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Abstract—This paper describes an adaptive fuzzy control
algorithm that may be used for the automation of medical
devices. The automation system consists of a set of controllers
containing the expertise of the physician and a main fuzzy
controller that creates new rules based on this knowledge plus
additional information about the patient. An adaptive mechanism
evaluates the performance of the controller by using reference
models and modifies its rules when needed. As a test case the
automation of an extra-corporeal support system is presented,
where a centrifugal pump speed is adjusted based on desired
pressures and flow values.

I. INTRODUCTION

Current medical devices have advanced sensoring systems
capable of constantly monitoring patients and helping medical
doctors in giving better treatment to patients. With the increase
of computational power, miniaturization and decreased power
consumption, these devices may be easily taken along side
the patient. Going one step further these devices may directly
provide patient treatment with the integration of intelligent
systems.

For these devices to be accepted in the medical field they
should be capable of taking decisions similar to experienced
practitioners. Making medical decisions is not an easy task.
Decisions are based on previous knowledge, experience and
observation of the patient. The device should be able to work
together with the physician, and he should know why certain
decisions were taken. Fuzzy logic provides a simple way
to transfer that knowledge and experience to the automation
system by describing how the system should behave with the
creation of rules. Additionally the controller decisions may be
easily understood by the operator.

When treating patients with different preconditions it is
possible that they will respond differently for the same kind
of treatment. For this reason adaptive mechanisms are needed,
capable of observing the reactions of the patient and modifying
the rule base to improve the given treatment.

The decisions taken by physicians may depend upon the
observation of various signals. Creating a single rule base that
contains this knowledge including all of the possible input
signals with the combination of its sets may become a highly
complex task if not impossible and may need considerably

large number of rules. We solve this problem by subdividing
the rule base into several smaller controllers. This gives the
possibility of describing the controller behavior focusing on
specific parameters, using less number of inputs for each
controller. The output of these controllers are added to create
a single output. An adaptive fuzzy controller dynamically
creates its own rules using the information of the smaller
controllers. This controller is capable of modifying its rules by
observing the response of the patient in comparison to what
is expected.

Previous studies in our department involved the use of
fuzzy logic as a control strategy for an extra-corporeal support
system [1]. The adaptive mechanism was introduced into this
system and in-vitro studies were used to provide the results of
this paper.

II. FUZZY LOGIC

The basic configuration of a fuzzy logic system shown in
figure 1 is based on a fuzzification block gathering all the
inputs of the system and its corresponding sets, a rule-base, an
inference mechanism and defuzzification. To this configuration
additional scaling factors were introduced to the inputs (gn)
and output (h0). This allows the easy configuration of the
range of values covered by the fuzzy sets. The fuzzy sets of the
input and output variables are of a triangular or trapezoid shape
and are arranged to cover the complete universe of disclosure,
which from the fuzzy controller perspective corresponds from
−1 to +1 and is converted to the outside world with its
corresponding gain values. The inputs may correspond to
errors between targets and values (ei), the change of error
(dei) or current values (vi).

Fuzzy sets are expressed in linguistic terms such as “Low”
or “Very Low” that may be easily understood. However when
the number of sets is increased determining the correct names
for each set may not be simple. For this reason the naming
of sets was changed from linguistic terms to signed numbers
as shown in table I making it simple to extend to n number
of positive and negative fuzzy sets. It is clear however that
“-2” for example does not refer to the value itself but to the

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia FUZZ IEEE



g
0

g
n

h
0

u(t)
0

Inference
mechanism

Rule-base

Fu
zz
ifi
ca
ti
o
n

D
e
fu
zz
ifi
ca
ti
o
nei(t)

dei(t)
vi(t)

Fig. 1. Fuzzy Controller architecture

second set on the negative side in the universe of disclosure
of a particular variable.

Input Output Equivalent
“Very Low” “Big Decrease” -2

“Slightly Low” “Small Decrease” -1
“Normal” “Steady” 0

“Slightly High” “Small Increase” +1
“Very High” “Big Increase” +2

TABLE I
REPRESENTATION OF INPUTS AND OUTPUTS

A. Reference Models

Reference models are used to describe how a specific input
is expected to reach its given target over time. When the
controller is activated the reference signals are set to the
current value of each parameter. A second order function is
used as a reference signal with a specified stabilizing time.
With the target value, the reference model and the current
signal value two error signals are generated: a target error
(Te) which refers to the difference between the current value
of the input signal and the target; and a reference error (Re)
which refers to the difference between the current value of the
input signal and the reference model being calculated.This is
depicted in figure 2.

Target Input

settling time 

Reference Model
System ValueRe

Te

Te=Target error
Re=Reference error

Fig. 2. Reference model and generated errors.

III. KNOWLEDGE BASE

When dealing with multiple inputs and defining several sets
for each input, the creation of a single rule base containing

all the possible combinations may not be an easy task. This
was resolved by defining smaller controllers containing rules
of how the controller should react to specific inputs. The result
of all of these controllers is then added to form a single
output signal. Predefined rule structures can be used to easily
construct these smaller controllers, for example a Fuzzy-PI
type of controller may be used for one input, using its error and
change of error. The rule structure for this type of controller
is shown in table II and is further described by Li [2].

ė / e -3 -2 -1 0 +1 +2 +3
-3 +6 +5 +4 +3 +2 +1 0
-2 +5 +4 +3 +2 +1 0 -1
-1 +4 +3 +2 +1 0 -1 -2
0 +3 +2 +1 0 -1 -2 -3

+1 +2 +1 0 -1 -2 -3 -4
+2 +1 0 -1 -2 -3 -4 -5
+3 0 -1 -2 -3 -4 -5 -6

TABLE II
RULE BASE OF A FUZZY-PI CONTROLLER

IV. ADAPTING FUZZY CONTROLLER

At the beginning the previously defined fuzzy controllers
will not be optimally tuned for all the possible scenarios and
specific patient reactions. Therefore an adaptive mechanism is
needed capable of recognizing when a change must be made
and how the rules should be modified. It is difficult to detect
how the rules should be changed in each small controller, this
was solved by introducing an empty fuzzy controller that is
capable of creating its own rules. This fuzzy controller uses the
same inputs as the knowledge base controllers together with
additional inputs that help to characterize a specific situation.
This part is called online rule learning. The second part is
the adaptive mechanism where a function is used to grade
the performance of the active rules and modify them when
required.

A. Online Rule Learning

The online learning mechanism is described in figure 3.
When no rule exists for the current inputs with a degree of
truth higher than a predefined threshold a new rule is created.
For the creation of this new rule the input sets with the highest
degree of truth for each input is used as antecedents; for the
selection of the output set the knowledge base controllers are
used to obtain a reference value, and with this value the set
with highest degree of truth is used as a consequent.

We can observe from figure 3 that when the new rule is
created there can be a slight difference between the output
obtained from the base controllers and the output obtained
from the new rule. As an example the reference input is -1.3,
the learning algorithm will then select the output set with that
gives the maximum degree of truth, which in this case is “-1”.
If this is the only existing rule then the output of the controller
will be -1. This difference can be reduced by increasing the
number of sets used for each variable in the adaptive controller.
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Fig. 3. Online rule learning.

B. Adapting Algorithm
The adaptive mechanism shown in figure 4 consists of the

main controller containing the previously learned rules and a
Fuzzy Inverse Model (FIM). The FIM is a fuzzy controller
that has the total normalized reference error (NRE) and its
derivative as input. The NRE is calculated as follows:

ηRei =
Rei

Ti − vmin,i
(1)

NRE =

∑n
i=1 ηRei · wi∑n

i=1 wi
(2)

Where ηRei is the normalized reference error; Rei corre-
sponds to the reference error; Ti is the target and vmin,i is
the minimum expected value of var i. NRE adds all of the
normalized reference errors each multiplied by their individual
weights wi and divided by the sum of all the parameter
weights. This normalization allows the possibility of using
input signals of different nature such as pressure and flow and
still be able to compare in an equitative manner how far are
the input signals from their corresponding reference model.

The rule base of the FIM is configured as a Fuzzy-PI
as described in table II. The FIM monitors how different
the current system is from the reference model and if this
difference is increasing or decreasing. The created rules in the
main fuzzy controller are modified by the adapting algorithm
according to the following steps:

1) For each created rule from the learning algorithm a
weight is assigned, starting with a value of 0.

2) The rules active with a degree of truth higher than a
given threshold in each step are saved in a vector.

3) The NRE and its derivative are calculated
4) After a predefined delay has passed the NRE and its

change over time is used as input for the FIM. The FIM
then generates the signal p(t).

5) For the rules active at time − delay the rule weight is
added with p(t) multiplied by its saved rule truth Tr.

wr,i = wr,i + p(t) · Tri (3)

6) Rules are modified in the adaptive controller; if the
weight of a rule exceeds +1 then the output set of the

current rule is modified to use the next higher continuous
set. If the rule weight is lower or equal to -1 the output
set is changed to the next lower continuous set. When
the rule is changed the rule weight wr,i is set back to 0.
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Fig. 4. Adaptive algorithm.

V. TEST CASE

This adaptive fuzzy controller is currently being integrated
for the automation of a portable extra-corporeal support system
(ECSS) [1], [3]–[5]. This device is intended to be used with
patients that suffer from cardiac arrest outside the hospital.
The controller should be capable of automatically adjusting the
device parameters such as pump speed to obtain proper values
of pressure and blood flow. An in-vitro system was created to
test different control mechanisms [4]. The system consists of
a centrifugal pump, two adjustable resistance, used to simulate
the systemic vascular resistance and system components, and
a compliance.

A. Implementation

Previous work included the development of an acquisition
system for medical signals [6] additionally a program was
designed to easily implement the designed controller [7]. This
program was used in this work obtaining the control structure
shown in figure 5. The speed control of the centrifugal pump
in the ECSS is established depending on the extra-corporeal
flow rate (EFR) and mean arterial pressure (MAP).

Two Fuzzy-PI type of controllers were used as knowledge
base to define the control behavior for MAP and EFR. The
input values are obtained from an analog to digital con-
verter(ADC). The output is defined as an increase or decrease
of speed, converted to voltage with a digital to analog converter
(DAC). A reference model was used for each signal. The
reference error of each signal and the change over time
was introduced into the Fuzzy-PI controllers integrating the
knowledge base. These same signals and the target errors were
introduced into the adaptive controller. All the inputs of this
controller were defined with 7 input sets and the output was
defined with 21 output sets.

The threshold for the learning mechanism was set consider-
ing the overlap of the input sets. If a threshold is chosen too
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Fig. 5. Adaptive Fuzzy Controller of pressure and flow.

high (0.9) and there is a small overlap between sets then more
rules will be created, with the risk of creating repeated rules.
If on the other hand the threshold is too low (0.5) then less
rules will be created, ignoring valuable information from the
knowledge controllers. With this considerations a threshold of
0.7 was selected and the input sets were set to overlap 45% of
the neighbor set. The delay for the adaptive mechanism was
selected according to the activation times of the controller
and the dynamics of the system. The activation time of the
controller was 100 ms. The stabilization time of the reference
model was set to 5 seconds. With this consideration the delay
was set to half a second, storing a total of 5 active rule sets.

B. Results

Four control configurations were tested. The first one is
the result of using directly the output of the knowledge base.
The second controller refers to Learning. This controller starts
with an empty rule base and creates the required rules using
the knowledge base controllers. The third control is Adapting.
For this case the knowledge base controllers are not activated
and the reference output is always set to zero. The adaptive
mechanism is activated and every time a new rule is created
with new inputs the output set is started as the “0” set and is
then modified according to the adaptive algorithm described
previously, using the NRE. The last results correspond to
L+A, for this controller the learning and adaptive mechanisms
were both activated.

A mean absolute error (MAE) is used to calculate the
performance of each controller, this is done using the absolute
sum of the normalized reference errors multiplied by the
weight of input i as shown in equation 4.

MAE =
n∑

i=0

||ηRei · wi|| (4)

Figure 6 shows the results of setting the controller to
different flow rates and pressure levels. The first and second
graph show the control values of pressure and flow correspond-
ingly. This also includes the target value signal and the signal
generated by the reference model. The third graph shows the
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Fig. 6. Control results for different control algorithms.

pump output. The last graph shows the accumulative MAE to
compare different control mechanisms.

Normal FC Learning Adapting L + A
AvgMAE 0.121 0.130 0.127 0.11

TABLE III
COMPARISON OF AVERAGE MAE CALCULATED BETWEEN EACH CONTROL

ALGORITHM

Table III shows the average MAE for the different control
algorithms.

What may be observed in these results in respect to reaching
the desired target values is that the exact target pressure
(MAP) and flow (EFR) may not always be achieved due
to their dependency with each other. The controller will try
to reach an equilibrium point of both inputs. In terms of
control performance the results of the MAE from the learning
algorithm were slightly higher than the Normal FC. The
adaptive controller had the worst response over the first 160
seconds since it does not have previous knowledge about how
to control the system, however as the system corrects itself
with the adaptive mechanism it is able to improve the results
compared to the learning algorithm. The L + A controller



started similar to the learning algorithm, however due to the
adaptive mechanism it is able to improve performance and
after a certain time outperform the Normal FC.

The number of rules created by the learning algorithm were
112. For the adaptive mechanism 140 rules were created and
for the L+A 121.

Considering the number of inputs for the adaptive controller
(4), with the number of sets for each input (7) the number
of rules needed to cover all the possible combinations would
have been more than 2000 rules, the manual creation of this
rules would represent a great challenge and could affect the
performance of the controller, however with the proposed
mechanism only the needed rules are created with help from
the knowledge controller, without having a significant decrease
in performance and allowing a fine adjustment by the adaptive
mechanism over inputs with a higher number of sets.

Further improvements are still possible to make the adaptive
mechanism more efficient. If the dynamics of the system is
unknown and the delay of the adaptive mechanism is fixed
some oscillations may be generated once the controller has
reached a certain state. An alternative is to switch off the
adaptive mechanism after a certain performance has been
achieved. A second approach is to make the delay dynamically
change according to the response of the system.

VI. CONCLUSION

Medical devices may help in providing better attention to
patients with the integration of automation systems that, based
on what is monitored from the patient, may react and give
proper treatment. By using fuzzy logic it was possible to
integrate the knowledge and experience of the physiologist
in the form of rules, providing in a similar manner a feedback
to the operator of why certain actions were taken. An adaptive
system may also provide a way to improve the performance of
the controller by using the information acquired through the
specialist and monitoring the response of the patient.

The presented adaptive algorithm was able to control the
system even if it did not have previous knowledge on how to
control the system, however to assure best treatment for the
patient the system should start with previous knowledge of the
patient and be able to learn and adapt as quickly as possible.
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