. [KKM+01] database
of invariant rings.
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Example 2.22. [KKM+01, ID 10253] Let char(K) = 2. We look at the following subgroup,
isomorphic to C2 × C2 × C2, of GL4(K):

G := 〈


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 ,


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
1 1 1 0
0 0 1 0
1 0 1 1

〉 ⊆ GL4(K).

Its natural action on V = K4 is generated by reflections. Using the computer algebra
system magma [BCP97], we have computed the primary invariants

f1 := x1,

f2 := x3,

f3 := x2
1x3x4 + x2

1x
2
4 + x1x

2
3x4 + x1x3x

2
4 + x2

3x
2
4 + x4

4,

f4 := x3
1x2 + x1x2x

2
3 + x1x

2
3x4 + x1x3x

2
4 + x4

2 + x2
2x

2
3 + x3

3x4 + x2
3x

2
4,

and a secondary invariant

h := x2
1x2 + x1x

2
2 + x2

3x4 + x3x
2
4.

Hence, the invariant ring

K[V ]G = K[x1, x2, x3, x4]G = K[f1, f2, f3, f4, h]

is not a polynomial ring. Between the generating invariants there is the relation

f3
1h+ f2

1 f3 + f1f
2
2h+ f2

2 f4 + h2 = 0.

So by defining g3 := f1h+f3 and g4 := f1h+f4, we get h2 = f2
1 g3+f2

2 g4. As char(K) = 2,
we see from this relation that the values of f1, f2, g3, and g4 at a point x ∈ K4 determine
h(x). From the definition of g3 and g4 it is clear that the values of f3 and f4 at x are also
determined by this. Hence S := {f1, f2, g3, g4} is separating. In this example Isep is
not a radical ideal. Let J be the ideal in R := K[V ]⊗K K[V ] generated by δ(S). Using
the graded version of the Auslander-Buchsbaum formula, we calculated the following
Cohen-Macaulay defects with magma (see Appendix A for the magma code):

cmd(R/I) = 2, cmd(R/
√
I) = 1, cmd(R/J) = 0.

Of course, cmd(R/J) = 0 is not surprising, as it was used in Theorem 2.20. /

Let us look at the assumptions in Theorem 2.20 more closely. Of course, any example
of a (non-trivial) free group action of G on X with an invariant ring isomorphic to a
polynomial ring shows that the assumption that G has fixed points cannot be dropped
from Theorem 2.20.

Example 2.23. Let the characteristic of K be a prime number p, and let G = Fp be
the cyclic group of order p. When we look at the additive action of Fp on V = K via
(σ, x) 7→ σ + x, we see that

K[V ]G = K[x]G = K[xp − x]

is a polynomial ring. But a non-zero group element σ ∈ Fp does not have a fixed point,
so in particular, G is not a reflection group. /
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The following very general example serves as a demarcation in our purpose to prove
theorems in which nice algebraic properties of a separating subalgebra A ⊆ K[X]G

and/or a small value of γsep imply that the group is generated by certain reflections.
More precisely, it shows that the variety X needs to be at least connected in codimension
k, in order to conclude that G is generated by k-reflections.

Example 2.24. Let X be a union of two n-dimensional affine spaces (over K) intersecting
in a single point. For example, if char(K) 6= 2, we could define X as the following
subvariety of K2n:

X = V(x1 − xn+1, . . . , xn − x2n) ∪ V(x1 + xn+1, . . . , xn + x2n). (2.4.3)

So X is connected (or connected in codimension n, if we want to use that notion), but
not connected in codimension k for any k < n. The cyclic group of order 2 acts on X
by interchanging the two n-dimensional affine spaces and fixing the intersection point.
With X defined as in 2.4.3 we make this precise with the following matrix representation
of Z/2Z:

G = 〈



1
. . .

1
−1

. . .

−1


〉 ⊆ GL2n(K).

Since X is mapped to itself by this matrix, it is a G-variety. With a single fixed point at
the origin this action on X is not generated by k-reflections for any k < n. The invariant
ring of the representation V = K2n of G can be easily seen to be generated by x1, . . . , xn
and the monomials of degree 2 in the variables xn+1, . . . , x2n:

K[V ]G = K[x1, . . . , xn, x
2
n+1, xn+1xn+2, . . . , x

2
2n].

Since we are in a non-modular case, the finite group G is linearly reductive. Therefore,
K[X]G is the quotient ring of K[V ]G modulo the vanishing ideal I of X. For all i, j ∈
{1, . . . , n} we have

xixj − xn+ixn+j ∈ I.
Therefore, the invariant ring of this action on X is

K[X]G = K[V ]G/(K[V ]G ∩ I) = K[x1, . . . , xn],

which is a polynomial ring, so it has the best structure we could hope for. In particular,
we have γsep = n, but the group is not generated by (n− 1)-reflections. /

We can use the above example to show that the assumption thatX is Cohen-Macaulay
cannot be dropped from Theorem 2.20.

Example 2.25. Let X and G be as in Example 2.24 with n = 2. So X is a union of
two planes that intersect in a single point and G is a cyclic group of order 2 that acts
on X by interchanging the two planes. Hartshorne’s connectedness theorem in the form
of Corollary 2.12 now tells us exactly that X is not Cohen-Macaulay at the intersection
point, since it is not connected in codimension 1 there. As in Example 2.24 the invariant
ring will be a polynomial ring, hence γsep = n, but in contrast to Theorem 2.20, G is not
generated by reflections. /
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2.5 Application to Muliplicative Invariant Theory

It was suggested to me by Gregor Kemper to check if the results of the previous section
can be applied to the so called ”semigroup problem” in multiplicative invariant theory.
Indeed this is true and it is carried out in this section.

Multiplicative invariant theory is a branch of invariant theory which deals with the
action of a matrix with integer coefficients on the monomials of a Laurent polynomial
ring. The subject is studied in detail in Martin Lorenz’s book [Lor05]; here we will only
give a short introduction, similar to [Tes04, Section 1.4].

We start with a lattice L, i.e. a free abelian group of finite rank, and (at first) an
arbitrary group G acting on L by automorphisms. The ring whose invariants are studied
in this subject is a group ring of L. We will not follow the general path in Lorenz’s book
where the base ring K is just any commutative ring (as the case K = Z is also important
in multiplicative invariant theory). Instead (as through the entire thesis) we denote by
K an algebraically closed field and look at the group ring K[L] of L over K. Since the
group law of L should appear multiplicatively in K[L], we will write the elements of K[L]
as finite formal sums with the lattice points in the exponents:

K[L] = {
∑
l∈L

λl x
l | λl ∈ K}.

The action of G on L induces an action on K[L] by K-algebra automorphisms. This
follows from the universal property of the group ring, more precisely, for σ ∈ G we have

σ ·

(∑
l∈L

λl x
l

)
:=
∑
l∈L

λl x
σ·l.

Choosing a Z-basis of L amounts to choosing an isomorphism of L with Zn where n is
the rank of L. The action of G is then given by a group homomorphism G → GLn(Z),
and the group ring of L over K is isomorphic to the ring of Laurent polynomials over K
in n indeterminates:

K[L] ∼= K[x±1
1 , . . . , x±1

n ].

We will view K[L] as this Laurent polynomial algebra, which makes L isomorphic to the
group of monomials

L ∼= {xk11 · . . . · x
kn
n | ki ∈ Z} ⊆ K[L]×,

a subgroup of the units of K[L].

Example 2.26. Let G be the following cyclic group of order 2:

G = 〈σ〉 = 〈
(

1 1
0 −1

)
〉 ⊆ GL2(Z).

Its generator σ acts on the Laurent polynomial ring K[x±1
1 , x±1

2 ] by sending x1 to x1x2

and x2 to x−1
2 . So for example f = 3x2

1 + x1x2 − x−3
2 is mapped to

σ · f = 3x2
1x

2
2 + x1 − x3

2.

In particular, observe that the Z-grading of K[x±1
1 , x±1

2 ] is in no way preserved by the
action. /
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It is a speciality of multiplicative invariants that the computation of K[L]G reduces
to the case of finite groups. More precisely K[L]G is isomorphic to the invariant ring of
a finite quotient group of G acting on a sublattice of L (see [Lor05, Prop. 3.1.1]). This
makes the case of finite groups especially important.

Let G now be a finite group. Multiplicative invariant theory can be put in our general
setting of an algebraic group acting on an affine variety X by setting

X := (Gm)n = V(x1y1 − 1, . . . , xnyn − 1) ⊆ K2n, (2.5.1)

i.e. X is an n-dimensional algebraic torus. Its coordinate ring K[X] is precisely the
Laurent polynomial ring K[L] in n indeterminates. Therefore, the G-action on K[X] by
K-algebra automorphisms makes X into a G-variety.

In multiplicative invariant theory an element σ ∈ G is called a k-reflection if the
sublattice {σl − l | l ∈ L} has rank at most k (see [Lor05, Section 1.7]). But by [Lor05,
Lemma 4.5.1], this is equivalent to the condition that the ideal (σf − f | f ∈ K[L]) in
K[L] = K[X] has height at most k, so that a reflection on L is exactly a reflection on X
(see Remark 2.16).

An analogous result in multiplicative invariant theory to the Shephard-Todd-
Chevalley-Serre theorem is [Lor05, Theorem 7.1.1]. It says that under the assump-
tion that char(K) does not divide |G| the following two statements (among others) are
equivalent:

(a) K[L]G is (isomorphic to) a mixed Laurent polynomial ring, i.e. there exists a
k ∈ {0, . . . , n} with K[L]G ∼= K[x±1

1 , . . . , x±1
k , xk+1, . . . , xn],

(b) G is generated by reflections on L and K[L]G is a unique factorization domain.

Without any assumptions about the characteristic of K, Lorenz [Lor01] proved the
following: If G is generated by reflections, then there is a submonoid M ⊆ K[L]G

such that K[L]G is isormorphic to the semigroup algebra K[M ]. The question whether
the converse of this statement holds is called the ”semigroup problem in multiplicative
invariant theory” (see [Tes04, Section 1.5]). Some partial converses are given in [Tes04]
and [Lor05, Section 10.2]. We add another one to the list by proving that of the above
statements (a) implies (b) independently of the characteristic of K.

Theorem 2.27. Let L be a lattice and let G be a finite group acting on L by automor-
phisms. If K[L]G is isomorphic to a mixed Laurent polynomial ring, then G is generated
by reflections.

Proof. Since Gm is a connected linear algebraic group, the affine variety X in 2.5.1 is
irreducible and non-singular (hence Cohen-Macaulay). Furthermore, every σ ∈ G fixes
the point (1, . . . , 1) ∈ X. Hence the prerequisites of Theorem 2.20 are satisfied. By
assumption, we have

K[X]G = K[L]G = K[f±1
1 , . . . , f±1

k , fk+1, . . . , fn]

with invariants fi ∈ K[X] (where obviously n = trdegK(K[X]G) = dim(X)). But from
this generating set of invariants we easily extract the smaller separating set

S = {f1, . . . , fn},
since the inverses of f1, . . . , fk are not needed to separate the orbits. So we have γsep = n
and the result follows with Theorem 2.20.



Chapter 3

Preliminaries on Completion

This chapter recalls some basic facts about the completion of rings and modules, which
are needed in Chapters 4 and 5. The material is taken from the standard textbooks
on commutative algebra of Atiyah-Macdonald [AM69], Matsumura [Mat89], Eisenbud
[Eis95] and in particular from Singh’s ”Basic Commutative Algebra” [Sin11]. A reader
familiar with the theory of completions may therefore wish to skip this chapter entirely.

We do not aim here to simply state these facts in the shortest possible way, but also
to explain a bit of the ”idea behind completion”. At the beginning we will develop the
basic concepts in continuous text, and only later state the results, especially those which
are needed elsewhere, in propositions and theorems.

3.1 Filtered Rings and Modules

Let R be a ring. A (descending) filtration on R is a sequence (In)n≥0 of ideals of R
with the following properties for all m, n ∈ N0:

(i) I0 = R,

(ii) In+1 ⊆ In,
(iii) Im · In ⊆ Im+n.

Most common are so-called I-adic filtrations of R, where I is an ideal of R and In := In

is the n-th power of I. A filtration can be used to define a topology on R. The basic
idea is that a ring element x should be considered ”close to zero” if it is contained in an
ideal In for a large n.

The construction of the completion with respect to a given filtration will be needed
for modules as well. Therefore, we will proceed with an R-module M and define and
study filtrations on M next.

Let us assume for the entire section that R is already filtered, this means there is
a given filtration (In)n≥0 on R. A filtration on M should always be compatible with
the given filtration on R, hence we will call a sequence (Mn)n≥0 of submodules of M a

24
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filtration on M if the following properties hold for all m, n ∈ N0:

(i) M0 = M,

(ii) Mn+1 ⊆Mn,

(iii) Im ·Mn ⊆Mm+n.

For example, we always get a filtration on M by setting Mn := In ·M .
Now for the entire section let M be a filtered R-module , i.e. there is a given

filtration F := (Mn)n≥0 on M . Then every submodule U ⊆ M is also filtered, with the
filtration (U ∩Mn)n≥0. We define the order or valuation of M with respect to F as
the following function:

vF : M → N0 ∪ {∞}, x 7→ sup{n ∈ N0 | x ∈Mn}.

The following basic properties of vF are easily verified for all x, y ∈M :

(i) vF (x) =∞ ⇔ x ∈
∞⋂
n=0

Mn, (3.1.1)

(ii) vF (−x) = vF (x),

(iii) vF (x+ y) ≥ min{vF (x), vF (y)}.

This allows us to define the distance of two elements of M through the following function:

dF : M ×M → R≥0, (x, y) 7→
(

1

2

)vF (x−y)

,

where we have used the symbolic convention
(

1
2

)∞
= 0. It should be noted that 1

2 was
somehow an arbitrary choice, this fraction could be replaced by any real number strictly
between 0 and 1.

For all x, y, z ∈M we have the following immediate consequences:

(i) dF (x, x) = 0, (3.1.2)

(ii) dF (x, y) = dF (y, x),

(iii) dF (x, z) ≤ max{dF (x, y), dF (y, z)}.

The inequality in (iii) is called ultrametric inequality. Obviously, it is stronger than
the usual triangle inequality dF (x, z) ≤ dF (x, y) + dF (y, z). So these three properties
combined imply that dF is a pseudometric on M . With property (i) of 3.1.1 we see

immediately that dF is a metric if and only if
∞⋂
n=0

Mn = {0}. (In fact, due to the stronger

triangle inequality, dF is called an ultrametric or pseudoultrametric, respectively.)
But either way, the metric or pseudometric induces a topology on M , where a subset

U ⊆ M is called open if for each of its points it contains an ε-ball (for some ε > 0)
around this point. Since the valuation vF takes only discrete values, more precisely
values in N0 ∪ {∞}, for every ε-ball the ε can be chosen in { 1

2n | n ∈ N0}. These balls
can be easily described precisely: For x ∈M the residue class x+Mn is the closed ball
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with center x and radius 1
2n , which (for n ≥ 1) is the same as the open ball with center

x and radius 1
2n−1 . So the set

B(x) := {x+Mn | n ∈ N0} (3.1.3)

is a fundamental system of neighbourhoods of x.
To summarize, a filtration on M defines a topology on M in which two elements

of M are considered to be close to each other if their difference is contained in many
submodules of the filtration. Now assume there is a second filtration F̃ := (M̃n)n≥0 on

M . When do F and F̃ define the same topology?
In general, suppose we are given two topologies T , T̃ on a set X and for each x ∈ X

a fundamental system B(x) of neighbourhoods of x with respect to T . Then T̃ is coarser
than T (by definition this means T̃ ⊆ T ) if and only if for each x ∈ X and every
T̃ -neighbourhood U of x there exists a V ∈ B(x) with V ⊆ U . With the explicit
fundamental systems of neighbourhoods given by the filtrations F and F̃ on M as in
3.1.3 we see that their induced topologies are the same if and only if the following holds:

For all k ∈ N there exist n1, n2 ∈ N such that Mn1 ⊆ M̃k and M̃n2 ⊆Mk. (3.1.4)

Let us call the filtrations equivalent if 3.1.4 is satisfied.
For the special case of ideal-adic topologies on a ring we put this observation into a

proposition, so we can refer to it later.

Proposition 3.1. Let I, J be ideals of R. The I-adic topology on R equals the J-
adic topology if and only if there exist n1, n2 ∈ N with In1 ⊆ J and Jn2 ⊆ I. If R is
Noetherian, then this is equivalent to

√
I =
√
J

Our next topic is convergence. Recall that in a topological space X a point x ∈ X
is the limit of a sequence (xn)n≥0 if for every neighbourhood U of x there is an N ∈
N such that xN ∈ U for all n ≥ N . If the space is Hausdorff, then every limit is
unique. Obviously, the filtered module M is Hausdorff if and only if dF is (not only a

pseudometric, but) a metric, which we already translated to
∞⋂
n=0

Mn = {0} earlier.

Of course, in general there is no concept of Cauchy sequences in a topological space,
but here the space is a module M , so here we can look at the difference of the elements
of a sequence. (More precisely, R is a topological ring and M is a topological module,
i.e. addition and multiplication are continuous.) So a sequence (xn)n≥0 in M is called
a Cauchy sequence if for all n ∈ N there exists an N ∈ N such that xk1 − xk2 ∈ Mn

for all k1, k2 ≥ N . It is interesting to mention that, due to the ultrametric inequality
(iii) in 3.1.2, in order to prove that a sequence is Cauchy it is sufficient to show that the
differences of two subsequent members of the sequence converge to zero.

The filtered module M is said to be complete if it is Hausdorff and every Cauchy
sequence converges. So we include the condition that limits are unique in the definition
of complete, as it is usually done (cf. [Mat89, §8] or [Eis95, Chapter 7]).

Example 3.2. The ring RJx1, . . . , xrK of formal power series in r indeterminates over
R is usually considered with the I-adic topology where I is the ideal generated by
x1, . . . , xr. A power series f has a formal, unique representation as f =

∑∞
d=0 fd where



CHAPTER 3. PRELIMINARIES ON COMPLETION 27

fd ∈ R[x1, . . . , xr] are homogeneous polynomials of degree d. We have f ∈ In if and only

if fi = 0 for all i < n, and therefore
∞⋂
n=0

In = {0}.

Now a sequence (gn)n≥0 in RJx1, . . . , xrK, where each gn is written as gn =
∑∞

d=0 gn,d
as above, is a Cauchy sequence if and only if for every d the sequence (gn,d)n≥0 is constant
after finitely many terms. So if it is Cauchy, we can use gd := limn→∞ gn,d to build its
limit g :=

∑∞
d=0 gd. Hence, RJx1, . . . , xrK is complete with respect to the I-adic topology.

/

If the module M is not yet complete, it is sometimes helpful to pass from M to its
completion M̂ . We will define the completion next, justifying the title of this section,
and study the properties of the canonical morphism M → M̂ .

For natural numbers m ≥ n we have Mm ⊆ Mn in the filtration of M . So the
canonical projection M → M/Mn induces a homomorphism ϕnm : M/Mm → M/Mn.
Obviously, ϕnn = id and for l ≥ m we have ϕnl = ϕnm ◦ ϕml. These two functorial
properties mean that ((M/Mn)n≥0, (ϕnm)m≥n≥0)) is an example of an inverse system
of R-modules. An inverse limit lim

←−n
M/Mn of such an inverse system is an R-module

N together with homomorphisms πn : N → M/Mn satisfying πn = ϕnm ◦ πm for all
m ≥ n such that N is ”universal with these properties”, i.e. for every other R-module
P with homomorphisms ψn : P →M/Mn satisfying ψn = ϕnm ◦ ψm for all m ≥ n there
is a unique homomorphism ψ : P → N satisfying πn ◦ ψ = ψn. The following diagram
illustrates the situation:

P

ψm





∃!ψ

��
ψn

��

N
πm

{{

πn

##
M/Mm ϕnm

//M/Mn

This universal property assures the uniqueness upto isomorphism of an inverse limit,
more precisely, between two inverse limits of the same system there exists a unique
isomorphism. The concept of inverse systems and limits as above can be defined in
any category. Of course, inverse limits need not exist in such generality, but in the
category of R-modules they always do as there is an explicit description of lim

←−n
M/Mn

as a submodule of the direct product. In our situation here, this inverse limit is called
the completion M̂ of M with respect to F and it is the following submodule of the
direct product of the M/Mn:

M̂ := lim
←−n

M/Mn

:= {(xn)n∈N0 ∈
∏
n∈N0

M/Mn | ∀n,∀m ≥ n : ϕnm(xm) = xn}

= {(xn)n∈N0 ∈
∏
n∈N0

M/Mn | ∀n : xn+1 − xn ∈Mn}.
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(For x ∈M we use the notation x for the equivalence class x+Mn whenever the context
dictates modulo which submodule Mn the residue class is taken.) There is a natural

R-linear map ε : M → M̂ , x 7→ (x+Mn)n∈N0 . In the case M = R, the completion R̂ is
also a ring and the natural map ε : R→ R̂ is a ring homomorphism.

The kernel of the projection πi : M̂ →M/Mi is the following submodule of M̂ :

M̂i := ker(πi) = {(xn)n≥0 ∈ M̂ | xi ∈Mi} (3.1.5)

= {(xn)n≥0 ∈ M̂ | ∀k ≥ i : xk ∈Mi}

= {(xn)n≥0 ∈ M̂ | ∀k ≤ i : xk = 0}.

We see that M̂0 = M̂ and M̂i+1 ⊆ M̂i for all i. Furthermore, for (xn)n≥0 ∈ M̂i and

a ∈ Ij the second line in 3.1.5 shows that a · xj+i ∈ Mj+i, so a · (xn)n≥0 ∈ M̂j+i. So

these submodules form a filtration on the R-module M̂ . In addition, 3.1.5 also shows
that M̂i

∼= lim
←−n

Mi/(Mn∩Mi), so this is really the completion of Mi with its submodule-

filtration, hence the notation is justified.
Furthermore, M̂ becomes an R̂-module by defining a multiplication:

(rn)n≥0 ∈ R̂, (xn)n≥0 ∈ M̂ ⇒ (rn)n≥0 · (xn)n≥0 := (rnxn)n≥0.

Let us check that the product is again in M̂ to see how the compatible filtrations come
into play (and then leave it to the reader to show the rest of the well-definedness of this
multiplication in a very similar way): For all n we have

rn+1xn+1 − rnxn = rn+1(xn+1 − xn) + (rn+1 − rn)xn ∈ I0Mn + InM0 ⊆Mn,

and therefore (rnxn)n≥0 ∈ M̂ . Moreover, if (rn)n≥0 ∈ R̂i, i.e. rn ∈ Ii for all n ≥ i, and

(xn)n≥0 ∈ M̂j , i.e. xn ∈ Mj for all n ≥ j, then ri+jxi+j ∈ Mi+j , i.e. (rnxn)n∈N ∈ M̂i+j .

This shows that M̂ is a filtered R̂-module.
The properties collected in the following proposition justify the name ”completion”.

Proposition 3.3. (a) The canonical morphism ε : M → M̂ is continuous.

(b) The image of M is dense in M̂ .

(c) The filtered module M̂ is complete.

(d) Let N be a complete filtered R-module and ϕ : M → N a continuous R-linear map.

Then there exists a unique continuous R-linear map Φ : M̂ → N such that Φ◦ε = ϕ.

(e) It is ε an isomorphism if and only if M is complete.

Proof. (a) For all x ∈M and all i ∈ N0 we have ε−1(ε(x) +M̂i) = x+Mi. So the inverse

image of every neighbourhood of ε(x) in M̂ is a neighbourhood of x in M , hence ε is
continuous.

(b) For all (xn)n∈N0 =: x ∈ M̂ and all i ∈ N0 we have ε(xi) ∈ x + M̂i. So every

neighbourhood of x ∈ M̂ contains an element of ε(M).

(c) First of all, we see that M̂ is Hausdorff since
⋂∞
i=0 M̂i = {0}. Now let (ym)m∈N0

be a Cauchy sequence in M̂ with ym = (xm,n)n∈N0 . Fix an index n ∈ N0. By assumption,
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there exists an f(n) ∈ N0 such that for all k, m ≥ f(n) we have yk − ym ∈ M̂n, which
means that the n-th components of yk and ym are the same. So the sequence (xm,n)m∈N0

of the n-th components of the ym is constant for all m ≥ f(n). So clearly, its limit

xn := lim
m→∞

xm,n ∈M/Mn

exists, and we claim that the xn form the limit that we need. First we see that (xn)n∈N0

is in M̂ since we have

xn+1 − xn = xf(n+1),n+1 − xf(n),n = xm,n+1 − xm,n ∈Mn

for any m larger than both f(n) and f(n+ 1).

And then for all n and for all m ≥ f(n) we see that ym − x lies in M̂n. Therefore,
limm→∞ ym = x.

(d) Uniqueness of such a map Φ follows immediately from its continuity together with

part (b). Now let x = (xn)n∈N0 ∈ M̂ . Since xn+1 − xn ∈ Mn, the sequence (xn)n∈N0

is a Cauchy sequence in M . Then (ϕ(xn))n∈N0 is a Cauchy sequence in N , which has a
unique limit in N . We set Φ(x) := lim

n→∞
ϕ(xn). We leave it to the reader to check that

this assignment is well-defined, R-linear, and continuous.
(e) The kernel of ε is

⋂∞
n=0Mn. So ε is injective if and only if M is Hausdorff.

Now let ε be surjective and (xm)m∈N0 a Cauchy sequence in M . Then (ε(xm))m∈N0

is a Cauchy sequence in M̂ . By (c) it has a unique limit, which by assumption we
can write as ε(y) with y ∈ M . So for all i there exists a natural number N such that

ε(xm)− ε(y) ∈ M̂i for all m ≥ N , but this is equivalent to xm− y ∈Mi, so y = lim
m→∞

xm.

For the converse assume that M is complete and let (xn)n∈N0 ∈ M̂ . Then again
(xn)n∈N0 is a Cauchy sequence in M . By assumption, it has a limit y ∈M . This means
that for every n there exists a natural number N such that y− xm ∈Mn for all m ≥ N .
If n ≥ N , then we have y − xn ∈Mn already. Otherweise, we write

y − xn = (y − xN ) + (xN − xN−1) + . . .+ (xn+1 − xn) ∈Mn +MN−1 + . . .+Mn ⊆Mn

to conclude that y − xn ∈Mn. This holds for all n, so ε(y) = (xn)n∈N0 .

There is an alternative construction of the completion of M which is also worth
mentioning. The set of Cauchy sequences in M form a submodule C of MN0 . Inside C
the sequences that converge to 0 form another submodule N . Given an element (xn)n≥0

of M̂ , then (xn)n≥0 is Cauchy sequence in M . So there is natural map ϕ : M̂ → C/N
which is obviously R-linear. Conversely, given a Cauchy sequence (xn)n≥0 in M , we see
that for all k ≥ 1 the sequence of residue classes (xn +Mk)n≥0 is constant after finitely
many terms. So by taking yk ∈ M with yk + Mk = limn→∞(xn + Mk) we can form an

element (yn +Mn)n≥0 = (yn)n≥0. It is an element in M̂ , since: For all k ≥ 1 there exists
N ≥ 0 such that xN −yk ∈Mk and xN −yk+1 ∈Mk+1, hence yk+1−yk ∈Mk. If (xn)n≥0

were a sequence converging to 0, then (yn)n≥0 would equal 0 ∈ M̂ . Therefore we get a

map ψ : C/N → M̂ , which is also R-linear and the inverse to ϕ.

Remark 3.4. This description of M̂ as C/N also shows that equivalent filtrations on
M give rise to isomorphic completions.
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Example 3.5. Let S = R[x1, . . . , xr] and I = (x1, . . . , xr)S . By Example 3.2, the formal
power series ring RJx1, . . . , xrK is complete, so by Proposition 3.3(d), there exists a map
Ŝ → RJx1, . . . , xrK with ε(g) = g for all polynomials g.

This map has an inverse: To a formal power series f ∈ RJx1, . . . , xrK written as
f =

∑∞
d=0 fd with homogeneous polynomials fd ∈ R[x1, . . . , xr] we assign the element

(
∑n−1

d=0 fd + In)n≥0 ∈ Ŝ.
Hence the I-adic completion of R[x1, . . . , xr] is isomorphic to RJx1, . . . , xrK. /

3.2 Properties of Adic Completions

This section is about adic filtrations, as completions with respect to an ideal are the
most important ones. So for the entire section let R be a ring, I ⊆ R an ideal, and any
R-module M that appears will be considered with its I-adic filtration (InM)n≥0 and I-
adic topology. First we observe that I-adic completion is a functor from the category of
R-modules to the category of R̂-modules: Every R-linear map f : M → N is continuous
(as f(InM) ⊆ InN), so for the composition (ε ◦ f) : M → N̂ there exists a unique

R-linear map f̂ : M̂ → N̂ with f̂ ◦ ε = ε ◦ f by Proposition 3.3(d). Explicitly, it is given
by

f̂ ((xn))n≥0 = (f(xn))n≥0, (3.2.1)

which makes it easy to see that this map is R̂-linear and that the functorial properties

îdM = id
M̂

and f̂ ◦ g = f̂ ◦ ĝ are satisfied. Furthermore, f̂ + g = f̂ + ĝ for two R-linear
maps f, g : M → N , so completion is an additive functor.

Proposition 3.6. Let R be Noetherian. Then I-adic completion is an exact functor
from the category of finitely generated R-modules to the category of R̂-modules.

Proof. Let

0 // L
f //M

g // N // 0 (3.2.2)

be an exact sequence of finitely generated R-modules. We need to show that the sequence

0 // L̂
f̂ // M̂

ĝ // N̂ // 0 (3.2.3)

is exact, too.
First, we will use the general fact that inverse limits preserve left-exactness. Let us ex-

plain what this means, but leave the proof, which is straight-forward, to the reader: Sup-
pose there are three inverse systems (An, ϕ

A
nm), (Bn, ϕ

B
nm) and (Cn, ϕ

C
nm) of R-modules

and R-linear maps fn : An → Bn and gn : Bn → Cn such that for all n and for all m ≥ n
the following diagram is commutative with exact rows:

0 // An
fn // Bn

gn // Cn // 0

0 // Am

ϕAnm

OO

fm // Bm

ϕBnm

OO

gm // Cm

ϕCnm

OO

// 0.
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Then the induced sequence

0 // lim
←n

An
f̃ // lim

←n
Bn

g̃ // lim
←n

Cn ,

where e.g. f̃ is defined by f̃((an)n≥0) := (fn(an))n≥0, is exact.
Here we will apply it to the following exact sequences which are induced from 3.2.2:

0 // L/f−1(InM)
fn //M/InM

gn // N/InN // 0 .

So left-exactness of inverse limits already gives the exact sequence:

0 // lim
←n

(L/f−1(InM))
f̃ // M̂

ĝ // N̂ . (3.2.4)

The next step is to identify the first inverse limit in 3.2.4 with L̂. Since R is Noetherian
and M is finitely generated, by the Artin-Rees lemma (see [Sin11, Theorem 8.1.3]) there
exists a natural number m such that for all n ≥ m the formula

In+1M ∩ f(L) = I(InM ∩ f(L))

holds. With the injectivity of f we can translate this to f−1(In+1M) = If−1(InM).
On the one hand we have InL ⊆ f−1(InM), but now on the other hand we have for all
n ≥ m:

f−1(InM) = In−mf−1(ImM) ⊆ In−mL.

So by condition 3.1.4 the filtration (f−1(InM))n≥0 is equivalent to the I-adic filtration

on L, hence L̂ ∼= lim
←n

(L/f−1(InM)) (and f̂ corresponds to f̃).

The left-exactness in 3.2.3 is proven, and it remains to show that ĝ is surjective. For
that let (yn)n≥0 ∈ N̂ . As g is surjective, there is x0 ∈ M with g(x0) = y0. We can now
inductively construct xn ∈M (with n ≥ 1) such that the following hold:

(1.) g(xn) = yn,

(2.) xn + In−1M = xn−1 + In−1M.

Assume that xn−1 is already chosen. Since

yn − yn−1 ∈ In−1N = In−1g(M) = g(In−1M),

there exists an a ∈ In−1M with g(a) = yn − yn−1. Then xn := xn−1 + a satisfies (1.)

and (2.). So (xn)n≥0 lies in M̂ and maps to (yn)n≥0.

Remark 3.7. Let R→ S be a ring homomorphism. The I-adic filtration on S (consid-
ered as an R-module) is the same as the (IS)-adic filtration on the ring S. So the I-adic
completion Ŝ is a ring and the map R̂→ Ŝ as in 3.2.1 is a ring homomorphism.

Proposition 3.8. Let R be Noetherian, J ⊆ R an ideal, and M a finitely generated

R-module. Then for the I-adic completions we get JM̂ ∼= ĴM and M̂/JM ∼= M̂/JM̂ .

For M = R we get R̂/J ∼= R̂/JR̂ also as rings.
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Proof. The exact sequence

0 // JM
i //M //M/JM // 0

induces an exact sequence

0 // ĴM
î // M̂ // M̂/JM // 0

by Proposition 3.6. So M̂/JM ∼= M̂/̂i(ĴM). Let J = (a1, . . . , ar)R and let ϕ be the
R-linear map ϕ : M r →M that sends (x1, . . . , xr) to

∑r
i=1 aixi. Then the image of ϕ is

JM , so there is an exact sequence

M r ϕ //M
ψ //M/JM // 0,

where ψ is the canonical projection. Again this induces an exact sequence

M̂ r
φ // M̂

Ψ // M̂/JM // 0. (3.2.5)

Under the isomorphism

M̂ r ∼= M̂ r, ((x1,n, . . . , xr,n))n≥0 7→ ((x1,n)n≥0, . . . , (xr,n)n≥0)

the map φ corresponds to

φ̃ : M̂ r → M̂, (y1, . . . , yr) 7→
r∑
i=1

aiyi,

whose image is JM̂ . And one checks that under the isomorphism M̂/JM ∼= M̂/̂i(ĴM)

the map Ψ corresponds to the canonical projection π : M̂ → M̂/̂i(ĴM). So from 3.2.5
we get the following exact sequence

M̂ r φ̃ // M̂
π // M̂/̂i(ĴM) // 0.

Therefore JM̂ = im(φ̃) = ker(π) ∼= ĴM and

M̂/JM̂ = M̂/ ker(π) ∼= M̂/̂i(ĴM) ∼= M̂/JM.

Example 3.9. Let K[X] = K[x1, . . . , xn]/J be the coordinate ring of an affine variety
X ⊆ Kn that contains the point at the origin. If I is the maximal ideal (x1, . . . , xn) ⊆
K[x1, . . . , xn], then Proposition 3.8 together with Example 3.5 shows that the I-adic
completion of K[X] is

K̂[X] ∼= KJx1, . . . , xnK/JKJx1, . . . , xnK. /

We can also use Proposition 3.8 to prove that I-adic completions of Noetherian rings
are Noetherian again.
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Proposition 3.10. Let R be Noetherian and I = (a1, . . . , an) with ai ∈ R. Then

R̂ ∼= RJx1, . . . , xnK/(x1 − a1, . . . , xn − an).

In particular, R̂ is Noetherian.

Proof. Let S = R[x1, . . . , xn], J = (x1 − a1, . . . , xn − an)S and I ′ = (x1, . . . , xn)S . The
homomorphism ψ : S → R that (is the identity on R and) sends xi to ai has J as its
kernel, hence S/J ∼= R. Under this isomorphism the I-adic topology on R corresponds
to the I ′-adic topology on S/J . So with Proposition 3.8 and Example 3.5 we get:

R̂ ∼= Ŝ/J ∼= Ŝ/JŜ ∼= RJx1, . . . , xnK/(x1 − a1, . . . , xn − an).

As rings of formal power series in finitely many indeterminates over R are Noetherian
(see [Kem11, Exercise 2.4]), it follows that R̂ is Noetherian, too.

The next part of this section deals with another important property of I-adic com-
pletion, which we need later on, namely (faithful) flatness.

The map M × R̂ → M̂ , (x, (an)n≥0) 7→ (anx)n≥0 is well-defined an R-bilinear. So

there is an induced R-linear map ηM : M ⊗R R̂→ M̂ such that x⊗ (an)n≥0 7→ (anx)n≥0.

Moreover, η is a natural transformation of functors from ⊗R R̂ to (̂ ): For every R-
linear map f : M → N the induced maps form a commutative diagram (which can be
easily seen using 3.2.1):

M ⊗R R̂
f⊗id //

ηM
��

N ⊗R R̂

ηN
��

M̂
f̂ // N̂

.

Proposition 3.11. Let R be Noetherian and M a finitely generated R-module. Then
ηM : M ⊗R R̂→ M̂ is an isomorphism.

Proof. Obviously, ηR : R ⊗R R̂ → R̂ is an isomorphism. Let us write F = ⊗R R̂ and

G = (̂ ) for the two functors. As both are additive, they preserve finite direct sums (see
[HS71, I, Prop. 9.5]). This property commutes with a natural transformation, i.e. given
finitely many R-modules Mi the diagram

F (⊕ni=1Mi)
η⊕F (Mi) //

∼=
��

G(⊕ni=1Mi)

∼=
��

⊕ni=1F (Mi)
(ηM1

,...,ηMn )
// ⊕ni=1G(Mi)

is commutative. Therefore, the fact that ηR is an isomorphism implies that for all n ∈ N
the map ηRn is an isomorphism, too.

Now since M is finitely generated, there exists an epimorphism f : Rn →M for some
n. And since R is Noetherian, the kernel of f is again finitely generated (see [Kem11,
Theorem 2.10]). So for some m there is an exact sequence

Rm // Rn //M // 0.
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Applying F and G, leads to the commutative diagram

F (Rm) //

ηRm ∼=
��

F (Rn) //

ηRn ∼=
��

F (M) //

ηM
��

0

G(Rm) // G(Rn) // G(M) // 0.

(3.2.6)

Both completion (of finitely generated modules) and tensoring preserve right-exactness
(see Proposition 3.6 for completion, and e.g. [AM69, Prop. 2.18] for the tensor product),
so both lines of 3.2.6 are exact. We already now that the two vertical maps on the left
in 3.2.6 are isomorphisms. Now the claim that ηM is an isomorphism follows by a usual
diagram chase, which is standard but cumbersome to write down, so we leave it to the
reader.

Recall that an R-module M is called flat if ⊗RM is an exact functor. Moreover,
M is called faithfully flat if for all short sequences of R-modules

0 // N ′ // N // N ′′ // 0 (3.2.7)

the tensored sequence

0 // N ′ ⊗RM // N ⊗RM // N ′′ ⊗RM // 0

is exact if and only if the original sequence 3.2.7 is exact, too. As the tensor product
always preserves right-exactness, the module M is flat if and only if for all injective
R-linear maps N ′ → N the induced map N ′ ⊗RM → N ⊗RM is injective, too.

In order to show that the (I = m)-adic completion of a Noetherian local ring (R, m)
is faithfully flat over R, we will use the following characterization of faithful flatness.

Proposition 3.12. Let M be an R-module. The following three conditions are equiva-
lent:

(a) M is faithfully flat,

(b) M is flat and for all R-modules N 6= 0 we have N ⊗RM 6= 0,

(c) M is flat and for all finitely generated R-modules N 6= 0 we have N ⊗RM 6= 0.

Proof. See [Mat89, Theorem 7.2].

Proposition 3.13. Let R be Noetherian. Then R̂ is flat as an R-module. If in addition
I is contained in the Jacobson radical of R, then R̂ is faithfully flat.

Proof. Let f : M → N be injective and R-linear. We need to show that M ⊗R R̂ →
N ⊗R R̂ is injective, too. For this, take xi ∈M and si ∈ R̂ such that

n∑
i=1

f(xi)⊗ si = 0 (3.2.8)

in N ⊗R R̂. Using the explicit construction of the tensor product, one shows that there
exists a finitely generated submodule N0 of N which contains the f(xi) such that 3.2.8
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holds in N0⊗R R̂ as well (see e.g. [AM69, Corollary 2.13] for a short proof of this general
fact). We restrict f to a map f0 from M0 := 〈x1, . . . , xn〉R ⊆ M to N0. Now for those
finitely generated modules the map f0 ⊗ id corresponds to f̂0 by Proposition 3.11, and
f̂0 is injective by Proposition 3.6. So

∑n
i=1 f(xi) ⊗ si = 0 implies

∑n
i=1 xi ⊗ si = 0 and

the first part is proven.
Now assume I ⊆ m for all maximal ideals m ⊆ R, and let M be a finitely generated

R-module. Then we have ∩∞n=1I
nM = 0 by a general version of Krull’s intersection

theorem ([Eis95, Corollary 5.4]). So the natural map ε : M → M̂ is injective. So if

M 6= 0, then M̂ 6= 0 and hence M ⊗R R̂ 6= 0 by Proposition 3.11. By Proposition 3.12
this suffices in order to show that R̂ is faithfully flat.

As flatness implies going-down (see [Mat89, Theorem 9.5]) we get the following corol-
lary as an important consequence.

Corollary 3.14. Let R be Noetherian. Then the ring map ε : R → R̂ satisfies going-
down.

For the special case of the completion of a Noetherian ring at a maximal ideal we
collect the following results.

Proposition 3.15. Let R be Noetherian and let I = m be a maximal ideal. The the
following hold:

(a) The m-adic completion R̂ of R is a Noetherian local ring with maximal ideal m̂ = mR̂.

(b) The m-adic completion R̂ is isomorphic to the mm-adic completion of the localization
Rm.

(c) It is dim(R̂) = htR(m).

Proof. (a) It was m̂ defined as the kernel of the surjective projection π1 : R̂ → R/m,
so R̂/m̂ ∼= R/m is a field. Furthermore, for (an)n≥0 ∈ R̂ \ m̂ we get an ∈ R \ m for
all n. So an is invertible modulo mn, this means there exists an element bn ∈ R with
anbn−1 ∈ mn. These bn certainly form the inverse of (an)n≥0 in

∏
n≥0R/m

n. It remains

to check that (bn)n≥0 lies in R̂, i.e. for all n ∈ N0 we need bn+1 − bn ∈ mn, but this is
clear from the following equations in R/mn:

an+1 = an, an+1bn+1 = 1, anbn = 1.

This shows that R̂ is local with maximal ideal m̂. By the discussion following 3.1.5, m̂
is the (m-adic) completion of m. Hence Proposition 3.11 gives m̂ = m ⊗R R̂. So as an
R̂-module m̂ is generated by m, i.e. m̂ = mR̂.

(b) This holds just by R/mn ∼= Rm/m
n
m and the definition of the completion as an

inverse limit over these factor rings.
(c) By our previous results, the canonical map ε : R → R̂ is a homomorphism of

Noetherian rings which satisfies going-down. In this situation the general fact about
fiber dimension (see [Mat89, Theorem 15.1]) together with the results of (a) and (b)
gives:

dim(R̂) = ht
R̂

(m̂) = htR(m) + dim(R̂/mR̂) = htR(m).



Chapter 4

Complete Intersections as
Separating Algebras

When studying the minimal number of separating invariants γsep, the next step after
dealing with separating algebras which are polynomial rings (i.e. γsep = n) is the case
γsep = n + 1. Again the question is, what restrictions does the existence of a nice
separating algebra, in this case now a hypersurface separating algebra, impose on
G. We will not approach that question for hypersurfaces alone, in fact a hypersurface
algebra is a special case of a complete intersection ring (at least if the G-variety X is
irreducible, so that the rings in question are domains).

In 1982, it was shown by Kac and Watanabe [KW82] and independently by Gordeev
[Gor82] that the invariant ring K[V ]G of a representation V of G can only be a complete
intersection if G is generated by 2-reflections (which are also called bireflections). This
was extended by Dufresne [Duf09] to graded separating subalgebras of the invariant ring.

This chapter contains a generalization of these theorems to non-linear actions on
varieties, and to separating subalgebras that are not complete intersections globally but
satisfy some weaker local property.

4.1 Complete Intersections

This section recalls some notions of complete intersections. They all arise from the fact
that an ideal I in a Noetherian ring S cannot be generated by less than htS(I) many
elements (see [Kem11, Theorem 7.5]). Now I is called a complete intersection ideal if a
system of generators of I with exactly htS(I) many elements exists. To be precise, in the
literature usually an ideal of S is called a complete intersection ideal if it is generated by
a regular sequence (see [Vas85]), which is a stronger condition than our definition here
(and equivalent for example when S is a local Cohen-Macaulay ring).

In addition, an affine K-algebra A is called a (global) complete intersection (over
K) if there exists a presentation A ∼= K[x1, . . . , xm]/I with a complete intersection ideal
I ⊆ K[x1, . . . , xm].

A Noetherian local ring (R, m) is called a (local) complete intersection if its m-adic
completion R̂ has a presentation R̂ ∼= S/I with a regular local ring S and a complete
intersection ideal I ⊆ S (see [BH93, Def. 2.3.1]). The completion is used because R̂

36
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(unlike R) always has a presentation as the quotient of a regular local ring (by the
Cohen structure theorem, [Eis95, Theorem 7.7]).

For a Noetherian local ring (R, m) there is also an intrinsic definition using the Koszul
complex, which shall be summarized briefly here. By Nakayama’s lemma, each minimal
system of generators of m has the same length (called the embedding dimension edim(R)
of R). Moreover, the Koszul complexes of two minimal systems of generators of m are
isomorphic, and hence just called ”the” Koszul complex of R. Now the first deviation
ε1(R) of R is defined to be the R/m-vector space dimension of the first homology of the
Koszul complex, and R is a complete intersection if and only if ε1(R) = edim(R)−dim(R)
(see [BH93, Theorem 2.3.3]). We have ε1(R̂) = ε1(R) for the completion of R because
the Koszul homologies are the same. With this intrinsic approach one can also show the
following remark.

Remark 4.1. Given a presentation R ∼= S/I with a regular local ring S and an ideal I
of S, the quotient ring R is a (local) complete intersection if and only if I is a complete
intersection ideal (again see [BH93, Theorem 2.3.3]).

Slightly more general is the notion of the complete intersection defect, which again
is defined both for affine K-algebras and for Noetherian local rings.

Definition 4.2. (a) Let A be an affine K-algebra of dimension n. The (global) com-
plete intersection defect of A (over K), written as cid(A), is the smallest number
l ∈ N0 such that there exists an m ∈ N0 and a presentation

A ∼= K[x1, . . . , xm]/(f1, . . . , fm−n+l)

with polynomials fi ∈ K[x1, . . . , xm].

(b) Let R be a Noetherian local ring. The complete intersection defect of R is defined
to be the number

cid(R) := ε1(R)− edim(R) + dim(R) ∈ N0.

Remark 4.3. As expected, Remark 4.1 extends to the statement: If R ∼= S/I is a regular
presentation of the local ring R, then cid(R) equals the minimal number of generators
of I minus htS(I) (see [KK65, Satz 1]).

Finally, for a Noetherian ring R we define its local complete intersection defect.

Definition 4.4. Let R be a Noetherian ring. The number

lcid(R) := sup{cid(Rp) | p ∈ Spec(R)} ∈ N0 ∪ {∞} (4.1.1)

is called the local complete intersection defect of R.

Remark 4.5. In 4.1.1, it suffices to take the supremum over all cid(Rm) with maximal
ideals m of R by a result of Avramov [Avr98, Corollary 7.4.4]. In particular, for a
Noetherian local ring R we get cid(R) = lcid(R).
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Remark 4.6. For an affine K-algebra A ∼= K[x1, . . . , xm]/I we have

lcid(A) ≤ cid(A). (4.1.2)

To see this, take the localization of A at a maximal ideal, which is isomorphic to
K[x1, . . . , xm]m/Im with a maximal ideal I ⊆ m ⊆ K[x1, . . . , xm]. Since ht(I) ≤ ht(Im)
and since Im can be generated by any ideal basis of I, the inequality 4.1.2 follows.

If the affine algebra A is graded (for example if A = K[V ]G is the invariant ring of a
representation), then the localization of A at its unique maximal homogeneous ideal A+

includes all the information about the complete intersection property, as the following
proposition shows.

Proposition 4.7. Let A = ⊕∞d=0Ad be a graded Noetherian K-algebra with A0 = K.
Then

lcid(A) = cid(AA+) = cid(A).

Moreover, we have

cid(A) = dim(A)− minimal number of homogeneous generators of A

+ minimal number of relations between them.
(4.1.3)

Proof. By 4.1.1 and by Remark 4.6, we have

cid(AA+) ≤ lcid(A) ≤ cid(A).

Let us use the ad-hoc notation hcid(A) for the number defined in 4.1.3. Of course, the
inequality cid(A) ≤ hcid(A) holds, so it remains to show that hcid(A) ≤ cid(AA+). Let
g1, . . . , gm be a minimal system of homogeneous generators of A and let I ⊆ K[x1, . . . , xm]
be the ideal of relations between them. Let us consider K[x1, . . . , xm] to be graded with
deg(xi) = deg(gi) so that I becomes a homogeneous ideal.

With m = (x1, . . . , xm), we have

AA+
∼= K[x1, . . . , xm]m/Im. (4.1.4)

Assume that cid(AA+) = k and dim(A) = n. Since 4.1.4 is a regular presentation of
the n-dimensional local ring AA+ , we know by Remark 4.3 that Im can be generated by
m − n + k many elements. By Nakayama’s lemma, m − n + k is the K-vector space
dimension of Im/mmIm. But this is the same as dimK(I/mI), which now by the graded
Nakayama lemma is equal to the minimal number of (homogeneous) generators of I. So
we have

hcid(A) ≤ n−m+ (m− n+ k) = k.

Apart from the complete intersection defect, another weakening of the concept of
complete intersection rings appears in the literature. We recall this definition next.

Definition 4.8. Let k be a non-negative integer. A Noetherian ring R is called a com-
plete intersection in codimension k if Rp is a local complete intersection ring for
all prime ideals p of R with htR(p) ≤ k.
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For the proof of the main theorem of this chapter, it will be necessary to pass to a
completion (of an affine K-domain at a maximal ideal). Let us therefore show that this
does not destroy the property of Definition 4.8. For our purpose it will be enough to
prove this for integral domain quotients of a regular ring, by which we mean a Noetherian
ring whose localizations are regular local rings.

Proposition 4.9. Let S be a regular ring, and let I ⊆ S be a prime ideal. Suppose that
R := S/I is a complete intersection in codimension k (for some k ∈ N0). Moreover, let
n be a maximal ideal of S with I ⊆ n, and let m := n/I. Then the m-adic completion R̂
of R is a complete intersection in codimension k, too.

Proof. By Proposition 3.8, we can view R̂ as Ŝ/IŜ where Ŝ is the n-adic completion of
S. Now let q ∈ Spec(Ŝ) with IŜ ⊆ q and ht

Ŝ/IŜ
(q/IŜ) ≤ k. We need to show that

(Ŝ/IŜ)
q/IŜ

, which is isomorphic to Ŝq/(IŜ)q, is a complete intersection ring.

Since Ŝq is a regular local ring, it is precisely to show that (IŜ)q is a complete
intersection ideal (cf. Remark 4.1). As in Chapter 3, εR and εS denote the canonical
ring maps R→ R̂ and S → Ŝ, respectively. Let p := ε−1

S (q) ∈ Spec(S). Then I ⊆ p and

ε−1
R (q/IŜ) = p/I. Since εR satisfies going-down (see Corollary 3.14), we have

htR(p/I) ≤ ht
Ŝ/IŜ

(q/IŜ) ≤ k.

So by assumption on R, it is Rp/I
∼= Sp/Ip a complete intersection ring, hence Ip is a

complete intersection ideal. Therefore, there exist a1, . . . , al ∈ I with Ip = (a1, . . . , al)Sp

and l = htSp(Ip). This means that for every a ∈ I there exists an s ∈ S \ p such that

sa ∈ (a1, . . . , al)S . But this also shows that (IŜ)q is generated by εS(a1), . . . , εS(al).
Using going-down for the ring map εS we get:

ht
Ŝq

((IŜ)q) ≥ ht
Ŝ

(IŜ) ≥ htS(ε−1
S (IŜ)) ≥ htS(I) = htSp(Ip),

where the last equality holds since I itself is a prime ideal (with I ⊆ p). It follows that
(IŜ)q is a complete intersection ideal.

4.2 Simply Connected Quotients

Vinberg’s lemma [KW82, Lemma 2] is one key to the proof of Kac-Watanabe’s theorem.
Roughly speaking, it states that if a finite group acts on a sufficiently nice topological
space such that the quotient is simply connected, then the group must be generated by
elements having a fixed point. A version for the euclidean topology of complex algebraic
varieties appears in [PV94, Section 8.3], where it is called ”Genghis Khan lemma” to avoid
the problem of assigning authorship to a result that appears to have been ”folkore” for
some time.

When we look at the action of a group G on a scheme X by morphisms, the notion of
fixed points is a bit more subtle then for affine varieties. The stabilizer of a point x ∈ X,
which is sometimes called the decomposition group of x, written as

Gd(x) := Gx = {σ ∈ G | σx = x},
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acts on the residue field κ(x) of x. It contains as a normal subgroup the inertia group
of x:

Gi(x) := {σ ∈ Gd(x) | σ = id on κ(x)}.

Now x should really be considered a fixed point of a group element σ ∈ G if and only if
σ ∈ Gi(x). For example if X = Spec(R) is an affine scheme and p a prime ideal of R,
then we get

Gi(p) = {σ ∈ G | σf − f ∈ p for all f ∈ R}.

Now suppose that X is a separated scheme (see [GW10, Definition 9.7]). Then the
following set of fixed points of an element σ ∈ G is always a closed subscheme of X (see
[GW10, Exercise 9.7]):

Xσ := {x ∈ X | σx = x and σ = id on κ(x)} = {x ∈ X | σ ∈ Gi(x)}.

As defined for the action on affine varieties in 2.15, we now call σ a k-reflection on X
(with k ∈ N0) if the closed subset Xσ of X has codimension less or equal to k.

Remark 4.10. If X is an affine G-variety, then we see with Remark 2.16 that an element
σ ∈ G is a k-reflection on X if and only if it is a k-reflection (in the above sense) on the
scheme Spec(K[X]).

We also need some general facts about the quotient of a scheme X by a finite group
G. Following the book ”Etale Cohomology Theory” by Lei Fu [Fu11] we will call the
action admissible if there exists an affine G-invariant morphism π : X → Y such that
OY ∼= (π∗OX)G. Then Y is not only the categorical but also the geometric quotient of
X by G (see [Fu11, p. 119]). Moreover, every open subset V ⊆ Y is the quotient of
π−1(V ) ⊆ X.

Finally, we recall what it means for a scheme Z to be simply connected. An étale
covering of Z is a scheme Z ′ together with a finite étale morphism f : Z ′ → Z. It is
called trivial if Z ′ is a finite disjoint union of open subschemes which are all isomorphic
to Z via f . And Z is called simply connected if every étale covering of Z is trivial
(see [Har77, IV, Example 2.5.3] or [Dan96, Chapter 4, Section 2.2]).

The fact that the quotient morphism by a finite free group action is étale is the basis
for Vinberg’s lemma. We need a slightly more general version here.

Lemma 4.11. Let X be a scheme on which a finite group G acts admissibly and let
Y = X/G be the quotient of X by G. Suppose X is of finite presentation over Y and let
H be the subgroup generated by all inertia subgroups Gi(x) with x ∈ X. Then X/H → Y
is étale.

Proof. Proposition 3.2.5 in [Fu11] contains the case that all inertia subgroups are trivial
(i.e. H = 1). We will adapt the proof to this modified version. As explained there,
we can reduce to the case that Y = Spec(A) is a strictly Henselian local ring and
X = Spec(B) is a finite A-algebra with BG = A. This reduction is done by taking a
strict Henselization A of the local ring OY,y of a point y ∈ Y and works here as well since
X/H ×Y Spec(A) ∼= (X ×Y Spec(A))/H (see the proof of [Fu11, Proposition 3.1.4]).

Now as A is Henselian and BH is finite over A, by [Fu11, Proposition 2.8.3] we have

BH ∼= (BH)m1 × . . .× (BH)mr via b 7→ (
b

1
, . . . ,

b

1
) (4.2.1)
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where mi are all the maximal ideals of BH . Composing the inclusion A ⊆ BH with the
localization BH → (BH)m1 gives a map ϕ1 : A→ ((BH)m1)Gd(m1).

This map is injective: If ϕ1(a) = 0, then there exists an s ∈ BH \ m1 with sa = 0 ∈
BH , so the annihilator of a in BH is not contained in m1. But since a is G-invariant and
all mi lie in the same G-orbit, it follows that the annihilator of a is not contained in any
maximal ideal of BH , so a = 0.

Moreover, this map is surjective: As G acts transitively on the maximal ideals, for ev-
ery i there exists an element σi ∈ G with σim1 = mi (let σ1 = id). For b

s ∈ ((BH)m1)Gd(m1)

there exists an a ∈ BH with

a

1
=
σib

σis
∈ (BH)mi 1 ≤ i ≤ r

by 4.2.1. So in (BH)m1 we have a
1 = b

s =
σ−1
i a
1 for all i. The σi form a set of representatives

for the left cosets modulo Gd(m1). So every σ ∈ G can be written as σ = σiτ with
τ ∈ Gd(m1). Since a

1 = b
s was assumed to be Gd(m1)-invariant, this shows a

1 = σa
1 , i.e.

AnnBH (σa− a) 6⊆ m1, for every σ ∈ G. Similarly, it follows that AnnBH (σa− a) is not
contained in any maximal ideal, so that σa = a for all σ. So a is a G-invariant with
ϕ1(a) = b

s .

Of course, the analogously defined maps ϕi : A→ ((BH)mi)
Gd(mi) are isomorphisms,

too. Since A is a strictly Henselian local ring, its residue field is separably closed. Hence
we get Gd(mi) = Gi(mi) ⊆ H. So the ring map A → BH has the property that for
all maximal ideals m of BH the localized map A = Am∩A → (BH)m is an isomorphism.
Thus, A→ BH is étale.

The result also appears in the book ”Henselsche Ringe und algebraische Geometrie”
by Kurke et al. [KPR75, Satz 4.2.1].

We will now give a version of Vinberg’s Lemma designed for a generalization of
Dufrene’s and Kac-Watanabe’s results. It already includes a step, which is performed in
Kac-Watanabe’s proof, of reducing from k-reflections on X to elements that have a fixed
point.

Lemma 4.12. Let X be a separated scheme, connected in codimension k, on which a
finite group G acts admissibly. Let π : X → Y be the quotient and suppose that X is of
finite presentation over Y . Furthermore, assume that Y has the following property:

for all closed subsets Z of Y with codimY (Z) > k (4.2.2)

the space Y \ Z is simply connected.

Then G is generated by k-reflections on X.

Due to the similarity to Definition 2.3, we will refer to 4.2.2 as simply connected
in codimension k, although this is not a standard term. In the case k = 1, Popov and
Vinberg call this property strongly simply connected (see [PV94, Proposition 8.3]).

Proof. Since X is separated, the finite union

L :=
⋃
σ∈G

codimX(Xσ)>k

Xσ
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is a closed subset of X. In addition, L is G-stable (since for all τ, σ ∈ G we have τXσ =
Xτστ−1

), and has codimX(L) > k by Remark 2.2(a). So by assumption, X̃ := X \ L is
connected.

As π is a closed map (see the proof of [Fu11, Proposition 3.1.1]), Ỹ := Y \ π(L) is an
open subscheme of Y . Moreover, we have codimY (π(L)) > k. So by assumption 4.2.2,
Ỹ := Y \ π(L) is simply connected.

Now G acts on X̃ := X \ L with quotient morphism π̃ : X̃ → Ỹ . An element σ ∈ G
is a k-reflection on X if and only if it has a fixed point in X̃. So we have to show that
G is equal to the subgroup H := 〈Gi(x̃) | x̃ ∈ X̃〉.

By Lemma 4.11, the morphism

ϕ : X̃/H → Ỹ

is étale. As Ỹ is simply connected, X̃/H is therefore isomorphic to a disjoint union of
finitely many copies of Ỹ . But X̃ and therefore X̃/H are connected, so there is only one
copy, and ϕ is an isomorphism. This shows that the quotients of X̃ by G and by H are
the same.

Now let σ ∈ G. To show that σ lies in H, take any point x̃ ∈ X̃. Since the G-orbit of
this point is the same as itsH-orbit, there exists τ ∈ H with στ ∈ Gd(x̃). For the quotient
π̃ of a scheme by a finite group, it is a general fact that the canonical homomorphism
from the decomposition group of x̃ to the Galois group of the extension of the residue
class fields of x̃ and ỹ = π̃(x̃) is surjective, see part (iii) of [Fu11, Proposition 3.1.1]).
And this holds now for both the decomposition group in G and in H, hence

Gd(x̃)/Gi(x̃) ∼= Gal(κ(x̃)/κ(ỹ)) ∼= Hd(x̃)/Hi(x̃).

Thus for στ ∈ Gd(x̃) there exists µ ∈ Hd(x̃) with στµ ∈ Gi(x̃), which is contained in H,
and hence σ ∈ H follows.

4.3 Purity Theorems

For a scheme Y let us denote by FEt(Y ) the category of étale coverings of Y . So its
objects are finite étale maps f : X → Y and its morphisms are commutative diagrams

X1
g //

f1   

X2

f2~~
Y

,

where g is a morphism of schemes and where f1 and f2 are two étale coverings of Y . Any
base change of a finite morphism is finite, and any base change of an étale morphism is
étale (see [Fu11, Proposition 2.3.1]). So given a scheme morphism h : Y1 → Y2, we get
the following functor:

h∗ : FEt(Y2)→ FEt(Y1), (X → Y2) 7→ ((X ×Y2 Y1)→ Y1). (4.3.1)

Remark 4.13. Suppose that h∗ is an equivalence of categories, and that Y2 is simply
connected. Since disjoint union and fiber product commute, it follows then that Y1 is
simply connected, too.
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Definition 4.14. (a) Let X be a scheme, Z ⊆ X a closed subscheme and U := X \ Z.
Following SGA 2 (see [Gro65, X, Définition 3.1]), we call the pair (X, Z) pure if
for all open subschemes V of X the functor i∗, as defined in 4.3.1, induced by the
inclusion i : U ∩ V ↪→ V is an equivalence of categories.

(b) Again following [Gro65, X, Définition 3.2], a Noetherian local ring (R, m) is called
pure if the pair (Spec(R), {m}) is pure.

Remark 4.15. Suppose that (X, Z) is pure, and that X is simply connected. In
particular, we get that the functor i∗ coming from the inclusion X \ Z ↪→ X is an
equivalence of categories. So by Remark 4.13, X \ Z is simply connected, too.

The following collection of purity theorems will be used as a black box here.

Theorem 4.16. Let R be a Noetherian local ring that satisfies one of the following four
conditions:

(a) R is regular and dim(R) ≥ 2,

(b) R is a complete intersection and dim(R) ≥ 3,

(c) R is excellent, a quotient of a regular local ring, equidimensional, a complete inter-
section in codimension 2 + cid(R), and dim(R) ≥ 3,

(d) R is the localization of a normal affine K-algebra, where K is a field of characteristic
0, and dim(R) ≥ 3 + cid(R).

Then R is pure.

Proof. Part (a) is the Zariski-Nagata purity theorem. Part (b) is due to Grothendieck.
We refer to SGA 2 for the proofs of both parts (see [Gro65, Théorème 3.4]).

Parts (c) and (d) were proven by Cutkosky [Cut95, Theorem 19 and Corollary after
Theorem 26]. Part (d) relies on results of Goresky and Macpherson that are only available
in characteristic 0.

Corollary 4.17. Let R be a Noetherian local ring and k a natural number. Suppose that
X = Spec(R) is simply connected and that one of the following four cases holds:

(a) R is regular and k = 1,

(b) R is a complete intersection and k = 2,

(c) R is excellent, a quotient of a regular local ring, equidimensional, a complete inter-
section in codimension 2 + cid(R), and k = 2,

(d) R is the localization of a normal affine K-algebra, where K is a field of characteristic
0, and k = 2 + cid(R).

Then X is simply connected in codimension k.
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Proof. Let Z ⊆ X be a closed subscheme of codimension larger than k. If we can show
that the pair (X, Z) is pure, then the result follows with Remark 4.15. For that, by
[Gro65, Proposition 3.3], it is to show that all local rings Rp with p ∈ Z are pure. But
for such a prime ideal p we have

dim(Rp) = htR(p) = codimX({p}) ≥ codimX(Z) > k.

The assumptions on R in (a), (b), (c), or (d), respectively, imply that Rp satisfies the
corresponding part of Theorem 4.16. Hence Rp is pure by Theorem 4.16.

The main theorem of this chapter, Theorem 4.25, uses part (c) of the above Corol-
lary. For our purpose, we can really view (c) as a generalization of (b) to rings R with
cid(R) > 0 (since the additional assumptions in (c) are always satisfied for local rings of
irreducible varieties).

The properties of R that are assumed in part (a) or (b) of Corollary 4.17 each remain
true if we pass from R to its completion R̂. For part (d) it is clear that this does not
hold.

We also need to get the assumptions of part (c) for a complete local ring.

Proposition 4.18. Let A be an affine K-domain that is a complete intersection in
codimension 2 + cid(A), where cid(A) is the global complete intersection defect as in
Definition 4.2(a). Let m be a maximal ideal of A and Â the m-adic completion of A.
Then Â satisfies the assumptions of part (c) in Corollary 4.17.

Proof. It is clear that Â is excellent and a quotient of a regular local ring. While it
need not be an integral domain (see comments below), it is however equidimensional
by [Mat89, Corollary after Theorem 31.5]. Moreover, Proposition 4.9 shows that Â is a
complete intersection in codimension 2+cid(A). The completion Â can be viewed as the
completion of the localization Am (see Proposition 3.15), and completion of local rings
preserves the (local) complete intersection defect, hence

cid(Â) = cid(Am) ≤ lcid(A) ≤ cid(A).

So a fortiori Â is a complete intersection in codimension 2 + cid(Â).

The observation that a completion of the coordinate ring of an irreducible variety
need not be an integral domain will appear in Chapter 5 as well (see Example 5.13).
However, we will use the fact that this cannot happen for normal varieties.

Remark 4.19. Let x be a normal point on an affine variety X (i.e. the localization of the
coordinate ring R of X at the maximal ideal m corresponding to x is a normal domain).
Zariski [Zar48] showed that normality implies that the m-adic completion R̂ of R is an
integral domain. In fact, he later [Zar50] showed that R̂ is normal, too. This is usually
described by calling Rm analytically irreducible or analytically normal, respectively.

4.4 Completions and the Invariant Ring

As a last step before proving the main theorem of this chapter, we use the results of
Chapter 3 to study the transition between the invariant ring and its completion in this
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section. So again let G be a finite group acting on an affine variety X through auto-
morphisms. Let us write R for the coordinate ring K[X]. To get a corresponding group
action on a completion of R we need a fixed point. So let x ∈ XG, and let m be the
maximal ideal of R corresponding to x. We write R̂ for the m-adic completion of R, and
ε : R→ R̂ for the canonical map.

For every σ ∈ G we now have σm = m. With Remark 3.7 we see that σ induces a
ring homomorphism R̂→ R̂, which we also call σ, such that

R
σ //

ε
��

R

ε
��

R̂
σ // R̂

commutes. With the explicit formula σ · (fn + mn)n≥0 = (σfn +mn)n≥0, it is easy to see

that this defines a group action of G on R̂.

Lemma 4.20. Let X be a G-variety, R = K[X], and let m ⊆ R be a maximal ideal fixed
by G. For every finitely generated, separating subalgebra A ⊆ RG = K[X]G the following
hold:

(a) The m ∩A-adic, the mG-adic, and the m-adic filtrations on R are all equivalent.

(b) The m ∩A-adic, and the mG-adic filtrations on RG are equivalent.

Proof. Of course, we have
√

(m ∩A)R ⊆
√
mGR ⊆ m. For part (a) we need show that

these are actually equalities (see Proposition 3.1). For this let p ∈ Spec(R) be any prime
ideal containing m ∩A. So in A the inclusion m ∩A ⊆ p ∩A holds.

It is a fact that preimages of maximal ideals under homomorphisms of finitely gener-
ated K-algebras are maximal ideals, too (see [Kem11, Prop. 1.2]), so m∩A is a maximal
ideal in A. Hence we get m ∩ A = p ∩ A, and so in particular mG ∩ A = pG ∩ A. As A
is separating, this implies mG = pG by Remark 1.8. As the quotient map is a geometric
quotient (see Remark 1.5) this implies that there exists an element σ ∈ G with σp = m.
But σ−1m = m, so p is equal to m.

So m is the only prime ideal containing (m∩A)R, which gives
√

(m ∩A)R = m since
every radical ideal is an intersection of prime ideals.

Part (b) follows with similar reasoning in RG.

Theorem 4.21. Let X be a G-variety, R = K[X], and let m ⊆ R be a maximal ideal
fixed by G. The invariant ring of the m-adic completion R̂ of R is isomorphic to the
mG-adic completion of the invariant ring:

(R̂)G ∼= R̂G.

Proof. For each σ ∈ G, the map R→ R, f 7→ f − σf is an RG-module homomorphism.
Hence putting them together gives rise to an RG-linear map

ϕ : R→
∏
σ∈G

R, f 7→ (f − σf)σ∈G,
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whose kernel is obviously the invariant ring RG. We get an exact sequence of finitely
generated RG-modules:

0 // RG
i // R

ϕ //
∏
σ∈G

R.

By Proposition 3.6, the induced sequence of mG-adic completions is exact, too. Let us
write R̃ for the mG-adic completion of R. We get the following commutative diagram
with exact sequences:

0 // R̂G
ĩ // R̃

ϕ̃ // ˜(
∏
σ∈G

R)

∼=
��

∼=
��

0 // R̂G
ĩ // R̃

ψ //
∏
σ∈G

R̃

,

where ψ is given by ψ(f) = (f − σf)σ∈G. But by Lemma 4.20 and Remark 3.4, we get

0 // R̂G
ĩ // R̃

ψ //

∼=
��

∏
σ∈G

R̃

∼=
��

0 // R̂G
î // R̂

ψ′ //
∏
σ∈G

R̂

,

where ψ′ is again the map ψ′(f) = (f −σf)σ∈G and î is the ring homomorphism induced
by the inclusion i : RG → R. So (R̂)G = ker(ψ′) = im(̂i) and this is (as a ring) isomorphic

to R̂G.

Proposition 4.22. With the situation as in Theorem 4.21 suppose that σ ∈ G is a

k-reflection on Spec(K̂[X]) (for some k ∈ N0). Then σ is a k-reflection on X as well.

Proof. Let I be the ideal in R̂ = K̂[X] generated by {f−σf | f ∈ R̂}. By assumption on
σ, we have ht

R̂
(I) ≤ k. As going-down holds for the homomorphism ε : R → R̂ (where

R = K[X]) by Corollary 3.14, this implies htR(ε−1(I)) ≤ k. But ε−1(I) contains the
ideal J := (f − σf | f ∈ R). So J has height less or equal to k, which means that σ is a
k-reflection on Spec(R), too.

4.5 Main Result about Complete Intersection Separating
Algebras

For the entire section let G be a finite group and X a G-variety. It was first observed by
Dufresne that the property of being simply connected passes well between the spectrum
of a separating algebra (with some mild additional assumptions) and the spectrum of
the invariant ring.
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Lemma 4.23. Let X be irreducible, and let A ⊆ K[X]G be a finitely generated, separating
algebra such that K[X]G is a finite A-module. Then the map

θ : Spec(K[X]G)→ Spec(A)

corresponding to A ⊆ K[X]G is a universal homeomorphism, and the functor θ∗ (defined
in Equation 4.3.1) is an equivalence of categories.

Proof. By Remark 1.8, θ is injective. In addition, θ is dominant. In [DK02, Proposition
2.3.10] it is shown that this implies that the extension of the fields of fractions

Quot(A) ⊆ Quot(K[X]G)

is finite and purely inseparable. By the same argument, for all prime ideals p ⊆ K[X]G

the extension Quot(A/(p ∩ A)) ⊆ Quot(K[X]G/p) is finite and purely inseparable. By
[GW10, Proposition 4.35], this means that θ is universally injective.

By assumption, K[X]G is a finite A-module, hence integral over A. So θ is finite,
surjective and universally injective. Therefore θ is a universal homeomorphism (see
[GW10, Exercise 12.32]) and the second claim follows by [Gro63, IX., Théorème 4.10].

Remark 4.24. (a) Suppose that K[X] is graded (e.g. if X is the affine cone over
a projective variety) and that the action of G on K[X] is degree-preserving (so
that K[X]G is graded as well). Then every graded, finitely generated, separating
subalgebra A ⊆ K[X]G satisfies the assumption of Lemma 4.23, i.e. K[X]G is a
finite A-module. This is essentially shown in [DK02, Theorem 2.3.12].

(b) A situation where K[X] is graded and the action is degree-preserving is the following:
Suppose that V is a linear representation of G. For every normal subgroup N of G
we get an induced action of G/N on K[V ]N such that K[V ]G = (K[V ]N )G/N . So the
action of G on K[V ] is split into two actions of smaller groups. This can be helpful
in order to compute the invariant ring. But now K[V ]N need not be a polynomial
ring. However, it inherits the grading of K[V ] and the action of G/N on K[V ]N is
degree-preserving.

We come to our main result of this chapter. It extends Dufresne’s result [Duf09,
Theorem 1.3] to non-linear actions on normal and connected varieties (i.e. varieties
whose coordinate ring is an integrally closed domain), and to separating algebras that
are complete intersections in codimension 2 + cid(A).

Theorem 4.25. Let X be normal and connected, and let XG 6= ∅. Suppose that there
exists a finitely generated, separating algebra A ⊆ K[X]G, such that K[X]G is a finite
A-module, and that A is a complete intersection in codimension 2 + cid(A). Then G is
generated by 2-reflections.

Proof. Let x ∈ XG and let m be the maximal ideal of K[X] corresponding to this point.
In each of the three rings A, K[X]G and K[X], we now have fixed a maximal ideal,
namely m ∩ A in A, mG := m ∩ K[X]G in K[X]G and m in K[X]. We will use the
superscript ̂ for the completions of the three rings at their specified maximal ideal.
By Lemma 4.20 and Remark 3.4, they are isomorphic to the m ∩ A-adic completions,
which we will denote with the superscript ˜ .
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The inclusions i : A → K[X]G and j : K[X]G → K[X] induce ring homomorphisms
between the completions of these rings. The necessary results about completions are
summarized in the following commutative diagram (see Proposition 3.11 and Theorem
4.21):

K̂[X]
G

∼=
��

Â
î //

=:ϕ
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K̂[X]G
ĵ //

∼=
��

K̂[X]

∼=
��

Ã
ĩ //

∼=
��

K̃[X]G
j̃ //

∼=
��

K̃[X]

∼=
��

Ã⊗A A // Ã⊗A K[X]G // Ã⊗A K[X].

So the ring map ϕ : Â→ K̂[X]
G

corresponds to the ring homomorphism

id
Ã
⊗ i : Ã⊗A A −→ Ã⊗A K[X]G.

Therefore, the scheme morphism ω := Spec(ϕ) induced by ϕ corresponds to a base
change of the map θ = Spec(i) : Spec(K[X]G) → Spec(A). This map is a universal
homeomorphism by Lemma 4.23. Hence ω is a universal homeomorphism, too.

The completion Â is a strictly Henselian local ring, hence its spectrum is simply
connected (see [Mil80, I, Example 5.2(c)]). By the complete intersection assumption on
A and by Proposition 4.18, Â satisfies the condition (c) of Corollary 4.17. So Spec(Â) is
simply connected in codimension 2.

Next we see that Spec(K̂[X]
G

) is simply connected in codimension 2 as follows: Let

Z ⊆ Spec(K̂[X]
G

) be a closed subset of codimension > 2. Since

ω : Spec(K̂[X]
G

)→ Spec(Â)

is finite, the set ω(Z) is closed and of codimension > 2 as well, hence Spec(Â) \ ω(Z) is
simply connected. The restriction of ω gives a morphism

ω0 : Spec(K̂[X]
G

) \ Z → Spec(Â) \ ω(Z),

which is also a universal homeomorphism. So as in the proof of Lemma 4.23, it follows
by [Gro63, IX., Théorème 4.10] that the functor ω∗0 is an equivalence of categories. By

Remark 4.13, Spec(K̂[X]
G

) \ Z is simply connected as well.

Now we are in a position to apply Lemma 4.12 to Spec(K̂[X]). It is irreducible
by Remark 4.19, and its quotient is simply connected in codimension 2. So Lemma

4.12 shows that G is generated by elements that are 2-reflections on Spec(K̂[X]). By
Proposition 4.22, these are 2-reflections on X as well.
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Remark 4.26. (a) Applying the technique of the proof of Theorem 4.25 to part (a)
of Corollary 4.17 (instead of parts (b) and (c)), results in another theorem about
polynomial rings as separating algebras. We do not write this down explicitly here,
since we get a more general result in Theorem 5.14. However, it is interesting to
observe that the assumptions on X and the action of G here are almost the same as
in Theorem 5.14.

(b) Unfortunately, I could not find a way to apply this proof to part (d) of Corollary
4.17, as completion certainly destroys the property of being the localization of an
affine K-algebra A. As this part of the Cororally is about simply-connectedness in
codimension 2 + cid(R), one could (at least in characteristic 0) hope for a theorem
that G is generated by (2 + cid(A))-reflections (where cid(A) is the global complete
intersection defect of a separating subalgebra with some extra assumptions). Kac and
Watanabe were aware of this result for the invariant ring A = C[V ]G of a represen-
tation over the complex numbers (see [KW82, Theorem B]). For cid(C[V ]G) = n− 3
(where n = dim(V )) this means that G has to be generated by (n− 1)-reflections.

One case in which the assumption for an n-dimensional affine algebra A to be a
complete intersection in codimension 2 + cid(A) (as in Theorem 4.25) is certainly satis-
fied is when A has isolated singularities (i.e. is regular in codimension n − 1) and has
cid(A) ≤ n−3. Cutkosky [Cut95] gives various examples (affine cones over some standard
examples in projective geometry) where this is the case (and where A is not a complete
intersection). One of them is the following.

Example 4.27. The affine algebra

A = K[x1, . . . , x6]/I with I = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5)

has dimension 4 and cid(A) = 1. Using the Jacobian criterion (see [Kem11, Theorem
13.10]) we see that the origin in K6 is the only singular point of the variety X = V(I).
So A is regular in codimension 3. In particular, A is (not a complete intersection, but)
a complete intersection in codimension 2 + cid(A) = 3. /

Such an example with an invariant ring A = K[V ]G would certainly be a nice
addendum to Theorem 4.25. But for invariant rings of representations (at least in the
non-modular case) being an isolated singularity is a rather strong condition (see [Ste14,
Lemma 2.4]). Instead of an example we get the following result as a corollary.

Theorem 4.28. Suppose that char(K) - |G| and that X = V is a non-trivial linear
representation of G with n = dim(V ) ≥ 3. If cid(K[V ]G) ≤ n − 3, then G \ {id}
contains an (n− 1)-reflection.

Proof. Assume that G contains no (n−1)-reflections other than the identity element. By
[Ste14, Lemma 2.4], these assumptions on G and V then imply that K[V ]G is an isolated
singularity. But as discussed above, cid(K[V ]G) ≤ n − 3 now means that K[V ]G is
regular (hence complete intersection) in codimension 2 + cid(K[V ]G). And by Theorem
4.25, G would be generated by 2-reflections, contradicting the assumption.

Remark 4.29. The last line of Remark 4.26 cited Kac-Watanabe’s result: If cid(C[V ]G)
is equal to n − 3, then G is generated by (n − 1)-reflections. In Theorem 4.28 we only
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get the result that G contains (n− 1)-reflections (but are not restricted to the complex
numbers).

After observing the importance of the assumption that K[X]G is a finite A-module in
the proof of Theorem 4.25 (recall that this is always true for graded separating subalge-
bras by Remark 4.24), I asked Gregor Kemper if this condition might always hold for sep-
arating subalgebras A ⊆ K[X]G. He responded with the example A = K[x] ⊆ K[x, x−1]
where A is separating for the hyperbola. The following example is built on this.

Example 4.30. Let X = V(xy − 1) ⊆ K2 and G = 〈
(
−1 0
0 −1

)
〉 ⊆ GL2(K) where K is

a field of characteristic 6= 2. The coordinate ring of X is

K[X] = K[x, y]/(xy − 1) = K[x, y],

and the invariant ring is

K[X]G = K[x, y]G = K[x2, xy, y2] = K[x2, y2].

The subalgebra A = K[x2] is separating: Two points u, v ∈ X are of the form u =(
λ
λ−1

)
, v =

(
µ
µ−1

)
∈ X with λ, µ ∈ K×. So λ2 = µ2 implies u = ±v, hence u and v

are in the same orbit.
So there exists a separating subalgebra which is even isomorphic to a polynomial

ring, but G is not generated by reflections, as all stabilizers Gx, for x ∈ X, are trivial. /

Finally, we recall that an example where the invariant ring K[V ]G is not a complete
intersection, but a smaller separating subalgebra A is a hypersurface, hence a complete
intersection, was already given in Example 1.10.



Chapter 5

The Minimal Number of
Separating Invariants

5.1 Upper Bound for γsep

It has been known for a while that the upper bound

γsep ≤ 2 · dim(K[X]G) + 1 (5.1.1)

holds (see the introduction of Kamke and Kemper [KK12]). This inequality is true in our
most general setting of invariant theory, i.e. when G is any linear algebraic group acting
on an affine variety X through automorphisms. So G may be infinite and K[X]G does not
even have to be finitely generated. Even if this is the case, the Krull dimension of K[X]G

equals its transcendence degree over K (see Kemper [Kem11, Theorem 5.9 and Exercise
5.3]). Of course, when we restrict ourselves to finite groups (over an algebraically closed
field) again, this upper bound reads as γsep ≤ 2n + 1 where n is the dimension of X as
well as the dimension of the invariant ring by Corollary 1.3. To the best of my knowledge
there is still no example where γsep = 2n+1 and I cannot provide such an example either.
This section contains a new proof for this upper bound in the case of finite groups and
some remarks on my attempts to improve it.

It is a result of Kronecker [Kro82] that an affine subvariety of Kn can be written as the
intersection of n+ 1 hypersurfaces. In fact, a more general statement holds, namely that
an ideal I in a Noetherian ring of dimension n can be generated by n+ 1 elements up to
radical. This means that there always exist a1, . . . , an+1 ∈ I with

√
I =

√
(a1, . . . , an+1).

The proof of this theorem (as given in [IR05, Threorem 9.5.1]) relies heavily on the prime
avoidance lemma of commutative algebra.

The separating variety is a subvariety of X × X, so it is defined by an ideal in the
2n-dimensional ring K[X]⊗KK[X]. Hence by the theorem cited above, set-theoretically
it can be defined by 2n + 1 elements. This already looks like the desired upper bound
for γsep, but we are faced with the problem that generators of an ideal defining Vsep need
not lie in the image of the δ-map defined in 1.0.2.

So a small set of generators of an ideal defining Vsep cannot always be traced back
to a set of separating invariants. However, we can modify the proof of [IR05, Threorem
9.5.1] to obtain the upper bound. The key observation is that the δ-map is at least K-
linear (see Proposition 1.12). So altering a set of generators linearly, does not destroy the

51



CHAPTER 5. THE MINIMAL NUMBER OF SEP. INVARIANTS 52

property of lying in the image of δ. Our modification of the theorem about the number of
generators upto radical is motivated by this observation. Instead of the prime avoidance
lemma we will use the simple fact that a vector space over an infinite field cannot be
written as a finite union of proper subspaces. (As specified in Chapter 1 the base field K
is always assumed to be algebraically closed. Nevertheless the next theorems carry the
(now unnecessary) assumption that K is infinite, just to emphasize that this property of
K is needed at this moment.)

Proposition 5.1. Let V be a vector space over (the infinite field) K. Suppose we are
given finitely many subspaces U1, . . . , Ur of V with V =

⋃r
i=1 Ui. Then there exists an i

such that Ui = V .

Proof. We will proceed by induction on r. The case r = 1 is clear, so let r > 1 now.
Assume by contradiction that for all j ∈ {1, . . . , r} we have

V 6=
r⋃
i=1
i 6=j

Ui.

So for every j there exists a vector vj ∈ V such that vj 6∈
⋃
i 6=j Ui. Obviously we

have vj ∈ Uj \ {0}. Since the field of scalars contains infinitely many elements, the set
{v1 + λv2 | λ ∈ K} is infinite as well. As V is written as a finite union of subspaces, we
conclude that there exists an index j and different λ, µ ∈ K with

v1 + λv2 ∈ Uj and v1 + µv2 ∈ Uj . (5.1.2)

Subtracting these equations shows v2 ∈ Uj , which would imply j = 2. But then we get
v1 ∈ Uj as well, which would imply j = 1. So the assumption was false and we see that
V is already the union of r− 1 subspaces. By induction we conclude that not all Ui can
be proper.

This results in the following substitute for the prime avoidance lemma.

Lemma 5.2. Let R be an algebra over (the infinite field) K. Suppose we are given a
finitely generated ideal I = (a1, . . . , am)R, and ideals J1, . . . , Jr of R such that I is not
contained in any of the Jk. Then there exists a K-linear combination of the ai which is
not containd in any of the Jk.

Proof. Ideals of a K-algebra are linear subspaces as well. We define the vector spaces
V := 〈a1, . . . , am〉K and Uk := Jk ∩ V for k = 1, . . . , r. By assumption, V does not equal
any of the Uk. Hence by Proposition 5.1, V is not equal to

⋃r
k=1 Uk. So there exists a

K-linear combination of the ai that lies in none of the Uk and therefore in none of the
Jk.

Theorem 5.3. Let R be an affine algebra over (the infinite field) K. Let n = dim(R) and
let I = (a1, . . . , am)R be an ideal of R. Then there exist n+ 1 elements b1, . . . , bn+1 ∈ R,
which can be chosen as K-linear combinations of the ai, such that

√
I =

√
(b1, . . . , bn+1).
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Proof. Using induction, we will construct elements bj as linear combinations of the ai
such that they have the following property for 1 ≤ j ≤ n+ 1:

Every prime ideal of R which contains b1, . . . , bj (5.1.3)

and which has height ≤ j − 1 contains I, too.

Let us start by defining b1. Since the ring is Noetherian, there are only finitely many
minimal prime ideals in R. Among these we denote by p1, . . . , pr those minimal prime
ideals that do not contain I. By Lemma 5.2 there exists a K-linear combination b1 of
the ai which is not contained in any of the pi. Since minimal primes ideals are precisely
those of height 0, the property (5.1.3) is satisfied for j = 1.

Now we assume that j ≥ 2 and that b1, . . . , bj−1 have already been defined. Once
again the Noetherian property implies that there are only finitely many prime ideals
that are minimal over the ideal (b1, . . . , bj−1). Among these there might be some prime
ideals that do not contain I. We will simply overwrite the above notation and denote
them by p1, . . . , pr again. By the induction hypothesis they must have height ≥ j − 1.
Lemma 5.2 gives the next element bj ∈ I which is a K-linear combination of the ai and
not contained in any of these pi.

Let us check that (5.1.3) is satisfied for b1, . . . , bj . For this let p ⊆ R be a prime ideal
that contains b1, . . . , bj , but not I. Of course, (b1, . . . , bj−1) ⊆ p. So p must sit above
some prime ideal minimal over (b1, . . . , bj−1). However I 6⊆ p, so it must be one of the pi
that is contained in p. Since the element bj was defined to avoid all the pi, we conclude
that one of the pi is strictly contained in p. Therefore, we have

ht(p) > ht(pi) ≥ j − 1,

as desired.
So by gradually avoiding prime ideals of a certain height we have found elements

b1, . . . , bn+1 ∈ I such that every prime ideal over (b1, . . . , bn+1) is a prime ideal over I
as well. The converse is trivial, hence these two ideals have the same prime ideals lying
above them. Since every radical ideal is the intersection of prime ideals, we get

√
I =

√
(b1, . . . , bn+1).

By replacing the usual prime avoidance lemma with the linear version given as Lemma
5.2 we achieved that the bi are K-linear combinations of the original generators.

Corollary 5.4. Let G be a finite group and X a G-variety of dimension n over (the
algebraically closed field) K. Then the upper bound γsep ≤ 2n+ 1 holds.

Proof. Let R be the coordinate ring of the product variety X × X. Furthermore, let
f1, . . . , fm ∈ K[X]G be a finite generating (or at least separating) set of invariants,
which always exists by Theorem 1.2. The separating variety is the subvariety of X ×X
defined by the ideal

Isep :=
(
δ(K[X]G)

)
R

= (δ(f1), . . . , δ(fm))R (cf. Proposition 1.12).

Since K is algebraically closed, we have

dim(R) = dim(K[X ×X]) = dim(X ×X) = 2n.
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By Theorem 5.3 there exist 2n+1 K-linear combinations b1, . . . , b2n+1 of the δ(fi) which
generate an ideal having the same radical as Isep. But since δ is K-linear, these bi are
equal to δ(gi) with some linear combinations of the invariants fi. So we have 2n + 1
invariants g1, . . . , g2n+1 with√

Isep =
√
δ(g1), . . . , δ(g2n+1).

By Proposition 1.13, this means exactly that the gi form a separating set of size 2n+1.

We will give some remarks about the above proofs, which all arose from my hope of
improving the upper bound to γsep ≤ 2n (maybe with some additional assumptions, like
X = V being a linear representation).

Remark 5.5. (a) The theorem of Eisenbud-Evans-Storch from 1972 is an improvement
for polynomial rings of Kronecker’s result: Every ideal I in K[x1, . . . , xn] can be de-
fined upto radical by n polynomials (see [IR05, Theorem 9.5.2 and Corollary 9.5.3]).
But here the generators cannot be chosen ”generic”. The case n = 1 already shows
the difference: A generator of an ideal (a1, . . . , am) in the principal ideal domain
K[x] must be a greatest common divisor of the ai and thus cannot be taken as a
K-linear combination of the ai in general.

(b) In the first step of the proof of Theorem 5.3 some of the minimal prime ideals of the
Noetherian ring R are avoided. If X is irreducible, then the ring in question (when
applying this theorem in Corollary 5.4) is the integral domain R = K[X]⊗K K[X].
So (0) is the only prime ideal that is avoided in the first step, hence we can take any
0 6= δ(f1) ∈ R for this. This translates to the following result for irreducible X:

For every non-constant invariant f1 ∈ K[X]G there exist 2n invariants f2, . . . , f2n+1

such that f1, . . . , f2n+1 form a separating set.

(c) Let us look again at the interplay of the two proofs above. The separating set
{f1, . . . , f2n+1} is built inductively. In each step an invariant fj is added such that
δ(fj) avoids finitely many prime ideals pi with Isep 6⊆ pi for i = 1, . . . , r. This simply
means that given finitely many pairs of points (ai, bi) ∈ X ×X with Gai 6= Gbi for
all i, we need an invariant fj that separates ai from bi. This led to the question
if this can always be done using a homogeneous invariant in the case that K[X] is
graded. The answer is negative, as the following example with monomial invariants
of different degrees shows.

Example 5.6. Let char(K) 6= 2, and let i ∈ K be a primitive 4-th root of unity. Let G be

the cyclic group of order 4 acting on X = V = K2 via G ∼= 〈
(
−1 0
0 i

)
〉. The invariant

ring is K[x, y]G = K[x2, y4, xy2]. Let us look at the following two pairs of points (aj , bj)
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and for each pair we give an invariant gj such that gj(aj) 6= gj(bj):

j 1 2

aj

(
1
0

) (
−1
1

)
bj

(
2
0

) (
1
1

)
gj x2 xy2

Claim: There is no homogeneous invariant f ∈ K[V ]G with f(aj) 6= f(bj) for j = 1, 2.
Proof: Assume f = λ0x

d + λ1x
d−1y + . . .+ λdy

d ∈ K[V ]G would be separating for both
pairs. Due to

λ0 = f(a1) 6= f(b1) = 2dλ0

we would have λ0 6= 0. Hence the degree d must be even, since f ∈ K[x2, y4, xy2]. But
then for every monomial xkyj that appears in f the x-degree k must be even, too. Thus
f cannot separate a2 from b2. /

The following example of a one-dimensional variety with trivial group action was
constructed with the hope of finding an example where γsep = 2n + 1. Instead there is
a separating set of size 2n here. It is still an interesting example, since no two linear
combinations of the 2n+1 coordinate functions form a separating set. This is in contrast
to the situation in the proof of Corollary 5.4, where the 2n+ 1 separating invariants can
always be constructed as linear combinations of any given (larger) separating set. I thank
Stephan Neupert for discussing examples of this kind with me.

Example 5.7. In the three-dimensional affine space over K we consider the union
X = X1 ∪X2 ∪X3 of the following three pairwise skew lines:

X1 = V(y − 1, z),

X2 = V(z − 1, x),

X3 = V(x− 1, y).

So the lines are just the three coordinate axes shifted by 1 to make them skew to each
other. We make this into an example of invariant theory by considering a trivial group
action on X. A separating set of invariants is then just a subset S of the coordinate
ring K[X] such that for all p1, p2 ∈ X there exists an f ∈ S with f(p1) 6= f(p2). Since
obviously the coordinate functions x, y, z form a separating set, it is natural to look at
linear combinations of these for a smaller separating set.
Claim: No two linear combinations of x, y, z form a separating set.
Proof: Assume by contradiction that

f = λ1x+ λ2y + λ3z, g = µ1x+ µ2y + µ3z

with λi, µi ∈ K are separating. In order to distinguish points on the shifted x-axis X1, it
is clear that one of the coefficients λ1 or µ1 has to be non-zero. Without loss of generality
we can assume λ1 6= 0.
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We will make frequent use of the following general principle: Whenever f1, . . . , fm
form a separating set and A = (aij) is an invertible m ×m-matrix over K, then gi :=∑m

j=1 aijfj with i = 1, . . . ,m form a separating set as well.

So we may replace f by λ−1
1 f and g by g−λ−1

1 µ1f to get simpler separating functions
of the form

f = x+ λ2y + λ3z, g = µ2y + µ3z,

where we have just renamed the coefficients λ2, λ3, µ2 and µ3. Assume µ2 = 0 first.
Then we would get the following points on X3 and X1 that can not be separated:

p

1
0
0

 1− λ2

1
0


f(p) 1 1

g(p) 0 0

Therefore, µ2 has to be non-zero. Again we simplify the separating set by replacing g by
µ−1

2 g and f by f − λ2µ
−1
2 g (and renaming λ3 and µ3 once more), which results in:

f = x+ λ3z, g = y + µ3z.

But then we would find a point on X1 and a point on X2 that cannot be distinguished
with f and g, ultimately contradicting our separation assumption:

p

λ3

1
0

  0
1− µ3

1


f(p) λ3 λ3

g(p) 1 1

This ends the proof of the claim. However, as promised before, there are still separating
sets of size 2, for instance

f = x+ y + z, g = z + 2y + 2xy + xz.

This can best be seen by evaluating f and g on all three irreducible components individ-
ually:

p

x1
0

 0
y
1

 1
0
z


f(p) x+ 1 y + 1 z + 1

g(p) 2x+ 2 2y + 1 2z

(5.1.4)

So if p1 and p2 are two different points in X that are mapped to the same element by
f , then, clearly, they must lie in two different components Xi. Furthermore, there exists
an a ∈ K such that

p1, p2 ∈ {

a1
0

 ,

0
a
1

 ,

1
0
a

}.
But the last line in Table 5.1.4 shows that g separates these three points. /
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5.2 Reflection Groups and γsep

In 2013 Dufresne and Jeffries proved a new connection, in the case of linear actions on
n-dimensional affine spaces, between the size of a separating set of invariants and the
property of being a k-reflection group [DJ15, Proposition 3.2 & Theorem 3.4]. Their
remarkable new result can be expressed shortly by the implication:

γsep = n+ k − 1 ⇒ G is generated by k-reflections.

They gave two proofs for this result, both relying on local cohomology. The first one uses
a Mayer-Vietoris spectral sequence for local cohomology, the second one a connectedness
theorem by Grothendieck similar to Hartshorne’s, which we stated in Theorem 2.8.

Again we would like to extend this result (as far as possible) to non-linear actions on
varieties. For this, we will imitate and adapt their second proof. Using Grothendieck’s
connectedness theorem we can reuse the results of Section 2.3.

This connectedness theorem is usually formulated with the notion of ”connectedness
in dimension d”, which is dual to Definition 2.3.

Definition 5.8. For an integer d, a Noetherian topological space Y is called connected
in dimension d if for all closed subsets Z ⊆ Y with dim(Z) < d the space Y \ Z is
connected.

As for connectedness in codimension there is a different but equivalent description
using the intersections of the irreducible components of Y . Since this is just the obvious
analogue of Proposition 2.4, we do not write it down explicitly here but instead give a
reference to the book ”Joins and Intersections” by Flenner et al. [FOV99, Prop. 3.1.4].

Remark 5.9. Let Y be a Noetherian topological space of finite dimension n.

(a) Suppose that for all closed subspaces Z ⊆ Y the formula

codimY (Z) + dim(Z) = dim(Y )

holds. Then the space Y is connected in dimension d (where d is an integer) if and
only if Y is connected in codimension n− d. For example, this is satisfied if Y is the
spectrum of the coordinate ring R of an equidimensional affine variety. It is then
also true for the spectrum of the completion R̂ of R at a maximal ideal.

(b) Let Y =
⋃r
i=1 Yi be decomposed into its irreducible components. Suppose that Y

is connected in dimension d with an integer d < n. Then all Yi have dimension
> d: By way of contradiction, assume that a component, say Y1, has dimension ≤ d.
Then one could disconnect Y by subtracting Y1 ∩

⋃r
i=2 Yi, which is a closed subset

of dimension ≤ d− 1.

Next we state a local version of Grothendieck’s connectedness theorem taken from
[FOV99].

Theorem 5.10. Let R be a complete Noetherian local ring of dimension n such that
Spec(R) is connected in dimension d with an integer d < n. Furthermore, let m be the
maximal ideal of R and f ∈ m. Then Spec(R/(f)) is connected in dimension d− 1 (and
has dimension ≥ d).
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Proof. In [FOV99, Theorem 3.1.7] it is shown that Spec(R/(f)) is connected in dimension
d− 1 under these assumptions.

Furthermore, we have htR((f)) ≤ 1 by the principal ideal theorem. So f lies in a
prime ideal q ∈ Spec(R) with htR(q) = 1. Let p ( q be a minimal prime ideal contained
in q. Since complete Noetherian local rings are catenary (see [BH93, Corollary 2.1.13]),
we have dim(R/p) = dim(R/q) + 1. Together with Remark 5.9(b) this gives

dim(R/(f)) ≥ dim(R/q) = dim(R/p)− 1 > d− 1.

Corollary 5.11. Let R be a complete Noetherian local ring of dimension n such that
Spec(R) is connected in dimension d with an integer d < n. Furthermore, let m be
the maximal ideal of R and f1, . . . , fr ∈ m. Then Spec(R/(f1, . . . , fr)) is connected in
dimension d− r (and has dimension ≥ d− r + 1).

Proof. Of course, we will use induction on r. The case r = 0 is trivial. So let us assume
that r > 0. By induction hypothesis Spec(R/(f1, . . . , fr−1)) is connected in dimension
d− r + 1 and has dimension ≥ d− r + 2. By Proposition 3.8, S := R/(f1, . . . , fr−1) is a
complete Noetherian local ring, too. So we use Theorem 5.10 to derive that the spectrum
of S/(fr) = R/(f1, . . . , fr) is connected in dimension d− r.

In order to use Grothendieck’s connectedness theorem we need to pass from a local-
ization R of the coordinate ring of an affine variety to its completion R̂. So we need to
bring the connectedness properties back from Spec(R̂) to Spec(R).

Lemma 5.12. Let (R,m) be a Noetherian local ring and (R̂, m̂) its m-adic completion.
If k is a non-negative integer such that Spec(R̂) is connected in codimension k, then
Spec(R) is connected in codimension k, too.

Proof. By Proposition 3.13, R̂ is a faithfully flat R-module. So the morphism

ϕ : Spec(R̂)→ Spec(R), q 7→ q ∩R,

corresponding to the inclusion ε : R→ R̂, is surjective (see [Mat89, Theorem 7.3]).
Now let p′ and p′′ be minimal prime ideals of R. Because of the surjectivity of ϕ

there are prime ideals q′ and q′′ of R̂ which are mapped to p′ and p′′, respectively. Since
R̂ is Noetherian (see Proposition 3.10), q′ contains a minimal prime ideal of R̂, which
has to be mapped to p′, too, because of the minimality of p′. Therefore, we can assume
that q′ and q′′ are minimal. Now suppose that Spec(R̂) is connected in codimension k.
By Proposition 2.4, this guarantees the existence of a finite sequence of minimal prime
ideals q0 = q′, q1, . . . , qr = q′′ of R̂ such that

ht
R̂

(qi + qi+1) = codim
Spec(R̂)

(V(qi) ∩ V(qi+1)) ≤ k (for i = 0, . . . , r − 1).

With pi := qi ∩R (for all i) we get:

htR(pi + pi+1) ≤ htR((qi + qi+1) ∩R) ≤ ht
R̂

(qi + qi+1) ≤ k,

where the second inequality follows from going-down (see Corollary 3.14). So there
is a finite sequence of irreducible closed subsets Yi := V(pi) of Spec(R) which leads
from Y0 = V(p′) to Yr = V(p′′) in a way such that two subsequent subsets intersect
in codimension ≤ k. We conclude with Proposition 2.4 that Spec(R) is connected in
codimension k.
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The converse of Lemma 5.12 is not true, as can be seen already in the case k = 0,
where connected in codimension 0 just means irreducible. We give an example for that
behaviour, which is taken from [Eis95, Section 7.2] and [Kem11, Exercise 13.6].

Example 5.13. Let char(K) 6= 2, and let X be the plane cubic curve defined by the
equation y2 − x3 − x2 = 0. As x3 − x2 has no square root in K[x] the polynomial
y2 − x3 − x2 ∈ K[x, y] is irreducible. Therefore, the coordinate ring K[X] and its
localization R := K[X](x,y) at the maximal ideal corresponding to the point at the origin
are integral domains, so their spectra are irreducible.

By Example 3.9 and Proposition 3.15, the completion of R at its maximal ideal is

R̂ ∼= KJx, yK/(y2 − x3 − x2).

But in the formal power series ring KJxK there is a square root of x3 + x2 (see [Eis95,
Section 7.2] for details), so the completion is not an integral domain. In fact, Spec(R̂)
decomposes into two irreducible components. /

In the above example the completion at a singular point of an irreducible curve was
not a domain. This cannot happen for the completion at nonsingular points by Remark
4.19.

Theorem 5.14. Let G be a finite group, and let X be a normal and connected G-variety
of dimension n, such that G is generated by elements having a fixed point in X. If
γsep = n+ k − 1 with k ∈ N, then G is generated by k-reflections.

Proof. According to Theorem 2.17, we need to show that the separating variety Vsep of
this action is connected in codimension k. Since X is irreducible and G is generated
by elements having a fixed point, we know from Corollary 2.18 that Vsep is at least
connected. Hence it is sufficient to show that Vsep is locally connected in codimension k
in the sense of Proposition 2.7. Let us write

r := γsep = n+ k − 1

with a natural number k, so that there exists a separating subset {f1, . . . , fr} ⊆ K[X]G

of size r. Using the δ-map from 1.0.2 we define

gi := δ(fi) ∈ K[X]⊗K K[X] =: R, for i = 1, . . . , n.

Moreover, let J be the ideal in R generated by g1, . . . , gr. Then, by Proposition 1.13,
Vsep is the subvariety

Vsep = VX×X(J) ⊆ X ×X.

So Spec(R/J) is homeomorphic to Spec(K[Vsep]), and we need to show that this space
is locally connected in codimension k.

Take a maximal ideal m of R = K[X]⊗KK[X] which corresponds to a point (x, y) ∈
Vsep, and let R̂ be the m-adic completion of R. By assumption, X is normal, hence the
product variety X ×X is normal, too. Normality of X ×X implies that the spectrum
of R̂ is irreducible (see Remark 4.19). With Proposition 3.15 we see that

dim(R̂) = htR(m) = dim(R) = dim(X ×X) = 2n,
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hence Spec(R̂) is connected in dimension d for all d ≤ 2n. In particular, we can apply
the local version of Grothendieck’s connectedness theorem, given in Corollary 5.11, with
d = 2n− 1 to the complete noetherian local ring R̂. It shows that the spectrum of

R̂/JR̂ = R̂/(g1, . . . , gr)R̂

is connected in dimension

(2n− 1)− r = 2n− 1− (n+ k − 1) = n− k.

But by Proposition 3.8, R̂/JR̂ is the m-adic completion of R/J . So we have

dim(R̂/JR̂) = htR/J(m/J) = dim(R/J) = dim(Vsep) = n

(cf. Remark 2.14(a)). Therefore, the spectrum of R̂/JR̂ is connected in codimension k
(see Remark 5.9(a)).

We get the same completion if we localize first (see Proposition 3.15), so R̂/JR̂ can
also be viewed as the completion of the local ring (R/J)m/J . Hence Lemma 5.12 shows
that Spec((R/J)m/J) is connected in codimension k.

As this holds for any maximal ideal m of K[X] ⊗K K[X] which corresponds to a
point of Vsep, i.e. any maximal ideal m/J of R/J , we conclude with Proposition 2.7 that
Spec(K[Vsep]) ∼= Spec(R/J) is connected in codimension k.

It is interesting to compare the case k = 1 of the above theorem with Theorem 2.20.
In Theorem 5.14 it was necessary to assume that X is normal, while in Theorem 2.20
it was necessary to assume that X is Cohen-Macaulay. Neither assumption is stronger
than the other.

Of course, the variety X in Theorem 5.14 is irreducible since normal local rings are
integral domains. Hence we can reuse Example 2.25, where X was the union of two planes
intersecting in a single point, to see that the assumption that X be normal cannot be
dropped from Theorem 5.14.

We finish with an example of a G-variety X that is not an affine space and to which
our main theorems of Chapters 2, 4 and 5 apply.

Example 5.15. Let X be the following 3-dimensional irreducible subvariety of C4:

X = V(x3
1 + x2x3 + x3x4 + x2

4︸ ︷︷ ︸
=:h

). (5.2.1)

Since h(x1, −x2, −x3, −x4) = h(x1, x2, x3, x4), a cyclic group G = 〈σ〉 of order 2 acts
on X by

σ · (x1, x2, x3, x4) := (x1, −x2, −x3, −x4). (5.2.2)

The invariant ring of this G-variety is generated by 6 elements:

C[X]G = C[x1, x
2
2, x

2
3, x

2
4, x2x3, x2x4, x3x4]/(h) (5.2.3)

= C[x1, x2
2, x3

2, x2x3, x2x4, x3x4].

The origin of C4 lies in X and is fixed by this action, hence XG 6= ∅. But there are
no other fixed points in X: A point (x1, x2, x3, x4) ∈ C4 is fixed by the action defined
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in 5.2.2 if and only if x2 = x3 = x4 = 0. But for x ∈ X we see with 5.2.1 that the
vanishing of these three coordinates implies x1 = 0, hence XG = {0}. In particular, G
is not generated by 2-reflections.

Since X is a hypersurface, it is also Cohen-Macaulay. Thus, Theorem 2.20 gives the
lower bound γsep ≥ n+ 1 = 4.

Of course, we can do better now with Theorem 5.14. We need to check that X is
normal first. A quick calculation with the Jacobian criterion shows that the singular
locus of X is just Xsing = {0}. In particular, C[X] satisfies Serre’s condition (R1). As
C[X] is Cohen-Macaulay, it satisfies a fortiori the condition (S2). By Serre’s criterion for
normality (see [BH93, Theorem 2.2.22]), we see that C[X] is normal. So Theorem 5.14
implies that γsep ≥ 5. In addition, Theorem 4.25 shows that no separating subalgebra
A ⊆ C[X]G over which C[X]G is integral is a complete intersection.

A generating set of size 6 was given in 5.2.3. We claim that the following subset of
size 5 is separating for the action on X:

S = {x1, x2
2, x3

2, x2x4, x3x4}.

For the proof suppose that u, v ∈ X satisfy g(u) = g(v) for all g ∈ S. The invariant
f = x2x3 is the only generator missing in S, so we just need to show that f(u) = f(v).
Write u = (u1, u2, u3, u4). Then we have

v =


v1

v2

v3

v4

 ∈ {

u1

±u2

±u3

λ

 | λ ∈ C}.

If u2 = 0, then we get f(u) = 0 = f(v) from this. So assume that u2 6= 0. With the
invariant x2x4 ∈ S we get

u2u4 = v2v4 = ±u2v4,

hence v4 = ±u4. The definition of X in 5.2.1 shows that

f = x2x3 = −x1
3 − x3x4 − x4

2,

and for each of these three summands we now know that it takes the same value at u
and v, so f(u) = f(v).

With Theorem 5.14 we could really pin down γsep to the value of 5 in this example./



Appendix A

Magma Code

This section provides some magma [BCP97] functions that were used in the computation
of the examples of this thesis.

In magma an invariant ring is represented by an object of the category RngInvar.
It is constructed with the functions InvariantRing(G) or InvariantRing(G, K) where G
is a matrix or permutation group and K is a field. The delta-map defined in Equation
1.0.2 is a necessary tool to compare two sets of invariants with respect to their separating
properties.

/* FUNCTION DeltaMap

Input:

- f: An element of an invariant ring R = K[V]^G, which is a subring of a

polynomial ring K[x_1, ..., x_n].

Output:

- delta(f): The element f(x) - f(y) in the polynomial ring K[x_1, ..., x_n,

y_1, ..., y_n].

*/

DeltaMap := function(f)

P := Parent(f);

K := CoefficientRing(P);

n := Rank(P);

m := 2*n;

Q := PolynomialRing(K,m);

firstIndeterminates := [ Q.i : i in [1..n]];

lastIndeterminates := [ Q.i : i in [n+1..m]];

help_map1 := hom < P -> Q | firstIndeterminates>;

help_map2 := hom < P -> Q | lastIndeterminates>;

62
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delta := map < P -> Q | x :-> help_map1(x) - help_map2(x)>;

return (delta(f));

end function;

Let F and S be subsets of an invariant ring K[V ]G ⊆ K[x1, . . . , xn]. Following
[Kem09, Definition 1.1] the set S is called F -separating if for all x, y ∈ Kn we have:

If g(x) = g(y) for all g ∈ S, then f(x) = f(y) for all f ∈ F.

To compare separating properties we made use of Hilberts Nullstellensatz in Proposi-
tion 1.13 and hence worked over an algebraically closed field. Consequently, the following
magma function returns true if and only if S is F -separating when both sets are regarded
as functions K

n → K where K is an algebraic closure of K.

/* FUNCTION IsSeparating

Input:

- F: A list of polynomials in K[x_1, ..., x_n].

- S: A list of polynomials in K[x_1, ..., x_n] whose separating property

is to be checked.

Output:

- true, if S is F-separating over an algebraic closure of K,

- false, otherwise.

*/

IsSeparating := function(F, S)

P := Parent(F[1]);

K := CoefficientRing(P);

n := Rank(P);

result := true;

Q := PolynomialRing(K, 2*n);

S2 := [ Q!DeltaMap(s) : s in S ];

J := ideal < Q | S2 >;

for i := 1 to #F do

if not IsInRadical(Q!DeltaMap(F[i]), J) then

result := false; break;

end if;

end for;
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return result;

end function;

The standard magma function IsInRadical(f ,I) was used in our implementation.
This radical membership test uses an additional indeterminate (see [CLO15, Chapter 4,
Proposition 8]). In the case of homogeneous polynomials and ideals a simpler radical
membership test appears in [DK15, Lemma 4.3.1]. This leads to a faster separating test
for homogeneous invariants.

/* FUNCTION IsInRadicalHom

Input:

- f: A homogeneous polynomial in K[x_1, ..., x_n].

- I: A homogeneous ideal in K[x_1, ..., x_n].

Output:

- true, if f lies in the radical of I.

- false, otherwise.

*/

IsInRadicalHom := function(f, I)

P := Parent(f);

result := false;

if 1 in ideal < P | I, 1 - f >

then result := true;

end if;

return result;

end function;

/* FUNCTION IsSeparatingHom

Input:

- F: A list of homogeneous polynomials in K[x_1, ..., x_n].

- S: A list of homogeneous polynomials in K[x_1, ..., x_n] whose separating

property is to be checked.

Output:

- true, if S is F-separating over an algebraic closure of K,
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- false, otherwise.

*/

IsSeparatingHom := function(F, S)

P := Parent(F[1]);

K := CoefficientRing(P);

n := Rank(P);

result := true;

Q := PolynomialRing(K, 2*n);

S2 := [ Q!DeltaMap(s) : s in S ];

J := ideal < Q | S2 >;

for i := 1 to #F do

if not IsInRadicalHom(Q!DeltaMap(F[i]), J) then

result := false; break;

end if;

end for;

return result;

end function;

A finite set F of homogeneous K-algebra generators of the invariant ring R := K[V ]G

can be constructed with the method FundamentalInvariants(R) in magma. A trivial first
step on the way to a separating set of invariants of minimal size is to test if any smaller
subsets of F are separating, too.

/* FUNCTION MinimalSeparatingSubsets

Input:

- F: A list of homogeneous polynomials in K[x_1, ..., x_n].

Output:

- L: A list of all subsets of F that are F-separating and of minimal size

among all F-separating subsets of F.

*/

MinimalSeparatingSubsets := function(F)

separatingSetFound := false;

for i := 1 to #F do

SubsetsOfFixedSize := Subsets(SequenceToSet(F), i);
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result := [];

for mset in SubsetsOfFixedSize do

if (IsSeparatingHom(F, SetToSequence(mset))) then

separatingSetFound := true;

result := Append(result, mset);

end if;

end for;

if (separatingSetFound) then

break;

end if;

end for;

return result;

end function;

To compute the Cohen-Macaulay defect of quotient rings of K[V ×V ] modulo homo-
geneous ideals whose radical is equal to Isep as in Section 2.4, we use the magma function
HomologicalDimension(M), which returns the length of a minimal free resolution of a
module M , together with the graded Auslander-Buchsbaum formula.

/* FUNCTION CohenMacaulayDefect

Input:

- I: A homogeneous ideal in Q = K[x_1, ..., x_m].

Output:

- cmdef(Q/I): The Cohen-Macaulay defect of Q / I.

*/

CohenMacaulayDefect := function(I)

m := Rank(I);

return (HomologicalDimension(GradedModule(I)) - m + Dimension(I));

end function;

In this thesis we have compared the minimal number k such that G is generated
by k-reflections with properties of the separating variety Vsep and/or with properties of
(separating subalgebras of) the invariant ring K[X]G. We have used examples from the
[KKM+01] database of invariant rings sevaral times. As the reflection number k is not
in the database (if k ≥ 3), the following function was used to compute it.
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/* FUNCTION ReflectionNumber

Input:

- G: A matrix group.

Output:

- The minimal number k such that G is generated by k-reflections.

*/

ReflectionNumber := function(G)

n := Degree(G);

K := CoefficientRing(G);

E := ScalarMatrix(n, 1);

R := MatrixAlgebra(K, n);

k := n;

for i := 1 to n - 1 do

if G eq MatrixGroup< n, K | { s : s in G | Dimension(Kernel(R!s - E)) ge

(n-i) } > then

k := i; break;

end if;

end for;

return k;

end function;
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Archiv der Mathematik, 16(1):348–362, 1965.



BIBLIOGRAPHY 70

[KK12] Tobias Kamke and Gregor Kemper. Algorithmic invariant theory of nonre-
ductive groups. Qual. Theory Dyn. Syst., 11(1):79–110, 2012.

[KKM+01] Gregor Kemper, Elmar Körding, Gunter Malle, B. Heinrich Matzat, Denis
Vogel, and Gabor Wiese. A database of invariant rings. Experiment. Math.,
10(4):537–542, 2001.

[KPR75] H. Kurke, G. Pfister, and M. Roczen. Henselsche Ringe und algebraische
Geometrie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1975.
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Artin-Rees lemma, 31
Auslander-Buchsbaum formula, 20, 66

bireflection, 2, 36

Cauchy sequence, 26
codimension, 10, 17
Cohen structure theorem, 37
Cohen-Macaulay, 16, 19, 21, 23, 36, 60
Cohen-Macaulay defect, 15, 16, 18, 66
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filtered module, 26
Noetherian local ring, 57

complete intersection, 36, 43
in codimension, 38, 47

complete intersection defect, 37
completion, 36, 39, 44, 45, 47, 58

is flat, 34
of a module, 27
of a ring, 28
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connected in dimension, 57

database of invariant rings, 19
depth, 15
deviation, 37
dimension, 5, 10

embedding dimension, 37

equidimensional, 17, 19
equivalence of categories, 43, 47
etale covering, 40
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excellent ring, 43
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faithfully flat, 34, 58
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ring, 24
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equivalent, 26, 45
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fundamental system of neighbourhoods,

26
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irreducible component, 16, 17
isolated singularity, 49
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local cohomology, 57
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multiplicative invariant theory, 22

Nakayama’s lemma, 37, 38
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natural transformation, 33
normal variety, 47, 60
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