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Abstract: We investigate how the 331 models, based on the gauge group SU(3)C ×
SU(3)L×U(1)X face new data on Bs,d → µ+µ− and Bd → K∗(K)µ+µ− taking into account

present constraints from ∆F = 2 observables, low energy precision measurements, LEP-II

and the LHC data. In these models new sources of flavour and CP violation originate

dominantly through flavour violating interactions of ordinary quarks and leptons with a

new heavy Z ′ gauge boson. The strength of the relevant couplings is governed by four new

parameters in the quark sector and the parameter β which in these models determines the

charges of new heavy fermions and gauge bosons. We study the implications of these models

for β = ±n/
√

3 with n = 1, 2, 3. The case β = −
√

3 leading to Landau singularities for

MZ′ ≈ 4TeV can be ruled out when the present constraints on Z ′ couplings, in particular

from LEP-II, are taken into account. For n = 1, 2 interesting results are found for MZ′ <

4TeV with largest NP effects for β < 0 in Bd → K∗µ+µ− and the ones in Bs,d → µ+µ− for

β > 0. As Re(CNP
9 ) can reach the values−0.8 and−0.4 for n = 2 and n = 1, respectively the

Bd → K∗µ+µ− anomalies can be softened with the size depending on ∆Ms/(∆Ms)SM and

the CP-asymmetry Sψφ. A correlation between Re(CNP
9 ) and B(Bs → µ+µ−), identified for

β < 0, implies for negative Re(CNP
9 ) uniquely suppression of B(Bs → µ+µ−) relative to its

SM value which is favoured by the data. In turn also Sψφ < SSM
ψφ is favoured with Sψφ having

dominantly opposite sign to SSM
ψφ and closer to its central experimental value. Another

triple correlation is the one between Re(CNP
9 ), B(Bs → µ+µ−) and B(Bd → Kµ+µ−). NP

effects in b → sνν̄ transitions, K+ → π+νν̄ and KL → π0νν̄ turn out to be small. We

find that the absence of Bd → K∗µ+µ− anomalies in the future data and confirmation of

the suppression of B(Bs → µ+µ−) relative to its SM value would favour β = 1/
√

3 and

MZ′ ≈ 3TeV . Assuming lepton universality, we find an upper bound |CNP
9 | ≤ 1.1(1.4)

from LEP-II data for all Z ′ models with only left-handed flavour violating couplings to

quarks when NP contributions to ∆Ms at the level of 10%(15%) are allowed.
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1 Introduction

The great expectations to find New Physics (NP) at the LHC did not materialize until

now. In particular the order of magnitude enhancements of the branching ratio for Bs →
µ+µ− decay over its Standard Model (SM) value, possible in supersymmetric models and

models with tree-level heavy neutral scalar and pseudoscalar exchanges, are presently ruled

out. This is also the case of O(1) values of the CP-asymmetry Sψφ which could also be

accommodated in these models. A recent review can be found in [1].

While for the models in question these new flavour data are a big disappointment,

for other models like the ones with constrained minimal flavour violation (CMFV), 331

models [2] and Littlest Higgs Model with T-parity [3] they brought a relief as in these

models NP effects were naturally predicted to be small. On the other hand the most recent

data from LHCb and CMS bring new challenges for the latter models:

• The LHCb and CMS collaborations presented new results on Bs,d → µ+µ− [4–6].

While the branching ratio for Bs → µ+µ− as stated above turns out to be rather

close to the SM prediction, although a bit lower than the latter, the central value

for the one of Bd → µ+µ− is by a factor of 3.5 higher than its SM value. While

this result invites us to speculate about NP behind it, the large experimental error

precludes any clear cut conclusions.

• LHCb collaboration reported new results on angular observables in Bd → K∗µ+µ−

that show departures from SM expectations [7, 8]. Moreover, new data on the ob-

servable FL, consistent with LHCb value in [7] have been presented by CMS [9].

In particular the anomalies in Bd → K∗µ+µ− triggered two sophisticated analy-

ses [10, 11] with the goal to understand the data and to indicate what type of NP could

be responsible for these departures from the SM. Subsequently several other analyses of

these data have been presented in [12–17] and very recently in [18].

The outcome of these efforts can be summarized briefly as follows. There seems to

be a consensus among different groups that NP definitely affects the Wilson coefficient

C9 [10, 11, 13, 17, 18] with the value of the shift in C9 depending on the analysis considered:

− 1.9 ≤ CNP
9 ≤ −0.5. (1.1)

There is also a consensus that small negative NP contributions to the the Wilson coefficient

C7γ could together with CNP
9 provide the explanation of the data [10, 11]. On the other

hand as seen in the analyses in [11, 13, 17], a particularly successful scenario is the one

with participation of right-handed currents

CNP
9 < 0, C ′9 > 0, C ′9 ≈ −CNP

9 . (1.2)

However a very recent analysis in [18] challenges this solution favouring the one with NP

contributions dominantly represented by CNP
9 ≈ −1.5 with much smaller NP contributions

to the remaining Wilson coefficients, in particular C ′9.
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For the models presented here sorting out these differences is important as in these

models C ′9 = 0 and as demonstrated in [2, 19] NP contributions to C7γ are totally negligible.

Thus CNP
9 remains the only coefficient which could help in explaining the Bd → K∗µ+µ−

anomalies. In our view this is certainly not excluded [10, 12–15, 18], in particular if these

anomalies would soften with time. It should be emphasized at this point that these analyses

are subject to theoretical uncertainties, which have been discussed at length in [10, 20–24]

and it remains to be seen whether the observed anomalies are only result of statistical

fluctuations and/or underestimated theoretical uncertainties.

Assuming that indeed NP is at work here, one of the physical mechanisms behind these

deviations that seems to emerge from these studies is the presence of tree-level Z ′ exchanges.

In [19] we have presented an anatomy of Z ′ contributions to flavour changing neutral current

processes (FCNC) identifying various correlations between various observables character-

istic for this NP scenario. Recently we have analyzed how this scenario faces the new data

listed above [13] including the correlation with the values of CBq = ∆Mq/(∆Mq)SM, Sψφ
and SψKS

which should be precisely determined in this decade.

The dominant role in [13] was played by the so-called l.h.s. scenario in which the flavour

violating couplings of Z ′ to quarks were purely left-handed. While, in agreement with [11]

and recently with [17] it has been found that the presence of right-handed couplings leading

to a non-vanishing C ′9 gives a better description of the data than the l.h.s. scenario, it is

clear that in view of theoretical and experimental uncertainties the l.h.s. scenario remains

as a viable alternative.

The nice virtue of the l.h.s. scenario is that for certain choices of the Z ′ couplings the

model resembles the structure of CMFV or models with U(2)3 flavour symmetry. Moreover

as no new operators beyond those present in the SM are present, the non-perturbative

uncertainties are the same as in the SM, still allowing for non-MFV contributions beyond

those present in U(2)3 models. In particular the stringent CMFV relation between ∆Ms,d

and B(Bs,d → µ+µ−) [25] valid in the simplest U(2)3 models is violated in the l.h.s.

scenario as analyzed in detail in [13]. Another virtue of the l.h.s. scenario is the paucity of

its parameters that enter all flavour observables in a given meson system which should be

contrasted with most NP scenarios outside the MFV framework. Indeed, if we concentrate

on B0
s − B̄0

s mixing, b → sµ+µ− and b → sνν̄ observables, for a given mass MZ′ there

are only four new parameters to our disposal: the three couplings (our normalizations of

couplings are given in section 2)

∆sb
L (Z ′), ∆µµ̄

A (Z ′), ∆µµ̄
V (Z ′), (1.3)

of which the first one is generally complex and the other two real. The couplings ∆µµ̄
A,V (Z ′)

are defined in (2.13) and due to SU(2)L symmetry implying in l.h.s. ∆νν̄
L (Z ′) = ∆µµ̄

L (Z ′)

one also has

∆νν̄
L (Z ′) =

∆µµ̄
V (Z ′)−∆µµ̄

A (Z ′)

2
. (1.4)

Extending these considerations to Bd and K meson systems brings in four additional pa-

rameters, the complex couplings:

∆db
L (Z ′), ∆sd

L (Z ′). (1.5)
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Thus in this general l.h.s. scenario we deal with eight new parameters. Further re-

duction of parameters is only possible in a concrete dynamical model. In this context an

interesting class of dynamical models representing l.h.s. scenario are the 331 models based

on the gauge group SU(3)C × SU(3)L ×U(1)X [26, 27]. A detailed analysis of FCNC pro-

cesses in one of these models has been presented by us in [2]. Selection of earlier analyses

of various aspects of these models related to our paper can be found in [28–37].

The nice feature of these models is a small number of free parameters which is lower

than present in the general l.h.s. scenario considered in [13, 19]. This allows to find certain

correlations between different meson systems which is not possible in the general case.

Indeed the strength of the relevant Z ′ couplings to down-quarks is governed by two mixing

parameters, two CP-violating phases and the parameter β which defines1 a given 331 model

and determines the charges of new heavy fermions and gauge bosons. Thus for a given

MZ′ and β there are only four free parameters to our disposal. In particular for a given

β, the couplings of Z ′ to leptons are fixed. As evident from the general analysis of l.h.s.

scenario in [13], knowing the latter couplings simplifies the analysis significantly, increasing

simultaneously the predictive power of the theory.

In [2] the relevant couplings have been presented for arbitrary β but the detailed FCNC

analysis has been only performed for β = 1/
√

3. While this model provides interesting

results for Bs,d → µ+µ−, it fails in the case of anomalies in Bd → K∗µ+µ− because in this

model the coupling ∆µµ̄
V (Z ′) and consequently the Wilson coefficient CNP

9 turn out to be

very small.

It has been pointed out recently in [14] that for β = −
√

3 a very different picture arises.

Indeed in this case ∆µµ̄
V (Z ′) is much larger than for β = 1/

√
3 so that the Bd → K∗µ+µ−

anomaly can be in principle successfully addressed. Simultaneously the coupling ∆µµ̄
A (Z ′)

turns out to be small so that NP contributions to Bs → µ+µ− are small in agreement

with the data. Moreover aligning the new mixing matrix VL with the CKM matrix, the

authors end up with a very simple model in which the only new parameter relevant for

their analysis is MZ′ and the negative sign of CNP
9 required by the Bd → K∗µ+µ− anomaly

is uniquely predicted.

Unfortunately this model has several problems, in particular in the MFV limit consid-

ered in [14], which in our view eliminates it as a valid description of the present flavour

data. As discussed in appendix C these problems originate in the known fact that the

331 models with β = ±
√

3 imply a Landau singularity for sin2 θW = 0.25 and this value is

reached through the renormalization group evolution of the SM couplings for MZ′ typically

around 4 TeV, scales not much higher than the present lower bounds on MZ′ .

Yet, the observation of the authors of [14] that negative values of β could provide

solution to Bd → K∗µ+µ− anomalies motivates us to generalize our phenomenological

analysis of 331 model in [2] from β = 1/
√

3 to arbitrary values of β, both positive and

negative, for which the Landau singularity in question is avoided up to the very high scales,

even as high as GUTs scales. This generalization is in fact straight forward as in [2] we

1Up to the choice of the representation of the gauge group according to which the fermions should

transform, as will be better clarified in the next section.
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have provided formulae for the Z ′ couplings to quarks and leptons for arbitrary β2 and the

expressions for various flavour observables as functions of β can be directly obtained from

the formulae of that paper. In this context we will concentrate our analysis on the cases

β = ±n/
√

3 with n = 1, 2 choosing MZ′ = 3 TeV in order to satisfy existing bounds from

flavour conserving observables. A simple scaling law allows then to obtain predictions for

other values of MZ′ .

However, in contrast to our numerical analysis in [2] which assumed certain fixed values

of

√
B̂BsFBs and

√
B̂Bd

FBd
we will investigate in the spirit of our recent paper [13] how

our results depend on

CBq =
∆Mq

(∆Mq)SM
, Sψφ, SψKS

(1.6)

which should be precisely determined in this decade.

Our paper is organized as follows. In section 2 we review very briefly the basic aspects

of 331 models, recalling their free parameters and the general formulae for the couplings

of Z ′ to quarks and leptons for arbitrary β. We also present a table with the values of

flavour diagonal couplings of Z ′ to quarks and leptons for n = 1, 2, 3 which should facilitate

other researchers to test precisely these models in processes not considered by us. In

section 3 we collect formulae for various Wilson coefficients and one-loop master functions

in terms of the couplings of section 2. This will allow us to identify certain properties

and correlations between various observables that will be explicitly seen in our numerical

analysis. As all relevant formulae for various branching ratios and other observables have

been presented in [2] we recall in section 4 only crucial observables and their status in the

SM and experiment. The strategy for our analysis is presented in section 5 and its execution

in section 6. In section 7 we present predictions for low energy precision observables which

could provide additional tests of the models considered and analyse also the bounds from

LEP-II. We also comment on the bounds on MZ′ from the LHC. We summarize the main

results of our paper in section 8. Some useful information can also be found in three

appendices.

2 The 331 models and their couplings

2.1 The 331 models

The name 331 encompasses a class of models based on the gauge group SU(3)C×SU(3)L×
U(1)X [26, 27], that is at first spontaneously broken to the SM group SU(3)C × SU(2)L ×
U(1)Y and then undergoes the spontaneous symmetry breaking to SU(3)C × U(1)Q. The

extension of the gauge group with respect to SM leads to interesting consequences. The

first one is that the requirement of anomaly cancellation together with that of asymptotic

freedom of QCD implies that the number of generations must necessarily be equal to the

number of colours, hence giving an explanation for the existence of three generations.

Furthermore, quark generations should transform differently under the action of SU(3)L.

2See also [31].
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In particular, two quark generations should transform as triplets, one as an antitriplet.

Choosing the latter to be the third generation, this different treatment could be at the

origin of the large top quark mass. This choice imposes that the leptons should transform as

antitriplets. However, one could choose a different scenario in which the role of triplets and

antitriplets is exchanged, provided that the number of triplets equals that of antitriplets,

in order to fulfil the anomaly cancellation requirement. Therefore, different versions of the

model are obtained according to the way one fixes the fermion representations. The fermion

representations for specific 331 models analyzed in our paper are described in detail in [2].

A fundamental relation holds among some of the generators of the group:

Q = T3 + βT8 +X, (2.1)

where Q indicates the electric charge, T3 and T8 are two of the SU(3) generators and X is

the generator of U(1)X . β is a key parameter that defines a specific variant of the model.

The 331 models comprise several new particles. There are new gauge bosons Y and V and

new heavy fermions, all with electric charges depending on β. Also the Higgs system is

extended.

As analyzed in detail in [31] and stated in that paper β can be arbitrary. Yet due to

the fact that in 331 models

M2
Z′ =

g2u2c2
W

3[1− (1 + β2)s2
W ]

(2.2)

where u is the vacuum expectation value related to the first symmetry breaking it is evident

that only values of β satisfying

[1− (1 + β2)s2
W ] > 0 (2.3)

are allowed. With the known value of s2
W this means that

|β| ≤
√

3 (2.4)

and in fact the only explicit models analyzed in the literature are the ones with β = ±1/
√

3

and β = ±
√

3. But only for β = ±1/
√

3 one can avoid the presence of exotic charges both

in the fermion and gauge boson sectors. If one considers only

β = ± n√
3
, n = 1, 2, 3 (2.5)

then for n = 1 there are singly charged Y ± bosons and neutral ones V 0(V̄ 0), while for

n = 3 one finds instead two new singly charged bosons V ± and two doubly charged ones

Y ±±. For n = 2 exotic charges ±1/2 and ±3/2 for gauge bosons are found. From table 1

in [2] we also find that while for n = 1 no exotic charges for heavy fermions are present,

for n = 2 heavy quarks carry exotic electric charges ±5/6 and ±7/6 while heavy leptons

±1/2 and ±3/2. Discovering such fermions at the LHC would be a spectacular event. We

refer to [2] for further details. In principle β could be a continuous variable satisfying (2.4)

but in the present paper we will only consider the cases n = 1, 2, 3.

Most importantly for our paper for all β a new neutral gauge boson Z ′ is present. This

represents a very appealing feature, since Z ′ mediates tree level flavour changing neutral

– 5 –
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currents (FCNC) in the quark sector and could be responsible for the recent anomalies as

indicated by their recent extensive analyses.

As in the SM, quark mass eigenstates are defined upon rotation of flavour eigenstates

through two unitary matrices UL (for up-type quarks) and VL (for down-type quarks). The

relation

VCKM = U †LVL (2.6)

holds in analogy with the SM case. However, while in the SM VCKM appears only in

charged current interactions and the two rotation matrices never appear individually, this

is not the case in this model and both UL and VL can generate tree-level FCNCs mediated

by Z ′ in the up-quark and down-quark sector, respectively. But these two matrices have

to satisfy the relation (2.6). A useful parametrization for VL which we have used in [2] is

VL =

 c̃12c̃13 s̃12c̃23e
iδ3 − c̃12s̃13s̃23e

i(δ1−δ2) c̃12c̃23s̃13e
iδ1 + s̃12s̃23e

i(δ2+δ3)

−c̃13s̃12e
−iδ3 c̃12c̃23 + s̃12s̃13s̃23e

i(δ1−δ2−δ3) −s̃12s̃13c̃23e
i(δ1−δ3) − c̃12s̃23e

iδ2

−s̃13e
−iδ1 −c̃13s̃23e

−iδ2 c̃13c̃23

 .

(2.7)

This matrix implies through (2.6) new sources of flavour violation in the up-sector.

However, when UL = 1 as used in [14] VL = VCKM and we deal with a particular simple

CMFV model.

With this parametrization, the Z ′ couplings to quarks, for the three meson systems,

K, Bd and Bs
∆sd
L (Z ′), ∆bd

L (Z ′) ∆bs
L (Z ′) (2.8)

being proportional to v∗32v31, v∗33v31 and v∗33v32, respectively, depend only on four new

parameters (explicit formulae are given in [2]):

s̃13, s̃23, δ1, δ2 . (2.9)

Here s̃13 and s̃23 are positive definite and δi in the range [0, 2π]. Therefore for fixed MZ′

and β, the Z ′ contributions to all processes analyzed by us depend only on these parameters

implying very strong correlations between NP effects to various observables. Indeed, as

seen in (2.7) the Bd system involves only the parameters s̃13 and δ1 while the Bs system

depends on s̃23 and δ2. Moreover, stringent correlations between observables in Bd,s sectors

and in the kaon sector are found since kaon physics depends on s̃13, s̃23 and δ2 − δ1. A

very constraining feature of this models is that the diagonal couplings of Z ′ to quarks and

leptons are fixed for a given β, except for a weak dependence on MZ′ due to running of

sin2 θW provided β differs significantly from ±
√

3.

2.2 The couplings

We will now recall those couplings for arbitrary β that are relevant for our paper. The

expressions for other couplings and masses of new gauge bosons and fermions as well as

expressions for their electric charges that depend on β can be found in [2].

Central for our analysis is the function

f(β) =
1

1− (1 + β2)s2
W

> 0 (2.10)

where the positivity of this function results from the reality of MZ′ as stressed above.

– 6 –
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The following properties should be noted:

• For β ≈
√

3 there is a Landau singularity for s2
W = 0.25. As at MW one has s2

W ≈ 0.23

(with exact number depending on its definition considered) and renormalization group

evolution of weak couplings increases s2
W with increasing scale, s2

W (MZ′) reaches 0.25

and the singularity in question for MZ′ ≈ 4 TeV.

• For |β| ≤
√

3− 0.20 this problem does not arise even up to the GUTs scales.

While we will specifically consider only the cases β = ±n/
√

3 with n = 1, 2, 3 we list

here the formulae for the relevant couplings for arbitrary real β 6=
√

3 satisfying (2.4). The

case β =
√

3 is considered separately in appendix A.

The important point which we would like to make here is that the couplings of Z ′ to

quarks and leptons have to be evaluated at the scale µ at which Z ′ is integrated out, that

is at µ = O(MZ′) and not at MW . For n = 1 this difference is irrelevant. For n = 2 it

plays a role if acceptable precision is required and it is crucial for n = 3. The values of

couplings listed by us and in appendix A correspond to µ = MZ′ with the latter specified

below.

Denoting the elements of the matrix VL in (2.7) by vij , the relevant couplings for

quarks are then given as follows:

∆ij
L (Z ′) =

g√
3
cW
√
f(β)v∗3iv3j , (2.11a)

∆ji
L (Z ′) =

[
∆ij
L (Z ′)

]?
, ∆uū

L (Z ′) = ∆dd̄
L (Z ′) (2.11b)

∆dd̄
L (Z ′) =

g

2
√

3cW

√
f(β)

[
−1 + (1 +

β√
3

)s2
W

]
, (2.11c)

∆uū
R (Z ′) =

g

2
√

3cW

√
f(β)

4√
3
βs2

W = −2∆dd̄
R (Z ′) , (2.11d)

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f(β)

[
−1 + (1− β√

3
)s2
W

]
, (2.11e)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(β)

[
1− (1 +

√
3β)s2

W

]
, (2.11f)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(β)

[
−1 + (1 +

5√
3
β)s2

W

]
, (2.11g)

∆uū
A (Z ′) =

g

2
√

3cW

√
f(β)

[
1− (1−

√
3β)s2

W

]
. (2.11h)

The diagonal couplings are valid for the first two generations of quarks neglecting the very

small non-diagonal contributions in the matrices VL and UL. For the third generation there

is an additional term which can be found in [2].

For leptons we have

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(β)

[
1− (1 +

√
3β)s2

W

]
, (2.12a)

∆µµ̄
L (Z ′) = ∆νν̄

L (Z ′) , (2.12b)
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Figure 1. ∆νν̄
L (Z ′) (red), ∆µµ̄

V (Z ′) (blue) and ∆µµ̄
A (Z ′) (green) as functions of β for s2

W = 0.249

and g = 0.633. This plot applies to β 6=
√

3.

∆µµ̄
R (Z ′) =

−g β s2
W

cW

√
f(β) (2.12c)

∆µµ̄
V (Z ′) =

g

2
√

3cW

√
f(β)

[
1− (1 + 3

√
3β)s2

W

]
, (2.12d)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(β)

[
−1 + (1−

√
3β)s2

W

]
(2.12e)

where we have defined

∆µµ̄
V (Z ′) = ∆µµ̄

R (Z ′) + ∆µµ̄
L (Z ′),

∆µµ̄
A (Z ′) = ∆µµ̄

R (Z ′)−∆µµ̄
L (Z ′).

(2.13)

These definitions also apply to other leptons and quarks.

In figure 1 we show ∆νν̄
L (Z ′), ∆µµ̄

V (Z ′) and ∆µµ̄
A (Z ′) as functions of β for s2

W = 0.249

and g = 0.633 corresponding to MZ′ = 3 TeV. We observe the following features:

• ∆νν̄
L (Z ′) and ∆µµ̄

A (Z ′) have definitive signs in the full range of β: positive and negative,

respectively.

• ∆µµ̄
V (Z ′) can have both signs and for fixed |β| its magnitude is larger for β < 0. In fact

the models with negative β are then favoured by the Bd → K∗µ+µ− anomalies. As

noticed in [14] in this case in the limit of CMFV one automatically obtains CNP
9 < 0

as required by experiment. If there are new sources of flavour violation represented

by the matrix VL then the region (oasis) in the space of new parameters has to be

chosen for which in the case of negative β one still has Re(CNP
9 ) < 0. This will in

turn have consequences for other processes as we will see below.

2.3 Various 331 models

It is instructive to list the values of the resulting couplings for the models with n = 1, 2, 3

in (2.5). We do this for flavour diagonal couplings in table 1 for s2
W = 0.249 and g = 0.633

valid at MZ′ = 3 TeV except for n = 3, where we use MZ′ = 2 TeV in order not to be

too close to the Landau singularity. In appendix A we give explicit formulae for these

couplings in terms of sin2 θW as well as expressions for flavour violating couplings. Here

and in appendix A we give also Z-couplings.
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β in Z ′ couplings Z couplings

1/
√

3 −1/
√

3 2/
√

3 −2/
√

3
√

3 −
√

3

∆uū
L -0.172 -0.215 -0.191 -0.299 -0.849 -1.672 0.257

∆uū
R 0.086 -0.086 0.216 -0.216 1.645 -1.645 -0.115

∆uū
V -0.087 -0.301 0.026 -0.515 0.796 -3.316 0.143

∆uū
A 0.258 0.130 0.407 0.082 2.494 0.027 -0.372

∆dd̄
L -0.172 -0.215 -0.191 -0.299 -0.849 -1.672 -0.315

∆dd̄
R -0.043 0.043 -0.108 0.108 -0.822 0.822 0.057

∆dd̄
V -0.215 -0.172 -0.299 -0.191 -1.672 -0.849 -0.257

∆dd̄
A 0.130 0.258 0.082 0.407 0.027 2.494 0.372

∆µµ̄
L 0.130 0.258 0.082 0.407 0.027 2.494 -0.199

∆µµ̄
R -0.128 0.128 -0.324 0.324 0.054 2.467 0.172

∆µµ̄
V 0.001 0.386 -0.242 0.731 0.080 4.961 -0.028

∆µµ̄
A -0.258 -0.130 -0.407 -0.082 0.027 -0.027 0.372

∆νν̄
L 0.130 0.258 0.082 0.407 0.027 2.494 0.372

Table 1. Diagonal Z ′ couplings to fermions for different β and SM Z couplings to fermions (last

column). We have used sin2 θW = 0.249 for β = ±1/
√

3 and β = ±2/
√

3, sin2 θW = 0.246 for

β = ±
√

3 and sin2 θW = 0.231 for Z-couplings.

3 Master formulae for one-loop functions and Wilson coefficients

3.1 New physics contributions

We collect here for completeness the corrections to SM one-loop functions and relevant

Wilson coefficients as functions of the couplings listed in the previous section.

In the case of ∆F = 2 transitions governed by the function S we have

∆S(Bq) =

[
∆bq
L (Z ′)

λ
(q)
t

]2
4r̃

M2
Z′g

2
SM

, ∆S(K) =

[
∆sd
L (Z ′)

λ
(K)
t

]2
4r̃

M2
Z′g

2
SM

(3.1)

where

g2
SM = 4

GF√
2

α

2π sin2 θW
, λ

(K)
i = V ∗isVid, λ

(q)
t = V ∗tbVtq (3.2)

and r̃ is a QCD factor calculated in [2]. One finds r̃ = 0.965, r̃ = 0.953 and r̃ = 0.925 for

MZ′ = 2, 3, 10 TeV, respectively. It should be remarked that g2
SM and sin2 θW appearing

outside the Z ′ couplings, like in (3.7) and (3.8) below, should be evaluated at MZ with

input values given in table 3 as they are just related to the overall normalization of Wilson

coefficients and rescale relative to SM contributions.

For decays Bq → µ+µ− with q = d, s governed by the function Y one has

∆Y (Bq) =

[
∆µµ̄
A (Z ′)

M2
Z′g

2
SM

]
∆qb
L (Z ′)

V ∗tqVtb
(3.3)
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and for KL → µ+µ−

∆Y (K) =

[
∆µµ̄
A (Z ′)

M2
Z′g

2
SM

]
∆sd
L (Z ′)

V ∗tsVtd
. (3.4)

Similarly for b→ qνν̄ transitions governed by the function X one finds

∆X(Bq) =

[
∆νν
L (Z ′)

g2
SMM

2
Z′

]
∆qb
L (Z ′)

V ∗tqVtb
(3.5)

and for K+ → π+νν̄ and KL → π0νν̄

∆X(K) =

[
∆νν̄
L (Z ′)

g2
SMM

2
Z′

]
∆sd
L (Z ′)

V ∗tsVtd
. (3.6)

The corrections from NP to the Wilson coefficients C9 and C10 relevant for b→ sµ+µ−

transitions and used in the recent literature are given as follows3

sin2 θWC
NP
9 = − 1

g2
SMM

2
Z′

∆sb
L (Z ′)∆µµ̄

V (Z ′)

V ∗tsVtb
, (3.7)

sin2 θWC
NP
10 = − 1

g2
SMM

2
Z′

∆sb
L (Z ′)∆µµ̄

A (Z ′)

V ∗tsVtb
. (3.8)

3.2 Correlations

These formulae imply certain relations that are useful for the subsequent sections. First of

all we have the ratio

R1 =
CNP

9

CNP
10

=
Re(CNP

9 )

Re(CNP
10 )

=
Im(CNP

9 )

Im(CNP
10 )

=
∆µµ̄
V (Z ′)

∆µµ̄
A (Z ′)

, (3.9)

which involves only leptonic couplings and depends only on β. This ratio is given in table 2

for different values of β and s2
W = 0.249 except for β = ±

√
3 where we use s2

W = 0.246.

We observe that for β < 0 these two coefficients are predicted to have opposite signs

independently of the Z ′ couplings to quarks and as CSM
10 and CSM

9 have also opposite signs

(see (4.13)). Re(CNP
9 ) and NP contributions to B(Bs → µ+µ−) are correlated with each

other. This means that Re(CNP
9 ) < 0 required by Bd → K∗µ+µ− data implies for β < 0

uniquely suppression of B(Bs → µ+µ−) relative to its SM value which is favoured by the

data. On the other hand for β = 1/
√

3 the ratio in (3.9) is tiny and for β > 1/
√

3 it is

positive implying that NP contributions to B(Bs → µ+µ−) and Re(CNP
9 ) are anti-correlated

with each other. Consequently in this case Re(CNP
9 ) < 0 required by Bd → K∗µ+µ−

anomaly implies the enhancement of B(Bs → µ+µ−) which is presently not supported by

the data but this could change in the future. We will see all this explicitly in section 6.

A complementary relation valid in any l.h.s. model that this time does not depend on

the lepton couplings is [13]

Im(CNP
9 )

Re(CNP
9 )

=
Im(CNP

10 )

Re(CNP
10 )

= tan(δ2 − βs). (3.10)

3The coefficients CV and CA in [2] are obtained by multiplying C9 and C10 by sin θ2W , respectively.
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β 1/
√

3 −1/
√

3 2/
√

3 −2/
√

3
√

3 −
√

3

R1 −0.004 −2.98 0.59 −8.87 3.0 −185.5

R2 −1.99 −0.50 −4.94 −0.20 1.0 −0.01

R3 0.61 1.22 0.39 1.93 0.13 11.8

R4 0.67 0.67 0.42 0.42 0.016 0.016

R5 0.50 1.00 0.25 1.25 0.016 1.49

R6 −1.00 −0.50 −1.25 −0.25 0.016 −0.016

Table 2. Values of the ratios Ri for different β setting sin2 θW = 0.249 except for β = ±
√

3 where

we use s2
W = 0.246.

Two important points should be noticed here. These two ratios have to be equal to each

other. Moreover they are the same in the two oases resulting from ∆F = 2 constraint.

Next the ratios

R2 =
∆Y (Bq)

∆X(Bq)
=

∆Y (K)

∆X(K)
=

∆µµ̄
A (Z ′)

∆νν̄
L (Z ′)

(3.11)

express the relative importance of Z ′ contributions within a given meson system to decays

with muons and neutrinos in the final state. While investigating the numbers for R2 in

table 2 we should recall that in the SM Y ≈ 1.0 while X ≈ 1.5 which means that it is

easier to make an impact on decays to muons. While from this ratio we cannot conclude

whether a given branching ratio is enhanced or suppressed as the quark couplings cancel

in this ratio, the message is clear:

• For β > 0 NP effects in decays to muons governed by axial-vector couplings are much

larger than in decays to neutrinos, whereas the opposite is true for β < 0. Therefore

in the latter case which is chosen by the Bd → K∗µ+µ− anomaly we can expect also

measurable effects in decays to neutrinos.

• Very importantly in all models, except β =
√

3, considered NP effects in Bs → µ+µ−

are anti-correlated with the ones in b→ sνν̄ transitions.

Important are also the relations between the Z ′ contributions to ∆F = 1 (X and Y

functions) and ∆F = 2 (S functions) observables. We have

∆X(Bq)√
∆S(Bq)∗

= aq
∆νν̄
L (Z ′)

2
√
r̃gSMMZ′

= −aq
0.085√

r̃

(
3 TeV

MZ′

)
R3 (3.12)

where

R3 =

[
1− (1 +

√
3β)s2

W

]√
1− (1 + β2)s2

W

, (3.13)

ad = 1 and as = −1.

We also have
∆X(K)√

∆S(K)
=

∆X(Bs)√
∆S(Bs)∗

. (3.14)
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As presently the constraints on 331 models are dominated by ∆F = 2 transitions we

observe that for a given allowed size of ∆S(Bq), NP effects in the functions in question

are proportional to 1/MZ′ and this dependence is transfered to branching ratios in view

of the fact that the dominant NP contributions are present there as interference between

SM and NP contributions. That these effects are only suppressed like 1/MZ′ and not like

1/M2
Z′ is the consequence of the increase with MZ′ of the allowed values of the couplings

∆ij
L (Z ′) extracted from ∆F = 2 observables, the point already stressed in [2]. In summary,

denoting by ∆ONP(M
(i)
Z′ ) NP contributions to a given ∆F = 1 observable in Bs and Bd

decays at two ((i = 1, 2) different values M
(i)
Z′ we have a scaling law

∆ONP(M
(1)
Z′ ) =

M
(2)
Z′

M
(1)
Z′

∆ONP(M
(2)
Z′ ). (3.15)

independently of β and CBq . However the size of NP effect will depend on these two

parameters as seen already in the case of β in table 2 and we will see this more explicitly

in section 6.

While this scaling law would apply in the case of the absence of correlations between

Bq and K systems also to K decays, in the 331 models the situation is different as we will

now demonstrate. Indeed in these models there is a correlation between the Z ′ effects in

∆F = 2 master functions in different meson systems

∆S(K)

∆S(Bd)∆S(Bs)∗
=
M2
Z′g

2
SM

4r̃

[
∆sd
L (Z ′)

∆bd
L (Z ′)∆bs∗

L (Z ′)

]2

=
3.68

r̃

(
MZ′

3 TeV

)2

R4 (3.16)

where

R4 = 1− (1 + β2)s2
W . (3.17)

Here and in following equations we set |Vtb| = 1 and c̃13 = c̃23 = 1 if necessary. As the

present data and lattice results imply |∆S(Bq)| < 0.25 and R4 < 0.7 in all models, NP

effects in εK are typically below 10%, which is welcome as with input parameters in table 3

εK within the SM is in good agreement with the data.

Combining then relations (3.11), (3.12), (3.14) and (3.16) we find

∆X(K) =
0.16

r̃
R5

√
∆S(Bd)∆S(Bs)∗, R5 = R3

√
R4 (3.18)

∆Y (K) =
0.16

r̃
R6

√
∆S(Bd)∆S(Bs)∗, R6 = R2R3

√
R4 (3.19)

with the values of R5 and R6 given in table 2. We observe that ∆X(K) and ∆Y (K) do not

depend on MZ′ when the parameters in VL are constrained through B0
s,d − B̄0

s,d mixings.

This fact has already been noticed in [2] but these explicit relations are new.

For the models considered in detail by us R5 < 1.3 and as |∆S(Bq)| < 0.25 we find

that |∆X(K)| ≤ 0.05 which implies a correction to K+ → π+νν̄ and KL → π0νν̄ of at

most 10% at the level of the branching ratios.
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As far as the Wilson coefficients CNP
9 and CNP

10 are concerned we have two important

relations

(∆S(Bq))
∗ = 4r̃g2

SMM
2
Z′ sin

4 θW

[
CNP

9

∆µµ̄
V (Z ′)

]2

= 0.327

[
CNP

9

∆µµ̄
V (Z ′)

]2 [
MZ′

3 TeV

]2

, (3.20)

(∆S(Bq))
∗ = 4r̃g2

SMM
2
Z′ sin

4 θW

[
CNP

10

∆µµ̄
A (Z ′)

]2

= 0.327

[
CNP

10

∆µµ̄
A (Z ′)

]2 [
MZ′

3 TeV

]2

, (3.21)

which we have written in a form suitable for the analysis in section 6. We recall that

SSM = S0(xt) = 2.31. Both relations are valid for Bs and Bd systems as indicated on the

l.h.s. of these equations and the Wilson coefficients on the r.h.s. should be appropriately

adjusted to the case considered.

The virtue of these relation is their independence of the new parameters in (2.9) so

that for a given β the size of CNP
9 and CNP

10 allowed by the ∆F = 2 constraints can be

found. In particular in the case of a real CNP
9 and CNP

10 , corresponding to VL = VCKM,

∆S(Bq) and ∆Mq will be enhanced which is only allowed if the SM values of ∆Mq will

turn out to be below the data. If this will not be the case the only solution is to misalign

VL and VCKM which results in complex CNP
9 and CNP

10 and consequently novel CP-violating

effects.

4 Crucial observables

4.1 ∆F = 2 observables

The B0
s − B̄0

s observables are fully described in 331 models by the function

S(Bs) = S0(xt) + ∆S(Bs) ≡ |S(Bs)|e−i2ϕBs , (4.1)

where S0(xt) is the real one-loop SM box function and the additional generally complex

term has been given in (3.1).

The two observables of interest, ∆Ms and Sψφ are then given by

∆Ms =
G2
F

6π2
M2
WmBs |V ∗tbVts|2F 2

Bs
B̂BsηB|S(Bs)| (4.2)

and

Sψφ = sin(2|βs| − 2ϕBs) , Vts = −|Vts|e−iβs . (4.3)

with βs ' −1◦ . Here and in the rest of the paper we use the standard phase conventions

for the elements of the CKM matrix [38].

In the case of B0
d system the corresponding formulae are obtained from (4.1) and (4.2)

by replacing s by d. Moreover (4.3) is replaced by

SψKS
= sin(2β − 2ϕBd

) , Vtd = |Vtd|e−iβ. (4.4)

With the input for |Vub| and |Vcb| in table 3 and γ = 68◦ there is a good agreement of the

SM with data on SψKS
and εK .
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In the SM one has4

(∆Ms)SM = 18.8/ps ·


√
B̂BsFBs

266 MeV

2 [
S0(xt)

2.31

] [
|Vts|

0.0416

]2 [ ηB
0.55

]
, (4.5)

(∆Md)SM = 0.54/ps ·


√
B̂Bd

FBd

218 MeV

2 [
S0(xt)

2.31

] [
|Vtd|

8.8 · 10−3

]2 [ ηB
0.55

]
. (4.6)

For the central values of the parameters in table 3 there is a good agreement with the very

accurate data [40]:

∆Ms = 17.69(8) ps−1, ∆Md = 0.510(4) ps−1 , (4.7)

even if both central values are by 5−6% above the data. With the most recent values from

the Twisted Mass Collaboration [41]√
B̂BsFBs = 262(10) MeV,

√
B̂Bd

FBd
= 216(10) MeV, (4.8)

that are not yet included in the FLAG average, the central value of ∆Ms would go down

to 18.2/ps.

Concerning Sψφ and SψKS
we have

Sψφ = −
(
0.04+0.10

−0.13

)
, SψKS

= 0.679(20) (4.9)

with the second value known already for some time [40] and the first one being the most

recent average from HFAG [40] close to the earlier result from the LHCb [42]. The first

value is consistent with the SM expectation of 0.04. This is also the case of SψKS
for the

values of |Vub| and |Vcb| used by us.

4.2 b→ sµ+µ− observables

The two Wilson coefficients that receive NP contributions in 331 models are C9 and C10.

We decompose them into the SM and NP contributions:5

C9 = CSM
9 + CNP

9 , C10 = CSM
10 + CNP

10 , (4.10)

where NP contributions have been given in (3.7) and (3.8) and the SM contributions are

given as follows

sin2 θWC
SM
9 = sin2 θWP

NDR
0 + [ηeffY0(xt)− 4 sin2 θWZ0(xt)], (4.11)

sin2 θWC
SM
10 = −ηeffY0(xt) (4.12)

with all the entries given in [13, 19] except for ηeff which is new and given below. We have

then

CSM
9 ≈ 4.1, CSM

10 ≈ −4.1 . (4.13)

4The central value of |Vts| corresponds roughly to the central |Vcb| = 0.0424 obtained from tree-level

inclusive decays [39].
5These coefficients are defined as in [19] and the same definitions are used in [10, 11].
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In the case of Bs → µ+µ− decay one has [43–45]

B(Bs → µ+µ−)

B(Bs → µ+µ−)SM

=

[
1 +Aµµ∆Γ ys

1 + ys

]
|P |2, P =

C10

CSM
10

≡ |P |eiϕP , (4.14)

where

B(Bs → µ+µ−)SM =
1

1− ys
B(Bs → µ+µ−)SM , (4.15)

B(Bs → µ+µ−)SM = τBs

G2
F

π

(
α

4π sin2 θW

)2

F 2
Bs
m2
µmBs

√
1−

4m2
µ

m2
Bs

|V ∗tbVts|
2 η2

effY0(xt)
2 ,

(4.16)

Aµµ∆Γ = cos(2ϕP − 2ϕBs), ys ≡ τBs

∆Γs
2

= 0.062± 0.009 (4.17)

with the later value being the latest world average [40]. The bar indicates that ∆Γs effects

have been taken into account. In the SM and CMFV Aµµ∆Γ = 1 but in the 331 models it is

slightly smaller and we take this effect into account. Generally as shown in [45] Aµµ∆Γ can

serve to test NP models as it can be determined in time-dependent measurements [43, 44].

Of interest is also the CP asymmetry

Ssµµ = sin(2ϕP − 2ϕBs), (4.18)

which has been studied in detail in [19, 45] in the context of Z ′ models. In the case of

Bd → µ+µ− decay the formulae given above apply with s replaced by d and yd ≈ 0.

Explicit formulae for Bd → µ+µ− can be found in [19].

Concerning the the status of the branching ratios for Bs,d → µ+µ− decays we have

B(Bs → µ+µ−)SM = (3.65± 0.23)×10−9, B(Bs → µ+µ−) = (2.9± 0.7)×10−9, (4.19)

B(Bd → µ+µ−)SM = (1.06± 0.09)×10−10, B(Bd → µ+µ−) =
(
3.6+1.6
−1.4

)
×10−10. (4.20)

The SM values are based on [46] in which NLO corrections of electroweak origin [47]

and QCD corrections up to NNLO [48] have been taken into account. These values are

rather close to the ones presented previously by us [45, 49] but the inclusion of these

new higher order corrections that were missing until now reduced significantly various

scale uncertainties so that non-parametric uncertainties in both branching ratios are below

2%. The experimental data are the most recent averages of the results from LHCb and

CMS [4–6].

The calculations performed in [47, 48] are very involved and in analogy to the QCD

factors, like ηB and η1−3 in ∆F = 2 processes, we find it useful to include all QCD and

electroweak corrections into ηeff introduced in (4.12) that without these corrections would

be equal to unity. Inspecting the analytic formulae in [46] one finds then

ηeff = 0.9882± 0.0024 . (4.21)

The small departure of ηeff from unity was already anticipated in [49, 50] but only

the calculations in [46–48] could put these expectations and conjectures on firm footing.
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Indeed, in order to end up with such a simple result it was crucial to perform such involved

calculations as these small corrections are only valid for particular definitions of the top-

quark mass and of other electroweak parameters involved. In particular one has to use in

Y0(xt) the MS-renormalized top-quark mass mt(mt) with respect to QCD but on-shell with

respect to electroweak interactions. This means mt(mt) = 163.5 GeV as calculated in [46].

Moreover, in using (4.21) to calculate observables like branching ratios it is important to

have the same normalization of effective Hamiltonian as in the latter paper. There this

normalization is expressed in terms of GF and MW only. Needless to say one can also use

directly the formulae in [46].

In the present paper we follow the normalization of effective Hamiltonian in [51] which

uses GF , α(MZ) and sin2 θW and in order to be consistent with the calculation in [46] our

ηeff = 0.991 with mt(mt) unchanged. Interestingly also in the case of K+ → π+νν̄ and

KL → π0νν̄ the analog of ηeff , multiplying this time X0(xt), is found with the normaliza-

tions of effective Hamiltonian in [51] and definition of mt as given above to be within 1%

from unity [52].

In the case of B → K∗µ+µ− we will concentrate our discussion on the Wilson coeffi-

cient CNP
9 which can be extracted from the angular observables, in particular 〈FL〉, 〈S5〉

and 〈A8〉, in which within the 331 models NP contributions enter exclusively through this

coefficient. On the other hand Im(CNP
10 ) governs the CP-asymmetry 〈A7〉. Useful approxi-

mate expressions for these angular observables at low q2 in terms of CNP
9 , CNP

10 and other

Wilson coefficients have been provided in [11]. Specified to 331 models they are given as

follows

〈FL〉 ≈ 0.77 + 0.05 Re CNP
9 , (4.22)

〈S4〉 ≈ 0.29, (4.23)

〈S5〉 ≈ −0.14− 0.09 Re CNP
9 . (4.24)

〈A7〉 ≈ 0.07 Im CNP
10 , (4.25)

〈A8〉 ≈ 0.04 Im CNP
9 , (4.26)

〈A9〉 ≈ 0. (4.27)

Note that NP contributions to 〈S4〉 and 〈A9〉 vanish in 331 models due to the absence

of right-handed currents in these models.

Eliminating Re CNP
9 from these expressions in favour of 〈S5〉 one finds [13]

〈FL〉 = 0.69− 0.56〈S5〉, (4.28)

which shows analytically the point made in [10, 11] that NP effects in FL and S5 are

anti-correlated as observed in the data.

Indeed, the recent B → K∗µ+µ− anomalies imply the following ranges for CNP
9 [10, 11]

respectively

CNP
9 = −(1.6± 0.3), CNP

9 = −(0.8± 0.3) . (4.29)

As CSM
9 ≈ 4.1 at µb = 4.8 GeV, these are very significant suppressions of this coefficient.

We note that C9 remains real as in the SM but the data do not yet preclude a significant
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GF = 1.16637(1)× 10−5 GeV−2 [55] mBd
= mB+ = 5279.2(2) MeV [38]

MW = 80.385(15) GeV [55] mBs = 5366.8(2) MeV [38]

sin2 θW = 0.23116(13) [55] FBd
= (190.5± 4.2) MeV [56]

α(MZ) = 1/127.9 [55] FBs = (227.7± 4.5) MeV [56]

αs(MZ) = 0.1184(7) [55] FB+ = (185± 3) MeV [57]

mu(2 GeV) = (2.1± 0.1) MeV [58] B̂Bd
= 1.27(10), B̂Bs = 1.33(6) [56]

md(2 GeV) = (4.73± 0.12) MeV [58] B̂Bs/B̂Bd
= 1.01(2) [41]

ms(2 GeV) = (93.4± 1.1) MeV [58] FBd

√
B̂Bd

= 216(15) MeV [56]

mc(mc) = (1.279± 0.013) GeV [59] FBs

√
B̂Bs = 266(18) MeV [56]

mb(mb) = 4.19+0.18
−0.06 GeV [55] ξ = 1.268(63) [56]

mt(mt) = 163.5(9) GeV [38] ηB = 0.55(1) [60]

Mt = 173.1(9) GeV [61] ∆Md = 0.510(4) ps−1 [40]

mK = 497.614(24) MeV [55] ∆Ms = 17.69(8) ps−1 [40]

FK = 156.1(11) MeV [58] SψKS
= 0.679(20) [55]

B̂K = 0.766(10) [56] Sψφ = −(0.04+0.10
−0.13) [40]

κε = 0.94(2) [62, 63] ∆Γs/Γs = 0.123(17) [40]

ηcc = 1.87(76) [64] τBs = 1.516(11) ps [40]

ηtt = 0.5765(65) [60] τBd
= 1.519(7) ps [40]

ηct = 0.496(47) [65] τB± = 1.641(8) ps [40]

∆MK = 0.5292(9)× 10−2 ps−1 [55] |Vus| = 0.2252(9) [40]

|εK | = 2.228(11)× 10−3 [55] |Vcb| = (42.4(9))× 10−3 [39]

B(B+ → τ+ν) = (0.96± 0.26)× 10−4 [40] |Vub| = (3.6± 0.3)× 10−3 [38]

Table 3. Values of the experimental and theoretical quantities used as input parameters.

imaginary part for this coefficient. The details behind these two results that differ by a

factor of two is discussed in [11]. In fact inspecting figures 3 and 4 of the latter paper one

sees that if the constraints from AFB and B → Kµ+µ− were not taken into account CNP
9 ≈

−1.4 alone could explain the anomalies in the observables FL and S5. But the inclusion of

these constraints reduces the size of this coefficient. Yet values of CNP
9 ≈ −(1.2−1.0) seem

to give reasonable agreement with all data and the slight reduction of departure of FL and

S5 from their SM values in the future data would allow to explain the two anomalies with

the help of CNP
9 only as suggested originally in [10].

Similarly a very recent comprehensive Bayesian analysis of the authors of [53, 54] in [15]

finds that although SM works well, if one wants to interpret the data in extensions of the

SM then NP scenarios with dominant NP effect in C9 are favoured although the inclusion

of chirality-flipped operators in agreement with [11] would help to reproduce the data. This

is also confirmed in [13, 17]. However, as we remarked at the beginning of our paper, a

very recent analysis in [18] challenges the solution with significant right-handed currents

and we are looking forward to the consensus on this point in the future. References to

earlier papers on B → K∗µ+µ− by all these authors can be found in [10, 11, 54] and [1].
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5 Strategy for numerical analysis

In our numerical analysis we will follow our recent strategy applied to general l.h.s. models

in [13] with the following significant simplification in the case of 331 models. The leptonic

couplings of Z ′ are fixed for a given β and this allows us to avoid a rather involved numerical

analysis that in [13] had as a goal finding the optimal values of these couplings. Even if β

is not fixed and varying it changes the leptonic couplings in question, the ∆µµ̄
V , ∆µµ̄

A and

∆νν̄
L couplings are correlated with each other and finding one day their optimal values in

331 models will also select the optimal value of β fixing the electric charges of new heavy

gauge bosons and fermions. Of course also quark couplings will play a prominent role in

this analysis, although even if they depend on β, their correlation with leptonic couplings

is washed out by the new parameters in (2.9).

Clearly NP contributions in any extension of the SM are constrained by ∆F = 2 pro-

cesses which presently are subject to theoretical and experimental uncertainties. However,

it is to be expected that in the flavour precision era ahead of us, which will include both

advances in experiment and theory, in particular lattice calculations, it will be possible to

decide with high precision whether ∆Ms and ∆Md within the SM agree or disagree with the

data. For instance already the need for enhancements or suppressions of these observables

would be an important information. Similar comments apply to Sψφ and SψKS
as well as

to the branching ratios B(Bs,d → µ+µ−) and angular observables in Bd → K∗µ+µ−. In

particular correlations and anti-correlations between suppressions and enhancements al-

low to distinguish between various NP models as can be illustrated with the DNA charts

proposed in [1].

In order to monitor this progress in the context of the 331 models we will consider

similarly to [13] the following five bins for CBs and CBd
in (1.6)

CBs = 0.90± 0.01 (yellow), 0.96± 0.01 (green), 1.00± 0.01 (red),

CBs = 1.04± 0.01 (blue), 1.10± 0.01 (purple)
(5.1)

and similarly for CBd
. This strategy avoids variations over non-perturbative parameters

like FBs

√
B̂Bs and can be executed here because in 331 models these ratios have a very

simple form

CBs =
|S(Bs)|
S0(xt)

, CBd
=
|S(Bd)|
S0(xt)

(5.2)

and thanks to the presence of a single operator do not involve any non-perturbative un-

certainties. Of course in order to find out the experimental values of these ratios one has

to handle these uncertainties but this is precisely what we want to monitor in the coming

years. The most recent update from Utfit collaboration reads

CBs = 1.08± 0.09, CBd
= 1.10± 0.17 . (5.3)

However, it should be stressed that such values are sensitive to the CKM input and in fact

as seen in (4.5) and (4.6) with the central values of CKM parameters in table 3 we would

rather expect the central values of CBs and CBd
to be below unity. In order to have full
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picture we will not use the values in (5.3) but rather investigate how the results depend on

the bins in (5.1).

Concerning Sψφ and SψKS
we will vary them in the ranges

− 0.14 ≤ Sψφ ≤ 0.09, 0.639 ≤ SψKS
≤ 0.719 (5.4)

corresponding to 1σ and 2σ ranges around the central experimental values for Sψφ and

SψKS
, respectively.

Finally, in order to be sure that the lower bounds from LEP-II and LHC on MZ′ are

satisfied we will present the results for β = ±1/
√

3 and β = ±2/
√

3 for MZ′ = 3 TeV.

We will return to this issue in section 7. The scaling law in (3.15) allows to translate our

results for observables in Bs and Bd decays into results for other choices of MZ′ . As we

have shown in (3.18) and (3.19) the MZ′ dependence cancels out in ∆X(K) and ∆Y (K).

6 Numerical analysis

6.1 CMFV case

It will be instructive to begin our numerical analysis with a particular case, considered

in [14], in which

VL = VCKM. (6.1)

In this case the CP-asymmetries Sψφ and SψKS
equal the SM ones and the Wilson coeffi-

cients CNP
9 and CNP

10 remain real as in the SM. Moreover, having only two new variables to

our disposal, β and MZ′ , we find very concrete predictions and a number of correlations.

In presenting our results in this section we choose the following colour coding for β:

β = − 2√
3

(red), β = − 1√
3

(blue), β =
1√
3

(green), β =
2√
3

(yellow). (6.2)

The cases of β = ±
√

3 will be considered separately.

In figure 2 we show CBs , CBd
, B(Bs → µ+µ−) and B(Bd → µ+µ−) as functions of MZ′

for the four chosen values of β. The values below 1.5 TeV are presented only for illustration

as such low masses appear rather unrealistic on the basis of messages from the LHC. In

figure 3 we show the correlations CBs versus CNP
9 and B(Bs → µ+µ−) versus CNP

9 for

different values of β, varying MZ′ in the range 2− 5 TeV.

We observe:

• As already pointed out in [13] and known from CMFV scenario CBs and CBd
are

bound to be above unity but this enhancement for the values of β in (6.2) is not as

severe as in the β = −
√

3 case considered in [14]. It should be noted that the sign of

β does not matter in these plots and the red and blue lines shown there are equivalent

to yellow and green lines, respectively.

• The case of β = ±
√

3 is shown separately in figure 4 for fixed s2
W = 0.246, corre-

sponding to MZ′ = 2 TeV only as an illustration. Only values of MZ′ away from

singularity are shown and to bring CBs and CBd
down to the acceptable values MZ′
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Figure 2. CBs
, CBd

, B(Bs → µ+µ−) and B(Bd → µ+µ−) in the CMFV limit as functions of MZ′

for the four chosen values of β with the colour coding given in (6.2). The gray regions show the

UTfit range from eq. (5.3) and the experimental range B(Bs → µ+µ−) = (2.9 ± 0.7) · 10−9. The

region for Bd → µ−µ− is outside the range of the plot.

Figure 3. Correlations CBs
versus CNP

9 and B(Bs → µ+µ−) versus CNP
9 in the CMFV limit for

different values of β, varying MZ′ in the range 2− 5 TeV. Colour coding in (6.2). The gray regions

show the UTfit range from eq. (5.3) and the experimental range B(Bs → µ+µ−) = (2.9±0.7) ·10−9.

has to be increased well above MZ′ = 4 TeV at which Landau singularity is present,

that is beyond the range of validity of this model. The authors of [14] working with

s2
W = 0.231 could not see these large enhancements of CBs and CBd

. One can

also check that for β = −
√

3 and MZ′ < 3.5 TeV, in order to stay away from the
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Figure 4. CBs and CBd
as functions of MZ′ for β = ±

√
3 in the CMFV limit. The gray regions

show the UTfit range from eq. (5.3).

singularity, |CNP
9 | is much larger than indicated by the data. Clearly, as suggested

in [66, 67] one could improve this situation by shifting the singularity above 4 TeV

through addition of other matter but then the model is a different one and one would

have to investigate what impact this additional matter has for observables considered

here.

• As evident from our formulae for the ∆µµ̄
A (Z ′) couplings in the case of CMFV the

branching ratios B(Bs → µ+µ−) and B(Bd → µ+µ−) can only be suppressed with

respect to the SM. This is welcome in the case of B(Bs → µ+µ−) but not for

B(Bd → µ+µ−) where the present data would favour an enhancement. But even

in the case of B(Bs → µ+µ−) not all values of MZ′ are consistent with the 1σ

experimental range for B(Bs → µ+µ−). In fact for the case β = 2/
√

3 (yellow) values

MZ′ ≤ 2 TeV are outside this range.

• The requirement of CNP
9 < 0 excludes in the CMFV case β > 0. The case of

β = −2/
√

3 is clearly favoured as then the coupling ∆µµ̄
V (Z ′) is largest and values

CBs ≈ 1.2 would be sufficient to soften significantly the Bd → K∗µ+µ− anomaly. For

β = −2/
√

3 and MZ′ ≥ 2 TeV NP effects in B(Bs → µ+µ−) and B(Bd → µ+µ−) are

small, in the ballpark of 5− 10% of the SM values.

To summarize, in this scenario for quark couplings the case β = −2/
√

3 is performing

best as due to large value of ∆µµ̄
V (Z ′) it allows to obtain CNP

9 ≈ −1.0 for CBs ≈ 1.2. Yet a

value CBs ≈ 1.2 could be problematic when the data improve. For β = −1/
√

3 which does

not introduce exotic charges the required values of CBs to get sufficiently negative CNP
9

are even larger and the positive values of β are excluded by the required sign of the latter

coefficient.

Thus on the whole the idea of the authors of [14] to consider negative values of β was a

good one but their choice β = −
√

3 is excluded on the basis of the constraints on CBs and

CBd
when the correct values of sin θ2

W at MZ′ are used. Moreover LEP-II data on leptonic

Z ′ couplings exclude this case as we will see in the next section.
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It should finally be noted that NP physics effects in figures 2 and 3 appear to be

significantly larger than found by us in [2]. One reason for this are different values of β

considered here but the primary reason is that the constraints from ∆Ms and ∆Md require

the matrix VL to be even more hierarchical than VCKM and VL = VCKM in 331 models

appears to be problematic as we have just seen. The case VL 6= VCKM is much more

successful as we will demonstrate now.

6.2 Non-CMFV case (Bs-system)

6.2.1 Preliminaries

Assuming next that the matrix VL in (2.7) differs from the CKM matrix one has to find

first the ranges of parameters (oases) for which a given 331 model agrees with the ∆F = 2

data. The outcome of this search, for a given CBs (or CBd
below), are two oases in the

space (s̃23, δ2) for Bs-system and in the space (s̃13, δ1) for the Bd-system. We will not show

these oases as they have structure similar to the ones shown in [2, 19]. We only recall

that the two oases differ by a 180◦ shift in the phases δ1,2 which implies flips of signs of

NP contributions to various ∆F = 1 observables. As the ∆F = 2 observables do not

change under this shift of phases, the correlation of a given ∆F = 2 observable like Sψφ
and ∆F = 1 observable like B(Bs → µ+µ−) in one oasis is changed to the anti-correlation

in another oasis and vice versa. Measuring these two observables one can then determine

the favoured oasis and subsequently make predictions for other observables.

We will next investigate what happens for the four different values of β considered

by us and how the correlations between observables depend on the value of CBs using

the colour coding in (5.1). We recall that all results for β = ±1/
√

3 and β = ±2/
√

3 are

obtained for MZ′ = 3 TeV in order to be sure that the LHC lower bound on MZ′ is satisfied,

although as we will discuss in the next section, for β = ±1/
√

3 also values MZ′ ≈ 2.5 TeV

are consistent with these bounds. The results for ∆F = 1 observables for MZ′ 6= 3 TeV

can be obtained by using the scaling law in (3.15). Then NP effects in β = ±1/
√

3 could

still be by a factor 1.2 larger than shown in the plots below.

Concerning the case of β = −
√

3, the problem with too a large CBs can now be

avoided by properly choosing VL but the other problems of this scenario, mentioned at the

beginning of our paper and listed in appendix C, cannot be avoided in this manner and we

will not discuss this case any more.

6.2.2 Results

In figure 5 we show B(Bs → µ+µ−) versus Re(CNP
9 ) for the four models considered. These

four plots exhibit the structure identified through the ratio R1 in (3.9) for which numerical

values have been given in table 2. In particular we observe the following features:6

• For a given CBs 6= 1, one can always find an oasis in which Re(CNP
9 ) is negative

softening significantly the Bd → K∗µ+µ− anomalies. However while for β = −2/
√

3

6We do not show the SM point in the plots as it corresponds to the point where various curves cross

each other and in any case for coefficients that vanish in the SM it is obvious where the SM point is placed

in the plot.
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Figure 5. Correlation B(Bs → µ+µ−) versus Re(CNP
9 ) for β = ±1/

√
3 and β = ±2/

√
3 setting

MZ′ = 3 TeV and different values of CBs
with their colour coding in (5.1). The gray regions show

the experimental range B(Bs → µ+µ−) = (2.9± 0.7) · 10−9.

and β = −1/
√

3 the values Re(CNP
9 ) = −0.8 and Re(CNP

9 ) = −0.4 can be reached

respectively, this is not possible for models with β > 0.

• For β < 0 the branching ratio B(Bs → µ+µ−) remains SM-like although in accordance

with the relation (3.9) it is suppressed relative to its SM value for negative Re(CNP
9 ).

For the largest values of CBs (purple and blue lines) this suppression can reach for

most negative values of Re(CNP
9 ) 4% and 7% for β = −2/

√
3 and β = −1/

√
3, re-

spectively. The slope of the strict correlation between these two observables depends

on β. This correlation is presently supported by the data for both observables even

if the effects in B(Bs → µ+µ−) are small.

• Looking at these four plots simultaneously we note that going from negative to pos-

itive values of β the correlation line moves counter clock-wise with the center of

the clock placed at the SM value. This of course means that with increasing beta

the correlation B(Bs → µ+µ−) versus Re(CNP
9 ) observed for β < 0 changes into

anti-correlation for β > 0, which is rather pronounced in the case of β = 2/
√

3.

Consequently the suppression of B(Bs → µ+µ−) implies positive values of Re(CNP
9 )

which is not what we want to understand Bd → K∗µ+µ− data. We also note that

for β > 0 Re(CNP
9 ) remains small but the effects in B(Bs → µ+µ−) can be larger
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Figure 6. Correlations Sψφ versus B(Bs → µ+µ−) for β = ±1/
√

3 and β = ±2/
√

3 setting

MZ′ = 3 TeV and different values of CBs with their colour coding in (5.1). The gray regions show

the experimental range for B(Bs → µ+µ−) and Sψφ.

than for β < 0. These scenarios would be the favorite ones if the Bd → K∗µ+µ−

anomalies decreased or disappeared in the future while the experimental branching

ratio B(Bs → µ+µ−) turned out to be indeed by 20% suppressed below its SM value

as present central experimental and SM values seem to indicate. In this case the

model with β = 1/
√

3 would be the winner.

This pattern of effects for negative and positive values of β is also seen in figures 6

and 7 where we show the correlations between Sψφ versus B(Bs → µ+µ−) and Sψφ versus

Re(CNP
9 ), respectively. In particular we find that for models with β < 0 for most negative

values of Re(CNP
9 ) and smallest values of B(Bs → µ+µ−) the negative values of Sψφ are

favoured. But as the values of Sψφ are rather sensitive for a given value of CBs to the value

of B(Bs → µ+µ−), away from the lower bound on this branching ratio also positive values

of Sψφ are allowed. This is in particular the case for largest values of CBs .

Bearing this ambiguity in mind, we identify therefore for a given CBs a triple correla-

tion between Re(CNP
9 ), B(Bs → µ+µ−) and Sψφ that is an important test of this model.

Interestingly the requirement of a most negative Re(CNP
9 ) shifts automatically the other

two observables closer to the data.

While the departure of Sψφ from its SM value is already a clear signal of new sources

of CP-violation in ∆F = 2 transitions, non-vanishing imaginary parts of C9 and C10 are
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Figure 7. Correlations Sψφ versus Re(CNP
9 ) for β = ±1/

√
3 and β = ±2/

√
3 setting MZ′ = 3 TeV

and different values of CBs
with their colour coding in (5.1).

signals of such new effects in ∆F = 1 transitions. In figures 8 and 9 we show the correlations

Im(CNP
9 ) versus Re(CNP

9 ) and Im(CNP
10 ) versus Re(CNP

10 ), respectively. The fact that the

pattern in both figures for a given β is the same, even if the size of NP effects differs, is

related to the relation (3.10).

We again observe that for β < 0 NP effects are mainly seen in Im(CNP
9 ) while for

β > 0 in Im(CNP
10 ). In particular for β = 1/

√
3 NP effects in C9 practically vanish which is

a good test of this model. Dependently on the values of CBs and |β|, the CP-asymmetry

〈A8〉 could reach (2 − 3)% and the asymmetry 〈A7〉 even (3 − 4)% for β < 0 and β > 0,

respectively.

Finally in figures 10 and 11 we show the correlations Re(CNP
10 ) versus Re(CNP

9 ) and

Im(CNP
10 ) versus Im(CNP

9 ) for the four 331 models considered by us. These results follow

from (3.9).

New sources of CP-violation can also be tested in Bs → µ+µ− through the asymmetry

Sµµ defined in (4.18) and studied in detail in [19, 45] in the context of general Z ′ models.

In figure 12 we show the correlation of Ssµµ versus B(Bs → µ+µ−) in 331 model considered.

As expected the effects in the models with β > 0 are larger than for β < 0. Similar to the

case of Sψφ the required suppression of B(Bs → µ+µ−) favours negative values of Ssµµ in

all models.

As stressed in [11] the Wilson coefficient CNP
9 by itself has difficulty in removing com-

pletely the anomalies in Bd → K∗µ+µ− due to the constraint from Bd → Kµ+µ−. We
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Figure 8. Correlations Im(CNP
9 ) versus Re(CNP

9 ) for β = ±1/
√

3 and β = ±2/
√

3 setting MZ′ =

3 TeV and different values of CBs
with their colour coding in (5.1).

have seen that even without this constraint the values of Re CNP
9 have to be larger than

−0.8 but this could turn out to be sufficient to reproduce the data when they improve.

Still it is of interest to have a closer look at Bd → Kµ+µ− within the four 331 models

analysed by us.

To this end the approximate formula for the branching ratio confined to large q2 region

by the authors of [11] is very useful. Lattice calculations of the relevant form factors are

making significant progress here [68, 69] and the importance of this decay will increase

in the future. Neglecting the interference between NP contributions the formula of [11]

reduces in 331 models to

107 × B(Bd → Kµ+µ−)[14.2,22] = 1.11 + 0.27 Re(CNP
9 )

(
1− 1

R1

)
, (6.3)

where we have used (3.9) to express Re(CNP
10 ) in terms of Re(CNP

9 ). The error on the first

SM term is estimated to be 10% [68, 69]. This should be compared with the LHCb result

107 × B(Bd → Kµ+µ−)[14.2,22] = 1.04± 0.12 (LHCb). (6.4)

Using (6.3) we show in figure 13 the correlation between B(Bd → Kµ+µ−)[14.2,22] and

Re(CNP
9 ) for the four 331 models in question.

We observe that the pattern of the correlations is similar to the ones in figure 5 which

originates in the fact that B(Bd → Kµ+µ−)[14.2,22] is strongly correlated with B(Bs →
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Figure 9. Im(CNP
10 ) versus Re(CNP

10 ) for β = ±1/
√

3 and β = ±2/
√

3 setting MZ′ = 3 TeV and

different values of CBs
with their colour coding in (5.1).

µ+µ−) within l.h.s. models as already shown in [13] for a general l.h.s. model. Moreover,

as R1 is fixed in a given model and its values have been collected in table 2 the straight

lines in figure 5 can be easily understood.

There are two messages from this exercise:

• Our results for Re(CNP
9 ) are fully in accordance with the present data on B(Bd →

Kµ+µ−)[14.2,22].

• On the basis of figures 5 and 13 there is a triple correlation between B(Bd →
Kµ+µ−)[14.2,22], Re(CNP

9 ) and B(Bs → µ+µ−) which constitutes an important test

for the models in question. We indicate this correlation in figure 13 by showing when

the latter branching ratio is suppressed (black) or enhanced (yellow) with respect to

its SM value in accordance with the colour coding in DNA-charts of [1].

6.3 Non-CMFV case (Bd-system)

We have seen in the case of the MFV limit that B(Bd → µ+µ−) is predicted to be suppressed

relative to its SM value when Re(CNP
9 ) is negative. This moves the theory away from the

central value of the experimental branching ratio. However, in the non-MFV case we can

choose the particular oasis in the space (s̃13, δ1) in which B(Bd → µ+µ−) is enhanced.
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Figure 10. Re(CNP
10 ) versus Re(CNP

9 ) for β = ±1/
√

3 and β = ±2/
√

3 setting MZ′ = 3 TeV and

different values of CBs
with their colour coding in (5.1).

In the left upper panel of figure 14 we show B(Bd → µ+µ−) versus SψKS
again for

β = −2/
√

3 and different bins of CBd
. We observe that the values of B(Bd → µ+µ−) are

SM-like and as already expected from the values of ∆µµ̄
A the central experimental value of

this branching ratio cannot be reproduced in this model.

More interesting results are found for β > 0. In the right upper panel of figure 14

we show B(Bd → µ+µ−) versus SψKS
for β = 2/

√
3. We observe that now enhancement

of B(Bd → µ+µ−) can reach 20% over its SM value but still far away from the central

experimental value. For β = −1/
√

3 and β = 1/
√

3 NP effects turn out to be larger and

smaller relative to β = ∓2/
√

3 respectively, as one could deduce from the values of the

axial-vector couplings.

Next in figure 15 we show B(Bd → µ+µ−) versus B(Bs → µ+µ−) for the four models

considered with the colour coding for β given in (6.2). We also show the CMFV line. As

the uncertainty in the latter line should be reduced to a few percent in this decade, this

plot could turn out to be useful for testing and distinguishing the four 331 models.

6.4 Non-CMFV case for b→ sνν̄, K+ → π+νν̄ and KL → π0νν̄

6.4.1 Preliminaries

Finally, we turn our discussion to decays with neutrinos in the final state. We recall that

for given β, CBd
, CBs and the chosen oases in Bd and Bs systems the corresponding oasis
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Figure 11. Im(CNP
10 ) versus Im(CNP

9 ) for β = ±1/
√

3 and β = ±2/
√

3 setting MZ′ = 3 TeV and

different values of CBs with their colour coding in (5.1).

including its size is fixed so that definite predictions for b → sνν̄ transition, K+ → π+νν̄

and KL → π0νν̄ can be made.

The inspection of the correlations presented in section 4 teaches us about the following

facts:

• NP effects in εK are small but this is not a problem as with our nominal values of

|Vub|, |Vcb| and γ SM value of εK agrees well with the data.

• For β > 0 NP effects in these decays are found to be small but are larger in the cases

with β < 0 where Z ′ couplings to neutrinos are largest.

• Similarly NP effects in K+ → π+νν̄ and KL → π0νν̄ are small as we have already

expected on the basis of the relation (3.18).

6.4.2 The b→ sνν̄ transitions

In the absence of right-handed currents one finds [70]

Rνν̄ =
B(B → Kνν̄)

B(B → Kνν̄)SM
=
B(B → K∗νν̄)

B(B → K∗νν̄)SM
=
B(B → Xsνν̄)

B(B → Xsνν̄)SM
=
|XL(Bs)|2

|ηXX0(xt)|2
, (6.5)

with

XL(Bs) = ηXX0(xt) + ∆X(Bs) (6.6)
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Figure 12. Ssµµ versus B(Bs → µ+µ−) for β = ±1/
√

3 and β = ±2/
√

3 setting MZ′ = 3 TeV and

different values of CBs with their colour coding in (5.1). The gray regions show the experimental

range for B(Bs → µ+µ−).

and ∆X(Bs) given in (3.5). The QCD factor ηX = 0.994 [71]. In this case the NLO

electroweak corrections are of the order of one per mil [52] when similarly to our discus-

sion of ηeff in the context of Bs,d → µ+µ− decays one uses the normalization of effective

Hamiltonian in [51] and the top quark mass is evaluated in the MS scheme for QCD and

on-shell with respect to electroweak interactions. Thus accidentally ηeff that includes both

QCD and electroweak corrections turns out in this scheme to be practically the same for

K → πνν̄ and Bs,d → µ+µ− decays.

The equality of these three ratios is an important test of any l.h.s. scenario. The

violation of them would imply the presence of right-handed couplings at work [70, 72, 73].

In the context of Z ′ models this is clearly seen in figure 20 of [19].

The SU(2)L relation in (1.4) satisfied in any l.h.s. model, therefore also in the 331

models presented by us, implies a correlation between Rνν̄ , B(Bs → µ+µ−) and CNP
9 as

shown for a general l.h.s. model in figure 9 of [13].

In figure 16 we show one of these ratios versus B(Bs → µ+µ−) for the models consid-

ered. We observe that in all models considered we have an anti-correlation between these

two observables. But the predicted NP effects in all models are rather small. The same

conclusion has been reached for general l.h.s. models in [11, 13].
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Figure 13. Correlation B(Bd → Kµ+µ−)[14.2,22] versus Re(CNP
9 ) for β = ±1/

√
3 and β = ±2/

√
3

setting MZ′ = 3 TeV, B(Bs → µ+µ−) ≤ B(Bs → µ+µ−)SM (black) and B(Bs → µ+µ−) ≥ B(Bs →
µ+µ−)SM (yellow) . The gray regions show the experimental range for B(Bd → Kµ+µ−)[14.2,22]

in (6.4).

6.4.3 K+ → π+νν̄, KL → π0νν̄ and KL → µ+µ− decays

The formulae for these decays have been given in [19] and will not be repeated here. In

figure 17 we show the correlation between B(K+ → π+νν̄) and B(KL → π0νν̄) and the

one between B(K+ → π+νν̄) and B(KL → µ+µ−) for the four models considered. The

effects are rather small. What is interesting are the SM values in the middle of both plots

that are enhanced over the usual values quoted as a consequence of inclusive value of |Vcb|
used by us.

7 Low and high energy constraints

7.1 Low energy precision observables

Low energy precision observables provide additional bounds on the parameters of the mod-

els considered, in particular on the allowed range of MZ′ as investigated recently in the

context of β = −
√

3 model in [14]. We want to add that in concrete models studied here the

signs of deviations from SM predictions for these observables are fixed providing additional

tests beyond the lower bounds on MZ′ . In what follows we will present the predictions for
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Figure 14. Correlation B(Bd → µ+µ−) versus SψKS
for β = ±1/

√
3 and β = ±2/

√
3 setting

MZ′ = 3 TeV and different values of CBs
with their colour coding in (5.1).

Figure 15. Correlation B(Bd → µ+µ−) versus B(Bs → µ+µ−) for the four models considered in

the paper. The colour coding for β is given in (6.2). The straight line represents CMFV.

three such observables, considered also in [14], separately in each model from which the

lower bounds on MZ′ follow.

We begin with the effect due to a Z ′ gauge boson on the weak charge of a nucleus

consisting of Z protons and N neutrons calculated in [74]. In translating this result into

our notation one should note that the vector and axial-vector couplings fV,A defined in [74]
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Figure 16. B(Bs → µ+µ−) versus the ratio in (6.5) for all four β = ± 2√
3
,± 1√

3
.

Figure 17. Correlations between rare K decays for different values of β using the colour coding

in (6.2).

are not equal to our couplings ∆V,A(Z ′) but are related through

fV =
∆V (Z ′)

2
, fA = −∆A(Z ′)

2
. (7.1)
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We find then (∆eē
A (Z ′) = ∆µµ̄

A (Z ′))

∆QW (Z,N) =
1√

2GF

∆eē
A (Z ′)

M2
Z′

[
(2Z +N)∆uū

V (Z ′) + (Z + 2N)∆dd̄
V (Z ′)

]
(7.2)

which has an additional overall factor of −1/4 relative to the corresponding expression

in [14] where fV,A = ∆V,A have been used.7 We have then

∆QW (Z,N) = (0.67) 10−2

[
3 TeV

MZ′

]2

∆eē
A (Z ′)

[
(2Z +N)∆uū

V (Z ′) + (Z + 2N)∆dd̄
V (Z ′)

]
.

(7.3)

Similarly for the effective shift in the weak charge of electron that can be studied in

Møller scattering we find

∆QeW = (0.67) 10−2

[
3 TeV

MZ′

]2

∆eē
A (Z ′)∆eē

V (Z ′). (7.4)

For the violation of the first row CKM unitarity expressed through

∆̃CKM ≡ 1−
∑

q=d,s,b

|Vuq|2 (7.5)

one has for MZ′ �MW [12–14, 75]

∆̃CKM =
3

4π2

M2
W

M2
Z′

ln
M2
Z′

M2
W

∆µµ̄
L (Z ′)

[
∆µµ̄
L (Z ′)−∆dd̄

L (Z ′)
]
. (7.6)

In table 4 we show predictions for these shifts in four models considered by us and in each

case the lower bound on MZ′ that follows from present experimental bounds. In the first

case we use, as in [14], Cesium nucleus with Z = 55 and N = 78. We observe that the 90%

CL experimental bounds [38, 76]

|∆QCs
W | ≤ 0.6, |∆Qe

W | ≤ 0.016, |∆̃CKM| ≤ 0.001 (7.7)

are well satisfied and the lower bounds on MZ′ are significantly below the values used by

us. We indicated by dashes lower bounds on MZ′ below 1 TeV. In order to obtain these

bounds we neglected running of sin2 θW from 3 TeV down to these bounds. Including it

would further weaken these bound but this effect is minor.

7.2 LEP-II constraints

Recently the final analysis of LEP-II data by the LEP electroweak working group appeared

in [77] which allows us to check whether the values for MZ′ for the six 331 models considered

by us are consistent with these data. The data relevant for us correspond to the range of

center of mass energy 189 GeV ≤
√
s ≤ 207 GeV. In our numerical calculations we will set√

s = 200 GeV.

7The authors of [14] confirm our findings.
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β 1/
√

3 −1/
√

3 2/
√

3 −2/
√

3

∆QCs
W 0.106 0.080 0.158 0.075

Min(MZ′)[ TeV] 1.26 1.10 1.54 1.06

103 ×∆QeW −0.002 −0.334 0.656 −0.402

Min(MZ′)[ TeV] − − − −
104 × ∆̃CKM 0.154 0.482 0.088 1.13

Min(MZ′)[ TeV] − − − 1.01

Table 4. Prediction for various observables for different β setting MZ′ = 3 TeV. Only lower bounds

on MZ′ above 1 TeV resulting from present constraints on these observables are shown.

The fundamental for this analysis is the formula (3.8) in this paper [78]8

Leff =
4π

Λ2
±

∑
i,j=L,R

ηij ēiγµeif̄jγ
µfj , (f 6= e). (7.8)

In this formula ηij = ±1 or ηij = 0. The different signs of ηij allow to distinguish between

constructive (+) and destructive (−) interference between the SM and NP contribution.

Λ± is the scale of the contact interaction which can be related to MZ′ after proper rescaling

of ηij . The lower bounds on Λ± presented in table 3.15 of [77] apply to certain choices of

ηij that are defined in table 3.14 of that paper.

In the models considered by us there is the overall minus sign due to Z ′ propagator

relative to the SM contribution which we include in the definition of ηij so that with

ηefij (Z ′) = −∆eē
i (Z ′)∆ff̄

j (Z ′), (7.9)

we obtain the relation

MZ′ =
Λ±√
4π

√
|∆eē

i (Z ′)∆ff̄
j (Z ′)|. (7.10)

As we know the signs of ηij in each model we know in each case whether the bound on

Λ+ or Λ− should be used. In tables 5–7 we list the values of the couplings ηij for the six

models considered by us together with the corresponding values for ηij(Z) for which the

minus sign in (7.9) should be omitted as the energies involved at LEP-II
√
s > MZ .

The case of β = −
√

3 is easy to test in the case of e+e− → µ+µ− as in this case we deal

with the model V V − of [77]. We find then the lower bound for MZ′ of 11 TeV, well above

the validity of this model. We would like to emphasize that this bound is quoted here

only as an illustration. As discussed in appendix C the coupling αX at scales above 1 TeV

is too large to trust perturbation theory and calculating only tree diagrams misrepresents

the real situation. Whether a non-perturbative dynamics would cure this model remains

to be seen.

Before turning to explicit four models analyzed by us let us note that in the LL−,

RR− and V V − models for couplings in [77], which correspond to ∆ll̄
R(Z ′) = 0, ∆ll̄

L(Z ′) = 0

8We prefer not to use e+e− → e+e− due to other contributions like Babha scattering.
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and ∆ll̄
L(Z ′) = ∆ll̄

R(Z ′) , respectively, the combination of (7.10) and (3.20) allows to derive

upper bounds on |CNP
9 | that go beyond the 331 models and apply to l.h.s. scenario for Z ′

generally. Indeed for the case e+e− → µ+µ− we obtain from (7.10) the bound

MZ′

∆µµ̄
V

≥ a Λ−√
4π
≡ K (7.11)

with a=1 for LL− and RR− and a = 1/2 for V V −. From table 3.15 in [77] we find then

K = 2.77 TeV (LL−), K = 2.62 TeV (RR−), K = 2.30 TeV (VV−). (7.12)

Therefore (3.20) can be rewritten as an upper bound on |CNP
9 | as follows:

|CNP
9 | ≤

2.52 TeV

K

√
|∆S|
0.231

. (7.13)

The last factor becomes unity for a 10% contribution from NP to ∆Ms and consequently

in this case the maximal by LEP-II allowed values for |CNP
9 | read: 0.91, 0.96 and 1.10, for

LL−, RR− and V V −, respectively. The latter case is the one considered in [10] and also

has similar structure to β = −
√

3 model without specification of actual values of the muon

couplings.

We conclude that for a 10% shift in S it is impossible in these models to obtain

CNP
9 = −1.5 as found in [10]. Only for effects S in the ballpark of 20% could such large

negative values of CNP
9 be obtained. While these results look similar to the ones shown

in figure 3, they are more general as they do not assume CMFV and 331 models at work

and moreover take into account LEP-II data. Needless to say these LEP-II bounds can be

significantly weakened by breaking lepton universality in Z ′ couplings and suppressing Z ′

couplings to electrons relative to the muon ones.

As far as the bound on |CNP
10 | is concerned the bounds obtained for LL− and RR− apply

also to this coefficient with ∆V replaced by ∆A. For V V − this coefficient vanishes. But for

the case AA− in [77] that corresponds to ∆ll̄
L(Z ′) = −∆ll̄

R(Z ′), we find the analogue of the

ratio K to be 1.89 TeV and slightly weaker bound than for |CNP
9 | in the V V − case. Thus

LEP-II bounds on |CNP
10 | are weaker than the bounds presently available from Bs → µ+µ−.

For the remaining models considered by us a complication arises due to the fact that

the values of ηij in the simple models studied in [77] and listed in table 3.14 of that paper

do not correspond to our models in which generally all combinations of L and R contribute.

However, even without new global fits in these models, which would be beyond the

scope of our paper we have checked by using the tables 5–7, the formulae in appendix B

and the table 3.15 of [77] that the four models considered in detail by us satisfy all LEP-II

bounds. In fact our findings are as follows:

• For the cases n = −1, 1, 2 the lower bounds on MZ′ are significantly below 2 TeV,

typically close to 1 TeV.

• For β = −2
√

3 the lower bound on MZ′ is below 2 TeV but its precise value would

require a more sophisticated analysis. In any case it appears that the LHC bound of

approximately 3 TeV in this model is stronger that LEP-II bounds.
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β 1/
√

3 −1/
√

3 2/
√

3 −2/
√

3
√

3 −
√

3 Z couplings

LL −0.168 −0.666 −0.068 −1.65 −0.01 −62.0 0.396

RR −0.165 −0.165 −1.05 −1.05 −0.03 −60.5 0.296

LR 0.166 −0.331 0.267 −1.32 −0.02 −61.2 −0.342

RL 0.166 −0.331 0.267 −1.32 −0.02 −61.2 −0.342

Table 5. Values of 10 × ηij for different β relevant for e+e− → `+`− using sin2 θW = 0.249 for

β = ±1/
√

3 and β = ±2/
√

3 and sin2 θW = 0.246 for β =
√

3. sin2 θW = 0.231 for Z-couplings.

Concerning the LHC bounds on MZ′ from ATLAS and in particular CMS [79], the

authors of [14] using MAdGraph5 and CTEQ611 parton distribution functions derived for

the β = −
√

3 model a 95% CL bound of MZ′ > 3.9 TeV. As these bounds are based on

the Drell-Yan process and are dominated by Z ′ couplings to up-quarks and muons that in

331 models equal to those of electrons, the values of ηij in table 7 can give us a hint what

happens in the models considered by us.

As the relevant ηij in the models considered in detail by us are much lower than

the ones in the β = −
√

3 model, the lower bounds on MZ′ in these models must be

significantly lower than 3.9 TeV. On the other hand the couplings in the β = ±2/
√

3

models are comparable, even if slightly larger than the ones of Z boson. Therefore, we

expect that lower bound on MZ′ could be slightly larger than the one reported by CMS

(MZ′ > 2.9 TeV) and our choice of MZ′ = 3.0 TeV could be consistent with LHC bounds.

Yet in order to find it out a dedicated analysis would be necessary.9 As far as the LHC

bounds for β = ±1/
√

3 are concerned the analysis in [81] indicates that in these models

one could still have MZ′ ≈ 2.5 TeV. This would allow to enhance NP effects in all ∆F = 1

observables in these models by roughly a factor of 1.2 A complementary lower bound

MZ′ ≥ 1 TeV for 331 models with β = −1/
√

3 was derived in [82] using dark matter data.

However, this bound is based on further assumptions regarding the relevance of 331 models

to the cosmological dark matter abundance and is not on the same footing as the other

bounds discussed by us.

As we have provided all information on the couplings necessary to perform such an

analysis in the β = ±2/
√

3 and β = ±1/
√

3 models, collider experimentalists and phe-

nomenologists having the relevant codes could derive precise lower bounds on MZ′ in the

models in question. If these bounds turn out in the future to be stronger or weaker than

MZ′ = 3.0 TeV our scaling law in (3.15) will allow us to translate all results presented in

our paper into the new ones.

8 Summary and conclusions

We have generalized our phenomenological analysis of flavour observables in the particular

331 model with β = 1/
√

3 presented in [2] to the cases β = −1/
√

3, β = ±2/
√

3 and

β = ±
√

3 and confronted these models with the most recent data on Bs,d → µ+µ− and

9Recently the bound MZ′ ≥ 3.2 TeV in this model resulting from the LHC has been derived in [80].
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β 1/
√

3 −1/
√

3 2/
√

3 −2/
√

3
√

3 −
√

3 Z couplings

LL 0.223 0.555 0.157 1.22 0.23 −41.6 0.626

RR −0.055 −0.055 −0.351 −0.351 0.44 −20.2 0.098

LR 0.055 −0.110 0.089 −0.440 0.22 −20.5 −0.113

RL −0.221 0.276 −0.618 0.969 0.45 41.1 −0.542

Table 6. Values of 10 × ηij for different β relevant for e+e− → dd̄ using sin2 θW = 0.249 for

β = ±1/
√

3 and β = ±2/
√

3 and sin2 θW = 0.246 for β =
√

3. sin2 θW = 0.231 for Z-couplings.

β 1/
√

3 −1/
√

3 2/
√

3 −2/
√

3
√

3 −
√

3 Z couplings

LL 0.223 0.555 0.157 1.22 0.23 −41.6 −0.511

RR 0.110 0.110 0.702 0.702 −0.88 40.5 −0.198

LR −0.111 0.221 −0.178 0.86 −0.44 41.0 0.229

RL −0.221 0.276 −0.618 0.969 0.45 41.1 0.442

Table 7. Values of 10 × ηij for different β relevant for e+e− → uū using sin2 θW = 0.249 for

β = ±1/
√

3 and β = ±2/
√

3 and sin2 θW = 0.246 for β =
√

3. sin2 θW = 0.231 for Z-couplings.

Bd → K∗µ+µ−. We have also presented predictions of these models for b→ sνν̄ transitions

and decays K+ → π+νν̄, KL → π0νν̄ and KL → µ+µ−.

Our three most important messages from this analysis are as follows:

• The 331 models analyzed by us do not account for the Bd → K∗µ+µ− anomalies if

the latter require Re(CNP
9 ) ≤ −1.3 as indicated by the model independent analysis

in [10]. On the other hand, these models could be in accordance with the outcome

of the analyses in [11, 13, 15, 17] provided the required size of C ′9 in some of these

papers will decrease with time (see also [18] where the impact of a NP contribution

to C ′9 on these anomalies is discussed).

• Going beyond 331 models and assuming lepton universality we find an upper bound

|CNP
9 | ≤ 1.1(1.4) from LEP-II data for all Z ′ models within l.h.s. scenario, when NP

contributions to ∆Ms at the level of 10%(15%) are allowed. We conclude therefore

that it is unlikely that values like Re(CNP
9 ) = −1.5 can be accommodated in Z ′

models of l.h.s. type when lepton universality is assumed. As the 331 models not

analyzed by us belong to this class of models, this finding applies to them as well.

• The central experimental value of B(Bd → µ+µ−) from LHCb and CMS cannot be

reproduced in the 331 models, although an enhancement by 20% over its SM value

is possible. A general l.h.s. scenario can do much better as demonstrated in [13].

But then the universality in lepton couplings has to be broken to satisfy LEP-II

constraints and the diagonal Z ′ couplings to quarks must be smaller than in 331

models considered by us to avoid the bounds on MZ′ from LHC.

In more detail our findings are as follows:
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• Analyzing the models with β = ±1/
√

3 and β = ±2/
√

3 we find that for β > 0

measurable NP effects are allowed in Bs,d → µ+µ−, sufficient to suppress B(Bs →
µ+µ−) down to its central experimental value. On the other hand as mentioned

above B(Bd → µ+µ−) even if reaching values 20% above SM result, is still well

below the experimental central value. Thus we expect that the experimental value

of B(Bd → µ+µ−) must go down if these models should stay alive. For β > 0,

the Bd → K∗µ+µ− anomaly cannot be explained and in fact the anti-correlation

between B(Bs → µ+µ−) and Re(CNP
9 ) predicted in this case is not in accordance with

the present data. On the other hand in the case of the absence of Bd → K∗µ+µ−

anomalies in the future data and confirmation of the suppression of B(Bs → µ+µ−)

relative to its SM value the model with β = 1/
√

3 and MZ′ ≈ 3 TeV would be

favoured.

• Presently, more interesting appear models with β < 0 where NP effects in B(Bs →
µ+µ−) and Re(CNP

9 ) bring the theory closer to the data. Moreover we identified a

triple correlation between Re(CNP
9 ), B(Bs → µ+µ−) and Sψφ that for Re(CNP

9 ) <

−0.5 required by Bd → K∗µ+µ− anomalies implies uniquely suppression of B(Bs →
µ+µ−) relative to its SM value which is favoured by the data. In turn also Sψφ < SSM

ψφ

is favoured with Sψφ having dominantly opposite sign to SSM
ψφ and closer to its central

experimental value. Figures 5–7 show these correlations in explicit terms.

• Another important triple correlation is the one between Re(CNP
9 ), B(Bs → µ+µ−)

and Bd → Kµ+µ−. It can be found in figure 13.

• Our study of b → sνν̄ transitions, K+ → π+νν̄ and KL → µ+µ− shows that NP

effects in these decays in the models considered are typically below 10% at the level

of the branching ratios. NP effects in KL → π0νν̄ can reach 20%.

• We have demonstrated how the effects found by us are correlated with the departures

of CBs and CBd
from unity. As the latter departures depend sensitively on the

precision of lattice non-perturbative calculations, the future of 331 models does not

only depend on experimental progress but also on progress of latter calculations.

• As a by-product we have presented bounds on 331 models from low energy precision

experiments and provided enough information on the couplings of Z ′ to quarks and

leptons that a sophisticated analyses of LEP-II observables and of LHC constraints

could be performed in the future.

• Finally, the model with β = −
√

3 can be ruled out on the basis of the data for various

observables, in particular the final results from LEP-II. But even if renormalization

group effects in sin2 θW are not taken into account, the resulting lower bounds on MZ′

are higher than the upper bounds implied by the Landau singularity. On the other

hand the model with β =
√

3 does not predict significant departures from the SM.

Whether the models with β = −1/
√

3 and β = −2/
√

3 or with β = 1/
√

3 and β = 2/
√

3

will be favoured by the data will depend on the future of the experimental results for
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Bs,d → µ+µ−, Bd → K∗(K)µ+µ− and future values of CBq . The numerous plots presented

in our paper should allow to monitor these developments. Most importantly, the values

of MZ′ considered in our paper are sufficiently low that this new gauge boson could be

discovered in the next run of the LHC and its properties could even be studied at a future

ILC [80].
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A Expressions for couplings in various 331 models

In obtaining the results below we use for β = ±1/
√

3 and β = ±2/
√

3 the values sin2 θW =

0.249 and g = 0.633 corresponding to MZ′ = 3 TeV. We stress that for these models the

dependence of the couplings on MZ′ for 1 TeV ≤MZ′ ≤ 5 TeV, unless they are very small,

is basically negligible assuring the scaling law (3.15).

β = ±1/
√

3. For both signs we have

∆ij
L (Z ′) =

g√
3
cW

√
f(1/
√

3)v∗3iv3j = 0.388 v∗3iv3j (A.1)

Next for β = 1/
√

3 we have

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f(1/
√

3)

[
−1 +

2

3
s2
W

]
= −0.215 , (A.2a)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(1/
√

3)
[
1− 2s2

W

]
= 0.130 , (A.2b)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(1/
√

3)

[
−1 +

8

3
s2
W

]
= −0.087 , (A.2c)

∆uū
A (Z ′) =

g

2
√

3cW

√
f(1/
√

3) [1] = 0.258 , (A.2d)

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(1/
√

3)
[
1− 2s2

W

]
= 0.130 , (A.2e)

∆µµ̄
V (Z ′) =

g

2
√

3cW

√
f(1/
√

3)
[
1− 4s2

W

]
= 0.001 , (A.2f)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(1/
√

3) [−1] = −0.258 (A.2g)
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and for β = −1/
√

3

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f(1/
√

3)

[
−1 +

4

3
s2
W

]
= −0.172 , (A.3a)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(1/
√

3) [1] = 0.258 , (A.3b)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(1/
√

3)

[
−1− 2

3
s2
W

]
= −0.301 , (A.3c)

∆uū
A (Z ′) =

g

2
√

3cW

√
f(1/
√

3)
[
1− 2s2

W

]
= 0.130 , (A.3d)

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(1/
√

3) [1] = 0.258 , (A.3e)

∆µµ̄
V (Z ′) =

g

2
√

3cW

√
f(1/
√

3)
[
1 + 2s2

W

]
= 0.386 , (A.3f)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(1/
√

3)
[
−1 + 2s2

W

]
= −0.130 (A.3g)

β = ±2/
√

3. For both signs we have

∆ij
L (Z ′) =

g√
3
cW

√
f(2/
√

3)v∗3iv3j = 0.489 v∗3iv3j (A.4)

Next for β = 2/
√

3 we have

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f(2/
√

3)

[
−1 +

1

3
s2
W

]
= −0.299 , (A.5a)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1− 3s2

W

]
= 0.082 , (A.5b)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(2/
√

3)

[
−1 +

13

3
s2
W

]
= 0.026 , (A.5c)

∆uū
A (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1 + s2

W

]
= 0.407 , (A.5d)

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1− 3s2

W

]
= 0.082 , (A.5e)

∆µµ̄
V (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1− 7s2

W

]
= −0.242 , (A.5f)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
−1− s2

W

]
= −0.407 (A.5g)

and for β = −2/
√

3

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f(2/
√

3)

[
−1 +

5

3
s2
W

]
= −0.191 , (A.6a)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1 + s2

W

]
= 0.407 , (A.6b)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(2/
√

3)

[
−1− 7

3
s2
W

]
= −0.515 , (A.6c)
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∆uū
A (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1− 3s2

W

]
= 0.082 , (A.6d)

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1 + s2

W

]
= 0.407 , (A.6e)

∆µµ̄
V (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
1 + 5s2

W

]
= 0.731 , (A.6f)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(2/
√

3)
[
−1 + 3s2

W

]
= −0.082 (A.6g)

These results confirm the ones seen in figure 1. For completeness we also list the

formulae for β = ±
√

3 in order to demonstrate that for β =
√

3 the couplings are too small

to provide relevant NP effects, while for β = −
√

3 they are too large to be consistent with

the flavour data and LEP-II bounds for MZ′ < 4 TeV, for which this model is valid because

of the Landau singularities in question. In order to stay away from this singularity we give

the values of couplings for MZ′ = 2 TeV, that is for sin2 θW = 0.246 and g = 0.636.

β = ±
√

3. For both signs we have

∆ij
L (Z ′) =

g√
3
cW

√
f(
√

3)v∗3iv3j = 2.52 v∗3iv3j (A.7)

In the case of β =
√

3 the formulae for leptonic couplings are modified [2]. We have

then

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f
√

3) [−1] = −1.672 , (A.8a)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1− 4s2

W

]
= 0.027 , (A.8b)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
−1 + 6s2

W

]
= 0.796 , (A.8c)

∆uū
A (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1 + 2s2

W

]
= 2.494 , (A.8d)

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1− 4s2

W

]
= 0.027 , (A.8e)

∆µµ̄
V (Z ′) =

3g

2
√

3cW

√
f(
√

3)
[
1− 4s2

W

]
= 0.080 , (A.8f)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1− 4s2

W

]
= 0.027 (A.8g)

and for β = −
√

3

∆dd̄
V (Z ′) =

g

2
√

3cW

√
f
√

3)
[
−1 + 2s2

W

]
= −0.849 , (A.9a)

∆dd̄
A (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1 + 2s2

W

]
= 2.494 , (A.9b)

∆uū
V (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
−1− 4s2

W

]
= −3.316 , (A.9c)
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∆uū
A (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1− 4s2

W

]
= 0.027 , (A.9d)

∆νν̄
L (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1 + 2s2

W

]
= 2.49 , (A.9e)

∆µµ̄
V (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
1 + 8s2

W

]
= 4.96 , (A.9f)

∆µµ̄
A (Z ′) =

g

2
√

3cW

√
f(
√

3)
[
−1 + 4s2

W

]
= −0.027 (A.9g)

SM couplings of Z. For comparison we give the couplings of Z boson that we evaluate

with g = 0.652 and sin2 θW = 0.23116 as valid at MZ . The non-diagonal couplings vanish

at tree-level and the diagonal ones are given as follows:

∆dd̄
V (Z) =

g

2cW

[
−1 +

4

3
s2
W

]
= −0.257 , (A.10a)

∆dd̄
A (Z) =

g

2cW
= 0.372 , (A.10b)

∆uū
V (Z) =

g

2cW

[
1− 8

3
s2
W

]
= 0.143 , (A.10c)

∆uū
A (Z) = − g

2cW
= −0.372 , (A.10d)

∆νν̄
L (Z) =

g

2cW
= 0.372 , (A.10e)

∆µµ̄
V (Z) = − g

2cW

[
1− 4s2

W

]
= −0.028 , (A.10f)

∆µµ̄
A (Z) =

g

2cW
= 0.372 (A.10g)

B LEP-II constraints

We will list here formulae which we used to verify that the four 331 models investigated by

us satisfy LEP-II constraints on MZ′ . To this end we generalized the usual SM expressions

to include Z ′ contribution. In this context we found the presentation in the book of Burgess

and Moore [83] useful.

The cross section for e+e− → ff̄ where f is a lepton or quark is given in terms of

helicity amplitudes Aefij by

σ(e+e− → ff̄) =
πα2sNc

3

(
|AefLL(s)|2 + |AefRR(s)|2 + |AefLR(s)|2 + |AefRL(s)|2

)
, (B.1)

where Nc = 3(1) for quarks (leptons).

For FB and LR asymmetries we have

AFB(e+e− → ff̄) =
3

4

(
|AefLL(s)|2 + |AefRR(s)|2 − |AefLR(s)|2 − |AefRL(s)|2

)
(
|AefLL(s)|2 + |AefRR(s)|2 + |AefLR(s)|2 + |AefRL(s)|2

) (B.2)
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and

ALR(e+e− → ff̄) =

(
|AefLL(s)|2 + |AefLR(s)|2 − |AefRR(s)|2 − |AefRL(s)|2

)
(
|AefLL(s)|2 + |AefRR(s)|2 + |AefLR(s)|2 + |AefRL(s)|2

) . (B.3)

The helicity amplitudes are given for MZ′ �
√
s in the Z ′ models generally as follows

(we drop the argument s)

Aefij = ASM
ij +ANP

ij , i, j = L,R (B.4)

Defining then

ηefij (Z ′) = −∆eē
i (Z ′)∆ff̄

j (Z ′), (B.5)

where the minus sign comes from Z ′ propagator but

ηefij (Z) = ∆eē
i (Z)∆ff̄

j (Z), (B.6)

without this minus sign (
√
s > MZ) we have

ASM
ij =

QeQf
s

+
1

4πα

[
ηefij (Z)

s−M2
Z

]
, ANP

ij =
1

4πα

[
ηefij (Z ′)

M2
Z′

]
. (B.7)

Here the first term in the SM contribution represents photon contribution. Note that for the

values of MZ′ considered, s in the Z ′ propagator can be neglected, while for
√
s = 200 GeV

one has
√
s−M2

Z = 178 GeV.

One can define the shift in the cross section due to NP contributions simply as follows:

∆σNP = σ(e+e− → ff̄)− σSM. (B.8)

In view of small NP effects only the interference between NP and SM matters and we find

σSM =
πα2sNc

3

(
|ASM

LL |2 + |ASM
RR|2 + |ASM

LR |2 + |ASM
RL |2

)
(B.9)

and

∆σNP = 2
πα2sNc

3

(
ASM

LL A
NP
LL +ASM

RRA
NP
RR +ASM

LRA
NP
LR +ASM

RLA
NP
RL

)
. (B.10)

Analogous formulae can be derived for corrections to FB and LR asymmetries.

C The β = ±
√

3 models

Here we list the problems of β = ±
√

3 models which originate in the value of the coupling

gX which is not free but for a fixed β is given in terms of g and sin2 θW as follows:

g2
X = g2 6 sin2 θW

1− (1 + β2) sin2 θW
. (C.1)

This formula implies for β = ±
√

3 a Landau singularity for sin2 θW = 0.25 and this

value is reached through the renormalization group evolution of the SM couplings for
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MZ′ typically around 4 TeV [28, 84].10 Therefore these models as they stand, even if

VL 6= VCKM, can only be valid for MZ′ < 4 TeV. Although in principle some new dynamics

entering around these scales could shift the Landau singularity to higher scales, in particular

supersymmetry [66, 67], one should realize that even at µ = 80 GeV the coupling would be

as large as αX ≈ 0.6 that is much larger than all couplings of the SM. At the relevant scales

of order few TeV αX ≥ 2.5 implying that perturbative calculations cannot be trusted even

in the presence of a large MZ′ . This is not the problem for other four models discussed by

us, where at µ = 3 TeV, the coupling αX equals approximately 0.07 and 0.11 for β = ±1/
√

3

and β = ±2/
√

3, respectively.

The related problems are as follows

• Noting that the masses of the new charged gauge bosons V and Y are related within

1% accuracy to MZ′ through

MV = MY = MZ′

√
1− (1 + β2)s2

W , (C.2)

we find for |β| =
√

3 and s2
W = 0.24−0.25, valid for MZ′ in the ballpark of a few TeV,

the masses of other heavy gauge bosons MV = MY ≤MZ′/5. This is basically ruled

out by the LHC for MZ′ ≤ 4 TeV. However, a dedicated study would be necessary in

order to put this statement on the firm footing. This is not a problem for |β| = 1/
√

3

and |β| = 2/
√

3, where we find MV = MY ≈ 0.8MZ′ and MV = MY ≈ 0.7MZ′ ,

respectively.

• With the matrix VL equal to the CKM matrix we find that even for values of MZ′ =

(5 − 7) TeV as considered in [14] the mass differences ∆Ms and ∆Md are enhanced

at least by a factor of two (CBs,d
≈ 2) relative to the SM values. In our view it

is unlikely that the future lattice values of

√
B̂BsFBs and

√
B̂Bd

FBd
would change

so much to allow for a satisfactory description of the data for ∆Ms,d in this model.

While choosing VL 6= VCKM would remove this problem, this does not help because

of the last difficulty.

• It turns out that the size of predicted coupling ∆µµ̄
V (Z ′) in this model implies through

LEP-II data a lower bound on MZ′ of order of 10 TeV when RG effects in sin2 θW
are taken into account.11 This value is outside the validity of the model unless

complicated new dynamics is introduced at scales of few TeV.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

10In fact we confirmed Frampton’s result that at one-loop level the singularity is reached precisely at

MZ′ = 4 TeV and this result is practically unchanged at NLO. We thank David Straub for checking this.
11We thank Francois Richard for pointing out the inconsistency of the model in [14] with the LEP-II data

even in the absence of RG effects. We refer to his analysis of 331 models in [80], where the prospects for

testing 331 models at the future ILC are presented.
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