
Impact of the Scheduling Strategy in Heterogeneous
Systems That Provide Co-Scheduling

Tim Süß, Nils Döring, Ramy Gad, Lars
Nagel, André Brinkmann
Zentrum für Datenverarbeitung

Johannes Gutenberg University Mainz
Mainz, Germanz

{t.suess, doeringn, gad, nagell,
brinkman}@uni-mainz.de

Dustin Feld, Eric Schricker, Thomas
Soddemann

Fraunhofer SCAI
Schloss Birlinghoven

Sankt Augustin
{dustin.feld, eric.schricker,

thomas.soddemann}@scai.fraunhofer.de

ABSTRACT
In recent years, the number of processing units per com-
pute node has been increasing. In order to utilize all or
most of the available resources of a high-performance com-
puting cluster, at least some of its nodes will have to be
shared by several applications at the same time. Yet, even
if jobs are co-scheduled on a node, it can happen that high
performance resources remain idle, although there are jobs
that could make use of them (e. g. if the resource was tem-
porarily blocked when the job was started). Heterogeneous
schedulers, which schedule tasks for different devices, can
bind jobs to resources in a way that can significantly re-
duce the idle time. Typically, those schedulers make their
decisions based on a static strategy.

In this paper, we investigate the impact if a heterogeneous
scheduler allows modifications of the strategies at runtime.
For a set of applications, we determine the makespan and
show how it is influenced by four different scheduling strate-
gies. A well-chosen strategy can result in a speedup of more
the 2.5 in comparison to other strategies.

Keywords
Scheduling, Scheduling strategies, Heterogeneous systems

1. INTRODUCTION
For several years now, multi-core processors equipped with

powerful vector units are the standard in almost all parts of
the computing world. They are in cell phones, notebooks,
desktop computers, servers and supercomputers. Addition-
ally, GPUs and other architectures (Xeon Phi, FPGA, dig-
ital signal processors) are used in combination with nor-
mal processors to speed up suitable parts of an applica-
tion. These accelerators mostly operate on separate memory
spaces which requires time-consuming copy operations when
the architecture is changed during a program run. At the

COSH 2016 Jan 19, 2016, Prague, CZ
c© 2016, All rights owned by authors. Published in the TUM library.

DOI: 10.14459/2016md1286954

moment, it seems as if this will not change in the foreseeable
future. All these hardware architectures have in common
that they only offer their performance benefits if develop-
ers write code for them and if they are able to exploit their
inherent parallelism. Code for accelerators can be created
using OpenCL and domain-specific languages (DSLs).

In almost all systems, a large fraction of the accelerator
hardware will be frequently idle and not optimally used.
This happens when

1. none of the concurrently executed programs on a com-
puter can make use of a provided accelerator.

2. programs do not provide codes for the accelerators
available.

3. a program cannot use its preferred resource because
it is temporarily blocked by another application. The
application may then be started on a less favorable
resource. However, once a better resource becomes
free, the program cannot be moved to this resource.

When the first situation occurs in a cluster environment,
it can be solved by moving jobs between nodes or by al-
ready taking resource requirements into consideration dur-
ing scheduling. If a resource is oversubscribed by multiple
jobs on one node while the same resource is undersubscribed
on another node, jobs can be migrated to balance the uti-
lization. The second situation can obviously be avoided by
providing codes for all concerned resources. Typically, a sep-
arate version of the program is needed for each resource. If
multiple codes are available, the most suitable free resource
can be chosen during runtime.

To tackle the third situation, it must be possible for a pro-
gram to start its computation on one resource and move to
another one later. Also a scheduler is required which man-
ages the resources, assigns tasks to resources and migrates
tasks. This way it can prevent resource oversubscription.

However, if the scheduling strategy (the algorithm which
decides when a computation is started or migrated) is static,
it cannot exploit program-specific information about the
computations behavior which could be provided by the pro-
gram developers.

VarySched is a scheduler that allows the scheduling of
computations (denoted as tasks) on heterogeneous resources.
An application must register itself at the scheduler by im-
plementing an interface. The interface requires only the set
of codes for the different resources (denoted as kernels) and



a ranking of these kernels. The ranking can correspond to
performance, accuracy, energy consumption etc. We denote
such a set of kernels as a kernel collection. The scheduler re-
ceives collections, chooses one of their kernels and schedules
it to an available resource. This is similar to the behavior of
the Grand Central Dispatch resource scheduler [1]. In con-
trast to the Grand Central Dispatch, VarySched allows to
change the scheduling strategy. It even allows that an ap-
plication provides its own strategy in form of a simple Lua
script.

In this work, we evaluate the impact of different schedul-
ing strategies on the makespan of programs. Four different
types of strategies are tested:

long-term scheduler: allows to estimated the finishing time
of a job by fixing the order of execution on one device.

short-term scheduler: compared to the long-term sched-
uler this scheduler provides short reaction times.

banking-based scheduler: is an extension of the short-
term scheduler with an additional resource budget.

constraint-based scheduler: similar to the banking-based
scheduler but with a different computation for the re-
source budget.

In addition, we determine the overhead caused by the dif-
ferent scheduling strategies and the costs for exchanging the
scheduling strategy.

The paper is organized as follows: In Section 2, we dis-
cuss different techniques related to our scheduler. In Sec-
tion 3, we describe the relevant parts of the scheduler and
the scheduling strategies. After that we evaluate different
aspects and components of our infrastructure in Section 4.
Section 5 concludes the paper summarizing the results and
giving an outlook on future work.

2. RELATED WORK
To leverage computer’s full potential, jobs must utilize all

available resources and the resources must be used in paral-
lel, but not necessarily parallel within a single application.

Recently, quite some work has been published on the chal-
lenges of addressing exhaustive multi-core usage and hetero-
geneous scheduling. Nevertheless, so far there seems to be
no published approach tackling the problem from all possible
angles at the same time. Some of the approaches solely focus
on the multi-threaded application support like DAGuE [4],
Elastic Computing [13], or StarPU [2]. Others address the
problem of multi-application thread scheduling like ADAPT
[8], but are limited to the CPU-side of the problem. All of
them have in common, that substantial code changes may
be necessary to exploit the hardwares’ full potential like in
StarPU [2] or are even mandatory to make the system work
(e.g. in DAGuE [4]).

However, some ideas are similar to ours. StarPU, e.g.,
deals with codelets, which are similar to what we address as
kernel tasks. For calculating an optimal schedule, DAGuE
and StarPU rely on Directed Acyclic Graphs (DAGs) to de-
termine an optimal schedule, e. g. by utilizing task-graphs.
Hence, the code developer needs to introduce the interde-
pendencies of his tasks explicitly in those approaches.

Sun et al. have shown how a task queuing extension for
OpenCL, providing a high-level, unified execution model

coupled with a resource management facility can improve
the performance within a heterogeneous environment [11].
Anyway, this approach is solely based on OpenCL and does
not allow for the use of external code generators or other
ways of utilizing its scheduling system.

The Grand Central Dispatcher (GCD) [1] solves this prob-
lem by applying a more fine-grained scheduling strategy. In-
stead of considering the program as a whole, it individually
schedules sub-tasks (like functions) which must be marked
in the program. The scheduled jobs are executed asyn-
chronously which allows for an energy-efficient and effective
utilization of all resources. The GCD’s scheduling, how-
ever, is application-centric and has no global view for which
reason the quality of the schedules is, as a matter of prin-
ciple, limited. The queue, representing the jobs’ priorities,
has to be manually defined within the application using the
dispatch_set_target_queue-function. Another drawback
of the GCD is its restricted configurability which further
restricts the decision-making process.

Beisel et al. [3] presented a resource-aware scheduler capa-
ble of distributing tasks among different hardware resources
like VarySched. In contrast to VarySched, the scheduler uses
always the same, static scheduling function.

3. SCHEDULING STRATEGIES
The VarySched scheduler is used to evaluate the impact of

different scheduling strategies on the performance. VarySched
is a newly developed task scheduler which will be published
in the near future. In this section, we shortly describe the
main features of VarySched as well as the scheduling strate-
gies and applications that we use in our tests.

3.1 VarySched
VarySched consists of two parts, a daemon and an inter-

face, which must be met by the applications that are to
be managed by the scheduler. The scheduling daemon is
not executed in the operating system’s kernel space, but as
a daemon with root privileges. Although this prevents the
immediate cooperation with the Linux scheduler and the use
of cgroups, it allows for more flexibility. Any user shall be
able to submit a scheduler strategy with his programs and
benefit from a better resource utilization.

Applications register their kernel collections at the dae-
mon which determines when the kernels are executed. For
this, the daemon requires a strategy, and VarySched even
goes one step by allowing dynamic modifications of the strat-
egy. Users can implement their own strategy as a Lua script.
The scheduler can aim for different objectives, for example
the reduction of makespan, energy consumption or heat pro-
duction. The strategy can use every information that can
be accessed from the Lua script. While the strategy can
be flexible in Lua, the daemon is written in C++11 as well
as the library used by the client. However, a C interface
of the library is also provided to allow an easy use for C
applications.

A messagebox system provides mechanisms for the com-
munication between daemon and applications. There is one
special messagebox to register kernel collections. After reg-
istration, each application gets its exclusive messagebox for
further communications.

After an application has successfully registered, it is at-
tached to one of the provided queues. There are different
queues: one queue for each resource (denoted as resource



Figure 1: Architecture of VarySched. Applications
register their kernels in the messageboxes. The
scheduler takes the kernels, schedules them, and up-
dates the kernels with the resource information.

queue) and one global queue. There are two possibilities to
trigger scheduling decisions: 1) when a resource becomes free
or 2) periodically calling a function. Ticks can be activated
or deactivated and the time interval between two ticks can
be adjusted. The scheduling algorithm, which has been im-
plemented in the Lua script, decides which of the registered
tasks is executed next and on what resource a specific ker-
nel from the kernel collection is started. The application is
informed about this decision via the associated messagebox
(see Figure 1 for the schematic structure of VarySched).

VarySched provides mechanisms allowing dynamic mod-
ification of the strategy used. Triggered by a Unix signal,
VarySched performs several steps:

• The Lua script containing the new strategy is loaded
into a temporary buffer.

• The script is checked for being a valid Lua program.

• It is checked if the interface is implemented correctly.

• The old strategy is replaced by the new one and the
queues are updated.

Note that all modifications are done while the daemon is
running. The first three steps do not cause any runtime
overhead because the tests are performed asynchronously in
a parallel thread. The daemon is neither stopped nor paused
nor must it be restarted. Additionally, there is no need to
make a copy of the new queue as it can be passed directly
to the new strategy. However, the new strategy can modify
the queues as required.

The script can be an arbitrary Lua script that fulfills the
daemon’s scheduling strategy interface. Otherwise there are
no limitations to the Lua program and therefore all Lua
features can be used. Furthermore, arbitrary sources of in-
formation can be used in the codes if required to make a
decision. Even external information sources, as from sen-
sors or the internet, can be used. Thus, the target of the
scheduling strategy can be arbitrary, as long as there is a
path to the required information.

In our evaluation, the scheduling strategy depends on a
resource governor (a system that predefines how much re-
sources can be used) which has two levels: high and low. The

governor can be used in the strategy to enable and disable
resources. Thus, depending on the governor’s state, tasks
can either be executed on different resources in parallel or
not.

3.2 Scheduling Strategies
In our tests, we use four scheduling strategies with differ-

ent aims. We define two different governors (named low and
high) which determine the type and the amount of resources
that can be used.

3.2.1 Short-term Scheduler
The short-term scheduler aims for using all resources per-

manently. While it focuses on keeping all resources busy,
the selection of a good kernel is secondary. It does not use
the resource governor’s state for the scheduling decisions.

At first, incoming tasks are placed in the global queue
which is not associated to any resource. All resource queues
contain only a single task that is processed instantly when
it arrives. If a resource ρ becomes free, the scheduler tra-
verses the global queue and searches for the first task that
has the best performance on resource ρ (with respect to the
strategy). This task is then scheduled on ρ and the current
scheduling phase terminates. If there is no such task, the
scheduler traverses the global queue again, searching for a
task whose second preference is ρ, and so on.

3.2.2 Long-term Scheduler
The long-term scheduler aims to place all tasks on the

resources they prefer most. Additionally, it tries to fill the
queues such that the queues’ work off requires similar time.
Depending on the resource governor’s state, the long-term
scheduler masks different resources to stay unused. In our
tests, if the governor’s level is high, jobs can be scheduled
on all resources; if the level is low, only the CPU cores can
be used (e. g. for energy reasons).

The global queue contains only a single task t while the
different resource queues can contain an arbitrary amount
of task. The scheduler determines the length of the resource
queue l1 that t prefers the most. Then it determines the
length of the resource queue l2 that t prefers the second
most. If l1 ≤ δ · l2 (whereby δ is the performance factor
between the resource that t prefers the most and the re-
source that t prefers the second most) t is schedule on its
first choice. Otherwise the procedure is repeated with t’s
second and third preferences and so on until it reaches the
least preferred resource.

3.2.3 Banking-based Scheduler
The banking-based scheduler assumes that each available

resource has a limited budget of credits. Running a kernel on
a resource costs a certain amount of credits. If a resource’s
budget suffices to bear the costs of a kernel, the respective
amount of credits is removed from the budget and the task
is scheduled to that resource. The scheduler starts with the
most preferred resource and proceeds successively with the
following resources. If no resource has a sufficient budget
to take the task, the task stays in the global queue. The
budget is refilled over time. After a certain amount of time,
credits are added to the budget until the maximal budget
limit is reached.

In our tests we start with a full budget of one hundred
credits. Every five seconds 15 credits are added to the bud-



get if the resource governor is set to high, and ten credits are
added if the governor is set to low. Running a task on the
GPU costs ten credits; five credits are needed for all CPU
cores, one credit for a single CPU core.

3.2.4 Constraint-based Scheduler
The constraint based scheduler assumes that every incom-

ing job consumes resources denoted as credits and has an
overall credit limit. The credit sum of concurrently running
jobs must not exceed this predefined limit. The aim of this
schedule is to provide a constant upper boundary for cur-
rently used resources. The resource queue of every device
can hold only a single job. Incoming jobs are scheduled until
all resources are used or the overall credit limit is reached.
If one of these conditions is met, incoming jobs will be en-
queued in the global queue until a resource has been freed
and the free credits are sufficient.

In our tests, a task on the GPU costs nine credits, on all
CPU cores six credits, and three credits on a single core.
The credit limit is set to 18 if the governor is set to high and
nine if it is set to low.

3.3 Test Environment and Applications
We tested two applications on a NVIDIA Jetson-TK1 sys-

tem. The tests have been performed with two different re-
source governor states as described in Section 3.1. In our
tests performing a matrix-matrix multiplication, we sched-
uled one hundred instances of the same application. For the
LAMA application, we scheduled 25 instances.

Matrix-Matrix Multiplication.
Our first test application performs a matrix-matrix mul-

tiplication. The matrices are quadratic and contain 1024×
1024 single-precision floating point values. The performed
algorithm consists of three nested loops iterating over the
two matrices. To generate parallel running codes automati-
cally, we used Pluto-SICA [5, 6] and PPCG [12] to produce
the resource-specific kernels of the kernel collections.

This scenario shows how VarySched can be used in com-
bination with automatic code generators. It is not neces-
sary to program the different code versions for multi-core
CPU and GPU manually because in this example the code
is sufficiently simple and, hence, manageable by the afore-
mentioned tools.

A single matrix-matrix multiplication takes about 2.74
seconds on a single CPU core, about 1.11 seconds on all
four cores, and about 3.69 seconds on the GPU.

LAMA Application.
LAMA [7] is an open source C++ library for building

efficient, extensible and flexible solvers for sparse linear sys-
tems. A LAMA solver can be executed on various compute
architectures without the need of rewriting the actual solver.
LAMA supports shared and distributed memory architec-
tures, including multi-core processors and GPUs.

For our tests, we use a conjugate gradient solver to solve
an equation system which results from discretizing Pois-
son’s equation with a 3-dimensional 27-points (and thus very
sparse) matrix. The number of unknowns is 50 · 50 · 50 =
125000. The CG algorithm is one of the best known iter-
ative techniques for solving such sparse symmetric positive
(semi-)definite linear systems [10]. It is therefore used in a
wide range of applications (e.g. Computational Fluid Dy-

namics (CFD) or oil and gas simulations). The used kernel
collection contains three kernels: one for a single CPU core,
one using OpenMP, and one for the GPU and a single core.

This scenario shows that VarySched can schedule hardware-
specific kernels whose functionality is provided by a library.

A single execution on the solver takes about 191.01 sec-
onds on a single CPU core, about 103.19 seconds on all four
cores, and about 41.78 seconds on the GPU.

Jetson-TK1.
The Jetson-TK1 is an ARM-based (Cortex-A15, four 32-

bit cores, 2.3 GHz) system equipped with a 192-core Ke-
pler GPU (GK20A). Additionally, the board provides 2 GiB
main memory, shared and accessible by CPU and GPU [9].
We use two different Linux operating systems with different
CUDA versions. For the matrix-matrix multiplications we
use Ubuntu 14.04 and CUDA-6.5 and for the LAMA tests
we use Gentoo and CUDA-6.0.

4. EVALUATION
In this section we evaluate the impact of the scheduling

strategies (Section 3.2) on execution of the applications (Sec-
tion 3.3) by running respectively 100 or 24 instances on one
node in parallel. The experiments are performed for both
governors and the quality of the schedules is measured by
the makespan which is the time necessary to process all jobs.

The experiments are conducted as follows: All instances
are started at approximately the same time in the begin-
ning. One after another, the jobs register at the VarySched
daemon and the scheduling strategy determines for each job
which of their kernels is to be executed.

4.1 Matrix-Matrix Multiplication
The total execution time is displayed in Figure 2 for all

matrix-matrix multiplications and both governors. An im-
portant observation is that the makespans of the constraint-
based and the short-term scheduling strategy are almost the
same when the governor is set to high (i.e. all resources can
be used). Additionally, the makespan increases when the
resource governor’s setting is changed from high to low. For
the short-term scheduler the makespan stays almost con-
stant independently of the governor’s state. This can be
explained by the way this scheduler works. As it always
tries to utilize all available resources, the governor’s setting
has no influence on the schedule.

The decreasing performance of the constraint-based and
the banking-based scheduler in the low governor state can be
explained by their credit-based approach. The performance
of the long-term scheduler stays almost constant.

The available budget of the constrained-based scheduler
and the banking-based scheduler depends on the governor’s
state. The constraint-based scheduler’s credit limit is 18 in
the high state and nine in the low state. The high state
allows to utilize all available resources. The low state allows
only the utilization of either three instances using a single
core or two instances, one running a multi-threaded kernel
and one a single-threaded kernel.

In this respect, the banking-based scheduler behaves dif-
ferently as its performance is significantly smaller if the re-
source governor’s state is lowered. This can be explained
by how credits are added to the budget and when a task is
scheduled. In both states, a constant number of credits is
added every five seconds; 15 credits in the high state, 10 in



Figure 2: Makespan of one hundred instances of the
matrix-matrix multiplication application with differ-
ent governor states. The credit-based strategies are
strongly influenced by the choice of the governor
while the short-term and long-term scheduler are
almost unaffected.

the low state. This frequency of incoming credits is too low
to utilize all resources permanently because an instance of
the application can be competely executed before the new
credits arrive.

A task is scheduled when a sufficient amount of credits for
a resource is available and, if the credits are only sufficient
for the slowest resource, the kernel for this resource is chosen.
Thus, 15 credits are sufficient for a GPU and multi-threaded
kernel, ten credits are enough for one multi-threaded and one
single-threaded kernel, and five credits are still sufficient for
one multi-threaded or one single-threaded kernel. In general,
the constraint-based scheduler’s is multiple times faster than
program execution using the banker-based scheduler.

The long-term scheduler achieves almost constant results
for both resource governor settings. This can be explained
by the fact that the last jobs to run are scheduled and ex-
ecuted on the slowest resource because there are some in-
accuracies in the performance factors between the different
resources.

But the increase of the makespan alone with different gov-
ernors does not show the positive impact of co-scheduling.
Since in most scheduling strategies the number of utilizable
resources is reduced if the governor is lowered, the total exe-
cution time (the makespan) increases. However, this is even
the case if the median of the applications’ execution time de-
creases. Figure 3 shows that the runtime of a single matrix-
matrix multiplication decreases if less resources can be used.

The increase of the single application’s performance has
two reasons: 1) The size of the matrices is small so that
much of the time during the matrix-matrix multiplication is
spent on copying data in the case of executing on the GPU.
2) The GPU versions also use CPUs a little bit and thereby
influence CPU kernels. If there are no GPU kernels, then
the cores are not shared.

When the governors are set to high, all resources are used
and applications share and compete for these resources so
that applications might block each other; while in the case,
where the governors are set to low, less resources are used
and applications are executed more sequentially.

Figure 3: Runtime of matrix-matrix multiplication
for different schedulers and governors.

4.2 LAMA Application
As in the previous section we first analyze the makespan of

the LAMA application. When scheduling this application,
the results for the short-term scheduler are similar to the
ones of the matrix-matrix multiplication (see Figure 4). The
short-term scheduler does not consider the governor’s state
and the application’s preferences, thus all test runs have
similar makespans.

Figure 4: Makespan of one hundred instances of the
LAMA application with different governor states.

The applications suffer the most if the constraint-based
scheduler is applied and the governor is lowered. The total
execution times more than double if the usage of the GPU
is prohibited.

The banking-based scheduler behaves differently. While
the makespan for the matrix-matrix multiplication increases
when setting the governor’s state to low, it is almost con-
stant in case of the LAMA application. This can be ex-
plained by the required runtime for one application which
is significantly higher than for the matrix-matrix multipli-
cation. Due to the high runtime, the scheduler’s budget can
be refilled sufficiently fast, for which reason all resources can
be used.

In case of the long-term scheduler, there is the same issues
as for the matrix-matrix multiplication. The performance
factors between the different resources are not well-adjusted
and, thus, this scheduler achieves the worst results.

The median of the runtimes varies for three of the sched-
ulers when changing the governors state (see Figure 5). While



Figure 5: The runtime of the LAMA applications
with different governors.

for the matrix-matrix multiplication the median only stays
constant for the short-term scheduler, for the LAMA ap-
plication it stays constant for the banking-based scheduler,
too. This was expected from the previous results of the
makespan. At maximum, using the banking-based scheduler
is 2.5 times faster than using the constraint-based scheduler.

The median of the application runtime increases if the
long-term scheduler is used. In comparison to the previous
tests, the time required to copy the necessary data to the
GPU can be compensated by the accelerated computation.

Findings: Co-scheduling can reduce the makespan
of parallel executed applications. It has a positive
impact on the systems performance, even in the
case when the median runtime of a single applica-
tion slightly decreases if number of used resources
is increased.

5. CONCLUSION
In this paper we have shown that the scheduling strat-

egy has a high impact on the makespan of co-scheduled ap-
plications when they are run on nodes with heterogeneous
resources. In our experiments, we used VarySched, a re-
source scheduler that is specialized for such heterogeneous
environments and that allows dynamic modifications of the
scheduling strategy. We evaluated four different strategies
using two applications and two resource governor settings.
The results show that the application can be accelerated by
a factor of up to 2.5 if the scheduler is chosen wisely.

Acknowledgments
This work was supported by the German Ministry for Educa-
tion and Research (BMBF) under project grant 01|H13004A
(FAST).

6. REFERENCES
[1] Apple. Grand Central Dispatch - A better way to do

multicore. Technology Brief, 2009.
http://opensource.mlba-
team.de/xdispatch/GrandCentral TB brief 20090608.pdf.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. StarPU: a unified platform for task sche-
duling on heterogeneous multicore architectures.
Concurrency and Computation: Practice & Experience
- Euro-Par 2009, 23:187–198, 2011.

[3] T. Beisel, T. Wiersema, C. Plessl, and A. Brinkmann.
Cooperative multitasking for heterogeneous
accelerators in the Linux Completely Fair Scheduler.
In Proceedings of the International Conference on
Application-Specific Systems, Architectures, and
Processors, pages 223–226, Piscataway, NJ, USA,
2011.

[4] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic
distributed DAG engine for High Performance Com-
puting. Parallel Computing, 38(1-2, SI):37–51, 2012.

[5] D. Feld, T. Soddemann, M. Jünger, and S. Mallach.
Facilitate SIMD-Code-Generation in the Polyhedral
Model by Hardware-aware Automatic Code-Trans-
formation. In A. Größliger and L.-N. Pouchet, editors,
Proceedings of the 3rd International Workshop on
Polyhedral Compilation Techniques, pages 45–54, 2013.

[6] D. Feld, T. Soddemann, M. Jünger, and S. Mallach.
Hardware-Aware Automatic Code-Transformation to
Support Compilers in Exploiting the Multi-Level
Parallel Potential of Modern CPUs. In Proceedings of
the 2015 International Workshop on Code
Optimisation for Multi and Many Cores, COSMIC
’15, pages 2:1–2:10, 2015.

[7] J. Kraus, M. Förster, T. Brandes, and T. Soddemann.
Using LAMA for efficient AMG on hybrid clusters.
Computer Science - R&D, 28(2-3):211–220, 2013.

[8] K. Kumar Pusukuri, R. Gupta, and L. N. Bhuyan.
ADAPT: A Framework for Coscheduling
Multithreaded Programs. ACM Transactions on
Architecture and Code Optimization, 9(4):45:1–45:24,
2013.

[9] NVidia Corporation. Jetson TK1 Development Kit
Specification - Version 01, 2014. http://developer
.download.nvidia.com/embedded/jetson/TK1/docs
/3 HWDesignDev/JTK1 DevKit Specification.pdf.

[10] Y. Saad. Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003.

[11] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. R.
Kaeli. Enabling task-level scheduling on heterogeneous
platforms. In GPGPU@ASPLOS, pages 84–93, 2012.

[12] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez,
C. Tenllado, and F. Catthoor. Polyhedral Parallel
Code Generation for CUDA. ACM Transactions on
Architecture and Code Optimization, 9(4), 2013.

[13] J. R. Wernsing and G. Stitt. Elastic Computing: A
Portable Optimization Framework for Hybrid
Computers. Parallel Computing, 38(8, SI):438–464,
2012.


