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CHAPTER 1

Introduction

People frequently express the view that Power Electronics is already a mature technology,
that machines work more or less at their physical limits and hence, no more novelties can be
expected. In order to evaluate the latter part of this statement, one has to define the properties of
an advanced electrical drive first. Accurate reference tracking and fast dynamics are the main
properties. However, robustness, efficiency, optimal performance, system constraints handling
and operation in faulty conditions define the performance index of an advanced electrical drive.

Taking a close look at available drives on the market brings us to the conclusion that they
have good reference tracking and fast dynamics (very close to their physical limits), that they
are robust and that their energy efficiency is acceptable. Conversely, most electrical drives are
not operated at their energy optimum operating point. They do not follow optimal time trajec-
tories. Robustness is mainly achieved via observer adaptation and not via improved sensing
of physical variables. There is no straightforward approach to dealing with constraints which
causes limitations regarding faulty conditions.

These imperfections are neither physical limits nor the consequence of a lack of knowledge
in control theory. In fact, these limitations exist mainly due to the insufficiency of calculation
power at the time when electrical drives were designed back in the 80s and 90s, whereas today
fast processors let us perform complicated tasks such as signal processing and optimal control
in real-time.

Signal processing techniques mainly facilitate the observer design by extracting more infor-
mation from sensed signals. Optimal control techniques enable system operation at an optimal
point. Moreover, constraint optimization, which is an inherent feature of Model Predictive Con-
trol (MPC), is a classical approach to dealing with constraints without sacrificing on dynamics.
The possibility of setting soft and hard constraints on system variables and of having a simulta-
neous fast dynamic performance eases handling a faulty condition.

There are many publications on the application of these tools to electrical drives; however,
most of them only address reference tracking and system dynamics problems. In order to
achieve the slightest improvement, one has to not only try out things in new ways, but at the
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same time address new issues and strive for secondary goals as well. This approach is opposed
to the one described in the beginning: instead of being content with achievements, we should
try to improve things even further.

This work addresses an optimization problem for electrical drives. More specifically it con-
fronts the current distortion optimization problem at low switching frequencies. Main require-
ments of converters - especially at high power levels - are a low harmonic distortion of current
in order to decrease load losses and a low switching frequency in order to decrease converter
losses and hence, to increase its utilization. These requirements are obviously in contrast, so
a trade-off is necessary between minimal switching losses and minimal harmonic distortion of
the current. This trade-off is usually made in two ways:

• Keeping the switching frequency constant and optimizing the current distortion,

• Keeping the current distortion or torque ripple below a certain value and minimizing the
switching frequency.

The first option can be achieved via Synchronous Optimal Modulation (SOM) or in other
words Optimal Pulse Patterns (OPP). In this approach, the concept of clocking the pulses is
completely eliminated from the Space Vector Modulation (SVM) scheme and switching events
are allowed to take place freely over the fundamental period with the single constraint of main-
taining waveform symmetry. Thus the commutation angles can be calculated to achieve the
desired modulation index for the output voltage while eliminating certain harmonics from the
current or minimizing its distortion [1]. This optimization is a very slow procedure. Depending
on the converter topology, switching frequency etc, calculation times range from a couple of
days up to even several weeks. As a result, optimal switching instances are calculated offline
and stored in memory with the modulation index and pulse number as parameters.

Optimization of the switching frequency by keeping the current distortion under a maximum
value is achieved by hysteresis-based model predictive control in which the current is kept
within hysteresis boundaries and switching events are minimized over the prediction horizon.
Although at low switching frequencies this scheme can have comparable distortion with OPPs,
it cannot profit from the benefits of fixed and synchronous modulation. A fixed switching
frequency shapes the current spectrum in such a way that harmonics show up on multiples
of the switching frequency and its sidebands, while synchronism eliminates the subharmonic
components from the generated waveforms. Another issue with hysteresis based MPC is that in
order to achieve comparable results with OPP, the current boundary has to be transformed from
circular to rectangular in the αβ plane at high modulation indexes [2].

Some questions might be raised here:

• Is it possible to speed up the offline optimization procedure for pulse pattern generation?

• Is it possible to generate OPPs online?

• Is it possible to design a predictive-based controller that has a comparable distortion with
OPPs at low switching frequencies and at the same time has the benefits of fixed and
synchronous modulation?
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The objective of this thesis is to find answers to these questions. After this introduction,
system modeling and basic concepts are explained in the second chapter. Chapter 3 provides
a brief introduction and classification of MPC in electrical drives. In chapter 4, optimal pulse
patterns are analyzed and a new optimization formulation is introduced, by the use of which
calculation time is reduced considerably. OPP investigation results are taken into account to
design a predictive-based online current distortion optimizer in chapter 5. Eventually, chapter 6
concludes the work by summarizing the contributions.
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CHAPTER 2

System model

The term model in model predictive control emphasizes the fact that we deal with a model-
based controller; however, it is very difficult to imagine the existence of any high performance
controller that does not consider the available information about the behavior of a system. In
principle, a system model is necessary to understand a plant, predict its behavior and design
a controller for it. A drive system mainly consists of an electrical machine and a converter.
Electrical machines are usually considered as continuous state machines. In contrast, the power
converter is a Finite State Machine, which means that its output can vary among finite discrete
states. As a result, two categories of controllers are plausible for a drive system. In the first
category, which is known as direct method, the controller receives continuous feedback from
the machine and directly chooses a state among finite converter states. Thus, the controller
has a hybrid nature. In the second category, controller receives continuous feedback from the
machine and sets the reference output voltage of the converter in continuous mode. In this case,
a modulator is needed to translate continuous references into a pulse train that is understandable
for the converter. As a result, a modulator is a part of an electrical drive alongside the machine,
power converter and controller.

In this chapter and after a short description of the notation and symbols used, the modeling
of the electrical drive system is provided.

2.1 Symbols and notations

A list of symbols and abbreviations is given in appendix A. Additionally, symbol fonts, di-
mensions as well as super- and subscripts that are used in this work as an indication of certain
properties of a quantity need to be defined.

Table 2.1 shows how scalars and matrices are defined throughout the thesis. Table 2.2 shows
different representations of a signal (eg.: voltage signal, u (t)).
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Table 2.1: Dimensions

Symbol Character Definition
R regular capital scalar
A bold capital matrix

Table 2.2: Representations of an examplar signal

symbol Character definition
u regular small instantaneous value
û small hatted peak value
urms small with rms subscript effective or rms value

u small bold vector
|u| small bold in vertical bars absolute value

Subscripts are used to show the physical location, origin or coordinate frame of a quantity.
Throughout the thesis, unique symbols are used to define each quantity. However, the subscript
s is an exception. It is mainly used to refer to the stator, such as in Rs. In case of time, it stands
for sampling, as in Ts, and in ωs, it refers to synchronous. As these definitions are commonly
used throughout the drive community, the notation has not been changed in order to avoid
confusion.

The only superscript used is ∗, which denotes the reference value of a signal.

Table 2.3: Subscripts

symbol definition
r,s rotor and stator
s in case of time, sampling, and in ωs, synchronous

a, b, c three phases
α, β stator-fixed Cartesian axes
d, q rotor-fixed Cartesian axes
opt optimal value
est estimated value
p predicted value

ph prediction horizon
m mechanical or magnetizing
e electrical

sw switching
rec recovery
FC flying capacitor
dc direct current

rms root mean square
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2.2 Induction motor model
In principle, an induction motor IM is an asynchronous motor in which electromagnetic in-

duction from the magnetic field of the stator winding generates electric current in the rotor
winding or rotor bars. Thus it does not need any mechanical commutation, separate-excitation
or self-excitation for transferring energy from the stator to the rotor. Induction motors are reli-
able and cost effective due to their simple concept and are widely used in both fixed and variable
frequency industrial drives.

2.2.1 Induction machine model
The basic equations of an IM can be written in a coordinate system that rotates with an

arbitrary angular velocity ωk

us = Rsis +
dψs

dt
+ jωkψs, (2.1a)

ur = Rr.ir +
dψr

dt
+ j (ωk − ωe)ψs, (2.1b)

ψs = Lsis + Lmir, (2.1c)
ψr = Lrir + Lmis, (2.1d)

T =
3

2
P |ψs × is| =

3

2
P

Lm

σLsLr

|ψr ×ψs|. (2.1e)

Stator variables are marked in the form (∗)s, while rotor variables are denoted in the way
(∗)r. ψs and ψr are the fluxes, is and ir the currents, Rs and Rr the resistances, Ls and Lr

the inductances and Lm corresponds the mutual inductance between stator and rotor. vs is the
applied stator voltage and ur the rotor voltage (ur = (0 V, 0 V)T for a squirrel-cage induction
motor). j is defined as j =

√
−1. ωe is the electrical angular machine speed, which is given by

ωe = P · ωm, (2.2)

where P is the number of pole pairs and ωm the mechanical machine speed.
For ωk = 0, the coordinate system is fixed to the stator. So an IM model in the αβ coordinate

system is

us = Rsis +
dψs

dt
, (2.3a)

0 = Rrir +
dψr

dt
+ jωeψs, (2.3b)

ψs = Lsis + Lmir, (2.3c)
ψr = Lrir + Lmis, (2.3d)

T =
3

2
P |ψs × is| =

3

2
P

Lm

σLsLr

|ψr ×ψs|. (2.3e)

Equation (2.3e) can be written as
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T =
3

2
P

Lm

σLsLr

|ψr||ψs|sinδ, (2.4)

where δ is the angle between stator and rotor fluxes. Considering the fact that the magnitude
of the stator flux is kept constant at its nominal value in the normal operation mode, the torque
will mainly depend on the angle between stator and rotor fluxes. The difference between syn-
chronous and mechanical speeds and therefore, the slip also depends on the angle δ. Based on
(2.3b) and considering steady-states operation, the following equation is valid

ωs − ωe =
3

2
P

Rr

|ψr|2
T =

9

4
P 2 LmRr

σLsLr

|ψs|
|ψr|

sinδ. (2.5)

It can be seen that an increase in torque at a constant mechanical speed corresponds to an
increase in synchronous speed. Equation (2.5) is used to adjust the prediction horizon in chapter
5.

2.2.2 Induction machine power losses

If a purely sinusoidal voltage is applied to an induction motor, a small portion of the power
will be dissipated from the stator terminals to the shaft. Typical losses of an induction motor
are stator and rotor copper as well as core losses, friction and windage losses. These losses are
shown in Figure 2.1. However, the machine is usually fed via a power converter, which means
that the input voltage is a pulse train instead of sinusoidal voltage. As a consequence, there
would be extra losses due to harmonic currents. High order harmonic currents are attenuated
due to the inductive characteristics of the load. Therefore, increasing the switching frequency
that pushes the voltage harmonics to higher orders has the biggest impact on these losses.

In this work, machine losses are chiefly understood as losses originating from a non-
sinusoidal current waveform.

statorcopperlosses

statorcore
losses

rotorcopperlosses

rotorcore
losses

friction
losses

w
indage

losses

Input power shaft power

Figure 2.1: Typical power losses of an IM
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2.3 Power converters

2.3.1 2-level converter
The primary function of a voltage source inverter (VSI) is to convert a fixed DC voltage to

a three-phase ac voltage with variable magnitude and frequency. A simplified circuit diagram
of a 2-level voltage source inverter is shown in Figure 2.2. This inverter is composed of 6
power switches (IGBT, IGCT or MOSFET depending on power rating and application) with
free-wheeling diodes anti-parallel to each switch. Assuming sx (with x = a, b or c) being 1
represents the on state of the upper switch on each leg and being 0 represents its off state, the
phase and line voltages of the converter will be defined as

ua = saudc, (2.6a)
ub = sbudc, (2.6b)
uc = scudc, (2.6c)

uab = ua − ub = (sa − sb)udc, (2.7a)
ubc = ub − uc = (sb − sc)udc, (2.7b)
uca = uc − ua = (sc − sa)udc. (2.7c)

Phase voltages can be transformed to stator-fixed coordinates via Clarke transformation

[
uα

uβ

]
= P

uaub
uc

 , (2.8)

where P is the Clarke transformation matrix.

udc

2

udc

2
sa

s̄a s̄c

sb sc

s̄c

ua ub uc
100
2

3
udc

110010

001 101

011

−2

3
udc

α

β

000
111

Figure 2.2: 2-Level voltage source converter. Left: circuit diagram, right: voltage vectors
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P =
2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2

 (2.9)

The voltage vectors of a typical 2-level converter in the stator-stationary-frame are shown in
Figure 2.2.

2.3.2 Multilevel converters
Multilevel Converters (MLCs) consist of an array of semiconductor devices and capacitive

voltage sources, which generate output voltage waveforms with multiple steps by appropriate
switching. By increasing in the number of voltage levels or steps, the staircase output waveform
approaches a sinusoidal waveform [3].

MLCs were first used with the specific aim of overcoming the problems associated with
the limited blocking voltage range of semiconductor devices. Nowadays, MLCs are used as
an attractive solution for MV highpower applications due to numerous merits over classical
2-level converters such as higher operating voltage capability with low-voltage semiconductor
devices, better output voltage waveform quality, lower harmonic distortion of the input and
output currents, reduced filter size, less du/dt stress, lower common-mode voltages, reduced
electromagnetic interference, reduced torque ripple, and feasible fault-tolerant operation [3],
[4].

There are mainly three types of voltage source MLCs: Neutral Point Diode Clamped (NPC),
Flying Capacitor (FC) and series or cascaded Connected H-Bridge (CHB) inverters. In addition
to these classical topologies, several hybrid converters are introduced by combining elements of
two or three classical multi-level converters. Although tens of different multi-level converters
have been reported in literature, taking a look at the available converters on the market for
MV drives narrows down the long list to a few: 3L-NPC, 5L-ANPC, 4L-FC and CHB. These
converters are shown in Figures 2.3, 2.4, 2.5 and 2.6 respectively. Additionally, a summary of
the available MLCs in the market is given in Table 2.4.

udc

2

udc

2

ua

Figure 2.3: 3L-NPC Topology

udc

2

udc

2

udc

2

ua

Figure 2.4: 5L-ANPC Topology
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The NPC topology was developed in the late 1970s and early 1980s [5]. This converter, also
known as Diode-Clamped Converter (DCC), was the first multilevel topology to be utilised in
MV applications and is still widely used as an MV converter. Its features include a relatively
small DC-link capacitor, a simple power circuit topology, a low component count and straight-
forward modulation and protection schemes [4].

Although this topology has a simple circuit, it usually needs a large inductive capacitive
filter to operate standard MV motors. Besides, its application for voltage levels above three is
not efficient mainly due to excessive losses of clamping diodes, uneven distribution of losses
in inner and outer devices, and unachievable DC-link capacitor voltage balance [6]. The 5L-
ANPC, a hybrid converter consisting of NPC and FC converters, was introduced to overcome
the drawbacks of the 5L-NPC [7].

The CHB converter was developed in the late 1960s, making it the oldest multilevel converter
topology [8]. As this topology consists of series and/or cascaded-connected power conversion
cells, its voltage and power levels can easily be scaled, which makes it an attractive option for
HVDC applications. A major drawback of this topology is the large number of required isolated
power supplies. However, the cells can be supplied via a phase-shifted transformer in order to
provide high power quality at the utility side.

The FC converter, also known as the capacitor-clamped converter, utilizes independent capac-
itors with distinct voltage levels in order to synthesize multilevel output voltages. The topology
was proposed in the early 1970s for low-power applications [9] and has been developed for
the use in MV applications only after the 1990s [10]. The main advantages of this converter
are symmetrical switching loss distribution, easy capacitor voltage balancing due to more per-
phase redundancies and a small inductive-capacitive filter. In a FC converter, the load current
flows through the flying capacitors and charges or discharges them. The resulting changes in
the capacitor voltages must remain in a permissible range. Thus, the required capacitance in-
creases approximately in inverse proportion to the switching frequency. Therefore, the main
disadvantage of an FC converter is either the bulky capacitors or the extra switchings that are
being initiated from capacitor voltage balancing.

The focus of this work is current distortion optimization. Any of these multilevel converters
could have been used to implement the final control algorithm. However, the 5L-FC is finally

Table 2.4: Availabe multi-level converters on the market

Supplier Model Power Voltage Topology Semiconductor
(MW) (KV)

Siemens
Sinamics GH150/180 6.7-14.2 1.3-11 SCHB LV-IGBT
Sinamics GM150 0.8-27 2.3-4.16 3L-NPC HV-IGBT/IGCT
Sinamics SM150 5-30 2.3-4.16 3L-NPC IGCT

ABB

ACS1000 0.2-5 2.3-4.16 3L-NPC IGCT
ACS2000 0.25-36 4-6.9 5L-ANPC IGBT
ACS5000 3-36 6-13.8 NPC-HB Hybrid IGCT
ACS6000 3-36 2.3-3.3 3L-NPC IGCT

GE
MV4 0.25-4 2.4-4.16 SCHB IGCT
MV6 0.5-6 6-6.9 SCHB IGBT
MV7000 3-81 3.3-10 3L-NPC IGBT
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Figure 2.5: 4-level flying capacitor converter
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Figure 2.6: Two series connected H-bridges

chosen to be constructed and used. Thus, this converter is explained more extensively in the
following.
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2.3.3 5-level flying capacitor converter

The circuit diagram of a three-phase 5-level flying capacitor converter is shown in Figure
2.7(a). It consists of eight IGBT switches with free-wheeling anti-parallel diodes and three
flying capacitors per phase. In this topology, the phase voltage of the converter is a function of
the capacitor voltages and IGBT states

ua = sa1udc + (sa2 − sa1)uCa3 + (sa3 − sa2)uCa2 + (sa4 − sa3)uCa1 , (2.10a)
ub = sb1udc + (sb2 − sb1)uCb3 + (sb3 − sb2)uCb2 + (sb4 − sb3)uCb1 , (2.10b)
uc = sc1udc + (sc2 − sc1)uCc3 + (sc3 − sc2)uCc2 + (sc4 − sc3)uCc1 . (2.10c)

If the voltages across the innermost to the outermost flying capacitors are set to 25%, 50%
and 75% of the DC-link voltage, this topology operates as a 5-level converter. Table 2.5 displays
the phase voltage levels of the converter at each switching state. It can be seen that there are
16 switching states and only 5 voltage levels. This high degree of per-phase redundancy is a
unique feature of flying capacitor converters that facilitates flying capacitor voltage balancing.

It is worthy to mention that it is possible to increase the voltage levels of this flying capacitor
converter to up to 16 levels by changing the flying capacitors’ voltage ratio [11]. Apparently,
increasing the voltage levels decreases the redundancy of switching states, and as a result makes
the voltage balancing difficult and in some cases impossible. It is reported in [12] that voltage
levels can be extended to 8 without a major effect on capacitor voltage balancing at medium
and high switching frequencies. However, throughout this work, the 5-level flying capacitor
converter is considered to work in the normal and not the extended operation mode.

In the same way as the 2-level converter, voltages can be transformed to stator-fixed coor-
dinates via Clarke transformation. These voltage vectors are shown in the αβ plain in Figure
2.7(b). Each voltage vector corresponds to a set of phase voltage levels. It is noteworthy that the
sets of voltage levels which form a voltage vector are not unique. For example, voltage vector
O represents five redundant states ({000}, {111}, {−1− 1− 1}, {222}, {−2− 2− 2}).

The voltage across each flying capacitor can be written as a function of the respective phase
current and switching states

duCx1

dt
=
iCx1
CFC

= (sx3 − sx4)
ix
CFC

, (2.11a)

duCx2

dt
=
iCx2
CFC

= (sx2 − sx3)
ix
CFC

, (2.11b)

duCx3

dt
=
iCx3
CFC

= (sx1 − sx2)
ix
CFC

. (2.11c)

Equations (2.11) represent the system model of the 5-level flying capacitor converter and are
used to predict its behavior.
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Table 2.5: Phase voltage levels of the 5L-FC converter

Voltage level sx1 sx2 sx3 sx4 ux iCx1 iCx1 iCx1

−2 0 0 0 0 0 0 0 0

−1 0 0 0 1
udc

4
−ix 0 0

−1 0 0 1 0
udc

4
ix −ix 0

0 0 0 1 1
udc

2
0 −ix 0

−1 0 1 0 0
udc

4
0 ix −ix

0 0 1 0 1
udc

2
−ix ix −ix

0 0 1 1 0
udc

2
ix 0 −ix

1 0 1 1 1
3udc

4
0 0 −ix

−1 1 0 0 0
udc

4
0 0 ix

0 1 0 0 1
udc

2
−ix 0 ix

0 1 0 1 0
udc

2
ix −ix ix

1 1 0 1 1
3udc

4
0 −ix ix

0 1 1 0 0
udc

2
0 ix 0

1 1 1 0 1
3udc

4
−ix ix 0

1 1 1 1 0
3udc

4
ix 0 0

2 1 1 1 1 udc 0 0 0
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2.3.4 Converter power losses

Total power losses of a power converter can be divided into blocking losses, control losses,
conduction losses and switching losses. According to the reverse conduction characteristic of
switching devices, a reverse voltage in the blocking state results in a very small reverse current
that causes the blocking losses. Besides, a control current is necessary to turn a device on or
off, which leads to control losses of the device. Both blocking and control losses are relatively
small and negligible [13].

Based on the conduction characteristic, there is a voltage drop across the device while it is
conducting. This leads to conduction losses. The forward characteristics of the IGBT and the
diode that are used in the test set-up are shown in Figures 2.8 and 2.9. It can be seen that the
conduction losses depend mainly on the load current.

During the transient from the blocking to the conducting state and vice versa, high values
of current and voltage appear simultaneously for a very short time. This is the source of the
switching losses. Turn-on and turn-off energy losses of the IGBT that is used in the test set-up
are shown in Figure 2.10 and the reverse recovery energy of the diode used is shown in Figure
2.11.

Switching losses of the converter can be written as a function of energy losses and switching
frequency. So for the IGBT

Psw = fsw (Eon + Eoff) , (2.12)

where Eon and Eoff are turn-on and turn-off energy losses and fsw is the switching frequency
of the device.

And for the diode

Psw = fswErec, (2.13)

whereErec is the reverse recovery energy of the diode. Even thoughEon,Eoff andErec depend
on the collector current, it can be argued that the dominant term that defines the switching losses
is the switching frequency, because energy losses are in the range of 2 to 15 mJ, while switching
frequency is in the range of several hundreds to several thousand Hz.

Blocking, control and conduction losses of a converter mainly depend on the characteristics
of semiconductor devices, the converter design and the load current. Hence, they are hardly
affected by the modulation or control scheme. On the contrary, switching losses are linearly
proportional to the switching frequency which can be adjusted by a modulator.

Due to the fact that switching losses are the only part of converter losses which are influenced
by the modulator design, converter losses are chiefly understood as switching losses throughout
this work.
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2.4 Modulation schemes
In principle, modulation is the process of varying one or more properties of a periodic wave-

form, called the carrier signal, with a modulating signal that typically contains information to
be transmitted. Pulse Width Modulation (PWM) is a technique to encode a signal to a pulse
train. In controlling power converters, the aim is to create trains of switched pulses that have
the same fundamental volt-second average as a target reference waveform at any instant. The
basic principle of Sinusoidal Pulse Width Modulation (SPWM) is shown in Figure 2.12, where
a sinusoidal reference is compared with a triangular signal to generate a pulse train.

π 2π

−1

1 carrier

reference

π 2π

−udc
2

udc
2

phase voltage

Figure 2.12: Principle of Sinusoidal Pulse Width Modulation (SPWM)

It is interesting to note that the rms value of the pulse train is independent of its switching
frequency and its fundamental component amplitude.

urms =

√
1

T

∫ T

0

(udc

2

)2

=
udc

2
(2.14)

The RMS value of the signal squared or, in other words, the energy of the signal is the
sum of the RMS value of its first harmonic squared, triplen harmonics squared and non-triplen
harmonics squared.

u2
rms = u2

1,rms +
(
u2

3,rms + u2
9,rms + . . .

)
+
(
u2

5,rms + u2
7,rms + . . .

)
(2.15)

The aim of any modulation technique is to control the first harmonic of the spectrum; how-
ever, a good modulation scheme will distribute the rest of the pulse train’s energy in a way
that the Weighted Total Harmonic Distortion (WTHD) is low. In power electronics, we usu-
ally use three-phase star connected loads with a floating neutral point. This cancels out all
triplen harmonics from the load current. Moreover, taking into account that the load is typically



2.4. MODULATION SCHEMES 19

highly inductive, the nth harmonic squared, i2n,rms, can be considered proportional to
(un,rms

n

)2

.
Therefore, equation (2.15) can be rewritten for the load current as

i2rms ∝ u2
1,rms +

(
u2

5,rms

25
+
u2

7,rms

49
+
u2

11,rms

121
+ . . .

)
. (2.16)

It can be seen in (2.16) that higher harmonics of the voltage are attenuated in the current
spectrum due to the inductive characteristics of the load that behaves more or less like a low
pass filter. This is why, a good modulator for electrical drives should be able to set the first
harmonic of the pulse train based on the reference value and push the remaining portion of the
signal’s energy as much as possible to triplen harmonics and the rest to higher order harmonics.
Pushing harmonics to high orders is mainly possible by increasing the carrier wave frequency,
which results in an increase in the switching frequency and hence, the switching losses. So a
trade-off shall be made between switching losses of the converter and the harmonic distortion
of the current.

2.4.1 Programmable modulation schemes
As the switching frequency in low voltage drives is usually as high as several kHz, the main

portion of the pulse train’s energy is distributed among higher order harmonics. Thus, standard
PWM or SVM techniques commonly result in relatively low current distortion. In contrast, the
switching frequency of the converter in MV drives is limited to a few hundred Hertz due to
power loss limitations. The challenge is to distribute harmonics in a way to get lower current
distortion without increasing the switching frequency.

2.4.1.1 Selective harmonic elimination

Selective harmonic elimination (SHE) was proposed in the early 1960s to eliminate two lower
order harmonics by introducing additional switching angles in the pulse train [15]. Switching
angles were obtained by solving Fourier series expressions of harmonic components, and the
fundamental frequency component of the load voltage was controlled by introducing a phase
shift between inverter phase legs. Based on this idea, generalized methods were developed to
eliminate a predefined number of lower order harmonic components and maintain the desired
value of the fundamental component, for a given number of switching angles [3, 16].

The procedure to apply SHE techniques to MLCs is selection of waveform symmetry (usually
quarter-wave and half-wave symmetries), identification of all possible multilevel waveforms for
a given number of switching angles, calculation of the switching angles that satisfy the given
requirements, and assignment of switching angles to each semiconductor device that depends
on the converter topology. For multilevel waveforms, usually quarter-wave and half-wave sym-
metries are introduced. SHE techniques are widely used for MLCs [3, 17–24].

Several attempts have been made to obtain the switching angles in real-time. The main
issue with online implementation is increased complexity and higher computational burden to
solve a system of equations. One proposed method is to train artificial neural networks with
complete and detailed knowledge of switching angle solutions and then utilize the same for
obtaining switching angles in real time for a given modulation index [25]. In another attempt,
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MPC-based SHE has been suggested to eliminate lower order harmonics in real time [26].
This proposed method utilizes sliding discrete Fourier transformation to obtain amplitudes of
harmonic components in real-time. Switching states are then obtained using a predictive model
in order to eliminate the undesired harmonics [3].

The main advantage of the SHE technique is that elimination of lower order harmonics is
achieved with few commutations in a fundamental cycle. Hence, switching losses as well as fil-
ter sizes are significantly reduced in high-power applications. Due to reduced switching losses,
it is possible to achieve higher converter efficiency and enable air cooling [3].

As explained in the previous part, the energy present in the eliminated harmonics is dis-
tributed over the non-eliminated harmonics, and hence, their amplitudes tend to increase. There-
fore, elimination of lower order harmonics never leads to the best system performance. The
conclusion is that it is better to use degrees of freedom for minimization of overall harmonics
rather than complete elimination of certain lower order harmonics [3].

2.4.1.2 Optimal schemes

Optimal PWM techniques have been developed based on the fact that minimization of overall
harmonics is better than complete elimination of certain lower order harmonics [27]. Besides,
optimal PWM leads to easier convergence and increased continuity in the solution space. The
optimization technique determines the switching patterns based on minimizing a cost function
or performance index.

PWM and SVM techniques position the pulses within a fixed clock cycle. To improve their
performance, optimal sub-cycle modulation or, in other words, Optimal Space Vector Modula-
tion (OSVM) [28] was introduced, in which the sub-cycle durations of SVM are adjusted in such
a way that constant and minimum current distortion are achieved throughout the fundamental
period. The cycle duration variations are based on the fact that when the reference voltage
vector is close to one of the converter’s voltage vectors, less switching is needed in order to
approximate the reference signal. Conversely, when the reference is closer to the middle of two
voltage vectors, more switching is needed for an accurate approximation. Thus, the sub-cycle
durations can be increased in the areas close to the converter’s voltage vectors and decreased
in the area between them in order to achieve constant and minimum current distortion. Note
that with this method, less switching takes place at the corners of the voltage hexagon and more
switching takes place in the area between voltage vectors; however, the switching frequency
over the fundamental period remains constant.

Optimal durations are calculated offline and stored in memory with the modulation index as
parameter. During operation, on-durations of the switching state vectors are computed by SVM
and the value of sub-cycle duration that corresponds to the actual operating point is retrieved
from memory.

OSVM reduces current distortion resulting from the space vector modulation algorithm, but
does not minimize it over the whole fundamental period. To achieve optimum current distor-
tion, the concept of clocking the pulses can be completely eliminated. In this method, switching
events are allowed to take place freely over the fundamental period with the constraint of main-
taining waveform symmetry. Commutation angles can be calculated to achieve the desired
modulation index while minimizing current distortion [1].

This method is known as Optimal Pulse Pattern (OPP) or Optimal Synchronous Modulation
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(OSM). It was proposed first in the late 70s [29] and has been further developed in [30] for
current distortion optimization of MV drives, in [31, 32] for 3- and 5-level converters and in
[33–38] to overcome transient response issues in its application for MV drives.

2.4.2 Direct methods

A typical power electronics controller consists of a main controller with analogue - in most
cases sinusoidal - output, a modulator to modulate the analogue output in the form of a pulse
train and a converter. In direct methods, the modulator is completely eliminated and the con-
troller is designed in such a way that it directly generates a pulse train. Direct Torque Control
(DTC) [39] and Direct Self Control (DSC) [40] are both hysteresis type controllers and apply the
concept of direct modulation. Finite Control Set Model Predictive Control (FCS-MPC), which
is extensively explained in chapter 3, is a direct method. Simplicity and lower current distortion
at low switching frequencies are the main advantages of a direct method. However, variable
switching frequency and the necessity for higher sampling time are their main drawbacks.

In principle, SHE and optimal modulation techniques have precalculated look-up tables from
which switching instances are fetched based on the operating point. From this perspective,
they could be considered as direct methods as well. However, a method is called direct only if
the switching states of the converter are directly chosen by the controller. As a result, optimal
modulation and SHE schemes in which the controller’s output is a continuous voltage vector
are considered as programmable modulation schemes.

2.4.3 Reference summary for low switching frequency modulation schemes

A reference summary for low switching frequency modulation schemes based on the appli-
cation and reference device switching frequency is given in Table 2.6.

Table 2.6: Low switching frequency modulation schemes [3]

Method Application fsw < 200 Hz 200 Hz < fsw < 500 Hz 500 Hz < fsw < 1 kHz
SVM Drives - - [41, 42]
OSVM Drives - - [28]

SHE

Drives [15, 43–45] - -
AFE Rectifiers [46] [47] -
STATCOM - [48] -
Photovoltaic [49] - -
RL Load - [50, 51] -

OPP
Drives [29–38, 52, 53] - -
AFE Rectifiers [54] - -

MPC

RL load - [55, 56] [57]
Drives [58] [59–64] -
AFE Rectifiers [65] [66] -
wind power - [67–69] [70]
STATCOM - [71] -
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2.5 Controller and observer design

In principle, all classical closed-loop control algorithms of an induction motor can be divided
into two groups: Field Oriented Control (FOC) and Direct Torque Control (DTC) [39].

It is well known that the DC motor drive has an excellent dynamic performance. This is
mainly due to the decoupled control of the stator magnetic field and the electromagnetic torque
of the motor. FOC, also known as vector control, emulates the DC motor control for AC ma-
chines. Using a proper field orientation, the stator current can be decomposed into a flux-
producing component and a torque-producing component. These two components are then
controlled separately [72].

In the DTC scheme, on the other hand, the electromagnetic torque of the motor is controlled
directly. The stator flux amplitude and electromagnetic torque are monitored with a high sam-
pling rate. When the hysteresis bands are exceeded, based on the stator flux position a voltage
vector is applied from a switching table in order to bring the torque or stator flux back into the
boundary.

Several advanced controllers are proposed for induction motor drives which share some basic
principles with FOC and DTC algorithms. A popular example is model predictive control which
is analyzed in detail in the next chapter.

Any closed-loop control scheme requires feedback from physical variables of the machine,
consisting: the mechanical speed and in some cases the rotor position, phase currents, stator
and rotor fluxes. Speed, position and phase current can be directly measured; however, stator
and rotor fluxes need to be estimated from the measured signals.

2.5.1 Voltage model flux observer
A very common flux estimator is the so-called voltage model. According to equation (2.3),

the stator flux ψs can be calculated based on applied voltages and measured currents

us = Rsis +
dψs

dt
. (2.17)

Then the rotor flux ψr can be calculated based on the estimated stator flux and measured
phase currents

ψr =
Lr

Lm

ψs −
(
LrLs

Lm

+ Lr

)
is. (2.18)

Two main problems of the voltage model observer are the stator resistance variation and the
open-loop integration (integration without feedback), which can lead to convergence problems.
Rs variation does not deteriorate the precision of the flux estimation unless the machine is
operated at a very low speed. In such a case, a different flux observer has to be used. Moreover,
convergence problems can be solved by using a low pass filter instead of an integrator. Taking
these measures into account, the voltage based flux observer is usually accurate enough to
examine the performance of a control algorithm.



2.5. CONTROLLER AND OBSERVER DESIGN 23

ia

udc

2

udc

2

n

Ca1Ca2Ca3

ia

ia + ib ib

ib

Cb1Cb2Cb3

IM

ua ub uc

ib

Cc1Cc2Cc3

ic = −(ia + ib)

Figure 2.13: Current flow path while applying the voltage vector {110} to the 5-level FC converter

In this work, a 5-level flying capacitor converter is used. Although 5-level converters are
used in the MV range, based on the available resources it was only feasible to design a 20 kW
prototype. The power rating of the induction motor used is 3 kW. Operating a 5-level converter
at such a low power rating makes flux estimation challenging. Let us consider the case in which
the voltage vector {110} is applied to the converter. The current flow path is shown in Figure
2.13. For phases a and b, current will flow from the DC-link to the load through the two upper
IGBTs, the middle flying capacitors and two diodes in the lower part. In phase c, the current
flows from the load to the DC-link through four IGBTs in the lower part. Therefore, based on
equation (2.10), the phase voltages are expected to be

ua = sa1udc + (sa2 − sa1)uCa3 + (sa3 − sa2)uCa2 + (sa4 − sa3)uCa1 =
udc

2
,

ub = sb1udc + (sb2 − sb1)uCb3 + (sb3 − sb2)uCb2 + (sb4 − sb3)uCb1 =
udc

2
,

uc = sc1udc + (sc2 − sc1)uCc3 + (sc3 − sc2)uCc2 + (sc4 − sc3)uCc1 = 0.
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Figure 2.15: Voltage drop of the diodes used
in the test set-up [14]

However the phase voltages on the machine terminals would differ from the calculated values.
In this case, the voltage drop over two IGBTs, two diodes and one flying capacitor affects ua
and ub, and the voltage drop over four IGBTs affects uc. From the forward characteristics of
the IGBTs and the diodes, shown in Figures 2.14 and 2.15, it can be seen that for a load current
ranging from 0 to 10 A, the voltage drop over each IGBT is in the range of 0.8 to 1 V. The
voltage drop over each diode is in the range of 0.9 to 1.1 V. Setting the DC-link voltage to 600
V, the voltages over Ca2 and Cb2 are expected to be 300 V. Considering a 5% voltage ripple
over the flying capacitors means that the voltage over Ca2 and Cb2 will in fact be 300 ± 15 V.
Hence, in the worst case, the phase voltages ua, ub and uc are 281 V, 281 V and 4 V instead of
300 V, 300 V and 0 V. It is worth mentioning that the maximum voltage drop across the stator
resistance is around 15 V, which in this case is smaller than the converter voltage drop.

In medium and high voltage applications, a voltage drop in the range of 20 V is negligible.
Conversely, neglecting such a voltage drop deteriorates flux estimation and thus the control per-
formance of small drives. So the options to circumvent these drawbacks are either considering
a very detailed model of the converter in which voltage drops over switches and voltage ripples
over flying capacitors are taken into account or choosing another method for flux observation
in which stator voltages are not used.

2.5.2 Current model flux observer
The other possibility to estimate the rotor flux, without using the stator voltages, is the so-

called current model observer. According to equation (2.3), the rotor flux ψr can be calculated
based on the measured currents and mechanical speed

ψr +
Lr

Rr

dψr

dt
= Lmis + jωe

Lr

Rr

ψr. (2.19)
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Then the rotor fluxψr can be calculated based on the estimated rotor flux and measured phase
currents

ψs =
Lm

Lr

ψr + (Ls + Lm) is. (2.20)

This estimation is still parameter-dependent; however, it is not affected by the voltage ripple
of flying capacitors and voltage drops across switching devices.

2.6 Test bench

The proposed algorithms of this work are implemented in a laboratory setup that includes a
real-time system, a power converter and two electrical machine.

A dSpace system is used as a real-time system that consists of an A/D board (ds2004), a
PWM board (ds5101), an encoder board (ds3002) and a processor board (ds1006).

The inverter is a 5-level flying capacitor converter with the parameters given in Table 2.7.
It is a 20 kW prototype design with Infineon FF75R12YT3 dual IGBT modules (Figure 2.16),
Power Integrations 2SC0108T2Dx-12 gate drive units (Figure 2.17) and low stray inductance
(14 nH) flying capacitors from Epcos.

The electrical machine which is used to be controlled is a two pole-pairs 3 kW induction
motor with the parameters given in Table 2.8. The laboratory test set-up is shown in Figure
2.18. Another 5.5 kW induction motor is also used as a load.

Figure 2.16: Infineon FF75R12YT3 dual
IGBT with anti-parallel diode modules

Figure 2.17: Power Integrations
2SC0108T2Dx-12 gate drive unit
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Figure 2.18: Laboratory set-up

Table 2.7: 5L-FC converter parameters

Parameter Value
udc 600 V
Pn 20 kW
CFC 680 µF
Cdc 2000 µF

Table 2.8: Induction motor parameters

Parameter Value
Pn 3 kW
ωn 1440 rpm
Rs 1.5 Ω
Rr 1.4 Ω
Ls 197 mH
Lr 197 mH
Lm 191 mH
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CHAPTER 3

Model predictive control - state of the art

This chapter provides background information on Model Predictive Control (MPC) and its
application in electrical drives. The following questions are addressed in this part:

• Why MPC?

• What is MPC?

• Why MPC in electrical drives?

• How was MPC developed and raised in the power electronics and drives community?

3.1 Background

All practical problems are subject to constraints of different types. These constraints can be
sometimes ignored in design procedures, but when the system is working close to a constraint
boundary, they cannot be neglected. In such cases, it is desirable to consider constraints at the
beginning of the problem formulation. Various tools, such as anti-windup strategies, have been
developed for this purpose. They are probably adequate for simple problems; however, for more
complex MIMO problems - especially those having both input and state constraints - a classical
approach for dealing with constraints is needed [73]. The capability of Model Predictive Control
to handle constraints in a simple and effective manner resulted in its application in order to
overcome these issues in its early stages.

The original idea of Model Predictive Control (MPC) and Receding Horizon Control (REC)
can be traced back to the 1960s when it was used as a mean to deal with multivariable con-
strained control problems [74]. The oil, the chemical and the process industry were pioneers in
the adoption of MPC, while the first attempt to apply it to an electrical drive system was made
more than two decades later [75,76]. Ever since, it has been applied in many different areas, and
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various fields have developed their own notation and formulation of the problem, thus creating
some confusion about the names used. For example:

• Receding Horizon Control [77]

• Model Predictive Heuristic Control [78, 79]

• Dynamic Matrix Control [80]

• Quadratic Matrix Control [81]

• Adaptive Predictive Control [81]

• Generalized Predictive Control [82]

• Sequential Open-loop Optimization [81]

• Finite Control Set Model Predictive Control [83]

• ...

The above mentioned algorithms are not exactly the same; however, they share common
principles that distinguishes MPC from other algorithms:

• a plant model,

• the receding horizon idea,

• an objective function,

• the optimization principle.

3.1.1 Plant model
MPC is a model-based control strategy in which the system model is used to predict the

system behavior in response to a set of inputs. For a system with a state vector x(t) =
[x1(t), x2(t), ..., xn(t)]T ∈ Rn, an input vector u(t) = [u1(t), u2(t), ..., um(t)]T ∈ Rm and
an output vector y(t) = [y1(t), y2(t), ..., yp(t)]

T ∈ Rp and t ∈ R, the system model can be
represented by:

dx(t)

dt
= f(x(t),u(t), t), (3.1a)

y(t) = g(x(t),u(t), t), (3.1b)

where (3.1a) is the state equation and (3.1b) the output equation. In most applications, sys-
tems are considered either Linear Time Invariant (LTI) or are linearised around an operating
point. In this case, the equations can be expressed as:
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dx(t)

dt
= Fx(t) +Gu(t), (3.2a)

y(t) = Cx(t) +Du(t), (3.2b)

where F ∈ Rn×n is the state matrix, G ∈ Rn×m the input matrix, C ∈ Rn×n the output
matrix and D ∈ Rp×m the feed-forward matrix, which is considered to be zero in our case.
Moreover, the system model is often discretized due to digital implementation. So equation
(3.2) is rewritten in a discrete form with t = kTs, where k ∈ R0 represents the kth time step
and Ts the sampling interval:

x(k + 1) = Ax(k) +Bu(k), (3.3a)
y(k) = Cx(k), (3.3b)

in which x(k), u(k) and y(k) are defined in the same manner as the vectors x(t), u(t) and
y(t),A = eFTs andB = −F−1(I −A)G. Moreover, for predictions that span multiple time-
steps based on a measurement taken at time-step k, the predicted state vector at time-step k + l
is shown by x(k + l|k), where:

x(k + l|k) = Ax(k + l − 1|k) +Bu(k + l − 1|k). (3.4)

In applications with relatively small sampling intervals - in the range of 100µs - matrix A
can be simplified to only the first two terms of its Euler series: A = (I +FTs) andB = GTs,
where I is the identity matrix.

3.1.2 Receding horizon
The receding horizon idea resembles to chess, in which players analyze the present situation,

predict several successive moves but perform a single move. Then, instead of strictly following
their plan of action to the very end, they reconsider their prediction each round, adjusting it to
the new situation, and perform another single move. This is the main idea of receding horizon
control.

execute

plan t

execute

plan t

execute

plan t

Figure 3.1: Principle of the receding horizon
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Figure 3.1 shows the basic principle of the receding horizon idea. In each sample time,
successive actions are planned within the prediction horizon. However, only the first action
is applied in the next sampling time and precalculations are repeated based on new feedback
and/or updated reference signals. All of the precalculations are based on the measured signal
at the present time; nonetheless, the plan considers several sample times in the future. During
predictions, no feedback is available for the forthcoming sample times, so the planning is open-
loop. A closed-loop control and, in other words, the inclusion of feedback in precalculations
is achieved by means of the receding horizon principle. For this reason, the receding horizon
principle can be considered as feedback for MPC.

3.1.3 Objective function
An objective or cost function is the central part of a predictive controller. It simply translates

the user’s performance expectations for the controller. As most control problems are known
to be reference tracking problems, objective functions are commonly a summation of several
errors with weighting factors. However, secondary goals such as current distortion, power loss,
device temperature, acoustic noise etc. can be included in an objective function as well. The
following choice is a general form of the objective function and encompasses many alternatives
documented in the literature

J = f(x(k + 1|k),x(k + 2|k), . . . ,x(k +N |k)),u(k),u(k + 1), . . . ,u(k +N − 1)) (3.5)

Due to the existence of several classical approaches to solve quadratic or linear problems, it
is often preferred to formulate the objective function in the quadratic or linear form as well. A
typical first norm or linear objective function is

J =
k+N−1∑
i=k

‖x′(i+ 1|k)‖1
1 + λi‖u(i)‖1

1, (3.6)

and a typical second norm or quadratic objective function is

J =
k+N−1∑
i=k

‖x′(i+ 1|k)‖2
2 + λi‖u(i)‖2

2, (3.7)

where λi is the weighting factor for the ith prediction, N the prediction horizon and x′(i +
1|k) = x(i+ 1|k)− x∗(i+ 1|k) is the predicted error at the ith prediction.

3.1.4 Optimization
Considering the fact that classical Model Predictive Control is associated with a linear model,

polyhedral constraints and a linear or quadratic objective function, the resulting optimization
problem is a Linear Program (LP) or a Quadratic Program (QP). Some available techniques to
solve LPs are [84, 85]:

• Interior point: Uses a primal-dual predictor-corrector algorithm and is especially useful
for large-scale problems that have a structure or can be defined using sparse matrices,
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• Active-set: Minimizes the objective at each iteration over the active set (a subset of the
constraints that are locally active) until it reaches a solution,

• Simplex: Uses a systematic procedure for generating and testing candidate vertex solu-
tions for a linear program. The simplex algorithm is the most widely used algorithm for
linear programming.

And for quadratic programming [84, 86]:

• Interior-point-convex: solves convex problems with any combination of constraints,

• Trust-region-reflective: solves bound constrained or linear equality constrained prob-
lems,

• Active-set: solves problems with any combination of constraints.

Although the optimization for MPC first started with LP in 1963 [77], QP is more common
nowadays - mostly due to its computational power advantages. Nevertheless, solving QP using
general purpose methods can be too slow. This has traditionally limited MPC to the application
on systems with slow dynamics, with sample times of several seconds or minutes. One method
to apply MPC to dynamic systems is to compute the solution of QP explicitly as a function of the
initial state [87,88], the control action is then implemented online in the form of a lookup table.
The major drawback here is that the dimensions of the lookup table increase exponentially with
the prediction horizon, the state and the input dimensions.

If the cost function is a nonlinear function as in equation (3.5), nonlinear numerical optimiza-
tion techniques are necessary for the optimization. Some common techniques are:

• Gradient descent methods: These methods provide a linear convergence based on neg-
ative gradient and a variable step size (λn). The advantage of this algorithm is that only
the gradient matrix is used and not the Hessian matrix. Its drawbacks are difficulties in
choosing step size, zigzag phenomenons around minima, and slow convergence. Based
on this method the next iteration tn+1 to optimize the objective function J(tn) is [89]

tn+1 = tn − λn∇J(tn). (3.8)

• Newton methods: Newton method exploits negative gradient and Hessian matrices. Thus
it is a faster method; however, it needs a very high computational load. Based on this
method the next iteration tn+1 to optimize the objective function J(tn) is [89]

tn+1 = tn −
[
∇2J(tn)

]−1∇J(tn). (3.9)

• Gauss-Newton method: It is a method to solve non-linear least square problems. It is a
modification of Newton’s method for finding a minimum of a function. Unlike Newton’s
method, the Gauss-Newton algorithm can only be used to minimize a sum of squared
function values, but it has the advantage that second derivatives, which can be challenging
to compute, are not required. In general a nonlinear least square optimization problem is
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to find t ∈ Rn that minimizes J(t) = ‖R(t)‖2
2 =

∑m
i=1 ri(t)

2, where R : Rn → Rm.
Given a starting guess tn,R can be linearized around tn [89]

R(t) ≈ R(tn) +∇R(tn)(t− tn). (3.10)

Thus
‖R(t)‖2

2 = ‖Ant−Bn‖2
2, (3.11)

where

An = ∇R(tn),

Bn = ∇R(tn)tn −R(tn).

The next iteration for this linearized least squares problem is

tn+1 =
(
AnTAn

)−1
AnTBn. (3.12)

In the special case in which the system input is limited to finite states, the optimization prob-
lem can be simplified to finding a minimum among the finite values of the objective function.
This method is called Finite Control Set Model Predictive Control (FCS-MPC) in which the cost
function is calculated for each finite state of the input and the input resulting in the minimum
value of the cost function is selected. Although this approach is very simple, its calculation
time increases exponentially with the prediction horizon. This makes the conventional FCS-
MPC impractical for many MPC schemes, which require long prediction horizons.

3.2 MPC for electrical drives
It took almost two decades for MPC to find its way into the power electronics community.

First ideas of applying MPC to electrical drives were expressed in the early 1980s by Holtz
and Stadtfeld [75] and Kennel and Schröder [76]. They worked independently to apply pre-
dictive control to electrical drives. Having different objectives, they chose different schemes.
Kennel-Schröder had the idea of developing a model-based controller that is superior to lin-
ear controllers due to consideration of system models. Here is a quote from their first paper:
“One has to leave linear control theory and to consider the characteristics of load, converter
and microcomputer ... To find an optimal algorithm, one has to know exactly the mathemati-
cal relations between the output signal, the reference signal and other influencing signals and
parameters ...". Therefore, they decided to use a trajectory-based model predictive control. On
the other hand, Holtz-Stadtfeld were facing the fact that standard modulation schemes lead to
high harmonic distortion at low switching frequencies and hence are not suitable for MV drives.
They looked for a substitute for the modulator that is especially superior at very low switching
frequencies. Thus they chose a hysteresis-based MPC.

Several control schemes followed these two schemes which share some basic principles with
them. For instance, bang-bang control can be regarded as a hysteresis-based predictive control,
and Direct Self Control (DSC) can be considered as a trajectory-based predictive control. There
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are also some control schemes that exploit various features from each approach. Sliding mode
control and Direct Torque Control (DTC) are two examples [82].

A simple search on the IEEE index for MPC for electrical drives results in several thousand
publications on the topic. However, there are only a few original contributions that can be
clearly differentiated from the others. Some of these schemes which are more popular are
discussed in this part.

3.2.1 Hysteresis-based predictive current control

The working principle of hysteresis-based predictive current control is shown in Figure 3.2.
The current references are generated by the main controller and the current error vector which
is the difference between a reference current, i∗s, and the actual current, is, is monitored with
a high sampling time. A boundary is considered for the reference current, and whenever a
boundary condition occurs, the switching state of the converter is changed with the aim of
maximizing the time between switching instances or, in other words, minimizing the switching
frequency. This selection is made by optimizing the cost function - i.e. finding the switching
vector that keeps the actual current longer in the boundary - by predicting the stator current.
The performance of this controller can be improved for high modulation indexes by replacing
the circular boundary with a rectangular boundary with larger d-axis excursions [2].
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Fig. 16. Series connection of two three-level inverters.

phase. A transformerless topology may be sometimes preferred.
Two three-phase inverters in Fig. 16 are series connected,
feeding an open-end stator winding machine through a common
mode inductor [16]. The latter serves to reducing the common
mode currents that this topology produces. Common mode
currents generate losses without contributing to the machine
torque.

The kilovoltampere rating of the common mode inductor
depends on the maximum value of the common mode flux φ0

that the common mode voltages of the inverters generate. The
maximum value ψ0 max occurs when the modulation index is
maximum, and the common mode inductor must be designed
for this value.

Only optimal pulse patterns creating a common mode flux
less ψ0 max are then eligible for inverter control. The optimum
structure must now satisfy ψ0 ≤ ψ0 max and minimum current
distortion d. The structure does not exhibit the absolute mini-
mum current distortion; however, the increase has proved to be
marginal [17].

The implementation of synchronous optimal modulation
tends to be inaccurate at low modulation index and higher
pulse numbers N . Even minor changes of the modulation index
around an operating point may cause many transitions between
pulse patterns in a short time interval. The frequent tran-
sients that result become difficult to suppress by the trajectory
controller.

The remedy is extending the range of pulse number N = 21
to a larger interval toward the origin in Fig. 4(a) and then
changing to space vector modulation. Fig. 4(b) shows that
current distortion d is hardly impaired.

VI. PREDICTIVE CONTROL

Optimum PWM based on prediction was known as early
as 1982 [18]. It took the scientific community 26 years to
realize the merits of this approach. Then, suddenly in 2008,
intensive research on predictive control started, first continuing
the investigations in inverter control [19]–[34] and, recently,
also expanding to other applications [35]–[42].

The first publication [18] laid the foundation stone of this
methodology, describing a predictive pulsewidth modulator
for inverter control. A current error vector Δi as the dif-
ference between a reference current vector i∗

s and the actual

Fig. 17. Time sequence of the current vectors at predictive control.
(a) A boundary condition activates an optimum switching state.
(b) An intermediate time interval is used to predict

• the time t2 of the next boundary condition,
• the expected locations of vectors is and i∗ at t = t2,
• based on the latter, the next optimum switching state.

(c) The predicted boundary condition activates the precalculated optimum
switching state at t2 without overshoot.

current vector is is permanently monitored at a high repeti-
tion rate.

The switching state of the inverter is changed whenever
a boundary condition occurs, i.e., when the Δi magnitude
exceeds a given value. The incoming switching state must
maintain the current vector is within the boundary circle.
There is generally more than one switching state to serve this
purpose. A selection is done by predicting the trajectories of
the current vector is and its reference value i∗

s. The vector
is displaces under the influence of the respective switching
state. Each switching state will drive the current vector in a
different direction, thus influencing the delay time until the next
boundary condition occurs. A criterion to select the optimal
switching state is the delay time multiplied by the number
of commutations that the inverter must execute to activate
that respective switching state. Maximizing this quantity leads
to minimum switching frequency. Another criterion could be
minimizing the switching losses.

The time sequence shown in Fig. 17 explains the details of
the procedure. Control of a two-level inverter is considered for
simplicity. A two-level inverter has a total of seven switching
states. With the inverter holding a certain switching state, a first
boundary condition occurs at time instant t1 [Fig. 17(a)]. Of
the remaining six switching states, the optimal switching state
is chosen. As will be shortly explained, that switching state
is already known at this point of time. It is immediately acti-
vated. This avoids the current vector is crossing the boundary
limit.

The direction that is will take is marked by a small red arrow
in Fig. 17(a). The current vector follows the dotted trajectory
toward the center of the boundary circle. The reference vector
i∗
s meanwhile displaces on another trajectory which is predicted

by extrapolating its recent displacement. The intermediate loca-
tions of both vectors are shown in Fig. 17(b).

In continuation, the boundary circle, being locked onto i∗
s,

and the actual current vector is follow their respective tra-
jectories. This leaves time for the controlling microprocessor
to predict the expected displacements of the boundary circle
and of îs. The spatial location of îs at its next intersection
with the boundary circle is a target point. It will be reached
at t2 as shown in Fig. 17(c). Still at t < t2, all possible

Figure 3.2: Working principle of hysteresis-based predictive current control [2]

A hysteresis-based predictive current control is simulated for an induction motor in order to
show the properties of hysteresis control. Figure 3.3 shows the stator current vector in the αβ
plane. As can be seen, the controller provides very fast dynamics. Besides, it is noticeable that
the current vector follows a trajectory resembling a triangle within the circular boundary. This
is due to the objective of maximizing the time between switching instances at the border of a
circular boundary.

Figure 3.4 shows α and β components of steady-state stator currents in time and Figure
3.5 depicts the current spectrum. It is evident that current harmonics are not shaped around
multiples of the switching frequency as hysteresis-based predictive current control does not use
any modulator and provides a variable switching frequency.
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Figure 3.5: Stator current spectrum

3.2.2 Generalized predictive control
Generalized predictive control (GPC) was introduced by Clarke in 1987 [90,91]. It exploits a

transfer function based on the CARIMA model and optimizes the objective function by setting
its derivatives to zero. Thus mathematically complex solving algorithms like quadratic and
linear programming are not required any more [82].

GPC was first applied to electrical drives by Kennel and Linder in 2001. They replaced inner
current control loops and the outer speed control loop of a standard field oriented controller
with GPC while keeping the modulator in place. Figure 3.6 shows the block diagram of a GPC
scheme for electrical drives. Although GPC is simpler than many algorithms such as quadratic
and linear programming it was not fast enough to be executed on a standard micro-controller or
DSP in a fraction of millisecond back then. They were able to overcome this difficulty firstly
by running their algorithm on a self designed real-time system and secondly by performing the
calculations partly offline. By assuming, for instance, that machine parameters remain constant
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during operation, it was possible to perform matrix inversions offline and store the results in
memory.
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Figure 3.6: Generalized predictive control diagram [82]

3.2.3 Finite control set model predictive control

Finite Control Set Model Predictive Control (FCS-MPC) is the most popular predictive con-
trol scheme for power converters and electrical drives [83]. In FCS-MPC, finite states of power
switches are directly implemented to the optimal problem formulation. As a result, firstly, the
modulation stage is eliminated and secondly, the objective function optimization is converted to
an enumeration problem. The objective function is calculated for each feasible voltage vector
and the voltage vector which results in the minimum value of the objective function is selected.
This procedure is far simpler than any other optimization algorithm, which has made it the most
popular approach in the drives community.

A 2-level voltage source inverter can apply 23 = 8 voltage vectors. If the prediction horizon
is one, evaluating 8 finite values for the objective function and finding the minimum is not time
consuming. However, the number of finite states increases to 232 = 64, 233 = 512 or 234 = 4096
for a prediction horizon equal to two, three or four. These observations only apply to 2-level
converters. The respective figures for a 5-level converter are 531 = 125, 532 = 1.5 × 104,
533 = 1.9× 106 and 534 = 2.4× 108. It can be seen that FCS-MPC encounters calculation time
issues for long prediction horizons despite its simple concept. Therefore, it can be concluded
that enumeration is the simplest way, but not always the easiest.

The machine model (2.3) can be used to develop a set of differential equations for the precal-
culation of the machine’s behavior. Only two out of four machine variables (is, ir, ψs and ψr)
are state variables. Thus the differential equations can be written with any combination of 2 out
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of 4. A common approach is to consider is and ψr as system variables

dis
dt

=

(−Rs

σLs

− L2
mRr

σLsL2
r

− Lm

Lr

jωe

)
is −

(
RrLm

σLsL2
r

+ jωe
L2

m

σLsLr

)
ψr +

1

σLs

us, (3.13a)

dψr

dt
=

(
RrLm

Lr

− jωeσLs

)
is −

(
Rr

Lr

+ jωe
Lm

Lr

)
ψr. (3.13b)

In discrete form

is(k + 1) =

(
1− TsRs

σLs

− TsL
2
mRr

σLsL2
r

− TsLm

Lr

jωe

)
is(k)

−
(
TsRrLm

σLsL2
r

+ jωe
TsL

2
m

σLsLr

)
ψr +

Ts

σLs

us(k), (3.14a)

ψr(k + 1) =

(
1 +

TsRrLm

Lr

− jωeσLsTs

)
is −

(
TsRr

Lr

+ jωe
TsLm

Lr

)
ψr, (3.14b)

T (k + 1) =
3

2
P |ψr × is|. (3.14c)

Another approach is to consider ψr and ψs as system variables as

dψs
dt

=
−Rs

σLs
ψs +

RsLm
σLsLr

ψr + us, (3.15a)

dψr
dt

=
RrLm
σLsLr

ψs −
Rr

σLr
ψr + jωeψr· (3.15b)

In discrete form

ψs(k + 1) = (1− Rs

σLs
)ψs(k) +

RsLm
σLsLr

ψr(k) + us(k + 1), (3.16a)

ψr(k + 1) = (1 +
RrLm
σLsLr

)ψs(k)− Rr

σLr
ψr(k) + jωeψr(k), (3.16b)

T (k + 1) =
3

2
P |ψr ×ψs|. (3.16c)

The objective function can be formulated for torque control

J = (T (k + 1)− T ∗)2 + λ(|ψs| − |ψ∗
s |)2, (3.17)

(3.18)

or current control

J = (isα(k + 1)− i∗sα)2 + (isβ(k + 1)− i∗sβ)2, (3.19)

where λ is a weighting factor and considered as a tuning parameter.
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3.2.3.1 Inclusion of secondary goals in the objective function

In some cases, there is a primary goal or a more important control objective that must be
achieved. At the same time, there might be additional constraints or requirements that should
also be met. In these cases, the objective function consists of primary and secondary terms,
where the importance of the secondary term can vary within a wide range, depending on the
application and its specific needs. For example one can include a term in the objective function
to reduce the switching frequency.

J = (T (k + 1)− T ∗)2 + λ1(|ψs| − |ψ∗
s |)2 + λ2nsw, (3.20a)

J = (isα(k + 1)− i∗sα)2 + (isβ(k + 1)− i∗sβ)2 + λ2nsw, (3.20b)

where nsw is the number of switchings and λ2 is the corresponding weighting factors. The
same concept can be used to include common mode voltage, acoustic noise, capacitor voltages
of a multilevel converter etc. in the objective function.

3.2.3.2 Weighting Factor Selection

There is no classical approach for setting the weighting factor in an objective function; how-
ever, some guidelines can be followed for tuning this parameter [92]:

• If the objective function consists of a single variable or several components of a variable
as in (3.19), the weighting factor is usually set to 1.

• If the cost function consists of equally important variables as in (3.17), an initial guess for
the weighting factor is equal to 1 considering the variables are in per unit. Afterwards, this
initial guess can be adjusted accurately based on several simulations at different operating
points.

• If the cost function includes secondary terms such as in (3.20), it is usually preferred to
perform several simulations starting from setting the weighting factor of the secondary
goal term equal to 0. It is usually the designer’s task to decide to what extent the primary
goals should be sacrificed for the secondary ones. An increase in the weighting factor λ2

in equation (3.20), for instance, will lead to a decrease of the switching frequency, and
the performance of the reference tracking will deteriorate. Figure 3.7 shows simulation
results of applying MPC with an objective function as in (3.20b) to an RL load connected
to a 2-level inverter. It can be seen that increasing the switching frequency penalizing
factor, λ2, decreases the switching frequency; however, current distortion increases at the
same time. So by setting the value of the weighting factor, a trade-off is made between
the switching frequency and current distortion.
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Figure 3.7: Phase current versus weighting factor of the switching frequency term in the objective func-
tion

3.2.4 Long prediction horizon MPC
There are mainly three benefits of increasing the prediction horizon: First, for direct MPC, a

longer prediction horizon improves the steady state performance in terms of current distortion.
Second, for non-minimum phase systems or, in other words, systems with inverse behavior, a
long prediction horizon is necessary to assure reference tracking and stable operation during
transients. Third, a long prediction horizon reduces the sensitivity to parameters, model mis-
match and measurement noise and hence leads to better steady state results. On the other hand,
application of long prediction horizon MPC is limited by calculation power limitation. Several
techniques which enable long prediction horizon MPC are:

• MPDxC: The hysteresis predictive control explained in section 3.2.1 is based on extrap-
olations of current trajectories within the hysteresis bounds. However, the extrapolation
is done only once for each voltage vector of the converter. An improved version utilizing
multi-step extrapolations was proposed in [93]. The interesting fact about this method is
that hysteresis bands are not only used to bound control variables, but also as a mean of
candidate rejection to limit the number of feasible candidates for precalculations. This
scheme is developed for direct torque control in [63], direct current control in [94, 95],
direct power control in [96] and capacitor voltage balancing in [97].

• Heuristic FCS-MPC: As stated before, the computational burden of FCS-MPC increases
exponentially with the prediction horizon. In [98], a candidate rejection technique is used
to increase the prediction horizon. It is based on the idea that if the reference voltage
vector is available, it is possible to enumerate the objective function only for the voltage
vectors closest to the reference vector. This decreases the feasible finite states to 3. For
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instance, for a 2-level converter and a prediction horizon of 5, the number of cases that
shall be evaluated decrease from 235 to 35. A main advantage of this method is that
the number of finite states is always equal to 3np regardless of the voltage levels of the
converter, where np is the prediction horizon,

• Sphere decoding for linear quadratic problems: In case of a linear system with a
quadratic objective function, there is a classical approach for getting the unconstrained
solution. A modified technique similar to linear quadratic regulators (LQR) is used in
[60–62] to obtain this unconstrained solution. Then the algorithm iteratively considers
candidate sequences that belong to a sphere radius centered in the unconstrained solution
and chooses the one that minimizes the objective function. This leads to long prediction
horizons of upto 10 steps. However, its application is limited to linear systems with
quadratic cost functions.
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CHAPTER 4

Sychronous optimal modulation

In PWM and SVM, pulses are positioned within a fixed clock cycle. This concept forces the
converter to switch at each clock cycle and hence, distributes the switching actions according to
the clock interval. The constraint of equally distributing the switchings within the fundamental
period is introduced by the modulator and it is not a physical limitation.

The switching frequency of the converter determines the number of permissible switchings
per fundamental period. Besides, the controller demands a certain output voltage or modulation
index. Switching frequency and modulation index are the only elements that need to be consid-
ered in designing a modulator. Therefore, one can omit the concept of clocking the pulses and
calculate the switching angles in order to achieve a secondary goal such as optimal current dis-
tortion, elimination of certain harmonics, torque ripple optimization etc. In this case, switching
events are allowed to take place freely over the fundamental period, with the constraint of main-
taining waveform symmetry. An approach with such characteristics is known as Synchronous
Optimal Modulation (SOM) or Optimal Pulse Pattern (OPP) technique.

Optimal pulse patterns are not only known for their low current distortion in the electrical
drives community, but also for the problems associated with running the optimization process
and applying it to a real machine. A major problem is the very slow calculation process. It gets
even slower for multi-level converters because the calculation time increases exponentially with
the number of voltage levels of the converter. Here, it is shown that it is possible to immensely
accelerate the optimization procedure by reformulating the optimization problem. Moreover,
it is demonstrated that there is a unique voltage vector sequence at each operating point of the
machine that leads to less current harmonic distortion.

This chapter introduces OPPs for 5-level converters, proceeds with algorithms to calculate
these patterns and concludes with their application to electrical drives and the application of
voltage vector sequences to MPC based current distortion optimization is discussed in the next
chapter.
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Figure 4.1: 5L-FC converter connected to an inductive load with a sinusoidal back EMF

4.1 5-level voltage waveform

A 5L-FC converter connected to an inductive load with a sinusoidal back EMF is shown in
Figure 4.1. The phase voltages of the converter, ua = uan, ub = ubn and uc = ucn, can be
calculated based on the flying capacitor voltages and switching states (2.10). However, it is also
necessary to calculate the load-side phase voltages uay, uby and ucy in order to determine the
load currents. For this purpose, we define uyn to be the voltage between the load side neutral
point and the DC-link midpoint

uyn(t) =
1

3
(ua(t) + ub(t) + uc(t)). (4.1)
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Figure 4.2: Three-phase voltages of a 5-level inverter

Thus, the load side phase voltages can be expressed as

uay(t) = ua(t)− uyn(t) =
2

3
ua(t)−

1

3
(ub(t) + uc(t)), (4.2a)

uby(t) = ub(t)− uyn(t) =
2

3
ub(t)−

1

3
(ua(t) + uc(t)), (4.2b)

ucy(t) = uc(t)− uyn(t) =
2

3
uc(t)−

1

3
(ua(t) + ub(t)). (4.2c)

The primary goal of pulse patterns is to emulate a symmetrical, sinusoidal three-phase voltage
system with variable frequency and amplitude on the load phases. To achieve this, the voltage
waveform is considered to have the following properties

(C1) pulse patterns are periodic with period T1 = 2π
ωs

, i.e. ua(t+ T1) = ua(t),

(C2) identical pulse patterns are used for all three inverter legs,

(C3) the phase shift between patterns from one leg to the next is 2π
3
≡ 120°,

i.e. ub(t) = ua

(
t− 1

ωs
2π
3

)
and uc(t) = ua

(
t+ 1

ωs
2π
3

)
,

(C4) ua(t) has half-wave and odd quarter-wave symmetry,
i.e. ua(t) = −ua(t− 1

ωs
π) and ua(t) = ua(

1
ωs
π − t),

(C5) p commutations occur at ωst ∈ {α1, α2, . . . αp} with commutation angles 0 < α1 < α2 <
. . . < αp <

π
2

within the first quarter of each period of ua(t).

A 5-level voltage waveform that satisfies these conditions is shown in Figure 4.2. Based on
the three-phase and quarter-waveform symmetries, calculations can be done for a quarter of a
single phase waveform and results can be extended to the whole period and the three phases.
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Figure 4.3: Pulse pattern structures of a 5-level inverter for p = 7

4.1.1 Voltage waveform structures

Assume a pulse pattern with p switchings in a quarter of a waveform period. Considering the
fact that the voltage level is zero at the starting point and only a single level transition is allowed
at each switching, 2bp/2c different voltage waveforms can be generated for each pulse number
p. For instance, and as it is depicted in Figure 4.3, 2b7/2c = 8 voltage waveforms exist for p = 7
switchings per quarter of a period. Each of these unique voltage waveforms is called a voltage
structure. A voltage level matrix L is introduced to describe all voltage structures for a certain
pulse number p. Each row of this matrix represents voltage levels of a voltage structure. For
example, the voltage level matrix for p = 7 is

L =



0 1 0 1 0 1 0 1

0 1 2 1 0 1 0 1

0 1 0 1 2 1 2 1

0 1 2 1 2 1 2 1

0 1 0 1 0 1 2 1

0 1 0 1 2 1 0 1

0 1 2 1 2 1 0 1

0 1 2 1 0 1 2 1


. (4.3)
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4.1.2 Fundamentals and harmonics of inverter leg voltages
The periodic inverter leg voltages ua(t), ub(t) and uc(t) can be written as their Fourier series

representations

ua(t) =
∞∑
k=1

ua,k · sin (kωst), (4.4a)

ub(t) =
∞∑
k=1

ua,k · sin
(
k

(
ωst−

2π

3

))
, (4.4b)

uc(t) =
∞∑
k=1

ua,k · sin
(
k

(
ωst+

2π

3

))
. (4.4c)

In equation (4.4), the k-th harmonic has an amplitude of ua,k. Amplitudes are the same
for all three phases because of three-phase symmetry - property (C2). A fixed phase shift be-
tween switching patterns is already incorporated - property (C3). Finally, there are no cosine-
coefficients in the Fourier series because of the odd waveform symmetry - property (C4).

When (4.4) is inserted into (4.2), it yields

uay(t) =
2

3
ua(t)−

1

3
(ub(t) + uc(t))

= +
2

3

∞∑
k=0

ua,k · sin (kωst)

− 1

3

∞∑
k=0

ua,k · sin
(
k

(
ωst−

2π

3

))
− 1

3

∞∑
k=0

ua,k · sin
(
k

(
ωst+

2π

3

))
=

1

3

∞∑
k=1

ua,k ·
(

2 sin (kωst)− sin

(
k

(
ωst−

2π

3

))
− sin

(
k

(
ωst+

2π

3

)))
=

1

3

∞∑
k=1

ua,k · 4
(

sin

(
kπ

3

))2

· sin (kωst) .

The expression within the sum can be further simplified,

4

(
sin

(
kπ

3

))2

=

{
3 , k 6= 3n, n ∈ N
0 , k = 3n, n ∈ N

leading to the Fourier series representation of uay(t)

uay(t) =
∞∑
k=1

uay,k · sin (kωst) ,

uay,k =

{
ua,k , k 6= 3n, n ∈ N
0 , k = 3n, n ∈ N

 (4.5)
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The same sequence of steps can be repeated for uby,k and ucy,k.
Equation (4.5) shows two fundamental properties of the relation between inverter leg voltages

and load phase voltages

1. All harmonics of order k = 3n, n ∈ N, (“triplen harmonics”) of inverter leg voltages
disappear in machine phase voltages.

2. All other harmonics (“non-triplen harmonics”) have the same amplitude for inverter leg
voltages and machine phase voltages. Hence, it would be acceptable to consider the
converter voltages for calculations and extend the results to the load voltage.

Now the Fourier coefficients of inverter leg voltage ua(t) and thus all other leg and load volt-
ages can be derived from commutation angles. For this purpose, we introduce two additional,
fixed angles α0 = 0 and αp+1 = π

2
. The half-wave symmetry in the property (C4) leads to the

cancellation of all harmonics of even order.
For odd k, the Fourier coefficients are

ua,k =
8

T1

T1
4∫

0

ua(t) · sin
(
k

2π

T1

t

)
dt

=
8

T1

p∑
i=0


αi+1

T1
2π∫

αi
T1
2π

l (i) · udc

2
sin

(
k

2π

T1

t

)
dt


=

4udc

T1

p∑
i=0

(
l (i) ·

[
− T1

2kπ
· cos

(
k

2π

T1

t

)]∣∣∣∣αi+1
T1
2π

t=αi
T1
2π

)

=
2udc

kπ

p∑
i=0

(l (i) · (cos (kαi)− cos (kαi+1)))

=
2udc

kπ
(l (0) · cos (kα0)− l (0) · cos (kα1) + l (1) · cos (kα1)− l (1) · cos (kα2) + · · · )

=
2udc

kπ

(l(1)− l(0))︸ ︷︷ ︸
s(1)

· cos (kα1) + (l(2)− l(1))︸ ︷︷ ︸
s(2)

· cos (kα2) · · · (l(p)− l(p− 1))︸ ︷︷ ︸
s(p)

· cos (kαp)

 ,

where l(i) represents the voltage structure with i equal to the corresponding row of the voltage
level matrix L, and s(i) is equal to 1 during a transition to a higher voltage level and equal to
−1 during a transition to a lower voltage level. It is also important to notice that αp = π

2
yield

cos (αp) = 0. Besides, l(0) = 0.
Finally, Fourier coefficients ua,k are obtained

ua,k =
2ud
kπ

p∑
i=1

s(i) cos (kαi). (4.6)
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Equation (4.6) represents the fundamental and harmonics of the converter’s voltage based on
the switching angles αi. The fundamental amplitude can be found by setting k = 1 in (4.6)

ua,1 =
2ud
π

p∑
i=1

s(i) cos (αi). (4.7)

4.1.2.1 Modulation index

Equation (4.7) is used to define the converter’s modulation index based on switching angles.
The modulation index m is defined as

m =
ua,1
udc
2

=
ula,1
udc
2

. (4.8)

Using equation (4.7) and (4.8), the modulation index for a given pulse pattern is

m =
4

π

p∑
i=1

s(i) cos (αi). (4.9)

The maximum value of the modulation index m is reached when the converter is operating
in six-step mode. In six-step mode, the converter generates a square pulse with an amplitude
of
udc

2
and p = 0. Hence, the maximum value of the modulation index or, in other words, the

modulation index of six-step mode can be found by setting p = 0 in (4.10)

mmax =
4

π
≈ 1.273. (4.10)

Remark: Some publications define the modulation index m = ua,1
ua,1,six-step

based on the fun-
damental amplitude ua,1,six-step of six-step mode [99]. In this case, the maximum value of the
modulation index will be 1.

4.1.2.2 The considered of harmonics

Equation (4.6) gives the amplitude of all harmonics of a pulse pattern. In practice, it is
not possible to consider an infinite number of harmonics to analyze a voltage waveform. As
a result, harmonics that are considered in calculation and optimization need to be limited to
a certain number. Based on symmetries and according to (4.5), only odd and non-triplen
harmonics exist in the load voltage. So the harmonic orders that are considered are: H =
{k ∈ N | k > 1 ∧ k 6∈ {2n, 3n} ∀n ∈ N} = {5, 7, 11, 13, 17, 19, . . .}. In this work, these har-
monics are considered up to harmonic order of 101. To ensure that harmonic orders up to 101
are enough to represent the pulse pattern, a voltage waveform with p = 9 is considered and
its harmonic orders are calculated. Afterwards, the pulse pattern is regenerated with harmonic
orders up to 101 via a reverse Fourier transformation. The resultant waveform can be seen in
Figure 4.4.
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Figure 4.4: Reverse Fourier transformation of a pulse pattern considering the first 101 harmonics

4.1.2.3 Visualization of harmonic content

It is useful to visualize harmonic contents of pulse patterns as a function of switching angles.
There are two switching angles for p = 2: α1 and α2. The fundamental component of inverter
leg voltage as a function of switching angles can be derived from equation (4.7)

ua,1 =
2udc

π
(cos (α1) + cos (α2)). (4.11)

The 5th, 7th, 11th and 13th harmonics for p = 2 can also be derived from (4.6) in a similar
way

ua,5 =
2udc

5π
(cos (5α1) + cos (5α2)), (4.12a)

ua,7 =
2udc

7π
(cos (7α1) + cos (7α2)), (4.12b)

ua,11 =
2udc

11π
(cos (11α1) + cos (11α2)), (4.12c)

ua,13 =
2udc

13π
(cos (13α1) + cos (13α2)). (4.12d)

The two commutation angles α1 and α2 are varied within their feasible bounds and the resul-
tant fundamental component is plotted in Figure 4.5. The same concept is applied to plot the
5th, 7th, 11th and 13th harmonic and the results are shown in the Figures 4.6 to 4.9. It is not
possible to plot these functions for p > 2 due to the multidimensionality of the problem. How-
ever, this single case gives a useful insight into the dependency of fundamental and harmonic
components of a signal on the switching angles.
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4.2 Current distortion
An optimal pulse pattern should transfer a maximum of real power from the inverter to the

load. As a result, any components of the load side phase voltages that do not contribute to this,
but produces losses, should be minimized. The instantaneous phase power of an inductive load
Lσ with a back EMF ea is

pa(t) = uaY (t) · ia(t) =

(
Lσ

dia(t)

dt
+ ea(t)

)
· ia(t) = Lσ

dia(t)

dt
ia(t) + ea(t) · ia(t) . (4.13)

Given a phase voltage ula(t) from (4.5), the load current ia(t) can be written as a Fourier series

ia(t) =
∞∑
k=1

ia,k · sin (kωst+ ϕi,k), (4.14)

with harmonic orders k ∈ N>0, corresponding amplitudes ia,k and phase shifts ϕi,k.
By assuming a sinusoidal EMF, the the induced voltage ea(t) consists only of a fundamental

component.

ea(t) = ei · sin (ωst+ ϕei) (4.15)

Replacing ia(t) and ea(t) in (4.13) results in
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pa(t) =

(
Lσ ·

∞∑
k=1

ia,k · cos (kωst+ ϕi,k) ·
1

kωs

+ ei · sin (ωst+ ϕei)

)
(4.16)

·
∞∑
k=1

ia,k · sin (kωst+ ϕi,k). (4.17)

The real load phase power Pa is the time average of the instantaneous phase power pa(t)

Pa =
1

T1

T1∫
0

pa(t) dt

=
1

T1

T1∫
0

(
Lσ ·

∞∑
k=1

ia,k · cos (kωst+ ϕi,k) ·
1

kωs

+ ei · sin (ωst+ ϕei)

)

·
∞∑
k=1

ia,k · sin (kωst+ ϕi,k) dt . (4.18)

Note the following for an integral over the full period of the product of two sinusoidal func-
tions

T1∫
0

cos (k1ωst+ ϕk1) · sin (k2ωst+ ϕk2) dt =

{
− π
ωs
· sin (ϕk1 − ϕk2) , k1 = k2,

0 , k1 6= k2.
(4.19)

For k1 6= k2 (mixed frequency terms), the contribution to real power is zero. For k1 = k2 = k,
ϕk1 = ϕk2 and sin (ϕk1 − ϕk2) = 0. Thus, a first simplification of (4.18) is

Pa =
1

T1

T1∫
0

ei · sin (ωst+ ϕei) ·
∞∑
k=1

ia,k · sin (kωst+ ϕi,k) dt . (4.20)

Again, mixed frequency terms do not contribute to the integral, and a further simplification in
equation (4.20) yields

Pa =
1

2
· ei · ia,1 · cos (ϕei − ϕi,1). (4.21)

As a result, only fundamental load current results in real power. Any current harmonic with
k > 1 is thus to be minimized to optimize the pulse pattern.

Amplitudes ia,k of load current harmonics depend on the load phase voltage as well as on
the load impedance. By assuming a linear inductive load, ia,k can be calculated separately for
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each harmonic order k. For harmonics ia,k with k > 1, ea is short-circuited because ea(t) was
assumed to be sinusoidal with fundamental speed ωs. This results in

ia,k =
1

kωsLσ
· ula,k , ∀k > 1 . (4.22)

uay,k is known from (4.5) to be ua,k for non-triplen harmonics and zero for triplen harmonics.
To sum up

ia,k =

{
1

kωsLσ
· ua,k , k 6= 3n, n ∈ N, k > 1 ,

0 , k = 3n, n ∈ N.
(4.23)

Furthermore, ua,k is zero for all harmonics of even order because of half-wave symmetry -
property (C4). This results in a reduced set of inverter leg voltage harmonics that are able to
produce currents on the load side.

Note that the load is considered to contain no resistive part. This assumption is made to
ease the calculation of harmonic current amplitudes with a strongly inductive load. As a conse-
quence, harmonic currents do not lead to any losses at all in this particular load model. However,
when a small resistance R is connected in series to Lσ, a resistive loss term appears in (4.18).
Instantaneous losses produced by the current ia(t) in a resistor R are

pR,a(t) = R · (ia(t))2 , (4.24)

and the corresponding real power is

PR,a =
1

T1

T1∫
0

pR,a(t) dt =
1

T1

T1∫
0

R · (ia(t))2 dt = R · 1

T1

T1∫
0

(ia(t))
2 dt. (4.25)

Besides, the RMS value of ia(t) is

Ia,rms =

√√√√√ 1

T1

T1∫
0

(ia(t))
2 dt, (4.26)

which can be used to evaluate losses

PR,a = R · (Ia,rms)2 . (4.27)

By applying Parseval’s theorem, Ia,rms can be calculated from the Fourier coefficients ia,k as
well

Ia,rms =

√√√√ ∞∑
k=1

(
ia,k√

2

)2

. (4.28)
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As mentioned in (4.1.2.2), only current harmonics from the harmonic arrayH are considered.
Hence

Ia,H =

√√√√∑
k∈H

(
ia,k√

2

)2

. (4.29)

Using (4.23), Ia,H can be calculated from the Fourier coefficients ua,k of inverter leg voltage
ua(t)

Ia,H =

√√√√∑
k∈H

(
1√

2kωsLσ
· ua,k

)2

=

=

√√√√∑
k∈H

(
1√

2kωsLσ

2ud
kπ

p∑
i=1

s(i) cos (kαi)

)2

=

=

√
2ud

ωsLσπ

√√√√∑
k∈H

1

k4

(
p∑
i=1

s(i) cos (kαi)

)2

. (4.30)

Equation (4.30) shows the advantage of the assumptions introduced in this chapter and gives
an analytical solution to calculating the RMS values of current harmonics from switching angles
of a given pulse pattern.

The harmonic distortion of a pulse pattern d is defined as

d =
Ia,H

Ia,H,six-step
, (4.31)

where Ia,H,six-step is the RMS value of load current harmonics k ∈ H in six-step mode.
Ia,H,six-step can be calculated using (4.30) with p = 0

Ia,H,six-step =

√
2ud

ωsLσπ

√∑
k∈H

1

k4
. (4.32)

Inserting (4.30) and (4.32) into (4.31) yields

d =

√√√√√√√
∑
k∈H

1
k4

(
p∑
i=1

s(i) cos (kαi)

)2

∑
k∈H

1
k4

. (4.33)

In (4.33), distortion d does not depend on model parameters, it is only a function of commutation
angles α. Thus it can be used in the optimization process to quantify the performance of a pulse
pattern with a single number, based on the losses caused by harmonic load currents, without
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involving parameters of the inverter or load. Additionally, it is important to note that the value
of the distortion function plays no role in the optimization procedure; though the location of
its minimum defines the optimal switching angles and the optimal pulse pattern. As a result,
constant values and the square root in equation (4.33) can be neglected in the optimization
procedure and the objective function can be considered as

Jd =
∑
k∈H

1

k4

(
p∑
i=1

s(i) cos (kαi)

)2

. (4.34)

In order to get an impression of the objective function Jd, it is plotted as a function of commu-
tation angles for p = 2 pulse numbers in Figure 4.10. As can be seen, the objective function is a
non-convex function, which means that it has several local minima. This needs to be considered
in choosing an optimization technique.
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Figure 4.10: Objective function for p = 2

4.3 Optimization
The aim of the optimization process is to find commutation angles that minimize the objective

function Jd, and thus, minimize the losses that are generated by harmonic currents. Feasible so-
lutions have to maintain a specific modulation index m at the output terminals. The expressions
for Jd (4.34) and m (4.10) are nonlinear transcendental functions of commutation angles. Thus,
an analytical solution for the optimization is not viable, and the process is done in an iterative
way [31].
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4.3.1 Objective function
Objective function (4.34) consists of two summations. These summations are usually equiv-

alent to for-loops in programming and increase calculation time. Writing the objective function
in matrix format is an alternative. For this purpose, commutation angle matrix α and harmonic
matrixK are introduced as

α =
[
α1 α2 · · · αp

]T ∈ Rp×1 , (4.35)

K =
[
5 7 11 . . . kmax

]> ∈ N|K|×1. (4.36)

With this, the product

K ·α> =


5α1 5α2 · · · 5αp
7α1 7α2 · · · 7αp

...
...

...
kmaxα1 kmaxα2 · · · kmaxαp

 ∈ R|K|×p, (4.37)

results in a matrix containing all combinations of kαi, which occur in (4.34).
Addtionally, the voltage structure matrix S is introduced as a 1× p matrix. Voltage structure

matrix indexes are equal to 1 for switching to an upper voltage level and are equal to -1 for
switching to a lower voltage level.

In MATLAB, it is easy to apply built-in functions to vectors and matrices element by element
using a single instruction. Applying the cosine function to each element ofK ·α> is

cos
(
K ·α>

)
· s ∈ R|K|×1. (4.38)

The result is a column vector. Each row contains the result of the inner sum in (4.34) for
the corresponding element in K. Now, the objective function can be written in a single line of
code, using no explicit summation loops or iterations through vector elements

Jd(α) =

(
1

K4

)>
·
(
cos
(
K ·α>

)
· s
)2
. (4.39)

The division and power operators acting on vectors are, like the cosine function, to be exe-
cuted element by element, i.e. they are implemented using the ·∧ operator in MATLAB.

4.3.2 Constraints
Constraints for optimization variables are used to assure that

1. The modulation index of the optimized pulse pattern matches the preset value m.
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2. The commutation angles meet (C5).

Using (4.10), a nonlinear equality constraint for m can be set up

ceq(α) =
4

π

p∑
i=1

s(i) cos (αi)−m !
= 0. (4.40)

The second constraint sets a minimum interval between commutations. Let ∆α be the min-
imum angle between any two commutations in a pulse pattern, then the commutation angles
need to comply with

α1 ≥ ∆α

α2 ≥ α1 + ∆α

...
...

αp ≥ αp−1 + ∆α

π

2
≥ αp +

∆α

2

These expressions can be brought into matrix-vector form as well



−1 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1
0 0 0 · · · 0 0 1


︸ ︷︷ ︸

A

·α ≤



−∆α
−∆α
−∆α

...
−∆α
−∆α
π
2
− ∆α

2


︸ ︷︷ ︸

b

. (4.41)

4.3.3 Local optimization
A setpoint for the optimization of a pulse pattern is defined by its associated values of the

modulation index m, the minimum distance between commutations ∆α and the number of
commutations p.

The nonlinear objective function Jd(α) is minimized with the constraints (4.40) and (4.41).
Thus, the optimization problem optimization becomes

min
α

Jd(α)

subject to

{
ceq(α) = 0 (4.40)
A ·α ≤ b (4.41)
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Figure 4.11: Objective function with imposed modulation index constraint lines for p = 2

The number of commutations p defines the problem dimension. To ease implementation, the
predefined MATLAB function fmincon is used for optimization since it can handle nonlinear
cost functions as well as linear and nonlinear constraints. It uses an initialα and iterates towards
the next local minimum by evaluating gradients of the cost function. As a prerequisite, the
cost function needs to be continuously differentiable. This is true for (4.34) and its equivalent
vectorized form (4.39).

4.3.4 Global optimization
The constraint optimization is visualized in Figure 4.11 for p = 2. The objective function

is shown as a function of commutation angles. The domain of the objective function satisfies
inequity constraints (0 ≤ α1 ≤ α2 ≤

π

2
). On the other hand, modulation index constraint

lines are imposed on the domain of the objective function. From this perspective, the optimiza-
tion procedure at each modulation index m is equivalent to finding the minimum value of the
objective function on each of the modulation index constraint lines.

To find a global optimum of the function Jd(α), some possible approaches are

1. evaluation of Jd(α) on a tight grid of α and selection of the minimum as solution

2. local optimization for several initial values of α and selection of the best local minimum
as solution

3. local optimization of one initial α and estimation of the size of its basin of attraction,
followed by multiple local optimizations outside this region
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4. genetic algorithms

5. pattern search

All five methods are available in MATLAB as predefined functions (2 - 5) or can be pro-
grammed easily (1). From a practical point of view, the primary requirements of each method
are speed and memory consumption for a certain precision of the solution. A supplementary
requirement is the ability to parallelize, i.e. execute the algorithm on multiple CPU cores, which
helps to speed up computations. Approach 1 can be implemented using arrayfun and needs
an exhaustive number of grid points. The parallelization of function evaluations is easy since
computations for individual points are independent.

Approach 2 is available through the function MultiStart and can consider user-defined
initial points. Parallel optimization is possible, and the memory consumption is lower than with
approach 1 because of the local optimizations.

Approach 3 uses an involved algorithm and can be accessed through the function GlobalS-
-earch. Only one initial point can be provided by the user, and parallelization is not possible at
a global optimization level for one set-point because the selection of new initial points depends
on the solution of local optimization runs of the algorithm.

Approach 4 uses random variations in multiple α to generate succeeding iterations (“popu-
lations”). In each iteration, the objective function is evaluated to find the best α as a basis for
the next iteration.

Approach 5 was not evaluated because of its sparse description in MATLAB documentation.
Approaches 2 and 3 seemed to be the most promising for the given problem and were inves-

tigated more thoroughly. For low values of p < 8, GlobalSearch was fast and proved to
provide reliable results. However, since it is not possible to supply more than one initial value
for the optimization, there is no way, other than through constraint (4.41), to include knowledge
about the necessary ordering of individual commutation angles. In contrast, MultiStart al-
lows custom initial points to be supplied by the user. When random sets of initialαwith ordered
vector entries were supplied to MultiStart, it turned out to be faster than GlobalSearch
for p ≥ 8.

Based on these observations, the following steps are made to find the global minimum for a
specific modulation index m and pulse number p

1. Find all voltage vector structures

2. Calculate the objective function for each voltage vector structure.

3. Generate k randomly chosen initial values on the domain of each calculated distortion
function (random initial values on the domain of the objective function for p = 2 are
shown in Figure 4.12).
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Figure 4.12: Random initial values on the domain of the objective function for p = 2

4. Find the optimum value of each objective function starting from any of its initial values
using fmincon (considering equality and inequality constraints).

5. Find the minimum value of previous optimum values and store commutation angles for
selected P and m.

Steps 2 and 3 are a part of the MultiStart algorithm.
With random initial values, there is no guarantee that the global optimum has been reached.

However, using a large k, the probability to find the global optimum or at least a very good local
one is high.

To find an approximate k for reliable results, multiple global optimization runs were done for
a single set-point with different k and the results were compared. It took around 20 days for a
normal PC to run the optimization for the pulse numbers 2 to 10 for a 5-level inverter.

4.4 Acceleration of the optimization procedure
As mentioned in the previous part, the optimization procedure is very slow. This is due to the

fact that our objective function is non-convex. Hence, optimization has to be done repeatedly
starting from several different initial points. Then, the results have to be compared in order to
find the global minimum and not just a local one. On top of that, the optimization needs to
be done for each modulation index, pulse number and voltage waveform structure separately.
Besides, each optimization takes several iterations in order to converge to an optimum value.
Therefore, the number of calculations that are needed to find optimal pulse patterns for each
pulse number p can be expressed as

kp = Nstr ·Nm ·Nin ·Nit, (4.42)
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Figure 4.13: Equally distributed initial values on the domain of the objective function for p = 2

where Nstr is the number of voltage structures, Nm the number of considered modulation
indexes, Nin the number of initial values and Nit the number of iterations till convergence.
Nm is a fixed value that expresses the number of considered modulation index constraints,

and is defined based on the desired resolution. For instance, aiming to calculate the optimal
switching instances for a modulation range from 0.5 to 1.25 with modulation steps of 0.05
will result in Nm = 16. Apparently, Nm is a user-defined requirement that cannot be reduced.
Therefore, speeding up the calculation procedure is limited to the reduction of Nstr, Nin and
Nit. In section 4.4.1, it is shown that initial values can be selected only on modulation index
constraint lines without affecting optimization precision. As a result, by a reduction in Nin, the
value kp can be decreased as well. This is being further developed in section 4.4.2. It is shown
that the domain of the objective function can be divided into sub-domain regions, where the
optimization is necessary only in some of them. It is demonstrated that this scheme reduces kp
by affecting all three terms Nstr, Nin and Nit.

4.4.1 Initial values on modulation index constraints

A set of randomly generated initial values on the domain of the objective function is shown
in Figure 4.12 for p = 2. It is also possible to choose equally distributed initial values as shown
in Figure 4.13. Nonetheless, the generation of distributed initial values is not an easy task in
higher dimensions.

Choosing random initial values on the domain of objective functions increases the calculation
time in two different ways. Firstly, the number of initial values should be big enough to cover
the whole domain. As a result, Nin shall have a high value. Secondly, most of the chosen
initial values are located far away from the optimum point and modulation index constraint
line; hence, the number of iterations needed to converge to an optimum value is relatively high.
It is noteworthy that in many cases there is no convergence. For instance, imagine a case in
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Figure 4.14: Choosing the initial value on the modulation index constraint at m = 1 and for p = 2

which a local minimum is located close to the chosen initial value and the modulation index
constraint is located in a farther distance. It is highly probable that the optimization algorithm
gets trapped in the local minimum and does not converge to any minimum that satisfies the
modulation index constraint. Consequently, Nit in many cases has a high value.

A better approach is to choose initial values on the modulation index constraint. As the
optimum value shall satisfy optimization constraints, it has to be located on the modulation
constraint as well. Therefore, it is enough to choose several initial values on the respective
modulation index constraint and not on the whole domain of the objective function. This is
shown for p = 2 and modulation index constraint m = 1 in Figure 4.14.

There are two switching angles, α1 and α2, for p = 2. Consequently, the objective function
domain is two-dimensional and hence, it is a plane. The modulation index constraint has one
dimension less and is a line in this case. In section 4.3.2, the modulation index constraint was
defined as

ceq(α) =
4

π

p∑
i=1

s(i) cos (αi)−m !
= 0. (4.43)

In general, for a pulse number p the objective function is p-dimensional and the modulation
index constraint is (p−1)-dimensional. For example, with p = 3 the domain is in 3D space and
the modulation index constraint is a plane. In this case, the selection of the initial values over
the modulation index constraint is equivalent to choosing the initial values from a plane instead
of from the whole three-dimensional domain.

Let us consider the example for p = 3 in more detail. The domain of the objective function
is a volume in three-dimensional space where 0 ≤ α1 ≤ α2 ≤ α3 ≤

π

2
. There are two voltage

structures for p = 3. The first voltage structure corresponds to voltage levels 0121 and the
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Figure 4.15: Domain of the objective function and modulation index constraints of each voltage structure
for p = 3

second corresponds to voltage levels 0101. The objective function and the modulation index
constraints for voltage structure 0121 are defined as

Jd,1 =
∑
k∈H

1

k4
(cos (kα1) + cos (kα2)− cos (kα3))2, (4.44)

4

π
(cos (α1) + cos (α2)− cos (α3))−m = 0, (4.45)

and for voltage structure 0101

Jd,2 =
∑
k∈H

1

k4
(cos (kα1)− cos (kα2) + cos (kα3))2, (4.46)

4

π
(cos (α1)− cos (α2) + cos (α3))−m = 0. (4.47)

In the standard approach randomly generated initial values are chosen in the three-dimensional
space where 0 ≤ α1 ≤ α2 ≤ α3 ≤

π

2
and two constrained optimization problems are solved

separately. Afterwards, the results are compared and the switching angles and the voltage struc-
ture corresponding to minimum distortion are chosen. Conversely, the approach with initial
values on the modulation index constraint only considers randomly generated initial values
on the surface described in (4.45) to optimize the objective function Jd,1 and on the surface
described in (4.47) to optimize the objective function Jd,2. Eventually, the results are compared
to find the optimum switching angles and voltage structure. The objective function domain and
the modulation index constraints are depicted in Figure 4.15 for m = 1.

Limiting the initial values to the modulation index constraints speeds up the calculation pro-
cedure. Firstly, initial values are selected randomly on a (p − 1)-dimensional space instead
of on a p-dimensional space. Secondly, the optimization procedure always starts from a point
on the optimization constraints. So the convergence is fast and more probable. However, the
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optimization time will remain relatively high due to the fact that still too many initial values
have to be evaluated in each case and the optimization is done for each voltage vector structure
separately.

4.4.2 Spliting the global optimization to multiple regional optimizations
Assumption (C3) was introduced to exploit three-phase symmetry, based on which it became

possible to run the optimization for a single-phase system and extend the results to a three-
phase system. In this part, the problem is reconsidered in all three phases in order to see if
this simplification results in losing useful information that could have been used to facilitate the
optimization procedure.

The 5-level voltage waveform of Figure 4.2 is shifted by 120◦ and 240◦ to obtain the corre-
sponding three-phase waveform. The result is shown in Figure 4.16. The three segments in the
first quarter of phase a, with a length of 30◦, are plotted in different colors. In the next quarters,
the segments are plotted with the same color as their corresponding symmetrical part in the first
quarter. This waveform is shifted by 120◦ and 240◦ for the phases b and c. It can be seen that
in each 30◦-segment of the three-phase waveform, all three colors exist. This means that with
the information in 30◦ of a three-phase waveform, the rest can be derived by symmetry prop-
erties. In other words, half-wave and quarter-wave symmetries of a single-phase waveform are
equivalent to 30◦-symmetry in three-phase waveforms.

Three-phase voltages can be transformed to stator-fixed coordinates via Clarke transforma-
tion. 5-level voltage vectors and their symmetries in the αβ plane are shown in Figure 4.17.

Figure 4.18 displays all voltage vectors of a 5-level converter in the 30◦ segment specified
in Figure 4.17 together with the imposed modulation index lines. Every voltage waveform
corresponds to a certain voltage vector sequence in this 30◦ segment, while optimal voltage
vector sequences shall comply with the following rules

• Switching is allowed only from one voltage vector to another adjacent voltage vector.

• At each switching transition, only one leg of the converter is allowed to switch one level
up or down. As a result, switching from {001} to {−1− 10} is not allowed because
switching takes place in all the phases and switching from {−1− 21} to {−1− 2− 1}
is not allowed due to the fact that phase c has a two-level change.

• A feasible voltage vector sequence for each modulation index consists of voltage vectors
in the vicinity of the modulation index constraint as shown in Figure 4.18.

• A feasible voltage vector sequence starts with a voltage vector at the beginning of a 30◦

section and terminates with a voltage vector at its end.

In addition, each point on the domain of the objective function represents a voltage vector
sequence. Let us go back to our typical case study with p = 2. Each point on the objective func-
tion (Figure 4.11) represents a certain voltage waveform for phase a. Three-phase symmetry
can be used to generate the corresponding three-phase waveform for each point. Afterwards,
three-phase waveforms are transfered to αβ coordinates. Finally, the α and β waveform is
translated to a set of voltage vector sequences.
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Figure 4.16: Three-phase voltages of a five level inverter

Changing the switching angles α1 and α2 from 0 to
π

2
and obtaining the corresponding volt-

age vector sequence for each point defines certain regions over the domain of the objective
function in which the voltage vector sequence is unique. These regions are shown in Figure
4.19 for p = 2.

Voltage vector sequences for p > 2 can be defined by the same principle.
Here we face two new pieces of information. One is used to divide the voltage vector se-

quences into feasible and infeasible sequences and the other to split the objective function
domain into regions with a unique voltage vector sequence. Obviously, it makes no sense to
run the optimization in the regions with infeasible voltage vector sequences. As a result, the
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optimization procedure can be modified for a specific pulse number p and modulation index m
to

• Find all feasible voltage vector sequences.

• Calculate the distortion of each voltage vector sequence as a function of commutation
angles.

• Choose a single initial value for each objective function in the voltage vector sequence
region and on the modulation index constraint (this is shown in Figure 4.20 for p = 2 and
m = 1).

• Find the constrained optimum value of each distortion function starting from the selected
initial value using fmincon.

• Repeat the previous two steps in the case of no convergence.

• Find the minimum value of previous optimal values and store the commutation angles for
the selected p and m.

In the classical approach, optimization is done for all voltage vector structures, whereas in the
second approach, optimization is done for each feasible voltage vector sequence. As a result, it
is not required to evaluate as many voltage vector structures. Besides, a regional optimization
would be enough for the considered voltage structures.

The number of calculations in this approach for each modulation index constraint m and
for each pulse number p is only dependent on the number of feasible regions and calculation
iterations. Therefore, the number of calculations needed to find optimal pulse patterns for each
pulse number p can be expressed as
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Figure 4.20: Initial values for p = 2

kp =
∑
m∈M

Nvvs,m ·Nit,m, (4.48)

where Nvvs,m is the number of feasible voltage vector sequences for the modulation index
m, Nit,m is the number of iterations needed to converge to an optimal value and M is the
modulation index array. An example is given for p = 7 and the modulation index array, M =
{0.5, 0.55, ..., 1.25}. With the classical approach, the number of calculations is equal to kp =
8.8× 108, whereas it reduces to 3400 by applying the alternative approach.

The next notable advantage of splitting the global optimization to multiple regional opti-
mizations is that not only much fewer cases are required to be optimized (i.e. fewer voltage
structures and less initial values), but also the number of iterations needed for convergence is
much lower. This is due to the fact that the initial value is always chosen in a feasible region
and on the modulation index constraint. Hence, the initial value is already very close to the
optimum point. As a result, few iterations are enough to converge from the initial point to an
optimum.

It is not proven that voltage vector sequence regions are convex; however, in most cases
selection of a single initial value in each region is enough to find its minimum. As can be
seen in Figure 4.19, the cost function in each region is either convex or concave. This trend
is also observed for higher pulse numbers by performing several simulations. Notwithstanding
that there is no mathematical proof for the regional convexness, the consensus is that very few
initial points and in most cases only one initial value is enough to perform the optimization in
each region. This has been examined by running the optimization several times with different
initial values and getting the same optimal point repeatedly.
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4.5 Optimization results
Classical and accelerated approaches are used to solve the same optimization problem.

Therefore, both result in identical optimal voltage waveforms. However, it takes over 400 hours
for a normal PC to calculate optimal pulse patterns for a 5-level converter with the standard
approach, while applying the accelerated optimization reduces calculation time to a few hours.

Optimization is done for pulse numbers p from 2 to 10 and modulation index array M =
{0.5, 0.51, 0.52..., 1.27}. Optimal switching angles are shown in Figure 4.21. In addition to
switching angles, voltage structures or voltage vector sequences are also needed to generate the
optimal pulse pattern. Table 4.1 contains optimal switching angles and optimal voltage vector
sequences for p = 10. The results for p = 2 to p = 10 can be found in Appendix B.
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Figure 4.21: Optimal switching angles for p = 2 to p = 10



70 CHAPTER 4. SYCHRONOUS OPTIMAL MODULATION

Ta
bl

e
4.

1:
O

pt
im

iz
at

io
n

re
su

lts
fo

rp
=

10

m
0,

50
0,

55
0,

60
0,

65
0,

70
0,

75
0,

80
0,

85
0,

90
0,

95
1,

00
1,

05
1,

10
1,

15
1,

20
1,

25

α
0,

26
9

0,
19

8
0,

16
0

0,
21

0
0,

22
3

0,
23

0
0,

04
8

0,
04

9
0,

08
5

0,
11

2
0,

13
8

0,
14

1
0,

15
6

0,
09

9
0,

08
7

0,
06

8
0,

66
7

0,
30

6
0,

19
4

0,
31

2
0,

26
0

0,
63

4
0,

43
6

0,
35

9
0,

29
7

0,
32

8
0,

32
5

0,
60

2
0,

43
5

0,
13

3
0,

11
3

0,
08

6
0,

70
4

0,
36

1
0,

25
6

0,
37

5
0,

62
7

0,
67

4
0,

63
3

0,
40

8
0,

33
0

0,
37

9
0,

36
4

0,
63

8
0,

65
2

0,
17

1
0,

14
4

0,
12

0
0,

82
3

0,
65

8
0,

30
5

0,
40

2
0,

65
6

0,
73

3
0,

68
9

0,
74

2
0,

38
0

0,
42

0
0,

63
5

0,
69

5
0,

69
6

0,
43

3
0,

17
6

0,
12

9
0,

86
6

0,
79

2
0,

34
7

0,
79

4
0,

72
6

0,
79

3
0,

75
1

1,
04

5
0,

43
2

0,
97

5
0,

95
4

0,
95

7
0,

93
7

0,
65

4
0,

19
7

0,
13

1
0,

94
9

0,
92

5
0,

42
1

1,
09

0
1,

08
1

1,
06

4
0,

78
9

1,
17

0
0,

59
7

1,
03

5
1,

01
8

1,
00

3
0,

97
2

0,
68

8
0,

37
5

0,
14

4
0,

98
5

0,
94

5
0,

60
9

1,
11

3
1,

12
5

1,
12

3
1,

03
2

1,
18

6
0,

99
8

1,
15

4
1,

19
6

1,
21

0
1,

27
0

1,
25

6
0,

40
7

0,
16

6
1,

36
0

1,
28

2
1,

12
9

1,
18

4
1,

19
1

1,
17

5
1,

16
3

1,
38

4
1,

04
5

1,
28

2
1,

28
2

1,
26

2
1,

31
4

1,
27

9
0,

45
0

0,
20

5
1,

46
7

1,
47

1
1,

14
1

1,
21

1
1,

24
3

1,
24

7
1,

19
9

1,
48

9
1,

11
1

1,
31

4
1,

33
1

1,
31

4
1,

48
8

1,
50

4
1,

55
8

0,
22

0
1,

53
6

1,
55

0
1,

50
7

1,
32

5
1,

33
2

1,
55

2
1,

52
9

1,
54

0
1,

52
7

1,
56

4
1,

43
6

1,
35

7
1,

55
6

1,
55

1
1,

56
8

0,
22

1

St
ru

ct
ur

e
1

3
24

15
28

31
7

26
31

15
31

31
31

30
12

18

V
ec

to
r

B
10

B
10

B
10

B
10

B
10

B
10

B
10

B
10

D
19

D
19

D
19

D
19

D
19

D
19

D
19

D
19

se
qu

en
ce

A
6

A
6

C
15

C
15

C
15

C
15

C
14

C
14

C
15

C
15

C
15

C
15

C
15

D
20

D
20

D
20

B
10

B
10

B
10

B
10

B
10

B
10

C
15

C
15

D
19

D
19

D
19

D
19

D
19

D
19

D
19

D
19

A
6

B
11

B
11

C
15

C
15

C
15

B
10

B
10

C
14

C
14

D
20

D
20

D
20

D
20

D
20

D
20

B
10

A
6

B
10

B
10

B
10

B
10

C
15

C
15

C
15

C
15

C
15

C
15

C
15

C
15

D
19

D
21

B
11

B
10

B
11

B
11

B
11

B
11

B
11

B
11

C
16

D
20

D
20

D
20

D
20

D
20

D
20

D
20

A
6

B
11

B
10

C
15

B
10

C
15

C
15

C
16

C
15

C
15

C
15

C
15

C
16

C
16

D
21

D
19

B
10

B
10

B
11

B
10

C
15

B
11

B
11

C
15

C
16

C
16

C
16

D
20

D
20

D
20

D
20

D
20

A
6

A
6

B
10

B
11

B
11

C
15

C
15

C
16

C
15

C
15

C
15

C
16

D
21

D
21

D
21

D
19

B
11

B
11

A
6

B
10

C
15

B
11

C
16

B
11

B
11

C
16

D
20

D
20

C
16

C
16

C
16

D
20

A
6

A
6

B
11

B
11

B
11

C
16

B
11

C
16

C
16

B
11

C
16

C
16

D
21

D
21

B
11

D
21

d
0,

05
4

0,
04

7
0,

03
7

0,
04

1
0,

04
6

0,
05

0
0,

04
9

0,
04

5
0,

03
7

0,
04

4
0,

04
8

0,
04

6
0,

04
8

0,
03

7
0,

10
2

0,
52

8



4.5. OPTIMIZATION RESULTS 71

4.5.1 Optimal voltage waveform

Optimal pulse pattern for p = 4 and m = 0.8 is fetched from the table and the optimal phase
voltage ua is generated for the converter with a DC-link voltage of 500 V. Phase voltage ua and
phase to phase voltage uab are shown in Figure 4.22 with their respective harmonic spectrum.
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Figure 4.22: Voltage waveforms and their harmonic spectrum for p = 4 at m = 0.8

The RMS value of ua can be divided into its fundamental, triplen and non-triplen harmonics

u2
a,rms = u2

a1,rms +
(
u2
a3,rms + u2

a9,rms · · ·
)

+
(
u2
a5,rms + u2

a7,rms + · · ·
)
. (4.49)

The optimization is done in order to find switching angles in which ua1,rms meets the mod-
ulation index constraint and in which the weighted sum of non-triplen harmonics are minimal.
As a result, it is expected that triplen harmonics have a high amplitude in the optimal voltage
waveforms. This can be seen in the harmonic spectrum of ua, in which the fundamental’s am-
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Figure 4.23: Integral of optimal pulse train for p = 4 and m = 0.8 in αβ plane

plitude is 200 V, which is exactly equal to 80% of
udc

2
= 250V , and in which the 3rd harmonic’s

amplitude is over 30%.
An induction motor is usually considered as a highly inductive load. Thus,

∫
u · dt is a

good approximation of the stator flux or current from the distortion point of view.
∫
u · dt is

plotted in αβ plane for p = 4 and m = 0.8 in Figure 4.23. The trajectory has a clear 30◦

symmetry, which is equivalent to the introduced half-wave and quarter-wave symmetries in the
single-phase waveform.

It has to be mentioned that when a voltage vector is applied ,
∫
u · dt in αβ plane will start

from its initial value and continue in the same direction as the applied voltage vector. A close
look at the trajectory of

∫
u · dt reveals that in an optimal trajectory, switching transitions take

place from one voltage vector to another one that has a relatively small phase shift. As a result,
the flux trajectory has smooth corners at each switching point. This is another clue for the fact
that two adjacent voltage vectors in an optimal voltage vector sequence have to be on the same
triangle in the voltage vector hexagon of the converter.

4.5.2 Discontinuities of optimal switching angles

Optimized commutation angles usually exhibit discontinuities (large differences in switch-
ing angles for two adjacent modulation indexes). This causes transients in the phase current
whenever the modulation index passes a point of discontinuity. A post-optimization technique
is proposed in [32] to avoid the problem. It recalculates the switching angles starting at the
point of discontinuity by considering the initial values equal to the optimal commutation angles
just before the point of discontinuity. In fact, the discontinuity occurs when the optimal value
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is chosen from two different regions of voltage vector sequences for two adjacent modulation
indexes. In principle, starting the optimization at the point of discontinuity with the previous
optimal point as an initial value will find an optimum value in the same voltage vector sequence
region before the discontinuity. Therefore, it would be sufficient to choose the optimal point
from a single region for a certain range of the modulation index instead of re-optimizing the
objective function.

This post-optimization procedure is beyond the motivation of this work. However, a similar
approach is used in the following chapter in order to define the optimal voltage vector sequence
at each operating point.

4.5.3 Application of Optimal Pulse Patterns
Optimal pulse patterns are determined by offline calculations and with the assumption of

steady-state operation points. So the simplest way of operating a machine with OPPs is to
determine the pulse number p and modulation index m at the desired operating point, fetch the
corresponding pulse number from the look-up table and finally apply the pulses to the converter.
This is an open-loop approach that is commonly used for several low performance MV drive
applications such as industrial fans and pumps.

Figure 4.24 depicts the structure of an open-loop U/f control scheme with optimal pulse
patterns. The U/f controller generates a reference voltage vector u∗s . The pulse number p and
the modulation index m are defined based on the magnitude and the frequency of u∗s . Then, the
switching angles can be fetched from the look-up table in order to generate the optimal pulse
train uopt. It is noteworthy that the switching angles are usually stored for the first quarter of
the voltage waveform. Hence, with uopt,1 being the optimal pulse train for 0 ≤ α ≤ π

2
, the

IM

Gate
signal

generation

OPP
look-up table

Pattern
regeneration

U/f
control

|.|

]

ω∗
u∗

s

(p, m) αopt

uopt

us

ω∗
s

Figure 4.24: Open-loop U/f control scheme with optimal pulse patterns



74 CHAPTER 4. SYCHRONOUS OPTIMAL MODULATION

remaining portions of a full fundamental cycle are determined using half-wave and quarter-wave
symmetries

for
π

2
≤ α ≤ π: uopt = uopt,2 = uopt,1(π − α),

for π ≤ α ≤ 2π: uopt = uopt,3 = uopt,1,2(2π − α).

Finally, uopt(α) is transferred to uopt(t) based on the synchronous frequency ω∗s , and the gate
signals are generated according to ]u∗s .

The performance of optimal pulse patterns in an open-loop U/f control at steady-state oper-
ation is shown for ωm = 600 rpm and ωm = 1450 rpm with and without load. Figures 4.25 and
4.27 illustrate the phase voltages and stator currents at ωm = 600 rpm and at no-load operation,
whereas Figures 4.26 and 4.28 show the voltage and current waveforms at T = 15 Nm. The
current in no-load operation is more distorted than the current in the presence of a load. At
ωm = 600 rpm and thus with a pulse number equal to 10, Total Harmonic Distortion (THD)
decreases from 5.9 % to 3.6 % while the load increases from 0 Nm to 15 Nm. Besides, the
steady-state current trajectories are shown in Figures 4.29 and 4.30.

Figures 4.31 and 4.33 shows phase voltages and stator currents at nominal speed and no-
load operation. The results for T = 15 Nm at nominal speed are given in Figures 4.32 and
4.34 respectively. The results match with the previous observation that the current in no-load
operation is more distorted than the current in the presence of a load. At ωm = 1450 rpm and
thus with a pulse number equal to 2, THD decreases from 12.5 % to 8.0 %, while the load
increases from 0 Nm to 10 Nm.

Figure 4.34 shows the stator current with only two switchings per a quarter of the fundamental
period. It is impossible to achieve such a low current distortion at a switching frequency of only
100 Hz without setting the switching instances based on the distortion optimization results.
Stator current trajectories are also given for nominal speed operation point in Figures 4.35 and
4.36.

As the machine is regulated with an open-loop control scheme, it is not expected to have good
dynamics. The use of optimal pulse patterns in a closed-loop control system is difficult. Having
a closed-loop control means that the drive system is operating at quasi steady-state instead of
steady-state. Quasi steady-state operation implies that the reference voltage vector varies, at
least slightly, from each sample time to the other. Transferring between neighboring pulse
patterns takes place as a consequence. Discontinuities of the switching angles and transitions
between neighboring pulse patterns can introduce harmonic excursions.

Too many transitions between optimal pulses cause two problems

• Current spikes and harmonic excursions increase the total harmonic distortion. Hence,
the drive does not operate at optimal current distortion any more.

• In addition to the fact that current overshoots deteriorate the performance, they also lead
to unwanted trips in some cases.

The most promising solution to overcome the problems associated with OPP’s application
to a closed-loop control scheme is stator flux trajectory control, in which optimized pulses are
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shifted in time based on the error between the estimated flux and the flux trajectory of an optimal
pulse train [34]. The details of the pulse shifting scheme are explained in the next chapter.
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Steady-state results at ωm = 600 rpm and p = 10
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Figure 4.25: Stator voltages at no-load opera-
tion
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Figure 4.26: Stator voltages at T = 15 Nm
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Figure 4.27: Stator currents at no-load opera-
tion
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Figure 4.28: Stator currents at T = 15 Nm

−10 −5 0 5 10
−10

−5

0

5

10

iα [A]

i β
[A

]

Figure 4.29: Stator current in αβ at no-load op-
eration
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Figure 4.30: Stator current in αβ at T = 15
Nm
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Steady-state results at ωm = 1450 rpm and p = 2
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Figure 4.31: Stator voltages at no-load opera-
tion
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Figure 4.32: Stator voltages at T = 15 Nm
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Figure 4.33: Stator currents at no-load opera-
tion
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Figure 4.34: Stator currents at T = 15 Nm

−10 −5 0 5 10
−10

−5

0

5

10

iα [A]

i β
[A

]

Figure 4.35: Stator current in αβ at no-load op-
eration
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Figure 4.36: Stator current in αβ at T = 15
Nm
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CHAPTER 5

Predictive-based current distortion optimization

As summarized in Table 2.6, SHE, OPP and hysteresis-based MPC are the only schemes
which are available for very low switching frequencies (below 200 Hz). SHE and OPP share a
similar concept. In both approaches, switching instances of the converter are calculated in order
to either eliminate undesired harmonics or shape the whole spectrum in a certain way. However,
OPP has a superior performance regarding harmonic distortion and overall harmonic losses.

In literature it is reported [2, 100, 101] that OPP and hysteresis-based MPC schemes have
a comparably low current distortion. However, MPC has a variable switching frequency and
is executable in real-time, while OPPs exploit the concept of synchronous modulation and are
based on offline optimization results. Features of both schemes can be achieved via a single
predictive-based approach in which:

• The current distortion is included in the objective function.

• The prediction horizon is proportional to the period of the fundamental current waveform.

• The number of switching transitions in the prediction horizon is fixed.

5.1 Real-time optimization
Two remarks about the calculation time and optimization range of the real-time optimizer

need to be made at the very beginning. Firstly, dealing with real-time optimization, it is impor-
tant to consider the calculation time in each step of the control design from system modeling
to the objective function and the solver selection. Secondly, it should be noted that regardless
of the applied modulation scheme, harmonic distortion is very low at a low modulation index.
This is because for low modulation indexes, a zero vector is turned on for most of the sub-cycle
time and active voltage vectors lead to only a small change in the pulse train, which generate
little distortion. Therefore, current optimization is done only for a modulation index range of
m = 0.5 to m = 1.25.
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The procedure for designing the controller starts in a very similar way to that of any other
predictive controller: A system model needs to be defined for precalculations, control goals are
being translated to an objective function and an optimization method shall be used to minimize
the cost function.

5.1.1 System model
The stator equation is used for stator flux prediction:

dψs

dt
= Rsis + us. (5.1)

Considering the fact that current optimization is done only in a range of medium and high
modulation indexes, the term Rsis in (5.1) can be neglected.

dψs

dt
= us (5.2)

It shall be noted that the predicted stator flux will be used only for current distortion opti-
mization. This simplification is equivalent to the assumption of having a highly inductive load
when calculating OPPs, where the resistive part of the load was neglected as well.

As explained in section 4.4.2, quarter-wave and half-wave symmetries in a single-phase sys-
tem turn to a 30◦ symmetry in a balanced three-phase system. Thus setting the prediction
horizon tph equal to 30◦ or 1/12 of the fundamental period is equivalent to setting it equal to
the whole period. Therefore, tph = T1/12 is considered to be the prediction horizon. Besides, it
is assumed that a finite number of switchings p are allowed to take place within the prediction
horizon tph. This is shown in Figure 5.1 where the prediction horizon is divided into finite time
intervals. No switching is allowed to take place during an interval. Conversely, when mov-
ing from one interval to an adjacent one, one switching will take place. Hence, the number of
intervals defines the switching frequency.

0 ω1t1 ω1t2

u1 u2

ω1tp ω1tph =
π

6

up

ωt

Figure 5.1: Prediction horizon

The stator flux trajectory can be predicted as follows:

ψs,p(t) =


ψs (0) + t · u1 for t ≤ t1,
ψs (0) + t1 · u1 + (t− t1) · u2 for t1 ≤ t ≤ t2,
...
ψs (0) + t1 · u1 + · · ·+ (t− tp) · up for tp ≤ t ≤ tph,

(5.3)

where p is the pulse number, ψs (0) is the stator flux estimation at the beginning of each
30◦ sector, u1 to up are the optimal voltage vector sequences at each operating point, ψs,p is
the predicted value of the stator flux ψs and t1 to tp are the commutation times of the voltage
vectors.
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5.1.2 Objective function
The reference flux trajectory shall have a sinusoidal waveform with a constant amplitude.

Therefore, a sinusoidal extrapolation of the flux reference at the beginning of each 30◦ section
is assumed to be the flux reference in that section.

ψ∗s(t) = |ψ∗s |.
[
cos(ωst)
sin(ωst)

]
(5.4)

The objective function for minimizing the stator flux distortion, and hence the current distor-
tion, is equivalent to the integral of the error between the predicted trajectories and the reference
trajectory of the stator flux. So the objective function is introduced as follows:

Γ =

∫ tph

0

(ψs,p(t)−ψ∗s(t)) dt. (5.5)

The objective function can be divided into the sum of the errors of each switching interval as:

Γ =

∫ tph

0

(ψs,p(t)−ψ∗s(t)) dt

=

∫ t1

0

(ψs,p(t)−ψ∗s(t)) dt

+

∫ t2

t1

(ψs,p(t)−ψ∗s(t)) dt

+ · · ·

+

∫ tph

tp

(ψs,p(t)−ψ∗s(t)) dt.

By defining an error matrixR as

R =


∫ t1

0
(ψs,p(t)−ψ∗s(t)) dt∫ t2

t1
(ψs,p(t)−ψ∗s(t)) dt

...∫ tph
tp

(ψs,p(t)−ψ∗s(t)) dt

 , (5.6)

the objective function can be defined as the second norm of the error matrixR

J =
∥∥R∥∥2

2
. (5.7)

The objective function (5.7) is a function of voltage vector sequences u1 to up and switching
instances t1 to tp. The following two sections provide a procedure for selecting each of these
sets in order to minimize the objective function.
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Remark: MatrixR can be symbolically calculated using the Symbolic Math Toolbox
of MATLAB. Each line of the matrix is a very long equation (with over a thousand characters).
The length of the equations increases with the pulse number. The computational power of a
ds1006 board from dSpace, which has a quad-core 2.8 GHz processor, made it possible to
realize the optimization. However, matrix R1 is a good approximation of the error matrix R
and can be used to reduce the requirements of the calculation resources:

R1 =


ψs,p(t1)−ψ∗s(t1)
ψs,p(t2)−ψ∗s(t2)

...
ψs,p(tph)−ψ∗s(tph)

 . (5.8)

Instead of taking the integral of the flux error into account, matrix R1 uses the error value at
the end of each switching interval.

5.1.3 Optimal voltage vector sequences
To achieve a synchronous modulation, the switching frequency needs to be set equal to a

multiple of the fundamental frequency, fsw = p cot f1. In addition, setting the stator flux of
an induction motor to a constant value keeps the proportion of the modulation index to the
fundamental frequency constant.

m

f1

= 4π
|ψs|
udc

(5.9)

Therefore, for an induction motor drive with constant flux and synchronous modulation, the
switching frequency can be defined as:

fsw = k · p ·m, (5.10)

in which

k =
udc

4π|ψs|
(5.11)

is a constant value, p the pulse number and m the modulation index.
Equation (5.10) defines fsw against the modulation index lines for each pulse number p;

however, the machine operates only in a segment of the line where:

p =

⌊
fsw,max

k ·m

⌋
. (5.12)

bc is the symbol for a floor function and fsw,max is the maximum switching frequency.
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Figure 5.2 shows the relationship between fsw,max, fsw, the pulse number p and the modula-
tion index m. As can be seen, pulse number being a fixed number in a synchronous modulation
results in small changes in the switching frequency.

0.2 0.4 0.6 0.8 1 1.2

fsw,max
10 8 6 5 4 3 2

1

0.2 0.4 0.6 0.8 1 1.2

9 7

m

f s
w

Figure 5.2: Switching frequency versus modulation index

By increasing the speed from 0 to nominal speed, the modulation index and the fundamental
frequency increase as well. In low speed region, where the modulation index is low, any classi-
cal approach can be used to apply the pulses. The optimization is done for mechanical speeds
ωm > 500 rpm. In this region, the pulse number is defined by equation (5.12).

Based on equation (5.9), the relationship between the fundamental frequency and the modu-
lation index is shown in Figure 5.3. The steady-state operating point is always located on this
line. Considering the fact that the pulse number p is:

p =

⌊
fsw

f1

⌋
, (5.13)

the fundamental frequency axis can be divided into spans, each of which corresponds to a
pulse number.

It was shown in the previous chapter that the modulation index can be divided into spans, in
which a unique voltage vector sequence exists that results in less current distortion. Optimal
voltage vector sequences for each pulse number and modulation index can be found in Appendix
B.

For each pulse number span on the fundamental frequency axis, the modulation index axis
can also be divided into spans corresponding to an optimal voltage vector sequence from the
tables of Appendix B. As a result, optimal voltage vector sequence regions can be mapped onto
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Figure 5.3: Fundamental frequency versus modulation index with optimal voltage vector sequence re-
gions

the fundamental frequency versus the modulation index graph as well. An illustrative mapping
is shown in Figure 5.3.

To define the voltage vector sequence that shall be used for the optimization, the following
two steps shall be made:

1. The steady state operating point of the machine shall be defined on the line described in
(5.9).

2. The region in which the steady state operating point is located defines the voltage vector
sequence.

5.1.4 Online solver
The objective function (5.7) is a function of voltage vector sequences,u1 toup, and switching

instances, t1 to tp. Now that the voltage vector sequences are defined, switching times can be
set to minimize the objective function.

The objective function (5.7) is a nonlinear function, hence one of the nonlinear numerical
optimization techniques of section (3.1.4) can be used to find its optimum value. The main
criterion for choosing a method is calculation time. In the following, it is explained why the
convergence speed is not important in our case.

As the objective function is already a sum of squared function values, the Gauss-Newton
method seems to be the best choice. In general, we are looking for a T ∈ Rn that minimizes
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J(T ) = ‖R(T )‖2
2 =

m∑
i=1

r2
i , (5.14)

whereR(T ) : Rn → Rm.
Given a starting guess T (n) = [t1, t2, . . . , tm]>,R(T ) can be linearized near this initial value:

R(T ) ≈ R(T (n)) +∇R(T (n))(T − T (n)), (5.15)

where∇ is the Jacobian. The elements (ij) of the Jacobian matrix are defined by:

(∇R)ij =
∂Ri

∂tj
. (5.16)

Thus:

‖R(T )‖2
2 = ‖A(n)T −B(n)‖2

2, (5.17)

where:

A(n) = ∇R(T (n)),

B(n) = ∇R(T (n))T (n) −R(T (n)).

and finally, the next iteration for this linearized least square problem is:

T (n+1) =
(
A(n)>A(n)

)−1
A(n)>B(n). (5.18)

The online optimization is executed once at the beginning of each 30◦ sector with an initial
guess, optimal voltage vector sequences, references, estimated stator flux and predicted values
for that sector.

Remark: It is noteworthy that the optimization procedure starts with an initial guess. As the
operating point does not change at steady-state operation, there are tiny variations in switching
times from sector to sector. Hence, one can use the result of the optimization of a sector as
an initial guess for the next sector. That is why convergence time is not very important for
choosing a numerical optimization technique. Even though the optimization does not converge
to the optimum point in the first sector, it will ultimately converge after solving the optimization
for a few successive sectors.

5.1.5 Results of online optimization

It is necessary to analyze the performance of the online optimizer before taking further steps
to design the whole control algorithm. Main benchmarks are calculation time and a comparison
between the switching angles obtained from online and offline optimizations.
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5.1.5.1 Calculation time

The online optimization algorithm is executed on the dSpace ds1006 processor board in real-
time. The board is built around the AMD Opteron™, x86-compatible 64-bit server multi-core
processor. It provides 512 kB of L2 cache per core and 6 MB of shared L3 cache. The ds1006
also has 1 GB of local memory for executing real-time models, 128 MB of global memory per
core for exchanging data with the host PC, and 2 MB of on-board boot flash memory. One of
the cores is assigned exclusively to the online optimization task.

Calculation time evidently increases with the number of iterations and the dimension of ma-
trices. Matrix dimensions grow with the pulse number p. The calculation time is measured for
the pulse number p = 10, which is the highest pulse number evaluated in this work, and a single
iteration. Figure 5.4 shows the calculation time of each processor core in the dSpace Profiler
window. It can be seen that the first core sends an interrupt via the IPI Block. This happens at
the beginning of each 30◦ sector. Then the third core performs the online optimization, which
shall be applied to the next 30◦ sector. The execution time is equal to 480 µs, which is still less
than the length of a 30◦ sector at 500 rpm (5 ms).

Figure 5.4: Online optimization calculation time for p = 10

5.1.5.2 Online results vs. offline results

Online optimization is used to calculate optimum switching times and current distortion at
different operating points. The results are then compared with the results of the offline opti-
mization from the previous chapter. Switching angles α and the distortion of pulse patterns
d are given in Tables (5.1) to (5.4) for p = 2, p = 6 and p = 10. Comparing the switching
angles and pulse train distortion at different cases shows that the results of online and offline
optimization are equivalent.
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Table 5.1: Online and offline optimized switch-
ing angles for p = 2

α [rad] online offline
1 0.063 0.063
2 0.356 0.353
d 0.1192 0.1185

m=0.95

Table 5.2: Online and offline calculated opti-
mal firing angles for p = 2

α [rad] online offline
1 0.133 0.135
2 0.303 0.304
d 0.1546 0.1545

m=0.71

Table 5.3: Online and offline optimized switch-
ing angles for p = 6

α [rad] online offline
1 0.059 0.059
2 0.118 0.123
3 0.157 0.158
4 0.199 0.208
5 0.280 0.282
6 0.374 0.380
d 0.0759 0.0754

m=1.05

Table 5.4: Online and offline calculated opti-
mal firing angles for p = 10

α [rad] online offline
1 0.088 0.082
2 0.130 0.119
3 0.217 0.209
4 0.247 0.234
5 0.280 0.273
6 0.314 0.313
7 0.350 0.357
8 0.377 0.382
9 0.417 0.429

10 0.481 0.496
d 0.0565 0.0524

m=0.52

5.2 Transient response

The online optimization is executed at the beginning of each 30◦ sector. The optimal switch-
ing angles can then be applied as shown in Figure 5.5. In this way, although a very long
prediction horizon is achieved, no receding horizon principle is applied. In order to apply the
receding horizon policy, as depicted in Figure 5.6, one has to either increase the planning time
or divide the action times into smaller intervals and repeat the optimization after each of them.

Planning is done for 30◦ of the fundamental period, which is equivalent to the whole period
due to wave-form symmetries. As a result, increasing the prediction horizon to 60◦ or 90◦

is the same as solving a periodic problem in 2 or 3 cycles, and hence does not lead to any
improvement. In addition, applying a part of the plan and re-planning from any point other
than the corners of a 30◦ sector contradicts the synchronism of the switching and fundamental
frequency. Note that a fixed switching frequency and a synchronous modulation-like behavior
is achieved by setting the prediction horizon equal to 30◦ sectors. Considering these two points,
the receding horizon policy cannot be applied to this optimization problem.
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Figure 5.5: Long prediction horizon MPC without receiding horizon principle
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Figure 5.6: Principle of receding horizon

As explained in section (3.1.2), the receding horizon acts as feedback for the open-loop pre-
calculations. Now that the receding horizon idea cannot be applied, an alternative solution has
to be developed. Having no feedback within the 30◦ sectors leads to 2 problems. Firstly, the
controller is blind to transients that take place during action intervals. This slows down the con-
troller dynamics. Secondly, in quasi steady-state operation, the reference changes slightly all
the time. Neglecting the reference changes for a long time leads to control variables diverging
from reference values.

Figure 5.7 shows the measured steady-state flux error during online optimization. It can be
seen that the error increases while the pulses are being applied. The error decreases immediately
after re-optimizing the angles based on the actual measurements. Divergence of stator flux
from its reference value is a drawback, which is a result of open-loop precalculations. As can
be seen in Figure 5.7, under steady-state operating conditions, the stator flux error is small,
typically around two percent of the flux magnitude (the stator flux magnitude is 0.8 Wb in this
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Figure 5.7: Stator flux error within each 30◦ interval

case). Therefore, only small corrections of the switching instants are required to remove the
flux error over the horizon. As a result, optimized switching instances can be slightly shifted in
time in order to compensate the steady-state error by moving around the precalculated optimal
operating point.

5.2.1 Pulse modification
The objective of pulse modification is to adjust the switching angles in order to regulate

the stator flux vector along its given reference trajectory. For example in phase a, shifting a
switching instance by the time ∆ta changes the stator flux by the amount of

∆ψs,a (∆ta) = −udc

2
s(i)∆ta, (5.19)

where s(i) being 1 denotes a switching transition to an upper level, s(i) being −1 denotes
a switching transition to a lower level and ∆ta = ta − ta,opt. ta is the modified and ta,opt the
precalculated switching instances.

5.2.1.1 Flux trajectory error

Pulse modification is performed based on stator flux trajectory tracking. The stator flux error
is introduced as

ψs,error = ψ∗s −ψs, (5.20)

where ψ∗s is the stator flux reference and ψs is the estimated stator flux. The stator flux
reference is generated by integrating the precalculated optimal pulse pattern

ψ∗s =

∫ θ

0

uoptdωt+ψ∗s(0), (5.21)
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where uopt is the optimal voltage. According to equation (2.4), the reference displacement
angle can be calculated based on the reference torque and stator flux as

δ∗ = sin−1

(
kδ

T∗

|ψr||ψs|

)
, (5.22)

where kδ =
2

3

σLsLr

PLm

. Thus the stator flux reference angle ]ψ∗s is

]ψ∗s = ]ψr + δ∗. (5.23)

The integral in (5.21) is calculated over the interval [0; θ]. θ is set to the angle of the reference
flux ]ψ∗s . The resulting instantaneous reference flux vector slightly differs in magnitude and an-
gle from its respective value on the unitary circle. It is a reference flux trajectory obtained from
the precalculated voltage waveforms and it has the exact value of volt-seconds corresponding
to the reference torque. If the error between the reference flux trajectory, ψ∗s and the estimated
flux, ψs is zero, it means that the machine is tracking the optimal flux trajectory and generating
the reference torque as well. Otherwise, there is an error that needs to be compensated. This
error might be a transient error, which initiates from a change in the voltage vector sequences,
or a quasi steady-state error as shown in Figure 5.7.

5.2.1.2 Stator flux error compensation

A deadbeat controller is used to minimize the error ψs,error in real-time. It is based on the
trajectory tracking approach used in Model Predictive Pulse Pattern Control (MP3C) [36, 37].
For this purpose, an objective function Jss is introduced as

Jss = (ψs,error −ψs,corr(∆t))
2 , (5.24)

where ψs,error is the stator flux error vector, ψs,corr the necessary correction for the stator
flux and ∆t defines the vector of switching instant corrections. The stator flux correction is
calculated based on equation (5.19)

ψs,corr(∆t) = −udc

2
P

∑i sa(i)∆tai∑
i sb(i)∆tbi∑
i sc(i)∆tci

 , (5.25)

where P is the Clarke transformation matrix (2.8). Matrix ψs,corr provides the added volt-
seconds to the stator flux trajectory by changing the switching instances. As a result, the re-
maining task is to find a correction time vector ∆t that minimizes the objective function (5.24).
To do so, the following steps shall be made [37]

1. Determine the two phases with the next switching transitions. For instance, if phase a and
b have the next switching transitions, they would be the active phases.
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2. Translate the flux error from αβ to abc coordinates by mapping it into the two active
phases. For the example given, the mapping is done as ψs,abc,error = P−1

ab ψs,error, where

P−1
ab =


3

2

√
3

2

0
√

3

0 0

 . (5.26)

3. Compute the required modification of the switching instants in abc coordinates

∆treq =
2

udc

ψs,abc,error. (5.27)

4. Go through all switching transitions of the first active phase. For the ith switching tran-
sition in phase x, x ∈ {a, b, c}, with the precalculated switching instance txi,opt and the
switching transition sx(i), perform the following operations

• Compute the desired modification in a deadbeat way: ∆txi = ∆treq/(−sx(i)).

• Modify the switching instant: txi = txi,opt + ∆txi.

• Impose the respective constraint on the switching instant. Consider that each switch-
ing instant is smaller than the next and bigger than the previous one.

• Update the phase x component of the required switching instant modification by
replacing ∆tx,req with ∆tx,req = (txi − txi,opt)(−sx(i)).

5. Repeat the above procedure for the second active phase.

The block diagram of the pulse modification is illustrated in Figure 5.8. It is worth mention-
ing that the pulse modification algorithm described above is, apart from a small modification,
the same as the flux trajectory tracking algorithm presented in [36, 37]. The only difference
lies in the calculation of equation (5.21). In [36, 37], flux trajectory tracking control is applied
in order to operate offline calculated OPPs in a closed-loop control. As the switching angles
were already available, the reference flux trajectory was calculated offline by integrating the
respective OPPs over 90◦ of the fundamental voltage waveform. The result of this integration
procedure was a set of corner points corresponding to a switching transition in the OPP. These
corner points were stored in a look-up table along with the OPPs. Therefore, two look-up ta-
bles - one for switching instances and one for optimal flux trajectories - were needed for the
closed-loop operation of OPPs. In contrary, online optimization does not have the informa-
tion regarding switching instances in advance. As a result, the integration in (5.21) shall be
calculated online as well.

The integration of the voltage waveform turns into the multiplication of voltage levels with
their precalculated durations, which can be calculated very fast in real-time.
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Figure 5.8: Block diagram of the pulse shifting algorithm

5.3 Measurement Results

Figure 5.9 shows the block diagram of online current distortion optimization scheme. At
first, the stator and rotor fluxes are estimated. The rotor flux is used to calculated the reference
synchronous speed ω∗s , and the stator flux is used to generate the trigger signals whenever the
voltage vector crosses the corner of a 30◦ sector. Online optimization is executed once after
each trigger signal and the results are sent to the pulse modification block. Finally, the pulses
are adjusted in real-time based on the stator flux trajectory control scheme, and the gate signals
are applied to the converter.

The low-voltage AC-drive of the experimental setup is tested in various operating points in
order to evaluate the closed-loop performance of the online optimization. The maximum device
switching frequency is considered to be 200 Hz. The pulse number p at each operating point is
calculated based on the equation (5.11). Therefore, pulse number p = 4 is applied atwm = 1450
rpm, pulse number p = 8 is applied at wm = 750 rpm and pulse number p = 10 is applied at
wm = 600 rpm.

A torque step is applied to the machine at wm = 1450 rpm and at wm = 600 rpm and the
stator current trajectories during the transients are shown in Figures 5.10 and 5.11 respectively.
The stator current trajectories in αβ coordinates show that the controller exhibits a deadbeat
behavior during the transients. Besides, torque responses are shown in Figures 5.12 and 5.13.
The transient operation demonstrates that neither the operation at a very low device switching
frequency of 200 Hz nor current distortion optimization has led to sacrifices on system dynam-
ics.
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Figure 5.9: Block diagram of online current distortion optimization scheme

−10 −5 0 5 10
−10

−5

0

5

10

iα [A]

i β
[A

]
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Figure 5.11: Stator current trajectory during a
torque step change at ωm = 600 rpm
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Figure 5.13: Electromagnetic torque response
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Steady-state tests are performed at the three different speeds ωm = 1450 rpm, ωm = 750
rpm and ωm = 600 rpm. The phase voltages are shown in Figures 5.15, 5.17 and 5.19. It
can be seen that the voltage waveforms display half-wave and quarter-wave symmetries. This
illustrates that the online optimized angles, which are calculated for each 30◦ sector, do not
change in steady-state operation mode. A main concern about online calculation is to ensure
that there is no oscillation on switching angles. This has been testified by operating the machine
at various transient and steady-state conditions. The investigation does not show any problem
in this regard. However, it must be noted that it is not mathematically proven that the distortion
function at each voltage vector sequence is convex and stability is demonstrated via several
experiments in the same way as for most available MPC schemes.

Figures 5.14, 5.16 and 5.18 display the steady-state stator current waveforms. They also show
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Figure 5.14: Steady-state stator currents at
ωm = 1450 rpm and p = 4
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Figure 5.15: Steady-state phase voltages at
ωm = 1450 rpm and p = 4
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Figure 5.16: Steady-state stator currents at
ωm = 750 rpm and p = 8
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Figure 5.17: Steady-state phase voltages at
ωm = 750 rpm and p = 8
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Figure 5.18: Steady-state stator currents at
ωm = 600 rpm and p = 10
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Figure 5.19: Steady-state phase voltages at
ωm = 600 rpm and p = 10

a very low distorted current despite the low switching frequency. Comparing the distortion of
measured currents can be misleading. This originates from the fact that the current distortion
does not only depend on the switching angles, but on the whole voltage waveform. The voltage
waveform of a multilevel converter is constructed from the DC-link voltage and flying capaci-
tors voltages. Considering the ripple on the flying capacitor and the DC-link voltage, the voltage
vectors in the αβ hexagon are not located exactly on the fixed points, but oscillate in a bound-
ary. As a result, in some cases the actual applied voltage is located in a position that leads to
a distortion that is slightly smaller than expected, and in most cases to a slightly bigger one.
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Figure 5.20: Harmonic spectrum of ua at p = 4



96 CHAPTER 5. PREDICTIVE-BASED CURRENT DISTORTION OPTIMIZATION

Taking this into the account, it is more meaningful to compare the results where this uncertainty
does not exists as in Tables (5.1) to (5.4).

Figure 5.20 illustrates the harmonic spectrum of the phase voltage with p = 4 - shown in Fig-
ure 5.15. As can be seen the 3rd and 9th harmonics have a relatively high value. Besides, some
of the harmonics of high orders have a slightly higher values. These observations fit well with
the fact that a good modulation scheme puts as much energy as possible on triplen harmonics
and pushes the rest of the signal energy to higher harmonics. It is noteworthy that such a behav-
ior is achieved in OPPs by omitting the triplen harmonics fromH and weighting the harmonics
in the distortion function. However, the harmonic spectrum is shaped in a predictive-based con-
troller only by considering the stator flux trajectory error in the objective function with a long
prediction horizon.

Remark: A flying capacitor converter gives a full degree of freedom to balance the flying
capacitor voltages. As explained in Chapter 2, voltage balancing can be easily achieved by
using per-phase redundancies. As a result, it is not necessary to include the capacitor voltage
balancing in the problem formulation. The applied voltage balancing algorithm is explained
in Appendix C. If an NPC or an ANPC converter is used, joint-phase redundancies have to be
considered for voltage balancing. In this case, voltage balancing affects the optimization results
and needs to be considered as in [102].
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CHAPTER 6

Conclusion

This work shows that with a good problem formulation and by applying several ideas, some
of which already known in optimal control theory contexts, one can immensely increase the
speed of solving optimization problems for electrical drives.

The current distortion optimization problem was chosen to be studied for an induction motor
drive. A 5-level inverter was chosen as the power converter due to the fact that distortion
optimization gets more complicated and time consuming for multilevel inverters. Based on an
extensive literature study, synchronous optimal modulation was chosen as a reference due to its
superior performance at low switching frequencies. Then a step-by-step approach was followed
to study the current distortion, define the criteria for its optimality, increase the speed of offline
optimization and finally apply the ideas from predictive control theory in order to achieve an
online optimization.

In the first place, the theoretical analysis of current distortion optimization in the αβ coor-
dinate system revealed the relationship between voltage vector sequences of a converter and
its current distortion. Based on experimental results, it has been reported that by limiting the
switchings to transitions between adjacent voltage vectors, the current distortion decreases [98].
This analysis provides an analytical proof for this statement. In addition, this piece of informa-
tion made it possible to break down the complicated global current optimization problem to
several simpler ones. As a result, a significant improvement was achieved in offline calculation
speed.

In the next step, the current distortion was formulated as an objective function of a predictive
controller. The prediction horizon was set to be equal to 30◦ of the fundamental waveform
period. It was known from previous studies that certain voltage vector sequences cause less
current distortion. So the objective function optimization became a continuous optimization of
switching intervals rather than a successive search for voltage vectors that correspond to the
minimum value of the objective function. The continuous optimization problem was finally
solved by a modified Gauss-Newton algorithm.

Finally, based on measurements at different operating points it was shown that the results of
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online and offline optimizations are comparable.
The results of this work and some other recent studies on fast optimization techniques [103]

alongside the fact that calculation power is rapidly increasing imply that many optimal control
strategies that were traditionally used for systems with slow dynamics can now, or very soon,
be used for electrical drives in real-time.

After all, it should be noted that the word optimum must be used with extreme caution since
it always implies a set of assumptions that are sometimes neglected. For example, in current
distortion optimization, all switching instances are calculated assuming that an ideal converter
with ideal switches and without any losses, dead-time effect, capacitor voltage ripple etc. is
available. Besides, even harmonics are considered to be absent due to symmetries - which is
not the case in practice. The question how the true optimum can be reached is still unanswered,
which shows that much work, both practical and theoretical, remains to be done in this area.
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APPENDIX A

List of symbols and abbreviations

A.1 List of symbols
Used symbols:
In the following the most important symbols are listed which are used within this work.

General symbols:
x State vector
u Input vector
y Output vector
t Time (continuous)
k Time (discrete, current sample)
d
dt Time derivation
Ts Sampling time
∆ Difference
∇ Jacobian

General electrical variables:
a, b, c Phases
α, β Equivalent two-phase coordinates
j

√
−1

u Voltage
i Current
R Resistor
C Capacitor
L Inductor
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Induction machine parameters:
us, ur Stator and rotor voltage vectors
is, ir Stator and rotor current vectors

ψs, ψr Stator and rotor flux vectors

ωm Mechanical machine speed
ωs Synchronous speed
T Mechanical torque
P Number of pole pairs
Rs, Rr Stator and rotor resistance
Ls, Lr Stator and rotor inductance
Lm Mutual inductance
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A.2 List of abbreviations

AC Alternating Current
A/D Analog to Digital
AFE Active Front End
ANPC Active Neutral-Point Clamped
CHB Connected H-Bridge
DC Direct Current
DCC Diode-Clamped Converter
DSC Direct Self Control
DTC Direct Torque Control
FC Flying Capacitor
FCS-MPC Finite Control Set Model Predictive Control
FOC Field Oriented Control
HVDC High Voltage Direct Current
IGBT Insulated Gate Bipolar Transistor
IGCT Integrated Gate-Commutated Thyristor
IM Induction Machine, Induction Motor
LP Linear Program
LTI Linear Time-Invariant
LQR Linear Quadratic Regulator
MIMO Multi Input Multi Output
MLC Multilevel Converter
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
MPC Model Predictive Control
MV Medium Voltage
NPC Neutral-Point Clamped
OPP Optimal Pulse Pattern
OSVM Optimal Space Vector Modulation
PWM Pulse Width Modulation
QP Quadratic Program
REC Receding Horizon Control
RMS Root Mean Square
RPM Revolutions Per Minute
SCHB Series Connected H-Bridge
SHE Selective Harmonic Elimination
SOM Synchronous Optimal Modulation
SPWM Sinusoidal Pulse Width Modulation
SVM Space Vector Modulation
THD Total Harmonic Distortion
VSI Voltage Source Inverter
WTHD Weighted Total Harmonic Distortion



102 APPENDIX A. LIST OF SYMBOLS AND ABBREVIATIONS



103

APPENDIX B

Tables of Optimal Pulse Patterns
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APPENDIX C

Capacitor voltage balancing

The 5L-FC converter has nine flying capacitors. The voltage across each flying capacitor has
to be controlled. A full degree of per-phase redundancy permits the voltage balancing algorithm
to be considered independently for each phase and in a separate layer from the main controller.

Flying capacitor voltages of the phase x ∈ {a, b, c} can be predicted based on the equations
(2.11).

uCx1(k + 1) = uCx1(k) + Ts · (sx3 − sx4)
ix
CFC

, (C.1a)

uCx2(k + 1) = uCx2(k) + Ts · (sx2 − sx3)
ix
CFC

, (C.1b)

uCx3(k + 1) = uCx3(k) + Ts · (sx1 − sx2)
ix
CFC

. (C.1c)

The phase voltage level is defined by the main controller. Afterwards, capacitor voltages are
precalculated for each redundant states of the predefined voltage level based on Table (2.5). For
instance, the four states {0001}, {0010}, {0100} and {1000} that result in the voltage level -1
in the phase x are the redundant states of this voltage level.

The precalculated voltages of each phase are used to form an objective function:

JFC,x = (uCx1(k + 1)− u∗Cx1)2 + (uCx2(k + 1)− u∗Cx2)2 + (uCx3(k + 1)− u∗Cx3)2. (C.2)

Finally the redundant state which minimizes the objective function is chosen to be applied
for the phase x.
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