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Abstract— We address two principal difficulties of multi-
target tracking in a real traffic scenario. Firstly, fast moving
traffic scenarios lead to large displacements and complex
interactions with occlusions and ambiguities. Secondly, the
tracking application for real traffic scenarios has the online
requirement. To surmount these difficulties, we propose an
approach to track the multi-target online by Boosting and scene
context reasoning. To this end, we use a two-stage system, where
the first stage learns a non-linear classifier which is capable of
generating the observation similarities. In the second stage, we
demonstrate a novel relationship between observations and the
scene layout parameters. Using a probabilistic formulation and
the above relationship, our method has the unique ability to
handle exceptions. To evaluate our method, we create three real
traffic data sets, covering urban, rural, and highway conditions.
We hope that these datasets will push forward the performance
of tracking systems when being moved outside the laboratory
to the real world.

I. INTRODUCTION

Tracking objects is important for many computer vision

applications. This is an easy task when the objects are

isolated and easily distinguished from the background. How-

ever, in real world scenes, the following often result in in-

correct trajectories: strong occlusions, illumination changes,

driving at a high speed, similar object appearance and false

observations often result in incorrect trajectories.

Recent studies focus on tracking-by-detection methods

as a result of significant improvement in object detection

algorithms [6], [5], [18]. These techniques often deal with

the imperfect detections by global optimization such as

integer linear programming [12], [1], and finding min-cost

flow on the flow network model [25], [19]. Robust tracking

has been achieved by hierarchical tracklet association based

on the Munkres algorithm [11], [17], conditional random

fields [23], maximum weight independent set [3]. However,

although there has been significant improvement in tracking

performance, many of these methods are limited to offline

processing as they consider future information for opti-

mization. Although a few techniques perform multi-target

tracking online, most of these methods are developed under

a controlled environment (i.e. stationary camera or slowly

moving) [13], [24], [22].

The key factor to guarantee a successful and robust track-

ing method is the association cost. For this reason, various

affinity measures between a pair of observations have been

studied in the past. Distances between the descriptors of the
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detections are often used as the affinity measurements [16],

[11], [17], [25], [12]. For example, Mahalanobis distance

between descriptors is defined as the affinity updated by

online learning metrics during tracking. Affinity is often

determined by learning the discrimination among targets

online [23], [15], or jointly solving classification and ranking

of associations [17]. However, the definition of this kind

of affinity may not be sufficiently rigorous especially when

multiple features are incorporated and the dependencies

between each other are difficult to be predicted properly.

To this end, we provide an online algorithm to track

multiple objects through data association based on Boosting

and scene layout without the construction of tracklets (See

Fig. 1). The data association is achieved by the predicted

structure in the Boosting framework [7]. Furthermore, we

claim that jointly tracking objects and reasoning scene con-

text are critical. The idea that recognition and reconstruction

are mutually beneficial has been investigated in [9], [10],

[2]. We start from the intuition that, in a traffic scenario, an

object’s location and pose are not arbitrarily distributed but

rather constrained by the fact that objects must lie on the

ground. We formulate the problem of joint object tracking

and scene reconstruction as a novel relationship between

tracking objects and the scene layout parameters. Using a

novel probabilistic formulation our method has the ability

to to handle the exceptions and achieve robust tracking

performance.

Recently, [8] found that algorithms such as stereo match-

ing and object detections ranking high on existing bench-

marks often failed when confronted with more realistic sce-

narios. To evaluate our method, we create three challenging

sequences, named RURALseq, URBANseq and HIGHWAY-

seq. Most of current datasets are simplistic, e.g. ETH [4] is

captured by cameras installed on a slowly moving chariot.

Ours aim at real traffic applications.

The structure of the paper is as follows. In Section II we

decribe how our multi-target tracking algorithm is formulated

by boosting. Section III describes the exceptions handling

by our scene layout model. The data sets for the real traffic

scenarios are described in Section IV. Results for the these

data sets are presented in Section V, before the paper is

concluded in Section VI.

II. MULTI-TARGET TRACKING BY BOOSTING

Let Xk = {xk
1 , ..., x

k
nk
} be a set of detected objects of

interest at frame k. In the golablly-optimal data association,

an association hypothesis T is defined as a set of single

tracking hypotheses,i.e. T = {Tk}. The objective of data

association is to maximize the posteriori probability of T
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Fig. 1. Overview of our multi target tracking system by boosting and scene layout. Firstly, we learn the strong classifier and predict the matching structure.
Secondly, we learn the scene model to handle the exceptions. We can efficiently reject the false observations and model the long-term occlusion/coexistent
occlusions.

given the detection set X = {Xk}. This kind of data

association is able to find the global optimum efficiently but

is limited to offline batch processing. To achieve the online

requirement, we present how the Boosting formulates the

data association problem for multi-target tracking.

A. Features representation

We compute a feature vector Ψkk+1
ij between any pairs of

detections xk
i and xk+1

j from a pair of adjacent frames k
and k+1. To learn the structure of data association between

two adjacent frames, we assign each feature vector Ψkk+1
ij a

corresponding class label fkk+1
ij . Here, we have two classes,

called positive and negative, or p and n, respectively. The

positive class consists of detection pairs from the same target,

the negative class consists of detection pairs from different

targets. For each pair of adjacent frame k and frame k +
1, we define an augmented feature map Fkk+1, which is a

collection of the feature vectors and class labels between all

pairs of detections.

To learn a strong classifier using boosting, κ hand-labeled

feature maps from the training data are provided. Let Np and

Nn be the number of training feature vectors belonging to p
and n, respectively, We write Φ as a combination of feature

vectors and class labels from κ hand-labeled feature maps,

Φ = {(Ψ1, f1), . . . , (Ψk, fk), . . . , (ΨN , fN )}
N = Np +Nn (1)

B. Association using Boosting

Our data association algorithm uses the pairwise com-

parison of detections. All dimensions of the feature vector

Ψkk+1
ij are combined in a non-linear manner using a boosting

classifier. There are two main parts of the algorithm, the

first part is the learning phase where a classifier learns from

the training data. The second part is the classification phase,

where the learned classifier is used to classify feature vectors

in multi-target tracking experiments.

The learning phase of boosting is an iterative procedure

that consecutively adds weak classifiers to a set of previously

added weak classifiers. The weak classifiers used here are

decision stumps. In each iteration, the weak classifier that

minimizes the weighted classification error is chosen. Given

the parameters of the best weak classifier, the training data is

classified and the weights of the correctly classified data are

decreased.This procedure is repeated until T weak classifiers

have been computed. Weak classifiers can be added several

times in each dimension of Ψi. The weighted combination

of T weak classifier together create the strong classifier. The

closer the strong classifier C(Ψ) is to zero, the higher the

likelihood of the feature vector Ψ belonging to positive class

is. A detailed presentation of Boosting for data association

is given in Algorithm 1.

C. Optimization

During prediction, within the strong classifier it is easy

to transform the feature map Fkk+1 to the probability map

Pkk+1. Let Cij and f̂ij be a compact way of writing

C(Ψkk+1
ij ) and f̂

kk+1

ij .

Pkk+1 =

198198198198



Algorithm 1 Boosting for data association used in multi-

target tracking algorithm

Input: {(Ψ1, f1),. . . ,(Ψi, fi),. . . ,(ΨN , fN ) with the number

of corresponding class Np, Ns }
Weights initialization: wi

1 = 1/(Np +Ns),
∀i
for τ = 1; τ ≤ T ; τ ++ do

Weights normalization:

w̄i
τ =

wi
τ∑N

n=1w
j
τ

, ∀i (2)

Select the best weak classifier: the one that minimizes

the weighted error,

Θτ = argmin
Θ

N∑
i=1

w̄i
τ | c(Ψτ ,Θ)− fi| (3)

Define eτ the corresponding weighted error.

Update the weights:

wi+1
τ = w̄i

τ (
eτ

1− eτ
)
1−δi ∀i (4)

where

δi =

{
1 c(Ψi,Θτ ) = fi
0 c(Ψi,Θτ ) �= fi

end forOutput:

C(Ψ) = 1−
∑T

τ=1log(
1−eτ
eτ

)c(Ψ,Θτ )∑T
τ=1log(

1−eτ
eτ

)
(5)

⎡
⎢⎢⎢⎣

(C11, f̂11) (C12, f̂12) . . . (C1nk+1
, f̂1nk+1

)
...

...
. . .

...

(Cnk1, f̂nk1
) (Cnk2, f̂nk2

) . . . (Cnknk+1
, f̂nknk+1

)

⎤
⎥⎥⎥⎦
(6)

To solve the data association and achieve the global

optimum between a pair of frame k and k + 1, we solve

the following optimization problem,

f̂
∗
= argmax

f̂

∑
f̂C (7)

with∑
i

f̂ij ≤ 1,
∑
j

f̂ij ≤ 1, f̂ij ∈ [0, 1], f̂ijCij ≥ μ (8)

where f̂ij denotes the predicted class label that is 1 when the

feature vector Ψij belonging to positive class. We interpret

the likelihood of the feature vector Cij as the weight of

edges in a bipartite graph. The optimization problem in (7)

is equivalent to finding the maximum weight matching under

the constraint (8).

Pkk+1 =

(
Pkk+1 Pmi

kk+1

P en
kk+1 −∞

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 . . . C1nk+1
μ . . . 0

...
. . .

...
...

. . .
...

Cnk1 . . . Cnknk+1
0 . . . μ

μ . . . 0
...

. . .
... −∞

0 . . . μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

To solve the constraint (8), we construct an extended

probability map Pkk+1 (9). For clarity, we omit the predicted

class label f̂ij in Pkk+1. We introduce two groups of virtual

maps P en
kk+1 and Pmi

kk+1 . Munkres algorithm [14] can be

applied to the extended probability map Pkk+1 , solving the

optimization problem in (7) with the constraint (8).

III. MODELING SCENE LAYOUT TO HANDLE EXCEPTIONS

Based on the Boosting algorithm described in Section

II, we can track all possible pairs of targets between two

adjacent frames. However, for the applications under the

real traffic scenarios, the rapidly changing traffic environ-

ment, fast moving targets and long-time occlusions exist.

Therefore, we apply the scene layout model to handle this

kind of exceptions. Specifically, we advocate the importance

of geometric contextual reasoning for object detection and

tracking. We discuss the functionality of the scene layout to

model the false observations and occlusions

A. Modeling objects and scene layout(MOSL)

We combine available prior knowledge with image

evidence to reconstruct the 3D positions of all objects in

the scene. Following that we first introduce notations and

assumptions and then formulate the problem.

Assumptions and notations We assume that each object

lies on the ground at an upright pose. This assumption is

satisfied in most real world scenes. For the traffic scenarios,

a vehicle is usually touching the ground by four tyres rather

than only one and a pedestrian is usually standing vertically

rather than obliquely. The ground plane is parameterized by

its surface normal �n and its distance hn to the origin of the

coordinate system (e.g. the camera). Let r be the ray that

connects the objects’ center O and the camera center. Let

zenith angle φ be the angle between ray r and �n. We define

α the object’s observation pose. We define bbox by the

height h and width w of the object on the image coordinate

framework. We denote scene information L = (�n, hn, fc).

Modeling objects and scene layout The goal of

this work is to infer the relationship between L and objects

and how to locate objects in the 3D camera reference

system. Denote by ||r|| the distance between the object

location O and the camera. Assuming that we have some

prior knowledge about the real size of the 3D object,

the object distance ||r|| can be estimated from the object

scale in the image by means of an inversely proportional

relationship. Specifically,if an object’s bbox’s height and

width are h and w, its category is c, and given pose α

199199199199



and φ, we just use the linear regression to approximate its

distance ||r|| by the following linear combination:

||r|| � θ1(α, φ, c)
fc
w

+ θ2(α, φ, c)
fc
h

(10)

where θ1 and θ2 are functions of the object’s pose and

category. A more precise modeling of this relationship goes

beyond the scope of this paper. We instead use linear

regression to learn θ1 and θ2 for each set of (α, φ, c) where

ground truth pose and distance ||r|| are available. As a result,

given the detection and its image coordinates (u, v) from the

detector, its 3D coordinates D can be estimated in the camera

coordinates as follows:

D =
||r||√

v/fc
2
+ v/fc

2
+ 1

⎛
⎝ u/fc

v/fc
1

⎞
⎠ (11)

This allows us to relate the 3D coordinates of detections, the

scene information L, and the distance d between detection

and the ground as d = DT�n+ hn

B. False Detections Rejecting(FDR)

False detection is common since the object detection

algorithms can not provide perfect detection results. [13]

assumes that false detections occur randomly, and have short

trajectories. However, this may remove some true-positive

objects which have short trajectories. [6] extracts additional

features like shape features to provide shape-constraints

among objects. However, this is computationally expensive.

To effectively reject false detections, we propose to reason

which detections may be rejected by MOSL constructed in

III-A.

The first step of FDR is to generate false detections
hypothesis x̂t

i . We say that detection xt
i is considered false

detections if and only if the observation likelihood of xt
i is

smaller than a certain threshold. In the second step of FDR,

the proposed MOSL formulations (10) and (11) are applied

to the false detections hypothesis x̂t
i.This allows us to obtain

the distance dti between x̂t
i and the ground. We say that false

detections hypothesis x̂t
i is considered false detection if and

only if the distance dti is below a certain threshold.

C. Occlusion/Reappearing model

Long-term occlusion and coexistent occlusions are another

critical challenge in visual tracking. To effectively handle

this kind of problems, we propose to reason explicitly

about which objects may be occluded by which others and

which objects may be reappearing at which time. Following

that we construct an explicit occlusion/reappearing model

(ORM) in two steps.

Occlusion hypotheses generation The ORM generates

a set of occlusion hypotheses. Only occlusions between

tracked objects are addressed. We obtain a missing object

set Xmi
k−1 from frame k − 1 . For each missing object

xi
k−1, xi

k−1 is directly occluded by a tracked object xi
k if

and only if ||rik−1|| is greater than ||rjk||, and the expected

visibility Vi
k−1 is below a certain threshold Vmin. Given the

observation xi
k−1 , we can compute the expected visibility :

Vi
k−1 = Area(xi

k−1 ∩ xj
k)/Area(xi

k−1) (12)

where Area(xi
k) denotes the image area in pixels covered

by the projections of xi
k. We then add it to the occlusion

hypotheses set X̃k and update hk−1
i . Repeat this until no

new hypotheses can be generated.

Occlusion/Reappearing hypotheses verification We

apply the same constraints in occlusion hypotheses

generation to X̃k and Xk+1. For the hypotheses which pass

the constraints, we update them to set X̃k+1. Let Xr
k+1

be the observation residuals (unassociated observations)

of Xk+1. The proposed optimization (Sec.II-C) is applied

again to the probability map generated by X̃k+1 and Xr
k+1.

Hypotheses in X̃k+1 that are matched with detections in

Xr
k+1 are considered reappearing objects. The unmatched

hypotheses are maintained for potential hypotheses in the

future.

IV. DATA SET

We augment a subset of the KITTI vision benchmark [8]

with rough detections and annotated track ID. The KITTI

vision benchmark is captured by driving around a mid-

size city, in rural areas and on highways. Three challenging

sequences under different scenarios are selected to evaluate

our approach, named RURALseq, URBANseq and HIGH-

WAYseq. We run an ”out-of-the-box” joint object and pose

vehicle detector [18] with a lower threshold. This means

to run an object detector with more false detections. We

manually annotate the track IDS on these three sequences.

V. EXPERIMENTS

Our multi-target tracking technique based on the Boosting

and Scene layout is applied to track multiple vehicles in

the real traffic scenarios, and its performance is validated on

RURALseq, URBANseq and HIGHWAYseq. In this section,

we first describe the features used in our approach. Next

we quantitatively evaluate our training process. Finally, we

present the performance of our approach and analyze the

experimental results.

A. Features

We compute the feature vector Ψij between each pair of

detections from a pair of consecutive frames. Three different

kinds of features are employed in our application: detection
features, layout features and image features. The intuition

behind the choises of feature is that the computational cost

of the feature vector Ψij is minimal and different kinds of

features are complementary to each other.

For detection features, we calculate the pose similarity of

the pair detections. We also compute the difference of the

observation likelihood of the pair detections given the penalty

to their sum. For layout features, we compute the Euclidean

distances of the pair observations under the vehicle and im-

age coordinates. The visible coverage of the pair observations
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(a) Error rates against the training rounds T (b) Receiver operating characteristic curves

Fig. 2. Classifier performance

Area(xi
k−1 ∩ xj

k)/Area(xi
k−1 ∪ xj

k) are also used. For the

image features, we employ the histogram of LBP feature

[20] and HSV features. We first define the inside region

and outside region in the bbox. Then, we divide both inside

and outside regions into 2× 2 and 3× 3 sub windows. We

compute the histogram of LBP feature and HSV feature at

each sub window. The affinity between a pair of histograms

is computed by Bhattacharyya coefficient.

The final feature vector Ψij is 51 dimensional – 2 dimen-

sions for detection features, 3 dimensions for layout features
and 46 dimensions for image features

B. Analysis of training process

In this section we evaluate the classifiers learned in Sec

II-B. When learning a classifier, an initial important step is to

determine an appropriate number of training rounds T. The

strong classifier’s receiver operating characteristics (ROC)

are evaluated since the performance of the classifier directly

affects the tracking results. The classifier is evaluated in

terms of detection rate (TD), missed detection rate (MD)

and false alarms rate (FA). The experiments in this section

were conducted using 10-fold cross validation on the data

sets.

Number of training rounds Strong classifiers were

trained for different values of T, the resulting error rates

are shown in Fig. 2a. The validation error levels decrease

as the learning algorithm iterates up until about 80 training

iterations. Hence, T=80 was chosen for all subsequent

experiments.

Classifier performance In this section we present the

performance of the classifiers in terms of TD and FA, as

defined above. Fig. 2b shows ROC curves for the classifiers

. The area under the ROC-curve is approximately 1 for all

data sets. Good levels of detection are achieved.

C. Tracking performance

Evaluation metrics To evaluate our system, we use

the performance metrics described in [21]: Rec - correctly

matched objects to the ground truth; Prec - correctly matched

objects to output objects; GT - number of trajectories in the

ground truth; MT - percentage of trajectories tracked for

more than 80%; ML - percentage of trajectories tracked for

less than 20% ; Frag - times that a trajectory is interrupted;

IDS - times that a tracked trajectory changes its matched

GT identity.

Table 1: Tracking results in RURALseq ( R ), URBANseq( U ) and
HIGHWAYseq ( H )

Method Test Train Rec Prec GT MT ML Frag IDS

Boost R U 0.933 0.892 41 0.926 0.073 1 1
BoostScene R U 0.977 0.939 41 0.951 0.048 2 1
Boost R H 0.943 0.892 41 0.950 0.049 2 1
BoostScene R H 0.982 0.942 41 0.976 0.024 2 2

Boost U R 0.795 0.936 56 0.607 0.160 7 0
BoostScene U R 0.979 0.960 56 0.964 0.017 7 0
Boost U H 0.827 0.938 56 0.660 0.142 7 0
BoostScene U H 0.980 0.959 56 0.964 0.017 7 1

Boost H U 0.944 0.836 24 0.875 0.041 1 0
BoostScene H U 0.937 0.891 24 0.917 0.083 1 0
Boost H R 0.942 0.814 24 0.833 0.083 1 0
BoostScene H R 0.937 0.892 24 0.917 0.083 0 0

Results and Discussion We report our tracking per-

formance on our new datasets by 3-fold cross validation.

Examples of the tracking results are shown in Fig. 3. Table

1 shows the quantitative results obtained for the RURALseq,

URBANseq and HIGHWAYseq datasets. Each test data

contains four different results by our algorithm since two

different training set were tested. Among them, ”Boosting”

denotes our tracking method without modeling scene layout,

while ”BoostingScene” means our final method. As shown

in Table 1, from the Boost to BoostScene, the tracking

performance is progressively increased. BoostScene holds

superiority in most of the metrics. Especially, BoostScene

tends to achieve high precision and recall compared to Boost,

which means that our scene layout model can reject most

of the false detections. Note that our method tends to have

more fragments but fewer ID switches. This is natural as our

algorithm is an online method that achieves global optimum

between adjacent frames.

VI. CONCLUSION

We present a framework to track multi target in real traffic

scenarios. Our method integrated the Boosting algorithm

and the scene layout to enhance the performance of the

tracker. Our algorithm can deal with various exceptions

such as false alarms, long-term occlusions and occlusion
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Fig. 3. Tracking results of our method: show occlusion/reappearing model. ID 56 is occluded by others for 10 frames. Although two occlusions coexist
in our scenario. Our method successfully tracks these targets.

reappearing. Furthermore, we provide three new data sets of

the real world scene. We hope that these data sets could push

forward the performance of tracking systems when being

moved outside the laboratory to the real world.
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