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Abstract

This paper presents the theoretical basis for the simulation and control of active helicopter blades.

The analysis is based on a model that considers the structural dynamics, the aerodynamics, as well

as the integrated blade actuation and sensing. The effect ofthe integral actuation enters the beam

model via an active beam cross-sectional analysis. A 2-D incompressible, inviscid, quasi-steady

aerodynamic model is coupled to the active structural model. For simulation, analysis, and control

design, the blade model is discretized in space using a Galerkin approach. The resulting nonlinear

Work has been presented at the 47th Structures, Structural Dynamics & Materials Conference, Newport,

Rhode Island, May 2006.
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model of high order is reduced using the aeroelastic modes ofthe blade. Finally, the usefulness of

a reduced order model is demonstrated by designing an energyoptimal linear-quadratic-Gaussian

control.

Nomenclature

Bi axes of the deformed beam

bi axes of the undeformed beam

F internal force

f external force

H angular momentum

J cost function

K state feedback controller gain

M internal moment

m external moment

P linear momentum

P act power due to active elements

P bou power due to forces at the boundaries

P ext power due to external loads

q time function

T kinetic energy

T transformation matrix

t time

U potential energy

u voltage

V linear velocity

x beam reference line

x̄ normalized beam reference line
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γ strain

κ curvature

Ω angular velocity

Typefaces

A, B, C, . . . full order beam

A,B,C, . . . reduced order beam

A, B,C, . . . beam in state space form

�
′ derivative with respect to the beam reference linex

�̇ absolute time derivative

�
0 steady state

�
0 exact boundary condition value atx = 0

�
L exact boundary condition value atx = L

Φ� assumed mode of�

Introduction

Active structures have the potential to outperform conventional structures in many ways. In the case of

helicopter blades, active structures can overcome the compromise between vibration and weight reduction

(Refs. 1, 2). This potential has been investigated in tests of the Active Twist Rotor (ATR) blade, whose

parameters are the basis for the theoretical results presented herein. The present paper is a continuation of

the research presented in Traugott et al. in Ref. 3 dealing with the nonlinear dynamic solution and control

design of active helicopter blades. The significant new developments are:

• A structural dynamic model is used based on a nonlinear Galerkin approach which is more efficient

as compared to the finite element method (FEM) (Ref. 4). For example, in the linearized perturba-

tion analysis it is shown that using 10 modes for the Galerkinapproach and 10 nodes for the FEM

approach (both 120 states), the 3rd bending mode frequency is accurate up to three significant digits

using the Galerkin approach while the FEM approach has an error of 10%.
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• A quasi-steady aerodynamic model is included.

• A nonlinear model order reduction technique is used to derive a low-order, high fidelity nonlinear

blade model for control design.

• Nonlinear control design is investigated.

The paper is organized as follows. First, the blade model is introduced followed by the Galerkin approach

for spatial discretization. Modal analysis is presented next and the obtained normal modes are utilized for

model order reduction. Finally, the control design is discussed based on the reduced order model.

Blade Model

Accurate modeling of active helicopter blade dynamics requires to combine physical models of dif-

ferent domains. The four models which need to be developed and integrated are: the structural dynamic

model, the aerodynamic model, the actuation model and the sensing model of the helicopter blade. The

structural and aerodynamic models are inherently nonlinear. The presented models are an extension of

earlier work of the authors in Refs. 4,5.

Structural model

In order to compute the dynamics of the helicopter blade at low computational costs, a nonlinear beam

model developed by Hodges is used (Refs. 6, 7). This model takes advantage of the one-dimensional

characteristics of a helicopter blade undergoing large deformation and small strain and is a better choice

compared to 3-D finite-element analysis (Ref. 8). The beam formulation is intrinsic, i.e. neither displace-

ment nor rotation variables appear in the beam equations. The intrinsic formulation is very compact and

furthermore applicable for general beams (anisotropic, non-uniform, twisted and curved).

The beam model is composed of vector equations in terms of vector variables. The measure numbers

(or scalar components) of the vector variables in the deformed frame (B-frame) are used. The B-frame is

orthogonal and defined by the cross section of the deformed beam as seen in Fig. 1. TheB2-axis and the

B3-axis lie in the cross-section with theB1-axis defined byB1 = B2 × B3. Note that in this work, all
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variables are written in the B-frame of the deformed beam.

The intrinsic equations for the nonlinear dynamics of the beam are:

F ′ + (k̃+ κ̃)F + faero + f dist = Ṗ + Ω̃P,

M ′ + (k̃+ κ̃)M + (ẽ1 + γ̃)F +maero +mdist = Ḣ + Ω̃H + Ṽ P,

V ′ + (k̃+ κ̃)V + (ẽ1 + γ̃)Ω = γ̇,

Ω′ + (k̃+ κ̃)Ω = κ̇,

(1)

where( )′ denotes the derivative with respect to the beam reference line and ˙( ) denotes the absolute

time derivative.F andM are the measure numbers of the internal force and moment vector (generalized

forces),P andH are the measure numbers of the linear and angular momentum vector (generalized

momenta),γ andκ are the beam strains and curvatures (generalized strains),V andΩ are the linear

and angular velocity measure numbers (generalized velocities). The external forces and moments due to

aerodynamic effects arefaero, maero and due to disturbances aref dist, mdist respectively.k = [k1 k2 k3]
is the initial twist/curvature of the beam ande1 = [1 0 0]T . The tilde operator transforms a vectora to a

matrix ã so as to affect a cross product when left-multiplied to the vector b, i.e., ãb = a× b.

The intrinsic beam equations provide4 vector equations for8 vector unknowns (F , M , P , H, γ, κ, V ,

Ω). In order to complete a solvable set of equations,4 more vector equations are needed. Two equations

relate the generalized forces (F , M) and the generalized strains (γ, κ) via the beam cross-section stiffness

matrix. The beam cross-section inertia matrix leads to the relation between the generalized momenta (P ,

H) and the generalized velocities (V , Ω). Both relations are the constitutive equations for an active beam

and are derived from an accurate cross-sectional analysis using the theory of Patil and Johnson in Ref. 9

(for thin-walled beams) or Cesnik and Palacios in Ref. 10 (for general configuration):
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γ
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V

Ω





,

(2)

whereR, S andT are the cross-sectional flexibilities, andFA, MA are generalized forces induced by the



6 AUTHOR NAME JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

active elements. The inertia matrices have the following components:G = µI =




µ 0 0

0 µ 0

0 0 µ



, K = −µξ̃ =




0 µξ̃3 −µξ̃2

−µξ̃3 0 0

µξ̃2 0 0



, I = 



i2 + i3 0 0

0 i2 i23
0 i23 i3



, (3)

whereµ, ξ, i2, i3, i23 are the mass per unit length, mass center offset and the threecross-sectional mass

momenta of inertia per unit length.

Aerodynamic model

To take into account the primary aeroelastic effects, an incompressible, inviscid, quasi-steady, 2-D

aerodynamic model from Ref. 5 based on a finite-state airloadmodel in Ref. 11 is used. The model

neglects the unsteady effects due to the wake. The aerodynamic loadsfaero andmaero in Eq. (1) are

calculated using:

faero =






0

−ρbCl0V̌2V̌3 + ρbClαV̌
2
3 − ρbCd0V̌

2
2

ρbCl0V̌
2
2 − ρb(Clα + Cd0)V̌2V̌3 +

1
2
ρb2ClαV̌2Ω1






,

ˇ̌maero =






2ρb2Cm0V̌
2
2 − 1

4
ρb3ClαV̌2Ω1

0

0






,

(4)

where(̌ ) denotes a variable measured at mid-chord andˇ̌
( ) denotes a variable calculated at quarter-chord.

The parameterρ is the air density andb is the semi-chord. Moreover, one can see from Fig. 2 that:

V̌3 = V3 − ξbΩ1, V̌2 = V2,

maero
1 = ˇ̌maero

1 + (0.5− ξ)bfaero
3 .

(5)

After inserting Eq. (5) into Eq. (4), the new equations can bewritten in terms ofV andΩ as:

faero =

{
0 1 0

}T [
V TXV V V + V TXVΩΩ+ ΩTXΩΩΩ

]
+

{
0 0 1

}T [
V TYV V V + V TYVΩΩ

]
,

maero =

{
1 0 0

}T [
V TZV V V + V TZVΩΩ

]
,

(6)
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where the matrices used above are defined as:YV V = ρb




0 0 0

0 Cl0 −(Clα +Cd0)

0 0 0



, XV V = ρb




0 0 0

0 −Cd0 −Cl0

0 0 Clα



,

YV Ω = ρb2




0 0 0

(0.5 + ξ)Clα + ξCd0 0 0

0 0 0



, XV Ω = ξρb2




0 0 0

Cl0 0 0

−2Clα 0 0



,

ZV V = ρb2




0 0 0

0 2Cm0 + (0.5− ξ)Cl0 −(0.5− ξ)(Clα + Cd0)

0 0 0



, XΩΩ = ξ2ρb3




Clα 0 0

0 0 0

0 0 0



,

ZV Ω = ξρb3




0 0 0

−ξClα + (0.5− ξ)Cd0 0 0

0 0 0



.

(7)

Actuation model

The actuation in an active helicopter blade like the Active Twist Rotor (ATR) is provided by active fiber

composites (AFC) that are distributed as discrete segmentsover the span of the blade (see Fig. 3). Each

segment may contain multiple layers of AFCs which can be controlled independently (ATR contains four)

and induce constant generalized forcesFA andMA in the blade structure (see Eq. (2)). The generalized

active forces are linearly related to the applied voltages as





FA
u

MA
u





=



R SST T−1 


EF uu, (8)

whereuu is the applied voltage vector for one blade segment consisting of multiple voltages.E andF are

constants relating the applied voltage to the active generalized strains which are transformed to the active

generalized forces via the cross-section stiffness matrix. The cross-sectional flexibilitiesR, S, andT are

as defined in Eq. (2).
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Sensing model

The helicopter blade is assumed to be equipped with a number of equidistantly distributed sensors

which measure the generalized strainsγ andκ along the blade reference line. The results presented in the

later sections assume five sensor locationsx = y−1
4
L, wherey = 1 . . . 5 refers to theyth sensor location

andL is the blade length. Furthermore, the sensors are assumed torelate the generalized strains linearly

to the voltage outputs as

yy =

[O P]γ(x = y−1
4
L)

κ(x = y−1
4
L) , (9)

whereyy denotes the measured voltages.O andP relate the sensed voltages to the generalized strainsγ

andκ. Without loss of generality, the sensor matrices are simplified toO = I andP = I, whereI ∈ R3×3

is the identity matrix.

Galerkin Discretization

The helicopter blade model equations (Eqs. (1), (2), (6), (8), (9)) form a solvable set withV , Ω, κ

andγ as unknowns. For simulation and analysis purposes, this equation set is discretized with respect

to space. Unlike the most common approaches based on the finite element method, the helicopter blade

model is discretized using a Galerkin approach (Ref. 12). Byusing special weighting functions in the

Galerkin approach presented here, the approximated solution fulfills the law of energy conservation if no

active elements are modeled (Ref. 4). If active elements areused, the law of energy conservation can be

fulfilled approximately. Additionally, the boundary conditions of the problem are satisfied weakly in the

Galerkin approach.

Brief introduction to Galerkin discretization

For readers who are not familiar with the Galerkin approach,a brief introduction is presented in this

subsection. Consider a partial differential equation in terms of the variable w(x,t) given by:

f (w(x, t), ẇ(x, t), w′(x, t), x, t) = 0
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The solution can be approximated by a separation of variables in space and time as

w(x, t) =

n∑

i=1

Φi(x)qi(t),

such that the partial differential equations can be approximated as

f (Φi(x), Φ
′

i(x), qi(t), q̇i(t), x, t) ≈ 0. (10)

The right relation in Eq. (10) is not equal to zero in general.Now, it is required that for each weighting

functionΨk(x), k ∈ N, the integral of Eq. (10) weighted byΨk(x) has to be zero.

∫ L

0

{Ψk(x) f (Φi(x),Φ
′

i(x), qi(t), q̇i(t), x, t)} dx = 0; (11)

The final equations (Eq. (11)) are only ordinary differential equations in time as the integral eliminates

the space dependent part. Ifk, i → ∞, the Galerkin approximation solves the original partial differential

equation exactly. TheΦi are calledassumed modes, theΨk areweighting functionsand theqi are time

functions.

Energy optimal weighting

In this subsection, the physical interpretation for a special choice of weighting functions for the

Galerkin discretization of the blade model is given. Without loss of generality, the beam is assumed

to be cantilevered and thus the boundary conditions of the blade are chosen to constrain the generalized

velocities at the root (x = 0) and the generalized forces at the tip (x = L) of the beam. The boundary

conditions can be written as:

V (0) = V 0, Ω(0) = Ω0, F (L) = F L, M(L) = ML. (12)
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Consider the following weighted sum of all the differentialequations from Eq. (1) and the boundary

conditions from Eq. (12):

0 =

∫ L0 {

V T
[
Ṗ + Ω̃P − F ′ − (k̃+ κ̃)F − f

]

+ΩT
[
Ḣ + Ω̃H + Ṽ P −M ′ − (k̃+ κ̃)M − (ẽ1 + γ̃)F −m

]

+
(
F + FA

)T [
γ̇ − V ′ − (k̃+ κ̃)V − (ẽ1 + γ̃)Ω

]

+
(
M +MA

)T [
κ̇− Ω′ − (k̃+ κ̃)Ω

]

}
dx

−
(
F (0) + FA(0))T [

V (0)− V 0]− (
M(0) +MA(0))T [

Ω(0)− Ω0]
+V (L)T [

F (L)− F L] + Ω(L)T [
M(L)−ML] ,

(13)

whereV 0 andΩ0 are the exact linear and angular velocities at the root, whileF L andML are the force

and moment at the tip. Note that the external forces due to aerodynamic effects and disturbances in Eq.

(13) are summarized asf andm for simplicity reasons. After integrating by parts and simplifying Eq.

(13) we have

Ṫ + U̇ = P ext + P bou + P act∗, (14)

where the variables are defined in Table 1. Equation (14) states the law of energy conservation ifP act∗ = 0

(passive beam). For active beamsP act∗ approximates the powerP act generated by the active elements as:

P
act∗ =

∫ L

0

{
F

AT
[
V

′ + (k̃+ κ̃)V + (ẽ1 + γ̃)Ω
]

︸ ︷︷ ︸
≈γ̇, see Eq. (1)

+M
AT

[
Ω′ + (k̃+ κ̃)Ω

]

︸ ︷︷ ︸
≈κ̇, see Eq. (1)

}
dx+ F

AT [
V (0)− V

0]
︸ ︷︷ ︸

≈0

+M
AT [

Ω(0)− Ω0]
︸ ︷︷ ︸

≈0

(15)

Thus, the weighting presented in Eq. (13) leads to an approximate energy balance for the active beam.

The error of the energy balance in Eq. (14) is caused by the active elements only. If weighting functions

other than those presented in Eq. (13) are used, there will beerror in the energy balance caused by all

values of Table 1. For this reason, the weighting functions used in this work provide the best known

solution in terms of energy conservation.
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Assumed modes and weighting functions

The unknown variables of the Galerkin discretization are approximated according to Table 2 using

an expansion of products of known spatial functions (assumed modes) and unknown temporal functions

(generalized coordinates). Note that a mixed matrix/tensor notation is used (the dimensions are given

in the last row in the left column of Table 2) and all variableshave a common time functionq(t). The

advantage of the common time function is that the complete discretized blade model can be written in a

single equation.

The weighting functions for the Galerkin approach are basically chosen as shown in Eq. (13). Thus,

the set of weighing functions are the same as the set of variables. After substituting for the weighting

functions in terms of the expansions, we get a single equation, but since each generalized coordinate is

arbitrary, this leads to multiple equations for each set of weighing functions. Hence, multiple equations

are obtained by the Galerkin integral by using each set of weighting functions, e.g. the weighting function

V (x, t) is replaced by several assumed modesΦV
l (x).

In this work, the assumed modes for each variable and each direction are chosen identically. Due to

numerical performance, orthogonal shifted Legendre functions from (Ref. 13, pp. 332–357) have been

used.

V̄l(x̄) = Ω̄l(x̄) = γ̄l(x̄) = κ̄l(x̄) = IP̃l(x̄), (16)

whereI is a3×3 identity matrix,x̄ is the normed coordinate of the beam reference line (x̄ = xL ), andP̃l()

are the shifted Legendre functions. After applying the Galerkin approach to Eq. (13) and discretizing the

measurement equation, the beam model has the following formwritten in matrix/tensor notation:

Akiq̇i + Bkiqi + Ckijqiqj +Dk + Ekuuu + Fkiuqiuu + fk +mk = 0,

yy = Myiqi,

(17)

where

Bki = BnoBC
ki + BBC

ki , Ckij = Cstruc
kij + Caero

kij , Dk = DBC
k , Eku = EnoBC

ku + EBC
ku . (18)

The expressions for the tensors in Eqs. (17) and (18) are given in the appendix.
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Modal Analysis

In order to get an insight into the behavior of the helicopterblade, the steady state, natural frequen-

cies and natural modes (free vibration modes) are calculated for parameter values specified in Table

4. The steady state solutionq0i of the helicopter blade has been computed for the boundary condi-

tions specified in Eq. (12) withV 0 = [0 0 0]T m/s,F L = [0 0 0]T N, ML = [0 0 0]T Nm,

Ω0 = [0 0 72]T rad/s. The solution has been obtained reliably using the Newton-Raphson algorithm

and is presented in Fig. 4 over the beam reference linex varying from0 to L = 1.397 [m]. The natural

frequencies and modes are obtained from the unforced linearized blade model given by

Âkiq̇i + B̂kiqi = 0, (19)

where

Âki = Aki, B̂ki = Bki + (Ckij + Ckji) q
0
j + Fkiuu

0
u. (20)

The free vibration solution (fvs) of Eq. (19) is:

q
fvs
i (t) = clnile

λlt + ĉln̂ile
λ̂lt = Til

{
eλlt eλ̂lt

}T

, (21)

where (̂) denotes conjugate complex values,cl and ĉl are the constant which can be calculated using

the initial conditions,nil andn̂il are the eigenvectors,λl andλ̂l denote the eigenvalues of Eq. (19), and

Til = [clnil ĉln̂il]. Inserting Eq. (21) into Table 2 yields the natural modes ofV , Ω, γ andκ given in

Table 3. Note that the calculations can be performed in termsof real variables by considering the real and

imaginary parts of the set of complex conjugate eigenvectors (Ref. 14). The natural frequencies of the

helicopter blade are presented in Table 5 and are compared toresults from the simulation tool NATASHA

(Ref. 5) and the purely structural model (no aerodynamics).For the aeroelastic and the structural model,

20 Legendre functions have been used. The NATASHA results are based on 50 beam finite elements.

Firstly, the aeroelastic simulation theory presented in the paper is validated by comparing to the results

generated by NATASHA. Secondly, one can see that the aerodynamics is mainly adding damping and

reducing the frequency of the 1st bending mode. The dominant natural modes are shown in Fig. 5.
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Model Reduction

The discretization results in a model (Eq. (17)) of high order depending on the number of assumed

modes. As both, the accuracy and the computational costs of time marching simulations increase with

the number of assumed modes, one has to choose a good compromise. A possibility to avoid such a

compromise is to find assumed modes that capture the dynamicsof the rotating blade more accurately as

compared to Legendre functions. The model order reduction follows this approach by taking low number

of relevant assumed modes to reduce the system order withoutloosing accuracy.

One choice of assumed modes that capture the linear dynamicsare the natural modes of the system lin-

earized at the steady state. Since these modes are used in theexpansions applied to the complete nonlinear

model, the primary nonlinear behavior is also captured. In order to improve the nonlinear prediction of

the linear modes, perturbation modes as presented in Refs. 15, 16 have also been investigated. Although

perturbation modes showed a better performance regarding to the tracking of natural frequencies, they can

lead to errors in the blade damping for equations in the mixedform. For this reason, only natural modes

are used for order reduction. Another advantage of the natural modes is that the resulting reduced model

has the same, but less natural frequencies and modes at the linearization point. Furthermore, the steady

state solution is included in the new approximation of the model variables. Thus, the quality of the steady

state is not affected by the order reduction and the new steady stateq0
r is always zero, resulting into a

simple linearized reduced system.

The new variable approximations are listed in Table 6. Substituting the new assumed modes into Eq.

(17) yields

Atrq̇r +Btrqr +Ctrsqrqs + Etuuu + Ftruqruu +Tktfk +Tktmk = 0,

yy = Myrqr + y0y ,

(22)

where

Atr = AkiTktTir, Btr =
[
Bki + (Ckij + Ckji)q

0
j + Fkiuu

0
u

]
TktTir,

Ctrs = CkijTktTirTjs, Etu = [Eku + Fkiuq
0
i ]Tkt,

Ftru = FkiuTktTir, Myr = MyiTir,

y0y = Myiq
0
i ,

(23)
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and ( )0 denotes the steady-state solution. Since the modal expansion calculates motion relative to the

nonlinear steady state, the steady state solution of the transformed system is alwaysq0
r = 0. The reduced

nonlinear system is the basis for low-order analysis as wellas for control design. AsAtr is invertible, the

state space formulation of Eq. (22) can be obtained by premultiplying the first equation in Eq. (22) with

A−1
tr . The state space formulation is:

q̇t = Btrqr + Ctrsqrqs + Etuuu + Ftruqruu +Gktfk +Hktmk,

yy = Myrqr + y0y,

(24)

where

Btr = −A−1
th Bhr, Ctrs = −A−1

th Chrs, Etu = −A−1
th Ehu,

Ftru = −A−1
th Fhru, Gkt = −A−1

khTht, Hkt = −A−1
khTht.

(25)

Even if the model is reduced, from240 to 12 states, the reduced model still shows good performance.

Consider Fig. 6 where the natural modes of the full (240 states) and reduced (12 states) model are com-

pared in two plots. The solid lines show the frequencies of the full and the dashed lines the frequencies

of the reduced model. For the reduced order model the steady states are still computed using the full

model, but the reduced order models are obtained by using a single set of modeshapes. In the left plot,

the frequency variation is calculated under varying rotational speedΩ3 and in the right one under varying

external forcef3 (constant along reference line, rotation speedΩ0
3 = 72rad/s). One can see that the natural

frequencies are not affected noticeably by a varying external forcef3 (f3=50 N m−1 is the estimated force

to lift the helicopter), whereas the rotation speed has a much larger effect. The reduced model is able to

track the change in the frequency accurately.

Control Design

To illustrate the use of the model for control design, a linear optimal controller is designed. The control

design takes advantage of the high fidelity and low order of the reduced blade model in Eq. (24). An

energy optimal linear-quadratic-Gaussian (LQG) control design is performed, which is the combination

of a Kalman filter and a linear-quadratic regulator (Ref. 17). In order to show the robustness of the

controller, it is tested on a high fidelity model with twice asmany states as the model used for the control

design.
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Cost function

The linear-quadratic-Gaussian (LQG) control is optimal inthe sense that it minimizes the cost function

J = E

{
lim
T→∞

1

T

∫ T

0

[q u]TW [q u]dt

}
→ min, (26)

whereE{} is the expectation andW a weighting matrix. In this work, the stateq and the inputu are

weighted separately, such that[q u]TW [q u] = qTQq + uTRu, whereQ weights the control error since

q = 0 is desired andR the control effort. Since the controller is not determined by the absolute values of

the weighting matrices, but their relative values,R is chosen to be identity (R = I). The weight of the

control errorQ is chosen as

Q =
1

2
α

∫ L

0

TT




ΦV

ΦΩ

Φγ

Φκ




T 


G K 0 0KT I 0 0

0 0 U V
0 0 VT W







ΦV

ΦΩ

Φγ

Φκ




Tdx,



U VVT W

 =



R SST T−1

, (27)

where the assumed modes are written in matrix notation,G, K, I are the inertia matrices from (2) andU,V,W are the cross-sectional stiffness matrices, which are related to the cross-sectional flexibilitiesR, S, T
from (2) by the inversion presented above. After inserting Eq. (27) intoqTQq of Eq. (26) we obtain

qTQq
Table 2
≈

1

2
α

∫ L

0




V ∗

Ω∗

γ∗

κ∗




T 


G K 0 0KT I 0 0

0 0 U V
0 0 VT W







V ∗

Ω∗

γ∗

κ∗




dx
Table 1
= α (T ∗ + V ∗) , (28)

where()∗ denotes variables measured from the steady state, e.g.V ∗ ≈ ΦV Tq, whereasV ≈ ΦV (Tq+q0).

Consequently,T ∗ andU∗ denote a pseudo kinetic and potential energy of the blade. Ifthe steady state

solution is zero (q0 = 0), T ∗ = T andU∗ = U are the physical kinetic and potential energy. Eq. (26) can

be written with Eq. (28) as

J = E

{
lim
T→∞

1

T

∫ T

0

[
α (T ∗ + U∗) + uTu

]
dt

}
→ min. (29)

The compromise between the blade energy minimization and the minimization of the control effort can

be adjusted by a single parameterα.



16 AUTHOR NAME JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

For the Kalman filter design of the LQG controller, it is assumed that the process and measurement

noise is white and Gaussian. The covariance of the external forcef dist, and the external momentmdist, as

well as the covariance of the measurement noisew, which affects the measurement asyy = Myrqr +w+

y0y, are chosen as

E{f distf distT } =




1 0 0

0 1 0

0 0 10



, E{mdistmdistT} =




0.01 0 0

0 0.01 0

0 0 0.01



, E{wwT} = 10−5 I. (30)

The process noise is chosen such thatf3 dominates, which is the force required for the lift of the blade,

while the process noise is equal for each element ofw since all measurements are performed by the same

type of sensors.

Closed-Loop Results

The control design is performed based on a reduced model using the first6 normal modes (12th order

model). The controller is tested on a model with12 normal modes (24th order model). For the control

design we chose the covariance matrices as presented in (30), α is chosen as108, and the other parameters

are as specified in Table 4. The exact values of the natural frequencies and damping for the controlled and

uncontrolled blade are presented in Table 7. Note that the frequency of the1st torsion mode changes more

than other modes because of the large aerodynamic loads induced by the1st torsion mode.

In order to validate the controller, a simulation is conducted starting at the steady state, where the

controller is switched off for0.5 seconds, followed by a linear increase in the control gain sothat it is

fully active att = 0.6 seconds. As can be seen in Fig. 7, there is a considerable decrease of the blade

energy when the controller is switched on.

Figure 8 shows the effect of the controller on the generalized velocities and strains relative to the

steady state. The generalized strains at the root are plotted as these are typically the maximum values.

The same holds for the generalized velocities at the tip. Themaximum measured voltage was200 V which

is considerably less than the voltage saturation of1000 V (see [Ref. 2]).
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Conclusions

The paper shows an effective way to analyze, simulate and control active helicopter blades. It takes

advantage of the Galerkin approach to efficiently representthe nonlinear blade dynamics in a quadratic

form. The analysis showed the importance of the aerodynamics on the blade model as it adds significant

damping. A nonlinear order reduction method has been presented which can be useful for control design

as well as computationally efficient time marching simulations. It exploits the potential of normal modes

in capturing the nonlinear blade dynamics. Finally, an energy optimal LQG control design has been

performed that provides additional damping for the helicopter blade.

Appendix

The tensors of the discretized blade model are given for the special case of a constant cross-section

(varying cross-sections are also possible). To ensure a proper formulation of the tensor calculations, a

hierarchical tensor notation is introduced.

Hierarchical tensor notation

Consider the approximationV = ΦV
i qi where eachΦV

i is a3×12 matrix and eachqi is a12×1 vector.

Now, defineΦi(a) andqi(a) with a = 1...12 whereV = ΦV
i(a)qi(a) is summarized in an inner loop overa

and in an outer loop overi. Consequently,ΦV
i(a) becomes a3× 1 vector andqi(a) a scalar. This definition

is necessary to e.g. obtain theCstruc-tensor where the tilde operator is used which is defined for3 × 1

vectors only. Note that for simplicity, the hierarchical structure is often suppressed.

Abbreviations

In order to obtain a compact formulation of the tensor calculation, some abbreviations are introduced.

First, theΨ constants are introduced:

ΨV =

[
I 0 0 0

]
, ΨΩ =

[
0 I 0 0

]
, Ψγ =

[
0 0 I 0

]
, Ψκ =

[
0 0 0 I

]
, (31)
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whereI is a3× 3 identity matrix. The abbreviations used for the Legendre functions are:

S
0
k = Pk(0), S

L
k = Pk(L), D

0
ki = Pk(0)Pi(0), D

L
ki = Pk(L)Pi(L), S

Lseg
ku =





Pk(L), u = 6

0, u 6= 6

(32)

The abbreviations of the Legendre integrals are:

S
∫

k = L ∫ 10 {
Pk(x̄)

}
dx̄, S

∫
seg

ku = L ∫ u 1

6

(u−1) 1

6

{
Pk(x̄)

}
dx̄,

D
∫

ki = L ∫ 10 {
Pk(x̄)Pi(x̄)

}
dx̄, dS

∫
seg

ku =

∫ u 1

6

(u−1) 1

6

{
P

′

k(x̄)

}
dx̄,

dD
∫

ki =

∫ 10 {
Pk(x̄)P

′

i (x̄)

}
dx̄, D

∫
seg

kiu = L ∫ u 1

6

(u−1) 1

6

{
Pk(x̄)Pi(x̄)

}
dx̄,

T
∫

kij = L ∫ 10 {
Pk(x̄)Pi(x̄)Pj(x̄)

}
dx̄.

(33)

Tensor calculations

Ak(c)i(a) = D
∫

ki

{
ΨV

(c)

T
[GΨV

(a) + KΨΩ
(a)

]
+ΨΩ

(c)

T
[KTΨV

(a) + IΨΩ
(a)

]

+ (UΨγ

(c)
+ VΨκ

(c))
T
[
Ψγ

(a)

]
+ (VTΨγ

(c)
+WΨκ

(c))
T
[
Ψκ

(a)

]}
,

BnoBC
k(c)i(a) = dD

∫

ki

{
ΨV

(c)

T
[
−UΨγ

(a) − VΨκ
(a)

]
+ΨΩ

(c)

T
[
−VTΨγ

(a) −WΨκ
(a)

]

+ (UΨγ

(c) + VΨκ
(c))

T
[
−ΨV

(a)

]
+ (VTΨγ

(c) +WΨκ
(c))

T
[
−ΨΩ

(a)

]}

+D
∫

ki

{
− ΨV

(c)

T
[k̃(UΨγ

(a)
+ VΨκ

(a))
]
−ΨΩ

(c)

T
[k̃(VTΨγ

(a)
+WΨκ

(a))− ẽ1(UΨγ

(a)
+ VΨκ

(a))
]

− (UΨγ

(c)
+ VΨκ

(c))
T
[k̃ΨV

(a) − ẽ1Ψ
Ω
(a)

]
− (VTΨγ

(c)
+WΨκ

(c))
T
[k̃ΨΩ

(a)

]}
,

Cstruc
k(c)i(a)j(b) = T

∫

kij

{
ΨV

(c)

T
[
−Ψ̃κ

(a)(UΨγ

(b) + VΨκ
(b)) + Ψ̃Ω

(a)(GΨV
(b) + KΨΩ

(b))
]

+ ΨΩ
(c)

T
[
Ψ̃Ω

(a)(KTΨV
(b) + IΨΩ

(b)) + Ψ̃V
(a)(GΨV

(b) + KΨΩ
(b))− Ψ̃κ

(a)(VTΨγ

(b)

+WΨκ
(b))− Ψ̃γ

(a)(UΨγ

(b) + VΨκ
(b))

]

+ (UΨγ

(c) + VΨκ
(c))

T
[
−Ψ̃κ

(a)Ψ
V
(b) − Ψ̃γ

(a)Ψ
Ω
(b)

]
+ (VTΨγ

(c) +WΨκ
(c))

T
[
−Ψ̃κ

(a)Ψ
Ω
(b)

]}
.

(34)

The tensor calculating the aerodynamic force and moment is:

Caero
k(c)i(a)j(b) = T

∫

kij

{
ΨV

(c)

T

{
0 1 0

}T [
ΨV

(a)

TXV V ΨV
(b) +ΨV

(a)

TXV ΩΨΩ
(b) +ΨΩ

(a)

TXΩΩΨΩ
(b)

]

+ ΨV
(c)

T

{
0 0 1

}T [
ΨV

(a)

TYV V ΨV
(b) +ΨV

(a)

TYV ΩΨΩ
(b)

]

+ ΨΩ
(c)

T

{
1 0 0

}T [
ΨV

(a)

TZV V ΨV
(b) +ΨV

(a)

TZV ΩΨΩ
(b)

]}
.

(35)
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The actuation for constant cross-section is determined by:

EnoBC
k(c)u = dS

∫
seg

ku

{
ΨV

(c)

T
(UE+ VF) + ΨΩ

(c)

T
(VTE+WF)}

+S
∫
seg

ku

{
ΨV

(c)

T
[k̃](UE + VF) + ΨΩ

(c)

T
[k̃](VTE+WF) + ΨΩ

(c)

T
[
ẽ1

]
(UE+ VF)},

FnoBC
k(c)i(a)u = D

∫
seg

kiu

{
ΨV

(c)

T
[
Ψ̃κ

(a)

]
(UE+ VF) + ΨΩ

(c)

T
[
Ψ̃κ

(a)

]
(VTE+WF) + ΨΩ

(c)

T
[
Ψ̃γ

(a)

]
(UE + VF)}.

(36)

fk andmk are:

fk(c) = S
∫

k

{
− ΨV

(c)

T
f

}
,

mk(c) = S
∫

k

{
− ΨΩ

(c)

T
m

}
.

(37)

The tensors occurring due to boundary conditions are:

DBC
k(c) = S0k { (UΨγ

(c) + VΨκ
(c)

)T
V 0 + (VTΨγ

(c) +WΨκ
(c)

)T
Ω0}

+SLk {
− ΨV

(c)

T
F L −ΨΩ

(c)

T
ML},

BBC
k(c)i(a) = D0

ki

{
−

(UΨγ

(c) + VΨκ
(c)

)T [
ΨV

(a)

]
−

(VTΨγ

(c) +WΨκ
(c)

)T [
ΨΩ

(a)

]}

+DL
ki

{
ΨV

(c)

T
[UΨγ

(a) + VΨκ
(a)

]
+ΨΩ

(c)

T
[VTΨγ

(a) +WΨκ
(a)

]}
,

EBC
k(c)u = S

Lseg
ku

{
− ΨV

(c)

T
(UE+ VF)−ΨΩ

(c)

T
(VTE+WF)}.

(38)

The measurement tensors is:

Myi(a) =






Ψγ

Ψκ





Pi(a)

(
y − 1

4

)
. (39)
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Fig. 1 Schematic of a beam undergoing finite deformation and cross-sectional warping.
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Fig. 2 Velocities and aerodynamic forces within the blade profile.
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Fig. 3 Actuator distribution in an integrally actuated blade.
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Fig. 5 Natural modes of helicopter blade.
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Fig. 8 Simulation results forγ(0), κ(0), V (L) andΩ(L).
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Table 1. Energies in the active helicopter blade.

Change of kinetic energy Ṫ =

∫ L

0

[
V T Ṗ + ΩT Ḣ

]
dx

Change of potential energyU̇ =

∫ L

0

[
(F + FA)T γ̇ + (M +MA)T κ̇

]
dx

External power P ext =

∫ L

0

[
V Tf + ΩTm

]
dx

Boundary power P bou = V (L)TF L + Ω(L)TML − F (0)TV 0 −M(0)TΩ0
Estimated actuation powerP act∗ ≈

∫ L

0

[
FAT

γ̇ +MAT
κ̇
]
dx
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Table 2. Assumed spatial modes and time functions of the approximated variables.

V (x, t) = V̄l(x)vl(t) = ΦV
l (x)ql(t) ΦV

l (x) =
[

V̄l 0 0 0
]

Ω(x, t) = Ω̄l(x)ωl(t) = ΦΩ
l (x)ql(t) ΦΩ

l (x) =
[

0 Ω̄l 0 0
]

γ(x, t) = γ̄l(x)gl(t) = Φγ
l (x)ql(t) Φγ

l (x) =
[

0 0 γ̄l 0
]

κ(x, t) = κ̄l(x)kl(t) = Φκ
l (x)ql(t) Φκ

l (x) =
[

0 0 0 κ̄l

]

[3 × 1] [3 × 3][3 × 1] [3 × 12][12× 1] ql(t) =
{

vl(t) ωl(t) gl(t) kl(t)
}T
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Table 3. Free vibration solution (fvs) and natural modes (nm).

V
fvs
l (x, t) = clV

nm
l (x)

{
eλlt eλ̂lt

}T

V nm
l (x) = ΦV

i (x)Til

Ωfvs
l (x, t) = clΩ

nm
l (x)

{
eλlt eλ̂lt

}T

Ωnm
l (x) = ΦΩ

i (x)Til

γ
fvs
l (x, t) = clγ

nm
l (x)

{
eλlt eλ̂lt

}T

γnm
l (x) = Φγ

i (x)Til

κ
fvs
l (x, t) = clκ

nm
l (x)

{
eλlt eλ̂lt

}T

κnm
l (x) = Φκ

i (x)Til

[3 × 1] [1 × 1][3 × 2][2 × 1] [3 × 2] [3 × 12][12× 2]
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Table 4. Parameters of the helicopter blade.

Structure ParametersR =




R11 0 0

0 R22 0

0 0 R33




, S =




0 0 S13

0 0 0S31 0 0




, T =




T11 0 0

0 T22 0

0 0 T33


R11 = 6.4375 · 10−7, R22 = 4.9262 · 10−6, R33 = 4.4389 · 10−5, S13 = 5.5420 · 10−6S31 = 1.8621 · 10−4, T11 = 2.9086 · 10−2, T22 = 2.5038 · 10−2, T33 = 9.2640 · 10−4

µ = 6.9310 · 10−1, ξ2 = −6.9240 · 10−4, ξ3 = 0, i2 = 6.4630 · 10−6i3 = 3.7018 · 10−4, i23 = 0, L = 1.3970

Actuation ParametersE =




E11 0 0

0 E22 0

0 0 E33







+1 +1 +1 +1

+1 −1 −1 +1

+1 −1 +1 −1




, F =




F11 0 0

0 F22 0

0 0 F33







−1 +1 −1 +1

+1 +1 −1 −1

+1 +1 +1 +1


E11 = 8.9562 · 10−9, E22 = 2.7843 · 10−8, E33 = 2.8536 · 10−8,F11 = 3.8506 · 10−6 F22 = 1.9155 · 10−6, F33 = 8.5769 · 10−8

Aerodynamic Parameters

ρ = 1.2, b = 5.3850 · 10−2, ξ = 0.5, Clα = 2π

Cl0 = 0, Cd0 = 0.01, Cm0 = 0
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Table 5. Natural frequencies of aeroelastic and structural models.

Mode Aeroelastic Model NATASHA: Aeroelastic Model Structural Model

frequency damping ratio frequency damping ratio frequency damping ratio

(rad/s) (—) (rad/s) (—) (rad/s) (—)

1st bending 69.4195 +3.26373 · 10−1 69.4197 +3.26346 · 10−1 75.9873 +3.08857 · 10−13

2nd bending 196.286 +9.35641 · 10−2 196.410 +9.34763 · 10−2 199.654 −2.17091 · 10−14

3rd bending 375.224 +4.30848 · 10−2 376.198 +4.29394 · 10−2 376.570 −1.20760 · 10−15

4th bending 609.286 +2.47827 · 10−2 612.750 +2.46039 · 10−2 610.149 +2.74831 · 10−15

5th bending 890.557 +1.62854 · 10−2 899.274 +1.60790 · 10−2 891.379 +4.23075 · 10−15

6th bending 1212.55 +1.16096 · 10−2 1230.60 +1.14019 · 10−2 1213.28 −7.26892 · 10−14

1st lead-lag 76.2633 +9.82787 · 10−4 76.2685 +9.81159 · 10−4 76.2633 +1.26594 · 10−14

2nd lead-lag 455.697 +1.20758 · 10−4 456.288 +1.21496 · 10−4 455.700 +1.19983 · 10−14

3rd lead-lag 1158.70 +4.12947 · 10−5 1162.77 +4.41446 · 10−5 1158.69 +1.50088 · 10−15

1st torsion 340.945 +7.47685 · 10−2 340.972 +7.47336 · 10−2 346.387 −6.40185 · 10−14

2nd torsion 1019.34 +1.90722 · 10−2 1020.14 +1.90621 · 10−2 1021.03 −5.40023 · 10−15
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Table 6. Assumed modes and time functions for the reduced order model.

V (x, t) = V 0(x) +ΦV
r (x)qr(t) V 0(x) = ΦV

l (x)q
0
l , ΦV

r (x) = ΦV
l (x)Tlr

Ω(x, t) = Ω0(x) +ΦΩ
r (x)qr(t) Ω0(x) = ΦΩ

l (x)q
0
l , ΦΩ

r (x) = ΦΩ
l (x)Tlr

γ(x, t) = γ0(x) +Φγ
r (x)qr(t) γ0(x) = Φγ

l (x)q
0
l , Φγ

r (x) = Φγ
l (x)Tlr

κ(x, t) = κ0(x) +Φκ
r (x)qr(t) κ0(x) = Φκ

l (x)q
0
l , Φκ

r (x) = Φκ
l (x)Tlr

[3 × 1] [3 × 1] [3 × 2][2 × 1] [3 × 1] [3 × 12][12× 1] [3 × 2] [3 × 12][12× 2]
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Table 7. Natural frequencies of the controlled 24th order model using the controller designed

on a 12th order model.

Mode Controlled Frequencies Aeroelastic Frequencies

frequency (rad/s) damping frequency (rad/s) damping

1st bending 61.4702 +8.49722 · 10−1 69.4195 +3.26373 · 10−1

2nd bending 166.798 +5.57226 · 10−1 196.286 +9.35641 · 10−2

3rd bending 376.733 +1.87119 · 10−1 375.224 +4.30848 · 10−2

1st lead-lag 68.5258 +9.22514 · 10−1 76.2633 +9.82787 · 10−4

2nd lead-lag 452.930 +5.77833 · 10−1 455.697 +1.20758 · 10−4

1st torsion 593.846 +6.24244 · 10−1 340.945 +7.47685 · 10−2
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