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Abstract: During the manufacturing of printed electronic circuits, different layers of
coatings are applied successively on a substrate. The correct thickness of such layers is
essential for guaranteeing the electronic behavior of the final product and must therefore be
controlled thoroughly. This paper presents a model for measuring two-layer systems through
thin film reflectometry (TFR). The model considers irregular interfaces and distortions
introduced by the setup and the vertical vibration movements caused by the production
process. The results show that the introduction of these latter variables is indispensable to
obtain correct thickness values. The proposed approach is applied to a typical configuration
of polymer electronics on transparent and non-transparent substrates. We compare our
results to those obtained using a profilometer. The high degree of agreement between both
measurements validates the model and suggests that the proposed measurement method can
be used in industrial applications requiring fast and non-contact inspection of two-layer
systems. Moreover, this approach can be used for other kinds of materials with known
optical parameters.
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1. Introduction

The use of electronic functional polymers in the production of integrated circuits has been increasing
significantly in recent years. Polymer electronics require new production techniques different from those
used for silicon. The production of polymer electronics is based on a printing process similar to that
used on paper. In particular, the circuit layers are successively printed on a substrate, which moves on
a conveyor belt at a high velocity. The correct thickness of such layers is essential for guaranteeing the
electrical behavior of the final product. Therefore, the thickness and other parameters must be monitored
carefully during the production through a fast and non-contact process.

The conveyor belt of the printing setup complicates the implementation of transmission-based
methods [1,2] for monitoring the film thickness. For this reason, we focused on reflection-based
approaches. Common methods for measuring thin film thickness based on reflection include thin
film interferometry (TFI) [3,4], thin film reflectometry (TFR) [5] and spectral ellipsometry [6].
Spectral ellipsometers can achieve a higher accuracy in thickness measurements than thin film
reflectometers [7]. However, they require a more complex setup and are potentially slower [7].
TFI is based on a moving repetitive scanning process, which makes it only appropriate for static
measurements [8,9]. As a result, TFR is advantageous for applications, such as on-line thickness
monitoring, where measuring time should be kept short and/or the high accuracy of spectral ellipsometers
is not needed.

The reflected signal measured by TFR is a function of the involved film thickness [5]. Therefore, by
fitting it with a valid model, the thickness values can be obtained. A reflectance model for a single-layer
system of polycrystalline silicon was presented by Hauge [10]. Hauge considers ideal interfaces for his
model. However, in practice, irregular interfaces affect the reflectance significantly. The interfaces
can be evaluated through the effective media approximation (EMA) [11] or by altering the Fresnel
coefficients through different interface models [12]. Additionally, Montecchi [13] presents a model
based on the perturbative method to measure thickness by considering inhomogeneities, roughness and
slanted interfaces. This model is limited to one layer and discards perturbations on the layer-substrate
and on the air-layer interfaces. Swanepoel [14] presents an approach to consider irregular interfaces on
transmission spectra.

All mentioned contributions present models for single-layer systems. The most popular approaches
for resolving multilayer systems are based on matrix methods [15] and recursive algorithms [16]. Most
contributions in the inspection of multilayer systems are made for transmittance measurements [17,18]
and X-ray reflectometry [16]. On the contrary, for white reflectometry, the literature lacks concrete
works. From the reflectance expression of a single-layer system, like that given in [10], a two-layer
reflectance model can be derived directly. Although the expression for a two-layer system is well known,
the literature lacks models that can be directly applied to real measurements in white light reflectometry.
Interface inhomogeneities and distortions introduced by the measurement equipment significantly affect
the signal captured by the sensor. If the latter is neglected, the fitting process will compensate for these
distortions with the thickness parameters. As a result, the model will match the measured signal for
incorrect values.
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Our approach uses Stearns’ method [12] to incorporate the interface irregularities to the model.
Stearns proposes to model the interface profile by using an analytical function. This method is largely
used and well known in X-ray reflectometry [19,20]. However, to the best of our knowledge, its
application in white light reflectometry for multilayer systems has not been published until now.

In the same way, we analyze the influence of the chromatic effect [21,22] introduced by the setup
on the captured signal. This effect should be considered to avoid distortions in the measured results.
Moreover, this model can be applied to measure other materials with known optical parameters.

2. Fundamentals of Thin Film Reflection

The complex refractive index, n(λ), of a material can be denoted as: n(λ) = n(λ) − jk(λ), where
n(λ) is the index of refraction, k(λ) is the absorption coefficient and λ is the wavelength of the light.
For the sake of simplicity, the dependency on the wavelength, λ, will be suppressed in the notation
throughout this paper. In the case of normal incidence of light, the Fresnel coefficient, rlm, for two
successive films, m = l + 1, with refractive indices, nl and nm, respectively, is defined as follows [23]:

rlm =
nl − nm

nl + nm

(1)

The total reflection coefficient, r, of a single-layer system composed of a thin film (n1) on an
absorbing substrate (n2) surrounded by air (n0) is given by [10]:

r =
r01 + r12e

−jd1

1 + r01r12e−jd1
(2)

where d1 = 4πn1d1/λ is representing the thickness of the film. As given in Equation (1), r01 is the
Fresnel coefficient between air and film and r12 between film and substrate. Finally, the reflectance,
R(λ), is given by:

R(λ) = r · r∗ (3)

where r∗ indicates the complex conjugate of r.
Figure 1 illustrates a two-layer system. In this case, two films (n1 and n2) are deposited successively

on an absorbing substrate (n3). The whole system is surrounded by air (n0). To calculate the reflection
coefficient for this system, Equation (2) can be extended as follows [24]:

r =
r01 + r12e

−jd1 + r23e
−jd + r01r12r23e

−jd2

1 + r01r12e−jd1 + r12r23e−jd2 + r01r23e−jd
(4)

where dl = 4πnldl/λ and d = d1 + d2. Again, by using Equation (3), the reflectance, R(λ), for a
two-layer system with an absorbing substrate can be obtained.

3. Model Extension

Equation (4) describes a system with ideal interfaces between layers. However, in practice, irregular
interfaces affect the reflectance and must be considered in the model. One approach to model interfaces
is based on the effective media approximation (EMA) [11]. By EMA, the inhomogeneous interfaces
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between layers are replaced by fictitious homogeneous layers, which are incorporated as such in the
model [25]. Another approach proposes to modify the Fresnel coefficients in order to reproduce the
effect of the interfaces on the reflectance [12]. In this case, the Fresnel coefficients, rlm, are altered by
multiplying them with a function, f(gl), where gl assigns a thickness to the interface, sl, proportional to
its grade of inhomogeneity. The modified Fresnel coefficients are defined as follows:

řlm = rlm · f(gl) (5)

Introducing Equation (5) in Equation (4), the modified reflection coefficient, ř, is obtained. This
approach yields a simpler and faster solution than EMA, which makes it advantageous for our
application. The form of f(gl) depends on the considered interface model. As explained in [12], f(gl)

could be ideally defined if the exact three dimensional structure of the interface was known. In general,
however, such detailed knowledge of the interface is unavailable, and it is more reasonable to model the
interface profile using an analytical function. Four different interface functions are presented in [12].

The principal causes of interface inhomogeneities are: the roughness of a layer surface and the mix of
materials originated when two layers came in contact. In the case of polymer electronics, the substrate
surface is smooth and does not mix with the first applied layer. Therefore, we can consider the interface,
s2 (Figure 1), as ideal. On the contrary, we cannot discard the presence of roughness and material mix
on the interface, s1, between the first and second layer. In this case, f(g1) must model both kinds of
inhomogeneities [16]. Finally, the reflection coefficient of the interface, s0, between air and the first
layer is modified only by the surface roughness. In this case, g0 approximates the RMSvalue of the
surface roughness [16]. For our measurements, we use roughness function f(gl) = exp (−2(2πgl/λ)2),
which is a modification factor for the Fresnel reflection coefficient. It was generated by modeling the
interface profile by an error function [12,16]. As suggested by Stearns, this function describes an
interface produced by the diffusion of two materials. In most of the cases, gl gives only a qualitative
description of the interface, but, as will be shown, its consideration is essential to measure the layer
thickness correctly.

Figure 1. Two-layer system surrounded by air (n0, k0).
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Equations (2) and (4) assume a completely absorbing or infinitely thick substrate. For thin transparent
substrates, these assumptions are not valid. In this case, it might be necessary to consider the backside
reflection coefficient, r30, at the interface between substrate and air (see Figure 1). This latter requires a
recalculation of r. However, if the coherence length of light is much smaller than the axial dimensions
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of the substrate, the reflectance can be approximated as R(λ) = (ř · ř∗) + h(k3, d3), where h(k3, d3) is
defined as in [26]:

h(k3, d3) =

{
r230, k3 → 0

0, k3 >> 0 and/or d3 →∞
(6)

Figure 2a illustrates our measurement setup. A complete description of this measurement system is
presented in [21,22]. In this setup, light from a spectrally broad source is coupled to a multimode fiber
(Y-branch) and guided by two focusing lenses to the layer system at normal incidence. The reflected light
intensity is then coupled back into the fiber and led to a spectrometer. The focusing lenses introduce a
focal shift in wavelength known as chromatic aberration [23], which affects the signal captured by the
spectrometer. This aberration depends on the axial position, z, and wavelength λ. This distortion is
important for our application, because the moving sample is affected by vertical vibration movements.
These movements alter the variable, z, during the measurement and, therefore, also the form of the
captured signal. To avoid the compensation of this effect by invalid thickness values during the fitting
process, chromatic aberration must be considered in the model. The chromatic effect can be described
through a function, c(z, λ), of the wavelength, λ, and the axial position, z, considering all system
apertures. Figure 2b shows a set of chromatic functions for different values of z [22]. The chromatic
effect on the reflectance can be described by multiplying both signals R(λ) · c(z, λ). The function,
c(z, λ), can be obtained by modeling the setup or by performing a set of off-line measurements. In this
work, c(z, λ) results from a set of measurements as described in [22]. By regenerating or recomputing
c(z, λ), the model can be adapted for a new measurement setup or for new measurement conditions.

Figure 2. (a) Schematic representation of the measurement setup. The source light is
coupled into a Y-branch fiber and guided to the measured object through the lenses, which
introduced a chromatic effect. The multimode fiber has a numerical aperture of 0.22 and a
diameter of 100 µm. Both lenses have a diameter of 12.5 mm and a focal length of 14 mm.
The fill factor is 0.32. (b) Chromatic map, c(z, λ), for −250 ≤ z ≤ 250 µm. The dashed
lines show c(100 µm, λ).
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Now, we combine all described extensions to obtain a reflectance model for two-layer systems.
Equation (4) gives an analytical expression for the total reflection, r, on absorbing substrates. If the
Fresnel coefficients, rlm, in Equation (4) are replaced by those řlm defined in Equation (5), we obtain
an approximation of the total reflection denoted by ř that considers the selected interface models. From
ř, a reflectance signal can be calculated using Equation (3). To consider the possibility of transparent
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substrates, function h(k3, d3), according to Equation (6), must be added. Finally, the complete result
should be multiplied by c(z, λ) to include the chromatic effect described before:

R(λ) = [ř · ř∗ + h(k3, d3)] · c(z, λ) (7)

Note that R(λ) denotes the modeled reflectance spectra, while R0(λ) describes the measured
reflectance. Both spectra will be compared in the next section in order to find the thickness of the
inspected layers.

4. Measurements and Results

4.1. Measured Samples

The analyzed samples are used in polymer electronic applications. They consist of PMMAand
P3HTlayers applied successively by spinning on both transparent (PET) and non-transparent (Si)
substrates. The optical parameters of all materials, n(λ) and k(λ), are well-known. Each sample presents
a border, where each layer thickness can be measured by a profilometer. The device used is a Veeco,
Dektak 6M Profilometer. The profilometer measurements provide the thickness reference values, d01 and
d02, used to validate the proposed model. The layer application method generates a thickness variability
of around ±10%. This should be considered, as the profilometer measurements were performed at the
samples’ edges, whereas the TFR measurements are performed in their centers. Table 1 lists all analyzed
samples and their reference values. The first three samples have a non-transparent substrate of Si, and
the last three have a transparent substrate of PET.

Table 1. Best fitting results and reference values for two-layer systems on non-transparent
(measurements 1–3) and transparent substrates (measurements 4–6). Values are in
nanometers.

Meas. d1 d2 g0 g1 d0
1 d0

2 z

1 (Figure 4a) 254 104 3 27 250 100 10 · 103

2 (Figure 4b) 257 183 1 20 250 180 6 · 103

3 (Figure 5a) 261 218 2 35 250 200 −46 · 103

4 (Figure 5b) 254 152 2 32 250 150 −38 · 103

5 (Figure 6a) 252 247 1 27 250 250 −85 · 103

6 (Figure 6b) 252 192 3 31 250 190 −200 · 103

4.2. Algorithm, Conditions and Computational Times

The measured reflectance, R0(λ), is compared with the modeled one, R(λ), for different values of
film thickness (d1, d2), interfaces (g0, g1) and axial displacement (z). By fitting both signals, the best
parameters are selected in order to characterize the two inspected layers.
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The starting points of the parameters and the searching intervals for the fitting algorithm must be
correctly defined to achieve a valid result. This requires a priori knowledge of the minimum and
maximum possible values for each parameter. This knowledge is based on, amongst others, the samples’
materials, layer application method, measurement setup and experience.

The algorithm can be divided in two steps: the search for the initial points and the measurement
fitting. The search for the initial points is performed with a recursive least squares algorithm. This is
computationally intensive, but it allows larger searching intervals than other more efficient algorithms
without falling in invalid minima. In this case, the limits of the searching intervals for the thickness values
must not exceed ±50% of their real values. This means that the real values should be known a priori
with a precision of ±50%, which is true for almost all practical industrial cases. The initial points are
then precise enough to run the measurement fitting algorithm using smaller searching intervals, allowing
us to use a Levenberg–Marquardt algorithm to solve the system.

The signal capture can be considered instant and not affected by the movement of the sample. The
average fitting time is about 8.9 s, which allows us to control the production every 10 m. In the case of
detecting failures on the thickness values, this rate gives a loss of material between 10 and 20 m, which
is economically acceptable for these kinds of material. Moreover, if the production line guaranties no
abrupt variations of the layers’ thickness, the searching of the initial points can be performed off-line as
part of a calibration process. This latter one reduces the measurement time considerably, allowing for a
higher control frequency.

4.3. Results

We use the first sample in Table 1 to show the influence of each model parameter on the measured
values. The measured reflectance, R0(λ), for this sample is shown in Figure 3 through a solid line. In
the first approach, we limit the model to R(λ) = r · r∗, with r defined as in Equation (4), i.e., without
considering interface irregularities or chromatic effect. The resulting best fitting (curve 1 in Figure 3)
gives thickness values for the first and second layer with deviations of 9.5% and 5% with respect to the
reference values. In the second approach, we incorporate the interface function into the model. In this
case, the Fresnel coefficients are modified as indicated in Equation (5), where f(gl) was defined as a
roughness function [12,16] (the chromatic effect was not considered). Now, the best fitting (curve 2 in
Figure 3) gives deviations of 1.6% and 8% for the first and second layer, respectively. Finally, we test the
complete model described in Equation (7). The best fitting (curve 3 in Figure 3 and also in Figure 4a),
which is shown in Table 1, gives deviations of less than 1.6% and 4% compared to the reference values.

Figures 4a through 6b show the measured R0(λ) and best fitting R(λ) reflectance for all samples
presented in Table 1. For all measurements, the obtained thickness values present a deviation of less
than 9% with respect to those obtained using the profilometer. These results validate our model for
two-layer systems on both transparent and non-transparent substrates.
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Figure 3. Comparison of different definitions of R(λ) for a two-layer system on
the absorbing substrate. The solid line represents the measured reflectance, R0(λ).
(1) R(λ) without considering inhomogeneity or chromatic effect; (2) R(λ) considering
interface irregularities, but no chromatic function; (3) R(λ) considering roughness and
chromatic function.
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Figure 4. Measurement of two-layer systems on an absorbing substrate. The solid line
represents the measured reflectance, and the dotted one is the best fitting result.
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Additionally, although the parameters, g0, g1 and z, are considered in the model to approximate the
values of d1 and d2 to the real ones, they also provide some extra information. Tactile measurements of
the roughness in the first and second layer give mean peak to peak values of around 6.9 nm and 1.3 nm,
respectively. The irregularities of the first interface, s0 (air-first layer), can be completely described by
the roughness of the first layer. Therefore, as expected, the tactile measurement and the values of g0 are
in the same order of magnitude. On the contrary, the tactile measurement for the second layer, which can
only be performed by isolating it with respect to the first one, does not represent the interface, s1. For
this interface, g1 describes a combination between roughness and interface inhomogeneity, which results
in a significantly higher value than that given by the profilometer. Finally, the obtained values of z are
inside the expected ones, and together with the obtained thickness, they can be used together to describe
the setup configuration during the measurement.
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Figure 5. Measurement of two-layer systems on absorbing (a) and transparent (b) substrates.
The solid line represents the measured reflectance, and the dotted one is the best fitting result.
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Figure 6. Measurement of two-layer systems on a transparent substrate. The solid line
represents the measured reflectance, and the dotted one is the best fitting result.
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5. Conclusion and Outlook

A model was proposed to measure the thickness of two-layer systems. This model was tested on
samples used on polymer electronic applications; however, it can be easily extended to other kinds of
surfaces with known optical characteristics. The model follows from an analytical derivation of the
reflectance signal and is extended to consider surface interfaces, measuring setup characteristics and
vertical vibration movements for absorbing and transparent substrates. Our results show that considering
interface irregularities and chromatic effects increases the accuracy of the thickness measurements for
both layers. Our method requires one to know a priori the expected value of the inspected thickness
with a precision of ±50%, which is given for almost all real applications. The validity of the presented
measurements was shown by comparing the obtained results with those of a profilometer device. The
deviation between these two methods remains under the expected layer thickness deviation of 10%. The
first interface parameter, g0, shows a meaningful match with the reference measurements. In the case of
the second interface, the obtained value describes not only the roughness, but also the inhomogeneity, of
the interface between both layers and cannot be compared with the profilometer results. The accuracy of



Sensors 2013, 13 15756

this value will be checked in a future work by using an effective media approach. The presented results
suggest that the proposed approach can be successfully used to measure the thicknesses of two-layer
systems. The proposed method is especially adequate for applications in which a fast and non-contact
inspection is required. This is the case, e.g., for the quality control of electronic components. An
extension of this model to N-layer systems is also planned as future work.
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