
17TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING
CONFERENCE, DSM 2015

FORT WORTH, TEXAS, USA, NOVEMBER 04 – 06, 2015

DSM 2015 77

An Initial Metamodel to Evaluate Potentials for Graph-
based Analyses of Product Development Projects

Nepomuk Chucholowski, Udo Lindemann

Institute of Product Development, Technische Universität München, Germany

Abstract: This paper presents an initial metamodel for product development
projects. It enables to model different entities (nodes), relationships (edges) and their
attributes, understanding product development projects as complex systems. The
modeling approach shows potential to provide helpful input for project managers in
situations when projects deviate from plan during their execution. The potential was
evaluated in a simplified use case. First results are presented and paths for future
development of the approach are derived.

Keywords: Project Management, Synchronization Management, Interdependencies,
Project models, Graph Theory

1 Introduction

A project can be defined as a “temporary endeavor undertaken to create a unique product,
service or result” (PMI, 2013). Product development projects (PD projects) shall
particularly relate to projects with the objective to develop a technical product as a
complex system. Managing such PD projects is challenged by a high degree of ambiguity
and uncertainty both regarding project’s objectives (e. g. Browning, 2014) and activities
necessary to accomplish the project (e. g. Lévárdy and Browning, 2009). Further often
discussed challenges in project management arise from multidisciplinary environments
(Hellenbrand, 2013), multi-project environments (Browning and Yassine, 2015) and an
increasing degree of development cooperation between companies along the value chain
(ProSTEP iViP, 2010). Project management can be seen as the planning and controlling
of a project. For this, especially the coordination of activities plays an important role.
However, while there is an increasing complexity in products and in ways how
organizations join to develop them, project management in practice still often uses only
traditional methods such as Gantt-Charts (GPD, 2015).

Existing research efforts address this issue, aiming to support project management for the
development of complex systems. Yet, what is missing so far is concrete methodological
support for project managers when there is a derivation from plan during the execution of
a project (e. g. schedule overrun or lack of human resources). Such situations in today’s
practice might be handled in smaller projects by project managers who decide what to do
– based on their experience (gut-feeling) or project team discussions. In bigger projects,
all the consequences of adaptions in project plans are hard to overlook due to product
complexity, involved disciplines and, most of all, distributed development. It seems that
then, the only considered measures in practice are to add work shifts or external human
resources. This not only increases project costs but also error rates.

Part III: Project Management

78 DSM 2015

The objective of this paper is to present primal results of the evaluation whether and how
graph-based analysis can support managers of PD projects. (Lévárdy and Browning, 2009)
understand project control as a decision making process, which aims to maximize the
value of the overall project results, considering its current state and environment. Our
superordinate goal is to support these decisions by enabling project managers to capture
the current project state (i. e.: what has already been done and what is still to do?). For
this, we use a graph-based modeling approach and define a metamodel that integrates
relevant aspects of different project systems (cf. Browning et al., 2006) and their
interrelations.

The contents of this paper are based on preliminary literature analyses and on initial
qualitative interviews with industry experts. Literature about (1) project management and
project / process modeling in general, and (2) interdependencies in engineering projects
and synchronization management was focused. In order to develop the metamodel, a rapid
prototyping approach is chosen, whereas this paper presents the first draft. This procedure
aims to allow early feedback from other experts on this topic.

2 Background

2.1 Why needs the controlling of PD projects to be supported and how?

Today’s PD projects are often characterized by a high degree of complexity (Forsberg et
al., 2005). This complexity stems from the rising complexity of the products being
developed and the correlating complexity of necessary development processes, which
include an increasing number of activities, project stakeholders and interdependencies
within the project’s environment (Lindemann et al., 2009). The complexity paired with
uncertainty and ambiguity (being natural to projects) exacerbates project management and
leads to project failures and significant cost and/or schedule overruns, as examples given
in literature (e. g. Forsberg et al., 2005; Jackson, 2006) and from discussions with
practitioners show.

On an abstract level, project management stands primarily for the planning and controlling
(i. e. to control/measure and to react) activities in a project. Our preliminary literature
study shows, that most methods presented in literature in the area of development project
management focus on initial planning activities at the beginning of a project using process
modeling, simulation and optimized standard processes. No method is found that aims to
support the adaption of a project plan during project execution (controlling). The only
guidance found in literature, e. g. for the management elements project control and
corrective actions in (Forsberg et al., 2005), stays on a very abstract level. For example,
recommendations on what to do when adaptions on the critical path are necessary, are:
eliminate or shorten tasks on the critical path; increase the number of workhours; etc.
Especially in the context of distributed product development, it is difficult to synchronize
and coordinate development activities and such recommendations are useless. In order to
manage interdependencies an integrated view on all project elements and their
interrelations is necessary. This can be reached by understanding a PD project as a system.

N. Chucholowski, U. Lindemann

DSM 2015 79

2.2 Systems perspective on PD Projects

A product development project can be divided into the five subsystems depicted in Figure
1 [(Browning et al., 2006) based on (Negele et al., 1997) and (Ropohl, 1975)].

Figure 1. The five systems of a project as presented by (Browning et al., 2006).

The Process Architecture Framework most recently presented in (Browning, 2013)
enables to model the process system as a structure of different activities and deliverables
that are interconnected. The framework aims to provide a comprehensive basis for many
different views on a process, e. g. Gantt-Charts or network diagrams. The other systems
of a project are not directly addressed, even though partial interfaces to other systems can
be included as attributes of activities or deliverables (e. g. roles that execute an activity).
Other frameworks exist that enable to model particular aspects of the other project systems
(e. g. functional models, organization charts, resource plans etc.). However, according to
(Browning, 2013) it might be beneficial to integrate aspects from all five project systems
to enable integrated views on product development projects.

Following his line of argumentation, we aim to develop a metamodel that integrates all
relevant aspects of a develop project into a model of different entities and relationships. A
metamodel defines a modeling language (Favre, 2005) and hence enables to generate
models as instances of the metamodel.

(Forsberg et al., 2005) argue that visualization is essential for humans to comprehend
complex issues. That is why we aim to support project control by providing visual models
as graphs of relevant project data. This allows to model several entities of the different
project systems as nodes and their interrelations as edges. A big advantage of using graphs
is that attributes cannot only be allocated to nodes but also to edges. Hence, qualitative
and quantitative information describing interrelations such as interdependencies between
development tasks can be stored and visualized in graphs. Further, graphs enable
computational representation and transformation of data (Helms, 2012) and thus provide
extensive possibilities to analyze data and visualize the results. Additionally, graphs can
serve as the foundation for almost any formal modeling language such as SysML
diagrams, function models or geometric models (Helms, 2012). Hence, they enable to
transfer different perspectives on integrated data of a development project into other
models.

G
oa

l s
ys

te
m

Process system

Organization system

Tool system

Product
system

Projects

Part III: Project Management

80 DSM 2015

3 An Initial Metamodel for Product Development Project Graphs

3.1 Elaboration of the metamodel

So far, only few suggestions on which elements of the project systems should be included
in an integrated approach are found in literature. For example, (Browning et al., 2006)
suggest to extend their generalized process framework with further objects from the five
project systems as follows: Organizational units (person, team, company, etc.); Tools
(facility, template, computer system, software application, etc.); Product elements (sub-
system, component, etc.); Goals (requirement, objective, policy, etc.)

Here, no relationships between entities are addressed. (Kreimeyer and Lindemann, 2011)
present a multiple-domain matrix (MDM) for engineering design processes, where tasks
(= activities), artifacts (= deliverables), events, organizational units, resources, time and
product attributes are considered as possible entities (i. e. domains in the MDM).
Additional to the domains, the MDM specifies different types of relationships between
elements (cf. Table 1). The MDM represents a metamodel as a comprehensive aggregation
of elements and interdependencies that are modeled in conventional project plans. Yet, the
product system is only considered by the domain product attributes. The product
architecture, for example, is not included in the model. The correlation between elements
from the process system and product system is investigated by (Hellenbrand, 2013). His
MDM includes functions and components (product system), process results, process steps
and milestones (process system), and individuals (organization system). Still, as stated by
(Kreimeyer and Lindemann, 2011), a shortcoming of these matrix-based approaches is the
limitation in assigning attributes to edges.

Table 1. Extract from the MDM for design processes by (Kreimeyer and Lindemann, 2011).

A new metamodel is developed based on these findings and based on thoughts about which
partial models in or between the different project systems exist and are commonly known
(Figure 2). The metamodel addresses aspects and relations from all five project systems
by defining node classes and edge classes, which can be instantiated and specified with
attributes in graph models.

N. Chucholowski, U. Lindemann

DSM 2015 81

Figure 2. Overview of existing partial models that describe elements (on diagonal) and
relationships (on lower triangular matrix) of the five project systems. Abbreviations: WBS - work

breakdown structure; QFD - quality function deployment; BOM - bill of materials.

3.2 Description of the metamodel

The suggested metamodel contains entities and relations regarding all five project systems
and is illustrated in Figure 3. The relations between the entities are depicted simplified for
the sake of clearness. Table 2 shows a complete list of all relations assumed as relevant
for the metamodel. A lot more relations are imaginable, which are often also modeled in
existing project models. They are considered as indirect relations that can be conducted
from other direct relations.

Figure 3. Visualization of the proposed metamodel.

The process system is incorporated by activities and artifacts, as suggested by (Browning
et al., 2006). Activities have different artifacts as inputs and transform them into (or
generate new) outputs. Further, artifacts can be related to an activity even though they are
not “processed”, e. g. when they only provide necessary information to that activity. In
order to realize different decomposition levels, activities and artifacts can be assigned to

 WBS
 Process models
 Time schedules
 Task descriptions

 Project
requirements

 Mission statement
 Requirements

lists/databases

 Process models
 Role descriptions

 Organization chart
 Role descriptions
 Capacity plans

 Role descriptions

Processes

Goals

Organization

 Resource
plans/schedules

 Task descriptions

No reasonable
partial model found

No reasonable
partial model foundTools

 Infrastructure
models

 Resource plans

Product  Task descriptions  Role descriptions QFD
No reasonable

partial model found

Goals Processes Organization Tools Product

 Functional models
 Product structure

models (e. g.
BOM)

Project

Organizational units

Individual

Know-howRole

Resources

Processes

Activity

Artifact

Goals

Requirement

Strategy/objective

Function

Component

Modules

Part III: Project Management

82 DSM 2015

superior activities and artifacts, respectively. Compositions of activities and artifacts build
processes. A process, however, is not included as a node class that can be modeled as an
instance; it rather serves as a term to qualitatively describe certain groups of activities and
artifacts during model analysis. In order to instantiate a group of activities as one element
into the model, they can be assigned to a superordinate activity.

The product system is described by product components and functions. Different
relationships between components (e. g. geometrical) or functions (e. g. two functions are
realized by the same part) are possible. Analog to activities and artifacts, components and
functions can further have a hierarchical structure. Moreover, they can be grouped into
modules, whereas again like processes, modules cannot be instantiated in a model but
facilitate model interpretation.

Typical goals of PD projects are to develop new technical products in a certain time frame
and to a defined budget. Hence, the goal system consists of project-related requirements
(of the project and of the product to be developed). Additionally, superordinate goals such
as company-wide strategies and objectives are part of the goal system and have to be
respected in every project.

Roles, individuals and know-how are entities within the organization system. Roles define
the organizational structure in a project and are impersonal descriptions of tasks and
responsibilities. Each individual in a company can be assigned to roles and has different
know-how. The term ‘know-how’ relates to skills, knowledge or experience, which shall
not be distinguished here.

The tool system provides resources to the project, whereas here only material resources
such as IT-systems, software, machinery or material that are needed in order to execute an
activity are meant. In contrast, human resources (e. g. work hour capacity per person) are
part of the organization system (individuals) and are modeled as attributes.

The relationships listed in Table 2 are supplemented by an indication whether a relation
can point from one [1] or more than one [n] source node(s) to exactly one [1] or more [n]
target nodes. For reasons of simplification, the relation activity requires know-how is also
used when special know-how is required for the usage of a resource (e. g. how to use a
CAD tool), since the relationship only exists when there is an activity actually using the
resource. Moreover, the relation role supports activity is included in the relation role is
responsible for activity (RACI classification). For some edges attributes are defined. For
instance, since artifacts are generated and evolve during the process, it is interesting to
document the degree of completion or maturity with these edges.

N. Chucholowski, U. Lindemann

DSM 2015 83

Table 2. Detailing of the relations included in the metamodel.

Relations Explanation
Activity [n] is part of Activity [1] Decomposition of activities.
Artifact [n] is part of Artifact [1] Decomposition of artifacts.
Activity [1] produces Artifact [n] A new artifact is generated by an activity.

Activity [n] edits Artifact [n] An already existing artifact is input for and gets
changed by an activity, what makes it also an output.

Attribute: Degree of change
Activity [n] requires Artifact [n] An artifact is used within an activity, without

changing the artifact.
Attribute: Required maturity of artifact

Artifact [n] instantiates
Component [n]

An artifact describes/defines/specifies a component.
Attribute: Degree of completion

Artifact [n] instantiates Function
[n]

An artifact describes/defines/specifies a function.
Attribute: Degree of completion

Component [n] is part of
Component [1]

Decomposition of components (part structure).

Function [n] is part of Function [1] Decomposition of functions (functional structure).
Component [n] realizes Function

[n]
A component takes part in the realization of a

technical function.
Component [n] fulfills Product

Requirement [n]
A component takes part in the fulfillment of a

product requirement.
Function [n] fulfills Product

Requirement [n]
A function takes part in the fulfillment of a

functional requirement.
Activity [n] requires Resource [n] A resource is required for a certain activity

Attribute: Required quantity (e. g. hours)
Activity [n] requires Know-how

[n]
Know-how is required to execute an activity.

Attribute: Required know-how level
Individual [n] is assigned to Role

[n]
Individuals can be assigned to roles which describe

their function in an organization.
Individual [n] has Know-how [n] Individuals have know-how.

Attribute: Know-how level
Role [n] is responsible for Activity

[n]
A role is disciplinary responsible for the execution

of an activity.
Role [1] is accountable for

Activity [n]
A role is legally/economically accountable for the

activity.
Role [n] is consulted regarding

Activity [n]
A role should be consulted during the execution of

an activity in order to get relevant information.
Role [n] is informed regarding

Activity [n]
A role that has the right to be informed about the

activity and its results.

3.3 Exemplary Use Case

In order to preliminary evaluate the feasibility of the pursued approach and the suitability
of the developed metamodel for PD projects, the theoretical metamodel is partially
described as a modeling language (cf. Figure 4). The modeling language defines different
node classes, edge classes and their attributes. Classes can be decomposed into subclasses,
whereas subclasses inherit all attributes from their superior classes. Abstract classes are

Part III: Project Management

84 DSM 2015

used to pool a group of attributes that are common to several subclasses. Abstract classes
do not appear as an entity in any instance model.

Figure 4. Typification of selected node classes and edge classes for a preliminary implementation
of the metamodel for PD projects.

In order to apply the developed metamodel, a fictitious example of a project for the
development of an electric drill is used. So far, 17 components, 44 artifacts, 7
requirements, 4 roles and 57 activities are instantiated; including different decomposition
levels to some extent. The nodes are connected via 55 IsPartOf-Nodes, 44 Instantiates-
Nodes, 44 IsResponsibleFor-Nodes, 14 Fulfills-Nodes and 44 Produces-Nodes. All nodes
and edges in one graph are depicted in Figure 5. In the next steps, rules have to be defined
that enable different perspectives on the underlying project data and workflow sequences
have to be developed that allow useful analysis with the help of graph transformation.

N. Chucholowski, U. Lindemann

DSM 2015 85

Figure 5. Project graph for the development of an electric drill (created with Soley® Studio,
www.soley-technology.com).

5 Conclusion and Outlook

5.1 Advantages

The partial implementation of the proposed metamodel shows that it is feasible to model
project data in a graph with nodes and edges. The biggest potential is seen in being able
to actually model interdependencies between different elements in project systems as
objects (edges) with own attributes. A graph-based model further allows computational
analyses of structures, using attribute values for nodes and edges at the same time.
Moreover, analysis results are visualized as graphs and hence facilitate the comprehension
of complex issues. It would further be possible to derive different standard visualizations
showing user-specific perspectives on the project systems.

The project data modeled in the graph can be imported from different existing plans,
models and datasets. Are the workflows for the data import and analysis procedures
defined once, they can be executed again with no extra effort. Thus, the modeling effort,
which is an often stated problematic issue in the application of matrix-based methods, is
reduced to a minimum.

Part III: Project Management

86 DSM 2015

5.2 Limitations

In the current version of the metamodel, only basic project system elements and direct
relationships are included. Important indirect relations, for example, have to be defined
also in the metamodel in order to use them in a graph representation or analysis. For the
exemplary use case, no iteration of activities was considered and artifacts were just
modeled as outputs from the activities (no required inputs). In addition, all nodes and
edges were considered as statically given. In order to support project controlling, both
descriptive data of what already happened and prescriptive data of what is planned to
happen in future, is necessary. These facets are unconsidered, yet.

Further limitations regarding the frontiers between project systems have to be noted.
Artifacts (as process results) are part of the process system, but can be seen as instances
of the product system. The same is true for requirements. They are abstract entities that
describe how the future product should look like. However, the description of
requirements in a requirements list is an artifact. Another limitation is that project
requirements and company-wide goals cannot directly be assigned to any other entity of
the project systems, since they are related to the project as a whole. For example, the
overall effort of working hours put into a project is related to the sum of all activities in a
project. All these issues are pending to be resolved.

5.3 Outlook

During the elaboration of the metamodel it became clear, that the five project systems
cannot be seen as delimited to one project. When there are several projects, many entities
only exist once within a surrounding multi-projects system (Figure 6). For example,
strategies, employees, test facilities or even components in a product-platform often are
related to several projects. Considering this in future, graph-based analytics bear even
more potential when the management of multiple projects is supported.

Figure 6. Projects as part of a multi-projects system, where certain entities have to be considered in
several projects comprehensively.

In future, the metamodel will be refined and workflows for graph analyses will be
developed. Other models and simulation approaches will be included. Further, graphical
representations of the results will be elaborated.

Multi-projects system

G
oa

l s
ys

te
m

Process system

Organization system

Tool system

Product
system

Projects

N. Chucholowski, U. Lindemann

DSM 2015 87

References
Browning, T.R., 2013. Managing Complex Project Process Models with a Process Architecture

Framework. International Journal of Project Management 32 (2), 229–241.
Browning, T.R., 2014. A Quantitative Framework for Managing Project Value, Risk, and

Opportunity. IEEE Transactions on Engineering Management 61 (4), 583–598.
Browning, T.R., Fricke, E., Negele, H., 2006. Key concepts in modeling product development

processes. Systems Engineering 9 (2), 104–128.
Browning, T.R., Yassine, A.A., 2015. Managing a Portfolio of Product Development Projects under

Resource Constraints. Deision Sciences 46 (5).
Favre, J.-M., 2005. Foundations of Meta-Pyramids: Languages vs. Metamodels - Episode II: Story

of Thotus the Baboon, in: Bezivin, J., Heckel, R. (Eds.), Language Engineering for Model-
Driven Software Development. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany.

Forsberg, K., Mooz, H., Cotterman, H., 2005. Visualizing Project Management : Models and
Frameworks for Mastering Complex Systems, 3rd ed. John Wiley & Sons, Hoboken, New
Jersey.

GPD, 2015. Plenty of tools, too much data, unending meetings, and plans difficult to believe in.
URL: <http://www.gpdesign.com/learn/papers/pdfs/GPD_DS_TooMuchData.pdf>.
Accessed 9 April 2015.

Hellenbrand, D., 2013. Transdisziplinäre Planung und Synchronisation mechatronischer
Produktentwicklungsprozesse, 1st ed. Dr. Hut, München.

Helms, B., 2012. Object-Oriented Graph Grammars for Computational Design Synthesis. PhD
Thesis, München.

Jackson, C.K., 2006. The Mechatronics System Design Benchmark Report: Coordinating
Engineering Disciplines. Aberdeen Group, 30 pp. Accessed 17 April 2015.

Kreimeyer, M., Lindemann, U., 2011. Complexity metrics in engineering design: Managing the
structure of design processes. Springer, New York.

Lévárdy, V., Browning, T.R., 2009. An Adaptive Process Model to Support Product Development
Project Management. IEEE Transactions on Engineering Management 56 (4), 600–620.
10.1109/TEM.2009.2033144.

Lindemann, U., Maurer, M., Braun, T., 2009. Structural Complexity Management: An Approach for
the Field of Product Design. Springer, Berlin.

Negele, H., Fricke, E., Igenbergs, E., 1997. ZOPH - A Systemic Approach to the Modeling of
Product Development Systems. INCOSE International Symposium 7 (1), 266–273.
10.1002/j.2334-5837.1997.tb02181.x.

PMI, 2013. A guide to the project management body of knowledge (PMBOK guide).
ProSTEP iViP, 2010. Collaborative Project Management PSI 1-1: Recommendation: Reference

Model; Version 3.0. ProSTEP iViP, 78 pp.
Ropohl, G., 1975. Systemtechnik - Grundlagen und Anwendung. Hanser, München.

Acknowledgements

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) for funding
this project as part of the collaborative research center ‘Sonderforschungsbereich 768 – Managing
cycles in innovation processes – Integrated development of product-service-systems based on
technical products’. We also thank Kevin Burger for his support in elaborating the example and
graph models. Last, we gratefully thank Soley®-Team for providing Soley® Studio (www.soley-
technology.com/en/pr-soley-studio/) and their precious knowledge in graph modeling.

Part III: Project Management

88 DSM 2015

Contact: N. Chucholowski, Institute of Product Development, Technische Universität München,
Boltzmannstraße 15, 85748 Garching bei München, Germany, +49 89 289 151 36,
chucholowski@pe.mw.tum.de

