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Abstract

S ynthetic aperture radar (SAR) projects a 3-D scene onto two native coordinates i.e.,
“range” and “azimuth”. In order to fully localize a point in 3-D, advanced interfero-

metric SAR (InSAR) techniques are required that process stack(s) of complex-valued SAR
images to retrieve information in the third dimension “elevation”. Among advanced InSAR
methods, SAR tomography (TomoSAR) is the ultimate way of 3-D SAR imaging. By exploit-
ing stack(s) of SAR images taken from slightly different positions, it builds up a synthetic
aperture in elevation that enables retrieval of 3-D position of dominant scatterers within
each azimuth-range SAR pixel. Moreover, considering the fact that acquisitions are taken
at different times, the synthetic aperture principle can also be extended to the temporal do-
main which enables 4-D (space-time) SAR imaging. The technique is thus capable of retriev-
ing elevation and deformation information (linear, seasonal, etc.) even of multiple scatterers
inside a single SAR pixel. Along with very high resolution (VHR) data provided by modern
SAR satellites (including TerraSAR-X, TanDEM-X and CosmoSkyMED), TomoSAR enables
the generation of 4-D (space-time) point clouds of illuminated objects with a point (scat-
terer) density comparable to LiDAR. E.g., experiments using TerraSAR-X high-resolution
spotlight data stacks show that the scatterer density retrieved using TomoSAR is on the or-
der of 1 million points/km2. Object reconstruction from these TomoSAR point clouds can
greatly support the reconstruction of dynamic city models that could potentially be used to
monitor and visualize the dynamics (i.e., long-term deformation in the mm- and cm-range,
e.g. subsidence/uplift caused by earthquakes, bad construction, seasonal changes etc.) of ur-
ban infrastructures in very high level of details. Motivated by these opportunities, the goal
of this thesis is to explore for the first time the potential of object reconstruction from this
class of point cloud data. To this end, the work presented in this thesis contributes to the
field of SAR based object reconstruction by addressing the following four new aspects:

Reconstruction of building façades: Complex multiple scattering and different microwave scat-
tering properties of the objects in the scene which possess different geometrical and material
features render TomoSAR point clouds to exhibit some special characteristics such as low
positioning accuracy, high number of outliers, gaps in the data and rich façade informa-
tion due to the side looking geometry. Taking into consideration these associated properties,
in particular the rich façade information, a robust procedure has been developed and pre-
sented in this thesis that exploits advanced robust estimation methods to reconstruct 2-D/3-
D building shape models (or footprints with extruded heights) via façade point analysis. The
basic idea is to extract façade points via point density analysis, segment them into clusters
of points belonging to individual façades, and finally reconstruct 3-D building models via
independent modeling of each individual façade to reconstruct the overall 2-D building
footprints, followed by its representation in 3-D using height information. The developed
approach is illustrated and validated by examples using TomoSAR point clouds generated
from a stack of TerraSAR-X high-resolution spotlight images from ascending orbit covering
an approximately 2 km2 high-rise area in the city of Las Vegas.

Reconstruction of building footprints from roof points: The aforementioned façade-only based
approach is a good option to detect the shapes of high-rise buildings because many points on
their façades are available. However there are cases occurring especially for lower buildings
where no or only very few scatterers are available in the data. Also, since the satellite orbits
are bound to pass close to the poles of the Earth, such an approach may fail to reconstruct
buildings whose façades face North or South, due to the missing measurements. Moreover,
due to the side looking geometry, multiple views are required to reconstruct the complete
building shapes. To cope with these issues, a novel framework is developed that encom-
passes the façade reconstruction approach and additionally incorporates the available roof
points to determine the complete shape/footprint of buildings. The developed framework
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is modular and completely data driven with no imposition of any restrictions on building
shape (i.e., any arbitrarily shaped footprint could be reconstructed). This as a consequent
allows for a robust reconstruction of both tall and low buildings within the area of interest,
and is therefore well suited for urban monitoring of larger areas from space. The developed
approach is illustrated and validated over different large area scenes containing taller and
moderate sized buildings in the cities of Las Vegas, USA and Berlin, Germany.

Innovative applications: To explore the possible applications of the reconstructed 2-D/3-D
building shape models, three innovative applications have been demonstrated in this thesis:
1) A first 4-D building model is presented; 2) Model based elevation refinement is carried
out to refine the elevation position of each raw TomoSAR point by using its more accurate
azimuth and range coordinates together with the corresponding reconstructed model; and
3) A concept that utilizes the reconstructed model to improve the TomoSAR inversion in
a feedback iterative manner (i.e., to use reconstructed footprints as iterative priors) is pre-
sented.

Reconstruction of individual trees: Besides man-made structures in particular buildings, trees
(or vegetation) are also of key interest when it comes to city modeling. Spaceborne repeat-
pass TomoSAR data however lacks the ability to reconstruct temporarily incoherent ob-
jects (i.e., no points are available over vegetation or trees). In this regard, a model based
individual tree reconstruction methodology has been developed and validated using a 3-D
TomoSAR point cloud generated from multi-baseline millimeterwave InSAR data acquired
from multi-aspects with an airborne single-pass MEMPHIS SAR system. This leads to the
first reconstruction of individual trees using millimeterwave SAR image stacks.

Since these point clouds are very recent and have not been exploited yet, I hope that the
presented methods may not only take SAR based object reconstruction a step further but
also substantially contribute to the vision of developing dynamic city models. Such models
may help in monitoring and visualization of the dynamics of urban objects in very high level
of details.
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Zusammenfassung

S ynthetisches Apertur Radar (SAR) projiziert eine 3-D-Szene auf die zwei nativen
Radarkoordinaten “Range” und “Azimuth”. Um einen Punkt in 3-D zu bestimmen sind

fortgeschrittene interferometrische SAR (InSAR) Techniken vonnöten, die Stapel von kom-
plexwertigen SAR-Bildern verarbeiten um Information über die dritte Dimension “Eleva-
tion” zu gewinnen. Unter den fortgeschrittenen InSAR-Methoden ist SAR-Tomographie (To-
moSAR) der aktuelle Stand der Technik für 3-D SAR-Bildgebung. Stapel von SAR-Bildern,
die von geringfügig unterschiedlichen Positionen aufgenommen wurden, können dazu be-
nutzt werden eine synthetische Apertur in Elevationsrichtung zu bilden, die es ermöglicht
die 3-D-Position von dominierenden Streuern in jedem Azimuth-Range-Pixel zu bestim-
men. Des Weiteren, unter der Berücksichtigung der Tatsache, dass die Aufnahmen zu un-
terschiedlichen Zeitpunkten gemacht wurden, kann das synthetische Aperturprinzip auch
um die zeitliche Domäne erweitert werden und ermöglicht dadurch 4-D (Raum-Zeit) SAR-
Bildgebung. Die Technik ist dadurch in der Lage die Elevation- und Deformationsinfor-
mation (linear, saisonal, etc.) von sogar mehreren Streuern in einem einzigen SAR-Pixel zu
bestimmen. Zusammen mit Daten mit sehr hoher Auflösung (VHR für very high resolu-
tion), welche von modernen SAR-Satelliten (unter anderem TerraSAR-X, TanDEM-X und
CosmoSkyMED) geliefert werden, ermöglicht TomoSAR die Erstellung von 4-D (Raum-
Zeit) Punktwolken der ausgeleuchteten Objekte mit einer Punkt- bzw. Streuerdichte, die
mit der von LiDAR vergleichbar ist. Zum Beispiel zeigen Experimente mit hochaufgelösten
TerraSAR-X spotlight Datenstapeln, dass die mittels TomoSAR erzeugt Streuerdichte in
der Größenordnung von 1 Millionen Punkte/km2 liegt. Die Objektrekonstruktion von
diesen TomoSAR-Punktwolken kann die Rekonstruktion von dynamischen Stadtmodellen
beträchtlich unterstützen, welche dann zur Überwachung und Visualisierung dynamischer
Prozesse (z.B. langfristige Deformation in der Größenordnung von mm und cm, wie etwa die
durch Erdbeben, mangelhafte Baustellen, Jahreszeiten, etc. verursachten Absenk- oder An-
hebungen.) urbaner Infrastruktur mit einem hohen Maßan Details genutzt werden könnten.
Motiviert durch diese Möglichkeiten ist das Ziel dieser Dissertation zum ersten Mal das
Potential zu untersuchen, das die Objektrekonstruktion für diese Klasse von Punktwolk-
endaten bietet. Zu diesem Zweck trägt die Arbeit, die in dieser Dissertation präsentiert
wurde, durch die folgenden vier neuen Aspekte zum Forschungsgebiet der SAR-basierten
Objektrekonstruktion bei:

Rekonstruktion von Gebäudefassaden: Komplexwertiges, multiples Streuen und unter-
schiedliche Mikrowellenstreueigenschaften von Objekten in einer Szene, welche unter-
schiedliche geometrische und Materialmerkmale haben, führen dazu, dass TomoSAR-
Punktwolken spezielle Charakteristiken aufweisen, wie zum Beispiel eine niedrige Orts-
genauigkeit, eine große Anzahl von Ausreißern, lückenhafte Daten und eine Fülle an Fas-
sadeninformation, aufgrund der seitlichen Beobachtungsgeometrie. Im Anbetracht dieser
zugehörigen Eigenschaften, insbesondere der Fülle an Fassadeninformation, wurde ein ro-
bustes Verfahren in dieser Dissertation entwickelt und präsentiert, das fortschrittliche ro-
buste Schätzverfahren ausnutzt um 2-D/3-D Gebäudeumrisse (oder Grundrisse mit ex-
trudierten Höhen) mittels Fassadenpunktanalyse zu rekonstruieren. Die grundlegende
Idee ist Fassadepunkte via einer Punktdichteanalyse zu extrahieren, diese in Clustern
von Punkten zu segmentieren, die zu einzelnen Fassaden gehören, und letztendlich 3-D
Gebäudemodelle mittels unabhängig Modellierung der einzelnen Fassaden zu rekonstru-
ieren um den gesamten 2-D Gebäudegrundriss zu rekonstruieren, gefolgt von deren 3-D-
Representation durch eine Höhentransformation. Der entwickelte Ansatz wird anhand von
Beispielen mit TomoSAR-Punktwolken veranschaulicht und validiert, welche von einem
Stapel von TerraSAR-X high-resolution spotlight Bildern generiert wurden, die aus einem
aufsteigenden Orbit aufgenommen wurden und eine ungefähr 2 km2 große Fläche mit
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mehreren Hochhäuser in Las Vegas zeigen.

Rekonstruktion von Gebäudegrundrissen mit Dachpunkten: Der zuvor erwähnte Ansatz, der
nur auf Fassaden fußt, ist eine gute Wahl um den Umriss von Hochhäusern zu detektieren,
da viele Punkte ihrer Fassaden verfügbar sind. Allerdings gibt es auch Fälle, die vor allem
bei niedrigeren Gebäuden auftreten, wo nur sehr wenige Streuer in den Daten vorhan-
den sind. Außerdem, da Satellitenorbits nahe den Polen der Erde verlaufen, könnte ein
solcher Ansatz aufgrund der fehlenden Messungen bei der Rekonstruktion von Gebäuden,
deren Fassaden nach Norden oder Süden gewandt sind, fehlschlagen. Darüber hinaus sind
aufgrund der seitlichen Beobachtungsgeometrie mehrere Aufnahmen aus mehreren Rich-
tungen erforderlich um komplette Gebäudeumrisse zu rekonstruieren. Um diese Prob-
leme anzugehen wurde ein neues Framework entwickelt, das sowohl die Fassadenrekon-
struktion als auch zusätzlich die verfügbaren Dachpunkte berücksichtigt um den kom-
pletten Gebäudegrundriss zu bestimmen. Das entwickelte Framework ist modular und
komplett datengesteuert und stellt keine Voraussetzungen oder Einschränkungen an den
Gebäudeumriss (das heißt jeder beliebige Gebäudeumriss kann rekonstruiert werden).
Dies führt dazu, dass eine robuste Rekonstruktion von sowohl hohen als auch niedrigen
Gebäuden im Interessenbereich möglich ist, was sich daher gut für die Überwachung großer
urbaner Gebiete aus dem Weltraum eignet. Der entwickelte Ansatz wurde anhand ver-
schiedenen großflächigen Gebieten in Las Vegas, USA und Berlin, Deutschland, die hohe
und mittelgroße Gebäude beinhalten, aufgezeigt und validiert.

Innovative Anwendungen: Um mögliche Anwendungen der rekonstruierten 2-D/3-D
Gebäudeumrissmodelle zu untersuchen wurden drei innovative Anwendungen in dieser
Dissertation demonstriert: 1) Ein erstes 4-D Gebäudemodell wurde präsentiert; 2) Eine
modellbasierte Elevationsverbesserung wurde durchgeführt um die Elevationsposition von
jedem unbearbeiteten TomoSAR-Punkt zu verbessern indem die genaueren Azimuth- und
Rangekoordinaten zusammen mit dem korrespondierenden, rekonstruierten Modell be-
nutzt werden; und 3) ein Konzept, das das rekonstruierte Modell benutzt um die TomoSAR-
Inversion durch eine iterative Feedback-Methode verbessert (durch Benutzung des Grun-
drisses als a-priori Information für die Iterationen) wurde präsentiert.

Rekonstruktion einzelner Bäume: Neben Strukturen menschlichen Ursprungs, insbesondere
Gebäuden, sind auch Bäume (oder Vegetation) für Stadtmodellierungen von großem In-
teresse. Allerdings können satellitengestützte repeat-pass TomoSAR-Daten nicht dazu be-
nutzt werden zeitlich inkohärente Objekte (es sind keine Punkte für Vegetation und Bäume
verfügbar) zu rekonstruieren. Mit Bezug darauf wurde eine modellbasierte Methode zur
Rekonstruktion einzelner Bäume aus einer 3-D TomoSAR-Punktwolke entwickelt und va-
lidiert. Die benutzten multi-baseline Millimeterwellen-InSAR-Daten wurden mit dem luft-
gestützten single-pass MEMPHIS SAR-System aufgenommen. Dies führte zur ersten Rekon-
struktion einzelner Bäume mit Millimeterwellen-SAR-Bilderstapeln.

Da diese Art von Punktwolken sehr neu sind und bis jetzt nicht genutzt wurden hoffe ich,
dass die vorgestellten Methoden nicht nur die SAR-basierte Objektdetektion einen Schritt
voranbringen, sondern auch wesentlich zur Vision dynamische Stadtmodelle zu entwickeln
beitragen. Solche Modelle können helfen die dynamischen Prozesse urbaner Objekte sehr
detailgenau zu überwachen und zu visualisieren.
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1 Introduction 1

1 Introduction

1.1 Motivation and scientific relevance

Recent advances in very high resolution (VHR) synthetic aperture radar (SAR) imaging have
attracted attention of many remote sensing analysts in characterization and monitoring of
Earth’s surface from airborne and spaceborne platforms. As an imaging radar, SAR produces
two-dimensional (2-D) reflectivity map of an illuminated scene by transmitting and receiv-
ing electromagnetic radiations particularly in microwave band with wavelengths ranging
approximately from 1mm to 1m. These longer wavelengths, in comparison to optical and
infrared remote sensing systems, enable SAR sensors to penetrate through clouds and pre-
cipitation with almost no distortions allowing them to perform well in virtually all-weather
conditions. Moreover, SAR carries its own illumination and therefore can work indepen-
dently of the sunlight. These encouraging attributes offer certain advantages of SAR over
conventional optical remote sensing systems. However, microwave scattering characteris-
tics render SAR images to contain different information. In optical and infrared domain,
the observed backscattering is primarily caused due to molecular resonance occurring on
the object surfaces while in microwave domain, the dielectric and physical properties (e.g.,
surface roughness, geometry, permittivity etc.) of the objects are mainly accountable for
backscattering (Elachi, 1988). This on one hand makes interpretation of SAR images diffi-
cult while on the other hand sometimes provide better discriminative surface features than
optical systems (Cumming and Wong, 2005). For instance, longer microwave wavelengths
(e.g., L- or P- bands) allows penetration through volume structures (e.g., vegetation) en-
abling interior information extraction while shorter microwave wavelengths (e.g., Ka-band)
depict low penetration through volume structures allowing exterior extraction of informa-
tion.

SAR, similar to all other imaging techniques, also projects a three-dimensional (3-D) scene
onto a 2-D image, making it “non injective” especially in urban scenarios due to the pres-
ence of vertical structures (e.g., building façades or other man-made objects) (Fornaro et al.,
2012). SAR interferometry (InSAR) is an advance technique able to retrieve the lost third
dimension (elevation perpendicular to the azimuth and range plane) by exploiting the co-
herent nature of complex SAR signals. It has been an established technique for measur-
ing several geophysical quantities e.g., estimation of terrain topography, monitoring sur-
face deformations, measuring ocean currents etc. (Bamler and Hartl, 1998) (Adam et al.,
2009). More recently, InSAR has been extensively applied in detailed analysis of urban ob-
jects such as buildings, roads or even individual trees. However, information extraction and
recognition of objects from SAR (or InSAR) data is highly challenging especially in urban
environments due to special characteristics introduced by the side-looking geometry. The
unwelcoming effects such as layover and shadowing seriously handicap the interpretation
of SAR images. Layover leads to map multiple scatterers, having same distance to the sensor,
into one azimuth-range pixel while shadowing corresponds to image regions not visible to
the sensor.

Advanced InSAR techniques, such as persistent scatterer interferometry (PSI) and SAR to-
mography (TomoSAR), aim at SAR imaging in 3-D or even higher dimensions. Among them,
PSI, developed by Ferretti et al. (Ferretti et al., 2000) (Ferretti et al., 2001) aims to per-
form long term monitoring of subsidence and uplift in urban infrastructures by exploiting
highly coherent pixels, i.e., the bright long-term stable objects (called persistent or perma-
nent scatterers) (Hooper et al., 2004) (Kampes, 2006) (Perissin and Ferretti, 2007) (Rocca,
2007) (Gernhardt and Bamler, 2012). The technique, however, assumes only a single scat-
terer in one azimuth-range pixel and therefore does not resolve the layover problem. To-
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moSAR, on the other hand, aims at real and unambiguous 3-D SAR imaging (Pasquali et al.,
1995) (Reigber and Moreira, 2000) (Lombardini et al., 2001) (Fornaro et al., 2005) (Zhu
and Bamler, 2010b) (Fornaro et al., 2012). By exploiting stack(s) of SAR images taken from
slightly different positions, like PSI, it builds up a synthetic aperture in the elevation direc-
tion that enables retrieval of precise 3-D position of dominant scatterers within one azimuth
range SAR image pixel. Multiple layovered objects in any pixel are therefore separated from
the reconstructed reflectivity profile in the elevation direction (Zhu and Bamler, 2010b)
(Fornaro et al., 2005). Moreover, exploiting the fact that acquisitions are taken at differ-
ent times, the synthetic aperture can also be extended to the temporal domain to enable
four-dimensional (4-D) (space-time) focusing of SAR images. The technique is referred to as
differential SAR tomography (D-TomoSAR), which combines the strengths of both TomoSAR
and PSI (Zhu and Bamler, 2010b) (Zhu and Bamler, 2011) (Zhu and Bamler, 2014) (Lom-
bardini, 2005) (Fornaro et al., 2005) (Fornaro et al., 2009) (Fornaro et al., 2010) (Fornaro
et al., 2014) (Lombardini and Pardini, 2012) (Ma et al., 2015). The retrieved scatterer infor-
mation when geo-coded into world coordinates produces TomoSAR point clouds, capable of
containing not only the 3-D positions of the scatterer location but also the estimates of sea-
sonal/temporal deformation, making them very attractive for generating 4-D city models.
Motivated by these chances, the thesis aims to explore the object reconstruction from these
point clouds. In comparison to conventionally used airborne Light Detection and Rang-
ing (LiDAR) data, these point clouds are associated with special characteristics such as lower
positioning accuracy, anisotropy and much varying point density stimulating the need for
developing new dedicated algorithms related to object reconstruction.

1.2 Objectives and focus

1.2.1 General goal
As the first-ever attempt in the community, the overall general goal stimulating research in
this thesis aims to

“Develop novel robust algorithms for object reconstruction using TomoSAR point clouds that
could lead to open up new possibilities of developing 4-D (spatio-temporal) city models.”

Such models would be valuable in ensuring safety/security of growing urban population
by monitoring of urban infrastructures against potential threats of damage and structural
degradation caused by various factors, e.g., ground subsidence or uplift, bad construction,
natural disaster, etc.

1.2.2 Methodological goals
Since these dynamic point clouds only recently became available, the development of new
robust algorithms for object reconstruction is the essential focus in this thesis. Two target
object categories including buildings and trees have been considered in this research. In this
perspective, although several 3-D reconstruction techniques using airborne LiDAR point
clouds have been developed, adaptation of these methods to TomoSAR point clouds is not
straight forward and requires special in SAR imaging characteristics. In addition to sensor
related issues e.g., varying point densities and gaps in the data, particular challenges in
reconstruction are to cope with complex building structures, non-descriptive tree shapes
and occlusion related issues. Aimed at developing 3-D reconstruction methods coping with
these challenges, the following three research objectives − one major and two minor − have
been addressed to reach the aforementioned general goal in this thesis:
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Objective 1: Development of 2-D/3-D building reconstruction methods from spaceborne To-
moSAR point clouds

Modern spaceborne SAR sensors such as TerraSAR-X/ TanDEM-X (Buckreuss et al., 2008)
and COSMO-SkyMed (Mezzasoma et al., 2008) can deliver VHR resolution data that fit
well to the inherent spatial scales of buildings. This very high resolution (VHR) data is par-
ticularly suited for detailed urban mapping Adam et al. (2009) (Zhu and Bamler, 2010b)
(Zhu and Bamler, 2011) (Zhu and Bamler, 2012b) (Zhu and Bamler, 2014) (Gernhardt and
Bamler, 2012) (Reale et al., 2011) (Reale et al., 2013) (Fornaro et al., 2012) (Fornaro et al.,
2014). TomoSAR processing over such VHR SAR data offers tremendous improvement in
detailed reconstruction and monitoring of urban areas, particularly man-made infrastruc-
tures e.g., buildings (Zhu and Bamler, 2010b) (Fornaro et al., 2014). E.g., experiments using
TerraSAR-X high-resolution spotlight data stacks show that the scatterer density obtained
from TomoSAR is on the order of 600,000-1,000,000 points/km2 (Zhu and Bamler, 2010b)
compared to a persistent scatterer (PS) density on the order of 40,000-100,000 PS/km2

(Gernhardt et al., 2010). The rich scatterer information retrieved from TomoSAR allows gen-
eration of 4-D point clouds. The major goal of the thesis is to systematically exploit these
unstructured spaceborne TomoSAR point clouds to develop a strategy that systematically
allow reconstruction of 2-D/3-D building models fulfilling following requirements:

� The developed framework should exploit special characteristics of spaceborne TomoSAR
data;

� Due to lower point density and gaps in the data, the method should be able to work
directly over 3-D point clouds i.e., without rasterization to avoid resolution loss;

� No imposition of any constraint on the shape of the building to allow reconstruction of
wider variety of architecture;

� To cope with poor geometric accuracy of the spaceborne TomoSAR data, presence of
ghost-scatterers (i.e., outliers) (Auer et al., 2011) and other scene related complexities,
the developed methods should be robust to allow automatic processing of larger areas.

Objective 2: Explore the potential applications of reconstructed models

As the reconstructed models only became available in this work, the goal is to explore pos-
sible applications. E.g., the reconstructed models can serve as a major component in the
realization and generation of 4-D (space-time) or even higher dimensional dynamic city
models. In addition, the reconstructed models can be potentially explored to enhance the
knowledge about the nature of coherent scattering and/or improve the tomographic inver-
sion procedure. Demonstration of such application examples may be not only scientifically
interesting but would also further stimulate the relevant research in the field.

Objective 3: Development of 3-D individual trees (i.e., non-coherent objects) reconstruction from
airborne TomoSAR point clouds

Besides man-made structures in particular buildings, trees (or vegetation) are also of key
interest when it comes to city modeling. So far, the reconstruction of individual trees from
SAR data has not yet met the interest of research community. Recently, preliminary inves-
tigations of wavelengths in millimeter domain have shown encouraging potential of indi-
vidual tree reconstruction (Stilla et al., 2014). To this end, the goal is to develop a model
based individual tree reconstruction procedure by exploiting 3-D point cloud obtained af-
ter tomographic processing of airborne millimeter wave single-pass multi-baseline InSAR
data acquired from multiple aspect angles. It would be the first effort in the community
to analyze the achievable accuracy of individual tree reconstruction using millimeterwave
SAR.
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1.3 Reader’s guide

This is a cumulative dissertation where the above mentioned four objectives (one general
and three methodological) are addressed in five peer-reviewed journal articles (see the Ap-
pendix) by the author − two as the first author and three as co-author. The remainder of this
thesis is structured as follows:

Chapter 2 introduces the basics SAR imaging including an explanation of geometrical and
radiometrical effects that occur due to side-looking geometry and different microwave scat-
tering contributions. Subsequently, the concept of InSAR and TomoSAR is discussed and
finally 2-D/3-D object reconstruction methodologies including appearances and challenges
of both target categories are presented.

Chapter 3 then provides procedural overview of the existing techniques related to 3-D
building and individual tree reconstruction that employ conventionally used LiDAR point
clouds. Subsequently, special characteristics of TomoSAR point clouds in comparison to Li-
DAR are presented.

Chapter 4 and 5 provides a novel and complete data driven framework that systematically
reconstruct 2-D/3-D building shapes from unstructured spaceborne TomoSAR point clouds
generated from TerraSAR-X high resolution spotlight data stacks. The approach is modular
as well as automatic (parametric) and has been developed keeping in view the requirements
proposed in the previous section (Objective 1).

Chapter 6 then explore three potential applications of the reconstructed 2-D/3-D build-
ings models generated by the methodology described in Chapter 4 and 5. Three presented
applications include: 1) A 4-D building model example; 2) Reconstructed model based ele-
vation estimates refinement procedure; and 3) An idea aimed towards improving TomoSAR
inversion by incorporating joint sparsity as prior is described.

Chapter 7 details a prototypical workflow to reconstruct individual trees from 3-D To-
moSAR point cloud generated from multi-baseline InSAR millimeterwave data acquired
from multi-aspects with an airborne single-pass MEMPHIS SAR system created by the
Fraunhofer Institute for High Frequency Physics and Radar Techniques (Schimpf et al.,
2002).

Finally, chapter 8 concludes the thesis and provides perspectives and outlook for future
research directions.
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2 SAR object reconstruction − Basics and state-of-
the-art

2.1 SAR Imaging Fundamentals

SAR is a coherent side-looking imaging radar mounted on a moving platform such as an
aircraft or satellite. The term “synthetic aperture” refers to an artificially extended antenna.
SAR electronically simulates such an extended (or larger) antenna by utilizing flight path
and exploiting the mounted antenna in a time-multiplex fashion to produce high resolu-
tion 2-D radar image (reflectivity or backscattering map) of an illuminated scene with an
increased azimuth resolution. Theoretically, electromagnetic waves with any wavelength
can be employed for transmission and measuring backscattered signals, however, practi-
cally wavelength in microwave domain (Bamler and Hartl, 1998) (Moreira et al., 2013) e.g.,
2.4∼3.8 cm (X-band), 3.8∼7.5 cm (C-band), 8∼15 cm (S-band) and 15∼30 cm (L-band) are
more commonly utilized.

The two orthogonal coordinates of a 2-D SAR image are (slant) range (or cross track) and
azimuth (or along track). range corresponds to the line-of-sight (LOS) distance to the object
under a certain incidence (or elevation) angle θ while azimuth refers to the flight direction.
SAR imaging in the range direction follows the basic radar principle which consequently
renders that the spatial range resolution ρr depends on the duration of transmitted pulse
and is determined from chirp bandwidth fW as (Cumming and Wong, 2005)

ρr =
c

2fW
(1)

where c is the speed of light. The spatial azimuth resolution ρa of a real aperture radar
on the other hand is inversely proportional to the actual physical length L of the antenna
which leads ρa to be on the order of hundreds of meters for airborne and several kilometers
for spaceborne platforms. Thanks to the synthetic aperture principle which exploits the
moving platform and coherent processing of radar echoes (backscattered signals), the spatial
azimuth resolution ρa has been tremendously improved to be around half of the physical
antenna length L i.e.,

ρa ≈
L
2

(2)

with no dependence on slant range, sensor velocity and wavelength of the transmitted pulse
(Bamler and Hartl, 1998). It is worth to mention here that achieved azimuth resolution
in (2) is based on monostatic SAR sensors (i.e., same transmitting and receiving antenna)
operating in standard (continuous) strip-map mode where the sensor viewing direction is
kept fixed as the radar platform progresses forward. For a different mode, e.g., spotlight,
even more fine azimuth resolution is achieved by steering the radar beam to increase the
target illumination period resulting in a simulated effect of wider antenna beam or reduced
antenna length (Cumming and Wong, 2005).

The azimuth-range resolution element of a conventional SAR is illustrated in Figure 1. The
contributions from all subscatterers (e.g., ground, buildings, trees, rocks, etc.) present inside
such a resolution cell are mapped onto a single complex-valued SAR pixel. The complex-
valued measurement of each pixel of a focused SAR image thus contains the integral of
the backscattered radar signal from all scatterers inside the corresponding resolution cell.
Its amplitude represents the scene reflectivity while the phase is related to the distance of
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Fig. 1. Two dimensional resolution element of a conventional SAR image. ρr depends on the duration of transmitted pulse
and is determined from chirp bandwidth fW while ρa is approximately half of the physical antenna length L. x represents
flight direction and is normally called azimuth or along track, r refers to the LOS direction of the sensor normally called
range or slant range, θ denotes the elevation (or incidence) angle which actually defines the LOS direction, y refers to
the ground range and z denotes the height direction that is perpendicular to the x-y plane. All scatterers lying within the
yellow curve are mapped into the same azimuth-range pixel.

averaged scattering center to the sensor. Both amplitude and phase of SAR image depends
on the physical (i.e., surface roughness, slope and geometry) and dielectric (i.e., permittivity)
properties of the objects appearing in the illuminated scene (Moreira et al., 2013).

2.2 Radiometric and geometrical effects of SAR imaging

Radiometric and geometric effects are produced as a consequent of special SAR imaging
technique. Most radiometric distortions are related to factors affecting radar backscatter-
ing coefficient (e.g., non-uniform antenna pattern, spreading loss effect etc.) and are sys-
tematically removed using sensor and orbit parameters (Frulla et al., 1998). However, a
particular phenomenon affecting the radiometric appearance of SAR images that cannot be
completely removed even from state-of-the-art approaches used for radiometric correction
is the so-called speckle effect. It is more commonly visible in areas where surface rough-
ness is comparable to the used radar wavelength (Goodman, 1975). The reason of speckle
is the existence of more than one scatterer (i.e., multiple subscatterers) inside one resolu-
tion cell. Signal reflections from all subscatterers are coherently summed to represent one
backscatterred signal reflected from the corresponding resolution cell. The resulting ampli-
tude (or brightness) of one SAR pixel thus not only depend on the physical characteristics
of subscatterers but is also affected by constructive and destructive phase interaction from
contributing subscatterrers. This consequently renders amplitude and phase of backscat-
terred signals to fluctuate from one pixel (or resolution cell) to another following Rayleigh
and uniform distributions respectively.

Speckle is commonly mitigated by simple technique, known as multi-looking, which
is essentially based on non-coherent local averaging of SAR intensities (or amplitudes)
(Franceschetti and Lanari, 1999). Other more sophisticated adaptive speckle filters include
Lee filter (Lee, 1980), Frost filter (Frost et al., 1982), maximum a posteriori (MAP) based
filter (Lopes et al., 1990), or more recent wavelet- (Argenti and Alparone, 2002) (Chen et al.,
2012b), nonlocal- (Deledalle et al., 2009) (Hu et al., 2015) and total variation- (Palsson et al.,
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2012) based filtering methods. For an interested reader, a nice introduction and overview
to speckle reduction techniques can be found in (Argenti et al., 2013). Although speckle is
taken as noise in the image, it essentially carries information related to the subresolution
structures (Bamler and Hartl, 1998). Also with improved sensor resolutions, the speckle ef-
fect tends to reduce due to decrease in number of subscatterrers with in one resolution cell
(Moreira et al., 2013).

The side-looking SAR imaging geometry introduces special geometric characteristics which
appear in SAR images when the illuminated scene contains elevated objects. These geomet-
ric distortions renders scene interpretation from SAR images highly challenging especially
in context of object recognition and 3-D reconstruction. In the following, the main geometric
distortions commonly appearing in SAR images are briefly revisited (see Figure 2) (Lillesand
et al., 2004).

� Forshortening occurs when the incidence (or look) angle θ of the SAR sensor is less steep
than the object/terrain slope β (i.e., when −θ < β < θ satisfies). This implies that the rela-
tive distance of the two points is shortened when projected onto the slant range direction.
This causes backscattering energy to be concentrated in smaller region rendering affected
intensity image parts to appear bright (Lillesand et al., 2004);

� For β > θ contributions from two or more scatterers located at the same distance to the
sensor but at different spatial location are mapped to the same azimuth-range pixel of the
SAR intensity image. This phenomena is called layover which causes elevated objects to
appear bright and as being projected towards the sensor in the SAR image;

� Shadowing is seen for object parts that are not visible to the sensor (i.e., when β < θ − 90◦

is satisfied). Image regions affected by shadowing appear dark in the SAR intensity image;
� Appearance of objects in urban areas are very much influenced by double- or (triple-)

bounce scattering that is typically caused due to di-(tri-)hedral reflectors formed by ver-
tical building façades (Thiele et al., 2007). The effect is clearly visible and appears in SAR
images in the form of bright lines near the façade-ground transition regions.

Fig. 2. Geometrical distortions appearing in SAR images. Three objects are shown in gray shades. θ refers to the incidence
(or look) angle of the sensor while β represents the angle of the object surface with respect to the horizontal ground terrain
(i.e., slope of the surface). The flight direction or azimuth axis x is perpendicular to the y-z plane i.e., coming out of the
page in the depicted case.
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2.3 Advanced SAR imaging

2.3.1 SAR polarimetry

SAR sensors have the ability to transmit and receive electromagnetic signals with particu-
lar polarization states. This enables them to provide, in contrast to single channel, dual- or
fully- polarimetric SAR (PolSAR) images. Although, three different kind of wave polariza-
tions e.g., circular, elliptic, and linear can be distinguished (Cloude and Pottier, 1996), linear
wave polarization in two orthogonal H-V (horizontal-vertical) basis is most commonly used
in remote sensing (Lee and Pottier, 2009). For a linearly polarized wave, the information
content pertaining to the backscattering from one resolution cell can be characterized by a
2 × 2 complex scattering matrix represented as

S =

SHH SHV

SVH SVV

 (3)

where (in most cases) the second lower subscript indicates the polarization of the transmit-
ted wave and the first one corresponds to the polarization of the received backscatterred sig-
nal. For monostatic SAR systems, S is symmetric due reciprocity theorem (i.e., SVH = SHV ),
resulting in three independent complex elements. Several methods to decompose S, includ-
ing the most common lexicographic (kL) and the Pauli (kP ) decompositions, have been pro-
posed in the literature for information extraction/retrieval purposes (Cloude and Pottier,
1996) (Freeman and Durden, 1998) (Yamaguchi et al., 2005) (Lee and Ainsworth, 2011)
(Hong and Wdowinski, 2014) (Hong et al., 2015).

The scattering characteristics (geometric and material properties) of the object in the illu-
minated scene affects the polarization of the incident wave i.e., change of polarization may
occur. This effect is consequently captured by the (measured) elements of the scattering ma-
trix S and forms the basis of enhanced information content in polarimetric data. Careful
investigations of the complex elements of S thus provide more information related to the
scattering procedure which could be exploited to improve the results of features extraction
for subsequently relevant object recognition and classification tasks (Cloude and Pottier,
1997) (Lee et al., 1999) (Chen et al., 2003) (Schou et al., 2003) (Guillaso et al., 2005) (Reig-
ber et al., 2007) (He et al., 2008) (Haensch and Hellwich, 2010) (Sauer et al., 2011) (Guillaso
et al., 2012) (Jin and Xu, 2013) (Haensch, 2014).

2.3.2 SAR interferometry (InSAR)

InSAR techniques utilize phase differences of (at least) two complex-valued SAR images ac-
quired at different orbit positions and/or different times to extract topographic height or
displacement information (Zebker and Goldstein, 1986) (Massonnet et al., 1993) (Bamler
and Hartl, 1998). In a typical across track InSAR configuration, an interferogram is com-
puted by pixel-wise multiplication of two precisely co-registered (up to sub-pixel level)
single-look-complex (SLC) SAR images, acquired from two slightly different positions (sep-
arated by the distance referred to as spatial baseline B), in a complex conjugate manner i.e.,
multiplying one SAR image with the complex conjugate of the other SAR image. The result-
ing phase difference (or InSAR phase) is related to terrain topography and can be used to
generate digital elevation model (DEM) (Li and Goldstein, 1990).
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2.3.2.1 Differential InSAR

Apart from topographic mapping, the InSAR can also be extended to differential InSAR
(D-InSAR) to precisely measure the LOS displacement (i.e., along slant range) (Zebker and
Rosen, 1994) (Goldstein and Werner, 1998) (Bamler and Eineder, 2005). The technique prin-
cipally works in a repeat-pass configuration where the illuminated scene is imaged twice
with the same sensor from slightly different (but parallel) orbital positions at different
times. Consequently, the InSAR phase difference not only consists of a topographic phase
component but also contains another term that is independent of B and is caused by ob-
ject displacements that occur during the time interval between the two acquisitions. This
time interval is referred to as temporal baseline and is typically employed in the order of
weeks, months or even years to achieve long-term deformation monitoring (Gabriel et al.,
1989) (Zebker and Rosen, 1994). Note that in addition to these two phase terms, two addi-
tional (noisy) phase components, particularly existing in repeat-pass acquisitions, are also
induced due to atmospheric propagation and changes in scattering behavior (Bamler and
Hartl, 1998) where the former is typically mitigated by averaging multiple interferograms
(Ferretti et al., 1997). Ignoring these phase terms, if an accurate DEM is available, the topog-
raphy induced phase term can be computed and removed by subtracting it from the InSAR
phase to measure subtle changes or displacements with even up-to millimeter accuracy (i.e.,
fraction of used wavelength) independently from sensor to scene distance which makes D-
InSAR highly suitable technique for both airborne and spaceborne platforms (Moreira et al.,
2013).

2.3.2.2 Phase-to-height conversion

In the context of topographic mapping, an important aspect in deriving correct terrain
heights is to unwrap the InSAR phases that are ambiguous (as restricted within the inter-
val [−π π] i.e., modulo 2π). The wrapped phase actually corresponds to the so-called one
fringe of the interferogram and its relationship to unwrapped phase can be expressed as
follows:

φabs = φInSAR + 2πk (4)

where k is an integer value. Finding value of k, a step referred to as phase-unwrapping (Gold-
stein et al., 1988), is a prerequisite for generating accurate InSAR DEMs (Li and Goldstein,
1990), and is solvable for continuous and smooth terrains but still remains highly challeng-
ing task in terrains that are discontinuous and contain frequent or abrupt height changes
e.g., in urban areas (Soergel, 2010).

The unwrapped phase θabs depends approximately linearly with the height differences δh
as

δh ≈ 1
2π
· h2π ·φabs =

1
2π
· h2π [φInSAR + 2πk] =

1
2π
· h2π ·φInSAR + h2π · k (5)

where h2π represents the so-called height-of-ambiguity, i.e., height corresponding to one
fringe (or 2π phase change of φInSAR) and is related to incidence (or look) angle θ and the
perpendicular baseline B⊥ (component of B perpendicular to the look direction) as

h2π =
λ ·R · sin(θ)

p ·B⊥
(6)

where p is 1 for single-pass and 2 for repeat-pass measurements.
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Magnitude of coherence (complex cross-corelation coefficient) gives an indication towards
the measurement accuracy of the interferometric phase. Higher coherence refer to more ac-
curate phase measurements which in turn leads to more accurate terrain height estimation.
Similarly low coherence caused by various factors e.g., co-registration errors, thermal or
receiver noise, temporal decorrelation etc. may lead to poor interferometric phase measure-
ments resulting in producing low quality DEMs (Bamler and Hartl, 1998) (Moreira et al.,
2013). A simple way to improve the measurement accuracy of phase estimates is multilook-
ing (i.e., averaging interferometric samples) (Lee et al., 1994) which reduce the phase noise
at the expense of increased loss in spatial resolution.

2.3.3 SAR tomography (TomoSAR)
TomoSAR is the most advanced InSAR method. In its differential form, i.e., D-TomoSAR, it
is capable of 4-D, 5-D or even higher dimensional SAR imaging (Zhu and Bamler, 2010b)
(Zhu and Bamler, 2011) (Lombardini, 2005) (Fornaro et al., 2009) (Fornaro et al., 2010)
(Reale et al., 2011) (Lombardini and Pardini, 2012) (Fornaro et al., 2012) (Reale et al., 2013)
(Fornaro et al., 2014) (Ma et al., 2015). In the following the TomoSAR imaging model is
briefly described:

Let N represent the number of acquisitions (i.e., an image among stack of images), the
complex-valued SAR azimuth-range pixel value gn of nth (n = 1, ...,N ) acquisition with the
corresponding perpendicular baseline bn (see Figure 3) can be approximated as the weighted
integral of reflectivity function γ(s) (Fornaro et al., 2003) (Zhu, 2011)

gn =
∫
∆s

γ (s)exp(−j2πξns)ds with ξn = −2bn/λr (7)

where ∆s denotes the span in elevation. Since it is well known that the far-field diffraction
acts like a Fourier transform, the presented model is actually nothing but Fourier transform
of γ(s) sampled with spatial frequency (in elevation) ξn.

The continuous model in (7) can be discretized along elevation dimension into Q positions
(i.e., sq∀q = 1, ...,Q) by replacing the integral with the sum as follows:

gn =
Q∑
q=1

exp
(
−j2πξnsq

)
γ
(
sq
)

+ εn (8)

or alternatively in matrix form as (Fornaro et al., 2003) (Zhu and Bamler, 2010a) (Zhu, 2011)

g = Rγ + ε (9)

where g ∈ CN×1 is the measurement vector with gn∀n ∈ {1, ...,N }, R ∈ CN×Q is an irregularly
sampled Fourier transform matrix with Rnq = exp

(
−j2πξnsq

)
, γ ∈ C

Q×1 is the unknown
discretized reflectivity vector with γ(sq), and ε ∈ CN×1 is additive noise usually modeled as
complex circular Gaussian random variable.

TomoSAR aim to invert the imaging model presented in (9) to retrieve the unknown discrete
reflectivity vector γ . Several TomoSAR inversion methods have been proposed in the litera-
ture based on conventional beam forming (Pasquali et al., 1995) (Lombardini and Reigber,
2003) (Fornaro et al., 2009), adaptive beam forming (e.g., Capon) (Lombardini et al., 2001),
singular value decomposition (Fornaro et al., 2003), multiple signal classification (Gini and
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Fig. 3. Schematic illustration of the TomoSAR imaging geometry. The elevation aperture is built by exploiting multi–
pass/multi-baselines (six in the depicted case) from slightly different viewing angles. It is shown that the backscattering
contribution from the edge of two buildings and small portion of ground are mapped into a single azimuth-range SAR im-
age pixel. TomoSAR aims to estimate the depicted reflectivity profile γ̂ (s) for discretized (pink region) elevation extent ∆s.
Typically, the discretization factor is much higher i.e., N � Q which renders (9) to be undetermined (i.e., more equations
than unknowns). s denote the elevation axis which is actually a curve but is usually approximated as a straight line due to
large range distances.

Lombardini, 2002) (Guillaso and Reigber, 2005) (Nannini et al., 2008) (Sauer et al., 2009),
non linear least squares (Ferretti et al., 2005)) and compressive sensing based algorithms,
e.g., the Scale-down by L1 norm Minimization, Model selection, and Estimation Reconstruc-
tion (SL1MMER) algorithm (Zhu and Bamler, 2010a) (Zhu, 2011) (Zhu and Bamler, 2012b),
that exploit sparsity of the signal. All of these mentioned algorithms treat TomoSAR inver-
sion as spectral estimation problem by fulfilling following condition

∆s <<
ρr · r
∆b

(10)

where ∆b denotes the length of the elevation aperture.

The above condition (10) is particularly true for spaceborne TomoSAR due to large range
distances and smaller angular diversity (Zhu, 2011). However, treating TomoSAR inversion
as spectral estimation problem might not be reasonable for airborne SAR platforms and
therefore other methods based on back projection (Reigber and Moreira, 2000) (Frey et al.,
2008) or maximum likelihood estimation (Schmitt and Stilla, 2014b) needs to be employed.
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2.4 Object reconstruction using SAR

Within the scope of this thesis, the following two subsections provides an overview related
to SAR based 3-D building reconstruction methodologies of two target object categories
namely buildings and individual trees.

2.4.1 Mapping of buildings in VHR SAR images
In the context of object recognition/modeling, SAR images have been exploited for the de-
tection and reconstruction of three common man-made object categories, namely buildings
(Bolter and Leberl, 2000) (Gamba et al., 2000) (Zhao et al., 2013) (Thiele, 2013), bridges
(Soergel et al., 2007), and roads (Tupin et al., 1998). Among them, as resolution of SAR
sensors improves, particular focus has been put in the domain of building boundary (foot-
print) extraction and estimation of height in urban environments for 3-D reconstruction of
buildings. Various approaches have been developed to tackle this problem in monoscopic
(Tupin, 2003) (Quartulli and Datcu, 2004) (Barthelet et al., 2012) (Ferro et al., 2013) (Zhao
et al., 2013) (Deng and Wang, 2014), radargrammetric (Simonetto et al., 2005) (Xu and Jin,
2007) (Dai et al., 2008) (Hill et al., 2008) (Dubois et al., 2013) and interferometric (Bolter
and Leberl, 2000) (Soergel et al., 2003b) (Cellier et al., 2006) (Tison et al., 2007) (Thiele
et al., 2007) (Thiele, 2013) (Dubois et al., 2013) (Dubois et al., 2014) frameworks. In the
following, first a short discussion related to appearance of buildings is provided followed
by an overview of state-of-the-art related to building detection and reconstruction based on
SAR/InSAR datasets.

2.4.1.1 Appearance and characteristics of buildings in SAR/InSAR

Although geometrical effects introduced by the side-looking configuration cause difficulties
in the interpretation of SAR images, they sometimes provide valuable hints which could po-
tentially serve as meaningful features towards detection and reconstruction of a specific tar-
get category. E.g., layover and shadow information have been exploited to detect the build-
ing pixels (Tupin, 2003) (Bennett and Blacknell, 2003) (Soergel et al., 2003b) (Tison et al.,
2004) (Quartulli and Datcu, 2004) (Hill et al., 2008) (Barthelet et al., 2012) (Brunner et al.,
2010). Moreover, extracting the extent of layover and shadow areas, the height of individual
buildings could be retrieved (e.g., using incidence angle, azimuth/range resolutions etc.).
In InSAR domain, the appearance of buildings in phase images are also affected by layover
and shadow effects (Thiele et al., 2007) (Thiele et al., 2013) (Dubois et al., 2014). Coherence
plays a critical role when it comes to the analysis of phase images. Prior removal of noise
and artifacts introduced by factors affecting coherence estimates is therefore prerequisite
for efficient exploitation of InSAR phases.

Multi-bounce phenomenon is frequently observed in urban regions particularly between
vertical structures (e.g., building façades) and ground (Quartulli and Datcu, 2004) (Thiele
et al., 2007) (Soergel, 2010) (Barthelet et al., 2012) (Ferro et al., 2013) (Thiele, 2013). This
effect appears in SAR images in the form of a bright line near the façade region (see Figure
4). Also with buildings having non-flat roofs e.g., gabled-roofs, the effect causes two bright
parallel lines to appear at the two edges (or borders) of the layover regions (Thiele, 2013).
Various line detection methods have been developed, e.g., (Touzi et al., 1988) (Schou et al.,
2003) (Dai et al., 2004) (Wang et al., 2008a) (Ferraioli, 2010) (Baselice et al., 2014), to extract
these bright lines in context of building detection/reconstruction from SAR imagery.

Surface roughness has direct effect on the backscattering energy. For instance, part of the
building roof having smooth surface acts like a mirror and reflects away most of the energy
(i.e., no signal is returned to the sensor due to the side-looking geometry). As a consequent,
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the corresponding part appears dark. For relatively rough surfaces, Lambertian scattering -
model of diffuse reflection - is quite often visible which renders their appearances to vary
from less to full bright depending upon the (cosine of) local incidence angle (Thiele, 2013).
Several researchers have simulated these backscattering characteristics together with ma-
terial and roughness properties to provide semi-automatic solutions towards building de-
tection and reconstruction. E.g., simulation based investigations of the double- and triple-
bounce scattering effect occurring at building façades are depicted in (Brunner et al., 2010)
and (Auer and Gernhardt, 2014) respectively.

Fig. 4. Geometric illustration of multi- (double-) bounce and shadow effect. The light gray line depicts the double-bounce
phenomenon that is frequently observed in urban regions particularly between vertical structures and ground. These lines
give strong hint towards building detection. Shadow region (depicted as black) indicates the part not visible to the sensor.
By knowing key parameters of the imaging radar e.g., θ, ρr , ρa etc., individual building height based on dimensions of
shadow and/or layover could be retrieved.

2.4.1.2 Buildings detection using single VHR SAR image

Automatic detection and 3-D reconstruction of man-made objects in particular buildings
from single VHR SAR image is of great practical interest especially when it comes to ap-
plications having stringent temporal restrictions e.g., emergency responses. However, due
to inherent complexity of SAR images, literature on building detection and reconstruction
from single SAR image is rather sparse. Among existing techniques, most approaches rely
on extraction of bright lines due to already mentioned double bounce effect near the in-
tersection of building façade and ground. For instance, one such approach was presented
by (Quartulli and Datcu, 2004) which employed an automatic stochastic algorithm to re-
construct buildings from single SAR intensity image by modeling strong signals originated
from dihedral scattering at the bottom of building and layover returns from the roof edges.
Among recent approaches, (Zhao et al., 2013) proposed a building detection method based
on marker controlled water shed algorithm to segment buildings from ground in a sin-
gle SAR image. Both edge strength image and extracted markers were utilized that incor-
porated characteristics (bright pixel clusters) and contextual knowledge (shadows and the
surrounding roads) pertaining to buildings. A similar approach that exploited layover and
double bounce echoes to detect and determine the number of buildings from a single high
resolution image was provided in (Cao et al., 2014). The approach detected bright patches
via thresholding and morphological operations. Certain shape features were then employed
to remove false alarms and later large patches were split using controlled water shed algo-
rithm to determine the number of buildings. (Ferro et al., 2013) also developed a method
that was primarily based on extracting set of low-level bright (lines) and dark (shadows)
primitives. By exploiting probability of a primitive as belonging to a particular class (e.g.,
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façade, double bounces etc.) using fuzzy membership functions, these primitives were then
combined to produce more structured primitives consisting of reliable building footprint
hypothesis. The approach was demonstrated to work on TerraSAR-X spotlight image con-
taining both flat and gabled roof buildings. (Chen et al., 2015) introduced a more recent 1-D
range detector to determine the 2-D building footprints. The approach sequentially scanned
the range direction to detect buildings by their distinct profile. Each detected building wall
(i.e., extracted line segment) visible to the sensor was then processed along the orthogonal
azimuth direction to complete the 2-D shape of the building. The method could potentially
well reconstruct simple symmetrical building footprints but might fail for scenes containing
more complex non-symmetrical building shapes.

An interesting approach for extracting edges with application to building detection was pre-
sented by (Baselice et al., 2014). In contrast to many other edge detectors using SAR (Touzi
et al., 1988) (Schou et al., 2003) (Dai et al., 2004) and InSAR (Ferraioli, 2010) images, their
method was developed on Markovian stochastic framework and simultaneously exploited
both real and imaginary parts of a SLC SAR image. They assumed that an edge (or disconti-
nuity) present in the amplitude image would also exist at the same position in both real and
imaginary parts of the complex SAR data.

So far, the mentioned approaches are based on single channel SAR image. Few publica-
tions exploiting multichannel (i.e., dual or fully polarimetric) SAR images have also been
proposed in the literature. For instance, (He et al., 2008) proposed an approach to extract
buildings from fully polarimetric SAR data. In it, mean shift was first applied to divide the
image into homogeneous patches and later, by exploiting spatial connectivity, conditional
random field (CRF) - probabilistic graphical model - was applied to segment each patch
into shadow, layover and other areas. Comparison with basic logistic regression classifier
revealed promising segmentation results. Other methods that exploited fully polarimet-
ric SAR image include approaches based on supervised classification (Yan et al., 2011) via
suport vector machine (SVM) (Cortes and Vapnik, 1995) and integrated time-frequency de-
composition technique with entropy/alpha- Wishart classifier (Deng and Wang, 2014).

2.4.1.3 Height estimation and reconstruction

SAR intensity (or amplitude) based building height estimation methods are typically pro-
posed either in monoscopic or stereoscopic (i.e., radargrammetric) frameworks. In the fol-
lowing two subsections, an overview of methods lying in these two categories is presented.

2.4.1.3.1 Via radiometric effects - shadows & layover

One of the first investigations in determining object height from radar imagery was carried
out in (Laprade and Leonardo, 1969). They provided initial basis to derive height estimates
in both slant and ground range geometry from a single radar image. More recent approaches,
relying on a single SAR image, estimated building heights either by exploiting information
pertaining to building shadows (Bennett and Blacknell, 2003) (Tison et al., 2004) (Hill et al.,
2008) (Barthelet et al., 2012) or layover (Tupin, 2003) (Quartulli and Datcu, 2004) (Brunner
et al., 2010). Apart from approaches based on these two features, (Jiang et al., 2011) pro-
posed a model based building height retrieval method based on hypothesis test procedure.
In it, several building masks with various height estimates were first generated using pre-
defined projection model and later an evaluation scheme based on simulated annealing was
used to find the best height hypothesis. (Guida et al., 2010) also proposed a deterministic
approach for extracting building height by exploiting both geometric and electromagnetic
features from a single SAR image. The idea, initially presented in (Franceschetti et al., 2002),
was based on modeling sound electromagnetic radar returns from isolated buildings. Ini-
tial building dimensions were assumed to be known in advance and the approach primarily
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concentrated on the parameter inversion step. The method provided nice theoretical ba-
sis but the validation of height retrieval algorithm was only demonstrated using simulated
images.

Another approach based on simulation and matching technique was presented in (Brunner
et al., 2010). The approach simultaneously exploited major scattering characteristics (i.e.,
double bounce effects, shadows, and layover) for building height extraction. A hypothesis of
building height was initially defined that was later matched with the simulated SAR image.
The procedure was iterated until the optimization of the matching function with varying
height propositions. Real data experiments on 40 flat and gabled roof buildings demon-
strated the potential of the approach in extracting height of isolated buildings. Recently,
(Wang et al., 2015) also developed a similar iterative model-based geometrical structure
prediction and matching technique to estimate building height in a single VHR SAR image.
In contrast to (Brunner et al., 2010), the method was able to perform under partial occlu-
sion and required no assumptions related to the SAR backscattering distribution. The ap-
proach was validated over flat roof buildings using X-band airborne SAR and HH-polarized
TerraSAR-X images.

2.4.1.3.2 Multi-aspect SAR based approaches (Radargrammetry)

The approaches mentioned so far that use a single SAR image only perform well in semi
urban scenarios with isolated buildings, but may fail to work in dense urban areas where
buildings are closely located together and smaller buildings are hidden (or occluded) by
higher ones. This problem can be partially mitigated by applying stereoscopic (or stereo)
principle to SAR imagery (Simonetto et al., 2005) (Soergel et al., 2006) (Xu and Jin, 2007)
(Dai et al., 2008) (Hill et al., 2008) (Dubois et al., 2013) where two or more images of the
same scene taken from different viewing angles are utilized to estimate building heights − a
technique also referred to as radargrammetry.

Earlier SAR stereo based approaches were limited to only two configurations namely, same-
side and opposite-side (Leberl, 1990). Same-side implies scene imaging from parallel flight
orbits i.e., from the same aspect with different viewing angles (Soergel, 2010) whereas
opposite-side refers to scene imaging from antiparallel orbits. An approach not limited to
these two configurations was first proposed by (Michaelsen et al., 2005) and later extended
in (Soergel et al., 2009) where the building heights were estimated using two orthogonal
airborne SAR images. Images were separately analyzed to exploit certain building charac-
teristics (e.g., rectangular structures, symmetries etc.) and later height was estimated by
means of stereoscopic investigation. Instead of processing data individually from every as-
pect (Maksymiuk and Stilla, 2012) proposed a new concept to perform joint optimization
using data from all aspects simultaneously. Discriminative CRF was used to model the data
and the inference was carried out using loopy belief propagation algorithm. Two approaches
employing airborne multi-aspect X-band PolSAR data from four orthogonal views to recon-
struct 3-D buildings - modeled as cuboids or sets of cuboids - were presented in (Dai et al.,
2008) and (Xu and Jin, 2007) (Jin and Xu, 2013). Recently, (Dubois et al., 2013) also proposed
a pixel-based approach to estimate building height by analyzing building layover regions in
the computed disparity map using data from TerraSAR-X.

2.4.1.4 Building reconstruction using InSAR data

SAR interferometry (InSAR) has been extensively used for detecting and reconstructing 3-D
building model parameters (Bolter and Leberl, 2000) (Gamba et al., 2000) (Soergel et al.,
2003b) (Thiele et al., 2007) (Brenner and Roessing, 2008) (Thiele, 2013) (Wegner et al.,
2014). Similar to stereoscopy, InSAR also makes use of more than one SAR image in order
to obtain height estimates. However, unlike approaches presented so far (i.e., approaches
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based on SAR amplitude/intensity), they exploit the coherent phase information to deter-
mine building heights. Various InSAR based approaches have been developed to reconstruct
buildings in 3-D. E.g., some approaches utilized InSAR DEMs (Gamba et al., 2000) while
others e.g., (Bolter and Leberl, 2000) (Stilla et al., 2003) (Soergel et al., 2003a) (Thiele, 2013)
exploited the full complex InSAR characteristics (i.e., phase, coherence and intensity) to
detect and reconstruct buildings. In the following two sections, reconstruction approaches
employing single and multiple InSAR pairs are presented.

2.4.1.4.1 Single-aspect approaches

In terms of methodology, the task of building detection and height estimation from a sin-
gle (or multiple) InSAR image pair is either carried out jointly (Tison et al., 2007) or more
commonly, the building is first detected in 2-D using amplitude (or intensity) values and
later the third dimension (i.e., the building height) is estimated using InSAR phase mea-
surements. Similar to building detection from single intensity images (mentioned earlier),
the latter methods also rely on the occurrence of double bounce effect causing bright lines
to appear between the building façade and the ground. E.g., (Soergel et al., 2003b) built
quadrangular buildings objects by first extracting bright lines and shadow edges in inten-
sity image and then assembled these primitive objects through an iterative production sys-
tem. (Michaelsen et al., 2006) also extracted linear features (lines and edges) using Hough
transform and later detected buildings by imposing rectangularity constraints which con-
sequently allowed only orthogonal extracted bright lines to be selected as building features.
This method offered advantage in reducing large number of bright lines usually appearing
in an urban SAR image though, it might miss buildings having weaker response on one of
its two visible sides.

Another interesting approach exploiting single-aspect X-band InSAR dataset was presented
in (Cellier et al., 2006) to reconstruct large flat roof buildings. The approach first extracted
the building characteristics (e.g., single/double bounce, shadows etc.) and later used an
interferometric mixture model in the layover regions to detect front and back side of the il-
luminated building. A regularization procedure was then carried out to ensure extraction of
geometrically correct (i.e., footprints with right angles only) buildings. The same approach
was adapted and applied on fully polarimetric InSAR data in (Cellier and Colin, 2006).
(Guillaso et al., 2005) also presented an approach to characterize building parameters us-
ing L-band fully polarimetric InSAR data. (Liu et al., 2013a) also developed a workflow to
detect potential building layover regions using InSAR phase measurements. To incorporate
contextual knowledge, over-segmentation was then carried out in the identified layover re-
gions to retrieve superpixels which were subsequently merged via normalized cut algorithm
(Shi and Malik, 2000) and a stochastic criterion to complete the detection procedure.

The recent launch of TanDEM-X has opened up new possibilities of obtaining single-pass In-
SAR measurements from space. By mitigating the decorrelation effects, it greatly enhanced
the interferometric quality. (Thiele et al., 2013) presented a single-pass TanDEM-X interfer-
ograms to automatically extract building shapes. They developed a novel detector to inves-
tigate phase ramps in an interferogram computed from a single TanDEM pair. The basis of
their shape detection approach was based on the fact that the layover of rectangular build-
ings could be characterized by two parallelograms whose two sides were parallel to the sen-
sor’s slant range direction. (Dubois et al., 2014) also exploited this idea and extended their
approach such that the post processing to characterize building shapes was also performed
on InSAR phases. With initial assumption of one visible façade, a bounding box was com-
puted around the analyzed building which was iteratively sheared, scaled and translated to
build a parallelogram. The parallelogram which fitted best in least square sense was used
to represent the layover region. Building parameters were then computed by following the
trend in the phase image i.e., looking up the phase values in the range direction.
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2.4.1.4.2 Multi-aspect approaches

Problems pertaining to occlusion can be partially resolved using multi-view SAR data. In
this context, few approaches employing multi-aspect InSAR have also been proposed. For
instance, earlier approaches making use of the amplitude and InSAR height (and coher-
ence) to detect and reconstruct buildings from multi-aspect InSAR datasets were proposed
in (Bolter, 2001) and (Bolter and Leberl, 2000) respectively. (Soergel et al., 2003a) also pre-
sented an iterative and sequential method for building detection and reconstruction. In their
workflow, first building hypotheses were generated and projected to ground range geome-
try. Then those hypothesis that fit a certain prior model criteria e.g., rectangularity, parallel
lines etc. were further processed to reconstruct extruded building models. Subsequently
these models were used to simulate the layover and shadow regions for iterative matching
with the real image. Further development and extension to this approach was proposed in
(Thiele et al., 2007) (Thiele, 2013) where multi-aspect fusion was realized on a lower feature
level. As a consequent, it enhanced the capability to handle buildings even with rather weak
feature support.

Multi-aspect approaches overcome the major limitation of single-aspect InSAR i.e., the oc-
clusion problem. However, so far they still lack to deal with arbitrary building shapes and
are only confined to reconstruct structured (e.g., rectilinear or rectangular) building foot-
prints. Moreover the maximum height of the building that can be reconstructed is also lim-
ited by the derived height of ambiguity. To overcome these limitations, next, approaches
that exploit auxiliary information together with SAR/InSAR datasets are presented.

2.4.1.5 Combing SAR/InSAR with auxiliary information

A number of approaches for building extraction and height retrieval have been proposed
that combine SAR/InSAR data with auxiliary information such as optical imagery (Tupin
and Roux, 2005) (Sportouche et al., 2011) (Denis et al., 2009) (Wegner et al., 2014),
geographic information system (GIS) information (Tupin, 2003) (Thiele et al., 2010) (Liu
et al., 2014) or other sources e.g., LiDAR digital surface model (DSM) (Tao et al., 2011).
These approaches improved the feature extraction process by providing complimentary
information. For instance, (Tupin, 2003) retrieved building heights of flat-roof industrial
buildings by analyzing overlay regions in a single SAR image in combination with the man-
ually extracted map data. Similarly, (Liu et al., 2014) performed layover analysis in single
TerraSAR-X image together with available 2-D building outlines (or footprints) to estimate
building heights. (Thiele et al., 2010) also combined available 2-D footprints and acquired
height via InSAR phase to determine the after (or post) damage 3-D building shapes.

Apart from GIS data, high resolution optical imagery providing additional information
about building appearance and shape potentially improve SAR based 3-D building recon-
struction. In this context, an interesting and promising approach utilizing single nadir look-
ing optical image and a couple of SAR images was presented in Tupin and Roux (2005). The
SAR pair was used to extract 3-D information (e.g., lines, point-like scatterers etc.) in radar-
grammetric framework which was projected to optical image. Structural information was
then exploited by forming a region adjacency graph based on markov random field (MRF)
and an elevation constraint was introduced in the prior term in MRF to ensure homogenous
regions in the optical image to have similar heights. Similarly, (Sportouche et al., 2011) also
demonstrated the use of building reconstruction using optical and SAR imagery. However
in contrast to (Tupin and Roux, 2005), their approach exploited single optical and high res-
olution SAR image of the illuminated scene. Potential building footprints were detected in
the optical image which were later projected and registered to the SAR image. Subsequently,
these footprints were validated and their heights were retrieved through a joint optimization
procedure based on log-likelihood function. In InSAR context, a recent and worth mention-



2.4 Object reconstruction using SAR 18

ing approach that combined an aerial orthophoto with a single-pass high resolution InSAR
image pair to retrieve the height of flat roof buildings was presented in (Wegner et al., 2014).
The key idea of their work was the combination of different height hypothesis estimated per
building in a weighted least squares fashion. Although manual intervention was required
in many steps but nevertheless the method provided nice theoretical basis towards joint
estimation of building heights in data fusion perspective.

2.4.1.6 Advanced InSAR (TomoSAR)

Due to the complex urban scenes and inherent characteristics of SAR images due to geomet-
rical projection caused by side-looking geometry, the previously presented approaches give
solutions to 3-D building reconstruction but only to some extent. As already mentioned, ad-
vanced InSAR methods e.g., PSI and TomoSAR aim at SAR imaging in 3-D or even higher di-
mensions by resolving the distinct scatterer contributions within one azimuth-range pixel of
a conventional 2-D SAR image. Preliminary investigations of TomoSAR were carried out to
resolve volumetric scatterers (Reigber and Moreira, 2000) (Lombardini and Reigber, 2003)
with applications typically in the field of forest mapping e.g., estimating biomass (Frey et al.,
2008) (Tebaldini and Rocca, 2012) (Minh et al., 2014) and tree heights (Tebaldini, 2009)
(Neumann et al., 2010) (d’Alessandro and Tebaldini, 2012) etc. In urban environments, us-
ing TomoSAR to resolve discrete scatterers is of more interest as it allows layover separation
and has been demonstrated over C-band ERS data (Fornaro et al., 2005) and L-band airborne
SAR data (Guillaso and Reigber, 2005) (Sauer et al., 2009). First demonstration of TomoSAR
over spaceborne VHR TerraSAR-X data was presented in (Zhu and Bamler, 2010b) (Reale
et al., 2011). SAR tomography of urban areas using CosmoSkyMed data in a multi-look
framework has been proposed in (Fornaro et al., 2014). Recently, by exploiting the concept
of joint sparsity, the state-of-the-art SLIMMER algorithm (Zhu and Bamler, 2010a) has been
extended to multi-snapshot SL1MMER (M-SL1MMER) in (Zhu et al., 2015b).

Besides few approaches, e.g., (Guillaso et al., 2012) (Guillaso et al., 2013) (D’Hondt et al.,
2012) (D’Hondt et al., 2013), aimed towards information extraction, 3-D object model-
ing/reconstruction from TomoSAR data is still a new field and has not been explored much.
Preliminary investigations towards object modeling/reconstruction using spaceborne To-
moSAR point clouds were demonstrated in (Shahzad et al., 2012) (Zhu et al., 2012) (Zhu
and Shahzad, 2014) (Shahzad and Zhu, 2015b) (Shahzad and Zhu, 2015a) while TomoSAR
point clouds generated over urban and vegetation areas using airborne SAR datasets were
explored in (D’Hondt et al., 2012) (D’Hondt et al., 2013) and (Shahzad et al., 2015) (Schmitt
et al., 2015) respectively.

2.4.2 Reconstruction of Individual trees in VHR SAR
2.4.2.1 Appearance and challenges

Single tree reconstruction from remote sensing data has been an active but highly challeng-
ing research topic due to the lack of geometrical features defining the shape of an indi-
vidual tree. Especially in SAR imagery, apart from radiometric effects such as speckle and
layover, the following factors considerably increase the complexity of individual tree detec-
tion/recognition:

� Trees show a manifold and possess highly non-descriptive appearance (Stilla et al., 2014);
� Exhibit weak backscattering signal;
� Often present in a group (or cluster) exhibiting significant overlap among each other;
� Rich variety of tree species rendering unarticulated diversity in tree shapes.

These factors make automatic recognition of individual tree from SAR imagery highly non-
trivial. To this end, defining appropriate tree models corresponding to available SAR data
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might be helpful in developing algorithms towards single tree recognition. For instance, 3-D
ellipsoids (Lindberg et al., 2014) (Shahzad et al., 2015) (Schmitt et al., 2015) or paraboloids
(Morsdorf et al., 2004) could be utilized to represent tree crowns as the first coarse approx-
imation.

2.4.2.2 Few recognition/reconstruction approaches

Although recognition of individual trees (or vegetation) from remote sensing data has long
been investigated from optical sensors (Hirschmugl et al., 2007) (Ardila et al., 2012) (Jiang
and Lin, 2013) and LiDAR (Morsdorf et al., 2004) (Chen et al., 2006) (Höfle et al., 2008) (Jing
et al., 2012) (Höfle et al., 2012) (Chang et al., 2013), there exist very few publications dealing
the problem using SAR imagery. Among them, most approaches targeting towards forest
mapping adopted SAR sensors to estimate the biomass (or volume) using L- and X-band
SAR sensors (Englhart et al., 2011), L-band Polarimetric InSAR (Neumann et al., 2010), or
via processing P-band SAR data using advanced InSAR methods e.g., TomoSAR (Frey et al.,
2008) (Minh et al., 2014). Another approach to estimate stem volume using multi-view VHF-
band SAR images was presented in (Hallberg et al., 2005). Use of X-band sensors were also
explored in reconstructing canopy height model (Izzawati et al., 2006) and large-scale forest
classification (Perko et al., 2011).

In the context of individual tree reconstruction, experiments using airborne millimeterwave
SAR imagery have shown promising prospects (Schmitt et al., 2013). First approaches ex-
ploiting such millimeterwave SAR intensity image via morphological attribute filters were
presented in (Maksymiuk et al., 2014) (Stilla et al., 2014). Recently, data from the same sen-
sor has been utilized to produce a layover and shadow free 3-D point cloud via TomoSAR.
After segmentation of the resulting point cloud, 3-D ellipsoid modeling has been applied
to each segmented cluster to reconstruct individual trees. Relevant geometrical tree param-
eters is then extracted from these 3-D trees ellipsoids. Detailed processing scheme is illus-
trated in (Shahzad et al., 2015), (Schmitt et al., 2015) and Chapter 7 of this thesis.
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3 Related work −Object reconstruction using 3-D
(ALS) point clouds

3-D object reconstruction techniques from point clouds are widely employed using airborne
laser scanning (ALS) data. This chapter first gives an overview related to 3-D building recon-
struction methodologies. Subsequently, a brief overview about detection and reconstruction
of individual trees is provided. Finally, special characteristics of TomoSAR point clouds in
comparison to ALS point clouds are mentioned to emphasize the need of robust and dedi-
cated approaches that have been developed in the scope of this thesis.

3.1 3-D building reconstruction

Automated building detection and reconstruction has been an active research area for at
least two decades. Despite extensive research efforts, the topic is still of great interest due
to ever increasing growth of urban population which gives rise to a wide range of poten-
tial applications in numerous fields. For instance, 2-D building footprints (or outlines)
can be used in urban energy modeling (Sehrawat and Kensek, 2014), disaster manage-
ment (Tomaszewski, 2014), devising emergency responses (Kolbe et al., 2008), noise pollu-
tion/control analysis (de Kluijver and Stoter, 2003), web-based mapping (Over et al., 2010),
and flood risk modeling purposes (Shamaoma et al., 2006) etc. Additionally, extruding these
footprints using height information leads to 3-D building models. Such models are essential
for virtual city modeling (Döllner et al., 2006) and 3-D GIS applications (e.g., commercial
software such as Google Earth, Apple Maps, etc.). Other possible usages may include urban
planning (Koeninger and Bartel, 1998), augmented reality (Portales et al., 2010), exploration
of solar potential over building roofs (Jochem et al., 2009), visibility analysis in urban envi-
ronments (Engel and Döllner, 2009), analyzing electromagnetic reflections for placement of
telecommunication antennas (Kirtner, 2000), gaming/entertainment industry (Pouliot et al.,
2012) and many others.

A large amount of 2-D/3-D building detection and reconstruction techniques exist that em-
ploy ALS data. Interested reader may consult recent surveys over building extraction (Toml-
jenovic et al., 2015) and 3-D reconstruction (Haala and Kada, 2010) from ALS point clouds.
Due to the large number of publications in the field, the presented overview is exhaustive,
but certainly not complete, and mainly focuses on recent approaches and algorithms.

Methodologically, the problem of 3-D reconstruction is tackled by subdividing the task into
two sequential steps, i.e. detection/classification of building points followed by their 2-D/3-
D modeling and reconstruction. In the following two subsections, approaches lying in these
two domains are sequentially presented.

3.1.1 Buildings detection (or extraction)

Building detection is generally carried out by first computing a digital terrain model (DTM)
by filtering techniques e.g. via morphological filtering, slope or gradient analysis based fil-
tering, linear prediction or interpolation based approaches, via iterative densification of
triangular irregular network (TIN) structures or using segment based filtering. Interested
readers may refer to (Meng et al., 2010) and (Vosselman and Maas, 2010) for an insight. In
the following, these ground filtering techniques are briefly revisited:
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3.1.1.1 Ground filtering techniques

3.1.1.1.1 Morphological based filtering

One of the early investigations on introducing morphological operations for ground points
detection was carried out in (Lindenberger, 1993). Initially seed points having lowest height
value within each horizontal structuring element were chosen by applying a morpholog-
ical opening operation. Later, among neighbors of the chosen seeds, those points having
height differences less than a certain defined threshold were extracted out in a recursive
manner and characterized as belonging to the ground. A drawback of this approach was
that its performance depends on the characteristics (e.g., size and shape) of the structuring
element. Several researchers have focused on this issue and have proposed various mor-
phological ground filtering techniques via progressively changing the size and the shape
of the structuring elements. For instance, (Zhang et al., 2003) proposed such a filter to ex-
tract non-building points on almost flat slope terrains by gradually increasing the size of the
structuring element. An extension to this approach able to work for more inclined terrains
was presented in (Chen, 2007). The approach employed adaptive morphological opening
operations using circular structuring element to detect larger buildings by prior removal
of vegetation and other smaller objects. An even improved version minimizing the number
of tuning parameters required in (Chen, 2007) from seven to two was proposed in (Chen,
2009). A progressive morphological approach that employs image inpainting methods to-
gether with simple slope thresholding and steadily (linearly) increasing the size of the struc-
turing element was presented in (Pingel et al., 2013). (Li et al., 2014) also developed a brim
filter that was embedded into (morphological) top-hat transformation to robustly extract
ground points.

3.1.1.1.2 Slope or gradient analysis based filtering

Slope or gradient based filters rely on the assumption that ground and non-ground points
have distinct slopes especially at the transition regions. As shown in (Vosselman, 2000),
these filters are closely related to mathematical morphological (erosion) operations with
the difference that they compute slope (or gradient) at each point and use it to detect non
ground points. Similar to morphological based filters, each detected non-ground point is
then further evaluated based on a defined elevation criterion. Use of fixed slope threshold
worsens the filtering procedure especially in non-flat terrain surface. In this context, various
approaches e.g., (Sithole, 2001) (Shan and Sampath, 2005) (Wang and Tseng, 2010) (Susaki,
2012) were proposed to adaptively set the slope thresholds to separate ground and non-
ground points in complex urban scenes.

3.1.1.1.3 Linear prediction (or interpolation) based methods

These methods model the underlying terrain as a continuous (or at least piecewise) surface.
An initial surface is first approximated by using all points in the dataset. Then, weights are
computed for every point on the basis of its distance (or residual) from the surface. The
weighting function is typically designed such that high weight is given to low objects (or
points with negative residuals i.e., points lower than the initial approximation of the terrain
surface) and low weight is assigned to the elevated objects (or points having higher positive
residuals). In other words, points belonging to elevated objects are treated as outliers and
the surface is iteratively refined using weighted linear regression techniques. A preliminary
example of such a weighted interpolation was presented in (Kraus and Pfeifer, 1998). More
recently, advanced methods based on repetitive interpolation (Kobler et al., 2007) and itera-
tive thin plate spline technique (Mongus and Zalik, 2012) (Chen et al., 2013) have also been
developed.
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3.1.1.1.4 Progressive (or iterative) TIN densification filtering

In contrast to interpolation based approaches, these approaches model the ground terrain
as a polyhedron. Instead of working on raw Lidar point clouds or rasterized DSMs, these
methods first create a TIN or mesh by using sparse seed points with lower height values.
Later the TIN is iteratively densified by adding more points that satisfy certain defined
criterion. (Axelsson, 2000) first introduced TIN based ground filtering procedure. The algo-
rithm worked by spatially tiling (i.e., 2-D gridding) of the whole point cloud. The ground
terrain was then approximated by an initial TIN formed from a set of seed points. Each
seed point was chosen as the lowest point in each grid. Densification of the sparse TIN was
then made via addition of points by comparing the distances and angles of the points to the
facet planes and nodes of the current polyhedron. The method worked well to handle dis-
continuous surfaces but lacked the ability to work in steep terrains. (Zhang and Lin, 2013)
also proposed an algorithm to improve the performance of TIN densification based filters.
After selecting initial seed points, their method performed segmentation based on smooth-
ness constraint, proposed by (Rabbani et al., 2006), to grow the set of ground seed points
prior to the subsequent densification. Experiments on benchmark data provided by ISPRS
Commission III/WG 3 revealed that the idea of performing segmentation before the densi-
fication step helped in decreasing the omission errors during the filtering process. Recently,
(Kang et al., 2014a) proposed a streaming framework for TIN densification. The proposed
framework incorporated a parallelism scheme using multi-core architecture to improve the
computational complexity of TIN related filters.

3.1.1.1.5 Segment based filtering

Except for (Zhang and Lin, 2013), so far the methods presented in this section are point-
based. Although these methods have the strength of using an explicit model of the terrain
surface, they lack the contextual knowledge (Sithole and Vosselman, 2005). Segment-based
filters on the other hand first perform the segmentation of points to identify homogenous re-
gions/patches. These patches (or segments) are then used as basic components for the subse-
quent filtering process. Initial attempt of applying segmentation based filtering directly over
point clouds was presented in (Sithole and Vosselman, 2005). Use of contextual knowledge
via segmentation allowed preserving discontinuities occurring especially in urban areas.
Although the segment-based methods do have an advantage over point-based methods, the
absence of an explicit surface can cause difficulties in correctly differentiating vegetation in
the sloped terrain. To partially overcome these shortcomings, (Tóvári and Pfeifer, 2005) and
(Lin and Zhang, 2014) proposed hybrid approaches that essentially adapted a (point-based)
surface interpolation method to work on groups (or segments) of points. This combination
improved the filtering accuracy by exploiting the strengths of both the approaches.

3.1.1.2 Extraction of building points/pixels

Nadir looking LiDAR points essentially give a DSM. Subtracting the DSM from the com-
puted DTM (via ground filtering techniques from previous section) provides a normalized
DSM (nDSM) which represents the height variation of filtered non-ground points (mostly
comprising of man-made structures and vegetation). Subsequently, building points are ex-
tracted out from the nDSM (or filtered point cloud) by exploiting geometrical features such
as deviations from the surface model, local height measures, roughness, and slope varia-
tions.

Methodologically, the building extraction approaches can be categorized into three groups
where the first two groups of approaches extract buildings either with or without planarity
assumption. The third group of approaches lies in supervised/unsupervised classification
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framework. Although some of the classification methods also assume planarity of building
roofs, these approaches have been separately categorized for better methodological clarity.

3.1.1.2.1 Building extraction with planarity assumption

Majority of approaches assume polyhedral roof structure and therefore make use of the
planarity assumption to extract man-made structures in particular buildings from other
objects in the scene. These approaches may be categorized into further two classes namely,
segmentation-based (region growing / clustering) or fitting-based methods, and are pre-
sented as follows:

Segmentation based approaches

These approaches typically employ 3-D surface normals either as a similarity measure for
region growing or as features during the clustering process. Commonly, surface normals are
estimated via fitting “best” plane in least squares (LS) sense within some predefined local
neighborhood vc; which is equivalent as performing principal component analysis (PCA) of
the points in vc (Hoppe et al., 1992). Several researchers have utilized the estimated normals
to extract planar building segments. For instance, (Rottensteiner, 2003) extracted buildings
from DSM via surface normals based region growing approach. (Forlani et al., 2006) also
presented a similar region growing procedure to extract buildings by first extracting planar
roof segments via slope analysis and later employing a rule based approach on the basis
of computed topological and geometrical relationships of the extracted segments. (Zhang
et al., 2006) and (Chen et al., 2012a) utilized a plane-fitting based region growing proce-
dure to separate buildings from vegetation. (Sampath and Shan, 2007) presented a building
boundary tracing algorithm from raw LiDAR point clouds. Their approach first performed
ground filtering operation using 1-D slope filter. Then, a region growing based segmenta-
tion was adopted to extract building points. (Miliaresis and Kokkas, 2007) also proposed an
object based segmentation method to extract buildings using LiDAR digital elevation mod-
els (DEMs). (Sohn et al., 2008) performed a model based filtering to first remove ground
points. Connected component analysis is then carried out and buildings are extracted out
based on characteristics features such as height, outline regularity, and smoothness of the
surface. (Dorninger and Pfeifer, 2008) extracted building points by applying mean shift
based clustering algorithm to segment planar roof points. (Höfle et al., 2009) also developed
an approach to automatically extract buildings by exploiting strengths of both raster and
point cloud methods. The method exploits nDSM and slope-adaptive echo ratio raster fea-
ture map to extract potential building candidates. Subsequently, an object based classifica-
tion scheme based on computed surface roughness was adopted to remove the non-building
regions. (Poullis and You, 2009) also proposed a probabilistic clustering algorithm based on
computed surface normals. Their method was essentially a region growing procedure based
on statistical analysis of geometrical properties of objects appearing in the scene. A segmen-
tation approach to extract building directly from 3-D points was proposed in (Wang and
Shan, 2009). Their method first determined the step (or jump) edges using nearest neighbors
approach and later performed grouping of these edge points based on minimum spanning
trees to determine building boundaries. Subsequently, separation of trees from buildings
was achieved by employing a dimensionality learning method.

Typically, segments retrieved via region growing or clustering based on surface normals re-
quire a further post processing step to spatially separate coplanar segments. An approach
that employed a density based concept (see Figure 5) to separate coplanar segments re-
trieved via fuzzy k-means algorithm to individually model distinct roof parts was presented
in (Sampath and Shan, 2010). The approach worked well but needs the number of clusters
(i.e., k) in advance. An elbow method was utilized to guess the initial number of clusters
which however in most cases cannot be easily determined. Among recent approaches, (Kim
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Fig. 5. Density based clustering algorithm (Ester et al., 1996). Points a and b are directly density connected to each other
whereas points a and c are density connected to each other since there is a chain of points between them such that they all
are directly density connected to each other. Two parameters that control the clustering process include the neighborhood
parameter ε, i.e., the radius in case of sphere or cylindrical neighborhood, and the minimum number of points MinPts
in the ε-neighborhood for any particular point. The resulting clusters thus contains points such that all the points in any
particular cluster are density connected to each other but are not density connected to any other point belonging to another
cluster. Moreover, each point inside any particular cluster belongs to one of the three categories: 1) A point is labeled core
point if it contains, within its ε-neighborhood, MinPts number of points; 2) A point is considered border point if it is within
ε-neighborhood of any core point but itself is not a core point and does not have MinPts neighbors; 3) A point neither core
point nor border point is termed as an outliers i.e., any point which do not have density (number of points) greater than
MinPts within its ε-neighborhood and also is not the neighbor of any other point.

and Shan, 2011) also performed planar roofs segmentation based on estimated normal vec-
tors for 3-D building modeling by adopting an energy minimization approach formulated
as multiphase and multichannel level set. (Liu et al., 2013b) also proposed a modified Lo-
cally Excitatory Globally Inhibitory Oscillator Networks (Wang and Terman, 1997) based
segmentation to extract buildings from LiDAR DSM. In context to urban scene classifica-
tion, (Vosselman, 2013) presented a multi-step segmentation approach based on planarity
assumption. Later, merging and majority filtering techniques were employed for post pro-
cessing. Similarly, (Jochem et al., 2012) also developed a roof plane segmentation approach
for subsequent 3-D reconstruction by processing larger areas via spatially gridding of the
whole dataset into smaller tiles. Within each tile, building regions were extracted using
(Höfle et al., 2009) method. Surface normals based region growing procedure was then
adopted within extracted regions to segment distinct roof surfaces. (Awrangjeb and Lu,
2014) presented another approach to extract building pixels by applying a segmentation
method based on the connectivity based clustering technique. To allow real time extrac-
tion of buildings, an approach able to directly process scan lines of raw LiDAR data was
presented in (Xu et al., 2014). The approach was based on discrete stationary wavelet trans-
form (Demirhan and Gueler, 2011) and was able to extract polyhedral buildings in near real
time (i.e., on the fly) during the airborne laser scanning process. An object based frame-
work to extract buildings for subsequent classification into different types was proposed in
(Belgiu et al., 2014). (Chen et al., 2014) also developed a multi-grid approach to detect and
reconstruct buildings. A global optimization approach to segment individual roof segments
for subsequent 3-D reconstruction was presented in (Yan et al., 2014). The key aspect of
the approach was its ability to simultaneously extract multiple roof planes by formulating
segmentation as a multi-label optimization problem.
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Fitting based methods

Apart from the region growing/clustering methods, building pixels/points can also be ex-
tracted out by making use of plane fitting approaches followed by topological (contextual
or geometric constraint based) analysis. Hough transform (Hough, 1962) (Duda and Hart,
1972) and random sample consensus (RANSAC) (Fischler and Bolles, 1981) are the two most
commonly employed state-of-the-art algorithms that have been utilized/adapted to extract
points belonging to planar roof surfaces. For instance, methods employing hough transform
(or its variants) to determine planar roof facets have been proposed in (Vosselman and Dijk-
man, 2001) (Tarsha-Kurdi et al., 2007) (Sohn et al., 2008) (Borrmann et al., 2011) (Rau and
Lin, 2011) (Hulik et al., 2014). Although hough transform is extensively employed to de-
tect 2-D lines in images, their adaptation to 3-D plane detection is primarily restricted due
to computational inefficiency and sensitivity to fitting parameters (Borrmann et al., 2011).
RANSAC on the other hand is more generally applied for planar roof extraction. E.g., sev-
eral variants of standard RANSAC algorithm for detecting planar roof structures have been
presented e.g., in (Verma et al., 2006) (Schnabel et al., 2007) (Tarsha-Kurdi et al., 2007) (Kim
and Shan, 2011) (Chen et al., 2012a). Unfortunately, similar to hough transform, RANSAC
also suffers from the computational inefficiency. Although the algorithm is quite robust,
it randomly selects the initial subset of points and presumes uniform prior probabilities
which as a consequent in presence of many outliers may lead to an increasing number of it-
erations required for convergence. To overcome this, a bayesian version of RANSAC relying
on conditional sampling methods has been proposed in (Botterill et al., 2009) (Kang et al.,
2014b). Other versions of original RANSAC that improve the robustness and computation
efficiency include MSAC (M-estimator SAmple and Consensus) (Henn et al., 2013), MLESAC
(Maximum Likelihood Estimation SAmple Consensus) (Torr and Zisserman, 2000), Guided
MLESAC (Tordoff and Murray, 2005), PROSAC (PROgressive SAmple Consensus) (Chum
and Matas, 2005) and many others.

3.1.1.2.2 Building extraction without planarity assumption

Although a lot of approaches employ planar roof assumption, there also exist some ap-
proaches relying only on geometrical properties (e.g., building shape, size, area compact-
ness, height etc.). For instance, an earlier approach in this context was presented in (Weidner
and Förstner, 1995) in which a pre-computed DEM was utilized to extract buildings by ap-
plying height difference (between DEM and the surface topography) thresholding based on
prior knowledge pertaining to buildings geometries in the scene. More recently, (Meng et al.,
2009) employed morphological operators to detect building pixels from ground filtered Li-
DAR data via gradually removing non-building points by incorporating prior knowledge
related to minimum building height and area dimensions. (Mongus et al., 2014) also ex-
tracted buildings using contextual knowledge to distinguish objects with similar surface
and geometrical properties by exploiting differential morphological profiles together with
surface and regional attributes.

3.1.1.2.3 Classification based approaches

Building points can also be extracted out by explicitly labeling every point in the data
set. For labeling purpose, local 3-D structure is typically inferred by employing eigenvalue
analysis of the 3-D covariance matrix

∑
vc

derived from locally extracted neighbors vc of a
particular point p. The eigenvectors of

∑
vc

essentially give the orthonormal basis for the
local neighborhood with their corresponding eigenvalues representing the magnitude (or
variance) of expansion. Analyzing this magnitude gives an indication of the beneath sur-
face, e.g., eigenvalue analysis of

∑
vc

with all points lying on the plane would ideally return
only two nonzero eigenvalues. Similarly, all points lying on a 3-D line would give only one
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nonzero eigenvalue. In addition to this, these eigenvalues are used to define a set of geomet-
ric features (e.g., anisotropy, eigenentropy, omnivariance, local surface variation or scatter
etc.) (Mallet et al., 2011). These eigenvalue based features in conjunction with other geomet-
ric features such as spectral and directional features (Munoz et al., 2009), height/elevation
variances and planarity (Mallet et al., 2011), point distances (Waldhauser et al., 2014), point
density or density ratio (Guo et al., 2015), and distance ratio (Xu et al., 2012) etc. have been
used to perform detailed 3-D analysis/classification. A more detailed description of these
geometric (including eigenvalue) features can be found in (Mallet et al., 2011) and (Wein-
mann et al., 2015b).

Local neighborhood definition for feature computation

The definition of local neighborhood is crucial and plays an important role in estimating
these features. Typically, the local neighbors are extracted from 3-D point clouds using
spherical neighborhood (Munoz et al., 2009) (Weinmann et al., 2015b) where all points ly-
ing within a certain fixed radius from a particular point are taken as its neighbors. An al-
ternative strategy is to compute neighbors via cylindrical neighborhood (Mallet et al., 2011)
(Waldhauser et al., 2014) (Zhu and Shahzad, 2014) (Shahzad and Zhu, 2015b) where instead
of sphere all points lying within a vertical cylinder (assumed to have infinite height) of de-
fined radius centered at the point of interest are considered as the corresponding neighbors.
Apart from these two, another common way to extract local neighbors is to consider fixed
number of closest distance points as neighbors (i.e., k nearest neighbors) (Niemeyer et al.,
2014) (Weinmann et al., 2015a). All of these strategies depend on one free scale parameter
i.e., the radius of a sphere/cylinder or the constant parameter value of k. Selection of this
scale parameter is not trivial due to its implicit dependency on the underlying 3-D structure
and point density of the dataset and is therefore chosen either empirically or heuristically
rendering it to be very much data specific/dependent (Weinmann et al., 2015b). Moreover,
sensitivity and behavior of each feature is usually different with respect to the scale parame-
ter and therefore one particular value may or may not be appropriate for efficient estimation
of all considered features. To overcome these limitations, several researchers have focused
on adaptive estimation of the scale parameter for each 3-D point (Weinmann et al., 2015a)
e.g., via eigenentropy (i.e., Shannon’s entropy) (Weinmann et al., 2014), normalized deriva-
tive (Pauly et al., 2003), local density and curvature (Mitra and Nguyen, 2004), TIN/voronoi
(Sampath and Shan, 2010) (Yan et al., 2014) or dimensionality (Demantke et al., 2011) based
scale selection techniques.

Supervised classification approaches

Object classification from extracted features is then attained mostly by using supervised
learning methods e.g., SVM (Mallet et al., 2011) (Zhang et al., 2013a), random forests
(Chehata et al., 2009), genetic algorithms (Waldhauser et al., 2014), artificial neural net-
works (Priestnall et al., 2000), AdaBoost (Lodha et al., 2007a), expected maximization
(Lodha et al., 2007b) and bayesian discriminant classifiers (Khoshelham and Elberink,
2012). Furthermore, by bringing contextual knowledge into account, an approach based on
combination of CRF and random forests to provide improved classification results was pro-
posed in (Niemeyer et al., 2014). (Guo et al., 2015) also proposed a contextual constraint ap-
proach refining initial classification via joint boost classifier with graph-cut segmentation.
An approach based on (non-) associative markov networks was also presented in (Shapo-
valov et al., 2010). (Weinmann et al., 2015a) also proposed a fully automated and compre-
hensive framework exploiting contextual knowledge.

Unsupervised classification approaches

Although both supervised paradigms (i.e., approaches with or without incorporating con-
textual knowledge) provides improved classification results, they require an already labeled
dataset for training purposes which is not always available. In addition to it, the quality of
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Fig. 6. Typical workflow related to building footprint reconstruction. The first column represents the segmentation process
that separates the extracted building points into respective individual buildings (black and gray points belonging to the
two buildings in the depicted case). Coarse shapse of the building footprints are reconstructed by connecting the boundary
points (second column). Different methods to determine this coarse shape are presented in Section 3.1.2.1. The initial
shapes are smoothed using methods presented in Section 3.1.2.2 (third column). Finally constraints are added to yield
geometrically correct and visually appealing building shapes via methods provided in Section 3.1.2.3 (fourth column).
Each module is elaborated in the corresponding subsections.

training dataset has significant effect on the classification results. To cope with these is-
sues, few researchers have provided solutions in fully unsupervised manner. For instance,
(Lafarge and Mallet, 2012) proposed a graph cut based energy minimization approach to
classify the input point cloud into four classes: building, vegetation, ground and clutter.
A somewhat similar and seemingly improved approach with slightly different energy for-
mulation to classify the whole point cloud into buildings, trees and ground was proposed
in (Zhou and Neumann, 2013). Although both approaches were based on MRF, the main
difference was in the definition of trees classification in the energy equation. Another un-
supervised classification approach also based on graph cut optimization was proposed in
(Sun and Salvaggio, 2013). Apart from graph cut based approaches, (Xu et al., 2012) also
proposed a sequential three stage rule based strategy for classification of input point cloud
LiDAR dataset into seven distinct categories. The features employed in the proposed classi-
fication approach were derived from three entities namely single points, planar segments,
and segments resulting from mean shift algorithm.

3.1.2 Building boundary/footprint reconstruction
To reconstruct building footprints, a common strategy is to adopt a standard three-step
workflow, depicted in Figure 6, in which the initial rough contours around extracted build-
ing points/pixels (Section 3.1.1) are first determined which are subsequently regularized
using line simplification methods and additional geometric constraints (e.g., parallelism or
orthogonality) to yield accurate and visually appealing building footprints.

3.1.2.1 Rough footprint generation

Several algorithms have been employed to reconstruct the rough shape of the building foot-
print. For instance, a computational geometry based alpha shapes (or α-shape) algorithm
(Edelsbrunner et al., 1983) is commonly employed to extract building boundary/outline
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Fig. 7. Coarse building footprint reconstruction using alpha shapes method with varying α such that
α1 < α2 < α3 < α4 < α5 < α6. It is demonstrated that with increasing α, the algorithm loses the ability to reconstruct
concave building footprints and eventually with very large value of α or when α ≈ inf returns a convex hull.

(Dorninger and Pfeifer, 2008) (Lach and Kerekes, 2008) (Kim and Shan, 2011) (He et al.,
2014) (Shahzad and Zhu, 2015b). The method is essentially a generalization of convex hull
and results in vertices that describe the coarse 2-D polygonal boundary of the building
footprint. Unlike convex hulls, the method is also able to deliver both convex and con-
cave boundaries with fine details. Moreover, both inner and outer polygonal boundaries
can be extracted out. However, the reconstructed shape depends on a particular value of
α (i.e., it controls the model complexity) and therefore has to be carefully chosen. For in-
stance, an overlarge α could make it difficult to follow concave polygonal shapes, e.g., an
L-shaped building (see Figure 7). Therefore, an estimate of α as proposed in (Dorninger and
Pfeifer, 2008) that produces reliable building shapes, including smaller structures, may be
chosen as twice of the mean of Euclidean distances computed for every point from its near-
est building points. (Verma et al., 2006) employed a ball pivoting algorithm (Medeiros et al.,
2004) to extract boundaries of the roof segments. The method was closely related to alpha
shapes but result in triangular mesh of points. Another approach to trace boundary from
building points extracted from raw LiDAR point clouds was proposed in (Sampath and
Shan, 2007). Their method adopted a modified convex hull approach to trace the bound-
ary points which were then connected to obtain coarse building outlines. (Poullis and You,
2009) also presented a modified boundary extraction method, originally proposed in bor-
der following context in (Suzuki and Abe, 1985), to extract building outlines via connected
component analysis. Other approaches presented in the context of reconstructing building
boundaries (i.e., via step edges, height jumps or tracing segmented roof faces) from building
pixels/points extracted either from rasterized DSM (or nDSM) or directly from point clouds
include (Maas and Vosselman, 1999) (Rottensteiner and Briese, 2002) (Rottensteiner, 2003)
(Wang and Shan, 2009) (Kim and Shan, 2011) (Jarzabek-Rychard, 2012) (Sohn et al., 2012)
(Liu et al., 2013b).
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3.1.2.2 Refinement or polygon simplification

Generally due to measurement noise, low sampling rate and varying point density, the ini-
tial coarse footprints are usually irregular (or rough) and exhibit zigzag patterns. Typically,
line simplification methods are employed to achieve smoothed/refined footprints. One of
the most commonly employed method is the Douglas-Peucker (DP) algorithm proposed in
(Douglas and Peucker, 1973). The algorithm begins by connecting the first and last point
of the ordered set containing the vertices of the initial footprint. Distance of all in-between
points are computed from the connected line segment. If the distance of the farthest point
is less than a certain predefined threshold, it is discarded. Otherwise this point becomes a
new end point. The algorithm then runs recursively with the first point and the new end
point and then with new end point and the last point. Once the recursion stops, the algo-
rithm outputs a new ordered set of vertices containing the same initial vertices except the
discarded ones. Approaches employing DP method to refine initial rough building bound-
aries were presented in (Zhang et al., 2006) (Jwa et al., 2008) (Poullis and You, 2009) (Kim
and Shan, 2011) (Galvanin and Poz, 2012) (Sohn et al., 2012) (Liu et al., 2013b) (Yan et al.,
2015). A slightly modified vertex-driven DP version to remove erroneous vertices was pre-
sented in (He et al., 2014). In contrast to DP, the vertex-driven DP concentrated on polygonal
complexity and generated a distinct polygonal hypothesis based on certain n number of ver-
tices. An energy minimization based optimal polygon selection procedure was adopted to
determine the optimal value of n. Another polyline simplification algorithm based on sleeve
fitting technique was proposed in (Zhao and Saalfeld, 1997). (Dorninger and Pfeifer, 2008)
also proposed refinement procedure to smooth the rough building footprints. Their method
was based on mean angular deviation computed at each edge (i.e., line connecting a vertex
with its next consecutive vertex) of the initial polygon.

3.1.2.3 Boundary regularization

Many approaches apply perpendicularity or parallelism constraints to yield better looking
and visually correct building shapes (Weidner and Förstner, 1995) (Maas and Vosselman,
1999) (Alharthy and Bethel, 2002) (Gross et al., 2005) (Wang et al., 2006) (Zhang et al., 2006)
(Sampath and Shan, 2007) (Dorninger and Pfeifer, 2008) (Jarzabek-Rychard, 2012) (Perera
et al., 2012) (Arefi and Reinartz, 2013) (Liu et al., 2013b) (He et al., 2014) (Awrangjeb and
Fraser, 2014) (Seo et al., 2014) (Zhu et al., 2015a) (Yan et al., 2015). Boundary regularization
methods may be categorized into two categories i.e., approaches that do or do not need
estimates of dominant building directions. The first set of approaches initially determine the
dominant building directions and later utilize them to regularize refined footprints whereas
the second set of approaches typically formulate the regularization process into a constraint
energy minimization framework. Solution of such a formulation is then usually obtained
via optimization algorithms e.g., simulated annealing (gradient descent) or graph cuts. In
the following, both types of regularization methods are briefly discussed:

3.1.2.3.1 Approaches based on dominant direction estimation

These approaches typically assume that buildings are composed of only two dominant di-
rections. Once the main orientation is estimated, the refined edges are then adjusted (or
projected) either onto the estimated principal or its orthogonal direction depending upon
the smaller angular difference Retrieval of the main orientation is thus the crucial step to
enforce such a regularization. To this end, minimum bounding rectangle (MBR) can be em-
ployed to determine the dominant/principal orientations of the building footprint (Arefi
and Reinartz, 2013). I.e., the two orthogonal axes of the MBR provide the direct estimate of
the desired dominant orientations. (Gross et al., 2005) also proposed a MBR based method
to generate rectangular building footprints via recursive rectangular approximation. (Seo
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(a) (b)

Fig. 8. Example depicting failure of MBR to correctly determine the dominant direction of the building footprint: (a) 2-D
points of buildings (blue color) are depicted. Convex hull with 14 edges around these points are drawn as red polygon.
Grey rectangle is the minimum area bounded rectangle computed via rotating callipers method. It can be seen that the
dominant directions estimated via grey MBR do not correctly represent the true dominant orientation of the building
points. The desired MBR that correctly represent the dominant orientation is shown as black dotted rectangle; (b) the
areas of the MBR by rotating MBR around its center of gravity at angles equal to every edge of the convex hull. The grey
circle shows the minimum area bounded rectangle corresponding to grey MBR in (a) (Shahzad and Zhu, 2014).

et al., 2014) and (Zhu et al., 2015a) also employed MBR based constraints to individually
model every extracted planar patch. Commonly, MBR is computed by a method known as
“rotating calipers” (Toussaint, 1983) which is based on the theorem, proved in (Freeman
and Shapira, 1975), that any minimum area bounded rectangle is collinear with at least
one of the sides of the convex hull (surrounding the same 2-D points). The convex hull is
therefore first computed and later the bounding rectangle is sequentially computed by ro-
tating the convex hull polygons in a way such that each side of the convex hull becomes
parallel to a fixed axis e.g., x- (horizontal) axis. In each rotation, the area of the minimum
bounding box around 2-D points is computed and the rotation angle that provides a mini-
mum bounding area is used to determine the vertices of the desired MBR. Although the use
of MBR provides reasonable estimates of the principal orientation of the buildings, there
exist cases as demonstrated in Figure 8 where MBR fails in accurate determination of build-
ing dominant directions. An alternative to MBR, (Alharthy and Bethel, 2002) proposed an
image cross-correlation matching with rotating template and histogram analysis based ap-
proach to estimate two orthogonal dominant directions. (Zhou and Neumann, 2008) also
performed a similar histogram analysis to estimate principal directions. Their method in
contrast to (Alharthy and Bethel, 2002) was able to detect more than two directions. (Zhang
et al., 2006) also presented an approach to estimate the dominant orientations of the build-
ing based on weighted line segment lengths. The authors proved that their approach was
able to provide robust estimates of the dominant directions as long as the total length of
orthogonal segments was greater than the total length of non-orthogonal segments. Few ap-
proaches e.g., (Dorninger and Pfeifer, 2008) and (Jarzabek-Rychard, 2012) considered the
longest polygonal edge of the refined footprint while (Maas and Vosselman, 1999) regarded
line representing ridgeline edges as an estimate for the principal orientation of the building
footprint.

The estimated principal direction is subsequently utilized to regularize refined footprints.
Figure 9 illustrates the mechanism of practically adding rectilinear constraints to a building
polygon. Apart from the depicted procedure, few other methods also exist in the literature.
E.g., (Sampath and Shan, 2007) presented an approach that regularized the rough building
outlines by following a hierarchical least squares solution. (He et al., 2014) proposed an
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(a) (b)

(c) (d)

Fig. 9. Procedure to add rectilinear constraints to any one particular building polygon: (a) Black dots indicate the extracted
building points, cyan polygon represents the initial coarse outline obtained using alpha shapes algorithm and gray polygon
depicts the refined/smoothed polygon to which rectilinear constraints are added; (b) Each edge of the refined gray polygon
of (a) is segmented to belong to one of the two estimated dominant directions indicated by black arrows. The segmentation
is based on their angular deviation (i.e., an edge is associated to that principal direction with whom the angular difference
is less). Segmented edges are shown in red and green colors. The blue polygon then depicts the reduced refined polygon
of (a) by merging all adjacent edges that belong to the same principal axis. (c) Each edge of the blue polygon is then
rotated/projected around its midpoint onto its corresponding principal axis; (d) Finally the intersection (vertex) points
among the adjacent edges of the projected blue polygon edges of (c) are computed for rectilinearization. Note that the
depicted polygon contains no associated façade and therefore belongs to case 3. For case 2 polygons, the associated façades
are first fused to the refined polygon and, if identified as rectilinear, constraints are added to complete the reconstruction
procedure.

approach that employed a global adjustment procedure based on data fitting errors and
made use of the estimated dominant direction to reconstruct regular building footprints..
Recently, (Yan et al., 2015) also presented a 2-D snake algorithm that performed an energy
minimization of a refined (via DP) 2-D vertex topology represented as a graph in order to
regularize building footprints for subsequent 3-D building modeling.

3.1.2.3.2 Approaches without dominant direction estimation
(Markovian/energy-minimization based methods)

Some approaches enforce rectilinear (or other) regularization constraints without explic-
itly estimating the main building orientation. For instance, (Wang et al., 2006) presented a
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Bayesian approach to reconstruct footprints from pre-segmented building points. The cubic
spline function was used as prior for MAP estimation to give preference to straight, orthogo-
nal or oblique edges. (Lafarge et al., 2008) also proposed an automated object based method
that employed marked point process and utilized an input DEM to extract/reconstruct
structured building footprints. An extension to this approach was presented in (Lafarge
et al., 2010) which also allowed possibility of an interactive operation to obtain more accu-
rate reconstruction results. A similar workflow of obtaining structural footprints was pro-
vided in (Brédif et al., 2013). (Galvanin and Poz, 2012) also presented a building footprint
identification procedure by adopting MRF based approach. Their method adopted a contour
following technique described in (Ballard and Brown, 1982) together with DP method to re-
construct refined contours of above ground objects. Subsequently, building contours were
identified by optimizing the MRF based energy function; comprising of four energy terms:
rectangularity, area, spatiality and entropy; via simulated annealing algorithm.

3.1.3 Roof modeling/reconstruction
Extruding 2-D footprints using the height information results in prismatic (i.e., having flat
roofs) 3-D building models (Zhou and Neumann, 2008) (Poullis and You, 2009) (Ledoux
and Meijers, 2011) (Chen et al., 2014) (Yan et al., 2015). Further appropriate roof mod-
eling enables extension from prismatic to more specific building models. In this context,
most roof reconstruction methods make use of the fact that man-made structures such as
buildings usually have either parametric shapes (model-driven/top-down strategy) or are
composed of polyhedral structures only (data-driven/bottom-up strategy) (Maas and Vos-
selman, 1999). The latter is however more common in the literature where distinct roof
faces are first determined using segmentation-based (region growing or clustering) or fit-
ting methods (3-D hough transform or RANSAC) algorithms (as mentioned in Section 3.1.2
and later reconstructed by employing topological or contextual constraints. Moreover, with
high point density, data-driven approaches are able to reconstruct variety of complex build-
ing shapes. However, with low point density and noisy datasets, existing data-driven algo-
rithms result in either erroneous or incomplete building models. In such scenarios, model-
driven strategies provide more elegant and accurate solution. To improve reconstruction
results, few approaches have also attempted to combine both model-driven and data-driven
approaches giving rise to hybrid approaches. In the following, model-driven, data-driven
and hybrid approaches for 3-D roof modeling/reconstruction are sequentially addressed.

3.1.3.1 Model-driven approaches

Model-driven approaches employ a predefined library of building primitives to reconstruct
3-D building models. An advantage of this strategy is that the pre-defined constraints of
adjacent roof surfaces allow generation of regularized and watertight models. In addition,
it is relatively easier to define a set of rules with few primitives (or roof shapes) in contrast
to organizing individual roof facets derived from data-driven approaches (Huang et al.,
2013). Several model-driven approaches have been proposed in the literature in the past
two decades. For instance, among early investigations (Weidner and Förstner, 1995) mod-
eled simple rectangular building footprints with symmetric sloped roofs being parametri-
cally reconstructed. (Maas and Vosselman, 1999) also derived parameters for buildings with
gabled roofs by analyzing static (or invariant) moments of point clouds. (Brenner and Haala,
1999) also employed 2-D GIS data as an additional data source to reconstruct common roof
categories: flat, gable, hip and desk. For more complicated buildings, the concept of pre-
defined building primitives with 2-D ground maps is typically employed (Brenner, 2000).
The basic idea is to decompose the whole building/roof into smaller structures which could
be easily modeled using a catalog of defined primitives. In this context, (Kada and McKinley,
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2009) proposed a cell decomposition approach based on existing 2-D building footprints to
reconstruct the complete roof structure by grouping (or assembling) standard individual
building blocks, i.e., simple parameterized shapes/primitives (flat, shed, gabled, hipped,
berliner), stored in library. The cell decomposition referred to division of a footprint into
quadrangular and nonintersecting regions (or cells) depending on estimated plane equa-
tions. Each cell was then modeled by respective shape via similarity analysis of estimated
normal vectors. (Lafarge et al., 2010) also utilized a library of 3-D blocks to “place” an in-
dividual best fitting block onto each 2-D footprint reconstructed either interactively or au-
tomatically. A stochastic Gibbs model based on constructive solid geometry representation
was employed to control the fitting and assembling process and subsequently a Bayesian
framework was adopted to determine the optimal configuration. (Huang et al., 2013) also
proposed a similar strategy of reconstructing 3-D roof structure with the difference that they
allowed primitive overlapping and in this context proposed new merging and assembling
rules. (Arefi and Reinartz, 2013) presented a ridge line based simple parametric model fit-
ting method for tilted (i.e., gable and hipped) roofs. (Henn et al., 2013) exploited 2-D avail-
able footprints and presented a fully automatic model-driven approach able to work over
sparse point clouds. In their work, the cell decomposition approach presented in (Kada and
McKinley, 2009) together with a library of standard roof shapes were employed and model
selection was performed in a supervised classification framework using SVM. In similar con-
text, (Zheng and Weng, 2015) also utilized a catalog of seven roof primitives and employed
a decision tree classifier over building points extracted from nDSM to choose optimum roof
type.

3.1.3.2 Data-driven approaches

With increasing point densities, data-driven approaches provide more generic solution to-
wards 3-D building roof reconstruction. These approaches typically employ polyhedral
building structure and therefore follows a common strategy i.e., search for planar segments
by segmentation or fitting methods (presented in section 3.1.2.1, estimate model parameters
(i.e., to extract linear feature) by determining height jumps (or step edges) and computa-
tion of ridge lines via adjacent planes intersections, followed by subsequent regularization
to incorporate geometric and topological constraints (Maas and Vosselman, 1999) (Vossel-
man and Dijkman, 2001) (Rottensteiner, 2003) (Gross et al., 2005) (Forlani et al., 2006)
(Dorninger and Pfeifer, 2008) (Sohn et al., 2008) (Sampath and Shan, 2010) (Kim and Shan,
2011) (Rau and Lin, 2011) (Sohn et al., 2012). For the latter two steps, adjacency of extracted
roof segments is typically determined by building up a roof topological graph (Verma et al.,
2006) (Elberink and Vosselman, 2009) (Perera et al., 2012) (Hron and Halounová, 2015)
(Xiong et al., 2015) (also termed as roof adjacency graph (Forlani et al., 2006) or adjacency
matrix (AM) (Sampath and Shan, 2010)). Topological relationships of individual (adjacent)
roof surfaces are then adjusted according to the set of rules imposing certain constraints
in the reconstruction procedure. Instead of explicitly (pre-)specifying rules based on a pri-
ori knowledge, (Sohn et al., 2008) proposed a binary space partitioning tree serving as a
mid-stage grouping technique to globally adjust (adjacent) linear features for (geometric)
topological reconstruction of building roofs. (Sohn et al., 2012) further improved the topo-
logical reconstruction by employing a minimum description length based global optimiza-
tion procedure to select the optimal model among different generated hypothesis. (Lafarge
and Mallet, 2012) presented a MRF based approach to retrieve adjacency of primitive la-
bels. (Rau and Lin, 2011) also proposed a line based TIN merging and reshaping method
for 3-D roof modeling based on side projection of ALS data. Initial roof topology was recon-
structed via geometric analysis of side (ground-elevation axis) projected data. The method
then utilized 3-D structural lines to remodel the initial topology while simultaneously re-
shaping individual roofs. Instead of making certain assumptions related to angles between
neighboring roof surfaces (Zhou and Neumann, 2008) (Zhou and Neumann, 2010) utilized
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principal directions to adjust the individual roof planes to reconstruct building footprints.
Their method essentially supported flat roof tops however interactive extension to non-flat
roof surfaces (e.g., cones, cylinder etc.) were also anticipated. (Poullis and You, 2009) and
(Ledoux and Meijers, 2011) (Zhu et al., 2015a) also proposed extruded 3-D building mod-
els based on 2-D footprints estimated via boundary tracing/regularization and by imposing
geometric topological constraints respectively.

3.1.3.3 Hybrid approaches

Some researchers also employed model-driven strategies over initial models obtained from
data-driven methods. For instance, (Scholze et al., 2002) employed (model-driven) geomet-
ric modeling of polyhedral roofs using probabilistic relaxation labeling technique. (Verma
et al., 2006) performed segmentation to retrieve planar roof patches and defined three sim-
ple parametric roof topology models which were exploited to reconstruct 3-D models for
more complex buildings. (Elberink and Vosselman, 2009) also proposed a target based graph
matching algorithm that topologically matched common parametric roof models with the
extracted features (both represented as topology graphs). (Lafarge and Mallet, 2012) pre-
sented a detailed method that combined 3-D primitives (cones, cylinders and planes) to
model buildings using adjacency of primitive labels established via MRF based approach.
Based on the assumption that most non-flat roofs could be modeled or decomposed into a
set of gabled roof parts, (Fan et al., 2014a) employed RANSAC to detect ridge lines which
were later utilized to perform plane fitting based segmentation to obtain individual roof
facets. In presence of noise or low point densities, segmentation of individual roof surfaces
fails consequently leading to incorrect roof topology graphs. In this context, (Brédif, 2010)
and (Lafarge and Alliez, 2013) proposed solutions to cope with incorrect roof topologies
prior to 3-D modeling. A graph edit dictionary based technique to automatically correct er-
roneous roof topologies for 3-D reconstruction of complex roof structures was proposed in
(Xiong et al., 2014) (Xiong et al., 2015). In their work, the dictionary containing simple basic
elements was exploited to restrict (or enforce) certain configurations ensuring retrieval of
correct roof topologies.

3.2 Trees reconstruction

Analysis of single trees has been an active and exciting field of research within remote sens-
ing community since mid 1990’s. This is mainly triggered due to the existence of variety
of application areas especially in the domain of sustainable forest management, generation
of city tree cadastres or to reconstruct complete 3-D city models and/or GIS (Straub and
Heipke, 2001). In addition, manual extraction of important forest inventory parameters par-
ticularly related to single trees e.g., mean tree height, trunk location, crown diameter, timber
volume, identification of tree species etc. is quite cumbersome (Shiver and Borders, 1996)
urging the need to develop methods that extract such information automatically. In this re-
gard, numerous approaches have been proposed that particularly employ ALS datasets for
individual tree reconstruction.

A common workflow for such existing techniques is to apply segmentation/clustering based
approaches e.g., k-means (Morsdorf et al., 2004) (Gupta, 2010), watershed-segmentation
(Koch et al., 2006) (Chen et al., 2006) (Reitberger et al., 2009) (Zhang et al., 2013b) (Za-
wawi et al., 2015), region growing (Persson et al., 2002), mean shift (Shahzad et al., 2015)
(Schmitt et al., 2015), object-based raster analysis (Höfle et al., 2008) (Höfle et al., 2012),
normalized cut (Reitberger et al., 2009) (Yao et al., 2012) etc. either on to computed canopy
height model (CHM) (Persson et al., 2002) − analogous to nDSM in urban regions − (also
termed as digital tree height model (DTHM) (Hyyppä et al., 2001) or tree canopy model
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(TCM) (Chang et al., 2013)) or directly over raw LiDAR point clouds to obtain individ-
ual tree clusters. Subsequently each segmented cluster is appropriately modeled to derive
aforementioned tree parameters. For comparison of different ALS based single tree extrac-
tion methods, interested readers are referred to recent benchmarking studies in (Vauhkonen
et al., 2012) (Kaartinen et al., 2012) and (Eysn et al., 2015).

3.2.1 DEM based approaches
One of the early investigations of individual tree detection from airborne LiDAR data was
presented more than one and a half decade ago (Brandtberg, 1999) (Hyyppä and Inkinen,
1999). Since then several researchers have attempted to automatically detect and recon-
struct individual trees. For instance, (Persson et al., 2002) identified individual trees by first
computing a CHM via active contour based surface interpolation method. Subsequently,
tree tops were detected via local height variations using smoothed (via 2-D Gaussian fil-
ter) CHM. Tree modeling was then performed via fitting in each segment a second order
parabolic surface from which core parameters such as height, crown diameter etc. were es-
timated. (Koch et al., 2006) also proposed a similar workflow to determine the footprint
of individual tree crowns. From detected tree tops, a pouring algorithm similar to classical
watershed algorithm (Soille, 1999) was applied to estimate coarse outlines of multiple trees
which were later regularized by imposing certain prior knowledge constraints based on
tree shapes. (Chen et al., 2006) also employed a marker controlled watershed segmentation
algorithm to detect individual trees from smoothed nDSM. Instead of using CHM, identi-
fication of tree tops was carried out by searching for local maximum with varying neigh-
borhood (i.e., local window sizes) in a canopy maxima model which represented a modified
CHM where each pixel was assigned maximum height value within its local neighborhood.
In (Jing et al., 2012), a multi-scale analysis based approach was proposed to delineate tree
crowns of different sizes. In this perspective, their approach applied a series of morpho-
logical opening operations to the computed CHM to produce multiple marker-controlled
watershed based segmentation maps which were subsequently fused to generate a com-
plete map of tree crowns. An approach based on random forests to predict distinct tree
attributes including stem volume, tree height and diameter at breast height was proposed
in (Yu et al., 2011). (Chang et al., 2013) also identified individual tree crowns by exploiting
geometric characteristics such as distributions of local maxima and minima. These charac-
teristics helped in determining treetops and respective crown boundaries which were sub-
sequently utilized to model tree crowns as appropriately fitting circles. (Zhang et al., 2013b)
also utilized marked point process model to represent tree crown projections as circles in
a CHM. An energy term, consisting of a data term to measure the goodness of fit and a
prior term to constrain unrealistic tree shapes, was defined and minimized using a steepest
gradient descent algorithm.

3.2.2 Point cloud based approaches
Approaches presented so far work over rastered interpolated image (i.e., CHM) which in
addition to possible loss of information may possess inherent errors/uncertainties that es-
sentially degrades the accuracy of the individual tree segmentation (Guo et al., 2010). To
overcome this problem, several researchers have opted to segment and reconstruct individ-
ual trees directly from 3-D LiDAR point clouds. For instance, (Morsdorf et al., 2004) utilized
k-means clustering algorithm to perform segmentation of 3-D points. To overcome the cer-
tain limitations of k-means e.g., the dependency on the initial location of cluster centers and
the value of k (i.e., number of clusters/trees), initial seed points providing this information
were obtained through positions of local maxima in the DSM determined using conventional
approach (Hyyppä et al., 2001). Since the tree spans are usually more in the height (or z-
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) dimension, a scaling factor of 3 in the z-direction was also introduced to allow retrieval
of cluster shapes other than favored spherical ones. Geometric reconstruction of individ-
ual trees via rotational paraboloid was then employed using derived trunk location, height
and crown diameter information from distinctly segmented clusters. (Lindberg et al., 2014)
also employed k-means algorithm with the provision to allow more number of clusters than
the number of detected treetops. Instead of using raw LiDAR points, (Wang et al., 2008b)
and (Li et al., 2012) utilized normalized LiDAR points, obtained from subtraction of heights
from raw points, and the rastered DTM, also generated using raw points via active contour
algorithm (Weinacker et al., 2004) and clustering approach (Lee et al., 2010) respectively.
(Reitberger et al., 2009) also proposed a segmentation approach to detect single trees. The
stem positions were first identified in the segmented CHM image via hierarchical clustering
procedure and later reconstructed using RANSAC algorithm. A bipartite graph was set up
in the voxel space created in the tree regions and normalized cut segmentation (Shi and Ma-
lik, 2000) was utilized to retrieve segments representing individual tree points. The voxel
representation allowed recovering smaller trees which would possibly be missed if searched
in CHM via conventional watershed segmentation. An improved version of the approach
which also took into account the prior knowledge about tree location and spatial distri-
bution of LiDAR points was presented in (Yao et al., 2012). In similar domain, (Yao et al.,
2014) also carried out a detailed sensitivity analysis of the modules/parameters used for
normalized cut segmentation in relation to single tree detection. A graph partitioning based
segmentation algorithm that exploited the topological relationships of tree crowns was pro-
posed in (Strı̂mbu and Strı̂mbu, 2015). The algorithm captured the tree crown topology in
a weighted graph by exploiting adjacent cell patches generated from a rastered height map.
Weak edges were then cut to partition the graph and subsequently used to separate distinct
tree crowns.

3.3 TomoSAR vs LiDAR point clouds

The aforementioned methods and the majority of other techniques present in the literature
that make use of 3-D LiDAR data cannot be directly applied to TomoSAR point clouds due
to different microwave scattering properties of the objects appearing in the scene reflecting
different geometrical and material features. Consequently, TomoSAR point clouds possess
following special peculiarities (see Figure 10) in comparison to ALS point clouds (Zhu and
Shahzad, 2014) (Shahzad and Zhu, 2015a):

Accuracy and Errors:

� TomoSAR point clouds deliver moderate 3-D positioning accuracy on the order of 1 m
(Zhu and Bamler, 2012b) as compared to (airborne) LiDAR systems having an accuracy
on the order of 5 10 cm (May and Toth, 2007).

� Ghost scatterers (Auer et al., 2011) may be generated due to multiple scattering that ap-
pears as outliers far away from a realistic 3-D position.

� A small number of images and limited orbit spread render the location error of TomoSAR
points highly anisotropic, with an elevation error typically one or two orders of magnitude
higher than in range and azimuth (Zhu and Shahzad, 2014).

Coherent Imaging:

� Due to coherent imaging nature, temporally incoherent objects such as trees cannot be
reconstructed from multipass spaceborne SAR image stacks. However, for configurations
with more than one transmitting and receiving antennas capable to acquire InSAR data
in a single-pass may lead to highly coherent data even for vegetation regions by minimiz-
ing the effect of temporal decorrelation. The use of such single-pass data to reconstruct
individual trees is demonstrated in Chapter 7 of this thesis.
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Fig. 10. Spaceborne TomoSAR point clouds of high rise area in Las Vegas processed by DLR’s Tomo-GENESIS system
(Zhu, 2011) (Zhu et al., 2013). Height is color-coded. It can be seen that the side-looking geometry render rich amount
of points/scatterers on building façades. Also due to the coherent imaging nature of SAR and the repeat-pass data-takes,
temporally incoherent objects such as trees or vegetation cannot be reconstructed, depicted in black.

Side-Looking SAR Geometry:

� Separation of layover on vertical structures renders geocoded TomoSAR point clouds to
possess higher density of points on building façades;

� In order to obtain the full structure of individual buildings from space, multiple views
are required.

Higher Dimensional Imaging:

� In addition to 3-D spatial information, spaceborne TomoSAR point clouds also possess
the 4-D information, i.e., temporal or seasonal deformation estimates, making them very
attractive for dynamic city modeling.

Keeping in view the above special characteristics, the new object reconstruction method-
ologies have been developed as part of this dissertation. The following three chapters are
dedicated to these novel techniques exploiting for the first time this class of data. Chapter
7 then details a prototypical workflow to reconstruct individual trees from 3-D TomoSAR
point cloud generated from multi-baseline InSAR millimeterwave data acquired from multi-
aspects with an airborne single-pass MEMPHIS SAR system created by the Fraunhofer Insti-
tute for High Frequency Physics and Radar Techniques (Schimpf et al., 2002). Subsequently,
chapter 8 summarizes and presents future perspectives.
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4 Façades reconstruction

This chapter essentially summarizes two journal papers A and B (see the Appendices) which
demonstrates for the first time the potential of automatic façade reconstruction from space-
borne TomoSAR point clouds generated from data acquired from either single- (ascend-
ing only) and/or multi- (ascending and descending) viewing perspectives. In addition to
this first demonstration, following are the key highlights/contributions of the developed
methodology:

� Two façade extraction procedures have been proposed where the first method employs a
simple grid based scatterer (or point) density (SD) estimation and later apply morpho-
logical operation to extract façade pixels/points. The second method on the other hand
provides a more robust solution towards façade extraction. It is based on directional SD
estimation which incorporates the local façade geometry and estimates the SD for each
point in a directional window. Later, robustly estimated 3-D surface normal information
is utilized to extract façade points;

� Automatic segmentation procedures based on the well-known k-means and mean shift
algorithms have been proposed to group the extracted façade points into clusters repre-
senting individual façades;

� Façades are modeled in 2-D using general (first and second order) polynomial equations
to cater for a wide variety of building footprint shapes. The modeling procedure is able to
cater arbitrarily (rotated) orientated building façades while the coefficients of the model
are estimated using weighted total least squares (WTLS) method to cope with the local-
ization errors of TomoSAR points in both xy directions;

� During the reconstruction procedure, the presence of smaller clustered segments occur-
ring at façade transition regions handicaps the accurate determination of vertex points
from the adjacent façade pair and may cause the reconstruction procedure to fail. To deal
with this problem, smaller “conflicting segments” are automatically identified and re-
moved for an accurate and robust reconstruction of the adjacent façades;

� A partial solution to the occlusion problem is presented which refines the reconstructed
façade footprints via insertion (of additional segments) and extension operations.

4.1 Façades detection/extraction

Due to the side-looking SAR geometry, TomoSAR point clouds when projected onto ground
plane exhibit higher SD at vertical façade regions. It is mostly true due to the presence of
strong corner reflectors (e.g., window frames) on the building façades. Taking this fact into
account, the first step towards extraction of façade points is to obtain point density esti-
mates. To this end, an approach that exploits the idea of orthogonally projecting the points
onto the 2-D ground plane as presented in (Dorninger and Pfeifer, 2008) has been devel-
oped. However, instead of estimating local planes to refine the building outline, the 2-D
scatterer density in the horizontal xy (ground) plane is used to extract the façade points.
SD is locally estimated for each grid point defined on the ground plane by first accumulat-
ing the number of points within a local window and then dividing by the window size. A
specific threshold value TH is then used to remove low density grid cells. As a consequent,
a binary mask is produced which is later exploited via morphological dilation operation to
extract building façade cells. Connected component analysis then leads to the identification
of individual building masks.

This simple method of SD estimation works well for high-rise buildings having a much
higher point density on façades (compared to non-façade areas) but limits the extraction of
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façade points from relatively lower buildings. Moreover automatic selection of a particular
threshold becomes crucial. To resolve this issue, a robust M-estimator based SD estimation is
employed in this section which provides much better estimates of façade regions compared
to previously developed grid- (or sliding window-) based SD estimation method by incorpo-
rating the façade geometry (Wang and Zhu, 2015). Moreover, instead of rejecting non-façade
points via 2-D morphological operations, robust 3-D surface normal information is utilized.
The use of additional-dimensional along with the vertical façade assumption helps in better
rejecting non-façade points (please refer to B for comparison).

4.1.1 Robust M-estimator based directional SD estimation
For each 3-D TomoSAR point p, points within its local neighborhood vc are used for the SD
estimation. vc includes all those points that lie inside a vertical cylinder (of infinite height)
horizontally centered at p. To emphasize the building façades, the façade geometry is in-
corporated in the SD estimation by determining the façade position and orientation direc-
tion of the local neighborhood via line fitting using robust M-estimator. The method com-
putes M-estimates by iteratively applying weighted least squares to the objective function

argmin
β̂

∑
pi∈vc

wpi
(
β̂
) ∣∣∣∣ypi − fpi (β̂)∣∣∣∣2 where weights wpi are computed using bisquare function

of the form (Street et al., 1988):

wpi =


(
1−u2

)2
for abs(u) < 1

0 otherwise
with u =

∣∣∣∣ypi − fpi (β̂)∣∣∣∣2
4.685σ̂

√
1− t

(11)

where β are estimated line parameters that iteratively updated, t is the leverage computed
from least squares fit, and σ̂ is the scale of the error term computed by σ̂ = 1.483 ∗MAD,
where MAD is the median absolute deviation of the residuals from their median. The term
1.483 is used to make the estimator consistent for the standard deviation estimation of
Gaussian distribution and has been practically used for robust initializations in M-estimates
(Street et al., 1988) (Huber, 1981).

The estimated line describes the main principal axis of the cylindrical footprint of the local
neighborhood. Orthogonal distance of every point in vc with respect to the principal axis
(shifted in parallel to the point p) is then calculated. The points having distances less than
d are taken as “inliers” and used in SD estimation. SD for each point is thus defined as the
number of points within a directional (cylindrical) neighborhood in 3-D divided by the area
in 2-D:

SD =
number of points in vd

Area of vd
(12)

where vd ⊆ vc but includes only those points that lie close to the principal axis of points in
vc.

Figure 11 shows the graphical procedure of the proposed robust SD estimator. Applying a
hard threshold to the estimated SD, similar to grid-based approach (i.e., using higher TH
value for thresholding) would lead to miss-detection of façade points of lower buildings
whose SD estimates would be relatively low with respect to high rise buildings. To avoid
such miss-detection, the façade points are extracted in a sequential way: I.e., firstly, a lower
TH value is used to detect not only higher buildings but also the lower ones. However, a
softer threshold would also introduce false positives, i.e. roof points or ground points with
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(a) (b)

Fig. 11. Illustration of SD estimation: (a) 3-D view of the local cylindrical neighborhood around the point of interest; (b)
Top view of (a). The coefficients of the dotted yellow regression line are estimated via M estimation. Black dotted line
shows the shift of yellow line to the point of interest. Shaded area shows the region of vd within vc.

a local point density comparable to those of lower buildings. Therefore, a second step is
introduced which utilizes 3-D surface normals information as prior knowledge (i.e., façades
are assumed to be vertical surfaces which separate them from non-vertical ground plane
and roofs) to eliminate those false positives.

4.1.2 Computation of surface normals
As mentioned in (Section 3.1.2.1), surface normals can be directly estimated for each 3-D
point via eigenvalue/eigenvector analysis of the local 3-D (i.e., 3× 3) covariance matrix Σvc .
Use of eigenvalue/eigenvector analysis via classical PCA may however fail to give precise
3-D surface normal estimates using TomoSAR point cloud due to considerable amount of
outliers and localization errors in the data (see Section 3.3). Robust covariance matrix esti-
mation is therefore needed. In this work, robust minimum covariance determinant (MCD)
method (Hubert et al., 2005) is utilized.

The covariance matrix Σ̂vc estimated using the local neighboring points pi ∈ vc around (in
cylinder) the point of interest po (xo, yo, zo) is then used to determine the local 3-D surface
normal at po. If a plane which fits the neighboring points pi is denoted as nxx+nyy+nzz+ρ = 0

with ρ = −nxxo−nyyo−nzzo, thenNo
(
nx, ny , nz

)
depicts the local 3-D surface normal at po.No

is thus directly estimated from Σvc by computing the eigenvector associated to the smallest
eigenvalue of Σvc (here vc includes points in the vicinity of po) i.e.,

if Σvc .vλj = λj .vλj , j = 1,2,3 (descending order)

then surface normal of the underlying surface at pointpo: No(nx,ny ,nz) = vλ3

(13)

From (13), 3-D surface normals are robustly computed for each point that is obtained after
SD thresholding. Ideally, the direction of surface normal should be parallel to the ground
for points on the vertical façades which separate them from non-vertical ground plane and
roofs. Taking this fact into account, façade points are extracted out by retaining only those
points having normals are close to the horizontal axis (i.e., parallel to ground for points
belonging to a vertical surface). The proposed two step approach allows to robustly extract
façade points over a large area where both high and low buildings are present.
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4.2 Segmentation

For reconstruction, the extracted points need to be segmented such that each cluster rep-
resents points belonging to an individual façade. For this purpose, an approach utilizing
k-means clustering with a criterion for prior guessing the number of clusters has been ini-
tially developed.

4.2.1 Number of clusters for k-means
A major shortcoming of k-means is that it is required to provide in advance the value of k
(i.e., the number of clusters) which is not practical. To deal with this problem, a method to
determine k is devised which works by estimating the within-cluster dispersion in successive
clustering runs for varying numbers of clusters. I.e., if Dr is defined as the mean deviation
of points in rth cluster from its respective center:

Dr =
nr∑
i=1

di
nr

(14)

where nr is the number of points in rth cluster and di is the Euclidean distance of the ith
point in rth cluster from its center. The dispersion index Ik for k clusters can then be deter-
mined as (Sampath and Shan, 2010):

Ik =
k∑
r=1

Dr
k

(15)

A plot of such dispersion index against the number of clusters gives an indication how to
choose an appropriate number of clusters (Sampath and Shan, 2010). The dispersion index
Ik usually decreases significantly with increasing number of clusters and becomes steady
afterwards. The location of the elbow point can be considered as a good estimate of the
number of clusters (Tibshirani et al., 2001).

4.2.2 Proposed segmentation scheme
Although the elbow point can be used to estimate k and has been applied in (Sampath and
Shan, 2010) (Zhu and Shahzad, 2014), it is not always trivial to determine it automatically
especially when applied to data of larger areas. Moreover with k-means certain shape of
clusters is not very well recognized. For these reasons, an alternative three-step automatic
(unsupervised) clustering approach has been developed that is able to work directly on big-
ger areas without requiring any prior knowledge about the number of clusters. Following is
the brief description of the approach:

(1) First a density-based clustering method (Ester et al., 1996) is applied to extracted façade
points. The approach involves the notion of density connectivity between the points.,
i.e., two points are considered to be directly density connected to each other if one
is in the neighborhood vicinity of the other point. If the two points are not directly
connected to each other, still they can be density connected to each other if there is
a chain of points between them. Thus starting from a point, all points that are den-
sity connected to each other are clustered into single group representing an individual
building. These clustered points are then removed and the procedure is repeated for
remaining points until all the points are assigned to a particular cluster;
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(a) (b)

Fig. 12. Gaussian image of three connected planar surfaces: (a) Arrows indicate surface normal vectors (nred,ngreen,nblue)
to the respective surfaces; (b) All points belonging to one particular surface are mapped to same identical point in GI (ideal
scenario).

(2) Gaussian image (GI) based mean shift clustering algorithm (Cheng, 1995) (Liu and
Xiong, 2008) has been developed which is applied to each density clustered segment
representing points belonging to an individual building. Let’s assume that a coarsely
clustered segment Ki consist of one or more vertical adjacent façades Fj , j = 1, ..., J . An
image of a map M: F → F2 that assigns each point in F to its respective unit surface
normal is known as Gaussian image (or map) GI of F (Carmo, 1976). Flat F (i.e., planar
surface) should ideally be represented by a point in GI. Figure 12 conceptually illus-
trates this in an ideal scenario. In practice, surface normals are estimated locally and
may fluctuate from one point to another as practical data often contains errors in 3-D
positions. But, if the estimation of normals is robust enough, a surface mapped to GI
should be represented as a dense cluster of points in GI. The shape of clusters in GI
corresponds to the geometry of connected surfaces (Liu and Xiong, 2008). Mean shift
algorithm is employed to perform clustering in the GI.

(3) Mean shift when applied in GI produce clusters whose corresponding points in spa-
tial domain represent different façades. However, it is also possible that spatial points
corresponding to any one particular normal cluster in GI may belong to two or more
different façades. This can happen if points of two or more façades that are “nearly”
parallel to each other (i.e., having close normal directions) are present in Ki . To resolve
this, density based clustering is performed again in the resulting clusters for spatial
separation of parallel façades points clustered into one group. Finally, clusters with
very few points are removed from further processing for robust reconstruction.

4.3 Reconstruction

4.3.1 Model identification (flat or curved)

Each cluster is further classified into flat or curved surface by analyzing derivatives θ (see
Figure 13). θ for each 3-D point is equal to the azimuthal angle of the corresponding com-
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(a) (b)

Fig. 13. Illustration of orientation angle for flat and curved vertical footprints (top view); (a) Arrows indicate pattern of
change in orientation (azimuthal) angles of ten points on each vertical surface; (b) plots their respective orientation angles.

puted surface normal:

θ = arctan
(
λ3y

λ3x

)
(16)

where λ3x and λ3y represents the x and y components of the surface normal vλ3
of any

3-D point. Ideally, the flat surfaces should have constant orientations, i.e., zero derivatives
compared to the curved surfaces that have gradually changing orientations (see Figure 13).
This fact is exploited and the first derivative θ′ of the orientation angle for each façade
footprint is computed. Since the original orientation derivatives θ′ are usually noisy, all the
points are first projected to the first principal axis and polynomial fitting is later applied for
denoising. Based on the behavior of θ′, façade footprints are classified as flat or curved.

4.3.2 Modeling of façades
Identified façade clusters in xy plane are then modeled using the following general polyno-
mial equation:

fp(x,y) =
p∑
q=1

aqx
iyj i + j ≤ q (17)

where i and j are permuted accordingly, p is the order of polynomial, the number of terms in
the above polynomial is equal to (p+1)(p+2)

2 . Cross terms are introduced in the model in case
of rotated local coordinate system. Eq. (17) is solved by restricting to only 1st and 2nd order
(i.e., flat with max(i, j) = 1 & curved with max(i, j) = 2. The coefficients aq are estimated
using WTLS method where total least squares is utilized to cope for localization errors of
TomoSAR points in both xy directions and the weight of each point is assigned equal to its
corresponding SD. The weighted polynomial fitting (residual) error ferr is minimum when
the local coordinate system in which the façade points exist lies in axis or parallel (i.e., un-
rotated) with the global coordinate system. In this case, the right hand side of (17) reduced

(for p = 2) to
p∑
i=0
aix

i (i.e. with no cross terms). For a rotated local coordinate system (which is
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often the case), the following steps are performed to obtain consistent parameter estimates
of all façades in a global coordinate system:

� Rotate the points by rotation angle ω and compute polynomial fitting error ferr by apply-
ing WTLS method;

� Consider coefficients computed with ωmin that gives the minimum polynomial fitting er-
ror ferr as polynomial terms depicting unrotated points in the global coordinate system.
ωmin is computed by using an unconstrained nonlinear optimization procedure to find
the minimum of the error function ferr by varying ω over 0∼360 degree range via Nelder-
Mead simplex algorithm (Nelder and Mead, 1965);

� Rotate the computed polynomial by replacing the unrotated (x−, y−) axis terms by their
rotation counterparts (xcosω+ y sinω,−x sinω+ y cosω) to yield polynomial terms aq in
global coordinates.

After estimation of model parameters, the next step is to describe the overall shape of the
building footprint by further identifying adjacent façade pairs and determining the inter-
section of the façade surfaces. The adjacency of façades is usually described by AM that
is built up via connectivity analysis (Sampath and Shan, 2010). Identified adjacent façade
segments are used to determine the vertex points (i.e., façade intersection lines in 3-D) by
computing the intersection points between any adjacent façade pair. Determination of these
intersection points can sometimes become difficult if the transition points are segmented
as isolated small clusters (also referred to as conflicting segments) rather than part of the
corresponding adjacent façade segments. As a consequence, it gets complicated to find a le-
gitimate adjacent façade pair from which intersection points should be computed. To resolve
this issue, the vertex points are computed from the intersection of valid adjacent segments
that are identified as the two largest segments present at the façade transition regions (see
Figure 14).

(a) (b)

Fig. 14. Removal of conflicting segments and vertex point computation: (a) shows the case of five clustered point segments
belonging to one particular building. At the transitional regions, there are conflicting (smaller) clusters, shown in grey
dotted circle, that behave as noisy segments and should be removed before computing the vertex points; (b) shows the
retained segments and their corresponding vertices after removing conflicting segments.
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4.3.3 Refinements

Sometimes the reconstructed façades remain either incomplete or are broken into more than
one segment due to the following reasons: 1) Higher building structures present nearby
can partly (or fully) occlude the façades of lower buildings, and 2) due to the geometrical
shape, only very few points are available at some parts of building façades. In order to refine
the reconstruction, a heuristic procedure has been proposed that tries to refine the recon-
structed façades by inserting additional segments between the broken regions and extend
those façades that remain incomplete. Computed vertex points are therefore first catego-
rized into two types: First type consists of vertices that are computed from the intersection
of two adjacent façades, while the second type consists of the other vertices representing
“open” endpoints. Now, Segi =

{
sj |j = 1, ...,n

}
represents a series of n segments (i.e., s1 ∼ sn)

that are adjacently connected. E.g., in Figure 15(a) two such series exist where the first com-
prises of segments 1 and 2 while the second consist of segment 3 only. In addition to this,
for each series Segi , there exists two open vertices and (n − 1) intersection vertices. An ex-
ample where no open vertex would exist is when all façades are visible to the sensor (i.e., a
multi-view configuration) in which the complete footprint of the building (i.e., a closed loop
polygon) would be reconstructed.

For broken façades, two segments are considered as part of the same (broken) building
façade if both segments are not far enough from each other and at the same time possess
data points in between that have close maximum height values. For this task, following
three conditions comprising of local orientations and height values of 3-D points within
neighborhood vicinity of vo, v̂o and midvo are checked:

C1 : ‖v̂o − vo‖2 < 2ε

C2 : abs
(
hmax at vo − hmax at midvo

)
< Th & abs

(
hmax at v̂o − hmax at midvo

)
< Th

C3 : abs
(
θvo −θv̂o

)
> 45◦

(18)

vo represents one of the two open vertex points of the considered series Segi , v̂o represents
the nearest open end vertex point from vo that belongs to another adjacently connected se-
ries Segj (j , i), midvo is the midpoint of vo and v̂o, and hmax is taken as the mean of at least
ten maximum height values. The two parameters ε and Th represent thresholds to the dis-
tance and the height difference respectively. A single façade segment with vertices (vo, v̂o) is
inserted to fill the empty (i.e., broken) regions of the same façade if both C1 and C2 are true
but C3 is false. On contrary, if all three conditions are met indicating that the open vertex
pair vov̂o is not part of the same façade but rather belong to two different façade segments
(determined via difference in the local orientation angle > 45◦), then two segments with
vertices

(
vo,pvov̂o

)
and

(
v̂o,pvov̂o

)
are inserted where pvov̂o denotes the point of intersection.

Figure 15(b) graphically depicts such a situation where grey open vertices of segment 4 and
5 are (assumed to be) within 2ε distance but have difference in the local orientation angle
of 90◦. The grey dotted line shows the addition of new segment without checking condition
C3. When C3 is taken into account, two segments shown in black dotted line are inserted.

Subsequent to insertion operation or when any of C1 or C2 fails, the extension operation at
the open vertex point vo as depicted in Figure 15(c) is carried out by imposing following two
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(a) (b) (c) (d)

Fig. 15. Vertices for refinement. Grey rectangles depicts the 2-D building footprint from the top: (a) shows the total of
5 vertices out of which 4 are open endpoint vertices and one is intersection vertex computed from the intersection of
segments 1 and 2; (b) depicts the situation where ignoring condition C3 would yield false segment addition shown as
grey dotted line. The grey arrows indicate the local orientation angle θ at open vertices vo and v̂o. Two black dotted
lines represent the two correct inserted segments between vo and v̂o; (c) depicts the recursive extension procedure of the
open vertex vo. vp represent the intermediate extension points where as the v′p denotes the final point; (d) illustrates the
direction of extension of grey open vertex over the roof region. This can happen if we only consider the hmax and ignore
the local standard deviation of height hσ .

constraints:

C4 : abs
(
hmax at vp − hmax at vo

)
< Th

C5 : abs
(
hσ at vp − hσ at vo

)
< Tσ

(19)

Similar to C2, the condition C4 ensures that the extended point have the closer maximum
height value. The condition C5 ensures that the local 3-D points around vp have certain
standard deviation in the third (i.e., height) dimension denoted as hσ at vp . It is necessary
to make sure that the extension is not carried out in the direction that deviates from the
façade footprint. I.e., it avoids the extension if the local 3-D points around vp belongs to
other non-façade objects, e.g., roofs etc., rendering hσ at vp to exhibit low value consequently
failing condition C5. The problem is illustrated in Figure 15(d) where the grey open vertex
can potentially extend over the roof region if the condition C5 is ignored. Thus imposing
this constraint helps in limiting this false extension.

Finally, the computed vertex points (i.e., the intersection vertices and the open vertices be-
fore and after refinement) along with their estimated model parameters are used to recon-
struct the 3-D model of the building façades.

4.4 Experimental results and validation

4.4.1 Dataset

To validate the approach, the algorithm is tested on TomoSAR point clouds generated from a
stack of 25 TerraSAR-X high spotlight images from ascending orbit only using the TomoSAR
module of the GENEric System for Interferometric SAR (Tomo-GENESIS) software devel-
oped at the German Aerospace Center (DLR) (Zhu, 2011) (Zhu et al., 2013). Figure 16(a)
depicts the test area covering approx. 2 km2 high rise part of the city of Las Vegas. The
number of TomoSAR points in the area of interest is about 1.2 million. Figure 16(b) shows
the corresponding TomoSAR point cloud in universal transverse mercator (UTM) coordi-
nates.
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(a)

(b)

Fig. 16. Dataset: (a) Optical image of the test area in Las Vegas. Copyright Google. (b) TomoSAR points in UTM coordi-
nates of the corresponding area in Las Vegas generated from a stack acquired from ascending orbit only. The height is
color-coded.

4.4.2 Results
The result of applying SD estimation procedure is illustrated in Figure 17. The two parame-
ters r (radius of the neighborhood cylinder) and d are empirically set to 5m and 0.9m respec-
tively according to the point density of the data set. The TH value influences the number
of extracted façade points. Lower TH value results in higher completeness but lower cor-
rectness. The empirical evaluation of estimating SD with varying TH values result in best
trade-off of TH = 2 pts/m2 in terms of completeness and correctness with this class of data
(Please see A for details of empirical evaluation). 2 pts/m2 works well for high rise buildings
but might ignore relatively smaller façades. Therefore to extract lower façades (and also to
automate the procedure), the TH value is set to the maximum of SD histogram value (see
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Fig. 17. SD estimated with radius r = 5m and inliers d = 0.9m. Colorbar indicates computed SD.

Fig. 18. Automatic selection of TH value. SD histogram for the TomoSAR points of the corresponding test area de-
picted in Figure 16. The maximum SD histogram value used for thresholding is 1.132. Number of bins is set to
bins = min(SD) : (max(SD)−min(SD))/100 : max(SD). It is worth mentioning here that for a rural or sub-urban area,
it is possible that the maximum of histogram occurs at SD = 0 which would consequently render all points to be retained.
However for urban regions, this usually never happens due to existence of higher point densities over man-made struc-
tures.

Figure 18). This, as described in Section 4.1.1, includes not only the façade points but addi-
tionally also some non-façade points with relative high SD, e.g., roof points. To reject these
points from the set of extracted points after SD thresholding, surface normals information
is utilized.

Figure 19 shows the extracted façade points by retaining only those points having normals
between ±15 degrees from the horizontal axis (or equivalently ±90 degrees from the vertical
axis). Extracted façade points are then coarsely clustered based on connectivity of points.
Subsequently, in order to reconstruct individual façades, mean shift clustering is applied
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Fig. 19. Extracted façade points from TomoSAR point cloud depicted in Figure 16 overlaid onto the corresponding optical
image (©Google).

(a) (b) (c) (d)

Fig. 20. Fine clustering results after applying mean shift clustering using Gaussian kernel with bandwidth b = 0.4 to the
coarsely clustered segments in their normal feature space (in GI domain): (a) TomoSAR points of one particular density
connected cluster (top view). Colorbar indicates height in meters; (b) Corresponding orientation angle in degrees; (c) Non
clustered (top) and clustered (bottom) points in the Gaussian image of points in (a); (d) Resulting clustered points in 3-D.

in normals feature space (in GI domain) to the obtained density based coarse clusters. Fig-
ure 20(b) shows the estimated orientation angle θ for extracted façade points from single
building shown in Figure 20(a). The variation in orientation angle is quite evident and al-
lows mean shift to cluster points having similar orientations together. Further separation
of points in the spatial domain is also required in some cases where the spatially sepa-
rated points are clustered into one segment. This happens when these points belonging to
different façades have similar normals and are spatially closer. Density based clustering is
therefore again applied for spatial separation of the clusters within clusters.

For reconstruction, the segmented façades are first classified to flat and curved surfaces by
analyzing derivatives of the local orientation angle θ. A slope value θ′ of 0.3 (≈ 17 degrees) is
set by empirically testing the computed orientation angles of all the buildings in the area of
interest to distinguish flat and curved surfaces. After identification, appropriate model pa-
rameters are estimated from the core points of the individual clusters. Figure 21 (a) and (b)
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(a)

(b)

Fig. 21. Reconstructed façades: (a) shows the 2-D view of the façade footprints overlaid onto the optical image prior to
refinement; (b) shows the 2-D view of the façade footprints overlaid onto the optical image after refining with parameters
settings Th = 5m and Tσ = 2.5m.
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(a) (b) (c)

Fig. 22. A case depicting wrong reconstruction of a pedestrian bridge: (a) shows the optical image of the bridge; (b) overlays
the reconstructed segment in green onto the optical image of (a); (c) side view of the bridge (© Google Street View).

Fig. 23. 3-D view of the final façade reconstruction. The axis is in meters range and has been translated to the origin for
better metric clarity by subtracting UTM easting and northing values by their respective minimum values present in the
reconstructed vertices.

depicts the reconstructed façades models in the area of interest before and after refinement,
respectively.

4.4.3 Validation and discussion
The actual ground truth data is missing for exact qualitative evaluation of the approach. In
order to provide some quantitative measures, the actual number of façades that had to be
reconstructed were manually counted. Total of 141 façades are present in the dataset out
of which 7 are curved façades and remaining 134 are flat. Prior to refinement, the algo-
rithm reconstructed in total of 176 façades, i.e., higher than the actual façades present in
the dataset. As already stated in Section 4.3.3, this is because some individual façades have
been broken down into two or more segments due to discontinuity in the number of points
available in the dataset. After refinement, 29 insertion segments (27 single and 2 double
based on the condition C3 in eq. (18)) are added between the broken façade regions where
as 43 façades have been extended. In the final reconstruction, 147 reconstructed façades are
obtained i.e., all 141 façades are successfully reconstructed; among them 5 façades remain
broken (counted as additional 5 façades) and there is one case of false alarm which is actu-
ally covered metallic pedestrian bridge (see Figure 22(c)). Besides these 5 cases, there exist 7
façades that are not extended and therefore remain incomplete. This is however due to the
inadequate number of points available in the data. Finally, Figure 23 provides the 3-D view
of the reconstruction results. Such a reconstructed façade model can be used to refine the
elevation estimates of the raw TomoSAR points as will be demonstrated in Chapter 6 of this
thesis.
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5 Reconstructing 2-D/3-D building shapes (or
footprints)

This chapter summarizes the journal paper C (see the Appendix) which propose a novel data
driven approach that systematically allows automatic reconstruction of 2-D/3-D building
shapes (or footprints) using unstructured TomoSAR points clouds generated from one inci-
dence angle only. The approach proposes new methods and aims at finding a more general
and systematic solution towards automatic reconstruction of the whole city area. Following
are the innovative contributions specific to the proposed approach:

� A hybrid technique based on region growing and energy minimization framework is
proposed to automatically extract building roof/façade points directly from the 3-D To-
moSAR points;

� A recursive angular deviation based approach is presented to smooth/refine the initial
coarse building polygons obtained using alpha shapes (generalization of convex hulls);

� A novel façade-roof fusion procedure is proposed which is robust and fuses the legiti-
mate Façade-Polygon pair together by interpreting the refined/smoothed polygon of each
building as a graph. Series of operations taking part in reduction of graph (or smoothed
polygon) include identification of points on the graph that are nearest to all the asso-
ciated/paired reconstructed façades, computation of longest and shortest paths on the
graph using these identified points, simplification of shortest paths by representation as
line segments and rotation/projection of certain line segments (simplified shortest paths
that are identified as positive paths) to match all the reconstructed façades belonging to
the same graph/smoothed building polygon;

� An effective and robust procedure is developed for rectilinear identification of building
polygons. To this end, dominant direction of each building is first determined based on
weighted line segments approach. Angular deviations at each adjacent or consecutive ver-
tex of the polygon are computed from the dominant direction and histogram analysis is
then carried out for rectilinear building footprints identification. Later rectilinear con-
straints are added to the identified building polygons;

� Finally, due to the high inclination angle of the TerraSAR-X orbit i.e., near-polar orbit, the
approach presented in the previous chapter (or A and B) may fail to reconstruct building
façades facing North or South due to the missing of measurements. The solution to this
problem is inherently provided by exploiting roof points in determining the complete
shape/footprint of the building.

5.1 Motivation (Problem formulation)

As depicted in the previous chapter, façade reconstruction turns out to be an appropri-
ate first step to detect and reconstruct building shape from these point clouds when dense
points on the façade are available. Especially, when data from multiple views e.g., from
both ascending and descending orbits, are available, the full shape of buildings can be re-
constructed using extracted façade points. However, there are cases when no or only few
façade points are available. This happens usually for lower height buildings and renders
detection of façade points/regions very challenging. Moreover, problems related to the vis-
ibility of façades mainly pointing towards the azimuth direction can also cause difficulties
in deriving the complete structure of an individual building. These problems motivate us
to reconstruct full 2-D/3-D shape of building footprints via façade-roof analysis. In this
regard, based on different object contents illuminated by side looking SAR, following three
cases could be derived using data acquired from one incidence angle, e.g., in this case, image
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Fig. 24. Depicting three different cases over simple buildings commonly occurring in TomoSAR point clouds. Heights of
the points are color-coded. Optical images © Google.

stacks from ascending orbit only (Figure 24):

Case 1: Higher density of façade points present with no or very few roof points − In this case,
the complete 2-D/3-D building shapes could be fully reconstructed by adding points from
multiple incidence angles. The solution to this case is demonstrated in (Shahzad and Zhu,
2015b) where 3-D façades model have been reconstructed for high rise buildings using one
incidence angle only and in (Zhu and Shahzad, 2014) where full shape of the building was
derived by prior fusion of two point clouds (Wang and Zhu, 2015) from ascending and
descending stacks.

Case 2: Higher density of façade points present together with existence of relatively higher density
of roof points − This case allows to reconstruct full shape of the building footprints from a
single data stack by making use of both façade and roof points. Thus, the side of the building
visible to the sensor could be reconstructed as the first step using façade points and later
the other side of the building could be completed by exploiting the available roof points.

Case 3: No or very few façade points available but enough roof points exist − This case particu-
larly appears for lower height buildings rendering detection of façade points/regions very
challenging. This motivates us to obtain the full 2-D/3-D footprint of these buildings via
roof point analysis only using conventional techniques as applied by LiDAR community.
Even though these techniques are very much matured, still their adaptation to TomoSAR
point clouds is not straight forward due to different object contents illuminated by side
looking SAR together with problems related to less and varying point density and much less
positioning accuracies of TomoSAR point clouds in comparison to airborne LiDAR.

In this chapter, solutions for the latter two cases (i.e., case 2 and case 3) is provided by
extending (or utilizing) the solution provided for case 1 in the previous chapter.
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5.2 Building detection

5.2.1 Region growing procedure
The reconstructed façades provide direct hints for the desired building regions. The idea
is then to search in the nearby vicinity of the reconstructed façade to select seed points
and later employ a surface normals based region growing algorithm to extract existing roof
points. In this regard, the seed points are selected by first computing the midpoint of the
reconstructed façade segment and then analyzing the local height statistics in the two oppo-
site directions perpendicular to the reconstructed segment. Figure 25 provides the graphical
illustration of the seed selection procedure.

Extracted seed points from the above procedure are then used in the region growing proce-
dure to extract existing roof points based on the similarity of their surface normals (robustly
estimated via (Hubert et al., 2005)) i.e., points having angular difference between their sur-
face normals less than θnormals(= 15◦) are added to the grown cluster. Using surface normals
only however could also add ground points during growing procedure. An example of such
a case will be where both roof and the neighboring ground are flat. A minimum height con-
straint is therefore needed and is incorporated in the growing procedure to restrict addition
of points below a certain height hmin which is adaptively computed for each seed point as
mp+

(
height of sp −mp

)
·f ac wheremp =mb if mg > mb ormp =mg if mb > mg (see Figure 25).

The factor f ac (empirically set to 0.55 in this work) can be adjusted between 0 ∼ 1 to adjust
hmin.

Fig. 25. Graphical illustration of the seed point selection procedure. Top view of 3-D TomoSAR points of a small region
containing one building is depicted. The height in meters of each TomoSAR point is color-coded. The red line shows the
reconstructed façade segment with black point as its midpoint. The green and blue points show the selected points in two
opposite orthogonal directions with respect to the reconstructed façade (depicted as gray dotted lines). rN is cylindrical
radius used to determine local neighbors (i.e., points within shaded circles in respective colors). Local mean height of the
blue and green points are computed, denoted as mb and mg respectively. Seed point sp is chosen as the maximum height
point among the local neighbors of blue points if mb > mg or among the neighbors of green points if mg > mb where latter
is true in the depicted case.

5.2.2 Energy minimization
The above procedure extract building roof points for which information pertaining to
façades is available i.e., case 2. To extract those building/roof points where no façade infor-
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mation is available (i.e., resolve case 3), the problem of building detection is sequentially
formulated into following simple energy minimization framework (Boykov et al., 2001)
(Boykov and Kolmogorov, 2004) (Lafarge and Mallet, 2012) (Zhou and Neumann, 2013)
(Yan et al., 2014):

E (l) =
∑
pi∈P

Dpi
(
lpi

)
+

∑
(pi ,pj)∈N

wpijδ
(
lpi , lpj

)
(20)

where P = {pi |i = 1, ...,n} denotes the set of remaining n 3-D points, N denotes the set con-
taining pairs of neighboring points

(
pi ,pj

)
, lpi represents the label assigned to the point pi ,

i.e. roof or non-roof point, δ (·) is an indicator function, and wpij is the weight of each pair of

neighboring points
(
pi ,pj

)
and is defined as wpij = exp

(
−
∥∥∥pi −pj

∥∥∥). The second summation
term in (20) ensures the spatial smoothness, i.e., it favors consistent labeling between the
neighboring point pairs whereas the first term in (20) denotes the data discrepancy term
that measures the suitability/unsuitability of a particular labeling l assigned to the set of
points P. It is defined as (Lafarge and Mallet, 2012):

Dpi
(
lpi

)
=


(
1− hpi

)
+ η · rpi if lpi = building roof point

hpi +η ·
(
1− rpi

)
if lpi , building roof point

(21)

where rpi is the plane residual distance feature computed for each point pi by locally fitting
robust RANSAC plane among its local neighbors and hpi is the differential height of the point
pi obtained after subtracting the height of the underlying terrain, which is approximated
by fitting a cubic polynomial surface to the non-building/ground points via robust least
absolute (LAR) residuals method. Non-building/ground points are extracted by following
the similar height constraint region growing procedure as described in (Shahzad and Zhu,
2014).

Both features hpi and rpi are normalized to the scale of 0 ∼ 1 by adopting the forms (Lafarge

and Mallet, 2012): hpi = min
(
1,hpi /ε

)
and rpi = min

(
1, rpi /rN

)
where ε is the tuning factor

adjusting the sensitivity of the height feature (i.e., it ensures that all points having relative
heights greater than ε provides minimum data discrepancy term in (20), and rN is the radius
size used to extract local neighbors vc. η is the relative importance factor for the feature rpi ,
i.e., η defines the relative importance of rpi with respect to hpi . Value of η less than 1 (e.g.,
η = 0.5 used in this work) means more importance is given to the height feature. This is
reasonable since rpi essentially depicts the degree of planarity and is lower for both building
roofs and flat ground surfaces. Thus to differentiate between points on a flat planar ground
segment, e.g., parking area and on the flat roof, their heights become the only discriminative
factor in the labeling process and therefore should be given relatively higher importance.
Moreover, planar objects with higher height are more probable to be part of the building
structure than to the ground surface.

The above energy formulation in (20) is solved (minimized) via graph cuts based optimiza-
tion library using αβ-swap move algorithm (Boykov et al., 2001) (Boykov and Kolmogorov,
2004) (Kolmogorov and Zabih, 2004) (Fulkerson et al., 2009). The minimum energy corre-
sponds to the labeling l such that higher planar points are detected as building roof points.
Combing them with the set of roof points extracted in the previous section via façade infor-
mation completes the extraction procedure.
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5.3 Buildings shape/footprint reconstruction

Extracted building (roof) points are further segmented into individual building points via
density based clustering as mentioned in Chapter 4 (Section 4.2.2). Reconstruction of build-
ing shape is initially obtained by employing alpha shapes (or α-shape, i.e., generalization
of convex hull) around each segmented building (Edelsbrunner et al., 1983). This results in
vertices that describe the 2-D polygonal boundary of the building footprint. Due to lower
point density of TomoSAR points, alpha shapes only define the coarse outline of an in-
dividual building which is usually rough and therefore needs to be refined/smoothed (or
generalized).

5.3.1 Refinement (or generalization) of alpha shapes
The refinement algorithm begins by first computing the angular deviations βk at each vertex
point of the alpha polygon Vj as:

βk =

 θk if θk ≤ 90◦

180−θk if θk > 90◦
with θk = cos−1

(
dvk ·dvk+1

‖dvk‖‖dvk+1‖

)
(22)

where ‘·’ denotes the dot product and dvk is the direction vector computed at each edge
formed by connecting two consecutive vertices vk and vk+1 of the building polygon. Subse-
quently all those vertices (or edges) having angular deviations less than the threshold θang
are removed. The polygons before and after current iteration are compared and the process
repeats itself if any vertex is removed (i.e., polygons before and after current iteration do not
contain same number of vertices). Finally, the process terminates when there is no further
removal of vertices.

5.3.2 Incorporating reconstructed façades
To improve the geometrical accuracy of the footprints, the reconstructed façades are fused
with the refined building polygons. For this purpose, the façade associated to each refined
building polygon is categorized into following two types:

� Type I façade: Façade fully or partly inside the refined polygon;
� Type II façade: Façade lying completely outside but associated to the refined polygon.

Identification of type I façades is easily achieved by checking if the endpoints of the recon-
structed façades lie inside the polygon. Thus if both or at least one of the façade endpoints
lie inside the building polygon, it is categorized to be type I façade. To identify façades of
type II, following procedure is adopted:

(1) First the midpoint of the reconstructed façade is computed and two points are chosen
in opposite directions orthogonal to the reconstructed façade at a distance d from the
midpoint;

(2) Compute intersections of line1 and line2 with all the building polygons. Here line1
denotes the line segment formed from by connecting midpoint to one of the chosen
points and similarly line2 is the line segment formed by connecting midpoint to the
other opposite point;

(3) If there exists an intersection of line1 or line2 with any of the building polygons, façade
is assigned to the polygon with which the intersection occurs. In case there are more
than one line-polygon intersections or both line1 or line2 intersects with different poly-
gons, the façade is assigned to the polygon having the intersection point nearest to it.
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(a) (b)

(c)

Fig. 26. Procedure describing the concept of Pt shortest and P +: (a) Refined polygon of one particular jth building Ṽj having
vertices vk=1,...,m with four reconstructed façades f1, f2, f3 and f4 that are to be incorporated; (b) illustrates the concept of
shortest and longest paths associated for a particular façade f1. v1a and v1b denotes the closest points on the polygon/graph
Ṽj to the two endpoints of façade f1 respectively; (c) Example illustration of the concept of positive path P +. P2 shortest is
identified as P − as there exist points in K2 that are also present in P2 shortest .

Implementation-wise, steps 1-3 are performed in a recursive manner. I.e., d is initialized
to 1m and steps 1-3 are carried out. In case, there exists no line-polygon intersection (i.e.,
façade is not assigned to any polygon), the procedure repeats itself but this time d is incre-
mented by 1m. The recursion stops if either the façade is assigned to any polygon or the
distance d exceeds a certain threshold which is set to fixed 20m in this work. Thus a façade
is only associated/paired to any building polygon if it lies at a distance less than 20m, oth-
erwise it is regarded to have no polygon associated to it (i.e., categorized to case 1).

Once the façade types are identified, they are fused with the refined building polygon in
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(a) (b)

Fig. 27. Fusion of both type I and II façades. The refined polygon of one particular jth building Ṽj with two reconstructed
façades f1 and f2 with types I and II respectively is shown; (a) depicts the procedure of computing points v′ta and v′tb.
Note that for type I façade, v′1a and v′1b are computed by projecting v1a and v1b onto black dotted line which is parallel
to the reconstructed façade f1 and passes through the midpoint of line segment L formed by connecting points v1a and
v1b while for the other façade having type II, v′2a and v′2b are simply the endpoints of the façade f2. All vertices of
Ṽj on P1 shortest and P2 shortest (i.e., points in P1 shortest and P2 shortest) are replaced by vertices v′1a, v′1b and v′2a,v′2b
respectively; (b) Resulting polygon in black after fusing façades f1 and f2 with types I and II respectively.

slightly different manners as explained in the following: Let Vref ined =
{
Ṽi=1,...,N

}
denote the

set containing N matrices of refined building polygons with Ṽj =
{
vk=1,...,m

}
(j ∈ i) being the

matrix containing 2-D vertices of the jth refined polygon having m vertices and fr=1,...,s as the
corresponding s number of (paired) reconstructed façades. If Ṽj is interpreted as a graph,
then a path Pt for any particular façade ft is defined as a way consisting of polygonal chain
of vertices that connect two points vta and vtb lying on the graph/polygon i.e., the polygonal
segment comprising of all the points of the polygon Ṽj within the interval [vta,vtb] defines
path Pt. If vta and vtb denote the closest points from the two end points of any particular
façade ft, then Pt can be further categorized into either Pt shortest or Pt longest (see Figure 26(b)).
If the path length of Pt is denoted as P Lvtavtb , then Pt is Pt shortest only if P Lvtavtb <

T L
2 where

TL is the total path length (i.e., perimeter) of the polygon.

Pt shortest is further classified into two types: Positive path P + and negative path P −. If the
set of points on the polygons that are nearest to the end points of all façades of the same
building other than ft are denoted as Kt (i.e., Kt contains points nearest to the endpoints
of façades fr ′=1,...t−1,t+1,...,s such that r ′ ∪ t = s), then Pt shortest of the reconstructed façade ft
is defined to be P + if set of points Pt shortest belonging to the path Pt shortest does not contain
any element of Kt i.e., Pt shortest ∩ Kt = ∅. Thus all façades whose paths are identified as
positives are incorporated in the fusion process while façades having negative paths are not
considered any further. An example illustration of the concept of positive path is presented
in Figure 26(c).

Fusion of type I façade is carried out by

� First computing the midpoint of the line segment Lt formed by connecting the two points
vta and vtb and then determine two new points v′ta and v′tb by projecting vta and vtb onto
another line parallel to the respective façade ft but passing through the midpoint of Lt
(see Figure 27(a));

� Subsequently replace all vertices within Pt shortest (i.e., points in Pt shortest) by v′ta and v′tb;
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� An area constraint is then employed to ensure that the change in the polygonal area after
incorporating particular façade is not greater than the certain fraction (set to 15%) of the
previous polygonal area;

� The last step is necessary to make sure that the inner structures of the building do not
interfere during the fusion procedure or in other words only façades that are exterior and
define the building outlines are utilized.

Fusion of type II façade is straight forward. The points v′ta and v′tb are directly taken as the
endpoints of the reconstructed façade.

The reason for this difference in computation of v′ta and v′tb while fusing the type I and
II façades is due to the fact that point density on building roofs is quite varying and can
contain gaps in between. This could lead to under reconstruct the building footprint i.e.,
part of the building roof region could not be reconstructed due to unavailability of points.
Presence of type II façades implicitly validates this plausible phenomenon and therefore
fusion of refined polygons by fully incorporating the reconstructed façades (of type II only)
result in improved overall accuracy of reconstruction. Doing same for type I façades, on
the other hand, may affect the footprint polygon in presence of façades belonging to inner
building structures. Thus, only the orientation of type I façade is essentially incorporated
by the proposed procedure. Figure 27 graphically illustrates the fusion procedure for both
façade types.

5.3.3 Addition of rectilinear constraints

The façade-fused polygons are further identified whether they are rectilinear or not. The
identification procedure is based on estimated dominant directions of the buildings and
proceeds by determining angular difference βi (0 ≤ βi ≤ 90◦) of all the edges of the poly-
gon with respect to the dominant/principal directions. Then the histogram of these angular
differences is computed and all the edges whose angular differences fall within the bin in-
tervals [0◦,20◦] and [70◦,90◦] are found. Subsequently, the polygon is identified to be rec-
tilinear if the total sum of lengths of these edges are more than a certain fraction Lf of the
total polygonal length TL. (Lf is fixed to 0.75 in our work i.e., 75% of the total polygonal
length TL).

Following steps are performed to rectilinearize the identified polygons:

� Classify each edge of the building polygon such that it belongs to one of the two or-
thogonal principal axes based on its angular deviation (i.e., an edge is associated to that
principal direction with whom the angular difference is less);

� Merge all adjacent edges that share same class i.e., associated to the same principal direc-
tion;

� Apply rectilinear transformation to every merged polygonal edge by projecting it onto its
corresponding principal axis/vector;

� Computing intersection (or vertex) points between the consecutive vertices.

The identification and addition of rectilinear constraints depends on the estimated domi-
nant direction of the façade-fused polygon. For building polygons belonging to case 2 (i.e.,
having one or more reconstructed façades associated to each polygon), the principal direc-
tion is easily determined by assigning it to the direction vector computed by subtracting
the endpoints of the longest reconstructed façade paired to it. For case 3 building polygons,
the principal direction is directly estimated from the polygon itself. Since no façade is as-
sociated to them, a weighted edge length based method is employed to estimate the two
orthogonal principal directions of the building polygon.
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Following objective function is minimized (Zhang et al., 2006):

PD =
n∑
i=1

g1 (li)g2

(
ϕi

(
βi ,φdvq

))
(23)

where n is the total number of vertices of the polygon and βi (0 ≤ βi ≤ 90◦) is the angular
deviation of each edge li with respect to the direction vector dvq. βi is computed similar to
(22) with the difference that the two direction vectors are dvi and dvq instead of direction
vectors of consecutive edges dvj and dvj+1. φdvq is anticlockwise rotation angle which dvq
makes with the unrotated coordinate system. ϕi () is a function that maps the angular devi-
ations βi to one of the two orthogonal directions (or axes) as defined by direction vector dvq
and its corresponding normal vector. It is computed as

ϕi
(
βi ,φdvq

)
=

 βi if βi ≤ 45◦

90− βi if βi > 45◦
(24)

Both g1 () and g2 () are the weighting functions. g1 () assigns weight to each edge based on its
relative length with respect to the overall length of the polygon edges. It is constructed in a
way such that edges with longer lengths contribute less in (23) as compared to shorter edges
lengths. Following linear function is used to describe g1 ():

g1 (li) = 1− li
n∑
i=1
li

(25)

Similarly, g2 () assign weights to each edge based on its ϕi value. Assignment of weight is
directly proportional to ϕi i.e., lower weight is given to an edge with lower ϕi inferring that
edges close to one of the two orthogonal directions are given less weight as compared to the
ones that are deviating. Since the span of ϕi for each edge is defined to be within the interval
[0 45◦], therefore g2 () is computed by adopting the following linear function as:

g2

(
ϕi

(
βi ,φdvq

))
=
ϕi
45

(26)

Solution of (23) is obtained by rotating φdvq within the interval [0 , 90◦] and then find-

ing an optimum (or minimum) φ̂dvq by comparing PD for each φdvq value. The direction

vector and its corresponding normal vector associated to the optimum (or minimum) φ̂dvq= argmin
φdvq

(PD)

 thus describe the two orthogonal principal directions for case 2 building

polygons.

5.4 Experimental results and validation

5.4.1 Datasets
For validation, the proposed approach is tested on two different datasets. One is composed
of TomoSAR point clouds generated from a stack of 25 TerraSAR-X high resolution spotlight
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(a)

(b)

Fig. 28. Datasets: Top view of the three dimensional TomoSAR points in UTM coordinates of the area of interest in Las
Vegas, USA (a) and Berlin (b). Blue lines depict the reconstructed façade segments (longer than 10 meters). The height of
TomoSAR points is color-coded [unit: m].

images covering approximately (900×600 ≈) 0.54 km2 area in the city of Las Vegas, USA. It
contains 0.48 million points and consists of moderate sized buildings with relatively simple
geometry. The second dataset is added to test the generality of the proposed algorithms and
is composed of TomoSAR point clouds of complex building structures produced from a stack
of 102 TerraSAR-X high resolution spotlight images covering around (1750×900 ≈) 1.5 km2
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(a)

(b)

Fig. 29. Building extraction results − Las Vegas: (a) Extracted building points in red are overlaid onto the optical image
(© Google) of the area of interest. Yellow circles indicate extracted points originating from sources like advertisement
boards, monuments etc. Large black circle encloses two buildings which remain undetected due to lower relative heights;
(b) Finally, reference footprints (in green) overlaid onto the extracted building points. Red points are building points while
black points are non-building points.

area in the city of Berlin, Germany. Number of points in Berlin dataset are approximately
0.52 million. Both TomoSAR point cloud datasets are generated from images taken from
ascending orbit using the Tomo-GENESIS software developed at DLR (Zhu et al., 2013).

5.4.2 Reference dataset
For the area of interest in Las Vegas, the reference footprints for Las Vegas dataset were
acquired from Cybercity3-D (CyberCity3D, 2015). These footprints are highly precise with
positional accuracy up to ± 15 cm and are generated using automated and semi-automated
photogrammetry-based techniques with data source derived from aerial, oblique, or satellite
stereo imagery.
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(a)

(b)

Fig. 30. Results of building extraction − Berlin: (a) Extracted roof points in red are overlaid onto the optical image (©
Google) of the area of interest; (b) Red and black points depict building and non-building points, respectively. The overlaid
green polygons are reference buildings downloaded from OSM (Geofabrik, 2015). Blue polygons are manually extracted
buildings not present in OSM data. Gray polygons are newly constructed buildings that are not present in our dataset
whereas magenta colored polygons are buildings that do not actually exist but present in OSM data. Both gray and magenta
polygons are not included in the evaluation.

For Berlin dataset, the building extraction results are compared with the reference poly-
gons downloaded from the OpenStreetMap (OSM) (Geofabrik, 2015). The OSM data is free
to download and comes under the open license Open Data Commons Database License
(ODbL). Since it is a volunteered geographic information project, the data quality may vary
from region to region. Recently, the building footprints have been evaluated for their com-
pleteness (Hecht et al., 2013) and correctness (Fan et al., 2014b) for various cities of Ger-
many. The analysis of OSM data with surveying datasets reveals fairly precise positioning
accuracies varying within 4 meters (Haklay, 2010) (Fan et al., 2014b).
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5.4.3 Validation of results and discussion
Figure 28 shows the result of applying façade reconstruction procedure over both the
datasets. The final extracted building points overlaid onto the optical images are depicted
in Figure 29(a) and Figure 30(a). To validate the extraction results, the reference polygons
are plotted onto the extracted building points in Figure 29(b) and Figure 30(b). It can be
visually seen that the extracted building points fit very well to these reference polygons. For
Berlin dataset, few buildings were missing in the OSM dataset and therefore by analyzing
the detected buildings from TomoSAR point clouds and validating using optical data, these
few missing buildings were completed in OSM dataset i.e., polygons depicted in blue in
Figure 30(b). The performance of the (detection) extraction procedure in both the datasets
is then assessed by employing standard (completeness/correctness/quality) metrics in (%):
(93.923/86.173/81.622) − Las Vegas, (94.779/85.316/81.487) − Berlin.

In both the datasets, all the buildings having relative heights (with respect to ground) more
than 5m are detected by the extraction procedure. However, an example of two smaller
buildings for which no points could be extracted is highlighted by a black circle in Figure
29(a). These buildings have footprint area of approximately (28×5 =) 140 m2 but possess rel-
ative heights of only 2m. Since during the extraction procedure seed points are chosen based
on local height jumps of 5m, therefore no seed point could be chosen for these buildings.
As a consequence, they remain undetected. In terms of false alarms, it is worth to mention
that it might happen that points belonging to some small vertical structures on ground (e.g.,
advertisement boards, monuments, etc.) also get detected during our extraction procedure.
Few examples of such cases are also highlighted by yellow circles in Figure 29(a). The reason
for this occurrence of false positives is our implicit definition (or assumption) pertaining to
buildings i.e., higher points with higher degree of planarity are detected as buildings by the
extraction procedure.

The extracted points are in turn utilized for 2-D/3-D reconstruction of building footprints
using procedure explained in Section 5.3. In order to evaluate the reconstruction results,
both the reconstructed and reference polygonal footprints are rastered onto an image with
pixel resolution of 1m (i.e., 1 pixel corresponds to 1m2 spatial area). Figures 31 and 32
shows the common and difference images created from intersection and subtraction of the
reconstructed footprint image from the reference footprint image respectively. The evalua-
tion results based on these images result in following (commission/omission) errors in (%):
(10.79/17.20) for Las Vegas and (19.43/14.57) for Berlin datasets.

Figure 33 depicts the final building footprint reconstruction in 3-D on both Las Vegas and
Berlin datasets, respectively. Hypothetically, the reconstruction results will be improved
with higher density of TomoSAR points because more points would be available for param-

Fig. 31. Common images computed using reference footprint image and final reconstructed footprints.



5.4 Experimental results and validation 65

Fig. 32. Difference images computed by subtracting the final reconstructed footprint image from the reference image.
Red pixels indicate building regions that are not reconstructed by the proposed algorithm while blue pixels are over
reconstructed regions i.e., pixels not part of the reference footprint image but present in the reconstructed image. Note
that green pixels indicate no difference between reconstructed and reference rastered images.

eter estimation. Numerical experiments also demonstrated that reconstruction accuracy is
better for buildings with higher density of roof points. For low density roof regions, the
reconstruction accuracy is however restricted by the number of available points that conse-
quently reduces omissions errors. Further improved model based approach might be helpful
in this regard.
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Fig. 33. Final reconstructed 3-D building footprints: Las Vegas (top) and Berlin (bottom) datasets.
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6 Application examples

This chapter exemplifies potential applications of the building models reconstructed using
the framework proposed in the previous two chapters. Three innovation applications are
identified in A and D including

� 4-D (dynamic) building model: For improved monitoring of detailed structures of indi-
vidual buildings, an example of 4-D building model is presented;

� Elevation estimates refinement: Model based elevation refinement is carried out to re-
fine elevation of each raw TomoSAR point by using its more accurate azimuth and range
coordinates together with the corresponding reconstructed model;

� Joint sparsity concept: An algorithm that is able to segment overlaid building pixels in
the SAR image with the help of openly available 2-D GIS data has been developed and
presented in detail. The idea behind this is to utilize the extracted building characteristics
(e.g., building mask, orientation etc.) to further improve the TomoSAR inversion process
by exploiting the concept of joint sparsity as illustrated in D. For areas where 2-D GIS is
not available, the motivation is to utilize the footprint of reconstructed models instead to
improve the TomoSAR inversion in a feedback iterative manner i.e., to use reconstructed
footprints as iterative priors.

6.1 4-D (dynamic) building model

The dataset used to show the first example consists of TomoSAR point clouds generated
from two stacks (each comprising 25 images) of TerraSAR-X high-resolution spotlight im-
ages from ascending (36◦ incidence angle) and descending (31◦ incidence angle) orbits pro-
vided by (Zhu and Bamler, 2012a). Due to the different scattering properties from diverse
geometries, there is little chance to identify a common reference point for both stacks. This
problem results in a shift in the elevation directions of both point clouds reconstructed
from these two stacks with different viewing angles. To obtain the full structure of indi-
vidual buildings from space, the point clouds are first geodetically fused by determining
this shift in elevation direction (Gernhardt et al., 2012) (Wang and Zhu, 2015). Figure 34(a)
shows the optical image of our test buildings, the Bellagio hotel complex in Las Vegas. The
corresponding fused input TomoSAR point cloud in UTM coordinates is depicted in Figure
34(b). The size of the test area is about 520 × 570 m2. The number of TomoSAR points is
approximately 0.4 million.

Figure 35 depicts the SD estimates obtained for the test area using the procedure explained
in Chapter 4 (see Section 4.1.1). As can be seen, much higher SD estimates are obtained at
façade locations. Applying softer threshold to them and utilizing 3-D surface normals in-
formation (see Section 4.1.2) allow extraction of façade points as depicted in Figure 36(a).
Figure 36(b) shows the result of segmenting façade points as belonging to individual façades
which are later utilized to reconstruct 3-D façade model. Figure 36(c)(d) depicts the fused
point clouds overplotted onto the reconstructed façade model. The height of the points is
color-coded. The corresponding estimated motion parameter, in this case the amplitude of
seasonal motion caused by thermal dilation, is illustrated in Figure 37. This information,
if properly visualized/textured, can be used in the development of dynamic building mod-
els that may help to monitor individual buildings and even the whole city from space. In
addition to 4-D building model, if the points are color-coded according to their reflectivity
values, a real 3-D SAR can be generated. Figure 38 shows the corresponding reconstructed
3-D SAR image, i.e., the reflectivity map overlaid on the façade model. Such an image visu-
alizes in detail how the Bellagio hotel would look like in X-band for our eyes, if they could
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(a) (b)

Fig. 34. Test buildings - Bellagio hotel, Las Vegas: (a) Optical image (© Google); (b) Fused TomoSAR point clouds from both
ascending and descending orbits in UTM coordinates.

sense microwaves, from the position of the SAR satellite. Also, such visualizations may be
helpful to develop an intuition about the multiple bounce effect. Moreover, the very bright
individual scatterers that behave as corner reflectors can be precisely located which conse-
quently helps in better understanding of the nature of scattering.

Fig. 35. SD estimates of TomoSAR point cloud depicted in Figure 34(b).

6.2 Elevation estimates refinement

As briefly mentioned in Chapter 3 (Section 3.3), due to limited orbit spread and the small
number of images, the location error of TomoSAR points is highly anisotropic with an eleva-
tion error typically one to two orders of magnitude higher than in range and azimuth (Zhu,
2011). For example, for TerraSAR-X high resolution spotlight images with typical parame-
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(a) (b)

(c) (d)

Fig. 36. 3-D Façade reconstruction results: (a) Extracted façade points; (b) Segmented façade points; (b) Reconstructed 3-D
façade model with extracted façade points. For (a), (c) and (d), the height of the points is color-coded from blue (lowest) to
red (highest) [unit: m].

Fig. 37. Reconstructed 4-D building façade model, amplitude of seasonal motion is color-coded [unit: mm].

ters, the theoretical relative localization precision of a persistent scatterer is (Gernhardt and
Bamler, 2012): 1.7 ∼ 2.1cm in range; 3.2 ∼ 3.8 cm in azimuth and 62 ∼ 139 cm in elevation.

The elevation estimates of the TomoSAR points can be refined by using their more accu-
rate azimuth and range coordinates and the reconstructed façade surfaces as depicted in
Figure 39. This sketch illustrates the refinement principle in range-elevation plane. The red
points represent the raw TomoSAR point locations at different heights along a façade. The
ellipse indicates the error ellipse of the TomoSAR estimate in range and elevation direction,
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(a)

(b)

Fig. 38. Reconstructed 3-D SAR image overplotted on the reconstructed façade model. Note that this is not only a projection
of the SAR image onto the building models. Rather, the lay-overed brightness contributions from façade and ground have
been separated in the tomographic reconstruction step.

i.e. much poorer accuracy in elevation compared to range. The black line indicates the re-
constructed façade surface. The corresponding iso-azimuth-range lines of each point along
elevation (directions are indicated by the arrows) are projected to the identified and mod-
eled façade surface it belongs to. The final refined 3-D position is obtained by taking the
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Fig. 39. The basic principle for the elevation estimates refinement of the TomoSAR points by using their more accurate
azimuth and range coordinates and the reconstructed façade surfaces.

elevation coordinate of the intersection point. This is an approximation of an optimal linear
estimate. The green points represent the positions after elevation refinement. In this way,
it is expected to achieve much better elevation estimation accuracy that is in the order of
several centimeters, though it is still slightly worse than the ones in azimuth and range due
to error propagation.

To validate this improvement, a row of bright points from the intensity image belonging
to a façade portion of constant height are manually selected as shown in Figure 40(a). Fig-
ure 40(b) and (c) compare the height estimates of the analyzed points before and after the
refinement. It is obvious that their height estimates are improved significantly. The stan-
dard deviations before and after the refinement are 190 cm and 5.5 cm, respectively. An
improvement by a factor of 35 corresponds quite nicely to the ratio of inherent resolutions
in elevation (in the order of 30 ∼ 50m) and range (1.1 m).

6.3 Joint sparsity concept

6.3.1 Dataset
A single SAR intensity image acquired from German SAR satellites TanDEM-X and 2-D
building outlines downloaded from openly available OSM website (Geofabrik, 2015) are
utilized to demonstrate the building segmentation procedure. Figure 41(a) depicts the op-
tical image of the test buildings while Figure 41(b) depicts the corresponding SAR image.
Downloaded 2-D building outlines are shown in Figure 42.

6.3.2 Proposed segmentation strategy
The key idea is to make use of the aforementioned online freely assessable 2-D building foot-
prints to extract detailed high rise building features including building masks, orientations,
and the iso-height lines in SAR image data stacks. The extracted information can be fur-
ther incorporated as a prior knowledge into the estimation for a more accurate tomographic
SAR inversion. For this purpose, in the following a sophisticated approach is proposed that
is tolerable to moderate errors in the input GIS data for automatic extraction of high rise
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(a)

(b) (c)

Fig. 40. Elevation estimates refinement: (a) TerraSAR-X mean intensity map from ascending stacks (the red dots are the
analyzed points) along with the projection geometry; Height estimates of the analyzed points before (b) and after (c)
refinement.

building features (e.g., building mask, iso-height lines, orientation etc.) in the SAR image
data stacks.

Following steps are performed to extract the interesting building features (i.e., the mask
and iso-height lines) of the considered buildings in a single SAR image with the help of 2-D
footprints:

(1) Available building footprints from OSM in world (latitude/longitude) coordinates are
transformed/geocoded into SAR (azimuth/range) imaging coordinate system. Figure
43(a) shows the projected reference polygons overlaid onto the buildings of interest in
the corresponding SAR image shown in Figure 41(b);

(2) Due to the side-looking geometry, SAR illuminates only one side of the building. There-
fore, the complete building footprint of individual buildings is further segmented into
two parts by means of a simple 2-D visibility test i.e., the part illuminated by the sensor
which will be further used for iso-height pixel extraction (as depicted by red polylines
in Figure 43(a)) and the part in the shadow area not visible to the sensor which will not
used in further processing (as depicted by green polylines in Figure 43(a));

(3) Finally, errors in the identified red polylines, caused by inaccuracies of the input GIS
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(a) (b)

Fig. 41. Test Area: (a) Optical image of the test area © Google; (b) Corresponding SAR intensity map with spatial resolution
of 1.1 m × 0.588 m in azimuth (az) and range (rg) respectively.

Fig. 42. GIS data (2-D building footprints) of Las Vegas from OSM.

data in both orientation and translation, are compensated by adopting following se-
quence of actions:
(a) Shift/translate the identified polyline (red polyline in Figure 43(a)) in 2-D sliding

window fashion within the intervals: range shift [−10 10] and azimuth shift [−5 5];
(b) Within each shift, rotate the polyline between interval [−7.5 7.5] degrees and com-

pute median of intensities along the rotated polyline. This is accomplished by se-
lecting equally spaced points along the rotated polyline, and then using nearest
neighbor interpolation to find the intensity value for each point. Finally, the me-
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(a) (b)

Fig. 43. Building mask extraction: (a) Reference polygons (shown in red and green polylines) of two buildings in the area
of interest overlaid onto the SAR intensity map after geocoding. Side of the buildings facing the sensor are shown in red
while the other side not visible to the sensor in green; (b) After rotation and range-azimuth shift compensation, the red
polylines in (a) are shifted towards the sensor. The yellow dotted lines indicate the maximum range shift of MaxRgShift (=
318m) where as the red dotted lines indicate the RgShift obtained by taking the maximum of the approximate derivative
of C.

(a) (b)

Fig. 44. Graphical illustration of adjusting polyline length: (a) Black and gray polygons indicate polygons before and
after rotation (around centroid depicted as black star) respectively with circles representing corresponding vertices. The
dotted polylines represent building side not visible to the sensor. It is shown that after orientation the azimuthal length
is changed; (b) Length of the outer (first and last edge depicted in dark gray) edges of the polyline facing the sensor is
slightly extended by distance e (= 5m in this work). Intensities (interpolated) over these extended edges are analyzed and
first and last extended points (i.e., v′pandv′q) are respectively replaced by the points on the edges vpv′pandvqv′q where
the approximate derivative (or change in intensities) is maximum.

dian value of all these intensities is computed;
(c) The polyline is rotated and shifted with the rotation angle and the azimuth-range

shifts which give the maximum of computed median intensities (from the previous
step);

(d) Finally, the rotation causes the change in the azimuthal length of the polyline which
needs to be adjusted (see Figure 44(a)). This is accomplished by first slightly extend-
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ing the polyline and later adjusting the lengths of the outer (first and the last) edges
of the polyline by analyzing their (interpolated) intensities (same as step 3b except
that only the first and last edge of the polyline is used). Figure 44(b) graphically
illustrates the adjustment procedure.

(4) The mask of an individual building is further generated by adopting following steps:
(a) Iteratively shift the corrected polylines towards the sensor (i.e., one pixel in the

range direction). The iterations stop when number of iteration the number of itera-
tions equals MaxRgShift (= 595). This value of MaxRgShift is computed on basis of
height of tallest building in Las Vegas, the Stratosphere Tower having height of ap-
prox. 350 m, and range resolution of the sensor (i.e., maximum building size along
elevation appearing in the SAR image of Las Vegas city, computed as 350/0.588(≈
595 pixels) where 0.588m is the approx. range resolution). Within each iteration,
median of (interpolated) intensities along the shifted polylines are computed and
stored in a column matrix C;

(b) Take approximate derivative of C (i.e., calculate differences between adjacent ele-
ments of C) and store the result in matrix D;

Fig. 45. Reconstructed and color-coded elevation of the two test buildings using 6 interferograms, visualized in two lay-
ers, overlaid with intensity. From top to down: first and second layer, respectively; from left to right: M-SL1MMER and
SL1MMER, respectively (Zhu et al., 2015b).
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(c) Compute argmax
RgShif t

(
DRgShif t

)
where RgShif t(= 1, ...,d − 1) denotes the maximum

change point in D;
(d) Determine polyROI using RgShift and vertices of the identified (compensated) poly-

line facing the sensor to extract the mask of the particular building.

To elaborate how polyROI is computed, consider a building having three adjacently con-
nected vertices v1 − v2 − v3 of the polyline facing the sensor where ’−’ denotes the adjacency
(i.e., v2 is adjacently connected to v1 and v3, and so on). Assuming that the polyline has
been compensated for rotation and range-azimuth shifts, the polyROI is then simply formed
as v1 − v2 − v3 − v′3 − v′2 − v′1 − v1 where v′j (az, rg) = vj (az, rg −RgShif t) with j = 1,2 and 3
(see Figure 43(b)). Finally, polyROI , describing the polygon surrounding the overlaid pixels
of the same building in the SAR image, is used to generate the building mask of an individ-
ual building.

6.3.3 Application of the extracted building parameters
The downside of advanced repeat-pass InSAR techniques, like PSI and TomoSAR, are their
high demand on the data, i.e., typically a stack of 20∼100 images over the illuminated
area are required. Even using most efficient algorithms, like non-linear least squares and
SL1MMER, a minimum number of 11 acquisitions are at least required achieving a reason-
able reconstruction in the interesting parameter range of spaceborne SAR. The extracted
building parameters (i.e., the mask and iso-height lines) from the previous section may be
used in significantly reducing the required number of images while achieving the same
quality of reconstruction.

Assuming the height of the building across extracted iso-height line stays constant, the con-
cept of group/joint sparsity can be exploited as e.g., in D, where experiments on bistatic
TanDEM-X data stacks depict highly accurate tomographic reconstruction using six interfer-
ograms only (see Figure 45). The developed algorithm extends the state of the art SL1MMER
algorithm (Zhu and Bamler, 2010a) (Zhu and Bamler, 2012b) to M-SL1MMER, i.e., the
multi-snapshot case, by exploiting the joint sparsity concept. It uses multiple snapshots
of iso-height pixels identified in SAR images using 2-D OSM data to achieve better recon-
struction capability (for details, please refer D. Although the availability of high quality 2-D
GIS data is continuously increasing with time, there are places where it is not available. In
that case, alternatively one can use the 2-D footprints reconstructed from a preliminarily
retrieved TomoSAR point cloud, as demonstrated in previous two chapters.
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7 Segmentation and reconstruction of individual
trees

Unlike most of the current state of the art approaches which typically employ optical and/or
LiDAR data, the work in this chapter is to demonstrate the potential of millimeterwave
SAR remote sensing for the reconstruction of individual trees, as well as to preliminarily
analyze the achievable accuracy. This chapter essentially summarizes the methodological
and experimental sections from the journal paper E (see the Appendix).

The proposed approach delivers first 3-D reconstruction results on individual tree level
using airborne millimeterwave TomoSAR data fused from multiple aspects. The essential
components of the proposed approach are as follows:

(1) An unsupervised mean shift clustering has been employed to segment the 3-D point
cloud;

(2) Modeling of trees is adopted via minimum volume enclosing 3-D ellipsoids;
(3) Core parameters including position, height, and crown diameter of individual trees are

extracted out automatically.

7.1 Dataset

The dataset used in this work is acquired from the German MEMPHIS system created by
the Fraunhofer Institute for High Frequency Physics and Radar Techniques (Schimpf et al.,
2002) during a campaign over Munich, Germany in June 2013 (Schmitt and Stilla, 2014a).
The MEMPHIS system is equipped with four receiving antennas enables single-pass multi-
baseline InSAR data, consequently leading to highly coherent data even for vegetation by
minimizing the effect of temporal decorrelation. Furthermore, the system operates in mil-
limeterwave domain which provides less canopy penetration (i.e., less underestimation of
tree heights) in comparison to longer wavelengths typically used in radar remote sensing.
This data is particularly suited for individual tree reconstruction (Stilla et al., 2014) (Schmitt
et al., 2015):

By fusing TomoSAR reconstruction using data acquired from two opposing aspects (flight
heading angles 20◦ and 200◦ respectively, a layover- and shadow-free fused 3-D point cloud
over the area of interest is generated in (Stilla et al., 2014) (Schmitt et al., 2015). More details
of the MEMPHIS sensor and 3-D point cloud generation procedure can be found in E. The
selected area of interest is “Alter Nordfriedhof”, an abandoned cemetery, which is used as a
public park today, with the target coordinates 48◦09′13′′ N, 11◦34′13′′ E. As can be seen in
Figure 46(a), this approximately 5 ha large area is mainly characterized by a light planting of
deciduous trees, resembling a grove or little wood. The corresponding SAR intensity image
and the resulting 3-D TomoSAR point cloud is displayed in Figure 46(b) and Figure 46(c)
respectively.

7.2 Methodological workflow

7.2.1 Point cloud clustering
The 3-D points retrieved from TomoSAR processing are clustered by mean shift clustering
algorithm to extract individual trees. Since the tree crowns represent denser regions in the
point cloud, mean shift algorithm is therefore applied to cluster points in the spatial domain
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(a) (b)

(c)

Fig. 46. Test scene “Nordfriedhof” in Munich, Germany: (a) Optical image © Google; (b) MEMPHIS intensity image, range
direction from left to right; (c) Corresponding airborne 3-D TomoSAR point cloud.

(i.e., our feature space comprises of spatial coordinates in the Euclidean space). If pj=1,...,n
denote the indices of 3-D points, then the kernel density estimate at any point pi (i ∈ j) is
given by the well-known expression (Comaniciu and Meer, 2002):

Dpi =
c

nb3

n∑
j=1

g

(∥∥∥∥∥pi −pj
b

∥∥∥∥∥2)
(27)

where b is the bandwidth parameter and g (x) is a nonnegative, non-increasing, piecewise

continuous function with definite integral i.e.,
∞∫
0
g (x)dx <∞. From the concept of kernels

(Cheng, 1995) (Comaniciu and Meer, 2002), the function g (x) is defined as the profile of
the radially symmetric kernel G (x) satisfying G (x) = cg

(
‖x‖2

)
where c is a normalization

constant ensuring that G (x) integrates to 1. Different kernels, such as the Epanechnikov
kernel and the Gaussian kernel can be used to define the density Dpi . Mean shift essentially
seeks modes of the kernel density estimates and works iteratively by shifting every data
point toward the weighted mean of points within its neighborhood (defined to be cylindrical
in our case). The shift vector m (pi) always points toward the direction of the maximum
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(a) (b)

Fig. 47. Illustration of the ellipsoidal modeling: (a) MVEE computed using 3-D points denoted as black dots (projected
onto the xy plane). s1 and s2 are the computed semi axes of the MVEE; (b) MVEE of (a) is extruded in z direction both
upwards and downwards forming a 3-D ellipsoid with third semi axes denoted as s3. x′ and y′ in (a) represents axes of the
global coordinate system while x and y denotes the coordinates in local coordinate system. The orientation and axes of the
rotated ellipsoid are computed using singular value decomposition of matrix A. Red point in both (a) and (b) represents
the ellipsoid center.

increase in the density Dpi (Comaniciu and Meer, 2002) and is computed as

m (pi) =

n∑
j=1

pj exp
(
−‖pi−pj‖2

b2

)
n∑
j=1

exp
(
−‖pi−pj‖2

b2

) −pi (28)

The process of iteration continues until there is no or very little shift inm (pi) (i.e., the length
of shift vector m (pi) is very small). Due to the gradient ascent nature, mean shift return
clusters using the concept: attraction of basin. I.e., those points whose trajectories lead to
the same mode forms the basin of attraction for that mode (Comaniciu and Meer, 2002)
and are clustered into one group. The clustering procedure is repeated till all the points are
assigned to their respective modes.

Clustering via mean shift is non parametric in a sense that it does not require the number of
clusters in advance nor it needs any defined model for the shape of the resulting clusters. But
still, it does require a bandwidth parameter (radius of the kernel) that affects the number of
clusters (= number of modes) returned by the algorithm. However, unlike other clustering
algorithms such as k-means, fuzzy c-means, Expectation Maximization etc., the bandwidth
parameter has some physical meaning and could be set while having some prior knowledge
e.g., in our case, average diameter of the tree crowns.
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7.2.2 Ellipsoidal modeling

Once the clustering is done, the individual tree clusters are modeled in 3-D using gener-
alized (tri-axial) ellipsoids that are aligned to z-axis. For this purpose, parameters of an
arbitrarily oriented minimum volume enclosing ellipse (MVEE) are estimated by first pro-
jecting points belonging to individual tree clusters onto the xy plane followed by extruding
the 2-D xy ellipse in z direction to form 3-D ellipsoid aligned to z-axis. The motivation for
having an z-axis aligned ellipsoid is to obtain geometrically correct tree models such that
resulting modeled ellipsoids may have arbitrary orientation in xy plane but remain upright
or vertical with respect to the ground (see Figure 47). This is based on the assumption that
the trunks of trees to be modeled are vertical to the ground surface.

Following procedure is adopted for the computation of MVEE: If K = {kl |l = 1, ...,m} denote
m clusters returned by mean shift algorithm and Q = {qu |u = 1, ..., r} denote the set of r points
belonging to any one particular cluster kf (f ∈ l), then any arbitrarily oriented ellipse ε can
be candidate for MVEE(Q) only if all points in Q lie on or inside its boundary i.e., satisfying
(Kumar and Yildirim, 2005):

(
qu − ckf

)T
A

(
qu − ckf

)
≤ 1 for u = 1, ...,m (29)

In the above equation, A is a d × d positive finite matrix (d refers to dimension which is 2
in our case) and ckf is the center of the ellipse surrounding the clustered points Q. Semi

axes sv of such an ellipse are given as sv = (λv)−
1/2vv where vv denote the eigenvectors of

A giving the direction of semi axis whereas λv are eigenvalues of A that are related to the
length of these axes (i.e., length of each axis is equal to the 1/

√
λv ). The volume of the above

ellipsoid is given by 4π
3 det

(
1/
√

A
)
. Thus in order to obtain an MVEE(Q), det

(
1/
√

A
)

has to
be minimized such that (29) is satisfied together with A > 0. To solve this, Khachyan’s first
order algorithm (Khachiyan, 1996) has been employed which solves this primal problem by
formulating it as an optimization problem using Lagrangian duality.

The computed MVEE(Q) is extended to the third dimension by extruding it in z axis to
form a 3-D ellipsoid. The z coordinate of the ellipsoid center and its semi axis length s3 in z
direction are estimated as:

ckfz = median
(
hkfmin

)
+ s3 where

s3 =
1
2

(
median

(
hkfmax

)
−median

(
hkfmin

)) (30)

where hkfmax
and hkfmin

are the vectors containing maximum and minimum of N height points
in any particular cluster kf .

Once the modeling is complete, the tree parameters e.g., tree heights, crown diameter and
trunk location can be directly estimated from the ellipsoid tree model. For instance, the
tree height is assumed to be the maximum height of the ellipsoid in z direction, tree crown
(or span) radii are given by the x and y semi axes of the ellipsoid while the xy coordinates
of the center point of the ellipsoid gives the location of tree trunks. Although this simple
parametric model suffices for deciduous trees having approximately an ellipsoidal shape,
an extension to more general tree models e.g., as described in (Sheng et al., 2001) seems
potentially viable.
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Fig. 48. Reference data of the test scene, created from a LiDAR point cloud and a co-registered orthophoto. Each yellow
ellipse indicates one manually extracted reference tree.

7.3 Experimental results and evaluation

7.3.1 Reference data
In order to evaluate, the reconstruction results are compared with manually generated refer-
ence dataset. The dataset is acquired from helicopter-borne LiDAR point cloud, containing
approximately 0.16 million points (i.e., 3 points/m2) with position accuracy of around 1∼20
cm (Schmitt, 2014), co-registered with the orthophoto, provided by the Bavarian Surveying
Administration (official name: Landesamt für Digitalisierung, Breitband und Vermessung)
with pixel resolution of about 50 cm, co-registered with the orthophoto of Figure 46(a).
Reference trees from the dataset were extracted out by human operator based on following
sequence of steps:

� Visual identification of individual trees from the orthophoto and LiDAR data;
� Manually measuring approximate tree parameters;
� Assigning maximum LiDAR height point of each tree as its corresponding height;
� Circular plus LiDAR-derived tree height parameterization of each tree;
� Ellipsoidal modeling of each tree using the method described in Section 7.2, using only

the LiDAR points located within these preliminary tree circles

In total, the reference dataset consists of 570 trees. Figure 48 shows the reference ellipses
overlaid onto the corresponding optical (orthophoto) image.

7.3.2 Optimal bandwidth parameter selection
Figure 49 compiles the clustering results for varying kernel bandwidth parameter with four
potential cases:

� One-to-one detection refers to the case such that each reference tree corresponds to one
particular cluster.

� Together with all reference trees, which are oversegmented, i.e. more than one cluster is
assigned to them, this adds to the overall rate of detected trees.
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Fig. 49. Determination of the optimal bandwidth parameter by analysis of tree segmentation accuracy for all 570 reference
trees. Green indicates perfect matches of one cluster to one reference tree (i.e., optimal detection), red missed reference
trees, and purple tree clusters that cannot be assigned to any reference tree. In addition, cyan summarizes the overall
detected trees, including oversegmented trees.

Fig. 50. Correlation of bandwidth parameter and distribution of reference tree radii.

� When no cluster center falls within 2-D crown outline of the reference tree, it is consid-
ered as the case of a missed hit.

� Finally, some clusters cannot be assigned to any reference tree at all, which is often re-
ferred to as false positives.

It is important to mention here that all remaining evaluations are based on one-to-one de-
tections only, whereas oversegmented detections are counted as non-detected trees in order
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(a)

(b)

Fig. 51. Tree reconstruction results: (a) Clustering results of applying mean shift algorithm with bandwidth 3.2 m over
TomoSAR point clouds depicted in Figure 46(c); (c) Reconstructed 3-D ellipsoidal tree models.

to provide a fair assessment. From Figure 49, one can easily see that the optimal bandwidth
parameter is about 3.2 m. It is interesting to mention that the median reference tree radius is
3.25 m. Figure 50 nicely correlates the peak of tree radius histogram with the optimal band-
width parameter. Based on this, it can be easily inferred that prior knowledge of expected
tree radii of the area of interest helps in automatic tuning of the clustering procedure.

7.3.3 Evaluation of reconstruction results
The result of the mean shift clustering of the remaining point cloud with optimal bandwidth
parameter of 3.2 m is displayed in Figure 51(a). The points have been segmented into 566
clusters, which already resemble individual trees by visual impression. The final result of
the ellipsoid modeling process is depicted in Figure 51(b), including tree crowns of different
shape and hypothetical stem positions.

Figure 52 shows a projection of the reconstructed ellipsoids onto the 2-D reference data.
The visual map in xy (or ground) plane of reference and estimated tree locations is depicted
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Fig. 52. Ellipsoid models projected onto the 2-D reference dataset for one-to-one comparison. The green circles indicate
the reference trees, the circles filled in red correspond to the reconstructed trees.

Fig. 53. Localization errors of reconstructed trees and reference trees.

in Figure 53. Additionally, Figure 54 provides the error distributions of the tree heights and
the crown radii. The evaluation of the proposed reconstruction strategy with respect to man-
ually acquired LiDAR data set reveals that around 74% of all trees are correctly segmented
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(a)

(b)

Fig. 54. Distributions of (a) the tree height errors and (b) the crown radii errors. It can be seen that both tree heights and
crown radii tend to be slightly overestimated.

and subsequently reconstructed. This not only demonstrate the potential of millimeterwave
SAR remote sensing but also provides a promising perspective to further ignite researchers
towards individual tree recognition from SAR data.
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8 Conclusions and outlook

8.1 Summary and conclusion

The dissertation aims to develop object reconstruction methods using tomographic (TomoSAR)
SAR point clouds that can be used to monitor and visualize the dynamics (i.e., long-term
slow/seasonal motion and deformation in the mm- and cm-range) of a city area with very
high level of detail. In order to realize this overall goal/vision, four objectives − including
one general and three methodological objectives − summarized in Chapter 1 (Section 1.2)
have been pursued. The following conclusions can be sequentially drawn in relation to the
work presented in this thesis:

� Modern SAR satellites (including TerraSAR-X/TanDEM-X and CosmoSkyMED) provide
VHR data beyond the inherent spatial scales (in the order of 1m) of buildings constitut-
ing an invaluable data source for detailed urban mapping on large scale. Processing this
VHR data with advanced interferometric techniques such as SAR tomography (TomoSAR)
allows generation of 4-D point clouds; containing not only the 3-D positions of the scat-
terer location but also estimates of temporal deformation on the scale of centimeters or
even millimeters; making them very attractive for generating dynamic city models from
space;

� Due to the side-looking geometry and different microwave scattering characteristics of
objects appearing in the scene, TomoSAR point clouds exhibit special characteristics that
render conventionally employed 3-D object reconstruction techniques based on ALS point
clouds not directly applicable;

� Façade extraction procedures are based on the assumption of having a high number of
scatterers on the building façades and hence used the SD as the basis for various oper-
ations, including segmentation, orientation parameter estimation, and façade parameter
estimation. In most cases, the assumption is valid because of the existence of strong corner
reflectors, e.g., window frames, on the building façades. However, there are exceptional
cases: 1) the façade structure is smooth, i.e., only very few scatterers can be detected on the
façades; and 2) the building is low. In these cases, SD might not be the optimum choice.
Alternatively, other scatterer characteristics such as intensity and SNR may be exploited
for extraction and reconstruction purposes;

� In similar context, since the satellite orbits are bound to pass close to the poles of Earth,
the approach based on SD (i.e., the presented façade-only approach) from one incidence
angle only may fail to reconstruct building façades facing North or South due to the miss-
ing of measurements. The solution to this problem is provided in this thesis by also in-
corporating roof points in determining the complete shape/footprint of the building. The
approach is modular and completely data driven that does not impose any restrictions on
the shape of the building (i.e., any arbitrarily shaped footprint could be reconstructed)
which as a consequence allows for a robust reconstruction of both tall and low buildings,
and therefore is well suited for urban monitoring of larger areas from space;

� Availability of roof points is however dependent on the structure and geometry (area)
of the roofs. For part of the roof that is smooth or completely invisible to the sensor, no
points would be obtained which may result in under-reconstruction of the footprint (i.e.,
the footprint size is under estimated). Such situations can be rectified by using points
from other viewing angles (e.g., use of TomoSAR points generated from both ascending
and descending orbits) and/or by incorporating some prior model knowledge of the shape
to obtain complete building footprints;

� The reconstructed 2-D/3-D building shape models could be utilized for further innova-
tion applications as demonstrated in this thesis. For instance, 1) By enriching the recon-
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structed 3-D model by its deformation history, new kind of 4-D buildings models could
be generated; 2) The elevation estimates of raw TomoSAR points could be refined by us-
ing their more accurate azimuth and range coordinates together with the corresponding
reconstructed model; 3) By extracting key building features in SAR image, e.g., iso-height
lines, the concept of joint sparsity could be exploited to improve the TomoSAR inversion
procedure;

� Spaceborne repeat-pass SAR data lacks to reconstruct temporarily incoherent objects (i.e.,
no points are available over vegetation or trees). To this end, an approach has been devel-
oped in the scope of this thesis to reconstruct individual trees from 3-D TomoSAR point
cloud generated from multi-baseline InSAR millimeterwave data acquired from multi-
aspects with the airborne single-pass MEMPHIS SAR system. The presented experiments
highlight three important aspects: 1) The millimeterwave InSAR data is suitable for indi-
vidual tree reconstruction; 2) Unsupervised clustering of such an airborne point cloud is
possible by mean shift clustering if an expectation value of the typical tree crown radii
in the investigated scene is available; 3) Ellipsoids can be used to model the shapes of
deciduous trees, thus providing approximate estimates for core tree parameters such as
location, height and diameter;

� As a final remark, although the work presented in this thesis primarily focuses on object
reconstruction methods using TomoSAR point clouds generated from spaceborne- and
airborne- SAR sensors, the developed methods are also applicable to work on unstruc-
tured 3-D point clouds generated from different sensors with similar configuration (i.e.,
oblique geometry) with both low and high point densities.

8.2 Future work

In relation to the current status of the work presented in this dissertation, a few topics for
further study are outlined which mainly concern 1) Refinement of 2-D/3-D building shape
reconstruction; 2) Roof modeling; 3) Object based fusion; 4) New visualization methods −
SAR street view concept; and 5) Improvement in individual trees reconstruction.

8.2.1 Refinement of 2-D/3-D building shape reconstruction

The extraction of building points is based on few assumptions: I.e., façades are assumed
vertical while and roof points are extracted based on two assumptions, namely planarity
and higher relative heights. This assumption also enables detection/reconstruction of other
man-made vertical structures e.g., advertisement boards, monuments etc. Imposing dimen-
sional constraints on the reconstructed footprints or other geometric measures may help in
further distinguishing them from buildings.

8.2.2 Roof modeling

In this research, both façades and roof points have been utilized to build the overall 2-D
shape of the building footprint which after incorporating the height information produce
extruded 3-D building models. Explicit modeling of roof structure has not been exploited
yet. In this regard, a possible future research direction is to explore the potential of extend-
ing the algorithm towards generation of automatically reconstructed complete watertight
prismatic (or polyhedral) 3-D/4-D building models from space.
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8.2.3 Object based fusion
Unknown absolute height values of different reference points, which are chosen indepen-
dently while processing individual VHR SAR data stacks, hinder in direct fusion of To-
moSAR point clouds from multi-views. To this end, 2-D/3-D footprints independently pro-
duced from each single aspect TomoSAR point cloud could be matched/correlated to de-
velop a more precise object based geometric TomoSAR fusion method compared to two
existing ground points based (Gernhardt et al., 2012) and feature based (Wang and Zhu,
2015) approaches. An alternative approach is geodetic TomoSAR (Zhu et al., 2015c) where
the absolute 3-D coordinates of the reference points are retrieved using imaging Geodesy
(Eineder et al., 2011) and stereoSAR (Gisinger et al., 2015).

8.2.4 New visualization methods − SAR street view concept
� TomoSAR point clouds are very attractive for dynamic (i.e., 4-D) city modeling. In this

context, the combined visualization of 3-D city models with 4-D TomoSAR point clouds is
challenging as it requires combination of different visualization techniques such as point-
based visualization for displaying 3-D points and polygon based visualization for plotting
the reconstructed model of the object. Furthermore, in order to meet the needs of different
users with different SAR and TomoSAR experience, volume and/or texture based visual-
ization methods may also need to be incorporated to cope with users operating on various
systems with different graphics processing capabilities.

� Proper visualization may also help in developing a new concept which may be called ”SAR
Street View”, similar to Google Street View, where instead of displaying the photorealistic
3-D models only, following two layers or modes of operation could be incorporated:

1) Deformation mode − Reconstructed 3-D model with deformation estimates visualized
over it;
2) 3-D SAR mode − 2-D radar reflectivity mapped onto the reconstructed 3-D model of
the object of interest.
The first mode may be better for monitoring and visualization of the dynamics of urban

infrastructure. Changes and deformation of different parts of individual buildings would
be accessible for different types of users, e.g. geologists, civil engineers, decision makers,
etc.

The second mode could be helpful to develop an intuition about the multiple bounce
effect. Moreover, the very bright individual scatterers that behave as corner reflectors can
be precisely located consequently helping in better understanding of the nature of scat-
tering.

8.2.5 Improvement in individual tree reconstruction
Despite of the nice reconstruction results provided in Chapter 7 (Section 7.3), there is still
room for further improvement:

� Results of final tree reconstruction to derive core tree parameters are essentially depen-
dent on the clustering algorithm. In this context, a more robust clustering procedure
needs to be developed that is able to handle varying tree sizes and shapes (or types).
An extension to already proposed mean shift approach would be to employ an adaptive
bandwidth parameter selection based on local neighborhood characteristics. Moreover,
additional information such as SAR intensity (or amplitude) values may also be utilized
to achieve robust detection/segmentation of individual trees;

� Simple ellipsoidal model may not be appropriate for variety of different tree shapes. In
this regard, a generalized ellipsoid model also accounting for varying crown curvature
could be utilized to develop a more generic reconstruction approach;
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� To resolve problems related to missed trees due to occlusion, volumetric tomography
based methods might be employed;

� Moreover, a more robust tree parameter estimation strategy may be employed to signifi-
cantly reduce the over-estimation bias;

� Finally, since no analysis of any kind of data can replace in-situ observations, a more
accurate reference data may be generated for fair evaluation.
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Facade Reconstruction Using Multiview Spaceborne
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Abstract—Recent advances in very high resolution tomographic
synthetic aperture radar inversion (TomoSAR) using multiple
data stacks from different viewing angles enables us to gener-
ate 4-D (space-time) point clouds of the illuminated area from
space with a point density comparable to LiDAR. They can be
potentially used for facade reconstruction and deformation mon-
itoring in urban environment. In this paper, we present the first
attempt to reconstruct facades from this class of data: First, the
facade region is extracted using the density estimates of the points
projected to the ground plane, the extracted facade points are
then clustered into individual facades by means of orientation
analysis, surface (flat or curved) model parameters of the seg-
mented building facades are further estimated, and the geometric
primitives such as intersection points of the adjacent facades are
determined to complete the reconstruction process. The proposed
approach is illustrated and validated by examples using TomoSAR
point clouds generated from stacks of TerraSAR-X high-resolution
spotlight images from two viewing angles, i.e., both ascending and
descending orbits. The performance of the proposed approach
is systematically analyzed. To explore the possible applications,
we refine the elevation estimate of each raw TomoSAR point by
using its more accurate azimuth and range coordinates and the
corresponding reconstructed building facade model. Compared to
the raw TomoSAR point clouds, significantly improved elevation
positioning accuracy is achieved. Finally, a first example of the
reconstructed 4-D city model is presented.

Index Terms—Facade reconstruction, point cloud, TerraSAR-X,
tomographic synthetic aperture radar (SAR) inversion (To-
moSAR), 4-D city model.

I. INTRODUCTION

THE automatic detection and reconstruction of buildings
and other man-made structures from space is becoming

increasingly important with the growing number of population
in urban areas. Reconstructed models can serve as a major
component in the realization and generation of 4-D (space-
time) or even higher dimensional dynamic city models. Urban
planning and management [1], tourism [2], architecture [3],
damage assessment [4], and disaster management [5] are few
among their various potential application areas.
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Recent advances in very high resolution synthetic aperture
radar (SAR) imagery and its key attributes—self-illumination
and all-weather capability—have attracted the attention of
many remote sensing analysts in the characterization of urban
environments. Various techniques have been developed that
make use of SAR imagery for building detection and recon-
struction. Complex building shapes surrounded by roads and
other structures make building detection a challenging problem.
One possible solution is to discriminate buildings from other
objects using the building height and width measurements
extracted from SAR imagery [6]. The key issue is then the
building height retrieval. For this purpose, various methods
have been developed, including using sound electromagnetic
models [7], layover [8] or shadow analysis [9] and simulation-
based methods [10]. In [11], an approach particularly suited
for the detection and extraction of large buildings based on
information acquired from interferometric SAR (InSAR) data is
proposed. Stochastic model-based and low level feature-based
approaches for extracting and reconstructing buildings from a
single SAR intensity image are presented in [12] and [13],
respectively. Wang et al. [14] presented an approach for build-
ing extraction from high-resolution single-aspect polarimetric
SAR data. Since, in urban areas, the structures are densely
packed, the appearance of one particular building is dependent
on the viewing angle of the sensor. Using a single-view SAR
image, it is difficult to detect buildings that have no orientation
component in the sensor’s azimuth direction [15]. To overcome
this limit, multiview SAR acquisitions are required. In [16],
an approach for estimating building dimensions using multi-
view SAR images is presented. Bolter and Leberl [17] and
Thiele et al. [18] proposed methods for building reconstruction
based on multiview InSAR data. Building reconstruction in
context to stereoscopic SAR radargrammetric and multiview
polarimetric SAR acquisitions has also been used in [19] and
[20], respectively.

Due to the complex urban scenes and inherent problems
of SAR images such as speckle effect and layover [21], the
previously presented approaches give solutions to building
reconstruction but only to some extent. Spaceborne meter res-
olution SAR data, together with multipass InSAR techniques,
including persistent scatterer interferometry (PSI) and tomo-
graphic SAR inversion (TomoSAR), allow us to reconstruct
the shape and the undergoing motion of individual buildings
and urban infrastructures [22]–[25]. PSI exploits bright and
long-term stable objects, i.e., the persistent scatterers (PSs).
However, it is restricted to single scatterers in an azimuth–range
pixel. TomoSAR, on the other hand, extends the synthetic
aperture principle into the elevation and temporal domain
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See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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for 3-D and 4-D imaging [24]–[29]. It resolves the layover
problem by separating multiple scatterers along the elevation
direction [24]–[26], [28]. Without any preselection of pixels
as PSI does, TomoSAR offers tremendous improvement in
detailed reconstruction and monitoring of urban areas, par-
ticularly man-made infrastructures [24]. Experiments using
TerraSAR-X high-resolution spotlight data stacks show that
the scatterer density obtained from TomoSAR is on the order
of 600 000–1 000 000/km2 compared to a PS density on the
order of 40 000–100 000 PS/km2 [23], [24]. The rich scatterer
information retrieved by TomoSAR from multiple viewing
angles enables us for the first time to generate 3-D point clouds
of the illuminated area with a point density comparable to
LiDAR [23], [30]. These point clouds can be potentially used
for building facade reconstruction in urban environment from
space with the following considerations:

1) TomoSAR point clouds reconstructed from spaceborne
data have a moderate 3-D positioning accuracy on the
order of 1 m [31], while (airborne) LiDAR provides accu-
racy typically on the order of 0.1 m [32]. Due to limited
orbit spread and the small number of images, the location
error of TomoSAR points is highly anisotropic with an
elevation error typically one or two orders of magnitude
higher than in range and azimuth. Another peculiarity of
TomoSAR and PSI point clouds is that, due to multiple
scattering, ghost scatterers may be generated that appear
as outliers far away from a realistic 3-D position [33].

2) Due to the coherent imaging nature and side-looking
geometry, TomoSAR point clouds emphasize different
objects than LiDAR: 1) The side-looking SAR geometry
enables TomoSAR point clouds to possess rich facade in-
formation, and results using pixelwise TomoSAR for the
high-resolution reconstruction of a building complex with
very high level of detail from spaceborne SAR data are
presented in [34]; 2) temporarily incoherent objects, e.g.,
trees, cannot be reconstructed from multipass spaceborne
SAR image stacks; and 3) to obtain the full structure
of individual buildings from space, facade reconstruction
using TomoSAR point clouds from multiple viewing
angles is required [35], [36].

3) Complementary to LiDAR and optical sensors, SAR is so
far the only sensor capable of providing the fourth dimen-
sion information from space, i.e., temporal deformation
of the building complex [37], and microwave scattering
properties of the facade reflect geometrical and material
features.

However, in order to provide a high-quality spatiotemporal
4-D city model, object reconstruction from these TomoSAR
point clouds is emergent. Motivated by these chances and
needs, in this paper, we attempt to detect and reconstruct the
building facades from TomoSAR point clouds.

Three-dimensional object reconstruction techniques from
point clouds are widely employed using LiDAR data. They
mostly make use of the fact that man-made structures such
as buildings usually have parametric shapes. After selecting
local sets of coplanar points using 3-D Hough transform or
random sample consensus algorithms, 3-D objects are recon-

structed by surface fitting in the segmented building regions
[38]. Numerous methods are employed for building roof seg-
mentation and reconstruction such as unsupervised clustering
approaches [39], region growing algorithms [40], and graph-
based matching techniques [41]. These techniques, however,
cannot be directly applied to TomoSAR point clouds due to
different object contents captured by the side-looking SAR as
mentioned earlier.

In this paper, we present an approach for the detection
and reconstruction of building facades from these unstruc-
tured TomoSAR point clouds. It consists of three main steps,
including facade detection and extraction, segmentation, and
reconstruction: First, the facade region is extracted by ana-
lyzing the density of the point projected to the ground plane,
the extracted facade points are then clustered into segments
corresponding to individual facades by means of orientation
analysis, and surface (flat or curved) model parameters of the
segmented building facades are further estimated. Furthermore,
we refine the elevation estimate of each raw TomoSAR point by
using its more accurate azimuth and range coordinates and the
corresponding reconstructed surface model of the facade. The
proposed approach is illustrated and validated by examples us-
ing TomoSAR point clouds generated from stacks of TerraSAR-
X high-resolution spotlight images from two viewing angles,
i.e., both ascending and descending orbits.

This paper is structured as follows. Section II introduces the
facade surface model assumptions and describes the data set
used in this paper. In Section III, the proposed approach is pre-
sented, and the different processing steps are described in detail.
In Section IV, the results obtained on the test buildings using
TomoSAR point clouds generated from multiple viewing angles
are presented, and the performance of the proposed approach is
analyzed. Two application examples of the reconstructed facade
models are presented in Section IV. Finally, in Section V, some
conclusions are drawn, and future perspectives are outlined.

II. MODEL ASSUMPTION AND THE DATA SET

A. Model Hypotheses/Assumptions

Many existing approaches assume polyhedral building struc-
ture, i.e., roofs as planar surfaces and facades as vertical flat
planes. The building model is then described by vertex points
determined from intersections of ridges and boundary line
segments. In most cases, the building footprint is assumed to
be a rectangle polygon. As a consequence, boundary tracing
algorithms usually regularize the identified boundary points to
straight line segments such that the building footprints represent
a polygonal shape. In our work, we assume the facades to be
vertical but model their footprints by polynomial lines to allow
a wider variety of architecture.

B. Data Set

The data set used in this paper is TomoSAR point clouds
generated from two stacks (each comprising 25 images) of
TerraSAR-X high-resolution spotlight images from ascending
(36◦ incidence angle) and descending (31◦ incidence angle) or-
bits as reported in [34]. Due to the different scattering properties
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Fig. 1. Test buildings—Bellagio hotel, Las Vegas. (a) Optical image (Google). (b) Fused TomoSAR point clouds from both ascending and descending orbits in
UTM coordinates.

from different geometries, there is little chance to identify a
common reference point for both stacks. This problem results
in a shift in the elevation directions of both point clouds recon-
structed from these two stacks with different viewing angles.
To obtain the full structure of individual buildings from space,
the point clouds are first geodetically fused by determining
this shift in elevation direction [30], [42]. The proposed facade
reconstruction approach is then applied to the resulting fused
point clouds. Fig. 1(a) shows the optical image of our test
buildings, the Bellagio hotel complex in Las Vegas. Fig. 1(b)
gives an overview of the fused input TomoSAR point cloud in
universal transverse mercator (UTM) coordinates. The size of
the test area is about 520 × 570 m2. The number of TomoSAR
points is approximately 0.4 million.

III. METHODOLOGY

As illustrated in Fig. 2, the proposed approach consists of
three main steps, including facades detection and extraction,
segmentation, and reconstruction.

A. Facade Detection and Extraction

Building facade detection and extraction is generally the first
and important step toward the reconstruction of 3-D building
models from point clouds generated from aerial or spaceborne
acquisitions. A common approach in LiDAR point cloud pro-
cessing is to first compute a (or use an already existing) digital
terrain model (DTM) by filtering techniques, e.g., morphologi-
cal filtering [43]–[45], gradient analysis [46], or iterative densi-
fication of triangular irregular network structure [47], [48], and
then use the DTM to extract nonground points [49], [50] from
the rasterized point cloud data. The rasterized nadir-looking
LiDAR point cloud gives a digital surface model (DSM). The
difference of DSM and DTM provides us a normalized DSM
that gives us the height variations among nonground points.
By exploiting geometrical features such as deviations from the
surface model [51], local height measures [32], [45], roughness
[45], and slope variations [43], [46], building points can be ex-
tracted out. Some methods support the building detection prob-
lem by explicitly using 2-D footprints [52], [53]. They help in
reducing the building detection problem by providing the build-
ing regions but can suffer from inaccurate positioning accuracy
[54] and artifacts introduced during data acquisition [38].

Fig. 2. Workflow of the proposed approach.

Our proposed approach for extracting building facades ex-
ploits the idea of orthogonally projecting the points onto the
2-D ground plane as presented in [38]. However, instead of
estimating local planes to refine the building outline, the 2-D
scatterer (point) density (SD) in the horizontal x–y (ground)
plane is used to extract facade points. The proposed method
works directly on the unstructured 3-D TomoSAR points. SD
is locally estimated for each grid point defined on the ground
plane by first accumulating the number of points within a local
window and then dividing by the window size. By exploiting
the fact that, for a side-looking instrument like SAR, the point
density is much higher for vertical structures (value depending
on the building height), the building facades are extracted.

Fig. 3(a) shows the SD map of the input TomoSAR point
cloud shown in Fig. 1(b). The grid spacing is set to 1 × 1 m2.
The grid cells having a point density less than a specified
threshold TH are removed. A mask is then generated after
a morphological dilation which, in turn, is used for building
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Fig. 3. Facade (detection) extraction. (a) Scatterer density map in the ground plane on a 1 × 1 m2 grid. (b) Extracted building facade points. The color bar
indicates the (a) number of points/m2. (b) Sea-level height in meters of each 3-D building facade point.

(facade) point extraction in each grid cell. Fig. 3(b) shows
the extracted points belonging to the facades of two different
buildings. The number of buildings in the scene is found by
analyzing the footprint in the generated mask (which is two in
our case).

B. Segmentation

To reconstruct individual facades, the segmentation of the
points belonging to the same facade is required. Most seg-
mentation approaches make use of unsupervised clustering
techniques. They typically search for local plane features and
then perform neighborhood analysis using the detected features
[38], [55]. Only considering the planar segments can be too re-
strictive as in the appearance of the curved surfaces that can be
better modeled using second-order or higher order polynomials.
Therefore, we search for both planar and curved surfaces and
further distinguish them by local footprint orientation analysis.

a) Local Orientation Estimation: Given the set of pixels
representing the building regions in the x–y plane, the local ori-
entation angle θ is estimated by weighted least squares (WLS)
adjustment. The corresponding weight of the facade pixels
within the estimation window is given by the corresponding
estimated SD. If there is no point inside the window other
than the considered point, that point is no longer considered as
part of any facade footprint and hence removed. The estimated
local orientation along the facade footprints for a 10 × 10 m2

window size is shown in Fig. 4. The orientation change between
different facades is quite evident.

b) Feature Vector Selection: Extracted facade points from
the preceding step are further clustered into segments cor-
responding to individual facades. As mentioned earlier, the
orientation estimates of different facade footprints are used to
cluster the points. To distinguish grid pixels that are spatially
far apart but having similar orientation, spatial parameters are
also incorporated as features for clustering, i.e., a 3-D feature
space (x, y, θ) is adopted.

c) K-Means Clustering: The well-known K-means cluster-
ing algorithm is used here for segmentation with the aforemen-
tioned 3-D feature vector incorporating spatial features (x, y)
and orientation angle θ depicted in Fig. 4.

Fig. 4. Orientation estimates in degrees on each grid point of Fig. 3(a). The
color bar indicates the degree range [−90 ∼ 90].

A common problem related to k-means is to know the num-
ber of clusters (facades) k in advance that is not pragmatic in
our case. To overcome this limitation, an initial guess about the
number of clusters is first computed such that it underestimates
k. The points are then clustered with the initial guess using
k-means. Points within each resulting cluster that are spatially
disconnected are then further separated as smaller clusters.
Based on this more detailed clustering result, the points near
boundaries of adjacent facades that are normally far away from
the corresponding cluster center are further finely clustered.

Initial guess about number of clusters: To determine the
initial number of clusters, the within-cluster dispersion is de-
termined in successive clustering runs for varying numbers of
clusters.

Let us define Dr as the mean deviation of points in cluster r
from its respective center

Dr =

nr∑

i=1

di

nr
(1)

where nr is the number of points in cluster r and di is the
Euclidean distance of the ith point in r from its center. The
dispersion index Ik for k clusters can then be determined
as [55]

Ik =

k∑

r=1

Dr

k
. (2)
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A plot of such dispersion index against the number of clus-
ters gives us an indication on how to choose an appropriate
number of clusters [55]. The dispersion index Ik usually de-
creases significantly with increasing number of clusters and
becomes steady afterward. The location of the elbow point can
be considered as a good estimate of the number of clusters
[55], [56].

Separation of clusters Within clusters: With initially
guessed and underestimated k, it is common that facades hav-
ing similar orientation estimates and relatively small spatial
distances have been clustered into one group. It is therefore
necessary to extract and treat clusters within clusters that are
not spatially connected as separate clusters. For this reason,
we perform a connectivity analysis to determine the number of
contours and treat each contour as a separate cluster. However,
if the contour is very small, i.e., the number of pixels is less
than Tp, it is omitted.

Finer clustering: After separating clusters within clusters,
the following procedure is adopted for refinement.

1) Appropriate polynomial models (first for flat and second
for curved) are fitted to estimate the cluster footprints.
Model parameters are estimated by L1 norm minimiza-
tion that is robust against outliers.

2) Accept points in each corresponding cluster that are
within the 2σ distance from the estimated facade, where
σ is the standard deviation of the residual.

3) Connectivity analysis is then carried out for the rejected
points. Three possible cases can exist.
a) The point is isolated. In this case, it is removed.
b) The point is connected to other discarded points. In

this case, the number of points is counted, and in
case the number is less than Tp, they are removed.
Otherwise, they are merged together to form a new
cluster.

c) The point belongs to another cluster. In this case, the
discarded point is assigned to another existing cluster.

By following the aforementioned procedure, extracted
facade points are clustered into segments.

C. Reconstruction

A facade is normally characterized by a flat or curved sur-
face, edges (facade boundary), and the corresponding vertices.
These features will be reconstructed in this section.

a) Model Identification (Flat or Curved Facade Surfaces):
The facade surfaces to be modeled are first classified to flat
and curved surfaces by analyzing derivatives of the local ori-
entation angle θ. The curved surfaces have gradually changing
orientations across their footprint compared to flat surfaces that
have ideally constant orientations. We first compute the first
derivatives θ′ of the orientation angle θ for each facade foot-
print. Since the locally estimated θ′ is usually noisy, second-
order polynomial fitting is applied for denoising. The decision
on whether an individual facade footprint is flat or curved is
based on the behavior of θ′. Facade footprints with too small
orientation variation are considered to be flat while facade
footprints with gradually changing orientation are considered
to be curved.

TABLE I
PROCEDURE TO FIND THE ADJACENT SEGMENTS

OF A PARTICULAR FACADE SEGMENT

b) Parameter Estimation: Finally, model parameters for
each segmented facade are estimated. Each extracted point
in Fig. 3(b) is assigned a weight corresponding to its SD
depicted in Fig. 3(a). Two-dimensional facade footprints are
then reconstructed by a WLS method. Polynomials are used to
model the facade footprints in the x–y plane

fp(x, y) =

p∑

q=1

aqx
iyj i + j ≤ q (3)

where i and j are permuted accordingly, p is the order of the
polynomial, and the number of terms in the above polynomial
is equal to (p + 1)(p + 2)/2. Flat and curved surfaces are
modeled using first-order (p = 1) and second-order (p = 2)
polynomial coefficients, respectively. Higher order polynomials
could be used to model more complex building structures.

c) Vertex Determination: Once the facade model parameters
are estimated, the final step is to describe the overall shape
of the building footprint by further identifying adjacent facade
pairs and determining the intersection of their facade surfaces.

The adjacency of facades is described by an adjacency matrix
that is built up via connectivity analysis. Table I shows the
procedure that we propose to decide the adjacency of one
particular facade segment with other facade segments of the
building.

Identified adjacent facade segments are then used to deter-
mine the vertex points in 2-D (i.e., facade intersection lines
in 3-D). They are found by computing the intersection points
between any adjacent facade pair. Since polynomial models are
used for facade parameter estimation, the problem of finding
vertex points boils down to find the intersection point between
the two polynomials corresponding to the two adjacent facades.
Depending on flat or curved facades, two cases needed to be
discussed.

1) Adjacent facades are flat: In this case, there is only one
intersection point which is taken as the vertex point.

2) One of the two facades is curved, or both facades are
curved: There is more than one solution. In these cases,
mean Euclidean distances of the possible intersection
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Fig. 5. Completeness versus correctness with the varying TH and GA
parameters.

points to both adjacent facades are computed. The point
having the smaller mean distance to both facades is
considered as the vertex point.

The computed vertex points and the estimated model param-
eters are then used to finally reconstruct the 3-D model of the
building facades.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, we discuss and assess the overall performance
of the proposed method: The performance of the building
facade extraction is evaluated, clustering issues are discussed,
and the positioning accuracy of the facade models is further
assessed.

A. Performance Assessment of Facade Extraction

To evaluate the quality of our facade extraction procedure,
a pointwise comparison method is employed. Extracted facade
points are compared to the reference data, and the results are
analyzed for quantitative and qualitative evaluation.

Pseudoreference data: The absence of exact reference
data representing the actual facade area restricts the accurate
evaluation of the facade point extraction procedure, but since
we are already incorporating prior knowledge (i.e., the fact
that higher point density areas represent vertical structures)
in estimating few facade parameters from a large number of
points belonging to an individual building facade, it is highly
probable that points closer to the reconstructed facade footprint
are indeed points belonging to the corresponding facades. We
therefore consider all points that are within 1.5σ of the esti-
mated facade footprints reported in Section IV-C to be true
facade points and use them to assess the performance of the
proposed facade extraction procedure.

Evaluation Metrics: To evaluate the performance of the
proposed building facade extraction procedure, all the points
in the input point cloud data are assumed to belong to one
of the two categories, i.e., facade or nonfacade points. Any
point detected as a facade point by the algorithm that also

TABLE II
OVERALL SUCCESS OF THE EXTRACTION PROCEDURE IN TERMS

OF QUALITY FOR SIX TH AND FIVE GA VALUES

corresponds to a facade in the reference data set is taken as true
positive (TP ). Similarly, a point labeled as a facade point but
is not actually a facade point in the reference data set is treated
as false positive (FP ). A false negative (FN) corresponds to a
point which belongs to the facade in the reference data set but is
wrongly labeled as a nonfacade point by the facade extraction
procedure. The performance of the (detection) extraction pro-
cedure is then assessed by employing the following evaluation
metrics [57], [58]:

Completeness (%) : comp = 100 ×
(

TP
TP+FN

)

Correctness (%) : corr = 100 ×
(

TP
TP+FP

)

Quality (%) : Q = comp×corr
comp+corr−comp×corr = TP

TP+FP+FN

⎫
⎪⎪⎬
⎪⎪⎭

.

(4)

The metrics mentioned above assess the overall performance
of the extraction algorithm. Completeness tells up to what
percentage the algorithm has detected the facade points while
correctness provides a measure of correct classification. Among
them, completeness is particularly important in our application
in order to preserve intact facade footprints. The quality Q
is crucial when comparing the results obtained from different
algorithms [57].

Dependency on window size GA and thresholding param-
eter TH: Two parameters that influence the number of facade
points extracted by the algorithm are as follows: the threshold
TH and window size GA. In order to assess the effect of these
two parameters on the extraction procedure, the evaluation was
carried out using the following sequence of GAs and THs,
with GA = {1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5} m2 and TH =
{1.0, 1.5, 2.0, 2.5, 3.0, 4.0} points/m2.

To characterize the performance of the extraction procedure,
the dependence of completeness and correctness metrics on
these two parameters is analyzed. A tradeoff between complete-
ness and correctness can then be chosen based on the adjustable
setting parameters. Fig. 5 depicts the completeness and cor-
rectness achieved with different TH and GA parameters. It is
obvious that a lower TH value results in higher completeness.
The higher the TH value, the less the false positives observed,
which results in higher correctness. This simply lies in the fact
that it is more probable that the grid point with higher SD
belongs to a facade. Table II gives us the overall success of the
extraction procedure in terms of quality (Q) for six TH and five
GA values defined earlier. The performance of the extraction
procedure is best under the following parameter settings: TH =
2 points/m2 and GA = 3 × 3 m2. The overall quality of which
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Fig. 6. Segmentation results. (a) Dispersion plot with elbow point at k = 5. (b) Corresponding clustering with k = 5. (c) Clustered grid points in feature space,
i.e., orientation (in degrees) and spatial positions on the ground plane (in meters). (d) Corresponding clustered TomoSAR points.

is 95.94%. Generally better correctness and completeness can
also be observed from Fig. 5 with this parameter setting, i.e., a
completeness of 99.89% and a correctness of 96.04%.

Based on the aforementioned discussion, in our experiment,
we estimate the SD on the ground plane with a grid distance
of 1 m. The window size is set to be 3 × 3 m2. A facade mask
on the ground plane is obtained based on the resulting SD map
by setting a threshold of 2 points/m2 that are finally used for
facade extraction. It is worth to mention that aforementioned
parameters are tuned to point clouds generated from TerraSAR-
X high-resolution spotlight data, i.e., a resolution of 1.1 m ×
0.6 m × 30 m, and the particular incidence angles. For other
configurations, the optimal GA will be different.

B. Clustering

Extracted facade points from the previous step are further
clustered into segments corresponding to individual facades.
For a reasonable initial guess of the number of clusters, Fig. 6(a)
shows the plot of Ik by assuming different numbers of clusters
k = 2, . . . , 10. We can observe that the dispersion index Ik

decreases significantly with decreasing number of clusters with
k up to 5 and becomes steady afterward. The number of clusters
at this elbow point has been chosen as the initial number

of clusters. Fig. 6(b) shows the preliminary clustering results
with k = 5. It is evident that different facades having similar
orientation estimates and relatively small spatial distance have
been clustered in one group. Therefore, small clusters that are
not spatially connected are separated. Very small contours, i.e.,
the number of pixels is less than Tp (Tp = 10 in our case), are
omitted. By following the procedure of the final fine clustering,
the extracted points are clustered into ten segments. Fig. 6(c)
and (d) shows the color-coded clustering of grid points in fea-
ture space after refinement and their corresponding TomoSAR
points in UTM coordinates, respectively.

C. Three-Dimensional Facade Reconstruction

By analyzing the orientation derivatives as described in
Section III-C, the ten clustered facades in Fig. 6(d) are iden-
tified as five curved and five flat facades. Each extracted facade
footprint point in 2-D is assigned a weight corresponding to its
SD depicted in Fig. 3(a). Two-dimensional facade footprints are
then reconstructed using the WLS method.

Once the facade model parameters are estimated, the next
step is to find the intersection of these facade surfaces to
describe the overall shape of the building footprint. Following
the procedure depicted in Table I, the corresponding adjacency
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Fig. 7. Three-dimensional view of the reconstructed full building facade model in (a) vertical and (b) 3-D view.

TABLE III
ADJACENCY MATRIX OF THE FACADE SEGMENTS DEPICTED IN Fig. 7(a)

TABLE IV
STATISTICS AND ACCURACY OF THE RECONSTRUCTED FACADES

matrix for all the facade segments labeled in Fig. 7(a) is
depicted in Table III. The crosses indicate the mutual adjacent
facade pairs. The vertex points are found by computing the
intersection points between any adjacent facade pair.

Fig. 7 shows the final reconstructed building facade mod-
els using the estimated parameters and the determined vertex
points. Table IV depicts the statistics of the reconstructed
facades. It also assesses the accuracy of the estimated facade
models by computing the root-mean-square error (RMSE) of
all the points from their respective reconstructed facade. For
comparison, facade parameters are also estimated by assigning

Fig. 8. Basic principle for the elevation estimate refinement of the TomoSAR
points by using their more accurate azimuth and range coordinates and the
reconstructed facade surfaces.

uniform weights. Compared to facade parameters estimated by
assigning weights according to their SD, bigger mean RMSE is
observed.

V. APPLICATION EXAMPLES

In this section, the reconstructed model presented in
Section IV is used to refine the elevation estimates of the raw
TomoSAR point clouds, and an example of the reconstructed
4-D building model is presented.

A. Elevation Estimate Refinement

As briefly mentioned in Section I, due to the limited orbit
spread and the small number of images, the location error of
TomoSAR points is highly anisotropic with an elevation error
typically one to two orders of magnitude higher than in range
and azimuth. For TerraSAR-X high-resolution spotlight images
with typical parameters, the theoretical relative localization
precision of a PS is as follows [59]: 1.7–2.1 cm in range;
3.2–3.8 cm in azimuth, and 62–139 cm in elevation.

The elevation estimates of the TomoSAR points can be
refined by using their more accurate azimuth and range coordi-
nates and the identified and modeled facade surfaces as depicted
in Fig. 8. This sketch illustrates the refinement principle in
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Fig. 9. Elevation estimate refinement. (a) TerraSAR-X mean intensity map from ascending stacks (the red dots are the analyzed points) along with the projection
geometry. Height estimates of the analyzed points (b) before and (c) after refinement.

the range–elevation plane. The red points represent the raw
TomoSAR point locations at different heights along a facade.
The ellipse indicates the error ellipse of the TomoSAR estimate
in the range and elevation direction, i.e., much poorer accuracy
in elevation compared to range. The black line indicates the
reconstructed facade surface. We project the corresponding iso-
azimuth-range lines of each point along elevation (directions
are indicated by the arrows) to the identified and modeled
facade surface that it belongs to. The final refined 3-D position
is obtained by taking the elevation coordinate of the intersection
point. This is an approximation of an optimal linear estimate.
The green points represent the positions after elevation refine-
ment. In this way, we expect to achieve much better elevation
estimation accuracy that is on the order of several centimeters,
although it is still slightly worse than the ones in azimuth and
range due to error propagation.

To validate this improvement, we selected a row of bright
points from the intensity image belonging to a facade portion
of constant height as shown in Fig. 9(a). Fig. 9(b) and (c)
compares the height estimates of the analyzed points before
and after the refinement. It is obvious that their height estimates
are improved significantly. The standard deviations before and
after the refinement are 190 and 5.5 cm, respectively, an im-

provement by a factor of 35 which corresponds quite nicely to
the ratio of inherent resolutions in elevation (on the order of
30–50 m) and range (1.1 m).

B. 4-D Building Model

To better monitor the detailed structures of individual build-
ings, an example of the reconstructed 4-D building model is
presented in Figs. 10–12. In Fig. 10, the fused point clouds
with refined elevation are visualized by overplotting them onto
the reconstructed facade model. The height of the points is
color coded. The corresponding estimated motion parameter (in
this case, the amplitude of seasonal motion caused by thermal
dilation) is illustrated in Fig. 11. This information can be used
for developing dynamic building models from spaceborne SAR
data that can help to monitor individual buildings and even the
whole city. Fig. 12 shows the reconstructed 3-D SAR image,
i.e., the reflectivity map overlaid on the facade model. Such an
image visualizes in detail how the Bellagio hotel would look
like in X-band for our eyes, if they could sense microwaves,
from the position of the SAR satellite. Such visualizations may
lead to a better understanding of the nature of scattering.
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Fig. 10. Point clouds with refined elevation overplotted on the reconstructed facade model. The height of the points is color coded (unit: meters).

Fig. 11. Reconstructed 4-D building facade model. The amplitude of seasonal motion is color coded (unit: millimeters).

VI. OUTLOOK AND CONCLUSION

TomoSAR point clouds are very attractive for dynamic city
model generation. As the first attempt, a facade reconstruction
approach tailored to this class of data is proposed in this paper.
It consists of three main steps: facade extraction, segmentation,
and reconstruction. The proposed approach is illustrated by
using fused TomoSAR point clouds from two stacks (ascend-
ing and descending) of TerraSAR-X high-resolution spotlight
data. We use the reconstructed facade model to refine the

TomoSAR elevation estimates. Compared to the raw TomoSAR
point clouds, significantly improved elevation positioning ac-
curacy on the order of several centimeters is achieved. A
first example of the reconstructed 4D building model is also
presented.

There are several aspects of the proposed reconstruction
procedure that can be improved in the future. Among them, the
proposed approach is based on the assumption that facades are
vertical and the footprint of each segment can be represented by
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Fig. 12. Reconstructed 3-D SAR image overplotted on the reconstructed
facade model. Note that this is not only a projection of the SAR image onto the
building models. Rather, the lay-overed brightness contributions from facade
and ground have been separated in the tomographic reconstruction step.

a set of polynomial coefficients. The fact that facade parameters
are estimated from the segmented points makes the recon-
struction performance strongly dependent on the quality of the
segmentation. In our experiment, we rely on the assumption
of having a high number of scatterers on the building facades
and hence used the SD as the basis for various operations,
including segmentation, orientation parameter estimation, and
facade parameter estimation. In most cases, the assumption is
valid because of the existence of strong corner reflectors, e.g.,
window frames, on the building facades. However, there are
exceptional cases: 1) the facade structure is smooth, i.e., only
very few scatterers can be detected on the facades, and 2) the
building is low. In these cases, SD might not be the optimum
choice. Alternatively, we can use other scatterer characteristics
such as intensity and SNR for extraction and reconstruction
purposes.

In the future, we will also concentrate on object-based To-
moSAR point cloud fusion, building roof reconstruction, and
automatic object reconstruction for large areas.
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Robust Reconstruction of Building Facades for Large
Areas Using Spaceborne TomoSAR Point Clouds

Muhammad Shahzad, Student Member, IEEE, and Xiao Xiang Zhu, Member, IEEE

Abstract—With data provided by modern meter-resolution syn-
thetic aperture radar (SAR) sensors and advanced multipass
interferometric techniques such as tomographic SAR inversion
(TomoSAR), it is now possible to reconstruct the shape and mon-
itor the undergoing motion of urban infrastructures on the scale
of centimeters or even millimeters from space in very high level of
details. The retrieval of rich information allows us to take a step
further toward generation of 4-D (or even higher dimensional)
dynamic city models, i.e., city models that can incorporate tempo-
ral (motion) behavior along with the 3-D information. Motivated
by these opportunities, the authors proposed an approach that
first attempts to reconstruct facades from this class of data. The
approach works well for small areas containing only a couple
of buildings. However, towards automatic reconstruction for the
whole city area, a more robust and fully automatic approach is
needed. In this paper, we present a complete extended approach
for automatic (parametric) reconstruction of building facades from
4-D TomoSAR point cloud data and put particular focus on robust
reconstruction of large areas. The proposed approach is illustrated
and validated by examples using TomoSAR point clouds generated
from a stack of TerraSAR-X high-resolution spotlight images from
ascending orbit covering an approximately 2-km2 high-rise area in
the city of Las Vegas.

Index Terms—Clustering, facade reconstruction, point density,
TerraSAR-X, tomographic SAR (TomoSAR) inversion, 4-D point
cloud.

I. INTRODUCTION

AUTOMATIC detection and reconstruction of buildings
has been an active research area for at least two decades.

Despite an extensive research effort, the topic is still of great
interest due to ever increasing growth of urban population
which gives rise to a wide range of potential applications
in various fields. For instance, building footprints (i.e., 2-D
building outline/shape) can be used for urban landscape devel-
opment [1], urban planning [2], damage assessment [3], disaster
management [4], navigation purposes [5], etc. Additionally,
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2-D footprint data in combination with height information
can generate 3-D building models. Such models are essential
for virtual city modeling [6] and 3-D GIS applications (e.g.,
commercial software such as Google Earth, Apple Maps, etc.).
Other possible usages may include analyzing solar potential
over building roofs [7], placing and installing telecommunica-
tion antenna towers [8], Web-based mapping [9], tourism [6],
architecture [10], augmented reality applications [5], [11], and
many more.

Spaceborne synthetic aperture radar (SAR) sensors are able
to provide day/night global coverage in virtually all weather
conditions. Moreover, due to coherent imaging nature, by using
acquisitions taken at different times, it is also uniquely capable
of imaging the dynamics of the illuminated area in the scale of
centimeters or even millimeters. These benefits have motivated
many researchers, and therefore, several methods have been
developed, which use very high resolution (VHR) spaceborne
SAR imagery for detection and reconstruction of man-made
structures in particular buildings. For instance, single-aspect
SAR-image-based approaches for building reconstruction are
proposed in [12]–[14]. Due to the fact that only single SAR
images are used, these approaches predominantly perform well
mostly only for isolated buildings but not for dense urban areas
where the buildings are densely packed and smaller buildings
are often occluded by the higher ones [15]. To resolve this,
interferometric SAR (InSAR) data, SAR image pairs taken
from slightly different viewing angles, are used, e.g., a modified
machine vision approach is proposed in [16] to detect and ex-
tract buildings. The algorithm is based on local approximation
of best fitting planes in the segmented regions of interest. Simi-
larly, Thiele et al. [17] also developed a model-based approach
to detect and reconstruct building footprints using orthogonal
InSAR images. Another automatic approach based on modeling
building objects as cuboids using multiaspect polarimetric SAR
images is presented in [18]. In data fusion context, the use of
optical imagery has also been exploited along with SAR [19]
and InSAR [15] datasets, respectively. Despite of the active
ongoing research in the area, the problem of building recon-
struction still remains challenging due to inherent characteris-
tics with SAR images such as geometrical projection caused
by the side-looking geometry [20]. Moreover, complex build-
ing structures and high variability of objects appearing in the
images make automatic building detection and reconstruction
a challenging task. For example, problems posed by occlusion
of smaller buildings/objects from the higher ones render diffi-
culties in large area extension. Therefore, prior knowledge is
often incorporated with certain regularization (geometric) con-
straints for realistic and automatic reconstruction. For instance,
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facades are often assumed to be vertical [19], building footprint
as regular parallelepipeds [14], roofs as polyhedral structures
[21], etc.

Modern spaceborne SAR sensors such as TerraSAR-X/
TanDEM-X [22] and COSMO-SkyMed [23] can deliver VHR
resolution data that fit well to the inherent spatial scales of
buildings. Hence, these VHR data are particularly suited for
detailed urban mapping [24]–[33]. However, 2-D SAR imaging
projects the 3-D scene onto a 2-D image, making it “noninjec-
tive” in urban scenarios due to the presence of vertical struc-
tures (e.g., building facades or other man-made objects) [25].
The unwelcoming effects such as layover and foreshortening
seriously handicap the interpretation of SAR images. Advanced
interferometric techniques, such as persistent scatterer interfer-
ometry (PSI) and SAR tomography (TomoSAR), aim at SAR
imaging in 3-D or even higher dimensions. Among them, PSI
exploits the coherent pixels, i.e., the bright long-term stable
objects (persistent scatterers) [30]. However, it assumes single
scatterers in one azimuth-range pixel and therefore does not re-
solve the layover problem. TomoSAR, on the other hand, aims
at real and unambiguous 3-D SAR imaging [25], [34]–[36]. By
exploiting multipass SAR images taken from slightly different
positions, like PSI does, it builds up a synthetic aperture in the
elevation direction that enables retrieval of precise 3-D position
of dominant scatterers via spectral analysis within one azimuth-
range SAR image pixel [25]. Multiple layovered objects in any
pixel are therefore separated from the reconstructed reflectivity
profile in elevation direction [36]. Moreover, exploiting the
fact that different acquisitions are taken at different times,
the synthetic aperture can also be extended in the temporal
domain to enable 4-D (space-time) focusing of SAR images.
The technique is referred to as D-TomoSAR, which combines
the strengths of both TomoSAR and PSI [26], [27], [37]–[40]. It
is capable of retrieving elevation and deformation information
(linear, seasonal, etc.) even of multiple scatterers inside a single
SAR image pixel [25], [29]. Retrieval of rich scatterer informa-
tion from VHR D-TomoSAR enables generation of 4-D (space-
time) point cloud of the illuminated area with point (scatterer)
density that is comparable to LiDAR, e.g., experiments using
TerraSAR-X high-resolution spotlight data stacks show that the
scatterer density retrieved using TomoSAR is on the order of
1 million points/km2 [28].

Object reconstruction from these high-quality TomoSAR
point clouds can greatly support the reconstruction of dynamic
city models that could potentially be used to monitor and
visualize the dynamics of urban infrastructure in very high level
of details. Such models would be immensely helpful to ensure
safety/security of growing urban population by monitoring of
urban infrastructures against potential threats of damage and
structural degradation caused by various factors, e.g., ground
subsidence or uplift, bad construction, natural disaster, etc.
Motivated by this, the very first results of building facade
reconstruction from single-view (ascending stack) and multi-
view (fused ascending and descending stacks) perspectives over
a small test building area (Bellagio hotel, Las Vegas) were
presented in [41] and [42], respectively.

In this paper, we present an approach that allows automatic
reconstruction of 3-D building facades using these unstruc-

tured TomoSAR point clouds only. The approach proposes new
methods as well as modifications to the previously introduced
idea in [42] aimed at finding a more general solution toward
automatic reconstruction of the whole city area. The basic idea
is to reconstruct 3-D building models via independent modeling
of each individual facade to build the overall 2-D shape of the
building footprint, followed by its representation in 3-D. The
following are the innovative contributions that are specific to
the approach proposed in this paper.

1) A robust M-estimator-based directional SD estimation
method is proposed, which provides much better es-
timates of facade regions compared to the grid-based
SD estimation proposed in [42] by incorporating the
facade geometry. Moreover, instead of rejecting non-
facade points via 2-D morphological operations used
in [42], robust 3-D surface normal information is uti-
lized. The use of additional-dimensional with the vertical
facade assumption helps in better rejecting nonfacade
points.

2) K-means clustering with a criterion for prior guessing the
number of clusters is used in previous works [41], [42].
This technique provides good results for single buildings,
but when it comes to larger areas, there are two major
concerns: 1) guessing the number of clusters is not always
trivial, and 2) a certain shape of clusters is not very
well recognized. For this reason, a three-step automatic
(unsupervised) clustering approach that combines both
the density-based clustering [43] and mean shift algo-
rithm [44], [45] is proposed in this paper. The proposed
segmentation approach is able to work directly on bigger
areas without requiring any prior knowledge about the
number of clusters.

3) Facades are modeled using general (first and second
order) polynomial equations to cater for a wide variety
of building footprint. A detailed methodological descrip-
tion of the modeling procedure is explained, which is
able to cater arbitrary (rotated) orientations of building
facades. The coefficients of the model are estimated using
weighted total least squares (WTLS) method to cope
for localization errors of TomoSAR points in both xy
directions.

4) During the reconstruction procedure, the presence of
smaller clustered segments occurring at facade transition
regions handicaps accurate determination of vertex points
from the adjacent facade pair and may cause the recon-
struction procedure to fail. To deal with this problem,
smaller “conflicting segments” are automatically identi-
fied and removed for accurate and robust reconstruction
of the adjacent facades.

5) Side-looking SAR geometry and complexity of the scene
in dense high-rise area of interest can cause occlusions
of lower height facades scattered around higher building
facade structures. As a consequence, a few or some-
times no data are available for the occluded region,
rendering incomplete reconstruction or breaking an in-
dividual facade into two or more segments. A partial
solution is also presented in this paper, which refines the
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reconstructed facade footprints via insertion (of addi-
tional segments) and extension operations.

6) Finally, this paper presents the first demonstration of
automatic large area reconstruction of building facades
from this class of data. Moreover, the developed methods
are not strictly applicable to TomoSAR point clouds only
but are also applicable to work on unstructured 3-D point
clouds generated from a different sensor with similar
configuration (i.e., oblique geometry) with both low and
high point densities.

The aforementioned contributions allow completely auto-
matic (but parametric) reconstruction of building facades from
TomoSAR point clouds in larger areas.

The remainder of this paper is structured as follows.
Section II presents a brief procedural overview of the exist-
ing techniques that use 3-D LiDAR point cloud for build-
ing reconstruction. Section III presents in detail the proposed
approach. In Section IV, the experimental results, obtained
from the TomoSAR point cloud generated from a TerraSAR-
X high-resolution spotlight data stack (ascending orbit only),
are presented and discussed. Finally, in Section V, a conclusion
about the proposed approach is drawn, and future perspectives
are discussed.

II. RELATED WORK

Most approaches employ airborne LiDAR data for automatic
3-D reconstruction of buildings. Methodologically, the problem
is tackled by subdividing the task into two sequential steps, i.e.,
detection/classification of building points followed by their 3-D
modeling and reconstruction.

Detection is generally carried out by first computing the
digital terrain model (DTM) by filtering techniques, e.g., mor-
phological filtering [46], gradient analysis [47], or iterative
densification of triangular irregular network structures [48].
Nadir-looking LiDAR points essentially give a digital surface
model (DSM). Subtracting DSM from the computed DTM
provides a normalized DSM (nDSM) which represents the
height variation of nonground points. Subsequently, building
points are extracted out from nDSM by exploiting geometrical
features such as deviations from the surface model, local height
measures, roughness, and slope variations. Methods based on
building boundary tracing from nDSM [49] or directly from
point clouds [50], [51] have also been employed for building
detection. With them, finer building boundaries are determined
by regularization of the coarsely traced boundaries. All points
that lie inside the boundary regions are considered as building
points. Building points can also be extracted out by explicitly
labeling every point in the data set. For labeling purposes,
local neighborhood features such as height, eigenvalue, and
plane features have been used in conjunction with supervised
[52], semisupervised [21], and unsupervised [53] classification
techniques.

Detected building regions or points are, in turn, used for
3-D modeling and reconstruction. Most methods make use of
the fact that man-made structures such as buildings usually
have either parametric shapes (model driven) or composed of

polyhedral structures only (data driven). The latter is, however,
more common in the literature, where local sets of coplanar
points are first determined using 3-D Hough transform or
RANSAC algorithms and then reconstruction is carried out by
surface fitting in the segmented building regions followed by
region growing procedure [53] or by building up an adjacency
graph [21], [54].

The aforementioned methods and the majority of other tech-
niques present in the literature that make use of 3-D LiDAR
data cannot be directly applied to TomoSAR point clouds due to
side-looking SAR geometry and different microwave scattering
properties of the objects appearing in the scene reflecting dif-
ferent geometrical and material features. Compared to LiDAR,
TomoSAR point clouds possess the following peculiarities that
should be taken into consideration.

Accuracy and Errors:
• TomoSAR point clouds deliver moderate 3-D positioning

accuracy on the order of 1 m [15] as compared to (air-
borne) LiDAR systems having an accuracy on the order of
0.1 m [21].

• Ghost scatterers [55] may be generated due to multiple
scattering that appears as outliers far away from a realistic
3-D position.

• A small number of images and limited orbit speed render
the location error of TomoSAR points highly anisotropic,
with an elevation error typically one or two orders of
magnitude higher than in range and azimuth [25].

Coherent Imaging:
• Due to coherent imaging nature, temporally incoherent ob-

jects such as trees cannot be reconstructed from multipass
spaceborne SAR image stacks.

Side-Looking Geometry:
• Separation of layover on vertical structures renders

geocoded TomoSAR point clouds to possess higher den-
sity of points on building facades.

• In order to obtain a full structure of individual buildings
from space, multiple views are required [42].

Higher Dimensional Imaging:
• In addition to 3-D spatial information, TomoSAR point

clouds also possess the fourth-dimensional information,
i.e., temporal or seasonal deformation estimates, making
them very attractive for dynamic city modeling.

III. PROCESSING STEPS FOR BUILDING

FACADE RECONSTRUCTION

Due to the side-looking SAR geometry, when projected, the
TomoSAR point clouds onto ground plane vertical facade re-
gions exhibit higher scatterer (point) density (SD) as compared
to nonfacade regions. It is mostly true due to the existence of
strong corner reflectors, e.g., window frames on the building
facades. Taking this fact into account, in [42], we proposed
to extract facade points by projecting all of the points onto
the xy grid for estimating SD (rastered image), followed by
thresholding and applying morphological dilation operation.
This approach works well for high-rise buildings having a much
higher point density but limits the extraction of facade points
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Fig. 1. Block diagram of the proposed method.

from relatively lower buildings. The selection of a particular
threshold thus becomes crucial.

To resolve this issue, in this work, a more robust facade
extraction approach is proposed, which is based on the direc-
tional SD estimation procedure to locally estimate the SD for
each point while incorporating the facade geometry [56]. Later,
robust 3-D surface normal information is utilized to extract fa-
cade points. Automatic segmentation of extracted facade points
is obtained by first performing coarse clustering to cluster
points belonging to individual buildings. Then, each cluster
is further fine-clustered using Gaussian-map-based mean shift
clustering algorithm. After that, clusters within clusters are
spatially separated. Segmented facades are then classified as
flat or curved, and their model parameters are estimated. Sub-
sequently, the geometric primitives such as vertex points are
determined from the intersection of adjacent facade pair after
removing smaller conflicting segments occurring at transitional
regions. Finally, a refinement operation is carried out on the
reconstructed facades that remain either incomplete or broken
into two or more segments to complete the reconstruction
process.

Fig. 1 shows the block diagram of the processing steps in-
volved in the complete methodology. Next, we explain in detail
the procedures of the proposed approach in dedicated sections.

A. SD Estimation

For each 3-D TomoSAR point p, points within its local
neighborhood vc are used for SD estimation. vc includes all of
those points that lie inside a vertical cylinder centered at p. To
emphasize the building facades, we incorporate facade geome-
try in estimating SD, i.e., we estimate the direction of the local
neighborhood via line fitting using robust M-estimator. The
method iteratively reweights the points according to the resid-
uals and computes the so-called M-estimates as follows [57].

1) The initial estimates of the line parameters β (e.g., β1 =
slope and β2 = offset) are derived from ordinary least
squares.

2) The weights wpi
of each point pi ∈ vc are then computed

using a bisquare function [57], [58]

wpi
=

{
(1 − u2)2 for abs (u) < 1

0 otherwise

where u =
|ypi

− xpi
β1 − β2|2

4.685σ̂
√

1 − t
(1)

where t is the leverage computed using parameter esti-
mates β of the fitted line and σ̂ is the estimate for the
scale of the error term computed by σ̂ = 1.483 ∗ MAD,
where MAD is the median absolute deviation of the
residuals from their median. The term 1.483 is used to
make the estimate σ̂ consistent to the standard deviation
at Gaussian distribution [58], [59].

3) Updating β using weights wpi
by applying weighted least

squares to solve the following objective function:

arg min
β

∑

pi∈vc

wpi
(β) |ypi

− xpi
β1 − β2|2 (2)

where xpi
and ypi

represent the abscissa and ordinate
(i.e., ground coordinates) of the points within vc.

4) Iterating steps 2 and 3 until a fixed number of iterations.
The estimated line describes the main principal axis of the

cylindrical footprint of the local neighborhood. The orthogonal
distance for every point in vc is then calculated from the princi-
pal axis (shifted to the point p), and the points having distances
less than d are taken as “inliers” and used in SD estimation.

SD for each point is thus defined as the number of points
within a directional (cylindrical) neighborhood window divided
by the area of the window

SD =
number of points in vd

Area of vd
(3)

where vd ⊆ vc but includes only those points that lie close to
the principal axis of points in vc.

Fig. 2 shows the graphical representation of the SD estima-
tion procedure.

B. Facade Extraction

Based on the estimated SD, facade points can be extracted.
For a large area, both high and low buildings are present. A hard
threshold, i.e., removing points below a rather high SD value,
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Fig. 2. Illustration of SD estimation. (a) Three-dimensional view of the local
cylindrical neighborhood around the point of interest. (b) Top view of (a). The
coefficients of the dotted yellow regression line are estimated via M-estimation.
The black dotted line shows the shift of the yellow line to the point of interest.
The shaded area shows the region of vd within vc.

as used in [42], would lead to misdetection of facade points of
lower buildings whose SD estimates would be relatively low
with respect to high-rise buildings. To avoid such misdetection,
we extract facade points in a sequential way. First, we have
lowered the SD threshold to detect not only higher buildings
but also lower ones. However, a softer threshold would also
introduce false positives, i.e., roof points or ground points with
a local point density comparable to those of lower buildings.
Therefore, we introduce a second step which utilizes 3-D
surface normal information by incorporating prior knowledge
(i.e., facades are assumed to be vertical surfaces which separate
them from nonvertical ground plane and roofs) to eliminate
those false positives.

The key issue is then the local surface normal estimation for
each 3-D point. Commonly, they are estimated via fitting “best”
plane in least squares (LS) sense in the local neighborhood vc,
which is equivalent to performing principal component analysis
(PCA) of the points in vc [60]. This implies that the surface
normals can be directly estimated for each 3-D point via eigen-
value/eigenvector analysis of 3-D (i.e., 3 × 3) covariance matrix
Σvc

. There are two advantages in using eigenvalue/eigenvector
analysis of Σvc

for surface normal estimation.
1) First, the eigenvector associated to the smallest eigen-

value of the positive semidefinite matrix Σvc
is the di-

rect estimate of the local surface normal of the query
point [60].

2) Second, in addition to giving us the direct solution of
estimating local surface normal, it can also help us in
determining the dimensionality of each 3-D point [21]. To
elaborate, the eigenvectors of Σvc

essentially give the or-
thonormal basis for the local neighborhood vc, with their
corresponding eigenvalues representing the magnitude
(or variance) of expansion. Analyzing this magnitude
implicitly gives us an indication of the beneath surface,
e.g., eigenvalue analysis of Σvc

with all points lying on
the plane would ideally return only two nonzero eigen-
values. Similarly, all points lying on a 3-D line would
give only one nonzero eigenvalue. Eigenvalue analysis for
segmentation and classification of planar points has been
exploited in [21], [52], and [53].

Eigenvalue/eigenvector analysis via classical PCA may fail
to give precise estimate of the 3-D surface normal using

TomoSAR point cloud due to the presence of outliers and
localization errors (see Section II: accuracy and errors). Robust
estimation of the covariance matrix Σvc

is therefore needed.
To this end, we estimated Σvc

using robust minimum covari-
ance determinant (MCD) method [61]. The method finds a
subset (fraction) α of the data points pi ∈ vc whose covariance
matrix has the lowest determinant. The idea stems from the
concept of generalized variance (GV) which is defined to be
the determinant of the covariance matrix of any d-D (d > 1)
random variable [62]. For instance, in case of 2-D (x–y) points,
the GV provides a scalar value which measures the overall
variability of all points in both x and y dimensions. Points that
are clustered tightly together tend to have a smaller GV (i.e.,
lower determinant of their covariance matrix) as compared to
scattered ones. Thus, the subset α of the data points which
provides the lowest determinant is taken as the MCD estimate
of Σvc

. If the data points are assumed to have less than 25%
outliers, then an appropriate selection of α = 0.75 (also used
in this work) proposed in [63] provides a good compromise
between statistical efficiency and high breakdown value (α =
0.75 implies that 75% of the data points has been used in
covariance estimation).

The covariance matrix Σvc
estimated using the MCD method

from the local neighboring points pi ∈ vc around (in cylinder)
the point of interest po(xo, yo, zo) is then used to determine
the local 3-D surface normal at po. If we denote a plane which
robustly fits the neighboring points pi as nxx + nyy + nzz +
ρ = 0, with ρ = −nxxo − nyyo − nzzo, then No(nx, ny, nz)
depicts the local 3-D surface normal at po. No is thus directly
estimated from Σvc

by computing the eigenvector associated to
the smallest eigenvalue of Σvc

(here, vc includes points in the
vicinity of po) i.e.,

if Σvc
.vj = λj .vj , j = 1, 2, 3 (descending order)

then surface normal of the underlying surface at point

po : No(nx, ny, nz) = v3. (4)

From (4), robust 3-D surface normals are computed for
each point that is obtained after SD thresholding. Ideally, the
direction of surface normal should be parallel to the ground for
points on the vertical facades which separate them from non-
vertical ground plane and roofs. Taking this fact into account,
facade points are extracted out by retaining only those points
having normals that are close to the horizontal axis (i.e., parallel
to ground for points belonging to a vertical surface). In this
manner, the proposed two-step approach allows us to robustly
extract facade points over a large area where both high and low
buildings are present.

Fig. 3 shows a comparison of the proposed approach with
the one presented in [42]. The selected area shown in Fig. 3(a)
contains relatively lower height buildings with low and incon-
sistent density of points on building facades. It can be seen that,
in comparison to the SD estimation results from the previous
approach depicted in Fig. 3(b), higher and complete density
values are obtained for facade regions using the SD estimation
method proposed in this paper, shown in Fig. 3(c).
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Fig. 3. Comparison of two SD estimation methods using TomoSAR points of an area in Las Vegas containing rectangular shaped buildings. (a) TomoSAR
points (top view) generated from ascending stack only. The axes are in UTM coordinates. The height (above sea level) of TomoSAR points is color-coded [unit:
meter]. (b) SD image estimated via [42]. (c) SD estimated via M-estimator-based directional filter proposed in this paper. Higher SD regions depict probable
facade points. SD is color-coded, with the colorbar representing points/m2. (b) and (c) share the same colorbar. Note that the SD estimated in (b) is the rastered
image obtained by projecting all points onto the xy grid as compared to (c) where SD is directly computed for each point.

Fig. 4. Extraction of facade regions/points using the SD estimation results from Fig. 3. (a) Building facades obtained by thresholding the rastered SD image
of Fig. 3(b) by the TH value. (b) Final extracted facade after 2-D morphological operation on (a) as proposed in [42]. (c) TomoSAR points whose SD estimated
in Fig. 3(c) is above TH . (d) Extracted facades from (c) by utilizing robust 3-D surface normal information. The threshold value TH used here is 2 points/m2

(empirically found to be optimum in [42]).

Moreover, later use of the third dimension in robust 3-D
surface normal estimation provides much better results of ex-
tracting facades by rejecting nonfacade points.

Fig. 4 presents the comparison of the facade extraction
results obtained using the SD estimates in Fig. 3. Taking the
facade point candidates extracted by thresholding SD [Fig. 3(a)
and (c)] as inputs, 2-D morphological operations (area opening
and dilation) as proposed in [42] and robust 3-D surface nor-
mal information as suggested in this paper are performed to
reject false positives. The final extracted facades are shown in
Fig. 4(b) and (d), respectively.

C. Segmentation of Individual Facades

The extracted facade points belong to different facades.
Clustering of points belonging to the same facade is therefore
needed. First, a coarse clustering is performed using density-
based clustering algorithm [43]. It involves the notion of den-
sity connectivity between the points. For example, two points
are directly density connected to each other if one is in the
neighborhood vicinity of the other point. If the two points
are not directly connected to each other, still they can be
density connected to each other if there is a chain of points
between them such that they all are directly density connected
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Fig. 5. Density-based clustering. Points a and b are directly density connected
to each other, whereas points a and c are density connected to each other since
there is a chain of points between them such that they all are directly density
connected to each other.

to each other. Two parameters that control the clustering process
include the neighborhood parameter ε, i.e., the radius in case of
sphere or cylindrical neighborhood, and the minimum number
of points MinPts in the ε-neighborhood for any particular point.
The resulting clusters Ki thus contain points such that all of the
points in any particular cluster are density connected to each
other but are not density connected to any other point belonging
to another cluster. Moreover, each point inside any particular
cluster Ki belongs to one of the three categories (Fig. 5) [43].

1) Core points: A point is labeled core point if it contains,
within its ε-neighborhood, MinPts number of points.

2) Border points: A point is considered border point if it is
within ε-neighborhood of any core point but itself is not
a core point and does not have MinPts neighbors.

3) Outliers: A point neither core point nor border point is
termed as an outlier, i.e., any point which do not have den-
sity (points) greater than MinPts within its ε-neighborhood
and also is not the neighbor of any other point.

Density-connected clusters containing only core and boundary
points are used for further processing.

The aforementioned process, however, may merge points of
two or more adjacent facade segments into a single cluster.
To reconstruct individual facade segments, separation of these
segments is therefore necessary. It is done by mapping the
facade points in Gaussian image and then employing mean shift
clustering.

Let us assume that a coarsely clustered segment Ki consist
of one or more vertical adjacent facades Fj , j = 1, · · · J . An
image of a map M: F → F 2 that assigns each point in F to
its respective unit surface normal is known as Gaussian image
GI of F [64]. Flat F (i.e., planar surface) should ideally be
represented by a point in GI . Fig. 6 conceptually illustrates this
in an ideal scenario. In practice, surface normals are estimated
locally and may fluctuate from one point to another as practical
data often contain errors in 3-D positions. However, if the
estimation of normals is robust enough, a surface mapped to
GI should be represented as a dense cluster of points in GI .
The shape of clusters in GI corresponds to the geometry of
connected surfaces [44]. The number of clusters in GI tells the
number of surfaces in the spatial domain.

If we assume pr = 1, . . . , m to be 3-D points and nr as their
corresponding 3-D unit normal vectors belonging to one of the

Fig. 6. Gaussian image of three connected planar surfaces. (a) Arrows indicate
surface normal vectors (nred, ngreen, nblue) to the respective surfaces. (b) All
points belonging to one particular surface are mapped to the same identical
point in GI (ideal scenario).

coarsely clustered segments Ki, then the density at any normal
point nq(q ∈ r) in GI (feature space) is defined as [44]

Dnq
=

c

mb3

m∑

r=1

g

(∥∥∥∥
nq − nr

b

∥∥∥∥
2
)

(5)

where b is the bandwidth parameter and g(x) is a nonnegative,
nonincreasing, and piecewise continuous function with definite
integral, i.e.,

∫ ∞
0 g(x)dx < ∞. From the concept of kernels

[45], the function g(x) is defined as the profile of the radially
symmetric kernel G(x) satisfying G(x) = cg(‖x‖2), where c
is a normalization constant ensuring that G(x) integrates to 1.
Different kernels, such as the unit flat kernel and the Gaussian
kernel, can be used to define the density Dnq

. However, the
latter with the profile function exp(−‖(nq − nr)/b‖2) has been
used in this work.

Density Dnq
is higher for points that belong to planar or

parabolic surfaces and lower for points that lie at the transition
edges between the surfaces [44]. These higher density points in
the GI are identified and clustered using mean shift (MS) clus-
tering procedure. MS is a mode-seeking procedure and works
iteratively by shifting every data point toward the weighted
mean of points within its neighborhood. The shift vector m(nq)
always points toward the direction of the maximum increase in
the density Dnq

[65] and is computed as

m(nq) =

m∑
r=1

nr exp
(
−‖nq−nr‖2

b2

)

m∑
r=1

exp
(
−‖nq−nr‖2

b2

) − nq. (6)

Applying MS in GI produces clusters whose corresponding
points in spatial domain represent different facades. However,
it is also possible that spatial points corresponding to any one
particular normal cluster in GI may belong to two or more
different facades. This can happen if points of two or more fa-
cades that are “nearly” parallel to each other (i.e., having close
normal directions) are present in Ki. To resolve this, density-
based clustering is again performed in the resulting clusters for
spatial separation of parallel facade points clustered into one
group. Finally, clusters with very few points are removed from
further processing for robust reconstruction.
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Fig. 7. Illustration of orientation angle for flat and curved vertical footprints
(top view). (a) Arrows indicate pattern of change in orientation (azimuthal) an-
gles of ten points on each vertical surface. (b) Plots their respective orientation
angles.

D. Cluster Identification

Each cluster is further classified into flat or curved surface by
analyzing derivatives of the local orientation angle θ. θ for each
3-D point is equal to the azimuthal angle of the corresponding
computed surface normal

θ = arctan

(
λ3y

λ3x

)
(7)

where λ3x and λ3y represent the x and y components of the sur-
face normal λ3 of any 3-D point. Ideally, the flat surfaces should
have constant orientations, i.e., zero derivatives compared to the
curved surfaces that have gradually changing orientations (see
Fig. 7). We exploit this fact and compute the first derivative
θ′ of the orientation angle for each facade footprint. Since
the original orientation derivatives θ′ are usually noisy, all of
the points are first projected to the first principal axis, and
polynomial fitting is later applied for denoising. Based on the
behavior of θ′, facade footprints are classified as flat or curved.

E. Modeling of Facades

The identified facade clusters in xy plane are then modeled
using the following general polynomial equation [42]:

fp(x, y) =

p∑

q=1

aqx
iyj i + j ≤ q (8)

where i and j are permuted accordingly, p is the order of the
polynomial, and the number of terms in the aforementioned
polynomial is equal to (p + 1)(p + 2)/2. Cross terms are in-
troduced in the model in case of the rotated local coordinate
system. To solve (8), we restrict ourselves to the first and
second orders (i.e., flat with max(i, j) = 1 and curved with
max(i, j) = 2). The coefficients aq are estimated using the
WTLS method, where the total least squares is utilized to
cope for localization errors of TomoSAR points in both xy
directions and the weight of each point is assigned equal to its
corresponding SD. The weighted polynomial fitting (residual)
error ferr is minimum for the case where we have the unrotated
local coordinate system reducing the right-hand side of (8) to∑p

i=0 aix
i (i.e., with no cross terms). In case of the rotated

local coordinate system (which is often the case), we perform

the following steps to obtain consistent parameter estimates of
all facades in a global coordinate system.

1) Rotate the points by rotation angle ω, and compute
the polynomial fitting error ferr by applying the WTLS
method.

2) Consider coefficients computed with ωmin that gives the
minimum polynomial fitting error ferr as polynomial
terms depicting unrotated points in the global coordinate
system. ωmin is computed by using an unconstrained
nonlinear optimization procedure to find the minimum of
the error function ferr by varying ω over 0−360◦ range
via the Nelder–Mead simplex algorithm [66].

3) Rotate the computed polynomial by replacing the unro-
tated (x−, y−) axis terms by their rotation counterparts
(x cos ω + y sin ω,−x sin ω + y cos ω) to yield polyno-
mial terms aq in global coordinates.

F. Removing Conflicting Segments

After estimation of model parameters, the next step is to
describe the overall shape of the building footprint by further
identifying adjacent facade pairs and determining the inter-
section of the facade surfaces. The adjacency of facades is
usually described by an adjacency matrix AM that is built up
via connectivity analysis [21], [42]. Identified adjacent facade
segments are used to determine the vertex points (i.e., facade
intersection lines in 3-D) by computing the intersection points
between any adjacent facade pair.

Determination of these intersection points can sometimes be-
come difficult if the transition points are segmented as isolated
small clusters (also referred to as conflicting segments) rather
than part of the corresponding adjacent facade segments. As
a consequence, it gets complicated to find a legitimate adjacent
facade pair from which intersection points should be computed.
To resolve this issue, conflicting segments must be removed
prior to vertex point computation. To illustrate how they are
removed in an automatic manner, an example is shown in Fig. 8.
The labeled line segments indicate the reconstructed facade
segments of two different buildings A and B. The endpoints of
each segment are denoted as “Δ” and “•.” AM represents the
built adjacency matrix, where “1” and “0” denote the adjacent
and nonadjacent conditions, respectively. Among the labeled
segments, segments [7 4 1 3 6] are “valid” facades, while
segments [2 5 8] are the conflicting segments.

The following steps are performed for automatic removal of
these conflicting segments.

1) The connected series matrix ConnSeg is determined from
AM such that rows of ConnSeg represent a set of distinct
series of adjacently connected segments, e.g., the ith
row of ConnSeg Segi = {sj | j = 1, . . . , n} represents n
segments (i.e., s1 ∼sn) that are adjacently connected. In
Fig. 8, since there exist only two series of adjacently con-
nected facade segments (i.e., belonging to two buildings),
ConnSeg therefore consists of two rows only, where the
first row contains facade segments Seg1 = [2 4 5 7] while
the second row comprises of segments Seg2 = [1 3 6 8].

2) For each segment, the largest segment that is connected
to each endpoint can be identified. Their indices are
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Fig. 8. Example illustrating the removal of conflicting segments.

TABLE I
PROCEDURE TO REMOVE CONFLICTING SEGMENTS

recorded in a two column matrix E that captures such an
“endpoint”–“largest segment” relationship, e.g., the “•”
endpoint of segment 1 shown in Fig. 8 is connected to
two segments 8 and 3. Since segment 3 has a larger length
than segment 8, therefore 3 is assigned to this endpoint of
segment 1 in E. The endpoint matrix E for both buildings
is depicted on the right side of Fig. 8. Zeros in E represent
the condition of no adjacent facade at that endpoint.

3) Applying union operation to all elements in E results in
a matrix RetainSeg whose elements contain all building
facades that should be retained. Conflicting facades, i.e.,
the ones that are not part of RetainSeg, are removed. For
the example shown in Fig. 8, the union of elements in E
gives the RetainSeg [1 3 4 6 7] (zeros are not considered).
Subsequently, the segments that are not part of RetainSeg,
namely, [2 5 8], are removed.

The pseudocode for the aforementioned procedure is given
in Table I.

After removing the conflicting segments, the vertex points
are computed from the intersection of valid adjacent segments
to complete the reconstruction process.

G. Refining Reconstructed Facades

Sometimes the reconstructed facades remain either incom-
plete or are broken into more than one segment due to the
following reasons: 1) Higher building structures present nearby
can partly (or fully) occlude the facades of lower buildings,
and 2) due to the geometrical shape, only very few points
are available at some parts of building facades. In order to
overcome this issue, in this section, we propose a procedure that
tries to refine the reconstructed facades by inserting additional
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Fig. 9. Vertices for refinement. Gray rectangles depict the 2-D building footprint from the top. (a) Shows the total of five vertices, out of which four are open
endpoint vertices and one is an intersection vertex computed from the intersection of segments 1 and 2. (b) Depicts the situation where ignoring condition C3
would yield false segment addition shown as a gray dotted line. The gray arrows indicate the local orientation angle θ at open vertices vo and v̂o. Two black
dotted lines represent the two correct inserted segments between vo and v̂o. (c) Depicts the recursive extension procedure of the open vertex vo. vp represents the
intermediate extension points, whereas v′

p denotes the final point. (d) Illustrates the direction of extension of the gray open vertex over the roof region. This can
happen if we only consider hmax and ignore the local standard deviation of height hσ .

segments between the broken regions and extend those facades
that remain incomplete.

Vertex points computed from the previous section are sep-
arated into two types: The first type consists of vertices that
are computed from the intersection of two adjacent facades,
while the second type consists of the other vertices representing
“open” endpoints. For each series Segi made up of n segments
(i.e., the ith updated row of the ConnSeg matrix after removing
conflicting segments), there exist two open vertices and (n − 1)
intersection vertices. Refinement operations including insertion
of additional segment to connect broken facades and extension
of incomplete facades are carried out only on the second type,
i.e., open endpoint vertices.

If we denote an open end vertex as vo and an intersection
vertex as vi [see Fig. 9(a)], then the refinement procedure for
any one particular adjacently connected series Segi having two
open vertices is described in Table II.

In Table II, steps 2–4 tries to cope with the broken facades,
while steps 5–7 deals with the incomplete facades. Conditions
C1 and C2 in step 4 imply that the two segments are considered
part of the same (broken) building facade if both segments are
not far enough from each other and at the same time possess
data points in between that have close maximum height values.
hmax is taken as the mean of at least ten maximum height
values (i.e., if there are less than ten points available, then hmax

is taken as the mean of all of those point). If conditions C1
and C2 in step 4 are met, the algorithm then checks condition
C3. If the two segments belong to the same facade, a segment
with vertices (vo, v̂o) is inserted, which fills the empty (i.e.,
broken) regions of the facade. On the contrary, if the open
vertex pair vov̂o is not part of the same facade but rather belongs
to two different facade segments (determined via the difference
in the local orientation angle > 45◦), then point of intersection
pvov̂o

is computed, and instead of inserting one segment, two
segments with vertices (vo, pvov̂o

) and (v̂o, pvov̂o
) are inserted.

Fig. 9(b) graphically depicts such a situation where the gray
open vertices of segments 4 and 5 are (assumed to be) within
2ε distance but have a difference in the local orientation angle
of 90◦. The gray dotted line shows the addition of new segment
without checking condition C3. When C3 is taken into account,
two segments shown in black dotted line are inserted.

In contrast, if any of the conditions C1 or C2 fail, then the
algorithm tries to extend the open vertex point vo by imposing
constraints C4 and C5 present in step 7. Similar to C2, the
condition C4 ensures that the extended point has the closer

maximum height value. The condition C5 ensures that the local
3-D points have certain standard deviation. It is necessary to
make sure that the extension is not carried out in the direc-
tion that deviates from the facade footprint, i.e., it avoids the
extension if the local 3-D points around vp belong to other
nonfacade objects, e.g., roofs, etc. The problem is illustrated
in Fig. 9(d), where the gray open vertex can potentially extend
over the roof region if the condition C5 in step 7 is ignored.
Thus, imposing this constraint helps in limiting this false
extension.

Finally, the computed vertex points (i.e., the intersection
vertices and the open vertices before and after refinement) along
with their estimated model parameters are used to reconstruct
the 3-D model of the building facades.

IV. EXPERIMENTAL RESULTS AND VALIDATION

A. Data Set

To validate our approach, we tested the algorithm on To-
moSAR point clouds generated from a stack of 25 TerraSAR-
X high spotlight images from ascending orbit only using the
Tomo-GENESIS software developed at the German Aerospace
Center [67]. The test area covers approximately 2 km2 in
the high-rise part of the city of Las Vegas. The number of
TomoSAR points in the area of interest is about 1.2 million.
Fig. 10(a) shows the optical image of our test area, while
Fig. 10(b) shows the corresponding TomoSAR point cloud in
Universal Transverse Mercator (UTM) coordinates.

B. Results—Extraction of Facade Points

The result of applying the SD estimation procedure is il-
lustrated in Fig. 11(a). The two parameters r (radius of the
neighborhood cylinder) and d are empirically set to 5 and 0.9 m,
respectively, according to the point density of the data set.
One can observe that the TH value influences the number of
extracted facade points. A lower TH value results in higher
completeness but lower correctness. In [42], we showed the
results of estimating SD with varying area sizes and found
that a kernel window of size 3 × 3 m2 and threshold TH
value of about 2 points/m2 results in the best tradeoff in
terms of completeness and correctness with this class of data.
Here, 2 points/m2 works well for high-rise buildings but might
ignore relatively smaller facades. Therefore, to extract lower
facades (and also to automate the procedure), we set the TH
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TABLE II
REFINEMENT PROCEDURE

to the maximum of SD histogram value. This, as described in
Section III, includes not only the facade points but additionally
also some nonfacade points with relatively high SD, e.g., roof
points. To reject these points from the set of extracted points
after SD thresholding, surface normal information is utilized.
Fig. 11(b) shows the extracted facade points by retaining only
those points having normals between ±15◦ from the horizontal
axis (or equivalently ±90◦ from the vertical axis).

C. Results—Automatic Clustering of Extracted Facade Points

Once the facade points are extracted out, the next step is to
cluster them into segments, where each segment corresponds to
an individual facade. For this, we apply the clustering procedure
using the cylindrical neighborhood definition and cluster all of

the points with parameter settings: ε = r = 5 m and MinPts =
2. Here, an important point to notice is that two buildings are
considered distinct only in a case when points belonging to
facades of two different buildings are separated by ε. Setting
ε too small can cause points belonging to a single cluster (i.e.,
corresponding to an individual facade) to break into more than
one cluster. On the other hand, larger values of ε tend to merge
points of the nearby facades into one cluster. The value of ε is
therefore empirically chosen according to the length and dis-
tance among the buildings in the area of interest and implicitly
indicates the assumption that two individual facades that be-
long to different buildings are farther apart than the 5-m radius.

Setting parameter MinPts equal to 2 implies that points are
connected to one cluster even if there is a single neighboring
point among them. This parameter helps in removing outliers
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Fig. 10. Dataset. (a) Optical image of the test area in Las Vegas. Copyright Google. (b) TomoSAR points in UTM coordinates of the corresponding test image.
The height of TomoSAR points is color-coded [unit: meter].

Fig. 11. Facade point extraction. (a) Scatterer (point) density with radius r = 5 m and inliers d = 0.9 m. (b) Extracted building facade points. Colobar indicates
SD and height in meters in (a) and (b), respectively.

Fig. 12. Fine clustering results after applying mean shift clustering using Gaussian kernel with bandwidth b = 0.4 to the coarsely clustered segments in their
normal feature space (in GI domain). (a) TomoSAR points of one particular density-connected cluster (top view). The colorbar indicates height in meters.
(b) Corresponding orientation angle in degrees. (c) Nonclustered (top) and clustered (bottom) points in the Gaussian image of points in (a). (d) Resulting clustered
points in 3-D.

that do not have any neighboring point and produce clusters
similar to the clusters obtained from the dendogram cut at ε
in case of hierarchical clustering using single link metric [43].

Increasing MinPts can help in retaining more stable core points
but, on the other hand, can also break the clusters into two or
more clusters. This property is sometimes useful in cases when
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Fig. 13. Removal of conflicting segments and vertex point computation. (a) Shows the case of five clustered point segments belonging to one particular building.
At the transitional regions, there are conflicting (smaller) clusters, shown in gray dotted circle, that behave as noisy segments and should be removed before
computing the vertex points. (b) Shows the retained segments and their corresponding vertices after removing conflicting segments.

different clusters are merged together by a thin line of points.
Estimating the exact value of MinPts is, however, very much
dependent on the data set, and certain heuristics based on the
“thinnest” cluster in the data set, e.g., k-distance graph, can be
employed [43].

In order to reconstruct individual facades, these density-
based coarse clusters need to be further clustered. To this end,
mean shift clustering has been applied to the coarsely clus-
tered segments in their normal feature space (in GI domain).
Fig. 12(b) shows the estimated orientation angle θ for extracted
facade points from a single building shown in Fig. 12(a). The
variation in orientation angle is quite evident and allows mean
shift to cluster points having similar orientations together. Fur-
ther separation of points in the spatial domain is also required
in some cases where the spatially separated points are clustered
into one segment. This happens when these points belonging to
different facades have similar normals and are spatially closer.
Density-based clustering is therefore again applied for spatial
separation of the clusters within clusters.

D. Results—Reconstructing Facades

Prior to reconstruction, the segmented facades are first clas-
sified to flat and curved surfaces by analyzing the derivatives of
the local orientation angle θ. A slope value θ′ of 0.3 (≈ 17◦)
is set by empirically testing the computed orientation angles of
all of the buildings in the area of interest to distinguish flat and
curved surfaces.

After identification, appropriate model parameters are esti-
mated from the core points of the individual clusters. Vertex
points are then determined by computing intersections of the
adjacent segment pairs. However, in doing so, smaller clusters
occurring at facade transition regions behave as noisy segments
in the reconstruction procedure. A practical example of these
so-called conflicting segments is shown in Fig. 13(a). Following
the procedure explained in Table I (see Section III-F), the con-
flicting (reconstructed) segments occurring at the transitional
regions of individual buildings are removed prior to the vertex
point computation as exemplified in Fig. 13(b).

Once these transitional clusters are removed, the intersection
vertices are determined by computing the intersection point of
the two adjacent facades. Refinement operation is then carried
out on the open vertices to insert additional segments between
the broken facade regions followed by extension of incomplete
reconstructed facades.

Fig. 14(a) and (b) depicts the reconstructed facade models
of the area of interest before and after refinement, respec-
tively. Green lines show reconstructed facade footprint before
refinement. The blue lines indicate additional segments that are
added between the vertices of those broken facades that meet
the conditions present in step 4 in Section III-G, while the red
lines are subsequent extensions of the open vertices after filling
the break regions.

E. Results—Validation

The actual ground truth data are missing for exact qualitative
evaluation of the approach. In order to provide some quan-
titative measures of the algorithm performance, we manually
counted the actual number of facades that were to be recon-
structed. A total of 141 facades are present in the data set, out
of which 7 are curved facades and the remaining 134 are flat.
Prior to the refinement operation, the algorithm reconstructed
a total of 176 facades, i.e., higher than the actual facades
present in the data set. As already stated in Section III-G, this is
because some individual facades have been broken down into
two or more segments due to discontinuity in the number of
points available in the data set. After refinement, 29 insertion
segments (27 single and 2 double based on the condition C3 in
Table II) are added between the broken facade regions, whereas
43 facades have been extended. In the final reconstruction,
we obtain 147 reconstructed facades, i.e., all 141 facades are
successfully reconstructed; among them, five facades remain
broken (counted as additional five facades), and there is one
case of false alarm which will be explained later. Besides the
five cases, we also find seven facades that are not extended
and therefore remain incomplete. This is, however, due to the
inadequate number of points available in the data.
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Fig. 14. Reconstructed facades. (a) Two-dimensional view of the facade footprints overlaid onto the optical image prior to refinement. (b) Two-dimensional view
of the facade footprints overlaid onto the optical image after refining with parameter settings Th = 5 m and Tσ = 2.5 m.

As mentioned earlier, there is also one case, shown in
Fig. 15, which is considered as false positive (i.e., a facade
not actually present but reconstructed by the algorithm). As can

be seen in Fig. 15(c), the reconstructed segment is actually a
bridge for pedestrian crossing. Higher number of scatterers is
retrieved over the bridge due to its apparently metallic structure.
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Fig. 15. Case depicting wrong reconstruction of a pedestrian bridge. (a) Optical image of the bridge. (b) Overlays the reconstructed segment in green onto the
optical image of (a). (c) Side view of the bridge (copyright Google Street View).

Fig. 16. Reconstructed facades on the left. Their 3-D view on the right (copyright Google Earth).

Moreover, the bridge is also covered from the top, and there-
fore, scatterers are obtained at the top and bottom and on the
metallic rods connecting the upper and lower surfaces of the
bridge. The estimated surface normal of these scatterers thus
gives a higher horizontal component, and as a consequent, these
scatterers are wrongly classified as facade points by satisfying

both extraction constraints: higher SD and higher horizontal
component of the surface normals.

It is also interesting here to mention that, in Fig. 14, some
small vertical structures on roofs of the buildings or on ground
are very well reconstructed. Fig. 16 shows some examples of
such objects that might visually appear (or interpreted) as false
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Fig. 17. Three-dimensional view of the final facade reconstruction. The axis is in meter range and has been translated to the origin for better metric clarity by
subtracting the UTM easting and northing values by their respective minimum values present in the reconstructed vertices.

reconstructions in Fig. 14 but are actually vertical structures
(e.g., advertisement boards, monuments, etc.).

Finally, in Fig. 17, we present the final reconstructed fa-
cades in 3-D. As depicted in [42], the shown reconstructed
facade model can be used to refine the elevation estimates of
the raw TomoSAR points. Moreover, with known deformation
estimates of the scatterers, such a model can also lead to the
reconstruction of dynamic city models that could potentially be
used to monitor and visualize the dynamics of urban infrastruc-
ture in very high level of details.

V. OUTLOOK AND CONCLUSION

In this paper, we have presented an automatic (parametric)
approach for robust facade reconstruction for large areas using
TomoSAR point clouds. The approach is modular and works
directly on unstructured 3-D points. It allows for a robust re-
construction of both higher facades and lower height structures,
and hence, it is well suited for urban monitoring of larger areas
from space. A few points, however, need to be addressed.

1) During SD estimation, the continuity of an individual
facade can be broken due to a limited number of available
points. This may result into two or more segments of the
same facade. We attempted to cope with this problem by
refining the reconstructed facade footprints via insertion
and extension operations. Still, the lack of measurements
prevents the complete resolution of this problem. The use
of 2-D ground plans or cadastral maps can be helpful in
this case.

2) Since the satellite orbits are bound to pass close to the
poles of Earth, we may fail to reconstruct building facades
facing North or South due to the missing of measure-
ments. One way to rectify this is by using fused point
clouds (i.e., both ascending and descending) and/or in-
serting new segments by simply connecting the endpoints
of the missing facades if they match a certain criteria to
get the complete shape of the building footprint.

3) The presented approach is a much better option to detect
the shape of the building when dense points on the fa-
cades are available. However, in cases (usually for lower
height buildings) when no or few facade points are avail-

able, one can try to extract roof points and reconstruct the
2-D footprint. This could help in resolving the problems
related to the visibility of facades mainly pointing toward
the azimuth direction.

In the future, we will work over these considerations and
will extend the algorithm toward object-based TomoSAR point
cloud fusion and automatic building roof reconstruction.
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Abstract—Modern spaceborne synthetic aperture radar (SAR)
sensors, such as TerraSAR-X/TanDEM-X and COSMO-SkyMed,
can deliver very high resolution (VHR) data beyond the inher-
ent spatial scales of buildings. Processing these VHR data with
advanced interferometric techniques, such as SAR tomography
(TomoSAR), allows for the generation of four-dimensional point
clouds, containing not only the 3-D positions of the scatterer
location but also the estimates of seasonal/temporal deformation
on the scale of centimeters or even millimeters, making them
very attractive for generating dynamic city models from space.
Motivated by these chances, the authors have earlier proposed ap-
proaches that demonstrated first attempts toward reconstruction
of building facades from this class of data. The approaches work
well when high density of facade points exists, and the full shape
of the building could be reconstructed if data are available from
multiple views, e.g., from both ascending and descending orbits.
However, there are cases when no or only few facade points are
available. This usually happens for lower height buildings and
renders the detection of facade points/regions very challenging.
Moreover, problems related to the visibility of facades mainly
facing toward the azimuth direction (i.e., facades orthogonally ori-
ented to the flight direction) can also cause difficulties in deriving
the complete structure of individual buildings. These problems
motivated us to reconstruct full 2-D/3-D shapes of buildings via
exploitation of roof points. In this paper, we present a novel and
complete data-driven framework for the automatic (parametric)
reconstruction of 2-D/3-D building shapes (or footprints) using
unstructured TomoSAR point clouds particularly generated from
one viewing angle only. The proposed approach is illustrated and
validated by examples using TomoSAR point clouds generated
using TerraSAR-X high-resolution spotlight data stacks acquired
from ascending orbit covering two different test areas, with one
containing simple moderate-sized buildings in Las Vegas, USA
and the other containing relatively complex building structures in
Berlin, Germany.

Index Terms—Building footprint, building reconstruction, clus-
tering, dynamic city models, TerraSAR-X, tomographic SAR
(TomoSAR) inversion, four-dimensional (4-D) point cloud.
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I. INTRODUCTION

AUTOMATED methods for the detection and reconstruc-
tion of buildings are becoming increasingly important due

to the ever-increasing growth of urban population, giving rise to
a wide range of potential applications in numerous fields. For
instance, 2-D building footprints (or outlines) can be used in
urban energy modeling [1], disaster management [2], and de-
vising emergency responses [3]. Additionally, extruding these
footprints using height information leads to the development
of 3-D building models. Such models are valuable for various
applications, e.g., virtual city modeling [4], urban planning
[5], and analyzing electromagnetic reflections for placement of
telecommunication antennas [6], etc.

Modern spaceborne synthetic aperture radar (SAR) sensors,
such as TerraSAR-X/TanDEM-X and COSMO-SkyMed, are
able to provide very high resolution (VHR) data beyond the
inherent spatial scales (on the order of 1 m) of buildings, con-
stituting an invaluable data source for detailed urban mapping
on a global scale. Moreover, due to the coherent imaging nature
of SAR, these sensors are able to provide day/night global cov-
erage in virtually all weather conditions. Moreover, with image
acquisitions taken at different times, they are also uniquely
capable of imaging the dynamics of the illuminated area down
to the scale of centimeters or even millimeters from space.
These encouraging attributes have drawn the attention of many
remote sensing analysts, and therefore, various techniques have
been developed, which make use of VHR SAR imagery for
2-D/3-D reconstruction of man-made structures in particular
buildings [7]–[11].

Although much research effort has been put in the area,
the problem of building reconstruction remains a challenging
task due to the inherent characteristics of SAR images, such
as speckle, layover/foreshortening, etc. Moreover, complex
building structures and high variability of objects appearing
in SAR images also render difficulties in the detection of
buildings, particularly in dense urban areas where buildings are
compactly packed, and smaller buildings are often occluded
by higher buildings. Therefore, prior knowledge with certain
regularization (geometric) constraints (e.g., vertical facades
[10] and rectangular building shapes [9]) is often incorporated
for realistic and automatic reconstruction.

SAR tomography (TomoSAR) is an advanced interferomet-
ric technique that aims for real 3-D SAR imaging [12]–[16].
It resolves multiple/dominant scatterers within one resolution
element (i.e., able to retrieve more than one scatterer per

0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Three different cases over simple buildings commonly occurring in TomoSAR point clouds. Heights of the points are color coded. (Optical images:
Google).

pixel) via spectral analysis by building up a synthetic aper-
ture in the elevation direction to localize each scatterer in
3-D [15], [16]. Likewise, building up a synthetic aperture
in the temporal domain enables 4-D space–time) focusing
of SAR images [17]–[19]. The technique is referred to as
D-TomoSAR, which combines the strengths of both TomoSAR
and persistent scatterer interferometry [17]–[21]. It is capable
of retrieving elevation and deformation information (linear,
seasonal, etc.) even of multiple scatterers inside a single SAR
image pixel [15], [18], [22], [23]. Geocoding high density of
scatterers, retrieved from TomoSAR, into world coordinates
produces high-quality TomoSAR point clouds, containing not
only the 3-D positions of the scatterer location but also the
estimates of seasonal/temporal deformation, making them very
attractive for generating 4-D city models from space.

Object reconstruction from spaceborne TomoSAR point
clouds was started not until recently [24], [25]. These
point clouds have point density in the range of 600 000−
1 000 000 points/km2 using TerraSAR-X meter resolution data
[16], [27]. Similar statistics using CosmoSkyMed data are
reported in [27]. TomoSAR point clouds, however, are as-
sociated with some special considerations that are worth to
mention [24], [25].

1) They deliver moderate 3-D positioning accuracy on the
order of 1 m [28].

2) Few number of images and limited orbit spread render
the location error of TomoSAR points highly anisotropic,
with an elevation error typically at least one order of
magnitude higher than in range and azimuth.

3) Due to the coherent imaging nature, temporally incoher-
ent objects such as trees cannot be reconstructed from
multipass spaceborne SAR image stacks.

4) Ghost scatterers may be generated due to multiple scatter-
ing that appears as outliers far away from a realistic 3-D
position [29].

5) Side-looking SAR geometry enables strong scatterer re-
flections from dihedral and trihedral structures or metallic
parts resulting in higher density of points on man-made
objects, particularly building facades and bridges. Nat-
urally, this urges for the systematic reconstruction of
building footprints via facade point analysis.

As depicted over smaller [25] and larger areas [24], facade
reconstruction turns out to be an appropriate first step in detect-
ing and reconstructing building shapes from these point clouds
when dense points on the facade are available. In particular,
when data from multiple views, e.g., from both ascending and
descending orbits, are available, the full shape of buildings can
be reconstructed using extracted facade points. However, there
are cases when no or only few facade points are available.
This usually happens for lower height buildings and renders the
detection of facade points/regions very challenging. Moreover,
problems related to the visibility of facades mainly facing
the azimuth direction (i.e., having normals pointing toward
the flight direction) can also cause difficulties in deriving the
complete structure of an individual building. These problems
motivate us to reconstruct full 2-D/3-D shapes of building
footprints via facade–roof analysis. In this regard, based on
different object contents illuminated by side-looking SAR, the
following three cases could be derived using data acquired from
one incidence angle, e.g., in this case, image stacks from the
ascending orbit only (see Fig. 1).

Case 1) Higher density of facade points present with no or
very few roof points: In this case, the complete
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2-D/3-D building shapes could only be fully recon-
structed by adding points from multiple incidence an-
gles. The solution to this case is demonstrated in [24],
where 3-D facade models have been reconstructed for
high-rise buildings using one incidence angle only,
and in [25], where the full shape of the building was
derived by prior fusion of two point clouds [30] from
ascending and descending stacks.

Case 2) Higher density of facade points present together with
the existence of relatively higher density of roof
points: This case allows for the reconstruction of the
full shape of the building footprints from a single
data stack by making use of both facade and roof
points. Thus, the side of the building visible to the
sensor could be reconstructed as the first step using
facade points, and later, the other side of the building
could be completed by exploiting the available roof
points.

Case 3) No or very few facade points available but enough
roof points exist: This case particularly appears for
lower height buildings, rendering the detection of fa-
cade points/regions very challenging. This motivates
us to obtain the complete 2-D/3-D footprint of these
buildings via roof point analysis only using conven-
tional techniques as applied by the light detection and
ranging (LiDAR) community. Although these tech-
niques are very much developed, still, their adapta-
tion to TomoSAR point clouds is not straightforward
due to different object contents illuminated by side-
looking SAR together with problems related to less
and varying point density and much less positioning
accuracies of TomoSAR point clouds in comparison
to airborne LiDAR.

In this paper, we propose a novel data-driven approach
that systematically allows for the automatic reconstruction of
2-D/3-D building shapes (or footprints) using unstructured
TomoSAR point clouds generated from one incidence angle
only. The approach proposes new methods and aims at finding a
more general and systematic solution toward the automatic re-
construction of the whole city area. This paper essentially pres-
ents solutions for the latter two cases (i.e., case 2 and case 3) by
extending (or utilizing) the solution provided for case 1 in [24].
The innovative contributions specific to the approach proposed
in this paper are as follows.

1) A hybrid approach based on the region-growing proce-
dure and the energy minimization framework is proposed
to automatically extract building roof/facade points di-
rectly from 3-D TomoSAR points. Seed points are ex-
tracted using the reconstructed facade information, and
later, a minimum-height-constraint surface-normal-based
region-growing approach is adopted to detect probable
building regions in case 2. The problem of extracting
roof points in case 3 (i.e., having no facade information)
from the remaining set of points is then resolved by com-
puting local height and planar features and formulating
the whole detection problem into an energy minimization

framework. Graph cuts are later employed to globally
extract roof/building points.

2) A recursive angular-deviation-based approach is pre-
sented to smooth/refine the initial coarse building
polygons obtained using alpha shapes (generalization
of convex hulls). The smoothed boundaries yield better
visually appealing building shapes.

3) A novel facade–roof fusion procedure is proposed in
this paper. The developed method is robust and fuses
the legitimate facade-Polygon pair together by interpret-
ing the refined/smoothed polygon of each building as a
graph. A series of operations taking part in the reduc-
tion of graph (or smoothed polygon) includes identifi-
cation of points on the graph that are nearest to all the
associated/paired reconstructed facades, computation of
longest and shortest paths on the graph using these iden-
tified points, simplification of shortest paths by represen-
tation as line segments, and rotation/projection of certain
line segments (simplified shortest paths that are identified
as positive paths) to match all the reconstructed facades
belonging to the same graph (i.e., smoothed building
polygon).

4) An effective and robust procedure is developed for rec-
tilinear identification of building polygons. To this end,
the dominant direction of each building is first deter-
mined based on the weighted-line-segment approach.
Angular deviations at each adjacent or consecutive ver-
tex of the polygon are computed from the dominant
direction, and histogram analysis is then carried out for
rectilinear building footprint identification. Later, recti-
linear constraints are added to the identified building
polygons.

5) The approach presented in [24] may fail to reconstruct
building facades facing north or south because of missing
measurements caused by the high inclination angle of
the TerraSAR-X orbit, i.e., near-polar orbit (see Fig. 2).
This paper inherently provides a solution to this problem
by exploiting roof points in determining the complete
shape/footprint of the building (see Fig. 3).

6) Finally, this paper presents the first demonstration of au-
tomatic reconstruction of 2-D/3-D building shapes from
this class of data. Moreover, the developed methods are
applicable not only to TomoSAR point clouds, as demon-
strated in this paper, but also to unstructured 3-D point
clouds generated from a different sensor with a similar
configuration (i.e., oblique geometry) and with both low
and high point densities.

The aforementioned contributions allow for a completely
automatic (but parametric) reconstruction of 2-D/3-D building
shapes from TomoSAR point clouds in larger areas.

The remainder of this paper is structured as follows. Section II
provides the basic idea of the whole approach. Section III
presents the proposed methodology for detection/extraction of
building points. Section IV then presents in detail the process-
ing steps that are employed for reconstruction of building
footprints. In Section V, the experimental results obtained
from the TomoSAR point cloud generated from a TerraSARX
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Fig. 2. Illustration of facade visibility problems in data available from single-
and/or multiview perspective (i.e., data from both ascending and descending
orbits). Six polygons depict the 2-D building footprints or outlines (top view)
of three buildings in two different orientations. Due to side-looking geometry,
not all facades are visible to the sensor. If we consider data available from
the ascending orbit only, it can be easily inferred that there is no possibility
to reconstruct the shape of the footprint for any building as oriented in the
first row. In the second row, only the first building could be reconstructed
if we impose certain strict constraints (e.g., symmetric or rectangular-shaped
footprint assumption). However, such a constraint is not always feasible due
to a variety of building shapes, and therefore, for the latter two buildings (for
which two facades are visible), the complete shape of the footprint could only
be reconstructed if either the data from multiple views are available or enough
roof points exist, which could be exploited together with the reconstructed
facades (see Fig. 3). If data from the descending orbit are also incorporated, it
could be seen that the building footprints in the second row could be almost
completely reconstructed. However, even in this case, it is still difficult to
reconstruct building footprints in the first row due to lack of data on facades
that are not visible to the sensor.

Fig. 3. Illustration of the solution to the facade visibility problems from the
single-view perspective, as proposed in this paper. The first column contains
the same three buildings oriented as in the first row of Fig. 2. Assuming that
enough facade points available, the facades shown by black polylines could
be reconstructed. Moreover, if enough roof points, which are represented by
gray dots in the second column, are available, the complete shape of the
building footprints could be reconstructed by fusing the rough shape obtained
by connecting roof points occurring at the building boundary together with the
reconstructed facades, as shown in the third column. Finally, if the building
shape is rectilinear, constraints could be added to yield geometrically correct
and visually aesthetic building shapes (fourth column).

high-resolution spotlight data stack (ascending orbit only) are
presented and validated. Finally, in Section VI, conclusions are
drawn, and future perspectives are discussed.

Fig. 4. Block diagram of the proposed approach.

II. METHODOLOGICAL OVERVIEW OF THE

RECONSTRUCTION PROCEDURE

Fig. 4 shows the block diagram of the processing steps
involved in the complete methodology. The whole process-
ing begins by first identifying the probable building regions.
This is accomplished by incorporating information pertain-
ing to facades as prior knowledge (i.e., regions correspond-
ing to higher point density indicate probable facade regions).
Thus, building facade points are first extracted, segmented
to points belonging to individual facades, and further re-
constructed. Detailed processing schemes are described in
[24] and [25]. The reconstructed facades are used to select
seed points, from which a minimum-height-constraint surface-
normal-based region-growing procedure is adopted to extract
available roof points. Then, roof points without the support
of facade points (i.e., case 3) are further extracted from
the remaining points by formulating the extraction problem
into an energy minimization framework. Automatic segmen-
tation of detected/extracted building points is then obtained
by clustering points belonging to individual buildings. Later,
boundary/outline polygons (or footprints) are reconstructed
and refined/smoothed for each individually segmented building
cluster. Afterward, robust fusion of legitimate facade-Polygon
pairs is carried out to improve the geometrical accuracy of the
refined footprints. Finally, after the identification of rectilinear
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Fig. 5. Graphical illustration of the seed point selection procedure. The top
view of 3-D TomoSAR points of a small region containing one building is
depicted. The height (in meters) of each TomoSAR point is color coded. The
red line shows the reconstructed facade segment with the black point as its
midpoint. The green and blue points show the selected points in two opposite
orthogonal directions with respect to the reconstructed facade (depicted as gray
dotted lines). rN is the cylindrical radius used to determine local neighbors (i.e.,
points within shaded circles in respective colors). The local mean height of the
blue and green points is computed, denoted as mb and mg , respectively. Seed
point sp is chosen as the maximum height point among the local neighbors of
blue points if mb > mg or among the neighbors of green points if mg > mb,
where the latter is true in the depicted case.

footprints, rectangular constraints are inserted to yield geomet-
rically correct and visually aesthetic building shapes.

Next, we explain in detail the procedures of the proposed
approach in the following two dedicated sections.

III. BUILDING DETECTION

A. Selection of Seed Points

The reconstructed facades provide direct hints for the desired
building regions. The idea is then to search in the nearby
vicinity of the reconstructed facade to select seed points and
later employ a surface-normal-based region-growing algorithm
to extract existing roof points. In this regard, the seed points are
selected by first computing the midpoint of the reconstructed
facade segment and then analyzing the local height statistics in
the two opposite directions perpendicular to the reconstructed
segment. Fig. 5 provides the graphical illustration of the seed
selection procedure.

B. Region-Growing Procedure

Extracted seed points from the above procedure are then
used in the region-growing procedure to extract existing roof
points based on the similarity of their surface normals (ro-
bustly estimated [31]), i.e., points having an angular difference
between their surface normals less than θnormals are added
to the grown cluster. However, using surface normals only
could also add ground points during the growing procedure. An
example of such a case will be where both the roof and the
neighboring ground are flat. A minimum height constraint is
therefore needed and is incorporated in the growing procedure
to restrict the addition of points below a certain height hmin,
which is adaptively computed for each seed point as mp +
(height of sp − mp) · fac, where mp = mb if mg > mb or

mp = mg if mb > mg (see Fig. 5). The factor fac (empirically
set to 0.55 in this work) can be adjusted between 0 and 1 to
adjust hmin.

The above procedure extracts the existing roof points
only for those buildings whose facades can be determined/
reconstructed. However, as already mentioned, still, there exist
cases when no or very few points are available on the building
facades, rendering the detection of facade points/regions very
difficult. Moreover, if data are acquired from one viewing angle,
e.g., ascending orbit only, the facades of lower buildings could
get fully (or partly) occluded due to the presence of nearby
higher building structures. As a consequence, the corresponding
roof points will be misdetected. To cope with the aforemen-
tioned issue, we sequentially formulate the building detection
problem among the remaining points into a simple energy
minimization framework to extract those building/roof points
where no information pertaining to facades could be exploited
(i.e., resolve case 3).

C. Formulation of Energy Equation

The detection/extraction of building roof points from the
remaining point cloud can be formulated in terms of an energy
minimization problem as follows [32]–[35]:

E(l) =
∑

pi∈P

Dpi
(lpi

) +
∑

(pi,pj)∈N

wpij
δ
(
lpi

�= lpj

)
(1)

where P = {pi|i = 1, . . . , n} denotes the set of remaining n
3-D points; N denotes the set containing pairs of neighboring
points (pi, pj); lpi

represents the label assigned to point pi, i.e.,
roof or nonroof point; δ(·) is an indicator function; and wpij

is the weight of each pair of neighboring points (pi, pj) and is
defined as wpij

= exp(−‖pi − pj‖). The second summation
term in (1) ensures spatial smoothness, i.e., it favors consistent
labeling between the neighboring point pairs, whereas the first
term in (1) denotes the data discrepancy term that measures the
suitability/unsuitability of a particular labeling l assigned to the
set of points P. It is defined as [32]

Dpi
(lpi

)=

{
(1 − hpi

) + η ·rpi
, if lpi

= building roof point

hpi
+ η ·(1 − rpi

) , if lpi
�= building roof point

(2)

where rpi
is the plane residual distance feature computed for

each point pi by locally fitting the robust RANSAC plane
among its local neighbors, and hpi

is the differential height of
point pi obtained after subtracting the height of the underlying
terrain, which is approximated by fitting a cubic polynomial
surface to the nonbuilding/ground points via the robust least
absolute residual (LAR) method, as explained in the following
section. Both features hpi

and rpi
are normalized to the scale

of 0–1 by adopting the forms [32]: hpi
= min(1, hpi

/ε) and
rpi

= min(1, rpi
/rN ), where ε is the tuning factor adjusting

the sensitivity of the height feature [i.e., it ensures that all points
having relative heights greater than ε provide a minimum data
discrepancy term in (1)], and rN is the radius size used to
extract local neighbors vc. η is the relative importance factor
for the feature rpi

, i.e., η defines the relative importance of rpi
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with respect to hpi
. The value of η less than 1 (e.g., η = 0.5

used in this work) means more importance is given to the
height feature. This is reasonable since rpi

essentially depicts
the degree of planarity and is lower for both building roofs
and flat ground surfaces. Thus, to differentiate between points
on a flat planar ground segment, e.g., parking area and on the
flat roof, their heights become the only discriminative factor in
the labeling process and, therefore, should be given relatively
higher importance. Moreover, planar objects with higher height
are more probable to be part of the building structure than to the
ground surface.

D. Approximation of Terrain Height

The remaining point cloud P mentioned in Section III-C may
contain roof points belonging to buildings for which no or very
few facade points are available. To adopt the above energy-
based formulation, the height of the underlying terrain surface
required in (2) is approximated by fitting a cubic polynomial
surface to the nonbuilding/ground points via the robust LAR
method. Ground points are extracted via successive reduction
of nonground points in the remaining point cloud P. This is
done by adopting the following sequence of steps.

• Determine the local height difference of each point by tak-
ing the difference between the maximum and minimum
height of points among its neighbors.

• Identify those points whose local height jump is greater
than 5 m. These higher jump points are referred to as
transition points.

• Cluster these transition points and, for each transition
cluster having at least ten points, begin a region-growing
procedure (similar to that explained in Section III-B).

• Probable ground points are then extracted by removing all
the grown regions from the set of remaining points P.

It is worth mentioning here that the grown regions can also
be incorporated into the set of extracted roof points, as depicted
in [36]. However, due to gaps in the data and localization errors
of TomoSAR, it is still possible that few buildings remain unde-
tected. Formulating the problem into the energy minimization
framework helps us to detect these buildings.

E. Minimization via Graph Cuts

The above energy formulation in (1) is solved (minimized)
via graph-cut-based optimization library using the αβ-swap
move algorithm [34], [35], [37], [38]. The minimum energy
corresponds to the labeling l such that higher planar points are
detected as building roof points. Combining them with the set
of roof points extracted in Section III-B via facade information
completes the extraction procedure.

IV. BUILDING SHAPE/FOOTPRINT RECONSTRUCTION

A. Segmentation Into Individual Buildings

The extracted building points are segmented such that each
cluster represents points from an individual building. This is
done by means of density connectivity [39], i.e., two points

are considered to be directly density connected to each other
if one point is in the neighborhood vicinity of the other point.
If the two points are not directly connected to each other, still,
they can be density connected to each other if there is a chain
of points between them such that they are all directly density
connected. Thus, starting from a point, all points that are
density connected to each other are clustered into a single group
representing an individual building. These clustered points are
then removed, and the procedure is repeated for the remaining
points until all the points are assigned to a particular cluster.

B. Coarse Building Footprint

The reconstruction of building shapes is initially obtained
by employing alpha shapes (or α-shape, i.e., generalization of
convex hull) around each segmented building [40]. This results
in vertices that describe the coarse 2-D polygonal boundary of
the building footprint. The reconstructed shape depends on a
particular value of α, which has to be carefully chosen since
it controls the model complexity. For instance, an overlarge
α could make it difficult to follow concave polygonal shapes,
e.g., an L-shaped building. In [41], it is recommended that α
be chosen as twice the mean Euclidean point distance among
the building roof points to produce a reliable building shape,
including smaller structures.

C. Refinement of Alpha Shape Vertices by Recursively
Analyzing Angular Deviations

The alpha shape method provides good initial estimates
of building outlines. However, due to lesser point density of
TomoSAR points, alpha shapes only define the coarse outline
of an individual building. The resulting polygons are therefore
irregular and need to be refined/regularized.

If we denote Valpha = {Vi=1,...,N} as a set containing N
matrices of building polygons returned by the alpha shape
algorithm and Vj with (j ∈ i) as the matrix containing 2-D
vertices of the initial alpha polygon of the jth building, then
inspired by the work in [41] (although different), the recursive
procedure provided in Table I is adopted to refine the coarse
reconstructed building footprints returned by the alpha shape
algorithm.

The procedure in Table I begins by computing the angular
deviations at each vertex point of the alpha polygon as

βj =

{
θj , if θj ≤90◦

180−θj, if θj >90◦ with θj =cos−1

(
dvj ·dvj+1

‖dvj‖‖dvj+1‖

)

(3)

where “·” denotes the dot product, and dvj is the direction
vector computed at each edge formed by connecting two con-
secutive vertices vj and vj+1 of the polygon Vprev (initialized
to Vj). Steps 4 and 5 ensure that all those vertices (or edges)
having angular deviations less than the threshold θang are
removed. Vnew and Vprev are then compared, and the process
repeats itself if any vertex is removed in the current recursive
iteration, i.e., Vnew and Vprev do not contain the same number
of elements. Finally, the process terminates when there is no
further removal of vertices.
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TABLE I
REFINEMENT OF ALPHA SHAPE POLYGONS

D. Incorporating Reconstructed facades

To improve the geometrical accuracy of the footprints, the
reconstructed facades are fused with the refined building poly-
gons. For this purpose, the facade associated to each refined
building polygon is categorized into the following two types:

• type-I facade: facade fully or partly inside the refined
polygon;

• type-II facade: facade lying completely outside but asso-
ciated to the refined polygon.

The aforementioned two facade types are fused with the
refined building polygon in slightly different manners, as will
be explained later.

a) Identification of legitimate facade-polygon pair (facade-
polygon pairing): To achieve fusion of reconstructed facades
with the refined building polygons, the foremost task is to
identify the association of each facade to its respective building
polygon.

Identification of type-I facades is easily achieved by checking
if the endpoints of the reconstructed facades lie inside the
polygon. Thus, if both or at least one of the facade endpoints lie
inside the building polygon, it is categorized as a type-I facade.

To identify facades of type II, the following procedure is
adopted.

1) First, the midpoint of the reconstructed facade is com-
puted, and two points are chosen in opposite directions
orthogonal to the reconstructed facade at a distance d from
the midpoint.

2) Compute intersections of line1 and line2 with all the
building polygons. Here, line1 denotes the line segment
formed by connecting the midpoint to one of the chosen
points, and similarly, line2 is the line segment formed by
connecting the midpoint to the other opposite point.

3) If there exists an intersection of line1 or line2 with any
of the building polygons, the facade is assigned to the
polygon with which the intersection occurs. In case there

are more than one line–polygon intersections or both line1

and line2 intersect with different polygons, the facade
is assigned to the polygon having the intersection point
nearest to it.

Implementation-wise, steps 1–3 are performed in a recursive
manner. That is, d is initialized to 1 m, and steps 1–3 are carried
out. If there exists no line–polygon intersection (i.e., the facade
is not assigned to any polygon), the procedure repeats itself, but
this time, d is incremented by 1 m. The recursion stops if either
the facade is assigned to any polygon or distance d exceeds a
certain threshold, which is set to a fixed value of 20 m in this
work. Thus, a facade is only associated/paired to any building
polygon if it lies at a distance less than 20 m; otherwise, it is
regarded to have no polygon associated to it (i.e., categorized
to case 1).

b) Fusion of reconstructed facades: Similar to earlier nota-
tion, let us denote Vrefined = {Ṽi=1,...,N} as a set containing
N matrices of refined building polygons, with Ṽj={vk=1,...,m}
(j ∈ i) being the matrix containing 2-D vertices of the jth
refined polygon having m vertices and fr=1,...,s being the cor-
responding s number of (paired) reconstructed facades. Now,
if the building polygon, formed by connecting vertices of Ṽj ,
is interpreted as a graph, then we may define a path Pt for
any particular facade ft as a path consisting of a polygonal
chain of vertices that connect two points vta and vtb lying on
the graph/polygon. That is, the polygonal segment comprising
of all the points of polygon Ṽj within the interval [vta,vtb]
defines path Pt. vta and vtb denote points on the building
polygon, which are nearest to the two endpoints of the particular
reconstructed facade ft. Since, in our case, the polygon is
nonintersecting (or simple), it thus renders only two distinct
paths to exist, which are referred to as Pt_shortest and Pt_longest

[see Fig. 6(b)]. If the path length of Pt is denoted as PLvtavtb
,

then Pt is Pt_shortest only if PLvtavtb
< TL/2, where TL is

the total path length (i.e., perimeter) of the polygon.
Pt_shortest is further classified into two types: positive path

P+ and negative path P−. If we denote the set of points on
the polygons that are nearest to the endpoints of all facades
of the same building other than ft as Kt (i.e., Kt contains
points nearest to the endpoints of facades fr′=1,...,t−1,t+1,...,s

such that r′ ∪ t = s), then Pt_shortest of the reconstructed
facade ft is defined to be P+ if the set of points Pt_shortest

belonging to path Pt_shortest does not contain any element of
Kt, i.e., Pt_shortest ∩ Kt = ∅. Thus, all facades whose paths
are identified as positives are incorporated in the fusion process,
whereas facades having negative paths are not considered any
further. A sample illustration of the concept of a positive path
is presented in Fig. 6(c).

Table II provides the complete procedure to incorporate
facades of both types with the refined building polygon.

Fig. 7 practically illustrates the procedure of fusing both
types of facades. Note that there lie some differences in the
computation of v′

ta and v′
tb for type-I and type-II facades

(steps 8, 9, and 17 in Table II). The reason for this is due to the
fact that point density on building roofs is quite varying and can
contain gaps in between. This could lead to under reconstruct
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Fig. 6. Procedure describing the concept of Pt_shortest and P+. (a) Refined polygon of one particular jth building Ṽj having vertices vk=1,...,m with four
reconstructed facades f1, f2, f3, and f4 that are to be incorporated. (b) Sample illustration of the concept of shortest and longest paths associated for a particular
facade f1. v1a and v1b denote the closest points on the polygon/graph Ṽj to the two endpoints of facade f1, respectively. (c) Sample illustration of the concept
of positive path P+. P2_shortest is identified as P − as there exist points in K2 that are also present in P2_shortest.

of the building footprint, i.e., part of the building roof region
could not be reconstructed due to unavailability of points. The
presence of type-II facades implicitly validates this plausible
phenomenon, and therefore, fusion of refined polygons by
fully incorporating the reconstructed facades (of type II only)
results in improved overall accuracy of reconstruction. Doing
the same for type-I facades, on the other hand, may affect
the footprint polygon in the presence of facades belonging to
inner building structures. Thus, only the orientation of type-I
facades is essentially incorporated by the proposed procedure
(steps 8 and 9 in Table II). In addition, steps 12–15 in Table II
also pose a condition C1 for type-I facades such that they do
not take part in the fusion process if the change in area of
the polygon after incorporating the particular facade is greater
than the certain fraction af (fixed to 0.15 in this work) of the
previous polygonal area. Thus, using condition C1 together
with the method of type-I facade fusion, it is ensured that
facades belonging to the inner structures of the building do not
interfere during the fusion procedure, or in other words, only
facades that are exterior and define the building outlines are
utilized.

E. Identification of Rectilinear Footprints

The next step in the reconstruction procedure is to identify
if the building is composed of two or more than two domi-
nant directions. If the building polygon is composed of only
two dominant directions orthogonal to each other, rectilinear
constraints are added to derive geometrically correct and better
visually looking building shapes.

a) Estimation of principal direction: The decision of
identifying a rectilinear building is based on its estimated
dominant/principal direction. For this purpose, building poly-
gons belonging to case 2 (i.e., having one or more reconstructed
facades associated to each polygon), the principal direction is
easily determined by assigning it to the direction vector com-
puted by subtracting the endpoints of the longest reconstructed
facade paired to it. For case-3 building polygons, the principal
direction is directly estimated from the polygon itself. Since
no facade is associated to them, a weighted method based
on polygonal edge lengths is employed to estimate the two
orthogonal principal directions of the building. The basic idea
is to give weight to each edge of the polygon according to its
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TABLE II
PROCEDURE TO FUSE FACADES OF BOTH TYPES

relative length (with respect to total polygon length) and the
angular deviation it makes with a particular direction vector
dvq. dvq is a candidate for one of the two orthogonal principal
directions and is rotated within a certain interval to minimize
the following objective function [42]:

PD =
n∑

i=1

g1(li)g2

(
ϕi(βi, φdvq

)
)

(4)

where n is the total number of vertices of the polygon, and
βi(0 ≤ βi ≤ 90◦) is the angular deviation of each edge li with
respect to the direction vector dvq. βi is computed similar to
(3) with the difference that the two direction vectors are dvj

and dvq instead of direction vectors of consecutive edges dvj

and dvj+1. φdvq
is the anticlockwise rotation angle that dvq

makes with the unrotated coordinate system. ϕi(·) is a function
that maps the angular deviations βi to one of the two orthogonal
directions (or axes) as defined by direction vector dvq and its
corresponding normal vector. It is computed as

ϕi

(
βi, φdvq

)
=

{
βi, if βi ≤ 45◦

90 − βi, if βi > 45◦.
(5)

Both g1(·) and g2(·) are the weighting functions. g1(·) as-
signs weight to each edge based on its relative length with

respect to the overall length of the polygon edges. It is con-
structed such that edges with longer lengths contribute less in
(4) as compared with shorter edge lengths. The following linear
function is used to describe g1(·):

g1(li) = 1 − li
n∑

i=1

li

. (6)

Similarly, g2(·) assign weights to each edge based on its ϕi

value. The assignment of weight is directly proportional to ϕi,
i.e., lower weight is given to an edge with lower ϕi, inferring
that edges close to one of the two orthogonal directions are
given less weight as compared with those that are deviating.
Since the span of ϕi for each edge is defined to be within
the interval [0, 45◦], g2(·) is thus computed by adopting the
following linear function:

g2

(
ϕi(βi, φdvq

)
)

=
ϕi

45
. (7)

The solution of (4) is obtained by rotating dvq within the
interval [0, 90◦]. An optimum (or minimum) φ̂dvq

is found by
comparing PD for each φdvq

value. The direction vector and
its corresponding normal vector associated to the optimum (or
minimum) φ̂dvq

(= arg minφdvq
(PD)) thus describe the two

orthogonal principal directions.
b) Identification procedure: Once the principal/dominant

directions are determined, the following procedure is adopted
for identification of rectilinear buildings.

• Determine angular difference βi(0 ≤ βi ≤ 90◦) of all
the edges of the polygon with respect to the dominant/
principal directions.

• Compute the histogram of these angular differences.
• Find the edges whose angular differences are within the

bin intervals [0◦, 20◦] and [70◦, 90◦].
• Identify the polygon to be rectilinear if the total sum

of the lengths of these edges is more than a certain
fraction Lf of the total polygonal length TL. (Lf is fixed
to 0.75 in our work, i.e., 75% of the total polygonal
length TL).

F. Addition of Rectilinear Constraints

Subsequently, rectilinear constraints are added to the identi-
fied building polygons to yield much better (visually appealing)
geometric building shapes. The following steps are performed
to obtain rectilinear building footprint.

• Classify each edge of the building polygon such that it
belongs to one of the two orthogonal principal axes based
on its angular deviation (i.e., an edge is associated to
that principal direction with whom the angular difference
is less).

• Merge all adjacent edges that share the same class, i.e.,
associated to the same principal direction.
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Fig. 7. Fusion of both type-I and type-II facades. (a) Refined polygon of one particular jth building Ṽj with two reconstructed facades f1 and f2 with types I
and II, respectively. (b) Shortest paths (also P+) determined for both facades. (c) Procedure of computing points v′

ta and v′
tb

. Note that for the type-I facade,

v′
1a and v′

1b are computed by projecting v1a and v1b onto the black dotted line, which is parallel to the reconstructed facade f1 and passes through the midpoint
of line segment L formed by connecting points v1a and v1b (steps 8 and 9 in Table II), whereas for the other facade having type II, v′

2a and v′
2b are simply the

endpoints of facade f2 (step 17 in Table II). All vertices of Ṽj on P1_shortest and P2_shortest (i.e., points in P1_shortest and P2_shortest) are replaced by
vertices v′

1a , v′
1b and v′

2a, v′
2b, respectively. (d) Resulting polygon in black after fusing facades f1 and f2 with types I and II, respectively.

• Apply rectilinear transformation to every merged polygo-
nal edge by projecting it onto its corresponding principal
axis/vector.

• Computing intersection (or vertex) points between the
consecutive vertices.

Fig. 8 illustrates the mechanism of practically adding recti-
linear constraints to the building polygon using the aforemen-
tioned procedure. Note that the depicted polygon contains no
associated facade and, therefore, belongs to case 3. For case-2
polygons, the associated facades are first fused to the refined
polygon, and if identified as a rectilinear, constraints are added
to complete the reconstruction procedure.

V. EXPERIMENTAL RESULTS AND VALIDATION

A. Data Sets

To validate our approach, we tested the proposed algorithms
on two different data sets. One is composed of TomoSAR
point clouds generated from a stack of 25 TerraSAR-X
high-resolution spotlight images covering approximately

(900 × 600 ≈)0.54 km2 area in the city of Las Vegas, USA.
It contains 0.48 million points and consists of moderate-
sized buildings with relatively simple geometry. To test the
generality of the proposed algorithms, the other data set is
composed of TomoSAR point clouds of complex building
structures produced from a stack of 102 TerraSAR-X high-
resolution spotlight images covering around (1750 × 900 ≈)
1.5 km2 area in the city of Berlin, Germany. The number of
points in the Berlin data set is approximately 0.52 million.
Both TomoSAR point cloud data sets are generated from
images taken from an ascending orbit using the Tomo-
GENESIS software developed in the German Aerospace Center
(DLR) [43], [44].

B. Reference Footprints

For the area of interest in Las Vegas, the reference footprints
for the Las Vegas data set were acquired from CyberCity3D
[45]. These footprints are highly precise with positional accu-
racy up to +/−15 cm and are generated using automated and
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Fig. 8. Procedure to add rectilinear constraints to any one particular building polygon. (a) Black dots indicate the extracted building points, the cyan polygon
represents the initial coarse outline obtained using the alpha shape algorithm, and the gray polygon depicts the refined/smoothed polygon to which rectilinear
constraints are added. (b) Each edge of the refined gray polygon of (a) is segmented to belong to one of the two estimated dominant directions indicated by black
arrows based on their angular deviation (i.e., an edge is associated to that principal direction with whom the angular difference is less). Segmented edges are shown
in red and green. The blue polygon then depicts the reduced refined polygon of (a) by merging all adjacent edges that belong to the same principal axis. (c) Each
edge of the blue polygon is then rotated/projected around its midpoint onto its corresponding principal axis. (d) Finally, the intersection (vertex) points among the
adjacent edges of the projected blue polygon edges of (c) are computed for rectilinearization.

Fig. 9. Data sets. Top view of the 3-D TomoSAR points in UTM coordinates of the area of interest in (left) Las Vegas, USA and (right) Berlin, Germany. Blue
lines depict the reconstructed facade segments (longer than 10 m). The height of TomoSAR points is color coded [unit: m].

semiautomated photogrammetry-based techniques with data
source derived from aerial, oblique, or satellite stereo imagery.

For the Berlin data set, we compared our building extraction
results to reference polygons downloaded from OpenStreetMap
(OSM) [46]. Based on the concept of crowd sourcing, which
involves crowd or community to effectively and efficiently
fulfill a task at hand, OSM with around two million registered
users (as of today and also rapidly growing) is considered to

be the most successful Volunteered Geographic Information
(VGI) project [47], [48]. The OSM database contains multitude
of building footprints represented as polygons with an ordered
list of nodes/vertices (i.e., pairs of UTM or Latitude/Longitude
coordinates according to the WGS 84 coordinate system) and
is updated every day. The data are free to download and
comes under the open license Open Data Commons Database
License (ODbL). Since it is a VGI project, the data quality
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Fig. 10. Building extraction procedure. (a) Red points depict building points extracted via utilizing reconstructed facades. (b) Approximated terrain surface
from the remaining set of points via successive reduction of building points and polynomial surface fitting, as explained in Section III-D. (c) Differential height
computed via subtracting the terrain height from the height of each point. (d) Further building points (in red) are then extracted using the energy minimization
framework with tuning parameters: ε = 10 m, rN = 5 m.

Fig. 11. Results of building extraction: Las Vegas. (a) Extracted building points in red from Fig. 10(a) and (d) are overlaid onto the optical image (Google) of the
area of interest. Yellow circles indicate extracted points originating from sources such as advertisement boards and monuments. Large black circle encloses two
buildings that remain undetected due to lower relative heights. (b) Finally, reference footprints (in green) overlaid onto the extracted building points. Red points
are building points, whereas black points are nonbuilding points.

may vary from region to region. To this end, the first investi-
gations regarding OSM data quality were carried out for roads
[48], followed by an assessment of other attributes present
in the database, e.g., lines [50] and polygonal objects [51].
Recently, the building footprints have also been evaluated for
their completeness [52] and correctness [49] for various cities
in Germany. The analysis of OSM data with surveying data sets
reveals fairly precise positioning accuracy varying within 4 m
[47], [49].

C. Results: Extraction of Building Points

Fig. 9 shows the result of applying facade reconstruction
procedure over both data sets. Seed points are selected from
each reconstructed facade, and the region is grown using a

surface-normal-based similarity measure with θnormals set to
15◦. Fig. 10(a) shows the grown region using seeds from the
reconstructed facades. Later, among remaining points, terrain
is approximated, and building points are extracted by adopting
an energy minimization procedure, as previously explained in
Section III-C [see Fig. 10(b)–(d)]. Figs. 11 and 12 show the
final extracted building points in both data sets overlaid onto
the optical images.

D. Validation: Extraction of Building Points

Figs. 11(b) and 12(b) show the reference polygons overlaid
onto the extracted building points of the test area in Las Vegas
and Berlin, respectively. It can be visually seen that the ex-
tracted building points fit very well to these reference polygons.
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Fig. 12. Results of building extraction: Berlin. (a) Extracted roof points in red are overlaid onto the optical image (Google) of the area of interest. (b) Red and
black points depict building and nonbuilding points, respectively. The overlaid green polygons are reference buildings downloaded from OSM [46]. Blue polygons
are manually extracted buildings not present in OSM data. Gray polygons are newly constructed buildings that are not present in our data set, whereas magenta
polygons are buildings that do not actually exist but are present in OSM data. Both gray and magenta polygons are not included in the evaluation.

For the Berlin data set, we found out that few buildings are
missing in the OSM data set, and therefore, by analyzing the
detected buildings from TomoSAR point clouds and validating
using optical data, we completed few missing buildings in
the OSM data set; polygons are depicted as blue polygons
in Fig. 12(b). The performance of the (detection) extraction
procedure in both data sets is then assessed by employing the
evaluation metrics [53], [54] given in

Completeness (%) : comp = 100 ×
(

TP
TP+FN

)

Correctness (%) : corr = 100 ×
(

TP
TP+FP

)

Quality(%) : Q = comp×corr
comp+corr−comp×corr = TP

TP+FP+FN

⎫
⎪⎪⎬
⎪⎪⎭
(8)

where

• TP (true positives) represents the number of detected
building points inside the reference building polygons;

• FN (false negatives) represents the number of de-
tected nonbuilding points inside the reference building
polygons;

• FP (false positives) represents the number of detected
building points outside the reference building polygons;
and

• TN (true negatives) represents the number of de-
tected nonbuilding points outside the reference building
polygons.

TABLE III
EVALUATION STATISTICS OF THE DETECTION ALGORITHM

The aforementioned metrics assess the overall performance
of the building extraction algorithm. Completeness tells up to
what percentage the algorithm has detected the roof points,
whereas correctness provides a measure of correct classifi-
cation. Quality combines both completeness and correctness
metrics to provide an overall measure of the algorithm perfor-
mance. Results of the evaluation statistics for both data sets are
provided in Table III.

In both data sets, all of the buildings having relative heights
(with respect to ground) of more than 5 m are detected by
the extraction procedure. However, an example of two smaller
buildings, for which no points could be extracted, is highlighted
by a black circle in Fig. 11(a). These buildings have a footprint
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Fig. 13. Reconstruction results: Las Vegas. (a) Clustered (or segmented) building points. Black polygons Valpha surrounding individual segmented building
points are the initial coarse boundary/outline obtained using the alpha shape algorithm. (b) Refined (cyan) polygons Vrefined obtained after applying a recursive
angular deviation approach together with 2-D reconstructed facades (depicted in blue, are overlaid onto alpha shape polygons). (c) facades are then incorporated
into the refined polygons from (b) depicted in magenta, symbolized as Vfacadefused. facades either identified as P − or having condition C1 in Table II not
satisfied are depicted in green and are not utilized during the facade-Polygon fusion process. (d) Final rectilinearized polygons Vfinal obtained after adding
rectilinear constraints.

area of approximately (28 × 5 =)140 m2 but possess relative
heights of only 2 m. Since during the extraction procedure,
seed points are chosen based on local height jumps of 5 m,
no seed point could thus be chosen for these buildings. As a
consequence, they remain undetected.

In terms of false alarms, it is worth mentioning that it might
happen that points belonging to some small vertical structures
on ground (e.g., advertisement boards and monuments) also get
detected during our extraction procedure. Few examples of such
cases are also highlighted by yellow circles in Fig. 11(a). The
reason for this occurrence of false positives is our implicit defin-
ition (or assumption) pertaining to buildings, i.e., higher points
with a higher degree of planarity are detected as buildings by
the extraction procedure.

E. Results: Reconstruction of Building Footprints

Extracted building points are then spatially segmented such
that each cluster represents an individual building. Figs. 13(a)
and 14(a) depict the result of spatially clustering points into
individual buildings in the Las Vegas and Berlin data sets,
respectively. The initial coarse outline of each cluster is then
determined using the alpha shape algorithm. Black polygons in
Figs. 13(a) and 14(a) surrounding each individual segmented
building cluster depict its corresponding alpha polygon.

Refinement of the initial coarse alpha vertices is then carried
out by computing the angular deviation at each vertex point.
The threshold value θang = 20◦ is used, which consequently re-
moves all vertices having angular deviations less than 20◦ from
their adjacent neighboring vertices. Refined or smoothed alpha
polygons are then fused with the reconstructed facades. Later,

rectilinear constraints are added to the building polygons that
are identified to be rectilinear. Figs. 13(b)–(d) and 14(b)–(d)
depict the results of building footprint reconstruction on the Las
Vegas and Berlin data sets, respectively.

F. Validation: Reconstruction of Building Footprints

To evaluate the reconstruction results, we rasterized both the
reconstructed and reference polygonal footprints onto an image
with pixel resolution of 1 m (i.e., one pixel corresponds to
1 m2 spatial area). A difference image created by subtracting
the reconstructed footprint image from the reference footprint
image is then used to compute the commission and omission
errors as follows:

Commission error(%) =
FN

Aref
× 100

Omission error(%) =
FP

Aref
× 100 (9)

where Aref is the area of the reference polygons, whereas FN

and Fp are the number of pixels in the difference image having
values of −1 and 1, respectively.

Fig. 15 presents the common (top row) and difference (bot-
tom row) images. The red pixels in the difference images
indicate the building regions that are not reconstructed by
the proposed algorithm contributing to the omission errors,
whereas blue pixels are over reconstructed regions, i.e., pixels
not part of the reference footprint image but present in the
reconstructed image.

Table IV lists the commission and omission errors obtained
for the reconstructed footprints.
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Fig. 14. Reconstruction results: Berlin. (a) Clustered (or segmented) building
points. Black polygons Valpha surrounding individual segmented building
points are the initial coarse boundary/outline obtained using the alpha shape
algorithm. (b) Refined (cyan) polygons Vrefined obtained after applying a
recursive angular deviation approach together with 2-D reconstructed facades
(depicted in blue, are overlaid onto alpha shape polygons). (c) facades are then
incorporated into the refined polygons from (b) depicted in magenta, symbol-
ized as Vfacadefused. facades either identified as P − or having condition C1
in Table II not satisfied are depicted in green, whereas facades not associated
to any building polygon (i.e., case 1) are depicted in gray. Both red and gray
facades are not utilized during the facade-Polygon fusion process. (d) Final
rectilinearized polygons Vfinal obtained after adding rectilinear constraints.

Hypothetically, the reconstruction results will be improved
with higher density of TomoSAR points because more points
would be available for parameter estimation. Numerical exper-
iments also demonstrated that reconstruction accuracy is better
for buildings with higher density of roof points. For low-density
roof regions, the reconstruction accuracy is, however, restricted

by the number of available points, which consequently reduces
omission errors. A further improved-model-based approach
might be helpful in this regard.

Additionally, the reconstruction errors between the final and
coarse 2-D topologies (polygons) are also varying. Thus, there
is a tradeoff in achieving geometrically correct footprints while
simultaneously keeping the commission and omission errors in
control. As evident, the best tradeoff can be obtained by in-
corporating facades to the coarser building polygons. However,
more visually appealing results are produced by introducing
rectangular constraints to the rectilinear buildings.

Finally, in Fig. 16, we present the final reconstructed build-
ing shapes/footprints in 3-D. As depicted in [25], the shown
reconstructed building model can be used to refine the elevation
estimates of the raw TomoSAR points. Moreover, with known
deformation estimates of the scatterers, such a model can also
lead to the reconstruction of dynamic city models [55] that
could potentially be used to monitor and visualize the dynamics
of urban infrastructure in very high level of details.

G. Discussion on Parameter Selection

Although the parameter values have been tuned according to
the investigated scenes, some parameters are not strictly related
to the scene under consideration and, therefore, can be easily set
a priori by using some general rules or constraints. Moreover,
most of the parameters involved have a clear physical meaning
associated to them, which aids the user in incorporating it as
prior knowledge on a particular scene. Based on aforemen-
tioned guidelines provided in the previous two sections, in the
following, some more insights regarding the selection of para-
meters and their effects on the results are discussed in detail.

a) Extraction of building points: Building points are ex-
tracted by following a two-step procedure: First, the building
points are extracted using a region-growing procedure. Later,
among the remaining points, an energy minimization formula-
tion is adopted to extract points belonging to lower height build-
ings for which no facade information was available. Parameters
that control the extraction procedure are fac (controlling the
minimum height constraint value hmin), threshold on angular
difference θnormals, the tuning factor adjusting the sensitivity
of the height feature ε, the radius size rN , and the parametric
value of local height jumps.

• fac adaptively sets the value of hmin for each seed point
during the region-growing procedure. Theoretically, the
value of fac should be close to 1. The reason for this is
because the height of facades that are part of the building
boundary is either lower than or equal to the height of
the building roof (i.e., it is lower for polyhedral roofs and
equal for flat roofs with the assumption of no overhanging
roof structure). Thus, setting fac equal to 1 would set
hmin (almost) equal to the height of the facade, and there-
fore, only those points that are planar and have height val-
ues greater than hmin would be clustered for a particular
seed point during the region-growing procedure. Lower
fac values, on the other hand, may cause flat (or planar)
ground points to be added in the growing procedure. As



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 15. Common (top row) and difference (bottom) images computed using the reference footprint image and final reconstructed footprints. The first row depicts
the common regions, whereas the second row shows the difference image computed by subtracting the final reconstructed footprint image from the reference image.
Note that green pixels indicate no difference between reconstructed and reference rastered images.

previously mentioned in Section I, since TomoSAR point
clouds have a rather higher elevation error, the suggested
range of values for fac based on empirical evaluation
for different scenes is between 0.5 and 0.7. However, for
other sensors giving better positioning accuracy, a higher
fac value may be used.

• The angular difference threshold value θnormals is mainly
dependent on noise in the data. If the normals are robustly
estimated, this parameter is more or less independent of
both the scene and sensor configurations. The possible
range of values for this parameter should be set between
10◦ and 20◦.

• ε can be easily set based on a priori knowledge related
to the average height of the buildings in the scene. For
instance, with ε = 10 m (used in this work), it is ensured
that any planar point above 10 m provides a minimum
data discrepancy term in (1) and is therefore regarded
as belonging to the building structure. ε is a scene- and
data-dependent parameter. For data with relatively higher
density and positioning accuracy, a lower value for ε may
be used. For instance, a reasonable value for ε equal to the
height of two floors (i.e., 6 m) has been proposed in [32].

• The role of radius size parameter rN is twofold: First, it is
used to compute local neighbors for feature computation,

TABLE IV
FOOTPRINT RECONSTRUCTION STATISTICS

and second, it is used to spatially cluster extracted points
such that they belong to individual buildings for subse-
quent reconstruction. Based on experimental evaluation
over TomoSAR point clouds, a good choice for radius
size between 5 and 10 m providing reasonable results
for feature computation have been utilized [24], [56]. The
use of a particular radius size, however, puts a constraint
on the minimum distance between the buildings. That is,
setting rN = 5 m allows the algorithm to separate two
buildings only if they are at least farther than 5 m from
each other. Otherwise, the algorithm will merge them into
one single cluster.

• Apart from these four parameters controlling the whole
extraction procedure, the parametric value of local height
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Fig. 16. Final reconstructed 3-D building footprints. (Left) Las Vegas data set. (Right) Berlin data set.

jumps that is used to select seed points while approximat-
ing the terrain surface also puts a constraint on minimum
building height that could be detected. This parameter is
merely data dependent and, therefore, has been empiri-
cally fixed in this work to 5 m. With a different sensor of
higher resolution and positioning accuracy, this value may
be lowered.

b) Reconstruction of building footprints: The whole re-
construction procedure is essentially governed by only two
parameters: α and θang.

• α provides good initial estimates of building outlines.
However, the value of α effects the shape of the initial
coarse polygon. Setting a larger α restricts in obtaining
concave boundaries, whereas lower values may result in
more smaller boundary polygons that are actually present.
In addition, with smaller α, it is also possible that the
outer and inner polygons share one (or more) common
vertex and, hence, leads to improper footprint geometry.
The use of one particular value for α may not be feasible
for scenes containing arbitrary-sized buildings. Thus, to
adaptively select an appropriate value of α, we initialize
α = 5 m (reasonable tradeoff for our data), which is re-
cursively incremented by 1 m if resulting polygons share
common vertices or the minimum area of any resulting
polygon is less than 50 m2.

• θang is used to refine the initial (coarse) building bound-
ary obtained using the alpha shape algorithm. θang = 0
results in no refinement or regularization, i.e., the original
alpha polygons are returned. Setting too high a value for
θang may, however, result in overrefinement/smoothing.

Both α and θang are very stable parameters for a variety
of different input scenes with arbitrary building sizes. For α,
the point density of the data plays an important role. For lower
density data, the value of α should be higher, whereas for high-
density data, lower α values may be used. For θang , relatively
stable values for data from different scenes (or sensors) range
from 5◦ to 25◦.

Although all of the remaining subsequent operations, in-
cluding the facade-Polygon fusion, estimating the principal
direction, and rectilinearization, are completely parameter free,
one fixed threshold value, i.e., Lf = 0.75, providing a careful
balance for our data, has been used to identify the rectilinear

TABLE V
LIST OF PARAMETERS TOGETHER WITH THEIR VALUES USED AND

DEPENDENCY TYPE

polygons. With lower values of Lf , it is possible to wrongly
classify more polygons as rectilinear, whereas higher values of
Lf may increase the chance of a miss hit. This parameter also
depends on the point density of the input data, and therefore,
with higher density point clouds, values of Lf close to 1 may
be employed.

To summarize, in total, eight parameters control the complete
processing chain. Although the proposed approach is able to
work with unstructured 3-D point clouds generated from any
other sensor with a similar configuration (i.e., oblique geome-
try), the point density and positioning accuracy plays an impor-
tant role in tuning these parameters. For spaceborne TomoSAR
point clouds utilized in our experiments, Table V provides the
values used in this work together with their possible (stable)
range, which has been empirically evaluated for a variety of
different input scenes. Additionally, categorization of each pa-
rameter according to its dependency type has also be presented.

VI. OUTLOOK AND CONCLUSION

In this paper, we have presented an automatic (parametric)
approach that utilized unstructured spaceborne TomoSAR point
clouds from one viewing angle only to detect and reconstruct
2-D/3-D building shapes/footprints. The approach is modular
and allows for a robust detection of both tall and low build-
ings and, hence, is well suited for urban monitoring of larger
areas from space. The approach is completely data driven and,
therefore, imposes no restrictions on the shape of the building,
i.e., any arbitrarily shaped footprint could be reconstructed.
Moreover, the presented approach utilizes roof points in de-
termining the complete shape of the buildings and, therefore,
resolves problems, as mentioned in [24], related to the visibility
of facades mainly facing toward the azimuth direction.
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In the following, several aspects in further extension/
improvement of the proposed approach are mentioned.

• The approach presented in [24] is a much better option for
detecting the shape of the building when dense points on
the facades are available. However, there are cases occur-
ring particularly for lower height buildings or buildings
having a smoothed facade structure where no or only very
few scatterers are detected. The approach proposed in this
paper presents nice solutions to such cases by exploiting
roof points. However, the availability of roof points is
somewhat dependent on the structure and geometry (area)
of the roofs. For the part of the roof that is smooth or
completely invisible to the sensor, no points would be ob-
tained, which may result in the underreconstruction of the
footprint. Such situations can be rectified by using points
from other viewing angles (e.g., use of TomoSAR points
generated from both ascending and descending orbits)
and/or by incorporating some prior model knowledge of
the shape to obtain complete building footprints.

• Building points are extracted based on two assump-
tions, namely, planarity and higher relative heights.
This assumption also enables the detection/reconstruction
of other man-made vertical structures, e.g., advertise-
ment boards and monuments. Imposing dimensional con-
straints on the reconstructed footprints may help in further
distinguishing them from buildings.

• Unknown absolute height values of different reference
points, which are chosen independently while processing
individual VHR SAR data stacks, are a hindrance to the
direct fusion of TomoSAR point clouds from multiple
views. To this end, 2-D/3-D footprints are independently
produced from each single aspect, and TomoSAR point
cloud could be matched/correlated to develop a more
precise object-based geometric TomoSAR fusion method
compared with two existing ground-point-based [57] and
feature-based [30] approaches. An alternative approach is
geodetic TomoSAR [58], where the absolute 3-D coordi-
nates of the reference points are retrieved using imaging
Geodesy [59] and stereoSAR [60].

In the future, we will also explore the potential of extending
the algorithm toward the generation of automatically recon-
structed complete watertight prismatic (or polyhedral) 3-D/4-D
building models from space.
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Joint Sparsity in SAR Tomography for Urban
Mapping

Xiao Xiang Zhu, Senior Member, IEEE, Nan Ge, Muhammad Shahzad, Student Member, IEEE,

Abstract—With meter-resolution images delivered by modern
SAR satellites like TerraSAR-X and TanDEM-X, it is now
possible to map urban areas from space in very high level of
detail using advanced interferometric techniques such as PSI
and SAR Tomography (TomoSAR), whereas these multi-pass
techniques are based on a great number of images. We aim at
precise TomoSAR reconstruction while significantly reducing the
required number of images by incorporating building a priori
knowledge to the estimation. In the paper, we propose a novel
workflow that marries the freely available 2-D building footprint
GIS data and the joint sparsity concept for TomoSAR inversion.
Experiments on bistatic TanDEM-X data stacks demonstrate the
great potential of the proposed approach, e.g., highly accurate
tomographic reconstruction is achieved using six interferograms
only.

Index Terms—Synthetic aperture radar, SAR tomography,
compressive sensing, joint sparsity, GIS, TanDEM-X.

I. INTRODUCTION

MODERN spaceborne synthetic aperture radar (SAR)
sensors, such as TerraSAR-X, TanDEM-X and

COSMO-SkyMed, deliver SAR data with a very high spatial
resolution (VHR) of up to 1 m. With these meter resolution
data, advanced multi-pass interferometric techniques such as
persistent scatterer interferometry (PSI) and tomographic SAR
inversion (TomoSAR) allow retrieving not only the 3-D geo-
metrical shape but also the undergoing temporal motion in the
scale of millimeter of individual building [1][2][3][4][5][6][7].
In particular, sparse reconstruction based methods [8][9], like
SL1MMER [10], give robust TomoSAR inversion with very
high elevation resolution, and can offer so far ultimate 3-D,
4-D and 5-D SAR imaging [11][12].

The downside of advanced repeat-pass InSAR techniques
[13][14][15][16][17][18][19][20], like PSI and TomoSAR, are
their high demand on the data, i.e., typically a stack of 20–100
images over the illuminated area are required. For instance, it
is demonstrated in [10] that even using most efficient algo-
rithms, like non-linear least squares (NLS) and SL1MMER, a
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minimum number of 11 acquisitions are required to achieve
a reasonable reconstruction in the interesting parameter range
of spaceborne SAR. ”Reasonable” in this context means that
given an average signal-to-noise ratio (SNR) of 6 dB, the
detection rate of double scatterers with an elevation distance
of one Rayleigh resolution unit reaches at least 90%. However,
if we can extract certain detailed features or patterns of high-
rise buildings in SAR images, the required number of images
can be significantly reduced by incorporating such features as
prior for a joint estimation.

For this purpose, we propose a novel workflow marrying the
globally available (2-D building footprint) GIS data and the
joint sparsity concept for TomoSAR inversion, both of which
have not yet been addressed in the community so far. Within
this workflow, our main contributions are as follows:
• A robust procedure is proposed to use online freely

assessable 2-D building footprints for extracting detailed
high-rise building features including building masks, ori-
entation, and iso-height lines (defined in [21]) in SAR
image stacks (see Section III);

• The M-SL1MMER algorithm is proposed to promote
joint sparsity for tomographic inversion of the identified
iso-height pixel groups (see Section IV);

• The performance of M-SL1MMER is systematically eval-
uated using simulated data in terms of elevation estima-
tion accuracy, detection rate and false alarm rate of the
overlaid scatterers’ separation, and its super-resolution ca-
pability. Compared to the single-snapshot sparsity model,
as used in SL1MMER, the superior performance of the
proposed joint sparsity approach is evident for all above
mentioned quantitative metrics (see Section V);

• The first tomographic reconstruction using bistatic
TanDEM-X data stacks is presented. The superior perfor-
mance of M-SL1MMER is demonstrated in practice, e.g.,
highly accurate tomographic reconstruction is achieved
using six interferograms only (see Section Section VI).

II. DATA SET

We work with 21 bistatic interferograms acquired by the
German SAR satellites TerraSAR-X and TanDEM-X, with
cross-track baselines ranging between approximately ±200
[m]. The single-pass characteristic renders atmospherical ef-
fects very small and deformation negligible. For this reason
these datasets are ideal to test our proposed methodology.
An optical image of the test area is shown in Figure 1(a)
while the corresponding SAR mean intensity image is shown
in Figure 1(b).
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(a) (b)

Fig. 1. Test Area: (a) Optical image of the test area c©Google; (b) Corresponding SAR intensity map (rg and az refer to the range and azimuth coordinates
respectively).

III. PRIOR KNOWLEDGE RETRIEVAL

In order to retrieve prior information pertaining to building
regions, the 2-D building footprints are downloaded from
OpenStreetMap (OSM). Based on the concept of crowd sourc-
ing that involve crowd or community to effectively and effi-
ciently fulfill a task at hand, OSM with around 2 million regis-
tered users (as of today and also rapidly growing) is considered
to be the most successful Volunteered Geographic Information
(VGI) project [22][23]. The OSM database contains multitude
of building footprints represented as polygons with ordered
list of nodes/vertices (i.e., pairs of UTM or latitude/longitude
coordinates according to WGS 84 coordinate system) and is
updated every day. The data are free to download and comes
under the open license Open Data Commons Database License
(ODbL). Since it is a VGI project, the data quality may vary
from region to region. To this end, the first investigations
regarding OSM data quality were carried out for roads [24]
followed by assessment of other attributes present in the
database e.g., lines [25], polygonal objects [26] etc. Recently,
the building footprints have also been evaluated for their
completeness [27] and correctness [23]. The analysis of OSM
data with surveying datasets reveals fairly precise positioning
accuracies varying within 4 meters [23][24]. The completeness
percentage is already very high for many cities in Europe and
US and is consistently increasing with time. Available 2-D
footprints of the buildings in the city of Las Vegas are shown in
Figure 2 to give the reader an insight of the existing database.
The high availability of such type of data triggers us to change
our perspective of thinking, namely, instead of using Earth
observation (EO) satellite data to build-up sources of geo-
information for open users, we can explore the knowledge
provided by social media to support information retrieval
from EO data. In this regard, one mission of this work is to
demonstrate this concept in tomographic SAR reconstruction.

Fig. 2. GIS data (2-D building footprints) of Las Vegas from OSM.

A. Automatic extraction of building mask in SAR image

The key idea is to make use of the aforementioned online
freely assessable 2-D building footprints to extract detailed
high rise building features including building masks, orienta-
tions, and the iso-height lines in SAR image data stacks. The
extracted information can be further incorporated as a prior
knowledge into the estimation for a more accurate tomographic
SAR inversion. For this purpose, in this section we propose a
sophisticated approach that is tolerable to moderate errors in
the input GIS data for automatic extraction of aforementioned
high rise building features in the SAR image data stacks:

• First the available building footprints from Open-
StreetMap in world (latitude/longitude) coordinates are
transformed/geo-coded into SAR (azimuth/range) imag-
ing coordinate system. Figure 3(a) shows the resulting
projected reference polygons overlaid onto the buildings
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of interest in the corresponding SAR image shown in
Figure 1;

• Secondly, due to the side looking geometry, SAR illu-
minates only one side of the building. Therefore, the
complete building footprint of individual buildings is
further segmented into two parts by means of a simple
2-D visibility test: 1) the part illuminated by the sensor
which will be further used for iso-height pixel extraction
(as depicted by red polylines in Figure 3(a)); 2) the part
in the shadow area not visible to the sensor which will not
used in further processing (as depicted by green polylines
in Figure 3(a));

• Finally, errors in the identified red polylines, caused by
inaccuracies of the input GIS data in both orientation and
translation, are compensated and the mask of individual
buildings is further generated by iteratively shifting the
corrected polylines towards the sensor.

In this regard, the approach depicted in Algorithm 1 is
adopted. After transforming the available building footprints
from world coordinates to SAR imaging coordinate system,
we identify the side of the building footprint facing the SAR
sensor as follows. If we assume that vi=1,...,n denote the
indices of ordered 2-D footprint vertices of one particular
building. Then any vertex vk(k ∈ n) belongs to the side
facing the sensor if and only if its projection onto the line
at zeroth range axis (i.e., line defined as rg = 0 with zero
azimuth slope) does not self-intersect the reference polygon.
The range of total number of vertices belonging to the side
visible to the sensor in any footprint is m where 1 < m ≤ n.
The inequality that m > 1 depicts that, if not occluded, at least
one side or two vertices of the building are always visible to
the side looking SAR sensor.

Once the vertices facing to the sensor are identified, the step
3 in Algorithm 1 compensates for any positioning inaccuracy
in the OSM footprint of the building in the area of interest.
Possible error in OSM footprint is compensated by adopting
the following sequence of steps:

1) Shift/translate the identified polyline in 2-D sliding win-
dow fashion within the intervals: range shift [−10 10]
and azimuth shift [−5 5];

2) Within each shift, rotate the polyline between interval
[−7.5 7.5] degrees and compute median of intensities
along the rotated polyline (similar to steps 6-7 in Algo-
rithm 1);

3) The polyline is rotated and shifted with the rotation
angle and the azimuth-range shifts which give the maxi-
mum of computed median intensities (from the previous
step);

4) Finally, the rotation causes the change in the azimuthal
length of the polyline which needs to be adjusted (see
Figure 4(a)). This is accomplished by first slightly
extending the polyline and later adjusting the lengths
of the outer (first and the last) edges of the polyline by
analysing their (interpolated) intensities (same as step 2
except that only the first and last edge of the polyline is
used). Figure 4(b) graphically illustrates the adjustment
procedure.

Algorithm 1 Procedure to automatically generate mask (or
ROI) of an individual building
Require: 2-D polygonal footprint vertices vi=1,...,n in SAR

coordinates of one particular building & SAR image of
the scene.

1: Initialize: MaxRgShift := 595 and d := 1
2: Identify the polyline comprising of m out of n vertices

belonging to the building side facing the sensor
3: Apply orientation correction and range-azimuth shift com-

pensation to the identified polyline in order to cope for
any positioning inaccuracy in the OSM footprint of the
building

4: while (1) do
5: Shift/translate (in range direction) the polyline after

orientation correction and azimuth-range compensation
towards the sensor by distance d

6: Compute the intensity values along the shifted polyline.
This is accomplished by selecting equally spaced points
along the shifted polyline, and then using nearest neigh-
bor interpolation to find the intensity value for each
point

7: Take the median of computed intensity values along the
shifted polyline and store the result in a column matrix
C(d, 1)

8: if d == MaxRgShift then
9: break

10: else
11: d := d+ 1
12: end if
13: end while
14: Take approximate derivative of C (i.e., calculate differ-

ences between adjacent elements of C), and store the
result in matrix D

15: Compute arg max
RgShift

(DRgShift) where RgShift

(= 1, . . . , d − 1) denotes the maximum change point in
D

16: Use RgShift and m vertices of the identified (compen-
sated) polyline facing the sensor to extract polyROI of the
particular building

In our experiment, the shifting intervals used in compen-
sation are based on already mentioned 4m inaccuracy of
OSM data i.e., considering 4m inaccuracy, approx. range and
azimuth resolution of 0.588m and 1.1m requires range and
azimuth shifts of atmost (4/0.588 ≈) 6.8 pixels and (4/1.1 ≈)
3.6 pixels.

After compensating any orientation and/or shifting inac-
curacies, steps 4 to 13 in Algorithm 1 iteratively shifts the
compensated polyline towards the sensor (in range direction
only). Since the tallest building in the city of Las Vegas,
the Stratosphere Tower, is around 350 m, MaxRgShift in
Algorithm 1 is set to 595 i.e., maximum building size along
elevation appearing in the SAR image of Las Vegas city,
computed as 350/0.588(≈ 595 pixels) where 0.588m is the
approx. range resolution. Thus the polyline is shifted till
MaxRgShift and the column vector C stores the median



1932-4553 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSTSP.2015.2469646, IEEE Journal of Selected Topics in Signal Processing

4 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

(a) (b)

Fig. 3. Building mask extraction: (a) Reference polygons (shown in red and green polylines) of two buildings in the area of interest overlaid onto the SAR
intensity map after geocoding. Side of the buildings facing the sensor are shown in red while the other side not visible to the sensor in green; (b) After
rotation and range-azimuth shift compensation, the red polylines in (a) are shifted towards the sensor. The yellow dotted lines indicate the maximum range
shift of MaxRgShift (= 595m) where as the red dotted lines indicate the RgShift obtained by the proposed procedure in Algorithm 1.

of computed intensity values along each range shift. Steps 14
and 15 in Algorithm 1 then computes the maximum change
point RgShift in the approximate derivative of C. RgShift is
then used in step 16 to determine polyROI which describes the
polygon surrounding the overlaid pixels of the same building
in the SAR image. To elaborate how polyROI is computed,
consider a building having three adjacently connected vertices
v1−v2−v3 of the polyline facing the sensor where − denotes
the adjacency (i.e., v2 is adjacently connected to v1 and v3,
and so on). Assuming that the polyline has been compensated
for rotation and range-azimuth shifts, the polyROI is then
simply formed as v1 − v2 − v3 − v′3 − v′2 − v′1 − v1 where
v′j(az, rg) = vj(az, rg − RgShift) with j = 1, 2, 3 (see
Figure 3(b)). Finally, polyROI is used to generate the building
mask of an individual building.

B. Pixel grouping

Based on the extracted masks of individual buildings, pixels
sharing similar heights are then grouped together. This proce-
dure is done in three steps:

1) Iso-height lines will be reproduced by translating the
adjusted polyline towards both ends of the building mask
with sub-pixel increments;

2) The distance between each pixel and its adjacent iso-
height lines will be calculated;

3) Each pixel will be assigned to the closest iso-height line.

The distance between a pixel and an iso-height line is
defined as the minimum absolute amount of translation (in
pixels) towards or away from sensor. Figure 5 illustrates one
exemplary iso-height line in the cropped intensity image, as
well as the final results of pixel grouping with each group of
pixels plotted with a random color. Note that the color-coding
already gives a rough idea about monotonic height change of
the investigated façades.

IV. JOINT SPARSITY IN TOMOSAR
In this section, we first revisit a data model commonly used

in TomoSAR, as well as the SL1MMER algorithm. Following
this, we extend the SL1MMER algorithm for the multiple-
snapshot case. The extended version exploits joint sparsity and
is named as M-SL1MMER.

A. TomoSAR system model
For a single SAR image, information along the third dimen-

sion, the so-called elevation axis s, which is perpendicular to
the azimuth-range (x-r) plane, is integrated (see Figure 6).
I.e., echoes from, e.g., tree crown, building roof, or double-
bounce effects on a balcony sharing the same distance to
the sensor, are mapped onto one single pixel. To reconstruct
reflectivity along s and to further separate those different
contributions, TomoSAR utilizes scenes acquired from slightly
different viewing angles to synthesize an elevation aperture ∆b
(cf. aperture along x created by steering the radar beam) for
full 3-D SAR imaging [28]. A well-established model, which
can be found, e.g., in [29], approximates each pixel value gn
as follows:

gn =

∫

∆s

γ(s) exp(−j2πξns) ds, (1)

which is essentially the Fourier transform of the reflectivity
function γ(s) sampled at the spatial (elevation) frequency ξn =
−2bn/(λr), ∆s is the elevation extent and λ is wavelength.
Note that a possible motion term has been neglected here
without loss of generality. For differential SAR tomography
that takes into account the motion component, the readers are
recommended to consult [17][30][31].

Discretizing the continuous function in Eq. (1) along eleva-
tion s into L elevation positions sl ∀ l ∈ {1, . . . , L}, replacing
integral by sum and taking into account measurement noise
yield the following discrete system model:

g = Rγ + ε, (2)
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(a) (b)

Fig. 4. Graphical illustration of adjusting polyline length: (a) Black and gray polygons indicate polygons before and after rotation (around centroid depicted
as black star) respectively with circles representing the corresponding vertices. The dotted polylines represent building side not visible to the sensor. It is
shown that after rotation the azimuthal length is changed; (b) The length of the outer (first and last edge depicted in dark gray) edges of the polyline facing
the sensor is slightly extended by distance e (= 5m in this work). Intensities (interpolated) over these extended edges are analysed and first and last extended
points (i.e., v′p and v′q) are respectively replaced by the points on the edges vpv′p and vqv′q where the approximate derivative (or change in intensities) is
maximum.

(a) (b)

Fig. 5. Illustration of pixel grouping with (a) exemplary iso-height lines, and (b) grouped iso-height pixels color-coded with group indices.

where g ∈ CN×1 is the measurement vector with gn ∀n ∈
{1, . . . , N}, R ∈ CN×1 is an irregularly sampled Fourier
transform matrix with Rnl = exp(−j2πξnsl), γ ∈ CL×1 is
the discretized reflectivity vector γl = γ(sl)∀ l ∈ {1, . . . , L},
and ε ∈ CN×1 is additive noise which can be modeled as
a zero-mean circular Gaussian random process. Typically we
have N � L, which renders Eq. (2) underdetermined.

Similar to the resolution in azimuth, the Rayleigh resolution
ρs is inversely proportional to the aperture size [2]

ρs =
λr

2∆b
. (3)

For high resolution spotlight data of TerraSAR-X/TanDEM-
X, ρs is much worse than azimuth and range resolution
(approx. 1.10 and 0.588 m, respectively) due to tight orbit
control and amounts to about 24.9 m for our test data set.

B. The SL1MMER algorithm

To solve Eq. (2), an algorithm called SL1MMER, which
stands for Scale-down by L1 norm Minimization, Model
selection, and Estimation Reconstruction, has been proposed to
achieve promising super-resolution power while guaranteeing
the efficiency[8][10]. SL1MMER has been originally designed
for TomoSAR in urban areas, under the assumption that there
are only a few dominant scatterers (phase centers) along
elevation axis within each azimuth-range pixel [2]. I.e., γ has
merely K non-zero entries where typically K ≤ 4. As its
name suggests, this algorithm consists of the following three
main steps.

1) Scale-down by L1 norm minimization: To exploit the
sparse prior on γ, we solve the following L1-regularized least
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Fig. 6. TomoSAR imaging geometry with an artistic view of TerraSAR-
X/TanDEM-X c©DLR. The satellite flies into the plane and looks to its right.

squares problem

γ̂ = arg min
γ

{
1

2
‖g −Rγ‖22 + λK ‖γ‖1

}
, (4)

where λK is a hyperparameter balancing model error and
the sparsity of γ. Eq. 4 is known to deliver robust elevation
estimates ŝl of dominant scatterers. Therefore, by identifying
the most significant entries in γ̂ and choosing certain columns
of R accordingly, the dimension of the original problem
in Eq. (2) can be downscaled by a large factor. However,
solving 4 is prone to amplitude bias due to the L1 norm
relaxation. Moreover, outliers might appear when the required
mathematical conditions of R are not fully fulfilled as most
of the engineering problems do [32]. These make the next two
steps necessary.

2) Model selection: The initial estimate γ̂ from Eq. (4) may
contain artifacts, which falsifies its sparsity level. In order to
detect and remove them, the goodness of fit of a model should
be penalized by its complexity, so that overfitting of data can
be avoided. Model selection can be regarded as the following
optimization problem

K̂ = arg min
K

{
−2 ln p

(
g | θ̂(K),K

)
+ 2C(K)

}
, (5)

where p
(
g | θ̂(K),K

)
is the likelihood function of g given

the estimates of unknown θ(K) and K, C(K) is the penalty
term for model complexity. Various alternatives of C(K) have
been devised for different needs, e.g., Bayesian information
criterion, Akaike information criterion, minimum description
length, to name a few [33]. By choosing one specific criterion
suitable for the given datasets, Eq. (5) is then solved as combi-
natorial problem over a pre-defined range of K. Likewise, the
most likely positions ŝ of non-zero elements in γ̂ will hereby
be estimated, which further shrinks R. This leaves only one
last step to correct amplitude bias.

3) Parameter estimation: At this stage, we have a much
slimmer sensing matrix R(̂s) ∈ CN×K̂ . This renders Eq. (2)
to

g = R(̂s)γ (̂s) + e, (6)

where γ (̂s) ∈ CK̂×1, and e ∈ CN×1 is the sum of measure-
ment noise and the error introduced by model selection. Since
Eq. (6) is now overdetermined, it can be solved with ordinary
least squares (OLS)

γ̂ = R+(̂s) g, (7)

where (·)+ denotes pseudo inverse.
Within the framework of SL1MMER, the merits from both

sparse regression and OLS have been joined as a whole,
namely, robust identification of scatterers’ elevation positions,
as well as accurate amplitude estimation. Other advantages of
SL1MMER over conventional parametric and non-parametric
methods have been discussed in [8] and its theoretical limits in
terms of estimation accuracy, super-resolution power and the
required minimum number of acquisitions for a reasonable
reconstruction have been investigated in [10].

C. The M-SL1MMER algorithm

We extend the SL1MMER method to M-SL1MMER, i.e.,
the multiple-snapshot case. Assume that by applying the
method described in Section III, we have already detected
M pixels along an iso-height line. We further assume that
within each pixel, there is a dominant scatterer located on the
considered building façade. Hence, those M scatterers should
reside at the same height or elevation position. For each pixel,
we have, similar to Eq. (2),

gm = Rmγm + εm, (8)

∀m ∈ {1, . . . ,M}. If the iso-height line stretches principally
in azimuth direction, we expect ξn to vary little among all
concerned pixels. For this reason, we define R := R1

∼= R2
∼=

. . . ∼= RM . By using the identical degree of discretization
along elevation axis, we can rewrite Eq. (8) as

G = RΓ + E, (9)

where G = [g1, . . . ,gM ] is the observation matrix with M
measurements vectors, Γ = [γ1, . . . ,γM ] is the unknown
discretized reflectivity matrix, and E accounts for both additive
noise and possible model error. Eq. (9) is again an under-
determined system with N � L which has infinitely many
solutions. Since we assume that all the measurement vectors
have one contribution from the same height on a façade, the
non-zero entry positions in the columns of Γ are aligned in a
row-wise fashion. This property of signals is also referred to
as joint sparsity. Indeed, there can be more non-zero rows
related to ground, lower infrastructures, building roof, etc.
Still, the number of non-zeros rows of Γ is very limited. To
solve Eq. (9) while incorporating this prior, Γ̂ can be estimated
by solving L1,2-regularized least squares problem [34],

Γ̂ = arg min
Γ

{
1

2
‖G−RΓ‖2F + λK ‖Γ‖1,2

}
, (10)

where F denotes the Frobenius norm, and the mixed norm
‖Γ‖1,2 =

∑L
l=1

(
‖γl‖2

)
, where γl is the lth, promotes joint

sparsity. It has been shown in [35] that the probability of
successful recovery increases with the number of snapshots.
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Note that different polarimetric channels or neighboring pixels
were used in a similar way in [36][37].

After the downscaling step based on the estimate in Eq. (10),
model selection and parameter estimation will be performed
individually for each pixel as the SL1MMER algorithm does.

D. Cramér Rao Lower Bounds (CRLB) for elevation estimates

The Cramér Rao lower bound (CRLB) for elevation esti-
mates ŝ for the single-scatterer case has been derived in [38]
as

σŝ,0 =
λr

4π
√
N ·
√

2SNR · σb
, (11)

where σb is the standard deviation of bn. Given an SNR of 3
dB, the CRLB is approx. 1.11 m with all 21 acquisitions.

In urban environment, due to the side-looking geometry of
SAR, multiple scatterers are often mapped into one azimuth-
range pixel. The fact that closely spaced scatterers will inter-
fere with each other renders a degraded estimation accuracy of
individual scatterers [12]. In the interest of super-resolution,
the CRLB for elevation estimate of the qth (q = 1, 2) scatterer
has been derived in [10] as

σsq = c0 · σsq,0, (12)

where

c0 ≈ max

{√
2.57 (α−1.5 − 0.11)

2
+ 0.62, 1

}
(13)

is the interference factor depending on α which is the distance
between two scatterers normalized w.r.t. the Rayleigh resolu-
tion unit [10]. c0 is equal to one (no interference) when two
scatterers are far apart, i.e., α� 1, greater than one since the
two scatterer are closely spaced (α < 1.5) and increasing with
decreasing α.

V. PERFORMANCE EVALUATION USING SIMULATED DATA

In general, as an extension of SL1MMER, M-SL1MMER
has the same basic principle. However, instead of exploiting
sparsity, M-SL1MMER uses multiple snapshots of iso-height
pixels identified in SAR images (with the help of support-
ing OSM data). Since M-SL1MMER makes use of multiple
snapshots and thus more observations than SL1MMER, we
naturally expect it to achieve better performance.

In this section, the performance of the proposed M-
SL1MMER algorithm, including elevation estimation accu-
racy, detection rate and false alarm rate in separating overlaid
scatterers, and its super-resolution capability, is evaluated
using simulated data.

We simulate façade-ground interaction of two scatterers
spaced by decreasing elevation distances, which is a well-
known TomoSAR benchmark test [2][8]. Note that we only
work in the super-resolution regime, i.e., the elevation distance
between façade and ground is no larger than the Rayleigh
resolution ρs. Four scenarios are taken into account with the
number of measurements N ∈ {6, 11} and SNR ∈ {3, 10} in
[dB] because:
• As mentioned above, eleven is the minimum required

number of measurements for a reasonable reconstruction

Fig. 7. Normalized true elevation α of simulated façade and ground (solid
lines), as well as the CRLB of normalized elevation estimates, both w.r.t.
normalized true elevation distance δα. Dashed lines: CRLB with N baselines;
dotted lines: CRLB with NM baselines.

in the interesting SNR range of spaceborne SAR if
SL1MMER is used [10];

• In case of two scatterers, six is the number of unknowns,
namely the amplitude, phase and elevation positon of
each scatterer;

• SNR of 3 dB and 10 dB are usually considered as the
lower and upper bound of persistent scatterers, respec-
tively [39].

For each façade-ground interaction with a given elevation
distance, we independently generate M = 48 snapshots, which
is an average case for the test buildings in Figure 5. The true
elevation of simulated façade and ground is shown as two solid
line segments w.r.t. their normalized elevation distance δα in
Figure 7, respectively. In addition, we show for the case N =
11 the evolution of CRLB, which increases with decreasing
elevation distance of two interfering scatterers in the super-
resolution regime, as implied by 12 and 13. The dashed lines
mark true elevation ±1 × CRLB with N interferograms, de-
noted as CRLB(N), while we plot true elevation ±1×CRLB
with NM interferograms, denoted as CRLB(NM), as dotted
lines. We will show that M-SL1MMER using N interfero-
grams and M snapshots approaches the latter bound, which
can be achieved by SL1MMER given NM interferograms.

We solve the L1- and L1,2-regularized least squares prob-
lems independently, and then follow the SL1MMER proce-
dures to perform model selection and parameter estimation.
λK is chosen adaptively, which depends on N , M and the
noise level of observations [34]. The results are shown in
Figure 8 and Figure 9 with elevation estimates α̂ of façade and
ground plotted w.r.t. their normalized true elevation difference
δα. Each dot depicts mean value of all estimates, with error
bar indicating its standard deviation. In each subplot, the
two solid line segments mark the true elevation for façade
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(a) (b) (c) (d)

Fig. 8. Reconstructed elevation of simulated façade and ground with M = 48, N = 11; (a) SNR = 10 dB with M-SL1MMER (b) SNR = 10 dB with
SL1MMER, (c) SNR = 3 dB with M-SL1MMER and (d) SNR = 3 dB with SL1MMER respectively. Each dot has the sample mean of all estimates as its
y value and the corresponding standard deviation as error bar.

(a) (b) (c) (d)

Fig. 9. Reconstructed elevation of simulated façade and ground with M = 48, N = 6, (a) SNR = 10 dB with M-SL1MMER, (b) SNR = 10 dB with
SL1MMER, (c) SNR = 3 dB with M-SL1MMER, and (d) SNR = 3 dB with SL1MMER, respectively. Each dot has the sample mean of all estimates as its
y value and the corresponding standard deviation as error bar.

and ground, respectively, while the dashed and dotted lines
denote true elevation ±1 × CRLB, which is the same as
in Figure 7. Missing points suggest that detection rate is
below 25%. Note that we call detection when not only two
scatterers are separated, but also their estimates should be
bounded by ±3 × CRLB(N) of their true elevation. For
N = 11, the elevation estimates with both methods are still
somewhat comparable, despite the fact that joint sparsity
model leads to much smaller variance and slightly better super-
resolution capability. SL1MMER performs in particular worse
with smaller N and lower SNR. On the contrary, even for
the case N = 6, reasonable elevation has been reconstructed
with M-SL1MMER. In particular, M-SL1MMER with N
interferograms and M snapshots is equivalent to SL1MMER
with NM measurements in relation to the standard deviation
of elevation estimates, although the mean values slowly drift
away from the true elevation with increasing interference
between two scatterers.

In Figure 10, the detection rate PD is provided for the

case N = 11 w.r.t. normalized true elevation distance δα. The
red and blue colors denote M-SL1MMER and SL1MMER,
respectively. The solid and dashed lines illustrate the results
with SNR = 10 dB and 3 dB, respectively. If we define
elevation resolution to be the minimum distance between
façade and ground required to achieve at least 50% detection
rate, then the resolution of M-SL1MMER is approximately one
tenth of Rayleigh resolution better than the one of SL1MMER,
given an SNR of 10dB before. We also analyzed PD w.r.t.
SNR for two typical elevation distances α = 1 or 0.4, i.e.,
when two scatterers are spaced by one or two fifths of
Rayleigh resolution. The results are shown in Figure 11(a).
Moreover, false alarm rate PF is illustrated in Figure 11(b) as
a function of SNR for M-SL1MMER (red) and SL1MMER
(blue), respectively.In this context, we simulate only one scat-
ter and define false alarm for the case when two scatterers are
detected. These analyses confirm the fact that M-SL1MMER
outperforms SL1MMER in all respects significantly. For the
case N = 6, the gain of using multiple snapshots regarding
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Fig. 10. Detection rate PD w.r.t. normalized true elevation distance δα
between façade and ground, for the case N = 11. Red: SNR = 10 dB with
M-SL1MMER, orange: SNR = 10 dB with SL1MMER, violet: SNR = 3 dB
with M-SL1MMER, and SNR = 3 dB with SL1MMER, respectively.

PD and PF is comparable to the case of N = 11.

VI. PRACTICAL DEMONSTRATION USING TANDEM-X
DATA

In this section, M-SL1MMER is applied to the TanDEM-
X data mentioned in Section II. The results are compared to
those obtained using SL1MMER. Figure 12–14 show the re-
constructed and color-coded elevation of the two test buildings
in Figure 5, overlaid with intensity. From Figure 12 to 14, 21,
11 and 6 interferograms are used, respectively. The separated
superimposed scatterers, from left to right estimated using M-
SL1MMER and SL1MMER and from top to down of first and
second layer, are illustrated respectively.

On top of the test buildings, reflections from building roof
and façade are overlaid. In these practical examples, domi-
nating scattering from roof (dark red) can be seen in the first
layer, whereas the corresponding parts of façade (light red) are
visible in the second layer. We do not expect many reflections
from lower structures though, due to the large slope of the
shell-like roof in front of the test buildings. It is evident that
M-SL1MMER (left) using joint sparsity model significantly
outperforms SL1MMER (right). In particular, when N = 6,
i.e., using extremely small number of scenes, the second layer
estimated using SL1MMER (lower right plot of Figure 14) is
deteriorated by false alarms while M-SL1MMER still achieves
reasonable results (lower left plot of Figure 14).

In particular, due to the significantly improved estimation
accuracy, M-SL1MMER reconstructs some interesting details
which was not accessible so far. For a practical demonstration,
we calculated elevation distance between first and second layer
for the double-scatterer case, which is shown in Figure 15.
The red parallelogram marks the area where facade and roof
are overlaid, cf. Figure 16. At the far-range side of this area,

the elevation distance amounts to approximately 22.60 [m]
(cyan). Accordingly, the width of the roof can be calculated
to be 18.27 [m], which agrees, up to the decimeter level, with
what we estimated from the 3-D building model of Google
Earth. Besides, the yellow parallelogram circumfuses the area
where two neighboring windows in the diagonal direction,
exemplified as S1 and S2 in Figure 16, are superimposed. Thus
their elevation distance is more or less constant. This can be
easily verified by comparing the SAR amplitude image to the
optical one in Figure 16. As can be counted from Figure 16,
the number of windows per floor adds up to 20, whereas
there are only 10 extraordinarily bright pixels in the SAR
amplitude image. In this area, the results with M-SL1MMER
are much more homogeneous, which indicates a more robust
reconstruction.

VII. CONCLUDING REMARKS

In this paper, a novel framework is proposed which can
achieve precise TomoSAR reconstruction while significantly
reducing the required number of images. The core idea is the
exploitation of joint sparsity in iso-height SAR pixel groups
that can be identified with the support of online available
GIS data—2D building footprints. Experiments using bistatic
TanDEM-X data stacks demonstrate the great potential of the
proposed approach.

A few additional remarks might be helpful for further use
of our results:
• The approach we proposed for grouping iso-height pixels

can also be used for all other estimators that support
multiple-snapshot (also referred to as multi-look) estima-
tion, like NLS, MUSIC, etc.;

• Our experiments are performed over Las Vegas where
moderate quality GIS data are available. For test areas
with relatively poor 2-D footprint data, the benefit of the
proposed approach that refine the iso-height models of
each building using, e.g., SAR intensity map, could be
even more evident;

• In the cities where the GIS data are not available, one
can use the 2-D footprint reconstructed using a prelimi-
narily retrieved TomoSAR point cloud [40] to alternately
improve the TomoSAR estimation procedure;

• The proposed M-SL1MMER is a general spectral esti-
mator, even though we applied it here for tomographic
reconstruction;

• In our work, the mix L1,2 norm is introduced to promote
the joint sparsity prior. Depending on the applications,
this constraint can be relaxed by replacing L1,2 with Lp,2

norm with p > 1;
In the future, we will extend the proposed M-SL1MMER

for higher dimensional spectral estimation problems, e.g., dif-
ferential tomographic SAR reconstruction using mixed single-
and multi-pass monostatic data stacks.
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(a) (b)

Fig. 11. Detection rate PD and false alarm rate PF w.r.t. SNR, for the case N = 11: (a) PD for α = 1.0 with M-SL1MMER (red), α = 1.0 with SL1MMER
(orange), α = 0.4 with M-SL1MMER (violet), and α = 0.4 with SL1MMER (blue), respectively. (b) PF with M-SL1MMER (red), and SL1MMER (orange),
respectively.

Fig. 12. Reconstructed and color-coded elevation of the two test buildings
using 21 interferograms, visualized in two layers, overlaid with intensity.
From top to down: first and second layer, respectively; from left to right:
M-SL1MMER and SL1MMER, respectively.
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The localization and reconstruction of individual trees aswell as the extraction of their geometrical parameters is
an important field of research in both forestry and remote sensing. While the current state-of-the-art mostly
focuses on the exploitation of optical imagery and airborne LiDAR data, modern SAR sensors have not yet met
the interest of the research community in that regard. This paper presents a prototypical processing chain for
the reconstruction of individual deciduous trees: First, single-pass multi-baseline InSAR data acquired from
multiple aspect angles are used for the generation of a layover- and shadow-free 3D point cloud by tomographic
SAR processing. The resulting point cloud is then segmented by unsupervised mean shift clustering, before
ellipsoid models are fitted to the points of each cluster. From these 3D ellipsoids the relevant geometrical tree
parameters are extracted. Evaluation with respect to a manually derived reference dataset prove that almost
74% of all trees are successfully segmented and reconstructed, thus providing a promising perspective for further
research toward individual tree recognition from SAR data.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The analysis of individual trees in remote sensing data has been a
widely studied field of research for quite some years now. This is mainly
caused by the fact that it is an important topic for a variety of application
fields, amongwhich themost relevant certainly is the task of sustainable
forest management: In many countries, single-tree related parameters
are used as a basis for forest inventory, e.g. tree species, mean tree height
or timber volume. Still, most of these variables are collectedmanually by
measuring sample plots in staff-, time-, and thus cost-intensive field
surveys (Shiver & Borders, 1996), although remote sensing-based
methods have been investigated for some decades now (Fagan &
DeFries, 2009). Another exemplary application is the extraction of
individual urban trees in order to generate city tree cadastres or to
provide additional objects for geoinformation systems (GIS) and 3D
city models (Straub & Heipke, 2001).

Since the mid-1990s an abundance of literature has been published
on the detection and localization of individual trees (Chang, Eo, Kim, &
Kim, 2013; Chen, Baldocchi, Gong, & Kelly, 2006; Leckie et al., 2005;
Pollock, 1996; Wulder, Niemann, & Goodenough, 2000) as well as the
delineation of their tree crowns (Culvenor, 2002; Erikson, 2003; Jing,
Hu, Li, & Noland, 2012; Koch, Heyder, & Weinacker, 2006; Pouliot,
King, Bell, & Pitt, 2002) both from aerial images and LiDAR-derived
canopy height models. In contrast to that, the analysis of forested

areas on the single-tree level by means of synthetic aperture radar
(SAR) remote sensing has not yet met the interest of the community,
although modern sensors have reached sub-meter resolutions down
to the decimeter-range in recent years, enabling a detailed mapping of
natural and urban scenes (Brenner, 2012; Mittermayer, Wollstadt,
Prats-Iraola, & Scheiber, 2014). Until now, most of the research
exploiting SAR for forest mapping purposes has focused on large-scale
forest classification (Perko, Raggam, Deutscher, Gutjahr, & Schardt,
2011) or canopy height model (CHM) reconstruction using X-band
sensors (Izzawati, Wallington, &Woodhouse, 2006). In addition, another
research direction based on longer-wavelength, canopy-penetrating SAR
(e.g. L-band or P-band) is aiming at volume and biomass retrieval using
allometric equations (Le Toan, Beaudoin, Riom, & Guyon, 1992),
regression models (Englhart, Keuck, & Siegert, 2011), polarimetric
SAR interferometry (Neumann, Ferro-Famil, & Reigber, 2010) or SAR
tomography (TomoSAR) (Frey, Morsdorf, & Meier, 2008). Only recently,
the very first investigations toward single-tree recognition in airborne
SAR data have been introduced (Schmitt, Brück, Schönberger, & Stilla,
2013).

Considering the advantages of radar remote sensing, i.e. the active
sensor principle, the independence of sunlight and weather conditions,
and the potential to map wide swaths in short time, this article intends
to further ignite the discussion about the SAR-based mapping of forests
on the individual-tree level by proposing amethod for the reconstruction
of trees from tomographic single-pass SAR data. Exploiting an airborne
millimeterwave system equipped with four simultaneously receiving,
spatially separated antennas (and thus, multiple independent baselines),
first a three-dimensional point cloud is generated by TomoSAR process-
ing. In analogy to the approaches based on 3D LiDAR point clouds, in the
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second step a clustering algorithm is applied to the TomoSAR point
cloud in order to segment the individual trees in 3D space. While the
studies of Morsdorf et al. (2004) or Gupta, Weinacker, and Koch
(2010) are based on k-means clustering, which needs the number of
expected clusters and an initialization of their centers as a priori
knowledge, in the presented work the unsupervised mean-shift
clustering algorithm is used, which enables a fully automatic procedure
(Comaniciu &Meer, 2002) and has already successfully been applied to
the reconstruction of building facades (Shahzad & Zhu, 2015) and roofs
(Shahzad & Zhu, 2014) in TomoSAR point clouds. Finally, rotational
ellipsoids are used to model the segmented clusters in order to approx-
imate the tree crown shapes. From these ellipsoids the tree positions,
heights and crown diameters can be extracted. This tree reconstruction
strategy is evaluated using airborne millimeterwave InSAR data
acquired from multiple aspect angles. The purpose of this study is to
demonstrate the potential of millimeterwave SAR remote sensing for
the reconstruction of individual trees including a first estimate of the
achievable accuracy level.

2. Generation of point clouds from airborne tomographic SAR data

2.1. The principle of SAR tomography

The first step of the methodology presented in this paper is the
generation of a point cloud of the forested area under investigation
from single-pass multi-baseline InSAR data. In single-pass InSAR
configurations, two (or more) coherent SAR images are acquired
simultaneously by sensors separated by a certain spatial baseline.
This simultaneity is necessary because of temporal decorrelation effects,
which especially occur over vegetated areas due to wind or growth
effects or other, potentially more rapid changes of the scene (Ahmed,
Siqueira, Hensley, Chapman, & Bergen, 2011). Since only recently satellite
missions offering spaceborne single-pass InSAR data have been realized
(Moreira et al., 2004), airborne multi-antenna systems have been the
only possibility to acquire such data so far.

As discussed by Hoekman and Varekamp (2001) already, unfor-
tunately the side-looking SAR imaging geometry leads to severe
height, displacement and occlusion errors for individual trees due
to the well-known layover and shadowing effects (cf. Fig. 1). While the
shadowed scene parts can be filled with information by multi-aspect
data fusion, the layover-affected resolution cells need to be treated by
tomographic SAR inversion: Basically, SAR tomography aims at creating

a second synthetic aperture along elevation direction. However, in
opposition to the high number of densely and regularly spaced azimuth
samples, for the elevation aperture comparably few observations per
resolution cell are available in the form of a stack ofN coregistered single
look complex (SLC) SAR images acquired from slightly different antenna
positions (Gini & Lombardini, 2005; Reigber & Moreira, 2000; Zhu &
Bamler, 2010). The complex measurement stored in a pixel of the nth
acquisition with a baseline Bn between the respective slave antenna n
and the master antenna is the integral of the reflected signal weighted
by a linear phase term:

zn ¼
Zsmax

smin

x sð Þexp j � ϕn sð Þð Þds; ð1Þ

where x(s) is the reflectivity function along elevation, [smin; smax] defines
the relevant part of the elevationprofile, and j is the imaginaryunit.ϕ(s) is
the phase related to system parameters and two-way distance between
the scattering center at elevation s and the receiving antenna.

Using SAR sensors operatingwith rather longwavelengths (e.g. L- or
P-band), this enables a fully three-dimensional, canopy-penetrating
imaging of vegetation volumes. If, however, shorter wavelengths
are used, where canopy penetration is less likely, Eq. (1) can also
be approximated by discretizing and sparsifying the reflectivity profile.
The measurement vector is then formulated as

z ¼
XK
k¼1

xka sð Þ þ n ¼ A sð Þx þ n: ð2Þ

In this notation, x=[x1,…, xK]T is the source signal vector containing
the complex reflectivities of the K discrete scattering contributions, and
n represents complex circularly symmetric Gaussian noise. A(s) =
[a(s1), …, a(sK)] is the N × K system matrix of K concatenated steering
vectors each of which corresponding to one backscattering source. The
task of SAR tomography basically is to invert this imaging model in
order to reconstruct either a continuous reflectivity profile in the case
of volumetric scenes or a discrete reflectivity profile in case of scenes
containing mostly discrete scatterers. Since the tree reconstruction
approach presented in this paper is based on point cloud segmentation,
here a discrete TomoSAR model is chosen aiming at sparse reflectivity
profiles. The utilized approach was first presented in Schmitt & Stilla
(2014b) and tested for urban scenes, but has been shown to work well
for decimeter-resolution millimeterwave SAR data of forested areas as
well (Schmitt & Stilla, 2014a). Its core algorithm is quickly recapitulated
in the following section. Due to the low level of canopy penetration
provided bymillimeterwave SAR, of course the situation would be a little
different for very dense forests: In this case it would be unlikely that tree
crowns overlap with each other or with any ground contribution in the
SAR viewing direction, unless they differ strongly in height, or, e.g., if
forest clearing appears. For dense forests it could therefore be advisable
to only use standard SAR interferometry for height reconstruction
followed by the multi-aspect data fusion step described in Section 2.4
of this paper in order to avoid unnecessary computational costs and
methodical complexity.

2.2. Layover separation and height reconstruction

A flowchart of the employed TomoSAR algorithm is shown in Fig. 2,
whereas for the scopeof this paper only thepart enclosed by the rectangle
is described. For the remaining pre- and postprocessing steps, the reader
is referred to Schmitt and Stilla (2014b). Therefore, here the starting
situation is the sample coherence matrix for every pixel in the stack of

coregistered SAR images, as well as an estimate K̂ of the model
order K, i.e. of the expected number of scattering contributions in
the sparse reflectivity profile. The sample covariance matrix is the

Fig. 1. Side-looking SAR viewing geometry for multi-baseline system illuminating a forest
scene. While several scattering components are overlayed in one resolution cell, some
trees are fully or partially shadowed by larger trees in front of them.
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result of normalizing the observed sample covariance matrix and is
defined as

Γ̂ ¼

1 γ̂12j jexp jϕ̂12

� �
… γ̂1Nj jexp jϕ̂1N

� �
γ̂21j jexp jϕ̂21

� �
1 … γ̂2Nj jexp jϕ̂2N

� �
⋮ ⋮ ⋱ ⋮

γ̂N1j jexp jϕ̂N1

� �
γ̂N2j jexp jϕ̂N2

� �
… 1

2
666664

3
777775; ð3Þ

which means it contains all the interferometric, i.e. phase-related
information of the respective pixel: γ̂j ji j is the magnitude of coherence

between acquisitions i and j, while ϕ̂i j is the corresponding interferomet-
ric phase. Based on the assumption of circularly-symmetric zero-mean
Gaussian SAR pixels, this sample coherence matrix can be used as input
to the likelihood function

L Γ̂; ~z sð Þ
� �

¼ 1

πNdet Γ̂
� � exp −~zH sð ÞΓ̂−1

~z sð Þ
� �

; ð4Þ

where ~z sð Þ resembles the steering vector described in Section 2.1, but

contains a hypothetical mixture of K̂ scattering contributions:

~z sð Þ ¼ ~z1 sð Þ;…;~zN sð Þ½ �T ; ð5Þ

where

~zn sð Þ ¼
XK̂
k¼1

exp j~φn skð Þð Þ ð6Þ

and ~φn skð Þ is the absolute signal phase caused by scatterer k at elevation sk
minus any “flat earth” phase component potentially measured for the
reference surface at elevation s=0.Using the elevation-to-height conver-
sion h= s ⋅ sin(θ), where θ is the off-nadir angle of the radar line-of-sight,
Eq. (4) can be maximized with respect to the unknown scatterer heights

ĥ ¼ ĥ1;…; ĥK̂

h i
. Since the denominator of Eq. (4) stays constant during

the optimization, the simplified estimator finally becomes:

ĥ ¼ arg max
h∈ hmin ;hmax½ �

exp −~z hð ÞH Γ̂−1
~z hð Þ

� �
: ð7Þ

This maximization can be solved by a simple K̂-dimensional grid

search: For this, the objective function in Eq. (7) is calculated for K̂
hypothetical scattering heights taken from a the pre-defined discretized

search interval [hmin; hmax]. Then the maximum is found in the K̂-

dimensional search space aggregated from the K̂ search intervals.

2.3. Geocoding

The result of the TomoSAR inversion described in Section 2.2 is a
three-dimensional point cloud in radar geometry, i.e. the data are still

Fig. 2. Flowchart of the TomoSAR algorithm used in the presented work.
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stored in the coordinate system of the SAR imagery, although now for

every resolution cell K̂ scattering heights are available. This point
cloud must then be transformed from the so-called slant range plane
to a geodetic reference frame. For this task, the non-linear equation
system

R− p−sm tð Þk k ¼ 0 ð8Þ

vM p−sM tð Þð Þ ¼ 0 ð9Þ

p2X þ p2Y
aþ hð Þ2

þ p2z
bþ hð Þ2

−1 ¼ 0 ð10Þ

has to be solved for the unknown 3D-coordinates p = [pX, pY, pZ]T in
world geometry (Schwäbisch, 1998). In this context, R is the slant
range distance between p and the master antenna position sM(t) =
[sMX(t), sMY(t), sMZ(t)]T at time t. It has to be mentioned that the sensor
velocity vM = [vMX, vMY, vMZ]T in Eq. (9) is modeled as constant and
referring to a linearized flight trajectory, while the data are assumed
to be zero-Doppler processed. Although this is a simplification not
valid for arbitrarymissiondesigns, the extension tonon-linear trajectories
or non-zero-Doppler processed data is straight-forward. a and b in
Eq. (10) denote the semi-major and semi-minor axes of the reference
Earth ellipsoid, respectively, while h is the previously reconstructed
height of the corresponding scatterer above the ellipsoid's surface.

2.4. Fusion of point clouds from multiple aspects

As described in Section 2.1, the side-looking SAR imaging geometry
causes not only layover, but also shadowing effects that lead to scene
parts that don't contain any exploitable measurements behind elevated
objects. For the analysis of urban areas, multi-aspect data fusion has
been demonstrated as a viable solution for this problem (e.g. Schmitt,
2015). Therefore, the same approach is used for fusing point clouds of
multiple viewing directions in the context of this work. If several
independent point clouds of the forested scene under investigation
can be generated by the procedure described in the last sections, they
may need to either be registered via their corresponding flight
navigation data a priori (Schmitt, Maksymiuk, Magnard, & Stilla,
2013) or using point cloud-based registration methods a posteriori
(e.g. Makadia, A. P., & Daniilidis, 2006; or Gernhardt, Cong, Eineder,
Hinz, & Bamler, 2012). If the data then are aligned in the same
common reference system this way, an additional fusion step was
proved to be beneficial: By combining the individual point clouds
intelligently, not only the accuracy of the 3D data is improved, but
also the number of points in the point cloud can be significantly
reduced without any information loss. This greatly benefits any further
processing due to reduction of computational costs and memory
requirements (Schmitt, 2015). This fusion step can be implemented
by a voxel-space-based strategy: In order to impose a voxel-space
onto the registered, unstructured 3D point clouds, a regular point
cloud containing the centers of the desired voxel space has to be created.
This is done via a k-d tree of dimension k=3. A k-d tree is amultidimen-
sional binary search tree, which serves as a space-partitioning data
structure for storage of information to be retrieved by associative searches
in a k -dimensional space (Bentley, 1975): If data are represented as a k-d
tree, then each data point is stored as a node in the tree. Every non-leaf
node implicitly generates a splitting hyperplane that divides the space
into two parts (i.e. half-spaces). Points to the left of this hyperplane are
then represented by the left subtree of that node, and points on the
right are represented by the right subtree. Since every node in the tree
is associated with one of the k dimensions the hyperplane is chosen
perpendicular to that dimension's axis. Each split can be denoted using
the dimension number and split value, whereas the splits are arranged
in order to balance the tree, i.e. its maximum depth is kept as small as
possible. If points are queried, the k-d tree search first locates the

respective point in its appropriate node and then searches nearby
leaves in the tree until it can guarantee that the correct point has been
found. Due to their efficient storage structure, k-d trees are particularly
useful for multi-dimensional search operations such as range searches
or nearest neighbor searches. Besides, an abundance of ready-to-use
implementations in different programming languages is available
online, many of them open source.

After creating the voxel-space defining point cloud this way, the
irregularly sampled 3D TomoSAR point clouds are examined with the
established k-d tree by applying a range search based on the Chebychev
distance. This distance metric is defined for two points p= [p1, …, pn]T

and q = [q1, …, qn]T as

lim
k→∞

Xn
i¼1

jpi−qijk
 !1

k

¼ max
i∈ 1;…;nf g

pi−qij jð Þ; ð11Þ

which means it defines the distance between p and q as the greatest of
their differences along any coordinate dimension. For three-dimensional
vectors and a Chebyshev distance of d

2, this corresponds to a cube with
an edge length of d. Therefore, the distance query results in a list of voxels
and the corresponding points from the unstructured point clouds
contained in that voxel (see Fig. 3). The final point cloud fusion is then
realized by returning the mean value of the coordinates of all points
contained in each voxel. The core parameter of this procedure is the
edge length d of the voxel cubes, which basically defines both the
resolution of the fused point cloud as well as the degree of data and
noise reduction. As has been shown in Schmitt (2015), while the
combination of multi-aspect data already helps to fill previously
shadowed scene parts, this fusion strategy additionally provides a
measurable improvement of the 3D accuracy of the reconstructed 3D
points, as well as a significant reduction of the number of points.

3. Segmentation and reconstruction of individual trees

3.1. Point cloud segmentation

The 3D points resulting from the TomoSAR processing explained in
Section 2 are clustered by the mean shift algorithm as described by

Fig. 3. Discretization of the scene by imposing a voxel space. The red cubes indicate voxels
containing at least one 3D TomoSAR point. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Comaniciu and Meer (2002) in order to extract individual trees. Since
the tree crowns generally show a comparably high point density
when projected into the xy-plane, the points are clustered in 2D space,
i.e. the feature space consists of xy-coordinates only. The kernel density
estimate at any point pi of the n points is given by the expression

Dpi
¼ c

nb3
Xn
j¼1

g
pi−p j

b

����
����
2

 !
; ð12Þ

where b is the bandwidth parameter and g(x) is a non-negative,
non-increasing, piecewise continuous function with definite integral,

i.e. ∫
0

∞
g(x)d x b ∞. Based on the concept of kernels discussed by Cheng

(1995) as well as Comaniciu and Meer (2002), the function g(x) is

defined as the profile of the radially symmetric kernel G(x) satisfying

G xð Þ ¼ cg xk k2
� �

; ð13Þ

where c is a normalization constant ensuring that G(x) integrates to 1.

Different kernels, such as the Epanechnikov kernel and the Gaussian

kernel can be used to define the density Dpi
. Mean shift clustering

essentially seeks modes of the kernel density estimates and works

iteratively by shifting every data point toward the weighted mean

of points within its neighborhood (defined to be cylindrical in the

presented case). The shift vector m(pi) always points toward the

direction of the maximum increase in the densityDpi
and is computed as

m pið Þ ¼

Xn

j¼1
p jexp −

pi−p j

�� ��2
b2

 !

Xn

j¼1
exp −

pi−p j

�� ��2
b2

 ! −pi: ð14Þ

The iteration process continues until there is no or only little shift in
m(pi) anymore, i.e. the length of the shift vectorm(pi) is close to 0. Due

to the gradient ascent nature, the mean shift algorithm returns clusters
using the concept attraction of basin, i.e. those points whose trajectories
lead to the same mode form the basin of attraction for that mode and
are clustered into one group. The clustering procedure is repeated
until all points are assigned to their respective modes.

Clustering via mean shift is a non-parametric procedure in the sense
that it does not require the number of clusters a priori, nor does it need
any pre-definedmodel for the shape of the resulting clusters. Neverthe-
less, it still does require a bandwidth parameter (corresponding to the
radius of the kernel), which affects the number of clusters, i.e. the
number of modes, that are returned by the algorithm. However, unlike
other clustering algorithms such as k-means, fuzzy c-means, expectation
maximization etc., the bandwidth parameter has some physical meaning
and can be set based on prior knowledge such as the expected average
diameter of the tree crowns in the scene.

3.2. Ellipsoid modeling

Once the clustering is done, the individual tree clusters are modeled
in three dimensions using generalized tri-axial ellipsoids that are
aligned to the z-axis. For this purpose, parameters of an arbitrarily
oriented minimum volume enclosing ellipse (MVEE) are estimated by
first projecting points belonging to individual tree clusters onto the

Table 1
MEMPHIS sensor parameters used during the 2013 measurement campaign.

Sensor MEMPHIS

Carrier frequency 35 GHz (Ka-band)
Wavelength 8.5 mm
Range bandwidth 900 MHz
Nominal depression angle 35°
Resolution

Azimuth 8.2 cm
Range 16.7 cm

Pixel spacing
Azimuth 5.3 cm
Range 16.7 cm

Available baselines 5.5 cm, 11 cm, 16.5 cm, 22 cm, 27.5 cm
Approximate ambiguity heights 180 m, 90 m, 60 m, 45 m, 36 m

Fig. 4. Illustrationof the ellipsoidmodeling: (a)MVEE computedusing3Dpoints projectedonto the xy-plane; s1 and s2 are the computed semi-axes of theMVEE. (b) TheMVEEof (a) is extruded
in z-direction both upwards and downwards forming a 3D ellipsoidwith a third semi-axis denoted as s3. x′, y′ and z′ in (b) represent axes of the local coordinate system aligned to the ellipsoid
semi-axes. The red points in both (a) and (b) represent the ellipsoid centersck f

. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this

article.)
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xy-plane followed by extruding the 2D xy-ellipse in z-direction to form a
3D ellipsoid. Themotivation for expanding the ellipsoid along the z-axis
is based on geometrical considerations: It is assumed that correct tree
models may have an arbitrary orientation in the xy-plane, but remain
upright or vertical with respect to the ground (cf. Fig. 4). This is based
on the assumption that tree trunks are vertical to the ground surface.

3.2.1. Computation of the MVEE
If K={ki|i=1,…,m} denotesm clusters returned by themean shift

algorithm, and Q = {qu|u = 1, …, r} denotes the set of r points qu

belonging to a particular cluster kf (f ∈ i), then any arbitrarily oriented
ellipse ε can be a candidate for the MVEE(Q), if and only if all points in
Q lie on or inside its boundary, i.e. if the following condition is satisfied
(Kumar & Yildirim, 2005):

qu−ck f

� �T
A qu−ck f

� �
≤1 for u ¼ 1;…;m: ð15Þ

In this equation, A is a d × d positive definite matrix, where d=2 in
the presented case, and ck f

is the center of the ellipse surrounding the
clustered points Q. The semi-axes si of such an ellipse are given as

si ¼ λ−1
2

i vi; ð16Þ

where vi denote the eigenvectors ofA, which correspond to the directions
of the semi-axes. λi denotes the eigenvalues of A, which are related to the
length of these axes: The length of each axis is equal to 1ffiffiffiffi

λi

p . The area of an

ellipse or volume of an ellipsoid, respectively, is thus directly proportional

to det 1ffiffiffi
A

p
� �

.

Therefore, in order to obtain an MVEE(Q), det 1ffiffiffi
A

p
� �

has to be

minimized such that Eq. (15) is satisfied in conjunction with A being
positive definite. In order to solve this minimization, Khachyan's first
order algorithm is used, which formulates the problem as optimization
using Lagrangian duality (Khachiyan, 1996).

The computed MVEE(Q) is extended to the third dimension by
extruding it in z-axis in order to form a 3D ellipsoid. The z-coordinate
of the ellipsoid center and its semi-axis length s3 in z-direction are
estimated by

ck f z
¼ median hmin;k f ;i

� �
þ s3; ð17Þ

where

s3 ¼ 1
2

median hmax;k f ;i

� �
−median hmin;k f ;i

� �� �
: ð18Þ

In this context, hmin;k f ;i and hmax;k f ;i (i = 1, …, N) are the N lowest
heights and theN largest heights of all points in the cluster kf, respectively.

Once this modeling is complete, the tree parameters tree height,
crown diameter, and trunk location can directly be extracted from the
ellipsoid model: The tree height is the maximum height of the ellipsoid
in z-direction, the tree crown radii are calculated by taking the geometric
mean of the x-and y-semi-axes of the ellipsoid, and the xy-coordinates of
the ellipsoid center point provide the location of the tree trunk. Of course,
this is a simplifyingmodel only valid for deciduous trees of approximately
ellipsoidal shape, but an extension toward a more general tree model
as, e.g., described by Sheng, Gong, and Biging (2001) basically seems
possible.

4. Utilized test data

4.1. Airborne millimeterwave sensor

The sensor used for the experimental considerations in this paper
is the German MEMPHIS system created by the Fraunhofer Institute
for High Frequency Physics and Radar Techniques (Schimpf, Essen,
Boehmsdorff, & Brehm, 2002). Of its differentmodes and configurations,
in this work only the basic airborne side-looking configuration with a
carrier frequency of 35 GHz (Ka-band) and a bandwidth of 900 MHz is
employed. This leads to a slant range resolution of 16.7 cm, whereas
the azimuth resolution is 8.2 cm. Since MEMPHIS is equipped with
four receiving antennas, it is able to provide multi-baseline InSAR
datasets from just a single pass over the scene of interest. Additional
parameters of the sensor can be found in Table 1.

For the task of tree reconstruction, this system configuration provides
two key advantages: First, it is a single-pass InSAR system, which means
the four receiving antennas acquire four images of the same scene
simultaneously, thus leading to highly coherent data even for vegetation
areas. Second, the system uses radar signals of the millimeterwave
domain, which can be expected to providemuch less canopy penetration
than longer wavelengths (cf. Fig. 5). Therefore, it is possible to use the
TomoSAR model based on sparse reflectivity profiles as described in
Section 2.

Fig. 6. Test scene “Nordfriedhof” in Munich, Germany: (a) Optical image, (b) MEMPHIS intensity image, range direction from left to right.

Fig. 5. Expected canopy penetration of common SAR wavelengths.

180 M. Schmitt et al. / Remote Sensing of Environment 165 (2015) 175–185



4.2. Test scene

The available experimental MEMPHIS data were acquired during a
campaign over Munich, Germany, in June 2013. The test scene contains
the “Alter Nordfriedhof”, an abandoned cemetery, which is used as a
public park today, with the target coordinates 48°09′13′′N, 11°34′13′′
E. As can be seen in Fig. 6(a), this approximately 5 ha large areal is
characterized by a light planting of deciduous trees (mainly beeches),
resembling a grove or little wood. A corresponding SAR intensity
image is shown in Fig. 6(b). For the investigations in this paper, multi-
baseline InSAR data acquired from two opposing aspects (flight heading
angles 20° and 200°, respectively) were processed to a fused 3D point
cloud as described in Section 2. The spacing of the height search interval
of the TomoSAR optimization step aswell as the edge length of the voxel
space used for point cloud fusionwere both chosen as 0.5m.A summary
of the data parameters can be found in Table 2. In order to emphasize the
scope of this study, which is to prove the capability of millimeterwave

SAR for individual tree parameter reconstruction rather than tree
detection, non-tree points are manually removed from the dataset
before any further processing.

5. Experiments and reconstruction results

The results of the experimental assessment of the proposed tree
reconstruction procedure are summarized in the following sections.
First the results of the segmentation are shown in order to provide an
evaluation of the effectiveness of unsupervised mean shift clustering
for 3D TomoSAR point clouds. In the second part, the results of the
ellipsoid fitting process including the derivation of tree parameters are
compiled.

For evaluation purposes, the results have been compared to a
manually generated reference dataset that is displayed in Fig. 7. This
reference dataset is based on the combination of a helicopter-borne
LiDAR point cloud containing approximately 0.16 million points (i.e.
3 points/m2) and a co-registered orthophoto. From these data, the
reference trees were extracted by a human operator as follows:

• Identification of individual trees by simultaneous visual comparison of
LiDAR point cloud and orthophoto

Fig. 8.The scene shown indifferent processing stages: (a) The 3Dpoint cloud as derived by
multi-aspect TomoSAR data fusion; (b) the clustered point cloud; (c) the reconstructed
tree models.

Table 3
Statistics of the reference trees.

Number of trees 570

Tree crown radii
Min/max 0.39 m/10.09 m
Mean/median 3.48 m/3.25 m

Tree heights
Min/max 2.81 m/26.97 m
Mean/median 15.37 m/15.43 m

Fig. 7. Reference data of the test scene, created from a LiDAR point cloud and a co-registered
orthophoto. (a) Texturized LiDAR point cloud. (b) Every circle indicates one manually
extracted reference tree.

Table 2
Parameters of the MEMPHIS test data used in the experiments.

Aspect 1
Flying altitude 760 m
Heading angle 20°
Number of reconstructed points 1.78 million

Aspect 2
Flying altitude 760 m
Heading angle 200°
Number of reconstructed points 1.89 million
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• Manual measurement of approximate tree crown diameters
• Determination of highest LiDAR point of each tree crown
• Parameterization of each tree by a circle, plus LiDAR-derived tree
height

• Modeling of ellipsoids to each tree using the method described in
Section 3.2, using only the LiDAR points located within these prelimi-
nary tree circles

This way, a reliable set of reference tree models was created,
consisting of reference tree locations, heights, and tree crown radii.
The statistics of this reference dataset are compiled in Table 3.

5.1. Point cloud generation results

The original TomoSAR point cloud as derived from the test dataset
by the method described in Section 2 is displayed in Fig. 8(a). After
application of the voxel-space-based fusion procedure (applied with a
voxel edge length of 0.5 m), the number of points in the fused point
cloud is approximately 1.66 million (corresponding to a point density
of about 22 points/m2). That means that due to redundant observations

and a slight reduction of the spatial resolution, a significant reduction of
the data volume (considering more than 3.5 million points existing in
the original point clouds) has been achieved. Compared to the LiDAR
point cloud mentioned above, the 3D accuracy of the TomoSAR point
cloud lies in the sub-meter domain, depending on the evaluation
strategy. It has to be mentioned, however, that any evaluation of a
TomoSAR point cloud with respect to LiDAR reference data only gives
a rough estimate for the 3D accuracy level due to strongly different
point densities. Apart from this fact, the accuracy can always further
be improved either from the data side, i.e. by providing additional
aspects, or from the processing side, i.e. by using a finer spacing during
TomoSAR height reconstruction and voxel-space-based fusion.

5.2. Optimal bandwidth parameter selection

Since the only parameter of the mean shift clustering is the
bandwidth that is used for generating the clustering kernel, the
first set of experiments aimed at determining the optimal bandwidth
parameter. Fig. 9 shows a summary of the segmentation results for
all 570 reference trees by distinguishing four potential cases: Of
course, the desired result of the clustering would be that each reference
tree corresponds to one particular cluster, which is referred to as one-to-
one detection of this tree. Together with all reference trees, which are
oversegmented, i.e. more than one cluster is assigned to them, this
adds to the overall rate of detected trees. Then there is the class ofmissed
trees, i.e. reference trees that were not detected as no cluster center falls
within their 2D crown outline. Finally, some clusters cannot be assigned
to any reference tree at all, which is often referred to as false positives. In
the context of this study, it is important to mention that all remaining
evaluations are based on one-to-one detections only, whereas
oversegmented detections are counted as non-detected trees in
order to provide a fair assessment. Analyzing Fig. 9, it becomes
obvious that the optimal bandwidth parameter is about 3.2 m, giving
an optimal detection rate of 73.5% of the trees, plus oversegmented
detections at the rate of 10.2%. Thus, in total 83.7% of all reference
trees are discovered, only 16.3% are missed, and 1.9% are false positives.

Fig. 11. Ellipsoidmodels projected onto the 2D reference dataset for one-to-one comparison.
The green circles indicate the reference trees, the circles filled in red correspond to the
reconstructed trees. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 4
Statistics of the tree segmentation for the optimal band-
width parameter.

Measure Value

Producer accuracy 73.5%
User accuracy 74.0%
Commission error 1.9%
Omission error 16.3%

Fig. 10. Correlation of bandwidth parameter and distribution of reference tree radii.

Fig. 9. Determination of the optimal bandwidth parameter by analysis of tree segmentation
accuracy for all 570 reference trees. Green indicates perfect matches of one cluster to one
reference tree, red missed reference trees, and purple tree clusters that cannot be assigned
to any reference tree. In addition, cyan summarizes the overall detected trees, including
oversegmented trees. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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In this context, it is interesting to note that themedian tree radius of the
reference trees is 3.25m. The correlation between tree radius distribution
and bandwidth parameter is further illustrated in Fig. 10. It can nicely be
seen that the optimal bandwidth parameter for the mean shift clustering
approximately corresponds to the peak of the tree radius histogram. That
means that only light prior knowledge about the expected tree radii of the
scene of interest is sufficient to tune the clustering process, while keeping
it otherwise fully unsupervised.

5.3. Segmentation results

The result of themean shift clustering of the point cloudwith optimal
bandwidth parameter of 3.2 m is displayed in Fig. 8(b). The points have
been segmented into 566 clusters, which already resemble individual
trees by visual impression. A statistical evaluation of the segmentation
based on the one-to-one detections only is summarized in Table 4.

5.4. Ellipsoid modeling results

The final result of the ellipsoid modeling process can be assessed in
Fig. 8(c), including tree crowns of different shape and hypothetical
stem positions. A projection of the ellipsoids onto the 2D reference
data is shown in Fig. 11, while the reference tree positions and the
estimated tree locations corresponding to the ellipsoid centers projected
into the xy-plane are opposed in Fig. 12. A summary of the tree parameter
reconstruction errors is given in Table 5. In addition, the error distri-
butions for tree heights and crown radii are shown in Fig. 13. Again it
has to be noted that for this quantitative analysis only the optimally
segmented trees are used, whereas the oversegmented ones are
discarded.

6. Discussion

The experiments presented in this paper show a variety of things:

• It is possible to generate 3D point clouds of forested areas from
airborne multi-aspect TomoSAR data if single-pass interferometers

and millimeterwaves are employed.
• Depending on the sampling sizes of the SAR pixels, the TomoSAR
height reconstruction step and the voxel-space-based fusion, 3D
accuracies of the TomoSAR points reach the decimeter domain at
very high density.

• Unsupervised clustering of such a point cloud is possible bymean shift
clustering if an expectation value of the typical tree crown radii in the
investigated scene is available.

• Ellipsoids can be used to model the shapes of deciduous trees, thus
providing approximate estimates for core tree parameters such as
location, height and diameter.

Although the results of this study are already very promising,
there is still room for further improvement. First of all, it is obvious
that the clustering is highly dependent onproper tuning of the bandwidth
parameter. Although this can be handled by only light prior knowledge,
an adaptive setting of the bandwidth parameter could possibly enhance
the segmentation accuracy, in particular concerning oversegmented
trees. Secondly, the ellipsoid model of course is only a coarse approxima-
tion of real-life tree crowns, and only useful for deciduous trees at that.
Here, e.g. a generalized ellipsoid model also accounting for varying
crown curvature could help to create a more universal approach and
more detailed results. In addition, a more robust estimation of the tree

Fig. 13. Distributions of (a) the tree height errors and (b) the crown radii errors. It can be
seen that both tree heights and crown radii tend to be slightly overestimated.

Table 5
Error statistics of the reconstructed tree parameters.

Errors Mean Standard deviation

Height 0.93 m 1.92 m
Radius 0.28 m 0.96 m
x-Localization 0.50 m 1.05 m
y-Localization −0.29 m 1.20 m

Fig. 12. Localization errors of reconstructed trees and reference trees.
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heights and the crown radii is expected to reduce the over-estimation
bias in these parameters significantly.

Concerning the number of missed trees, there is unfortunately
always the sensor-inherent limitation: If a small tree is surrounded by
large trees on all sides, not even multi-aspect SAR data will help to
avoid missing that tree due to the side-looking nature of the SAR
imaging process. In such a case, only approaches based on volume
tomography might provide a viable solution.

Last but not least, it has to be mentioned that the reference data also
provides some potential for erroneous modeling, since no analysis of
any kind of data can replace in-situ observations. For example, the
smallest tree in the reference data is only about 80 cm wide, i.e. in a
real ground truth dataset, it would possibly not have been included at
all.

7. Summary and conclusion

In this article, an unsupervised approach for segmentation and
reconstruction of individual trees from multi-aspect millimeterwave
TomoSAR data has been presented. Starting from at least two stacks of
single-passmulti-baseline SAR images,first 3Dpoint clouds are generated
by TomoSAR height reconstruction. After geocoding, the point clouds
derived from multiple aspects are fused to form a single homogeneous
3D point cloud mostly free from any layover or shadow parts. This point
cloud is then segmented by unsupervised mean shift clustering, and for
every cluster a three-dimensional ellipsoid is modeled to the contained
points. Since these ellipsoids are supposed to serve as satisfying approxi-
mations of deciduous tree crowns, three important tree parameters are
extracted from each ellipsoid: tree location, tree height and tree crown
diameter. Experiments based on an airborne millimeterwave dataset of
two opposing aspects acquired over a cemetery in the city of Munich,
Germany, have shown that about 74% of all trees are properly segmented
and reconstructed by the presented technology. Although the side-
looking SAR imaging geometry serves as a system-inherent limitation
and leads to the fact that particularly small trees fully surrounded by
large trees will always bemissed, it is expected that an adaptive selection
of the kernel bandwidth duringmean shift clusteringwill further enhance
the results. This extension of the mean shift algorithm will be part of
future research activities.

In any case, the results presented in this paper are expected to
further stimulate the research interest in exploiting SAR imagery for
forest remote sensing on the individual tree level.
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1 Two dimensional resolution element of a conventional SAR image. ρr
depends on the duration of transmitted pulse and is determined from chirp
bandwidth fW while ρa is approximately half of the physical antenna length
L. x represents flight direction and is normally called azimuth or along track,
r refers to the LOS direction of the sensor normally called range or slant
range, θ denotes the elevation (or incidence) angle which actually defines
the LOS direction, y refers to the ground range and z denotes the height
direction that is perpendicular to the x-y plane. All scatterers lying within
the yellow curve are mapped into the same azimuth-range pixel. 6

2 Geometrical distortions appearing in SAR images. Three objects are shown
in gray shades. θ refers to the incidence (or look) angle of the sensor while
β represents the angle of the object surface with respect to the horizontal
ground terrain (i.e., slope of the surface). The flight direction or azimuth axis
x is perpendicular to the y-z plane i.e., coming out of the page in the depicted
case. 7

3 Schematic illustration of the TomoSAR imaging geometry. The elevation
aperture is built by exploiting multi-pass/multi-baselines (six in the
depicted case) from slightly different viewing angles. It is shown that the
backscattering contribution from the edge of two buildings and small
portion of ground are mapped into a single azimuth-range SAR image
pixel. TomoSAR aims to estimate the depicted reflectivity profile γ̂ (s) for
discretized (pink region) elevation extent ∆s. Typically, the discretization
factor is much higher i.e., N �Q which renders (9) to be undetermined (i.e.,
more equations than unknowns). s denote the elevation axis which is actually
a curve but is usually approximated as a straight line due to large range
distances. 11

4 Geometric illustration of multi- (double-) bounce and shadow effect. The
light gray line depicts the double-bounce phenomenon that is frequently
observed in urban regions particularly between vertical structures and
ground. These lines give strong hint towards building detection. Shadow
region (depicted as black) indicates the part not visible to the sensor. By
knowing key parameters of the imaging radar e.g., θ, ρr , ρa etc., individual
building height based on dimensions of shadow and/or layover could be
retrieved. 12
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5 Density based clustering algorithm (Ester et al., 1996). Points a and b are
directly density connected to each other whereas points a and c are density
connected to each other since there is a chain of points between them such
that they all are directly density connected to each other. Two parameters
that control the clustering process include the neighborhood parameter
ε, i.e., the radius in case of sphere or cylindrical neighborhood, and the
minimum number of points MinPts in the ε-neighborhood for any particular
point. The resulting clusters thus contains points such that all the points in
any particular cluster are density connected to each other but are not density
connected to any other point belonging to another cluster. Moreover, each
point inside any particular cluster belongs to one of the three categories:
1) A point is labeled core point if it contains, within its ε-neighborhood,
MinPts number of points; 2) A point is considered border point if it is within
ε-neighborhood of any core point but itself is not a core point and does not
have MinPts neighbors; 3) A point neither core point nor border point is
termed as an outliers i.e., any point which do not have density (number of
points) greater than MinPts within its ε-neighborhood and also is not the
neighbor of any other point. 23

6 Typical workflow related to building footprint reconstruction. The first
column represents the segmentation process that separates the extracted
building points into respective individual buildings (black and gray points
belonging to the two buildings in the depicted case). Coarse shapse of the
building footprints are reconstructed by connecting the boundary points
(second column). Different methods to determine this coarse shape are
presented in Section 3.1.2.1. The initial shapes are smoothed using methods
presented in Section 3.1.2.2 (third column). Finally constraints are added
to yield geometrically correct and visually appealing building shapes via
methods provided in Section 3.1.2.3 (fourth column). Each module is
elaborated in the corresponding subsections. 26

7 Coarse building footprint reconstruction using alpha shapes method with
varying α such that α1 < α2 < α3 < α4 < α5 < α6. It is demonstrated that with
increasing α, the algorithm loses the ability to reconstruct concave building
footprints and eventually with very large value of α or when α ≈ inf returns
a convex hull. 27

8 Example depicting failure of MBR to correctly determine the dominant
direction of the building footprint: (a) 2-D points of buildings (blue color)
are depicted. Convex hull with 14 edges around these points are drawn
as red polygon. Grey rectangle is the minimum area bounded rectangle
computed via rotating callipers method. It can be seen that the dominant
directions estimated via grey MBR do not correctly represent the true
dominant orientation of the building points. The desired MBR that correctly
represent the dominant orientation is shown as black dotted rectangle; (b)
the areas of the MBR by rotating MBR around its center of gravity at angles
equal to every edge of the convex hull. The grey circle shows the minimum
area bounded rectangle corresponding to grey MBR in (a) (Shahzad and Zhu,
2014). 29
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9 Procedure to add rectilinear constraints to any one particular building
polygon: (a) Black dots indicate the extracted building points, cyan polygon
represents the initial coarse outline obtained using alpha shapes algorithm
and gray polygon depicts the refined/smoothed polygon to which rectilinear
constraints are added; (b) Each edge of the refined gray polygon of (a)
is segmented to belong to one of the two estimated dominant directions
indicated by black arrows. The segmentation is based on their angular
deviation (i.e., an edge is associated to that principal direction with whom
the angular difference is less). Segmented edges are shown in red and green
colors. The blue polygon then depicts the reduced refined polygon of (a) by
merging all adjacent edges that belong to the same principal axis. (c) Each
edge of the blue polygon is then rotated/projected around its midpoint onto
its corresponding principal axis; (d) Finally the intersection (vertex) points
among the adjacent edges of the projected blue polygon edges of (c) are
computed for rectilinearization. Note that the depicted polygon contains no
associated façade and therefore belongs to case 3. For case 2 polygons, the
associated façades are first fused to the refined polygon and, if identified as
rectilinear, constraints are added to complete the reconstruction procedure. 30

10 Spaceborne TomoSAR point clouds of high rise area in Las Vegas processed
by DLR’s Tomo-GENESIS system (Zhu, 2011) (Zhu et al., 2013). Height
is color-coded. It can be seen that the side-looking geometry render rich
amount of points/scatterers on building façades. Also due to the coherent
imaging nature of SAR and the repeat-pass data-takes, temporally incoherent
objects such as trees or vegetation cannot be reconstructed, depicted in black. 34

11 Illustration of SD estimation: (a) 3-D view of the local cylindrical
neighborhood around the point of interest; (b) Top view of (a). The
coefficients of the dotted yellow regression line are estimated via M
estimation. Black dotted line shows the shift of yellow line to the point of
interest. Shaded area shows the region of vd within vc. 38

12 Gaussian image of three connected planar surfaces: (a) Arrows indicate
surface normal vectors (nred,ngreen,nblue) to the respective surfaces; (b) All
points belonging to one particular surface are mapped to same identical
point in GI (ideal scenario). 40

13 Illustration of orientation angle for flat and curved vertical footprints (top
view); (a) Arrows indicate pattern of change in orientation (azimuthal) angles
of ten points on each vertical surface; (b) plots their respective orientation
angles. 41

14 Removal of conflicting segments and vertex point computation: (a) shows the
case of five clustered point segments belonging to one particular building.
At the transitional regions, there are conflicting (smaller) clusters, shown in
grey dotted circle, that behave as noisy segments and should be removed
before computing the vertex points; (b) shows the retained segments and
their corresponding vertices after removing conflicting segments. 42
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15 Vertices for refinement. Grey rectangles depicts the 2-D building footprint
from the top: (a) shows the total of 5 vertices out of which 4 are open
endpoint vertices and one is intersection vertex computed from the
intersection of segments 1 and 2; (b) depicts the situation where ignoring
condition C3 would yield false segment addition shown as grey dotted line.
The grey arrows indicate the local orientation angle θ at open vertices vo
and v̂o. Two black dotted lines represent the two correct inserted segments
between vo and v̂o; (c) depicts the recursive extension procedure of the open
vertex vo. vp represent the intermediate extension points where as the v′p
denotes the final point; (d) illustrates the direction of extension of grey open
vertex over the roof region. This can happen if we only consider the hmax and
ignore the local standard deviation of height hσ . 44

16 Dataset: (a) Optical image of the test area in Las Vegas. Copyright Google.
(b) TomoSAR points in UTM coordinates of the corresponding area in Las
Vegas generated from a stack acquired from ascending orbit only. The height
is color-coded. 45

17 SD estimated with radius r = 5m and inliers d = 0.9m. Colorbar indicates
computed SD. 46

18 Automatic selection of TH value. SD histogram for the TomoSAR points
of the corresponding test area depicted in Figure 16. The maximum SD
histogram value used for thresholding is 1.132. Number of bins is set
to bins = min(SD) : (max(SD)−min(SD))/100 : max(SD). It is worth
mentioning here that for a rural or sub-urban area, it is possible that
the maximum of histogram occurs at SD = 0 which would consequently
render all points to be retained. However for urban regions, this usually
never happens due to existence of higher point densities over man-made
structures. 46

19 Extracted façade points from TomoSAR point cloud depicted in Figure 16
overlaid onto the corresponding optical image (©Google). 47

20 Fine clustering results after applying mean shift clustering using Gaussian
kernel with bandwidth b = 0.4 to the coarsely clustered segments in their
normal feature space (in GI domain): (a) TomoSAR points of one particular
density connected cluster (top view). Colorbar indicates height in meters;
(b) Corresponding orientation angle in degrees; (c) Non clustered (top) and
clustered (bottom) points in the Gaussian image of points in (a); (d) Resulting
clustered points in 3-D. 47

21 Reconstructed façades: (a) shows the 2-D view of the façade footprints
overlaid onto the optical image prior to refinement; (b) shows the 2-D view
of the façade footprints overlaid onto the optical image after refining with
parameters settings Th = 5m and Tσ = 2.5m. 48

22 A case depicting wrong reconstruction of a pedestrian bridge: (a) shows the
optical image of the bridge; (b) overlays the reconstructed segment in green
onto the optical image of (a); (c) side view of the bridge (© Google Street
View). 49

23 3-D view of the final façade reconstruction. The axis is in meters range and
has been translated to the origin for better metric clarity by subtracting UTM
easting and northing values by their respective minimum values present in
the reconstructed vertices. 49
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24 Depicting three different cases over simple buildings commonly occurring in
TomoSAR point clouds. Heights of the points are color-coded. Optical images
© Google. 51

25 Graphical illustration of the seed point selection procedure. Top view of 3-D
TomoSAR points of a small region containing one building is depicted. The
height in meters of each TomoSAR point is color-coded. The red line shows
the reconstructed façade segment with black point as its midpoint. The
green and blue points show the selected points in two opposite orthogonal
directions with respect to the reconstructed façade (depicted as gray dotted
lines). rN is cylindrical radius used to determine local neighbors (i.e., points
within shaded circles in respective colors). Local mean height of the blue and
green points are computed, denoted as mb and mg respectively. Seed point sp
is chosen as the maximum height point among the local neighbors of blue
points if mb > mg or among the neighbors of green points if mg > mb where
latter is true in the depicted case. 52

26 Procedure describing the concept of Pt shortest and P +: (a) Refined polygon of
one particular jth building Ṽj having vertices vk=1,...,m with four reconstructed
façades f1, f2, f3 and f4 that are to be incorporated; (b) illustrates the concept
of shortest and longest paths associated for a particular façade f1. v1a and
v1b denotes the closest points on the polygon/graph Ṽj to the two endpoints
of façade f1 respectively; (c) Example illustration of the concept of positive
path P +. P2 shortest is identified as P − as there exist points in K2 that are also
present in P2 shortest. 55

27 Fusion of both type I and II façades. The refined polygon of one particular
jth building Ṽj with two reconstructed façades f1 and f2 with types I and II
respectively is shown; (a) depicts the procedure of computing points v′ta and
v′tb. Note that for type I façade, v′1a and v′1b are computed by projecting v1a
and v1b onto black dotted line which is parallel to the reconstructed façade
f1 and passes through the midpoint of line segment L formed by connecting
points v1a and v1b while for the other façade having type II, v′2a and v′2b
are simply the endpoints of the façade f2. All vertices of Ṽj on P1 shortest and
P2 shortest (i.e., points in P1 shortest and P2 shortest) are replaced by vertices v′1a,
v′1b and v′2a,v′2b respectively; (b) Resulting polygon in black after fusing
façades f1 and f2 with types I and II respectively. 56

28 Datasets: Top view of the three dimensional TomoSAR points in UTM
coordinates of the area of interest in Las Vegas, USA (a) and Berlin (b). Blue
lines depict the reconstructed façade segments (longer than 10 meters). The
height of TomoSAR points is color-coded [unit: m]. 59

29 Building extraction results − Las Vegas: (a) Extracted building points in red
are overlaid onto the optical image (© Google) of the area of interest. Yellow
circles indicate extracted points originating from sources like advertisement
boards, monuments etc. Large black circle encloses two buildings which
remain undetected due to lower relative heights; (b) Finally, reference
footprints (in green) overlaid onto the extracted building points. Red points
are building points while black points are non-building points. 60
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30 Results of building extraction − Berlin: (a) Extracted roof points in red are
overlaid onto the optical image (© Google) of the area of interest; (b) Red
and black points depict building and non-building points, respectively. The
overlaid green polygons are reference buildings downloaded from OSM
(Geofabrik, 2015). Blue polygons are manually extracted buildings not
present in OSM data. Gray polygons are newly constructed buildings that are
not present in our dataset whereas magenta colored polygons are buildings
that do not actually exist but present in OSM data. Both gray and magenta
polygons are not included in the evaluation. 61

31 Common images computed using reference footprint image and final
reconstructed footprints. 62

32 Difference images computed by subtracting the final reconstructed footprint
image from the reference image. Red pixels indicate building regions that
are not reconstructed by the proposed algorithm while blue pixels are over
reconstructed regions i.e., pixels not part of the reference footprint image
but present in the reconstructed image. Note that green pixels indicate no
difference between reconstructed and reference rastered images. 63

33 Final reconstructed 3-D building footprints: Las Vegas (top) and Berlin
(bottom) datasets. 64

34 Test buildings - Bellagio hotel, Las Vegas: (a) Optical image (© Google); (b)
Fused TomoSAR point clouds from both ascending and descending orbits in
UTM coordinates. 66

35 SD estimates of TomoSAR point cloud depicted in Figure 34(b). 66

36 3-D Façade reconstruction results: (a) Extracted façade points; (b) Segmented
façade points; (b) Reconstructed 3-D façade model with extracted façade
points. For (a), (c) and (d), the height of the points is color-coded from blue
(lowest) to red (highest) [unit: m]. 67

37 Reconstructed 4-D building façade model, amplitude of seasonal motion is
color-coded [unit: mm]. 67

38 Reconstructed 3-D SAR image overplotted on the reconstructed façade
model. Note that this is not only a projection of the SAR image onto the
building models. Rather, the lay-overed brightness contributions from façade
and ground have been separated in the tomographic reconstruction step. 68

39 The basic principle for the elevation estimates refinement of the TomoSAR
points by using their more accurate azimuth and range coordinates and the
reconstructed façade surfaces. 69

40 Elevation estimates refinement: (a) TerraSAR-X mean intensity map from
ascending stacks (the red dots are the analyzed points) along with the
projection geometry; Height estimates of the analyzed points before (b) and
after (c) refinement. 70

41 Test Area: (a) Optical image of the test area © Google; (b) Corresponding
SAR intensity map with spatial resolution of 1.1 m × 0.588 m in azimuth (az)
and range (rg) respectively. 71

42 GIS data (2-D building footprints) of Las Vegas from OSM. 71
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43 Building mask extraction: (a) Reference polygons (shown in red and green
polylines) of two buildings in the area of interest overlaid onto the SAR
intensity map after geocoding. Side of the buildings facing the sensor are
shown in red while the other side not visible to the sensor in green; (b) After
rotation and range-azimuth shift compensation, the red polylines in (a) are
shifted towards the sensor. The yellow dotted lines indicate the maximum
range shift of MaxRgShift (= 318m) where as the red dotted lines indicate the
RgShift obtained by taking the maximum of the approximate derivative of C. 72

44 Graphical illustration of adjusting polyline length: (a) Black and gray
polygons indicate polygons before and after rotation (around centroid
depicted as black star) respectively with circles representing corresponding
vertices. The dotted polylines represent building side not visible to the
sensor. It is shown that after orientation the azimuthal length is changed;
(b) Length of the outer (first and last edge depicted in dark gray) edges of
the polyline facing the sensor is slightly extended by distance e (= 5m in this
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