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Abstract Motor synergies have been investigated since the
1980s as a simplifying representation of motor control by the
nervous system. This way of representing finger positional
data is in particular useful to represent the kinematics of the
human hand. Whereas, so far, the focus has been on kinematic
synergies, that is common patterns in the motion of the hand
and fingers, we hereby also investigate their force aspects,
evaluated through surface electromyography (sEMG). We
especially show that force-related motor synergies exist, i.e.
that muscle activation during grasping, as described by the
sEMG signal, can be grouped synergistically; that these syn-
ergies are largely comparable to one another across human
subjects notwithstanding the disturbances and inaccuracies
typical of sEMG; and that they are physiologically feasible
representations of muscular activity during grasping. Poten-
tial applications of this work include force control of mechan-
ical hands, especially when many degrees of freedom must
be simultaneously controlled.

Keywords Rehabilitation robotics · Grasping ·
Electromyography

1 Introduction

The human hand has a rather complex biomechanical struc-
ture, and a to date not completely understood neural archi-

C. Castellini (B)
DLR / German Aerospace Center, Institute of Robotics
and Mechatronics, Muenchnerstr. 20, 82234 Wessling, Germany
e-mail: claudio.castellini@dlr.de

P. van der Smagt
Institute of Computer Science VI Technische Universität München,
Boltzmannstr.3, 85748 Garching, Germany
e-mail: smagt@tum.de

tecture to control it. In the analysis of the biomechanical and
behavioural aspects of the hand, one of the most striking
aspects is the high redundancy of its structure, seemingly
having many more degrees of freedom than are actually
used/required. In order to cope with this apparent redun-
dancy, the concept of synergies has been used to describe
functional dependencies among degrees of freedom. Bern-
stein (1967) defines the level responsible for coordinating
large muscle groups and different movement patterns as the
level of muscular-articular links or synergies. Thus, the state
space of the system can be reduced to a reduced number of
independent dimensions. A similar finding is the well-known
combination of motor primitives in frogs by Mussa-Ivaldi
et al. (1994).

A number of recent experimental studies confirm
this theory for the human hand, too. As shown by Santello
et al. (1998, 2002), the simultaneous motion of the fingers is
characterised by coordination and covariation patterns that
reduce the number of independent degrees of freedom to
be controlled by the nervous system. Still, although some
constraints on the musculotendon system, as well as on the
peripheral and central nervous system, can be identified, a
clear relationship between the finger kinematic constraints
and the underlying muscular activity remains to be analysed.
As a matter of fact, the source of such kinematic synergies in
the human hand remains a matter of debate; indeed, the bio-
mechanical structure of the hand, in which tendons activate
multiple digits at the same time, while the related muscles
share common bases, is one source for the synergies (see, e.g.
(Lang and Schieber 2004)); but the spinal circuitry, mapped
only to a small extent to the human hand, co-activates mus-
cles and thus defines synergies (Takei and Seki 2010); and at
the highest level, cortical organisation (Holdefer and Miller
2002) is suspected to play a dominant but variable role in
these.
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We are hereby concerned with the expression of force
synergies in the human hand, when placed in a real-life
environment, i.e. in our case, grasping. When an object
is grasped/held/manipulated, the relationship between hand
kinematics and the forces involved becomes much more com-
plex; to make a detailed analysis, one should use a detailed
model of the environment, of the involved objects and of the
musculoskeletal system to reconstruct the forces from the
kinematic data. The other side of this issue is represented
by impedance control of robotic (possibly prosthetic) hands:
impedance-based control schemes lead to a much higher con-
trol stability, especially in the case where physical contact is
involved (Grebenstein and Smagt 2008; Arbib et al. 2008).
But, the generally high number of degrees of freedom of a
poly-articulated, multi-fingered mechanical hand requires at
least a coordination principle. It is likely that a few simul-
taneous and coordinated forces can be produced and then
mapped onto the degrees of freedom involved without los-
ing too much dexterity; as kinematic synergies do exist in the
control of the human hand, it seems reasonable to believe that
analogous synergies at the level of muscle activation should
be found as well.

We hereby use surface electromyography (sEMG) to
detect muscular activation in the forearm during a grasping
task in humans, and we then check whether a similar sim-
plifying principle (which we will call muscle synergies from
now on) can be found. Muscular activity measured via sEMG
relates in the simplest case nearly linearly to the force exerted
by a muscle (De Luca 1997, 2002); but, given the complex-
ity of the arm/forearm/hand musculoskeletal system, there is
no a priori indication as to whether such a principle should
exist although finger position synergies have been found in
Santello et al. (1998). Some results mapping sEMG activ-
ity to finger, wrist and arm position have actually appeared,
e.g. in (Tsuji et al. 1993; Tenore et al. 2009; Vogel et al.
2011), but the assumption there is that sEMG relates to iso-
tonic/isometric muscle configurations which, in free move-
ment, can roughly be associated to positions. Here, we are
concerned with grasping, therefore those results are not rel-
evant to this work; when dynamic interaction with the envi-
ronment (e.g. objects to be grasped) comes into play, any
such trivial relationship is likely to be broken down.

In this paper, we show that muscle synergies do exist. We
describe an experiment in which 5 human subjects would
grasp 5 objects in 5 accordingly different ways, and show
that there is considerable statistical overlapping among mus-
cle synergies found across the subjects. In other words, all
subjects seem to enact a certain grasp by activating the same
muscles (or groups of motor units) all over. Muscular activ-
ity is gathered using sEMG via 10 commercial prosthetic
electrodes, placed on the forearm of each subject without
targeting any particular muscle. (This qualifies our setup as
simple, easy to use, which is a plus when thinking of possible

application of this research.) The fact that common human
muscle synergies can be identified, notwithstanding the well-
known problems associated to sEMG (muscle cross-talk,
sweating, inter-subject anatomical differences, inaccurate
electrode positioning and so on) paves the way to synergistic
force- or impedance-based control of robotic hands. Once
muscle synergies are identified for a subject, they could con-
stitute high-level force commands for the hand, which would
then be mapped back onto the single degrees of freedom
of the hand itself, therefore greatly simplifying its control.
(A promising result along this line of research appears, e.g.
in (Wimböck et al. 2011).)

A further qualitative analysis of the muscle synergies and
of how the grasps map onto them reveals some regularities
that can be actually mapped onto the anatomy and dynamics
of the forearm, making this result interesting from the point
of view of physiology, too. A similar line of research has
been so far pursued, as far as we know, only in primates and
only loosely in humans. Primates have been shown to gen-
erate consistent-across-subject sEMG patterns in Brochier
et al. (2004); Overduin et al. (2008) when engaged in simple
grasping actions; in those works up to 19 needle (invasive),
sEMG electrodes were used on (in both papers) two animals.
In particular, in Overduin et al. (2008), it was shown that three
synergies accounted for 81 % of the sEMG variance, but the
analysis performed was time dependent, meaning that syn-
ergies are short temporal profiles of activation rather than
single sEMG samples. In this work, we concentrate on a
simpler PCA-based dimensionality reduction (which is the
type effectively used in Brochier et al. (2004) as well as, e.g.
in (Santello et al. 2002)) and obtain quantitatively similar
results, that is, as far as the amount of variance is concerned.

Human beings have been studied from this point of view,
e.g. in (Grinyagin et al. 2005), where a detailed muscu-
loskeletal model was used to reconstruct finger joint torques
from kinematic data (obtained with a Cyberglove similar to
ours). In this case too, similarity among grip patterns was
found. Of course, this analysis cannot be applied to grasping
since joint torques in the latter case depend on the objects
too.

The work we present here is novel in that, as far as we
know, no detailed analysis of sEMG patterns during grasp-
ing (their inter-subject similarity, repeatability, stability and
anatomical relevance) has been so far attempted on humans.
We could afford such an analysis since we use surface
electromyography, which is cheap, non invasive and easy
to use—but, it cannot bear detailed information about single
muscles, let alone single motor units, although some work
on sEMG decomposition (Hamid Nawab et al. 2008) points
to that direction.

The paper is organised as follows: we describe the exper-
iment in Sect. 2, results are presented in Sect. 3 and conclu-
sions are drawn in Sect. 4. This paper can be seen as the
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Fig. 1 Data capturing devices and sEMG electrode arrangement. (left
to right) the Cyberglove we used, an 18-sensor model; schematic repre-
sentation of the location of the sensors on the Cyberglove (22-sensors

model); 5 sEMG electrodes arranged with rubber bands on a Velcro
strap; labels denote ventral (v1, v2, v3) and dorsal (d1, d2) electrodes.

natural followup to Castellini and van der Smagt (2011),
where a much less detailed analysis was carried out, and
no analysis of physiological relevance appeared.

2 Experiment description

2.1 Data gathering

2.1.1 Hand motion

An 18-sensor right-handed Cyberglove (Cyberglove Sys-
tems, www.cyberglovesystems.com, see also Fig. 1, left
panel) was used to gather the finger positions. The Cyber-
glove is a light, fabric, rather elastic glove, onto which 18
strain gauges are sewn; the sewing sheaths are chosen care-
fully by the manufacturer so that the gauges exhibit a resis-
tance which is proportionally related to the angles between
pairs of hand joints of interest. The device returns 18 8-bit
values proportional to these angles, having a resolution of
less than one degree. The resolution is declared to slightly
change accordingly to the size of the subject’s hand, careful
wearing and the rotation range of the considered joint. (For
practical reasons the subject must wear a friction-reducing
glove below the Cyberglove; an initial round of data gathering
revealed that this would not limit the precision of the device.)
We hereby consider all sensor values of the glove, that is, 18
8-bit values. Figure 1, centre panel shows the placement of
the sensors on the 22-sensors variant of the glove, which has
4 additional sensors at the distal phalanges.

2.1.2 Surface electromyography

Muscular activity was gathered by ten Otto Bock MyoBock
13E200 active, double-differential sEMG electrodes (www.
ottobock.com). These electrodes process the raw sEMG sig-
nal using an on-board amplification/bandpass-filtering/recti-
fying circuit. In the typical case, when they are applied over
a single, large muscle, the resulting output is quasi-linearly

related to the force exerted by the muscle, or rather, to the per-
centage of the maximum voluntary contraction of the muscle
(see De Luca (1997, 2002); in Zecca et al. (2002), the raw
signal is visible in Fig. 2(a), whereas the signal obtained from
these electrodes is similar to that in Fig. 2(c)). The use of this
signal rather than the raw one is preferred here since digital
processing is considerably simplified; the unavoidable delay
of around 200 ms introduced by filtering can be neglected for
the purpose of our study due to the chosen data processing
(see below). The usefulness of this kind of electrodes, and
of the signal they provide, has already been demonstrated at
least in Castellini and van der Smagt (2009); Castellini et al.
(2009).

The electrodes were placed on the subject’s forearm sur-
face according to the following rules: they were split in two
sets of five, each set arranged in two lines of two plus three
electrodes, firmly tied to a Velcro strap using elastic bands
(see Fig. 1, right panel). The bands and straps were tied
around the forearm so that

1. the first band surrounded the forearm about 5 cm below
the elbow,

2. the second band surrounded the forearm midway between
the elbow and the wrist,

3. the groups of two electrodes would lie on the dorsal side
of the forearm, whereas the groups of three would lie on
the ventral side.

This placement is intentionally largely irrespective of the
(internal) anatomy of the human forearm so that no med-
ical consultancy is required (no search for relevant muscles
is performed before the straps are secured). Uniform place-
ment, irrespective of anatomy, has already been demonstrated
effective, even on amputees (Castellini et al. 2009), for sEMG
signals classification and regression purposes. In the follow-
ing, we will refer to the electrodes below the elbow as to the
proximal electrodes, to those midway on the forearm as to the
distal electrodes and to the electrodes in general as ventral or
dorsal according to the side of the forearm they were placed
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upon. Ventral electrodes are denoted v1, v2 and v3, whereas
dorsals are denoted d1, d2 (Figs. 1 (right panel) and 2).

The electrodes are connected to a DAQ card sampling the
sEMG signals at 100 Hz.

2.2 Experimental protocol

Six healthy human subjects (all male, all right-handed, age
24÷45 years, 32±8.2 years) joined the experiment; informed
consent was obtained from them before the experiment. The
subjects would sit comfortably in front of a desk; their right

Fig. 2 Bird’s eye view of the experimental setup; the proximal and
distal ventral electrodes (v1, v2 and v3) are clearly visible, fixed on the
subject’s right forearm. (The Figure also depicts a pressure sensor held
with the left hand which was not used in the data processing.)

hand and forearm would be fitted with the electrode sets and
the glove; they would then be instructed to put the right elbow
on the chair’s armrest, and the right hand on the table; finally,
they were instructed to relax. The forearm was kept in a half-
pronated posture, such that its ventral side would be parallel
to the sagittal plane, as if to grasp cylindrically an object
(Fig. 2).

Two spots on the table were highlighted by a clearly vis-
ible marker; then, under the strict request not to rotate the
forearm, the subjects would be instructed to reach and grasp
an object placed onto the desk over the first marked spot;
to carry it over to the second spot; to drop it over there;
and finally to go back to the resting position. (Each object
was lying in such a position that it would be comfortably
grasped without rotating the forearm.) The operation was
indifferently performed this way, or from the second to the
first spot. When the object could not be easily laid stand-
ing, two mugs were used to drop it inside them. This way, a
reach/grasp/carry/drop/rest sequence was performed.

The requirement to avoid lower arm rotation was due
to the necessity of keeping as much as possible constant
the position of the electrodes with respect to the muscles
of the forearm. It is easy to ascertain by palpation, actu-
ally, that the forearm skin moves dramatically with respect
to the muscles, when pronating/supinating. Such an uncon-
trolled movement would have probably introduced too much
noise in the gathered data. The experimenter took care that
the pronation/supination movement was actually never per-
formed during the experiment.

Fig. 3 The five objects while being grasped by a subject: (left to right) flat grasp, pinch grip, tripodal grip, small power grasp and large power
grasp. Notice that the subject never pronates and/or supinates the forearm, as instructed
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The above-described sequence was repeated for 20 times
for each object; 5 objects were in turn used, each one to be
grasped in a different way. Since 6 subjects joined in the
experiment, it was expected that at the end 600 sequences
would be gathered. The objects and grasps selected were
a DVD (to be grasped with a flat grasp), a pen (pinch
grip), a small plastic container (tripodal grip), a dry wipe
marker (small power grasp) and a mug (large power grasp).
Figure 3 depicts the objects and the ways to grasp them.
The movie ‘grasping.avi’ provided as supplemental mater-
ial shows some typical grasping sequences performed by a
subject; in the movie, the carrying phase, that is the phase
during which the object would be held firmly and carried
from one spot to the other, is clearly indicated. The carrying
phase is the time interval of interest, since it is assumed that
during it, a stable grasp configuration would be achieved.
The experimenter verified visually that that would be the
case in all grasps considered; the fact that (Fig. 1, left panel
again) the Cyberglove we used has no fingertips proved
here to be very useful, as it allowed the subject retain full
friction at the finger pads, allowing for completely natural
grasps.

Each sequence lasted less than 3 min for a total of about
15 min for each subject. No subjects reported fatigue, dis-
comfort or pain during or after the experiment.

2.3 Data synchronisation and preprocessing

Data synchronisation was enforced on a Windows PC by
gathering data from each device asynchronously and accu-
rately time stamping each received datum. Time stamping
was enforced by the HRT library Nilsson et al. (2004), giv-
ing a precision of up to 1.9μs. Sample-and-hold interpolation
was used to find synchronised values for the electrodes and
glove sensors. All data were collected in batches, each one
labelled with a corresponding subject and grasp index.

As the setup did not include any way to indicate pre-
cisely when the carrying phase would happen (i.e. an instru-
mented object or a pressure sensor), a manual procedure was
enforced offline to isolate it for each sequence. During the
procedure, the value of the glove index finger sensor and
the sum-of-squares of the sEMG electrodes were visualised;
the experimenter would then identify and note the intervals
corresponding to the carrying phase.

An example sequence (subject 1 doing a flat grasp) is
shown in Fig. 4. Correlation is apparent between the two sig-
nals; the high-valued periods denote the carrying phase, when
muscle activity was maximum and the index finger would
be flexed over the object, as opposed to the resting periods,
characterised by low muscle activity and the index standing
in the resting position (low values). It must be noted that in
other cases the correlation is not apparent and that is why
this process had to be manually enforced. For instance, in

Fig. 4 Typical ‘good’ grasping sequence (subject 1, flat grasp); corre-
lation is apparent between the sEMG power and the index finger position

the large-power grasp case, the index finger would assume
a lower value during lifting than in the resting phase. More-
over, some of the lifting periods were not characterised by
enough muscle activity or by the expected kinematic pos-
tures due to local failure of the sensors. The experimenter
excluded these sequences from the analysis. As well, sub-
ject 4 exhibited little or no measured muscle activity so these
data were removed from the analysis too. This was later on
determined to be due to inaccurate sensor placement at the
beginning of the procedure.

At the end 97 % of the original data, that is 487 lifting
intervals out of the expected 500 were identified: 5 sub-
jects repeating each of the 5 grasps for 20 times. Data were
then normalised by subtracting the mean values and dividing
by the standard deviations, dimension-wise, per-subject, to
remove the intra-subject differences due to the hand size and
the level of muscle fitness.

Finally, each sequence was averaged out dimension-wise.
These average values were assumed as representatives of sta-
ble grasps enforced during each carrying phase. This opera-
tion resulted then in 487 new samples, each one denoting
a sequence labelled by a subject and grasp index. For
each sample, two sets of features were obtained: the 18-
dimensional kinematic features obtained from the glove, and
the 10-dimensional sEMG features obtained from the sEMG
electrodes. Additionally, sometimes only the proximal or the
distal electrodes have been considered, and both sets are
5-dimensional.

Two sets of labels were obtained, one according to the sub-
jects (1, 2, 3, 5, 6) and one according to the grasps (flat grasp,
pinch grip, tripodal grip, small power grasp and large power
grasp, numbered as 1, 2, 3, 4, 5). In mathematical terms, we
have built four sets of samples Xglove, XEMG, Xdist and Xprox,
each one containing 487 elements, denoted as X = {(xi )}n

i=1,
where n = 487 and xi ∈ R

d , where d is 18 for Xglove, 10
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for XEMG and 5 for Xdist and Xprox. Two sets of labels
are then built, Ysubj and Ygrasp where Y = {(yi )}n

i=1 and
yi ∈ [1, 2, 3, 5, 6] for Ysubj and yi ∈ [1, 2, 3, 4, 5] for Ygrasp.

3 Experimental results

3.1 Kinematic synergies and muscle synergies

Principal component analysis (PCA), a very basic dimension-
ality reduction technique (see, e.g. Duda et al. (2001)), was
first applied to the dataset to check that a small number of lin-
ear combinations of kinematic and/or sEMG features would
account for a reasonable amount of variability in the data
set1. In a nutshell, PCA works by first sphering the sample
matrix X (i.e. subtracting from it the average sample values
dimension-wise and then slashing it by the standard devia-
tions), then evaluating its covariance matrix � = 1

n−1 X T X .
� is then decomposed according to the single-value decom-
position,

� = U�V T

where � is diagonal and contains the eigenvalues of �. The
columns of U are rearranged to match the magnitude of the
eigenvalues in decreasing order so that each of these columns,
when applied back to X , produces a linear combination of
the dimensions of X having a decreasing degree of signal
variance. Denoting by Uk the k × n submatrix of U obtained
by selecting only the first k columns of U ,

X∗ = Uk X

is a k-dimensional projection of X onto a space preserving a
certain, maximal fraction of the signal variance in X (where
k < d—a superscript asterisk denotes the projected data
onto k dimensions). By looking at the cumulative sum of the
eigenvalues of �, we can detect how much signal variance is
lost as k is increased until k = d. Each of the k dimensions
is called a Principal component of X . In our case, principal
components of sEMG or glove values denote the (linear)
synergistic sEMG/kinematic activity. (From now on then,
principal components will be denoted as kinematic or sEMG
synergies.)

Consider Fig. 5, showing the percentage of data variance
as more and more synergies are considered. On the left panel,
PCA is applied to the whole dataset altogether, irrespective of
subjects and grasps. In the case of kinematic features (glove
sensors, Xglove), three synergies account for 74.62 % of the
total signal variance; five of them account for 85.52 %. In the
case of sEMG features (XEMG, Xdist, Xprox), the figures for

1 Recall that from now on we will be using the dataset obtained by aver-
aging out the sensor values over the carrying phases identified during
the preprocessing phase.

three synergies rise to 92.63 and 91.11 % (in turn, Xprox and
Xdist) and 83.62 % (XEMG).

This clearly proves that kinematic synergies are present;
our figures are in agreement with previous work, given the
simplicity of the tasks at hand (e.g. Santello et al. (1998)).
The grasps considered can be captured (at 75 % variance) by
three linear combinations of Xglove, meaning that most of the
grasps share the same three characteristic ‘eigengrasps’.

A more interesting result is that very strong sEMG syner-
gies are found as well; that is, that muscles, as represented
by their sEMG values, act in a mostly coordinated fashion,
exerting the same forces over and over again. Three linear
combinations of the 10 electrodes considered account for
slightly less than 84 % of the whole signal variance.

Consider now the right panel of the same Figure. This
time both kinematic and sEMG data have been grouped
per-subject (markers and error bars denote average vari-
ance percentage values plus/minus one standard error of the
mean). In this case, the ‘compression’ obtained by three syn-
ergies is even more evident, being in turn 87.37 ± 1.5 %,
96.36 ± 0.72 %, 95.13 ± 1.23 % and 91.46 ± 1.41 % for
Xglove, Xprox, Xdist, XEMG. This result overall means that
both kinematic and muscle synergies exist, and that they are
even stronger at the single-subject level.

3.2 Common synergy features

We now turn to a more qualitative analysis of the syner-
gies found in the previous Subsection. From now on, we
will consider 3 synergies only, that is, k = 3—this has the
great advantage that data can be visualised, and it involves
an acceptable loss of information as previously stated. We
first focus on a reduced version of the problem, namely we
consider a subset of three grasps: pinch grip, small power
grasp and large power grasp (second, fourth and fifth panels
from the left of Fig. 3). These grasps are very different from
one another from a kinematic point of view; this is reflected
in their distance in standard grasp taxonomies (examples can
be found in (Cutkosky 1989; Kang and Ikeuchi 1993)).

Consider first Fig. 6, depicting the grasps in 3 dimensions
(first, second and third synergy) in the kinematic (left, plot-
ting data from X∗

glove) and sEMG (right, plotting data from
X∗

EMG) spaces. It is apparent that the grasps are well clustered
to the point that a linear classifier (i.e. a plane in 3D) could
separate them perfectly from one another in kinematic space,
and almost perfectly in muscle space. As opposed to this,
consider now Fig. 7 which depicts the same data, but asso-
ciating a colour to each subject (rather than to each grasp):
separability is much less clear. Visual comparison with Fig. 6
indicates that each subject participates in each of the 3 clus-
ters associated with the grasps.

In other words, grasps can be distinguished, but subjects
can not. All subjects roughly do the same things when, e.g.
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Fig. 5 Principal component analysis of kinematic (Xglove) and sEMG
features (XEMG, Xdist, Xprox) as k is increased; the plots show the nor-
malised cumulative sum of the PCA eigenvalues. (left) All samples

considered altogether; (right) grouped by subject, markers and error
bars denoting average values plus/minus one standard error of the mean

Fig. 6 3D visualisation of 3 of the grasps as performed by all subjects; colours denote grasps. Kinematic synergies (plotting samples in X∗
glove,

left); muscle synergies, using all electrodes altogether (X∗
EMG, right)

pinch gripping, both kinematically (and this is no surprise)
and as far as muscle activity is concerned. In order to numer-
ically verify this statement, we now turn to the fully fledged
problem (five grasps, five subjects, 487 samples). For each of
the above-described settings (each setting is mathematically
represented by a sample set and a label set), we ran a multi-
class linear classifier and considered the balanced error rate
(BER) as a measure of separability of grasps and subjects.
The BER is defined as

BER = 1

5

5∑

j=1

c j

l j

where c j denotes the correctly predicted labels for class
j and l j is the total number of labels for class j .

Linear classification is a statistical technique which can
be used, at a very basic level such as this, to check how
separated N classes of objects are (see, e.g., the classic
Duda et al. (2001) again); in particular, for a sample/label
set pair (X, Y ), a linear classifier will here find a set of 3D
planes such that all samples in X associated to a label yi ∈ Y
will be on one side of the plane, whereas samples belonging
to all other categories will be on the other side. As a linear
classifier, we chose to use a support vector machine (SVM)
by linear kernel. SVMs Boser et al. (1992); Vapnik (1998)
are a machine learning method which will find the separating
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Fig. 7 3D visualisation of 3 of the grasps as performed by all subjects; colours denote subjects. Kinematic synergies (X∗
glove, left); muscle synergies

(X∗
EMG, right)

(hyper)plane between two sets of labelled sample, such that
the margin between the categories is maximised. By margin
here it is meant, twice the distance between the separating
plane and the closest sample in either category. The plane
thus found enjoys maximum robustness against noise in the
sampling procedure (Burges 1998); in this sense, it is the opti-
mal separating plane. In mathematical terms, given samples
and labels {(xi , yi )} ∈ (X, Y ), the separating plane is

f (x) = w · x + b =
n∑

i=1

αi yi (x · xi ) + b

where αi , w ∈ R
d and b ∈ R. The αi s and b are found by

minimising a regularised loss function

L(w,α, b) =
{

1

2
‖w‖2 + C · L(w, b, Y )

}

with C ≥ 0 ∈ R.
Since our dataset S consists of a relatively small number

of samples (478) we employed twofold cross-validation and
grid search to find the optimal SVM C hyperparameter; that
means that a randomly chosen half-sized subset of S was
employed for training and the remaining half was used to
test. The procedure was run for 50 times, each time with a
different random choice of the training/testing sets and then
displaying the means and standard deviations of the errors so
obtained. Table 1 shows the results.

As is clear from the Table, trying to tell subjects from
one another is pointless, as all error rates approach the
chance level of 80% (recall that there are 5 subjects). As
opposed to that, grasps can be distinguished quite well; in

particular, kinematic synergies represent an almost perfect
set of discriminating features (see Fig. 6 (left) again). Also,
using the 10 sEMG electrodes altogether an error rate of
6.39 % ± 1.8, % is achieved.

The same trend is visible when considering Table 2, in
which all grasps are considered. Results here are uniformly
worse, as one would expect since flat grasp, pinch grip
and tripodal grip are quite similar to one another. Still the
trend of Table 1 is visible, subject discrimination being uni-
formly worse than grasp discrimination. The sEMG features
(XEMG, Ygrasp) achieve a BER of 33.49 ± 2.50 %, which is
still significantly better than chance level.

Notice that correct classification of sEMG patterns is out
of the scope of this paper—that has already been done with
greater success, e.g. by SVMs with Gaussian kernels. The
interest of the result presented above lies rather in the sta-
tistically significant separability of one or more set(s) of
samples. In this case, an error rate below chance level is
already meaningful. Linear separability here points at the
common pattern underlying a certain class; for instance, the
fact that a plane can separate the large power grasp from
the pinch grip irrespective of the subjects means that an
easy procedure can be found to tell which grasp is being
enacted (for instance, evaluating the sample distance from the
plane itself).

3.3 Inter-synergy distances

The above results clearly establish that strong synergies exist
both at the kinematic and muscular levels during grasping,
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Table 1 Balanced error rates obtained while applying a linear classifier to one of the (X, Y ) sample/label sets shown in Figs. 6 and 7. Considering
three grasps: pinch grip, small power grasp and large power grasp

Kinematic (Xglove, %) sEMG, elbow (Xprox, %) sEMG, forearm (Xdist, %) sEMG, all (XEMG, %)

Grasps (Ygrasp) 0.38 ± 0.38 13.87 ± 2.29 17.13 ± 2.22 6.39 ± 1.87

Subjects (Ysubj) 60.13 ± 6.29 57.15 ± 5.43 74.21 ± 3.71 67.80 ± 5.92

Table 2 Balanced error rates obtained while applying a linear classifier to one of the (X, Y ) sample/label sets shown in Figs. 6 and 7. Considering
all grasps

Kinematic (Xglove, %) sEMG, elbow (Xprox, %) sEMG, forearm (Xdist , %) sEMG, all (XEMG, %)

Grasps (Ygrasp) 18.54 ± 2.01 35.46 ± 3.05 46.28 ± 3.30 33.49 ± 2.50

Subjects (Ysubj) 77.06 ± 2.79 59.45 ± 3.57 71.99 ± 2.80 64.25 ± 4.35

and that they can be effectively used to characterise each
grasp across subjects. A further interesting question is that of
checking whether the grasps look similar in the two spaces
or not. It is expected that similarities should exist in both
spaces, but that they should be different according to the
space.

In order to investigate this issue, we consider the mean
values of each group of samples representing a grasp, both
in the kinematic and sEMG space; this corresponds to con-
sidering the centres-of-mass of the clusters of Fig. 6 (con-
sidering all the five grasps, rather than just three). We then
evaluate the pairwise Euclidean distance between these cen-
tres, obtaining two inter-grasp distance matrices, visible in
Fig. 8. In each matrix D, element Di j represents the Euclid-
ean distance between grasp i and grasp j in the related space.
Distances are normalised between 0 and 1. (The matrices are
obviously symmetric.)

As is apparent from the matrices, the inter-grasp dis-
tances are not quite similar in the two spaces. For instance,
in the kinematic space the small and large power grasps
have 0.39 distance, whereas in the sEMG space this fig-
ure is 1, that is, they are the two most different grasps.
This indicates that the two grasp postures are very differ-
ent (completely open versus completely closed), but the pat-
terns of muscle activation are similar. A striking example of
the opposite phenomenon is the distance between pinch grip
and large power grasp: kinematically there is little differ-
ence (distance 0.35, all fingers wrapped around something),
but a completely different muscle configuration (distance
1) is employed. Finally, notice that pinch grip and tripo-
dal grip are essentially identical from a kinematic point of
view (distance 0.01), but rather different in sEMG space
(distance 0.08). Again, this is sensible, since activating the
middle finger requires additional muscle power, whereas the
two grips look very similar as far as the hand posture is
concerned.

3.4 Anatomical relevance of synergies

Finally, we restrict our attention to the sEMG synergies (that
is, to the columns of Uk) and try to understand what they mean
from a muscular / anatomical point of view. As stated above,
the placement of electrodes is irrespective of the anatomy,
but it was kept carefully uniform across all subjects; i.e. the
ventral electrodes were always placed over the ventral mus-
cles (flexors), the dorsal electrodes over the extensors and
the distal electrodes were always placed farther away from
the elbow with respect to the proximals. In general, muscle
synergies are linear combinations of electrode values which
maximise the signal variance; they reflect the grouped acti-
vation of the forearm muscles. Therefore, inspecting these
combinations should reveal in which ways groups of mus-
cles are activated during grasping.

In order to investigate this issue, the first three columns
of Uk are projected back onto the sets of sEMG electrodes,
thus retrieving the main modes of electrode activation, as
they are spatially distributed over the forearm of the sub-
jects. Figure 9 shows the obtained activations as a polar
graph, for each synergy. Values are normalised between −1
and 1.

In order to facilitate the inspection of the graphs, the distal
and proximal electrode activations are represented with the
same colour in two different shades: normal for the prox-
imal electrodes and light for the distal ones. For instance,
the activation of proximal electrodes in synergy #1 is red,
whereas that of distal electrodes is light red. Moreover, dor-
sal electrodes are shown on the right-hand side of the graphs
whereas ventral electrodes appear on the left, coherently with
the steady forearm posture assumed by the subjects during
the carrying phase; each polar graph can be superimposed to
a forearm going through the page, ventral side on the left.
See again Figs. 1 (right panel) and 2, and the movie ‘grasp-
ing.avi’.
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Fig. 8 Inter-grasp distance matrices. Grasps projected onto 3 muscle synergies (left); onto 3 kinematic synergies (right). Distances are normalised
between 0 and 1

Fig. 9 The first three muscle synergies (first three columns of Uk ) rep-
resented on an electrode-activation axis. The graphs show the dorsal
electrodes (d1 and d2) on the right-hand side, and the ventral electrodes
(v1, v2 and v3) on the left. Proximal electrodes are represented in full-

hue colours (red, green, blue), whereas distal electrodes are represented
in light shades of red, green and blue. Values are normalised between
−1 (centre of the graph) and 1 (outer circle). The zero level is denoted
by the dashed circle

The first remark is that proximal and distal electrodes are
always activated coherently; for example, the dorsal 2 posi-
tion (d2) shows high values in synergy #1 and #2 and low
values in synergy #3, for both the proximal and distal elec-
trodes; the dorsal 1 is low in synergies #2 and #3 and high
in synergy #1; and so on. The shapes of the light- and dark-
coloured lines match uniformly. This is expected, since in
the forearm, muscles stretch along the forearm axis; there-
fore, similar, coherent levels of activation are expected if we
gather the activation potential in different spots along the
axis itself, but without rotating the electrodes position. This
also validates the constraint that the forearm must not be
pronated/supinated during the experiment.

As far as synergies are concerned, synergy #1 represents
a uniform activation of all muscles, flexors (ventral side) and
extensors (dorsal side). This is caused by the coactivation
of the extensor and flexor muscles in every finger flexion
and extension, and reflects the complexity of the complex

underlying hand biomechanics, i.e. the connection between
the tendons themselves as well as between the tendons and
the joints. Tendons usually have multiple insertion points in
the finger, and the stable movement of a finger involves the
coactivation of many muscles to prevent instability of the
same as well as of the other fingers.

On the other hand, synergies #2 and #3 take into account
more prominent activations of, in turn, the upper dorsal (d2)
and the upper ventral (v1, v2) sides. This is correlated to the
selective activation of the extensor muscles during pinch grip
(to refrain from clutching an object with all fingers) and other
similar grips (for instance, the tripodal).

This is confirmed by Fig. 10, in which each of the five
grasps considered is projected onto the three muscle syner-
gies of Fig. 9—in other words, the grasp components along
the three synergies are visualised. As one can see, synergy
#1 is maximally active in the power grasps, much less in
the tripodal and minimally in the pinch and tripodal grip.
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Fig. 10 The five grasps, expressed in terms of the three muscle syner-
gies visible in Fig. 9

We interpret this as reflecting the uniform activation of the
muscles when a cylindrical or spherical grasp is required.
In these cases, there is no selective activation on one side
or the other. Remarkably, the tripodal grip shows a much
higher usage of this synergy with respect to the pinch grip.
As opposed to that, synergies #2 and #3 are activated in the
same order of magnitude of synergy #1 only in the cases of
the flat and pinch grips, where a really selective activation of
two or three fingers (and therefore of different parts of the
flexors/extensors) is required.

4 Conclusions and discussion

4.1 Evidence of muscle synergies

The concept of synergies has since long been established in
the kinematic description of the human hand. Indeed, when
taking a large number of everyday grasps into account, most
movements of the fingers of the hand can be described with
a very limited number of principal components (i.e. 3–5
Santello et al. (1998), considerably less than the number of
degrees of freedom of all fingers combined, i.e. 25 Stillfried
and van der Smagt (2010)). Complementary to that, this work
tries to answer the following, so-far unanswered question: are
analogous synergies also present at the level of the exerted
grasp forces and, consequently, of the activation of the fore-
arm muscles?

Our results confirm that, at least in this experiment, and
using surface electromyography, this is the case. Muscle acti-
vation data, i.e. the sEMG signal gathered from 5 human
subjects during a grasping task, can be represented using

as few as 3 principal sEMG components (muscle syner-
gies) while retaining 85–90 % of the signal variance. More-
over, the signal samples can be effectively linearly separated
when clustered on a per-grasping basis, but not on a per-
subject basis. From this, we conclude that as few as 3 sEMG
synergies are sufficient to characterise one among 5 grasps,
with a precision which obviously depends on the (muscular)
similarity among grasps, but that anyway largely surpasses
the corresponding precision when trying to discriminate
subjects.

The fact that we employ such a simple classification
system as a linear discriminant (Support Vector Machine
with linear kernel) proves that the separation is not only
above chance level but also evident. Analogously to what
happens for kinematic synergies, there are muscle syner-
gies in humans; and when humans engage in a grasping
task, they are characteristic of grasp types, but not of sub-
jects. In one word, they are largely invariant across (our)
subjects.

4.2 Anatomical relevance of muscle synergies

Kinematic synergies are evidently related to the shape of the
objects which are being grasped, meaning that their combi-
nation leads to the same hand shapes all over. An analogous,
but different, story emerges from the qualitative analysis of
muscle synergies. In our experiment, the sEMG electrodes
were placed at anatomically similar locations in all subjects,
without targeting single muscles but rather groups of them,
namely the flexors (on the ventral side of the forearm) and
the extensors (on the dorsal side). By back-projecting the
3 sEMG principal components on the electrode layout (con-
sider Fig. 9 again), we discovered that each synergy corre-
sponds to a qualitatively very different synergistic muscle
activation: uniform activation, activation of the dorsal mus-
cles near the radius and activation of the flexors near the
radius.

A description of the grasps according to muscle synergies
confirms that each grasp employs each synergy to very dif-
ferent degrees. (This analysis reminds of that found for kine-
matic synergies in, e.g. (Santello et al. 1998, 2002; Bicchi
et al. 2011).) From this, we conclude that muscle synergies
are physiologically plausible representations of the grasps
themselves, or rather, of the muscle activations underlying
them. As an aside note, it would be interesting to validate
this grasp/activation correspondence by comparing it to a
pre-existing analogous grasp taxonomy/hierarchy. We could
not find anything as such in the literature, nor we could use to
this aim any well-known taxonomy such as, e.g. Cutkosky’s
Cutkosky (1989) or Kang’s Kang and Ikeuchi (1993), which
assume task-oriented and purely kinematic points of view.
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4.3 Kinematic and muscle synergies

Inter-pattern distances (consider Fig. 8 again) show that
force-similar grasps are close to each other in the 3-principal-
component sEMG space, analogously to what happens in
the kinematic (Cyberglove data) space, and that the sEMG
and kinematic distance matrices are very different from each
other, as it is intuitively expected. Grasps which require sim-
ilar muscle activations do not necessarily match pairs of
grasps which correspond to similar finger positions.

This sheds some light on the standard approach to grasp
planning, in which mostly a purely kinematic stance is
assumed. During the reaching/pre-shaping phase, it is proba-
bly best to work with the hand configuration (finger positions)
to match the shape of the object to be grasped; but, to then
enforce grasp stability it might be useful to also consider the
required force configuration at the fingertips. Such a force
configuration might effectively be planned in advance using
the sEMG signal of a human subject, for instance, during tele-
operation, mapped onto the dynamics of the robotic gripper.
Indeed, in Brochier et al. (2004) it was shown that different
EMG signals related to different objects differed not only
during grip but also during the reaching movement towards
the object.

4.4 Applications

This result is still mainly at the level of basic research; in order
for it to be applicable, the issues of stability and generality
of human muscle synergies must be first investigated. Firstly,
the recurrence of (at least) comparable synergies across ses-
sions of data gathering must be assessed. The sEMG of a sin-
gle subject is notoriously prone to wide changes as the subject
sweats, as electrode positions vary when they are donned and
doffed, and as muscle fatigue appears. The situation is even
worse when comparing the signal across subjects, given the
natural variability of human anatomy. Finally, one of the main
target applications of this work is about amputees, and every
amputation is in general different from all others, making it
quite unrealistic that previous knowledge extracted from a
pool of subjects (either amputated or intact) will generalise
to new amputees.

Actually, the use of surface EMG is, from this point of
view, a hindrance; the problem of knowledge transfer across
subjects has already been investigated in this field (Castellini
et al. 2009) with rather negative results, at least using a naive
application of previously trained models on new subjects.
A more sophisticated technique has been used with better
success in Orabona et al. (2009); Tommasi et al. (2012), but
in that case the subject pool was remarkably larger. An even
larger pool of subjects is envisioned to be used in the Ninapro
project (Atzori et al. 2012).

Of course, one slightly less comfortable, but feasible, sce-
nario is that of training the classifier for every subject before
going into action. In this case, the situation seems much better
even for amputees: residual, stable muscle activity of excel-
lent quality has recently been found in long-term amputees
(Sebelius et al. 2005; Castellini et al. 2009; Tenore et al. 2009;
Cipriani et al. 2011).

Having said that, the use of sEMG synergies finds it
main application in force- and impedance-based control of
mechanical and prosthetic hands. By considering the sEMG
synergies when detecting muscular activity and controlling
the prosthetic hand correspondingly, a more robust approach
to sEMG-based hand prosthesis control may be obtained; in
particular, even mechanical hands gifted with a high number
of degrees of freedom can be controlled with a reduced set
of commands (Wimböck et al. 2011).
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