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Abstract

In a recent paper [Embrechts et al., 2015], the question “When is a given matrix
[...] the matrix of pairwise (either lower or upper) tail-dependence coefficients?” is
investigated and a link to Bernoulli-compatible matrices is provided. This question
is interesting, e.g., for model building and stress testing in the financial industry. As
part of their conclusions, the authors state that “[...] an interesting open question
is how one can (theoretically or numerically) determine whether a given arbitrary
non-negative, square matrix is a tail-dependence or Bernoulli-compatible matrix. To
the best of our knowledge there are no corresponding algorithms available.” Such an
algorithm is provided in this paper and a stochastic model based on its solution is
constructed as a corollary. The theoretical foundation of these results stems from
[Fiebig et al., 2014], who investigate the geometry of tail-dependence matrices in
quite some detail.
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1 Introduction

1 Introduction

Motivated by industry requests, [Embrechts et al., 2015] imposed the question, “When is
a given matrix in [0, 1]d×d the matrix of pairwise (either lower or upper) tail-dependence
coefficients?” In what follows, we call such a matrix a tail-dependence matrix. As a
main result, [Embrechts et al., 2015] established a connection between tail-dependence
matrices and so called Bernoulli-compatible matrices, i.e. matrices equal to the expected
value of a random matrix XXT with X a d-dimensional vector whose univariate com-
ponents are Bernoulli-distributed, see also [Fiebig et al., 2014]. In particular, they show
that a matrix with diagonal entries being 1 is a tail-dependence matrix if and only if it
is a Bernoulli-compatible matrix multiplied by a constant.

[Fiebig et al., 2014] derive essentially the same result, however, from a more theoretical
angle, working with max-stable and Tawn–Molchanov processes and results for convex
polytopes. They furthermore find that the set of all tail correlation functions coin-
cides with the set of tail correlation functions stemming from a subclass of max-stable
processes. [Fiebig et al., 2014] show that, on a finite dimensional space, the set of tail
correlation functions forms a convex polytope which can be characterized by finite-
dimensional inequalities. They compute its vertices and facet inducing inequalities up
to dimension 6. Another related work is [Strokorb et al., 2015]. They derive different
results for tail correlation functions in the context of max-stable processes. An early
investigation on these matters, leading to a stochastic model based on extreme-value
distributions for a subclass of all tail-dependence matrices, is provided in [Falk, 2005].

[Embrechts et al., 2015] conclude with the open research question: “Concerning future
research, an interesting open question is how one can (theoretically or numerically)
determine whether a given arbitrary non-negative, square matrix is a tail-dependence or
Bernoulli-compatible matrix. To the best of our knowledge there are no corresponding
algorithms available.”

In this paper we provide a surprisingly simple answer to this question and state an
algorithm to decide whether a given square matrix is a Bernoulli-compatible or tail-
dependence matrix. To this end, we introduce the mathematical idea of reformulating
the question as a linear optimization problem (LP). We furthermore construct an explicit
stochastic model for a given Bernoulli-compatible and tail-dependence matrix, respec-
tively, and link a given tail-dependence matrix to a corresponding Bernoulli-compatible
matrix. We describe the numerical implementation using examples, including a discus-
sion on computational times and tractable dimensions.

2 Translation to a linear program

A Bernoulli vector is a random vector X = (X1, . . . , Xd) supported by {0, 1}d for some
d ∈ N, the set of all d-Bernoulli vectors is denoted by νd. Assume you are given a matrix
B ∈ [0, 1]d×d and your task is to construct a Bernoulli vector X such that B = E

[
XXT

]
.
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2.1 Bernoulli-compatible matrices

Obviously, B has to be symmetric as a necessary requirement, and the marginal laws are
easily matched to the diagonal of B. Still, it is not obvious how to select the dependence
structure to ultimately arrive at B. So from a probabilistic point of view, this is a quite
involved problem.

Another path is to stress the geometry of the set of all d×d Bernoulli-compatible matri-
ces, denoted by Bd, and to see if B is included in this set. For an advanced analysis of the
geometrical structure see [Fiebig et al., 2014, Chapter 3]. It is easily seen that a mixture
model of two Bernoulli vectors corresponds to a mixture of their Bernoulli matrices, so
Bd is convex. It is also not difficult to identify some extremal points of this set, consider
the 2d deterministic vectors p ∈ {0, 1}d and compute their Bernoulli matrices. These
are extreme, since obtaining 0 (or 1, respectively) as the arithmetic average of values in
[0, 1] is only possible if all values are 0 (or 1, respectively). Compactness of this subset
of matrices is also immediate. By the Krein–Milman Theorem we know that every point
in this set can be obtained as a weighted average of the set’s extremal points (see, e.g.,
[Krein and Milman, 1940]). Finally, it is established in [Embrechts et al., 2015] that Bd
has the following characterization:

Bd =

{
2d−1∑
i=0

ai · pipTi : pi ∈ {0, 1}d, ai ≥ 0, i = 0, . . . , 2d − 1,
2d−1∑
i=0

ai = 1

}
, (1)

i.e. Bd is the convex hull of
{
ppT : p ∈ {0, 1}d

}
. Based on these considerations, only

a few technical, but rather simple steps are left to introduce the linear problem that
solves the initially raised question. Among these technical issues are the efficient rep-
resentation of matrices as vectors and the binary representation of natural numbers.
Having introduced the linear program for Bernoulli-compatible matrices, a similar, but
different linear program for tail-dependence matrices is derived using the main result of
[Embrechts et al., 2015].

2.1 Bernoulli-compatible matrices

A d× d matrix B is a Bernoulli-compatible matrix if B = E
[
XXT

]
for some Bernoulli

vector X, i.e. for some X ∈ νd. It is worth mentioning that the question of whether a
Bernoulli vector X can be found such that B = E

[
XXT

]
for a given matrix B is closely

related to the characterization of Bernoulli-compatible covariance matrices. This is due
to the relation E

[
XXT

]
= Cov (X) + E [X]E [X]T .

Taking Equation (1) as starting point, given a d × d matrix B it holds that B is a

Bernoulli-compatible matrix if and only if a vector a :=
(
a0, a1, . . . , a2d−1

)T ∈ R2d
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2.1 Bernoulli-compatible matrices

exists that fulfills the following conditions:

ai ≥ 0, i = 0, . . . , 2d − 1,

2d−1∑
i=0

ai = 1,

B =


B11 · · · B1d

...
. . .

...

Bd1 · · · Bdd

 =
2d−1∑
i=0

ai · pipTi , pi ∈ {0, 1}d.

(2)

With pi :=
(
pi(1), . . . ,pi(d)

)T ∈ {0, 1}d it obviously holds:

pip
T
i =


1{pi(1)=1} 1{pi(1)=pi(2)=1} · · · 1{pi(1)=pi(d)=1}
1{pi(1)=pi(2)=1} 1{pi(2)=1} · · · 1{pi(2)=pi(d)=1}
...

...
. . .

...
1{pi(1)=pi(d)=1} 1{pi(2)=pi(d)=1} · · · 1{pi(d)=1}

 .

Let a square matrix B be given. If B 6= BT , the third condition in (2) can obviously not
be fulfilled as ai ·pipTi is symmetric for all i = 0, . . . , 2d−1. If B = BT , conditions (2) can
be translated to the following linear equation system with linear inequality constraint:

P · a = b, a ≥ 0, (3)

whereby b is a
(
d(d+1)

2 + 1
)

-dimensional column vector and P ∈ {0, 1}
(

d(d+1)
2

+1
)
×2d

with

b :=

(
b̃
1

)
, P :=

(
P̃:,0 · · · P̃:,2d−1
1 · · · 1

)
,

b̃ :=



B1,1

B1,2
...
B1,d

B2,2

B2,3
...
Bd−1,d
Bd,d


, P̃:,i :=



1{pi(1)=1}
1{pi(1)=pi(2)=1}
...
1{pi(1)=pi(d)=1}
1{pi(2)=1}
1{pi(2)=pi(3)=1}
...
1{pi(d−1)=pi(d)=1}
1{pi(d)=1}


, i = 0, . . . , 2d − 1.

Therefore, if B = BT , B is a Bernoulli-compatible matrix if and only if the system (3)
has a solution.
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2.2 Tail-dependence matrices

Remark that P · a = b represents the second and third condition in (2). The second
corresponds to the 1-entry in b and the 1-vector in the last row of P . Going rowwise
through B, starting on the diagonal element in each row, the third condition can be
translated to the linear equation system P̃ · a = b̃.

Example 2.1 (Bernoulli matrices in dimension d = 3)
In dimension d = 3 we choose:

p0 =

 0
0
0

 , p1 =

 1
0
0

 , p2 =

 0
1
0

 , p3 =

 1
1
0

 ,

p4 =

 0
0
1

 , p5 =

 1
0
1

 , p6 =

 0
1
1

 , p7 =

 1
1
1

 .

Therefore, a symmetric 3 × 3 matrix B is a Bernoulli-compatible matrix if and only if
the solution set of the following linear equation system with linear inequality constraints
is not empty:

0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1


·



a0
a1
a2
a3
a4
a5
a6
a7


=



B1,1

B1,2

B1,3

B2,2

B2,3

B3,3

1


, ai ≥ 0, i = 0, . . . , 7. (4)

Remark 2.2 (Binary representation)
The concrete form of P only depends on the dimension d and the bijection

p : {0, . . . , 2d − 1} → {0, 1}d, p(i) = pi.

In particular, it is independent of B. We choose the binary representation to get an
explicit expression for P , i.e. we define pi such that

i =
d−1∑
j=0

pi(j + 1) · 2j , i = 0, . . . , 2d − 1. (5)

In dimension d = 3 this precisely leads to the representation chosen above.

2.2 Tail-dependence matrices

We start with properly defining the notion of lower (resp. upper) tail-dependence. De-
noting the copula of (X1, X2) by C and its survival copula by Ĉ, then

λL := lim
u↓0

C(u, u)

u
, λU := lim

u↓0

Ĉ(1− u, 1− u)

u
,
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2.2 Tail-dependence matrices

are called the lower (resp. upper) tail-dependence coefficients, provided the limits exist.
Let X = (X1, . . . , Xd) be a random vector. Assume the lower (upper) tail-dependence
coefficient to exist for all pairs Xi and Xj , i, j = 1, . . . , d and denote these by λij . Then
the lower (upper) tail-dependence matrix of X is Λ = (λij)i,j=1,...,d. The set of all lower
and upper tail-dependence matrices is denoted by Td. We call a matrix tail-dependence
matrix if and only if it is in Td. [Embrechts et al., 2015, Theorem 3.3] provides the
following link to Bernoulli-compatible matrices: “A square matrix with diagonal entries
being 1 is a tail-dependence matrix if and only if it is a Bernoulli-compatible matrix
multiplied by a constant”. Using a different language, [Fiebig et al., 2014] state the
same result in Theorem 6.c.

If T = θ ·B with θ a constant, T a tail-dependence matrix and B a Bernoulli-compatible
matrix, then θ ≥ 1. This holds, since the diagonal entries of a Bernoulli-compatible ma-
trix are obviously smaller than or equal to 1. The diagonal entries of a tail-dependence
matrix are equal to 1. Therefore, multiplying a Bernoulli-compatible matrix by a con-
stant θ can only deliver a tail-dependence matrix if θ ≥ 1. Based on our considerations
in Section 2.1, we now get the following test.

Theorem 2.3 (Testing for tail-dependence matrices via a LP)
Let a square matrix T with entries from [0, 1] be given. If T 6= T T or diag(T ) 6= (1, . . . , 1),
T is obviously not a tail-dependence matrix. If T = T T and diag(T ) = (1, . . . , 1), T is a
tail-dependence matrix if and only if the solution set of the following LP is not empty:

P̃ · ã = b̃, ã ≥ 0,
2d−1∑
i=0

ãi ≥ 1, (6)

whereby P̃ and b̃ are defined as in Section 2.1 (replace Bkl by Tkl in the definition of
b̃). If a solution ã∗ exists, the corresponding Bernoulli-compatible matrix B∗ is given
by

B∗ =
1

θ
· T =

2d−1∑
i=0

a∗i · pipTi , θ :=
2d−1∑
i=0

ã∗i , a∗ :=
1

θ
ã∗. (7)

Proof
Let a symmetric matrix T with diag(T ) = (1, . . . , 1) be given. According to results
by [Embrechts et al., 2015] it is a tail-dependence matrix if and only if a Bernoulli-
compatible matrix B and a constant θ ≥ 1 exist such that T = θ ·B. B is a Bernoulli-
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2.3 Stochastic model

compatible matrix if and only if

∃a ∈ R2d : B =

2d−1∑
i=0

ai · pipTi =
1

θ
· T, a ≥ 0,

2d−1∑
i=0

ai = 1

⇔ ∃ã := θ · a ∈ R2d : T =
2d−1∑
i=0

ãi · pipTi , ã ≥ 0,
2d−1∑
i=0

ãi = θ ≥ 1

⇔ ∃ã ∈ R2d : P̃ · ã = b̃, ã ≥ 0,
2d−1∑
i=0

ãi ≥ 1,

with P̃ as in Section 2.1 and b̃ := (T1,1, T1,2, . . . , T1,d, T2,2, T2,3, . . . , Td−1,d, Td,d)
T . �

2.3 Stochastic model

After having introduced a one-to-one correspondence between finding an answer to the
question whether a given square matrix is a Bernoulli-compatible matrix (resp. tail-
dependence matrix) and solving a LP, we will now give an explicit stochastic model for
a Bernoulli-compatible matrix (resp. tail-dependence matrix) based on the solution of
the LP. Given a Bernoulli-compatible matrix B and a 2d-dimensional vector a∗ solving
LP (3), we define the Bernoulli vector X∗ as a mixture model. Interpret a∗i as the
probability that the (degenerate) vector pi is drawn, i.e.

P (X∗ = pi) := a∗i , i = 0, . . . , 2d − 1. (8)

This stochastic model fulfills E
[
X∗X∗

T
]

= B.

Proof
Let k, l ∈ {1, . . . , d}. Then:(
E
[
X∗X∗

T
])

k,l
= E [X∗k ·X∗l ] = P

(
X∗k = 1, X∗l = 1

)
= P

(
X∗ = pi, pi(k) = pi(l) = 1

)
=

2d−1∑
i=0,

pi(k)=pi(l)=1

a∗i =
2d−1∑
i=0,

pi(k)=pi(l)=1

a∗i · pi(k) · pi(l) =
2d−1∑
i=0

a∗i · pi(k) · pi(l)

=

2d−1∑
i=0

a∗i · pipTi


k,l

= Bk,l. �

Remark that the second equality is based on the fact that X∗ is obviously a Bernoulli

vector as P
(
X∗ ∈ {0, 1}d

)
= 1. The last equality is based on the fact that a∗ is a

solution of LP (3).
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3 Numerical implementation and examples

Given a d × d dimensional tail-dependence matrix T and a 2d-dimensional vector ã∗

solving LP (6), the d-dimensional random variable Ỹ
∗

defined as

Ỹ
∗

:=
1

θ
U ·X∗ +

(
1

θ
+

(
1− 1

θ

)
V

)
· (1−X∗) , θ :=

2d−1∑
i=0

ã∗i , U, V ∼ U [0, 1] ,

has T as its lower tail-dependence matrix. X∗ is defined as in Equation (8), a Bernoulli

vector with E
[
X∗X∗

T
]

= B∗ with B∗ and a∗ as in Equation (7). Furthermore U, V ,

and X∗ are independent of each other.

Proof
Analogously to [Embrechts et al., 2015, proof of Theorem 3.3]. �

3 Numerical implementation and examples

To evaluate numerically whether a given symmetric d × d-matrix B (resp. T ) is a
Bernoulli-compatible matrix (resp. tail-dependence matrix), we set up the following
LPs:

1. Bernoulli-compatible matrix:

(LP Bernoulli)


fT · a −→ min

P · a = b,

a ≥ 0,

(9)

with P and b as in Section 2.1 and f an arbitrary 2d-dimensional vector. Later,
we will discuss the choice of f to obtain specific solutions.

2. Tail-dependence matrix:

(LP tail-dependence)


gT · ã −→ min

P̃ · ã = b̃,

ã ≥ 0,

(10)

with P̃ and b̃ as in Theorem 2.3 and g an arbitrary 2d-dimensional vector with
non-negative entries. Later on we will scrutinize sensible choices of g.

B (resp. T ) is a Bernoulli-compatible matrix (resp. tail-dependence matrix) if and only
if the set of constraints is not empty, which is equivalent to the existence of a solution
to LP (9) (resp. LP (10)). Note that for d ≥ 3 the solution (provided it exists) is not
unique, as the equation system P · a = b (resp. P̃ · ã = b̃) is under-determined. Thus, a
solution of LP (9) (resp. LP (10)) is one particular element of the set of points fulfilling
the constraints. Below, we discuss how to choose f (resp. g) such that the solution of
the LP has properties in ones’ favor.
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3 Numerical implementation and examples

A linear optimization problem as (9) or (10) can be solved with standard routines, like
e.g. the “Simplex algorithm”. That way, not only the question whether a given d × d
matrix is a Bernoulli-compatible matrix (resp. tail-dependence matrix) can be answered,
but also an explicit vector a∗ (resp. ã∗) is found such that

B =
2d−1∑
i=0

a∗i · pipTi or T =
2d−1∑
i=0

ã∗i · pipTi ,

respectively. We used MATLAB to program a function returning b (resp. b̃) and P
(resp. P̃ ) explicitly for any matrix B = BT ∈ Rd×d (resp. T = T T ∈ Rd×d). Thereby
we applied bijection (5) to get an explicit expression for pi, i = 0, . . . , 2d − 1 with the
MATLAB function dec2bin. We then used the function linprog to find a solution
to LP (9) (resp. (10)). If linprog does not deliver a solution, the solution set of the
side constraints is empty and B (resp. T ) is not a Bernoulli-compatible matrix (resp.
tail-dependence matrix).

The solution of the optimization problems (9) and (10) not only provide a representation,
but exactly the one minimizing the objection function in use. In that way we can even
control what sort of vector we get that fulfills conditions (2).

Example 3.1 (Dimension d = 3)
For example, the matrix

B1 :=

 1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2


is a Bernoulli-compatible matrix. Two possible solutions of (2) are

a∗,1 =



0
1/4
1/4
0
1/4
0
0
1/4


, and a∗,2 =



1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8


.

The MATLAB function linprog returns a∗,1 for f = (1, 0, . . . , 0)T , meaning that we

want to find an element in the solution set LB1 =
{
a ∈ R2d | P · a = b, a ≥ 0

}
with

minimal weight of

p0p
T
0 =

 0 0 0
0 0 0
0 0 0

 in representation B1 =

2d−1∑
i=0

a∗,1i · pip
T
i .
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3.1 Computational time and viable dimensions

We find a∗,2 as solution when choosing f = (0, . . . , 0,−1), meaning that we seek to
maximize the weight of

p7p
T
7 =

 1 1 1
1 1 1
1 1 1

 in representation B1 =

2d−1∑
i=0

a∗,2i · pip
T
i .

In this particular case, a probabilistic proof for the Bernoulli-compatibility of B1 is
quite obvious. Take Y = (Y1, Y2, Y3)

T , Yi ∼ B (1, p) with p = 1/2 and Yi, i = 1, 2, 3,
independent. Then E

[
YYT

]
= B1. If we define the random vector X(1) according to

the stochastic model in Section 2.3 with a∗ = a∗,1, we get:

P
(
X(1) = p1

)
= P

(
X(1) = p2

)
= P

(
X(1) = p4

)
= P

(
X(1) = p7

)
= 1/4,

with

p1 =

 1
0
0

 , p2 =

 0
1
0

 , p4 =

 0
0
1

 , p7 =

 1
1
1

 .

For k, l = 1, 2, 3, k 6= l, it obviously holds

P
(
X

(1)
k = 1

)
= 1/2, P

(
X

(1)
k = X

(1)
l = 1

)
= 1/4.

Thus E
[
X(1)X(1)T

]
= B1, however, X(1) is in distribution not equal to Y, as

P

X(1) =

 1
1
0

 = 0 < 1/8 = P

Y =

 1
1
0

 .

If we define X(2) according to the stochastic model in Section 2.3 with a∗ = a∗,2, we

get the same distribution as of Y, i.e. X(2) d
= Y. Some more examples are given in the

Appendix.

3.1 Computational time and viable dimensions

To give an overview of what dimensions are doable with the proposed methodology and
the computational time required, we performed the following analysis on a standard
personal computer (processor: Intel Core i7, 2.60GHz, RAM: 16GB).

• Time required for evaluating whether a given symmetric matrix in [0, 1]d is a
Bernoulli-compatible matrix is measured as follows. We randomly generate 100
independent, symmetric test matrices, whereby the diagonal entries are chosen as
independent realizations of a U [0, 1]-distributed random variable, rounded on one
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3.1 Computational time and viable dimensions

decimal place. Thus, the diagonal entries are distributed independently with the
following probability density:

P(Bkk = 0.1) = P(Bkk = 0.2) = . . . = P(Bkk = 0.9) = 0.1,

P(Bkk = 0.0) = P(Bkk = 1.0) = 0.05.

Obviously, Bkl ≤ min{Bkk, Bll} is a necessary condition for a matrix being Bernoulli-
compatible. Therefore, the off-diagonal entries are chosen independently as the
minimum of the two corresponding diagonal entries multiplied by a U [0, 1]-distributed
random variable, rounded on one decimal place:

Bkl :=
1

10
·
⌊
10 ·min{Bkk, Bll} · Ukl

⌋
, Ukl ∼ U [0, 1] .

We choose this discrete probability distribution over a continuous distribution
to increase the likelihood of actually ending up with a Bernoulli-compatible ma-
trix. After generating these random matrices, every matrix is analyzed regarding
Bernoulli-compatibility with the described numerical routine. We measure the
computational time needed and count how many of the randomly generated ma-
trices are indeed proper Bernoulli-compatible matrices.

• Time required for evaluating whether a given symmetric matrix in [0, 1]d with
1-entries on the diagonal is a tail-dependence matrix is measured as follows. We
use the same approach for tail-dependence matrices as for Bernoulli-compatible
matrices. However, we obviously generate different random matrices: We generate
100 random symmetric matrices with 1-entries on their diagonal, whereby the off-
diagonal entries are distributed according to the following probability density:

P(X = 0.1) = . . . = P(X = 0.9) = 0.1, P(X = 0.0) = P(X = 1.0) = 0.05.

Numerical results for both, testing Bernoulli-compatibility as well as tail-dependence
compatibility, can be found in Table 1. The maximum dimension analyzed is d = 15,
because for larger dimensions the implemented procedure is not doable on our laptop
as the maximum array size in MATLAB is exceeded.

As the relative number of Bernoulli-compatible matrices and tail-dependence matrices
is 0 for the generated random matrices in d ≥ 10, we decided to do another runtime
analysis, however, only for matrices which are known to be tail-dependence matrices.
The relative number of tail-dependence matrices is then obviously 100%, the required
time is expected to be lower. [Embrechts et al., 2015, Proposition 4.1] delivers that the
following matrices are tail-dependence matrices in any dimension d ≥ 2:

1. Equicorrelation matrix with parameter α in [0, 1]:
Tkl = 1{k=l} + α1{k 6=l}, k, l = 1, . . . , d.

2. AR(1) matrix with parameter α in [0, 1]: Tkl = α|k−l|, k, l = 1, . . . , d.
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3.1 Computational time and viable dimensions

Table 1 Density and average runtime for random matrices

Dimension 3 5 10 15

Bernoulli-compatible Density 39% 2% 0% 0%

Avg. CPU in sec. 0.02 0.02 0.39 84.37

Tail-Dependence Density 76% 20% 0% 0%

Avg. CPU in sec. 0.01 0.02 0.36 111.41

3. MA(1) matrix with parameter α in [0, 1/2]:
Tkl = 1{k=l} + α1{|k−l|=1}, k, l = 1, . . . , d.

[Falk, 2005, Theorem 1.3] constructs for any dimension d ≥ 2 an explicit extreme-value
copula which has the following matrix T with parameters θ ≥ 1 and 0 ≤ a1 ≤ · · · ≤
ad ≤ 1 as tail-dependence matrix:

4. diag(T ) = (1, . . . , 1) , Tkl = 2− (1 + al − ak)1/θ , 1 ≤ k < l ≤ d, T = T T .

Table 2 displays the average CPU time for assessing whether a given matrix is a tail-
dependence matrix. Thereby we iterate over the four different kinds of tail-dependence
matrices given above. For each of them we iterate over 10 arbitrarily chosen param-
eter sets. In every iteration for the first three kinds of tail-dependence matrices the
parameter α is chosen as a sample of the uniform distribution over {0, 0.05, 0.1, . . . , 1.0}
and {0, 0.05, 0.1, . . . , 0.5}, respectively. For the fourth kind of tail-dependence matrix
the parameter θ is chosen arbitrarily from a uniform distribution over {1, . . . , 10}. The
parameters a1, . . . , ad are chosen as the ordered vector of d independent samples of
the uniform distribution over {0, 1/10, . . . , 9/10, 1}. As expected, the average runtime
is smaller than in the above analysis for random matrices. All tested matrices are
recognized correctly as tail-dependence matrices with the exception of one matrix in
dimension d = 15. This exception comes from a parameter set with numercially difficult
entries in the matrix. For example, for the second kind of tail-dependence matrix and
α = 0.01 the upper-right and lower-left entry of the matrix are equal to 10−15 which is
very (respectively too) close to 0.

Table 2 Average runtime for tail-dependence matrices

Dimension 3 5 10 15

Avg. CPU in sec. 0.01 0.01 0.36 21.20
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4 Conclusion

4 Conclusion

Inspired by an open question in [Embrechts et al., 2015], we were able to transform the
question whether a given matrix is a Bernoulli-compatible matrix to the search for a so-
lution of a linear optimization problem. For moderate dimensions, a solution to this LP
can be easily found via standard routines. If the given matrix is a Bernoulli-compatible
matrix, a solution of the LP exists and provides an explicit representation of the given
matrix as a convex combination of all extremal matrices pip

T
i , pi ∈ {0, 1}d. Building

upon a link between Bernoulli-compatible matrices and tail-dependence matrices es-
tablished in [Embrechts et al., 2015] and [Fiebig et al., 2014], we could also transfer the
question whether a given matrix is a tail-dependence matrix to a related LP. If a solution
exists, the given matrix is a tail-dependence matrix and the solution explicitly provides
the associated Bernoulli-compatible matrix. Furthermore, we presented a stochastic
model compatible to a given tail-dependence matrix (resp. Bernoulli-compatible ma-
trix).

An analysis for different dimensions and the associated computational time of the pro-
posed numerical procedures was provided. An interesting open research question is
whether and if so, how a matrix can be analyzed regarding Bernoulli-compatibility and
tail-dependence compatibility with an optimization problem of polynomial effort instead
of O

(
2d
)
. In line with the concluding remarks of [Fiebig et al., 2014], we conjecture that

this is not possible.
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5 Appendix

5 Appendix

Interestingly, the matrix B2 is not a Bernoulli-compatible matrix, where

B2 :=

 3/5 1/4 1/4
1/4 3/5 1/4
1/4 1/4 3/5

 ,

i.e. the MATLAB solver linprog does not find a solution for LP (9) with B = B2. The
matrix

T1 := 2 ·B1 =

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1


is a tail-dependence matrix by Example 3.1 and the connection to Bernoulli-compatible
matrices established in [Embrechts et al., 2015]. This is confirmed by our numerical
procedure, with g = (1, 0, . . . , 0)T it delivers

θ = 1.9926, B∗1 =
1

θ
· T1 =

 0.5019 0.2509 0.2509
0.2509 0.5019 0.2509
0.2509 0.2509 0.5019

 ,

ã∗,1 =



0
0.4926
0.4926
0.0074
0.4926
0.0074
0.0074
0.4926


, T1 =

2d−1∑
i=0

ã∗,1i · pip
T
i .

In perfect correspondence with [Embrechts et al., 2015, Proposition 4.7] our numerical
procedure delivers that

T2 :=


1 0 0 0 1/2
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 1 1/2
1/2 1/2 1/2 1/2 1


is not a tail-dependence matrix, but

T3 :=


1 0 0 0 1/4
0 1 0 0 1/4
0 0 1 0 1/4
0 0 0 1 1/4
1/4 1/4 1/4 1/4 1


is a proper tail-dependence matrix.
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