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Abstract—Earth Observation (EO) images clustering is a chal-
lenging problem in data mining, where each image is represented
by a high-dimensional feature vector. However, the feature vectors
might not be appropriate to express the semantic content of
images, which eventually lead to poor results in clustering and
classification. To tackle this problem, we propose an interactive
approach to generate compact and informative features from
images content. To this end, we utilize a 3D interactive application
to support user-images interactions. These interactions are used
in the context of two novel Non-negative Matrix Factorization
(NMF) algorithms to generate new features. We assess the
quality of new features by applying k-means clustering on
the generated features and compare the obtained clustering
results with those achieved by original features. We perform
experiments on a Synthetic Aperture Radar (SAR) image dataset
represented by different state-of-the-art features and demonstrate
the effectiveness of the proposed method. Moreover, we propose
a divide-and-conquer approach to cluster a massive amount of
images using a small subset of interactions.

Index Terms—Immersive interactive system, non-negative ma-
trix factorization, feature learning, clustering.

I. INTRODUCTION

HE amount of collected Earth Observation (EO) images

has been increasing exponentially since the last decade.
In order to index and retrieve this massive amount of images,
the content of each image is represented by a high-dimensional
feature vector. Generally, the similarity between two images
is expressed by the distance in feature space, which could be
different from human understanding. Hence, the gap between
the human and machine description of input image, the so-
called semantic gap, is a crucial issue in clustering and
classification [1]. Numerous methods have been proposed to
bridge the semantic gap in Content Based Image Retrieval
(CBIR) systems [2], [3]. Basically, the related work can be
categorized into two main groups. First, there are methods
utilizing user-provided constraints to learn a distance met-
ric [4]-[6]. The goal of these methods is to learn a kernel
matrix that approximates the semantic distance within the
Euclidean feature space. Second, there are methods that use
constraints to guide a clustering algorithm such as [7], [8]. For
instance, in constrained k-means, the user-provided constraints
are considered in assigning images to the clusters. If one
assignment violates the constraints, it will be ignored.
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Non-negative Matrix Factorization (NMF) is a linear di-
mensionality reduction technique that has been considered
to generate a parts-based representation of images [9]-[11].
In contrast to non-linear dimensionality reduction techniques
such as Laplacian Eigenmap (LE) [12], Locally Linear Em-
bedding (LLE) [13], and Isomap [14], NMF is a parameter
free algorithm that can efficiently incorporate new constraints.
This property motivates us to develop new variants of NMF
algorithm to employ the constraints provided by the user in
order to have an interactive dimensionality reduction. Recently,
some variants of NMF have been introduced to represent
images for clustering [15]-[17]. For instance, semi-supervised
NMF algorithms use label information in a regularizer coupled
with the main objective function [18].

In this paper, we introduce two novel NMF algorithms,
namely a Variance Constrained NMF (VNMF) and a Center
Map NMF (CMNMF) to be used in an interactive system to
represent the images, bridging the semantic gap and eventually
increasing the performance of clustering. The main contribu-
tions of our work are

e an immersive interactive interface to allow the user to
interact with the images,

o two NMF-based interactive algorithms that utilize user-
provided similarity constraints to generate new represen-
tations of images,

¢ a divide-and-conquer approach [19] decreasing the com-
putation time.

We extract the user interactions via a 3D interactive appli-
cation that can run on two systems. The first one is a regular
desktop PC, whereas the second one is a Cave Automated
Virtual Environment (CAVE). In contrast to the desktop, the
CAVE provides the user with the ability to navigate inside the
images and explore the results of clustering in 3D. To visualize
the images, we apply k-means clustering on the original
representation of the images and visualize the cluster centers.
Then, the images are positioned around their corresponding
cluster centers based on their distances. The user navigates
inside the images and interacts with them by assigning the mis-
clustered images to their desired clusters (see Fig. 1(d)). A set
of these interactions is used to build up a semantic similarity
matrix, which is exploited in the main objective function of
NMF. The optimization of this function eventually leads to
a new image representation. Comparing the clustering results
between the original and new representations, demonstrates the
effectiveness of the proposed algorithm. We are furthermore
able to confirm that the clustering accuracy increases with the
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Fig. 1. (a) the visualization of the clustering result in the CAVE. Images are positioned around their cluster centers based on their distances. A sample image
of each cluster is used to depict the cluster center. (b), (c) show user interactions on a desktop. A mis-clustered image is connected to a semantically cluster
center by a green line. (d) a mis-clustered image (the image with red border) is connected (green line) to the cluster center of target cluster (with blue border).
This interaction updated the semantic similarity matrix W, which is used in our novel NMF algorithms.

number of user interactions.

The rest of the paper is organized as follows: Section II
provides an overview of NMF concept. In Section III we in-
troduce our two novel NMF algorithms followed by the details
of the immersive interactive interface. Section IV provides the
details on the performed experiments. First, the datasets and
the evaluation metrics of clustering are introduced. We then
continue with a description of the experimental setup followed
by a presentation and discussion of our results. Finally, in
Section V we draw a conclusion and discuss potential topics
for future work.

II. A BRIEF REVIEW OF NMF

Non-negative Matrix Factorization (NMF) [9] is a widely
used matrix factorization method which provides a part-based
representation of data by enforcing non-negative constraint
to the matrix factors. Given a non-negative matrix X =
[z1,...,2N5] € RPXN where each column is a feature vector
representing a data sample, the goal of NMF is to factorize X
into two non-negative matrices U and V such that:

X ~UVT, where UeRP*E v ecRVXE (1)

and we are interested in a decomposition such that K << D.
This factorization is a constrained non-convex optimization
problem with the cost function equal to:

F=|X-UVT|E 2)
st. U= [’qu] >0,
V= [Ujk] >0

The cost function is convex only in U or V, but not convex
in both together. Therefore, there is no global solution for the

algorithm, but Lee and Seung [9], [20] presented an iterative
update algorithm to find a local minimum as follows:

(XV )ik , - (XTU)jk
(UVTV)ir’

It is proved that the updating rules can converge to a local
minimum of the cost function [20]. Basically, the matrix U
represents the bases of new space and the matrix V holds
the new representation of data points. Later on in experiments
section, we apply k-means clustering to the new representation
(feature) of data points.
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Uik <

III. INTERACTIVE LEARNING ALGORITHMS
A. Variance Constrained NMF

The goal of VNMF is to factorize some input data X into
two non-negative matrices U and V, subject to a minimum
value for the variance of V' (i.e., o%). Intuitively, by decreasing
the variance of data points belonging to the same class, we aim
to force the data points as close as possible. Evidently, if some
data points come from same class, they should be very close
together. So, by minimizing the variance we can reach this
goal. Therefore, we minimize the following objective function:

F=|X-UVT|% + \o?
st. U= [uu] >0,
V=1[vx] >0 “4)
The user interactions are kept in the matrix W € RV*V,
whose elements W;; are 1 if the images ¢ and j are connected

or 0 if they are not. When the user links an image ¢ to a cluster
center ¢ containing p images, the corresponding p elements of



the row ¢ of matrix W would be 1. In other words, W;; # 0
shows the images ¢ and j are semantically similar to each
other. Finally, matrix W is updated as a weight matrix with
Wi = le\il Wi = 1, where M is the total number of non-
zero elements in row ¢. In order to compute the variance of
new features, their expectation value should be computed first.
Thus, we scale the matrix W so that its rows always sum to
1, yielding matrix W. The multiplication of W and V finally
results in a matrix V, holding the mean features of similar
images. For example, given a dataset of four images, where
image 1 is connected to image 2, we get:

2 1/2 0 0 U1 V12 V13 V14
= _ oo | Y2 Y2 00 V21 V22 V23 V24
V=wv = 0 0 1 0 V31 V32 V33 V34

0 0 01 V41 Va2 V43 U4y

®)

By introducing new matrix 7' = I — W, we can write
— 2 —~ 2 9
o2 = ||V -V = HV - WVHF —|TVIA.  (®)

In order to control the variance, another scalar parameter
0 is introduced inside the regularizer. Finally, the objective
function to be minimized is

2
C =X -UV'E+A(nd —ITV|F)

N K o 2
AN =303 (o —0)°) )
J

where A controls the overall contribution of the regularizer.
1) Optimization rules: To minimize the cost function given
in Eq. (7), we first expand it to

C= Tr((X —UVT)(X — UVT)T)

+ )\(Ne - Tr((TV)(TV)T))2

=Tr(XXT") - 2Tr(XVUT) + Tr(UVTVUT) + \Z2,
®)
where
Z =NO—Tr(TVVITT). )

We define Lagrange multipliers o, and (3;, with the con-
straints u;; > 0 and v;, > 0, respectively. Therefore, by
defining A = [a;] and B = [B;y], the Lagrangian L is

L=Tr(XXT) - 2Tr(XVUT) + Tr(UVTVUT)
+ \Z2 + Tr(AU) + Tr(BV). (10)

The partial derivatives of £ with respect to U and V are

oL

= = 22XV +2UVIV + A
50 + +
g—é = 9XTU +2vUTU —22ZT"TV + B.

(1)

12)

Using the Karush-Kuhn-Tucker (KKT) conditions [21], where

ajjuy; = 0 and Bjpv;r, = 0, the following equations are
obtained:
— (XV)igug, + (OVIV)ipuip = 0 (13)
[~ XTU +VUTU = A\ZTTTV]jkvjx =0 (14)

With the symmetric matrices T = T — T, where T;Jf =
(ITi;] +Ti5)/2 and T;; = (|T35| — Ti;)/2, the update rules for
U and V can be rewritten as:

(XV)ik
i ik T 15
Uik < Uik (UVTV)zk (15)
XTU —20ZT+T-V)
Wik Vjk *U V)i (16)

(VUTU = \NZTHTHV = AZT-T-V) ;%
J

Here matrix V' contains the newly generated features that
represent the content of images. These features are used in
k-means algorithm to cluster the images.

B. Center Map NMF

In CMNMEF, the user-interaction/semantic information is incor-
porated/injected inside the main function of NMF. We create
matrix W in the same way we have described in Section III-A
and denote it here as W. In addition, we introduce an auxiliary
matrix Z in order to get matrix V. For example, suppose there
are four images, the operation is:

1/2 1/2 0 0 211 z12 Z13 Z14
V _ WZ _ 1/2 1/2 O 0 Z21 Z992 Z93 z294
0 0 1 0 231 232 233 234
0 0 0 1 zZ41 Z42 Z43 zZa4
Z11 + 221 212+ 222 Z13+ 223 214+ 224
2 2 2 2
| Zutzar zi2+ 222 z13+ 223 214t 24
- 2 2 2 2
231 232 233 234
241 242 243 244
(17)

From this example, we can see that the new representation
guarantees that the first two images (first two rows of V') will
be assigned to the same cluster center. Adding the introduced
terms to the NMF formulation leads to the following mini-
mization objective:

min @ = min HX — UZTWTH

U,Z U,Z (18)

where X, the original image representations, is decomposed
into U and V, V being the new representation of the images
and U being the bases. For the derivation of the update rules
we expand this objective to

O=Tr(X -UZ"Wh(X -UzT"Wwh)T)
=Tr(XXT) - 2Tr(XWZUT) + Tr(UZ*"WTWzU™)
19)
and introduce Lagrange multipliers ® = [¢;x] and ¥ = [1,]
for the constraints [u;;] > 0 and [v;;] > 0, respectively. This
leads to the Lagrangian

L=0+Tr(@®U") +Tr(vz") (20)



The partial derivatives of £ with respect to U and Z are

% = 2XWZ+2UZ"WTWZ + @ (21)
oL T ~T T T
87:72WXU+2W wzUutu + v (22)

Using the Karush-Kuhn-Tucker (KKT) conditions [21], we
arrive at the following update rules for U and Z:

Uij < g (XW2), (23)
VT UZTWIWZ),,

(WEXTU), 04

Zjk < Zjk (WTWZUTU) N (24)
J

Like VNMF, the matrix V' contains the newly generated
features that represent the content of images. These features
are used in k-means algorithm to cluster the images.

C. Immersive Interface

We utilize a 3D interactive application development software,
namely 3D Via Studio, to create our interactive visualization
system. Our application can be run on a desktop PC or in an
immersive 3D virtual environment such as a Cave Automated
Virtual Environment (CAVE) [22], [23]. The CAVE is com-
posed of four room-sized walls, i.e., displays, and a tracking
system to capture the human motion. The user is provided
with an Xbox 360 gamepad controller to navigate inside the
virtual space and interact with the images.

The 3D positions of images are determined by the clustering
result of the k-means method, as well as the distances between
the images and their corresponding centers. More precisely, the
distance between an image and its cluster center is proportional
to its actual distance in the high-dimensional space. Thus, the
user can first scan the images that are far away from their
respective cluster centers, because they are prone to be mis-
clustered.

In addition to the CAVE, we also implemented a desktop
version of our application running on a single PC. A snapshot
of the immersive visualization of the clustering results in
the CAVE is depicted in Fig. 1(a). Fig. 1(b) and Fig. 1(c)
depict two views of a clustering result visualized on a desktop
PC. The main advantage of using the immersive visualization
technology is that the user gets an overview of the whole
dataset and can therefore identify those images that should be
relabeled more efficiently. This is especially important if the
user is dealing with a high amount of images that cannot be
visualized on a limited-space monitor.

IV. EXPERIMENTS
A. Data set

The dataset used in our experiments is a Synthetic Aperture
Radar (SAR) dataset [24] represented by three different fea-
tures. It consists of a collection of 3434 SAR images of the
size 160 x 160 pixels, pre-categorized into 15 classes/labels (by
a SAR expert) based on the presences of forests, water, roads

and urban area density. For instance, one image is categorized
as ‘“sea” and another as “industrial part”. Three different
feature vectors, namely Weber Local Descriptor (WLD) [25],
[26], Mean-Variance [27], [28] and Image Intensity [27] were
extracted from the images, leading to a total of 64 dimensions
in these three cases. All features are normalized to lie between

0 and 1.

Fig. 2. Sample images from the SAR data set. There are 15 images, each
one is representing one class.

B. Evaluation Metrics

We use two metrics to evaluate the clustering result of new
image representations, namely Accuracy (AC) and Normalized
Mutual Information (nMI) [24].

1) Accuracy: The accuracy represents the percentage of
correctly predicted labels compared to the ground true labels.
Given a dataset with N samples, where for each sample, t;
indicates its true label given by the data set and p; is the label
predicted by a clustering algorithm, the accuracy is defined as

AC = 21 0 (b, map(pi)

N )

where 0(z,y) = 1 if x = y and 0 otherwise, and map(p;) is

a function that maps each label to the corresponding label in

the data set. The permutation mapping is determined using the
Kuhn-Munkres algorithm [24].

2) Normalized mutual information: The similarity of two
clusters is determined by normalized mutual information.
Given two sets of clusters C = {ci,...,c;} and C =
{é1,...,¢;}, the mutual information metric is computed by

>

Ciec,éj Gé

(25)

p(ci7éj)

MI(C,C) = p(ci)p(éy)’

p(ci, ¢;)log (26)

where p(c;), p(¢;) represent the probability that an arbitrarily
selected data point belongs to the clusters C' or C;, respec-
tively, and p(c;, é;) represents the joint probability that a point
belongs to both clusters simultaneously. As the similarity of
the two clusters increases, the mutual information MI(C, C)
increases from 0 to max{H(C),H(C’)}. H(C), H(C) rep-
resent the entropy of the clusters C, C respectively. Dividing
the mutual information by max {H (C),H(C) } leads to the
normalized mutual information, which takes values between 0
and 1:

MI(C,C)

nMI(C.C) :max {H(C)7 H(C’)} .

27




C. Design

Given a set of N images, we randomly selected 10 — 15
percent of the images as training data. In our experiment, 500
images are chosen as training data. For this new image set, we
applied k-means clustering algorithm and visualized the im-
ages by the cluster-based visualization system. we visualized
the images by 15 clusters. The user navigated inside the data
and corrected the mis-clustered images by drawing a green
line between the image and the center of the desired target
cluster. The interactions were saved in a matrix with 2 columns
and I rows where I is the number of interactions. First
column stored the ID of the interacted image and the second
column saved the ID of the target cluster. The interactive
matrix was used to create the weighted similarity matrix for
systems based on VNMF and CMNMEF. The images would
have new representations that showed better cluster accuracy.
For example, the user moved image ¢5 to the cluster co. And
there were two images ig and iy belonged to co. The images
i2,1¢ and i7 would be regarded as similar images and the
positions in similarity matrix (2,6), (2,7), (6,2),(6,7),(7,2)
and (7,6) would be set to 1. After updating the matrix W,
the matrix W was calculated by calculated row-wise average,
namely

Wij = 7151/ :
Zl:l Wi

where N was the number of images in total. Then, for VNMEF,
the matrix 7' was updated by 7" = I — W where I was an
identity matrix. The new matrix 7" would be used in VNMF
to calculate the new data representation V' where V would
show better clustering result in low dimensional space. For
CMNMF, the matrix W was directly used in updating rules to
obtain the new data representation. All similar images would
be mapped to their semantic centers and as a result, the new
representations provided good clustering accuracy.

The dimension of new representation matrix V' was set to
the number of images by the number of classes. For our SAR
data sets it was set to be N x 15. For CMNME, the similarity
matrix was directly applied to the updating rules since the
matrix V' was replaced by WZ. Thus, no parameter was
needed. For VNMEF, the regularization parameter was used to
control the contribution of the user interactions. The parameter
was chosen by tuning the value A through searching the grid
{1077,1075,107°, ..., 10%,10%}. We apply VNMF algorithm
on the training data with different lambda values from the
grid and then apply the k-means algorithm 10 times to the
obtained new features (matrix V). The lambda value with
highest average accuracy is selected as the proper lambda for
the test dataset. Since the new representation V consisted of
small values(0 ~ 0.6)and the updating rules were sensitive
to the regularization terms, the parameter between 10~¢ and
102 was chosen in most cases.

After training, we used these three learning algorithms
in two different ways for test data: 1) cluster the test data
following the change of interaction number and 2) cluster
the test data following the change of the dimension of new
representations.

Traditionally, after training, the test data was processed as

(28)

a whole data set, called batch processing. Since the size of
test data set is much larger than the size of training data,
the divide-and-conquer processing is used while clustering the
test data. Compared with batch processing, divide-and-conquer
processing provides similar performance in clustering accuracy
with much less running time. The test data was divided into
parts with the same size of training data. Then we mixed the
training data with each part and applied learning algorithms to
obtain new representations for each part. The clustering results
of k-means algorithm on each part were averaged as the final
result of the whole data set. A schematic of this process is
depicted in Fig. 3.

ain Data Matrix Ay
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Test Data 2 Matrix A,

A= %leu,
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nMI = 72 nMI;
nluiz
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1 1
' '
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Fig. 3. A schematic view of the proposed divide-and-conquer approach to
get a new representation of the data for clustering. Here, the training data is
mixed with each part of test data and is fed into VNMF/CMNMF to get new
representation V. k-means is applied on each V' separately and the results are
mixed as the final results of clustering.

Matrix A,

When clustering the test data following the change of
interaction number, the dimension of the matrix V are fixed
to the number of images by the number of classes. Based on
different numbers of interactions, the test data are classified
and the clustering results are calculated.

When clustering the test data following the change of the
dimension of new representations, the number of interactions
is fixed to 180. The new representation matrix V' will have the
size of N x k, where N is the number of images, k changes
in the range 3,6,9,12, 15 for the SAR data set. For matrix V'
with different sizes, the clustering results are calculated and
compared with other algorithms.

To enhance the user’s effect, the locality property [29] was
used to propagate the user’s interaction. In another word, the
user’s interaction on training data would be applied to their
nearest neighbors in test data. The idea is shown in Fig.4.
The usage of locality property could produce errors since it

0 )-

Fig. 4. The objects in blue are the training data, and in green are test data.
The square and circle indicates different classes. The dash line shows the
similarity interaction. The blue dash interactions are done by the user while
training the data. The green dash interactions are done by the system while
applying the locality property



uses Euclidean distance to find nearest neighbor. However, it
strengthened the user interaction and the learning algorithm
would correct the error produced by locality property.

D. Results

We compared the clustering results of new representations
obtained from VNMF and CMNMF with that of the k-means
clustering algorithm on original high-dimensional features,
PCA, and NMF as a function of number of interactions and
dimension of subspace (i.e., the dimension of newly generated
features) separately. The three columns in both Fig. 5 and
Fig.6 shows the results of SAR images represented by Mean
Variance, Image Intensity, and WLD features, respectively.

Fig. 5 shows the experimental results of clustering test data
with the change of interaction number. As the Fig. 5 shows, by
increasing the number of interactions, the clustering accuracy
of VNMF and CMNMF for all data sets is increased by
10 — 15%. The user interaction provides more improvement
in Mean-Variance and WLD features than Image Intensity
features. For mutual information, all algorithms present similar
performance within the range of +3% which is reasonable for
heuristic algorithms.

Fig. 6 presents the experimental results of clustering test
data with the change of dimension of subspace (i.e., the di-
mension of newly generated features). Here, the dimension of
subspace is the number of columns of new data representation
V. As shown in the Fig. 6, with the increase of the dimension
of new representations, all algorithms except k-means show
the improvement in accuracy and mutual information. Among
these algorithms, VNMF and CMNMF shown in green and
blue line respectively, offers better performance than other
algorithms for all dimensions. It provides about 5 — 10%
improvement than other algorithms. Compared among these
three features, the user interaction improves the accuracy most
for Mean-Variance features with more than 10%. For the
mutual information, all algorithms have similar performances.
Additionally, by observing the accuracy in Fig. 6, we can
find that for feature Mean-Variance and Image Intensity, once
the dimension of subspace reaches 6, further increment in
dimension of subspace cannot improve the clustering results
in accuracy and mutual information. For WLD feature, after
the dimension reaches 9, the accuracy and mutual information
also reach their highest points in this dimension range. The
results imply that, instead of setting the dimension of new
representation to the number of classes, choosing some smaller
values, like 6 for Mean-Variance and Image Intensity and 9
for WLD, will not affect the clustering result but decrease the
size of new representations a lot. The computation time of each
algorithm applied to a dataset consisting of 1000 samples is
presented in Fig. 9. As the figure show, the VNMF algorithm
has lowest computational cost in comparison to CMNMEFE.

Additionally, in Fig. 7, we present exemplary results of
clustering algorithm (i.e., k-means) applied to the original
features and also the new features obtained from VNMF and
CMNMF algorithms. Here, we randomly select four classes
and 16 images for each class. The correct and incorrect images
are depicted by green and red borders, respectively. As the

results show, the number of errors is decreasing by applying
VNMFand CMNMF algorithms. There are several differences
between these two algorithms. First, in VNMEF, there is a
parameter that controls the variance of new feature, while we
dont have any parameter in CMNMEF algorithm. On the other
side, VNMF algorithm is much faster than CMNMF algorithm.
However, CMNMF produces at least comparable results with
VNME. In conclusion, VNMF is faster, but its performance
depends on the parameter.

E. Convergence

Fig.8 shows the convergence speed of NMF, VNMF and
CMNMF for features Mean-Variance, Image Intensity and
WLD of SAR. As shown in figures above, these three algo-
rithms converge within 10 iterations. VNMF provides a better
objective value that is much smaller than that in NMF and
CMNMF provides smallest objective value.

The computation times of divide-and-conquer and batch
processing are depicted in Fig. 10. The results confirm that
the divide-and-conquer approach is about four times faster than
batch processing. Fortunately, all matrix elements are updated
independently from each other. Therefore, the factorization
can be implemented on GPU [30] and consequently, the
computation times would decrease much more.

10
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Fig. 9. Computation time of NMF, VNMF, and CMNMF applied to a dataset
of 1000 samples.
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Fig. 10. Computation times of divide-and-conquer compared to batch
processing for all three features. The experiments were executed on a desktop
PC with an Intel Core2Quad 2,8GHz CPU and 8GB of RAM. The divide-
and-conquer approach is on average four times faster than batch processing.
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Fig. 6. Clustering results of different subspaces (new features) represented by accuracy (first row) and normalized mutual information (second row). The first,
second and third columns show the results of SAR images represented by Mean-Variance, Image intensity and WLD features, respectively.
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Fig. 7. Exemplary images of four randomly chosen classes after applying k-means clustering to original features (left column) and the new features obtained
by VNMF (middle column) and CMNMF (right column). Each row shows sample images of a random chosen class. Green borders depict correct clustered

images and the red ones depict incorrect clustered images.
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Fig. 8. The convergence speed for NMF, VNMF and CMNMF applied on three features; a)Mean-Variance; b) Image Intensity; ¢c) WLD.



V. CONCLUSIONS

We proposed two novel NMF based algorithms (i.e., CMNMF
and VNMF) utilizing user-data interactions in order to bridge
the semantic gap between human and machine perception
of images. For interactions, we visualize the images in a
3D interactive environment using k-means. The visualization
application can run on a regular desktop PC or in a CAVE. The
user-provided interactions are exploited in the main objective
function of CMNMF and VNMF to generate semantically
more meaningful representations. Experimental results on a
SAR data set have shown that the algorithm increases the
clustering accuracy significantly. To decrease the computation
time, we proposed a divide-and-conquer approach to factorize
the matrices which clearly outperforms regular batch process-
ing.
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