
1

Working Paper - Safety Critical Systems based on COTS Multi-Core Processors

Towards new system architectures for highly automated and autonomous systems

Lukas Steinert, M. Sc.

Institute for Flight System Dynamics, TU Munich

Abstract

In upcoming highly automated systems in safety-

critical application domains, such as aerospace and

industrial machinery, the demand for more

computational resources per control unit is constantly

rising, accompanied from a shift in the chip industry

towards multi-core devices with enormous complexity

and high levels of feature integration. Current

regulation and standards for certification does not yet

consider these devices, or explicitly denying their use

as a pure single-core processor replacement. Within

this work, we address the issue of multi-core

certifiability on the system level, providing two

possible board-level architectures. In addition, a

safety case is provided to show how a proper system

architecture approach can fit multi-core devices in

current regulation, raise system reliability and solve

the common failure mode problem in the multi-core on

the board level. Alongside with the hardware

architecture, a high level software architecture is

presented to allow mixed-criticality applications to be

executed side-by-side on the multi-core with spatial

and temporal isolation. We follow a requirements-

driven work flow, to first define a set of requirements,

to be fulfilled by the secondly proposed architectural

configurations, followed by a safety analysis and the

presentation of a possible certification argumentation

for an industrial and aerospace context.

Introduction

During the recent years, multi core based System-on-

a-Chips (multi-core SoCs) rose and found a wide

spread application in general purpose, mobile and high

performance computing. In the embedded systems /

real time domain and especially in the field of safety

critical systems, be it in an industrial, aerospace or

medical context, multi-core SoCs have not found

application in certified applications. Usually, these

domains rely on either special build devices (ASICs)

or domain specific COTS processors, usually

generations behind current technology levels for the

most critical applications. Due to the tremendous

efforts and development costs associated with multi-

core SoCs, the trend for tailor-made or domain specific

devices will not be continued broadly with those

devices. Today’s SoCs are designed for either

Networking applications (Routers, Switching,

Baseband), general-purpose- or server-computing

applications. They generally lack specific architectural

features for the safety critical domain, for example

strict core separation at silicon level, special

monitoring function units or deterministic on-chip

networks, which render them practically un-useable in

general for a simple single-core processor

replacements in current board level architectures. With

shrinking technology levels and the continuous

demand for more computational power in a single

package, multiple cores in a single device are already

starting to pop up even in small microcontroller

packages and will certainly be the norm, rather than

the exception, in future device generations.

A multi-core based solution for safety applications

faces a multitude of certification concerns and risks. In

the light of the ISO/TR 61508 [1] or the ISO 13849 [2]

for example, an applicant has to derive an FEMA on

the system and board level, possibly accompanied by

fault tree analysis, markov analysis or other methods

in order to approximate the remaining possibility for

predetermined dangerous hazards during the safety

assessment. This also requires in depth, silicon level

information, reaching far into the SoC when internal

function units guarantee certain safety features, which

the semiconductor manufacturer usually does not

provide for multi-core devices. Based on this

information, one derives the base events for the

FMEA, in order to compute the respective safety

metrics. In the aerospace domain, we face an even

2

worse situation. The certification authorities yet lack a

common position on this new technology and present

their current view in the CAST-32 [3] and CM-

SWCEH-001/002 [4]. In order to provide a reliable

platform for future generations of safe systems, one

has to overcome the inherent problems associated with

multi-core devices 1 , while designing with existing

COTS devices to avoid costly custom ASICs. This in

turn will raise the computational power, available for

future highly automated or even autonomous systems,

for current development trends towards unmanned

aerial vehicles, driverless vehicles or new generations

of industrial systems. With a steep increase of

available computational resources per LRU, many

current system architectures, with largely dedicated

LRUs per system function, can be reduced and

centralized to a single, redundant, high-integrity

platform, instead of providing per-function

redundancy via dedicated LRU clusters.

Since the margin and volume of embedded

applications (despite automotive) is quiet low

compared to server or telecommunication

applications, the semiconductor manufacturer may not

invest in the extremely costly development efforts for

domain-specific devices with long ROI periods.

Therefore, we focus solely on applying available

COTS devices within our proposed architectures.

Within the next chapters, we will first present possible

future system architectures for highly automated

systems with a resulting set of high-level requirements

for the single LRU. Based on these requirements, we

derive a board level architecture based on COTS

multi-core processors as the main computing device.

In addition, we provide a possible certification

argumentation to support a safety claim in certain

domains and certification levels based on current

regulation.

When applying multi-core technology to LRUs, the

system builder may benefit financially by removing

great portions of currently distributed, function

specific LRUs from the system and integrate their

functions on a single LRU, given that the multi-core

LRU provides enough computational resources and

communication interfaces. This not only reduces

weight (LRUs, cabling, mounting, etc.), size, cost but

1 Multi-Master on Shared Bus within SoC, Shared Peripherals,

Shared Resources, Separation of Cores and Common Mode

Failures on the SoC, just to name a few

also, depending on the processors used, also power

dissipation. If we design the architectural concept and

board-level architecture of a multi-core based LRU in

such a way that the overall system safety is not

affected by a centralized platform or the integration of

different system functions, the benefits of multi-core

based LRUs is evident.

The issues associated with the certification of multi-

core SoC are well known in academia and in the

industry. We will therefore only present the proposed

architectural configurations and certification approach

without further detailing the specific pitfalls, since this

has been subject to many talks and publications in the

past. However, one can obtain a first introduction into

the topic by the study available in [5], conducted to

provide some guidance for European aviation

authorities on the topic, outlining potential hazards

and risks.

High Level System Architectures

In current system development processes for safe

systems, nominal system functionality is subject to

safety analysis for potential hazards, deriving a notion

whether a function is safety related or uncritical in the

context of the system and its environment. In the civil

aerospace domain, a function design assurance level

(FDAL, from E to A) describes the criticality of a

function in relation to the hazard impact and resulting

target occurrence rate for failures of the function.

Almost the same methodology is applied in an

industrial certification process, where a safety

integrity level (from 1 to 4, IEC 61508) or an

appropriate category (from B to 4, ISO13849) is

derived on a per-function basis. In the military

aerospace domain, functions are classified by their

“mission criticality”. A mission critical function is not

directly responsible for a hazard, but compromises the

system’s ability to fulfill a given task or mission

successfully.

While this holds true for classic semi-automated

systems, heavily relying on a human to provide higher

level automation functions, cognitive functions to

master complex situations, or a fallback level in case

of failure, the classification and system level assurance

3

with highly or fully automated, unmanned or even

autonomous systems becomes increasingly complex.

We will therefor further classify higher level system

functions during the course of this working paper in

three levels. These classifications are interoperable

with current regulation, in fact the currently available

criticality levels can and will be used within the

context of these meta classes in order to further group

system functions. Furthermore, these classifications

will be of importance later on when we enter a more

detailed LRU board level architecture and safety

argumentation:

i. Impact Level 2 (IL2): A critical function in the

sense that any kind of failure of this function

leads to potential harm.

Examples include: Aircraft/Vehicle baseline

control, Brake control, Motor Control, Low

level logic for system modes, Movement or

trajectory Generation, etc.

ii. Impact Level 1 (IL1): A function which

directly impacts the system behavior, but

without direct command authority over

actuation elements. These functions might fail

without compromising the safety of the

system, but disable its ability to complete a

given task. In this class, a wrong result (wrong

command to a IL2 function) is a hazard, but a

complete failure in the sense of unavailability

is not.

Examples include: High Level Path and

Mission Planning, Mission or System

Behavior Optimization, Context Recognition,

Nonlinear System Adaption, Remote Control

Data Links, etc.

iii. Impact Level 0 (IL0): A non-critical function.

Failures (unavailable or wrong result) will

only affect the comfort in using a system or its

effectiveness but will not influence the

behavior with regards to safe operation or

completing a given mission or task.

IL0 and IL2 are very similar to the current

understanding by basic regulation, being either

potentially hazardous or not. IL2 functions normally

execute control algorithms, state machines or other

forms of automata, or supervisory tasks of critical

elements. IL1 functions exist today in mostly non-

critical classifications like in flight management

systems, aiding for example the pilot in commercial

and small aircrafts to complete their tasks more

effectively, for example by directly communicating

with autopilot systems to reduce cockpit crew

workload. Due to human oversight, these functions are

currently not safety critical. This changes considerably

when a human is no longer present or incapable (due

to physical limitations like reaction time / precision or

very limited situational awareness) to control the

system, making these function equally critical in a

classical certification classification, or in our case IL1.

Note also that functions from the IL1 category are

usually more complex functions and therefor require

much larger computational power compared to IL2

functions, which are in most cases control algorithms

with limited computational requirements in general.

We’ll address IL1 functions again later in this chapter,

when we describe system architectures, voting

strategies and degradation patterns. Before entering a

more detailed LRU level, applicable system level

embedded system architectures will now be defined.

“Small System” Use-Case (UC1)

Often times in industrial systems, cost is a major factor

in system development. This also holds for small scale

unmanned aerial vehicles (UAVs) in the sub

25kg/50kg MTOW class. Power draw has to be

minimized for this class of systems, as well as

Channel A

(Smart) Actuator A (Smart) Actuator B (Smart) Actuator n

. . .

Channel B

Output Bus A

Sensor Units

Emergency
Sensors

C
H

 A

C
H

 B
(O

p
ti

on
al

)

Bus
Interfaces

Secured
MultiCore
Subsystem

Emergency Data Bus

Output Bus B

Input Bus A

Bus
Interfaces

Secured
MultiCore
Subsystem

Data Links

Input Bus B

CCDL

C
H

 A

C
H

 B
(O

p
ti

on
al

)

C
H

 A

C
H

 B
(O

p
ti

on
al

)

Emergency
Data Link

Connection to LRUs
depending on failure modes
and rates of nominal sensors

Figure 1: Small target system architecture

example (simplified)

4

electronics weight, size and also power dissipation in

order to ease cooling requirements. It is nonetheless

necessary to provide a high availability and redundant

system, to cope with board, parts and interconnect

failures as they appear throughout the lifetime of the

system, due to harsh environment conditions (high

vibration, high and fast changing temperature load

cycles, etc.). Due to these constraints, a high degree of

availability has to be achieved with very little LRU-

level redundancy in this context, even if not directly

required by certification criteria, but from a

commercial and usability standpoint.

Figure 1 shows an exemplary architecture, where,

depending on the desired failure rate of the compute

platform, only a limited number LRUs is used. Instead

of relying on a distributed computing architecture with

dedicated LRUs per system function (like base

control, fallback, higher-level functions), the multi-

core based LRU is powerful enough to complete all

necessary computations timely. Besides the shown

compute platform, only smart sensors and actuators, as

well as optional human control elements or wireless

data links are present in the system shown. For

multiple LRUs, voting is either distributed with a

single command send to the actuators or computed on

the actuators itself in the case of smart actuation

elements. A cross-channel datalink (CCDL)

interconnects each LRU. Further reducing the system

complexity and cost, one could completely omit

redundancy for most industrial systems, as long as the

single LRU is compliant to the applicable certification

category, which is already the case today in most

industrial applications with control systems being

certified up to SIL3/KAT3,PL.d in certain

applications.

“Large System” Use-Case (UC2)

In contrast with the previous example, in large and

complex systems with eased electronics cost

constraints, we propose a different architectural

approach. Also centered on a centralized compute

platform, as shown in Figure 2, smart actuators,

sensors and optional control elements are utilized.

Zonal Safety can be established by physically

distributing parts of the redundant LRU cluster in

separate locations in the system, providing resilience

against environmental hazards like fire or leaks, just as

with today’s commercial aviation, or military avionics

concepts.

In Figure 2, a dual duplex configuration is shown,

which can be extended as needed to higher orders of

redundancy, for example in two/three triplex or even

two/three quadruplex clusters. Note that the cluster is

interconnected by a dedicated cross-channel datalink

which allows voting and data exchange over clusters

and between LRUs in a cluster. As a side effect, with

increasing numbers or LRUs in the system, there are

also growing computational resources for IL0 as we’ll

see in the next chapters, since they can be executed

without redundancy in a distributed fashion over the

whole cluster.

Since the detailed architecture is highly dependent on

the actual system and not only on the application

domain, we found it difficult to derive further detailing

steps as these are by nature strongly coupled with the

desired nominal and failure mode system behavior.

Requirements for an LRU

Stepping from the higher level system architectures

down into the LRU itself for a board-level

architecture, one needs a set of derived requirements.

Table 2 (see Appendix I) list our set of requirements,

alongside with the applicable use-case from which

each requirement was derived.

The first requirements (RQ1-RQ5) mark an important

point. In essence, we want to achieve up to

SIL2/KAT2 for a single LRU, or SIL3/KAT3

classification depending on the surrounding system

configuration (e.g. secondary safety shut-off paths) for

the industrial context. Starting from a dual-LRU

configuration on system level, SIL4/KAT4 shall be

Channel A

(Smart) Actuator A (Smart) Actuator B (Smart) Actuator n

. . .

Channel B Channel C
Channel n

(Option)

Output Bus A

Sensor Units

Emergency
Sensors

C
H

 A

C
H

 B
(O

p
ti

on
al

)

Bus
Interfaces

Secured
MultiCore
Subsystem

Redundant /
Secondary

Sensor Units
(Option)

Emergency Data Bus

Output Bus B

Input Bus A

Bus
Interfaces

Secured
MultiCore
Subsystem

Bus
Interfaces

Secured
MultiCore
Subsystem Bus

Interfaces

Secured
MultiCore
Subsystem

Data Links

Input Bus B

Status-CCDL

C
H

 A

C
H

 B
(O

p
ti

on
al

)

C
H

 A

C
H

 B
(O

p
ti

on
al

)Emergency
Data Link

Operator Control

Operator Control Interface

C
o

n
n

e
ct

io
n

 t
o

 L
R

U
s

d
e

p
en

d
in

g
 o

n
fa

il
u

re
 m

o
d

es
 a

n
d

 r
a

te
s

o
f

n
o

m
in

al
 s

en
so

rs

Figure 2: Large target system architecture

example (simplified)

5

possible, again, depending on the surrounding system

or final level of redundancy. In an aerospace context,

a single unit should at least reach design assurance

level C, with an upgrade path to DAL B or DAL A if

adequate levels of redundancy are provided (at least

two for DAL B, more units for DAL A). Again, this is

heavily depending on the system context and possible

fault mitigation or control system degradation paths

desired for the final system, depending not only on

weight and size, but also on the degree of automation,

presence of emergency operation control and the

intended operating area of the vehicle in question.

With current cost structures and upgrades for legacy

systems coming into play, it is vital that a single LRU

is able to provide medium certifiability (DAL E-C),

just like todays LRU designs, so the designer is only

forced to a redundant configuration for high

availability and reliability (DAL B-A). RQ6 is derived

from in order to facilitate cross LRU communication,

further harden the system architectures and permit

duplex systems where a LRU may not output wrong

results but fail silent to simplify the voting between

LRUs and the interaction on system level. In

redundant configurations, RQ7 ensures that a unit

passivates itself if an error has been detected. A unit

may rejoin the cluster, if permitted by system

requirements, if the error has been resolved after a

LRU reboot (transient errors). RQ8 is required for

systems in a non-transportation domain, like reactors

or complex machinery which cannot simply stop

operation at once but require a series of mode

transitions in order to safely stop, or must remain

operating in a degraded mode with very basic control

carried out to prevent substantial financial losses (like

in chemical reactors, furnaces, etc.). Note that this is

most likely achieved by system level redundancy,

however, for future systems, a single remaining unit

(or in case of common mode component failures) shall

be able to maintain a safe system state. RQ10-13 deal

with requirements commonly arising from ISO 13849

applications with single fault tolerance, translating

roughly to the “no single point of failure” credo in

higher aerospace DAL levels.

RQ15 marks an in important point. A multi-core based

LRU can only be reasonable from a cost and risk

perspective, if it replaces multiple legacy LRUs by

combining their system functions, which are classified

with different criticality and impact levels by the

legacy system. It is therefore essential, that those

functions can be executed side-by-side on the multi-

core without interference, which leads to deadline

violations of hard real-time, IL2 functions. Note that

strict electrical isolation in the terms of true freedom

of interference will most likely not be achievable on

COTS devices. It is however sufficient, with

appropriate architectural mitigation techniques in

place on the board level, to prove (formally or during

testing) that under normal operating conditions, all

functions can meet their respective deadlines and a

misbehavior of a function can be timely detected and

mitigated. Also note that this in general implies an

AMP configuration on the multi-core from a software

perspective, but also leaves the possibility to execute

a SMP OS for IL0 or IL1 functions along with an AMP

RTOS if only a subset of the available cores is used in

the SMP configuration.

Requirements RQ16-18 constrain the available

interfaces. “High-Speed”, as well as legacy “low-

speed” interfaces shall be provided in order to enable

retrofitting and use of proven/qualified sensor and

actuation units fitted with domain specific legacy data

busses like CAN, ARINC 429, RS485/Profibus, etc. In

contrast, recent system architectures already move

towards more data bus bandwidth by employing

Ethernet-based sub-standards like AFDX, EtherCAT,

PowerLink, or the open SpaceWire high speed

interface standard, as well as other domain specific

standards and protocols. Exemplary minimum

bandwidth requirements are also given, in the sense

that the LRUs internal architecture should permit

concurrent full theoretical throughput on all interfaces.

The cross channel datalink should not bottleneck

system level data transfers, which entails a higher

internal interconnect bandwidth, but again this should

be seen as an example only, since the final data bus

specifications are depending entirely on the system

context, application domain and use-case of the

system.

Board Level System Architectures

Starting from the requirements presented in the

previous section, we now derive suitable board level

architectures for different application scenarios, based

on a COTS multi-core device. While we will discuss

some safety matters as we present the proposed

architectures, a more detailed certification perspective

for different application domains will take place in the

next chapter. Note that the concepts are designed to

allow easy scaling in terms of processors and

interfaces, limited by physical board / unit constraints

6

and the available high speed interfaces on SoC level.

Note also that certain high speed interfaces have been

specifically avoided where applicable, since they

introduce major issues with certification, for example

in the aerospace domain. These include for example

serial high speed interfaces like PCI-Express (PCIe),

where in most IP implementations, microcode is used

to implement certain bus functions in hardware. Since

microcode is considered software in terms of

certification, it is necessary that the microcode

development process follows a conformant

development process for the desired certification level,

forcing the applicant into substantial involvement with

the SoC manufacturer with access to design data. Such

undertakings have not been successful in the past,

resulting in failed project, greatly exceeding cost

targets and time schedules. However, depending on

the application domain, a black-channel approach can

be applied to justify the use of said interfaces where

no in-depth insight in these peripherals is required.

Furthermore, the architectures aim for requiring as

little detailed SoC manufacturer data as possible to

lower the actual project risks with COTS devices with

little financial interest by the IC manufacturer due to

the low volume of our application domains.

The software architecture and means to provide spatial

and temporal isolation between cores or different

system functions are discussed after presenting the

proposed board level architectures.

Non-Distributed Monitoring Configuration

The first architectural configuration is built upon the

simplest command-monitor architecture. On the board

level, a multi-core device is used to compute IL2, IL1

and IL0 functions, together with a simpler, single-core

device executing the IL2 monitor functions. A monitor

function can be algorithmically different to the

nominal function, but it is also possible to use the same

algorithm, provided some form of software diversity

is used to mitigate software related common mode

failures. As shown in Figure 3, the monitor only

verifies the IL2 functions before their final results are

send out via the output stages (FPGA-based, for legacy

and high speed interfaces). IL1 functions are either not

present in the system due to the application or are

being compared on the system level with redundant

LRUs over the cross-channel data link. IL0 functions

do not feature any kind of monitoring or fault

protection.

This configuration permits to detect if either the

monitor (MON) or nominal channel (NOM) have

failed by cross comparison. Since both devices are

able to provide output data to the data busses, a fail-

silent behavior is easily achieved by bringing the

system into a safe output state, once a cross

comparison mismatch has been detected by either the

NOM or MON. It is also possible to implement a

fallback operating mode, where the system stays

operational after detecting a failure, as well as fallback

strategies, for example in the output stages with simple

state machines taking over, driving the physical

system into a safe state. Note that this configuration is

intended to be used in either a very cost-sensitive

environment with medium availability demands, since

there is no hardware fault tolerance provided on the

board level enabling a true fault masking, or within a

redundant LRU configuration. A second LRU,

connected via a cross-channel data link, would then be

able to keep the critical functions operative while one

LRU is executing an ordered restart or is deactivated

Single

Monitor

(SMON)

Multi-Core Nominal

Compute Channel

(NOM)

FPGA –

Businterfaces

(I/O)

Digital/Analog

IO

FPGA –

Businterfaces

(I/O)

Databus Redundancy Group 1 Databus Redundancy Group 2

Cross Comparison
(~100MBit, ETH/GETH)

I/O Data
(>=100MBit, ETH/GETH)

SF0

SF1

Mon

SF0

SF1

Mon

F0

F1

F2

Figure 3: Non-Distributed Monitor Configuration. Left: General Overview; Right: Function

Allocation by Impact Level (IL2 red, IL1 orange, IL0 green)

7

until replacement if the failure is persistent. Note also

that the MON and NOM must be diverse devices to

mitigate common mode failures in both channels.

In order to provide enough processing resources for all

IL2 functions executed on the multi-core NOM, the

MON must be a relative high powered single core

device, or a multi-core device with no more than two

cores, one handling the SoC peripherals, interrupts and

SoC supervision, while the other core executes the IL2

monitoring. The clear partitioning omits the needs for

complex core-to-core isolation strategies, since the

timing behavior can be determined during testing or

through an on-target and formal methods approach

based on single-core equivalence (see [6]). It is,

however, more practical to use a simple single core

device as the MON to ease certification around the

MON. With future SoCs moving more and more

towards multi-core, it might the case that fast single

core devices might become unavailable for the next

generations of embedded systems, so at least a dual-

core device was chosen for this example, with a clean,

isolated AMP approach to equal existing single core

devices with IO accelerator co-processor cores, which

reduce system load by offloading interrupt processing

and low level data handling for peripherals from the

main CPU core to a separate, smaller, less-capable

core. In most cases however, the IL2 functions require

very little computational resources and consist mostly

of control functions which run presently on low power

microcontrollers or microprocessors in the sub-

500MHz range. Adequate single core controllers with

more than 1GHz, based on recent core architectures

will satisfy most computational needs regarding those

functions easily while they are still available on the

market for at least another decade.

In certain use-cases, where IL2 functions are less

computationally intensive, it is possible to extend this

configuration to a fail-operating architecture with only

one LRU by using a self-checking, safety MCU, based

on a lockstep architecture with internal fault

detection2. In this case, random or persistent failures

can be traces in run-time to either the MON or NOM,

enabling a shut down or restart of the respective

channel whilst either upholding the IL2 functions on

the remaining channel, driving the physical system

into the safe state or executing an emergency operating

2 Note that the manufacturers provide extensive FMEDA and

failure rate approximation data for certification on those devices

mode on the NOM (if MON failure has been detected

on the safety-type MCU) or the MON (if cross check

failed and the safety-type MCU detects itself as

operational). Note that this argumentation most likely

requires in-depth failure mode analysis for the MON

and on board-level.

On the board level, the NOM, MON and output stages

can be easily interconnected via dedicated Ethernet

links, since most modern SoCs offer at least one

Ethernet interface, capable of 1Gbit/s link speed.

Operating on the MAC layer, a black-channel protocol

(legacy or custom) should be employed to further

secure the data transfer which does not entail the use

of higher OSI-level protocols like IP, TCP/IP or

PowerLink. If one of the MPUs used does not provide

adequate numbers of interfaces, especially in the case

that more than two output stages are needed due to

special application requirements, one can readily

design in switched networks or a shared bus based on

COTS MAC and PHY layer networking devices. Note

that in a switched network, single point of failures can

be introduced by these switch ASICs. This also holds

for several available Ethernet-Ring structures based on

specialized devices [7], which we do not consider in

this work due to the reduction in MTBF by the added,

complex device. In a shared bus topology, the

determinism, available bandwidth allocation and

collision avoidance can be ensured by a fixed time-

division protocol (either distributed or with a timing

master) or polling the respective nodes. New 802.1

standard additions, such as IEEE 802.1Qbu, IEEE

802.1Qbv, IEEE 802.1CB, and others standards from

the time-sensitive networking task group [8] might

lead to new and better suited MAC and PHY devices

in the future, enhancing real-time and reliability for

standard Ethernet by a fair amount. In some

applications, the use of other high speed interconnects

like PCIe is permitted within certification constrains,

which enables on-board diverse communication

between NOM, MON and the output stages.

Distributed Monitoring Configuration

As we will discuss in the next chapter, the single-

monitor configuration can present some certification

pitfalls in certain domains, due to its inherent lack of

hardware fault tolerance in a single board

8

configuration. Therefore, we propose this second

configuration, enhancing the previous one with

hardware fault tolerance, while providing a fallback

operating mode, on-board error location and masking

capabilities for very high-reliability applications. As

with the previous configuration, a single LRU can

most likely not achieve the desired failure rates and

availability constraints (due to the component count,

printed circuit board failures, etc.), implying the use of

multiple LRUs depending on application

requirements.

As shown in Figure 4, IL2 functions are executed on

all on-board devices and are thus voted in each time

frame. Only a valid computational result is allowed to

3 Note: This is already the case in today’s systems, especially

where the risk of structural damage is present. In such systems,

busses are often grouped and routed independently on different

paths in the system.

propagate outwards, emitted either on a single output

MCU with the remaining stages listening for correct

transfer, or on all output MCUs for redundant transfer

on the redundant data bus groups3. IL1 functions are

voted within the redundant LRU cluster via the cross-

channel data link (CCDL), but are not part of the on-

board voting to ease the performance requirements on

the monitor processors. The distributed monitoring

MCUs (DMONs) also act as interface devices for

legacy data bus and discrete interfaces (CAN,

ARINCx, RS2x/RS4x, Digital I/O, etc.), which are

grouped to two redundant data bus clusters in Figure

4, to mitigate physical layer failures occurring on the

system level. Note that this architectural configuration

is not limited to two DMONs, but can be further

extended to provide more legacy interfaces and

DMON compute power if needed. FPGAs provide

high-speed CCDL connectivity to other LRUs in the

cluster or to other system units such as sensors

(camera, LIDAR, RADAR, IR, etc.) or actuation

elements with high bandwidth requirements.

The example shown in Figure 1 originates mainly

from small UAV avionics, where a high availability

and error mitigation will be necessary for future

systems, whilst minimizing weight and size, and

therefore board space and number or redundant LRUs

in the cluster. In such systems, the baseline control

together with some automation functions (for example

trajectory control, autopilot, waypoint navigation) do

not require vast computational resources 4 and fit

inside small safety MCUs, which allows for internal

fault monitoring if the DMONs itself. Each DMON

therefor execute extensive internal error detection and

mitigation without compromising on computational

resources. In general, the choice of DMON MCUs is

depending on the IL2 function workload, since all

functions must be run at least at three different nodes

on the board to enable proper voting algorithms in a

triplex configuration and cannot be executed on a

single DMON and the NOM. In addition, the need for

legacy interfaces, or the lack thereof if they are

implemented within the FPGAs, limits the range of

available MCUs or MPUs by a fair amount (CAN

usually only found in great numbers on automotive

MCUs). If, however, more than two DMONs are

4 Estimation on current implementations at the institute, subject to

industry projects, exact functions and requirements cannot be

disclosed publicly

CAN, Serial, eTPUCAN, Serial, eTPU

Multi-Core

Nominal Compute

Channel

(NOM)

Distributed

Monitor

(DMON)

Digital/Analog

IO

Distributed

Monitor

(DMON)

IO + Cross Comparison

(~20MBit, 2xSPI, SIPI)

Digital/Analog

IO

2x FPGAs

for High-

Speed IO

O
p
ti
o
n
a
l,
 N

o
m

in
a
l

D
a
ta

lin
k

fo
r

H
ig

h
-

S
p
e
e
d
 B

u
s
s
e
s

IO
 +

 C
ro

s
s
 C

o
m

p
a
ri
s
o
n

(~
1
0

0
M

B
it
,
E

T
H

)

TTP, AFDX, Spacewire, EtherCat, PowerLink…

IO
 +

 C
ro

s
s
 C

o
m

p
a
ri
s
o
n

(~
1
0

0
M

B
it
,
E

T
H

)

2x FPGAs

for High-

Speed IO

SF0

SF1

Mon

F0

F1

F2

S
F

0

S
F

1

M
o

n

S
F

0

S
F

1

M
o

n

Figure 4: Distributed Monitoring Configuration.

Upper: General Overview; Lower: Function

Allocation by Impact Level (IL2 red, IL1 orange,

IL0 green)

9

employed, the issue might be resolved by further

dividing interface groups and allocating them to the

added devices, also providing addition common mode

failure isolation.

The interconnects between NOM, DMONs, and the

FPGAs must be able to cope with single, or even multi

device failures in order to enable a fault tolerant

system. As shown in Figure 4, all devices are thus

interconnected by dedicated high-speed links from the

NOM to the DMONs and the FPGAs, and separate

links from DMON to DMON, via the FPGAs. This

arrangement even allows for a double failure of

dissimilar devices (NOM/DMON) in the system,

which does not lead to any loss of IL2 functions, since

the LRU can perform a fallback to an emergency

operating mode with at least one DMON operational.

With a single failure, full operating capability for IL2

functions is assured, which also holds for IL1 and IL0

if a DMON is affected and the NOM is still

operational. Note that different IL0 function can be

processed at each note in a redundant LRU cluster,

while IL1 functions are executed depending on their

desired degree of fault tolerance on different LRUs in

a cluster, for example IL1_F{0..2} on LRUs A and B,

IL1_F{3..5} on LRUs C and D for a per-function,

single fault tolerant scenario.

Like in the single monitor architecture, NOM and

DMONs are interconnected via dedicated high-speed

links via Ethernet (100Mbit/s or 1Gbit/s, depending on

the capabilities of the DMONs, large multi-core SoCs

usually provide enough dedicated interfaces). Note

that this can also be substituted by half-duplex links to

save on high speed interfaces or compensate for the

lack of Ethernet MACs on DMONs for a fast

interconnect between the FPGAs and the DMONs.

The bidirectional DMON-FPGA interconnect must be

present, in order to allow access to high-speed data bus

links from the DMONs to uphold IL2 output data in

case of NOM failures and CCDL connectivity. Note

that the designer is free to choose an appropriate

interconnect at this level, considering the available

DMON interface features. Usually, fast serial

interfaces like Ethernet, SIPI via LFAST (inter-

processor interconnect), or standard SPI/UART

connections might be adequate if they offer enough

5 Transient failures can usually only be resolved to a deterministic

state when a device reset is issued to resolve SEU-based upsets in

bandwidth. However, parallel FIFO-type interfaces

are implemented easily at the FPGA and the DMON

to compensate for already allocated serial

interconnects. Further hardening at the data links

between NOM, DMONs and the FPGAs should be

considered, in the form of black-channel protocols, in

order to mitigate/detect random errors or failed board

infrastructure.

Since this architecture already provides on board fault

tolerance and error masking, it is applicable to low

redundancy system configurations that require high

availability with limited cost budget for physical units.

In addition, added layers of degradation can be

introduced to a redundant system with per-unit

degradation paths. For example, a degraded LRU with

a failed NOM or DMON might still participate in the

inter-LRU voting for IL2 functions, provide output

data to smart actuation units or conduct advanced error

detection to gracefully recover a degraded LRU by

restarting and resyncing specific processors. Again,

this is dependent on the targeted certification context,

the physical system architecture, other safety

precautions, safe state type or reachability, etc. and

must be discussed early on with the respective

certification authorities, especially when different

levels or system function degradation strategies are

within the scope of development. The ability to

degrade along such paths is not supported by current

generations of LRUs in the field, and offer a

significant improvement for availability and multi-

point fault tolerance for future system architectures.

Note that we do not use the multi-core to achieve

multiple, redundant compute channels on a single

device, since common mode failure scenarios via the

SoC busses, memories and peripherals effectively

deny such designs, while heavily relying on an in-

depth SoC analysis and test during certification. We

also do not advocate redundancy by multiple

executions of a function within a single time frame,

due to the persistence 5 of transient failures. All

functions are executed once per system time frame on

the device, allowing maximum device utilization

without sacrificing performance to the overhead of

redundant executions.

internal circuitry. Memory is protected by ECC or spatial

redundancy. Since device restarts are non-critical, a clean device

state via restart is preferred.

10

Software Architecture Considerations, Common

Circuitry and Interconnects

Since we must provide a software infrastructure on the

multi-core which provides the means for mixed

criticality functions running in parallel on the device,

we propose an AMP architecture on the multi-core,

with one dedicated master core, carrying out

supervisory tasks as well as IO handling.

As shown in Figure 5, the master core in in control of

the device’s peripherals, manages their configuration

and periodically checks their status (health, status,

configuration). The master core (c0) also manages the

internal inter-core communication framework (ICC,

via shared memory), slave core software watchdogs,

external MON watchdog communication and system

supervision, as well as the resource separation

between the slave cores for temporal isolation of

mixed critically functions. Spatial separation and

access right control is ensured by core-local and SoC

level functions such as MMUs, privilege levels,

System-Memory Protection Units, and a dedicated

peripheral controller core, which is c0. The external

watchdog, implemented by the MON or each DMON6,

should be a windowed, challenge-response signature

watchdog, with a random challenge computed by the

6 A true, separate watchdog only reduces availiability and does not

contribute to error detection or effectiveness of the watchdog

action. We re-use the already present dissimilar device for this

purpose.

MON. The challenge is issued each system time

frame, to check the status of the multi-core device and

the MON (bidirectional verification). On master (c0)

and slave cores (ci), a real-time operating system is

instantiated, to control the allocated tasks via a per-

core task list, which can also be managed or modified

dynamically7 by the master to further supervise the

execution of tasks in degradation scenarios. Within

each slave, a watchdog instance embedded in the

RTOS ensures the detection of a stuck program

execution, managed by c0, typically executed via a

challenge issued at each system time frame via ICC. If

the application requires specific control of dedicated

hardware features, like video ports or accelerators for

image or video processing applications, a slave core

may contain a subset of the peripheral driver authority.

Sharing of peripherals may be permissible in special

cases, but separation on a per-peripheral basis of

different functions (e.g. cores they are executed on)

may not be achievable with current generations of

devices (fine graded permission control or

prioritization not supported on the SoC).

Note that an ICC client is executed on each slave core,

to process/issue ICC request which can also be

embedded in the RTOS layer. Static task allocation

may be necessary to meet determinism requirements,

but in certain circumstances, a SMP operating system

spanning multiple cores can be used for IL0 or IL1

functions, if c0 still has full authority and the SMP OS

can be super- or hyper-vised on the respective cores by

build-in privilege level. Under all circumstances, core

and task level separation must be guaranteed to meet

certification requirements. While spatial separation is

guaranteed like stated before, and can be analyzed and

tested during validation phase and run-time, temporal

isolation of cores and tasks is not straight forward and

requires special precautions. We propose to use the

available core or SoC level performance counters, to

isolate the last remaining shared resource in the

system, the memory subsystem. Shared cache should

be partitioned or allocated to resolve determinism

issues, arising from the interference by other cores. In

most core architectures, this feature is implemented in

the form of cache line/cache way lockdown or totally

separated core caches (L1 and L2 per core), but

7 If permitted by applicable certification constraints, in general, a

static, tested and deterministic scheduling is preferred for IL2

functions. Requirements for IL1 and IL0 functions may vary and

permit a dynamic scheduling.

Ci

C0

Inter-Core
Communication

via Shared Memory

IPC Channel

IPC Channel

Peripheral Drivers

IPC
Master

Watchdog
Master

Task Allocation
Control

System
Voting &
Supervis. Ressource

Monitor
Master

IO TaskIO TaskI/O Tasks
IO TaskIO TaskI/O Tasks

RTOS Instance

IO Task
IO Task

Application Tasks

Peripheral Drivers
(limited functionality)

RTOS Instance
Allocated

Tasks
List

IPC
Client

Watchdog
Client

Ressource Monitor
Client

Configuration / Supervision

Peripheral IRQs

RtosTick IRQs

RtosTick IRQs

Figure 5: High level software architecture on the

multi-core SoC

11

controlling the number of memory transactions per

core within a given timeslot requires constant

monitoring due to the lack of specific function units

working on the performance counter data. Using the

performance counters (PMUs), an application is

profiled based on its required nominal memory

transactions, on a per OS-tick time scale, which is

usually available at a high frequency, allowing fine

graded failure detection8. In the local OS-tick, each

slave core collects its performance counters, and

transfers their content via ICC to c0. The master core

than processes these counter values, comparing them

to a predefined worst-case or a static resource

allocation lookup-table built during test and

verification phase, based on debug trace data or formal

techniques. If an overconsumption is detected for the

past tick period, the respective core is signaled to

temporarily schedule out the task, to reduce memory

transactions until conformance to the predetermined

profile is again established9. This can also result in a

deactivation of the task in question for a system time

frame, to allow for deterministic computation of IL2

and IL1 functions. An appropriate action for IL2

function failures must be defined, because a failure is

critical in the single monitor configuration. The non-

distributed monitor configuration offers additional

protection due to the availability of two other

redundant output results from the DMONs and

possible system level LRU redundancy. A similar

approach has been applied in [9], [10] or [11] why we

spare the formal background at this point and refer to

these references. While the temporal isolation is

essential for WCET guarantees, the containment also

serves as an excellent mean to control rouge cores with

crashed tasks who issue memory transactions in an

uncontrolled, faulty manner due to transient,

permanent, or programmatic design errors. An in

depth investigation is future work on actual hardware.

Exemplary sequence diagrams can be found in

Appendix II for the single and distributed monitor case

together with an exemplary failure mode behavior for

each configuration for an overall overview of internal

and external communication steps. Note that we

specifically do not recommend a specific hypervisor

or RTOS architecture in this work, since the overall

8 Very Important: Most RTOS already offer OS-tick hooks for

easy and practical insertion of custom routines, without modifying

an already certified kernel, which is no option at all for a live

project.

architectural configurations, especially with

distributed monitors, allow for a multitude of possible

detailed architectures, which are out of scope due to

their system and application domain specific

parameters. Further mitigation strategies, like core

restarts of detected transient core failures on the multi-

core NOM, or deactivation of such cores are also

subject to project specific architectures.

Shifting focus, other board level subsystems are also

of great importance, especially for the distributed

monitoring architecture. In order to allow fault

isolation if a processor exhibits a permanent fault in

form of a latch up, the possibility exists that the device

fails in a “short to ground” manner, driving a power

supply circuit into current limit and shut off in worst-

case conditions. To isolate these failures on the board

level, local power supply for each critical subsystem

(NOM, MON, etc.) must be established, with as few

common circuitries as possible for maximum

separation. In addition, power inputs to the unit must

be redundant to remove power input single point of

failures from the system (connectors, wiring, fuses,

filters, etc.). Equally, bus transceivers should not be

re-used on the board level, and need to be laid out fully

redundant for each output stage, being FPGAs or

DMONs peripheral outputs, in order to avoid common

mode failure scenarios, especially in the distributed

monitor configuration.

Outside the LRUs, high-speed data bus interconnects

are used for the CCDL and high bandwidth sensors.

While different options exist, high-speed

interconnects are usually domain specific like AFDX,

TTP, and FireWire (USAF F-35) in the aerospace or

PowerLink, EtherCAT, etc. in the industrial domain.

The use of such standards also entails the availability

of sensor and actuation units capable of these

interconnect standards, which is while we will not

focus on a specific design based on those standards in

this work. With the CCDL, however, the designer is

usually free to choose with a higher degree of freedom

since the CCDL is seldom exposed outside the

compute platform. The requirements for a CCDL

differ based on the bandwidth needs to for the nominal

data transfers (voting, supervision), LRU resync speed

9 Due to no execution on the respective core, no further memory

transactions are generated by the task/function.

12

in case a LRU requires state data, mostly for IL2 and

IL1 algorithms after a fault-triggered reboot, or a time

synchronization requirement for synchronous

systems. Bandwidth requirements for

resynchronization reach from a few states (a few

hundreds of bytes), but may easily exceed thousands

even for baseline control (Megabyte region) in the

case of sophisticated control architectures. New types

of CCDLs are subject to ongoing research, but a viable

candidate already exists in the form of SpaceWire

(SpW, [12]). SpW offers a robust, high-bandwidth

physical layer with minimum constraints on the upper

protocol implementations, while providing

sophisticated time synchronization, on-line fault

tolerance when multiple routes to connected units are

possible and the ability to operate in ring, switched, or

peer-to-peer networks. Figure 6 shows an exemplary

LRU cluster, interconnected by a fault tolerant SpW-

CCDL. In case of an interconnect failure between two

nodes, data packages can be re-routed by using

intermediate, redundant physical connections or

traversing the ring in another direction. Since SpW is

an open standard, open-source implementations are

available free of charge, offering a cost-effective

solution to be implemented in the FPGAs in form of

three or five port bus interfaces. Due to the specific

design for harsh space environments and the

requirement-based standard, SpW is well suited and

will be part of the future demonstrator platform.

 In the previous chapter, we derived a set of

requirements for the individual LRU (Table 2,

Appendix I), which we will now compare against the

proposed architectural configurations. RQ1-5 will be

discussed in the next chapter within their specific

context.

Table 1: Requirements fulfilled by presented

configurations. X: fulfilled, (x): fulfilled under

certain conditions.

RQ

ID

SMA DMA Remarks

6 X X SMA only detection, DMA

with mitigation

7 X X Passivates itself if number of

allowable errors exceeded

(SMA=1, DMA>=2)

8 (x) X SMA: Possible with special

monitor for error localization

9 X X Shutoff possible with power

removal

10 (x) X See RQ8

11 X

12 X X

13 (x) X SMA: Only with special

monitor to detect latent monitor

faults ahead of time

14 X X Possible with both

configurations

15 X X NOM/MON Watchdog, Inter-

Core Watchdog, Spatial and

Temporal Isolation

16 X X SMA: Via FPGA, DMA:

primarily via DMON, also

possible via FPGA

17 X X Via FPGA

18 (x) X NOM/(D)MON are dissimilar

by design, DMONs may be

dissimilar. LRUs can be

constructed with dissimilar

parts in a cluster. This is

pointless since on-board

dissimilarity between NOM

and MON is already given.

SMA might not be suited as

good as DMA, since no true

fallback operating mode is

provided when a non-safety

type MCU is used for the

monitor.

Multi-Core

LRU

A

Multi-Core

LRU

B

Multi-Core

LRU

C

Multi-Core

LRU

n

3 Port SpW-

Router

3 Port SpW-

Router

3 Port SpW-

Router

3 Port SpW-

Router

Figure 6: CCDL via SpaceWire. Minimum

interconnects (black), ring closure (blue), and

optional failover links (purple) via minimalistic 3

port routers (FPGA-based)

13

Safety and Certification Aspects

In this chapter, we are going to discuss certain aspects

of certification concerning the presented architectures.

After domain specific considerations, we focus on

common issues such as WCET. Note that we will use

the terms defined by the respective standards without

further definition. The reader is referred to [4], [1],

[13], [14], [2] and [15] for the terms and abbreviations

used in this section.

Industrial Certification (IEC/TR 61508, EN ISO

13849)

In our requirements, we defined SIL2/KAT2,PL.d as

the certification level for the single unit, with the

possibility for SIL3/KAT3,PL.d in certain

arrangements. This leads to 90% ≤ DCavg ≤ 99% in

order to comply with SIL3/PL.d levels or DCavg ≥ 99%

for PL.e. We followed the common procedure of

completing a fault tree analysis (FTA) as well as a

markov analysis (MA) for DU-failures (see Appendix

III). Both analysis were conducted in FuSaSu v3.3.1

[16].

As the markov analysis shows, the calculated DC is

above 99% in both configurations, resulting from the

cross-verification which only fails in case of an

already present or latent fault in the MON if also the

NOM fails, while the fault is still present or not yet

detected. Since this already involves two distinct

failures in dissimilar hardware devices, which, if

different core architectures (ARM, PowerPC, MIPS,

etc.) are used, also entails software dissimilarity at the

binary level10, is extremely unlikely as shown in the

markov analysis and the fault tree. When distributed

monitoring is employed, the system is further

hardened, as shown by the slight increase in DC for

the distributed monitoring architecture. A HFT of one

is given in any case by the distributed monitoring

configuration (DMONC), while HTF=2 can be

claimed when certain assumptions hold on the system

level (multi-core can still access some IO via a bypass

in case of complete monitor failure). The non-

distributed monitoring configuration (SMONC) can

only be considered as HFT=1, if a MCU with

integrated error detection to unveil latent and transient

faults is used, in order to provide the described

10 Note that N-version programming is also a viable option when

within project budget limits and can lead to common cause

software error mitigations

degraded/fallback operating mode with reduced

operational capabilities.

In IEC 61508-2, several tables are listed to guide the

applicant with adequate measures for diagnostic

techniques, testing techniques, controlling systematic

faults, etc. In Table A.3, “Monitored Redundancy” and

“Comparator” apply to both configurations, while the

“Majority Voter” technique applies to the DMONC. In

Table A.7, for I/O units, “multi-channel output”,

“monitored outputs” and “input comparison/voting”

apply in both configurations. While Table A.8 is deals

with internal device elements, one could argue that

transmission, information and complete hardware

redundancy (due to the separate interconnects between

the I/O elements and the NOM/MON(s)) is already

present on the board level, and is therefore

accomplished for the function executed on both the

NOM and MON. The program execution, either on a

NOM or MON is permanently monitored, which leads

in conjunction with the cross verification to the

“Combination of temporal and logical monitoring of

program sequences” in Table A.10 being fulfilled. The

program sequence is not only monitored by the

NOM/MON combination (watchdog), but also by an

internal watchdog on each device itself, either in

hardware or by a hardware/software combination

when the multi-core is considered (to detect stuck

cores). This is required by Table A.15, where also

“Failure detection by on-line monitoring”, “Tests by

redundant hardware” and “Diverse hardware” is

satisfied by our architecture. The nature of the

presented on-line tests and techniques leads to a high

effectiveness for detecting errors, according to Table

A.18. Moving on to Table B.5 for validation

techniques, no method is explicitly excluded due to

technical reasons in the proposed architectures. “Fault

insertion testing” might provide an adequate method

to extensively validate the error detection and masking

functionality, alongside a multiple condition / decision

coverage for the associated software.

In terms of the ISO 13849, we provide single fault

tolerance with both configurations to satisfy one of the

central KAT3 requirements, while DMONC also

provides the means to mitigate certain multi-point

faults, which must be considered for a KAT4 approval.

14

Interestingly enough, SMONC provides the standard’s

proposed architecture for KAT4 for IL2 functions,

since we conduct a true cross verification between

NOM and MON. DMONC extends this approach

further, in a tipple modular redundancy fashion. Like

shown based on the IEC 61508 tables, the measures

inherent to the proposed configurations justify a high

DCavg ≥ 99%.

During a standard certification of single core SoCs, a

device-level FMEDA usually provides the necessary

failure modes at chip level for higher certification

levels. While a device-level FMEDA is obtainable

from the chip vendor for certain devices specially

targeted at the safety market, no or very limited data is

provided for COTS devices, especially multi-core

SoCs, due to their origin in other domains like

telecommunication or server computing. This data is

necessary however, if the device is used explicitly to

provide a safety function and must therefore be

analyzed accordingly to the desired SIL/KAT. In our

proposed configurations, every possible device failure

mode, manifesting in either wrong output data, no

output data or untimely output data from the multi-

core SoC, is detected by the cross comparison with a

second device in each system time frame, or by the

even more trustworthy voting with more than one

DMON. Under these conditions, a true FMEDA can

be omitted (saving the effort with/by the chip vendor),

if transient and permanent failure rates can be

provided, which are nonetheless required to compute

the standard specific metrics (MTBF, MTTFd, DC,

etc.), in conjunction with a FTA and/or markov

analysis to show the dangerous detected and

dangerous undetected system states. This resembles

more or less a grey box approach11.

Graceful degradation in case of failures can be argued,

if the desired application permits for example the

classification of system functions in the presented

impact levels, and is vital for the distributed

monitoring configuration, where different degradation

paths can be designed depending on the final

application. This is especially useful to provide

conservative mitigation paths, where for example only

IL2 functions are upheld when for example an error on

the multi-core has been detected, while disabling IL1

11 Note: To define the application context in current standards,

device internal function units used must not only be described in

and IL0 functions until the system arrives at a safe

state.

One reason, why hardware redundancy (cross

verification) is preferred over simple on-line

monitoring, is the occurrence of latent faults in devices

or systems. The potential presence of latent faults also

denies a degraded, single device operating mode with

an SMONC. Latent faults can be detected either by

special on-line tests, consisting of software and/or

integrated hardware (special hardware included in the

SoC, like with safety MCUs). If adequate hardware

support is present, as with safety MCUs, on-line tests

for latent faults can be triggered periodically, which

may be destructive (in order to trigger all software and

also hardware elements involved in the error reaction

path) in the MON. This potentially involves a restart

of the device and therefore unavailability for the on-

line cross verification during the MON downtime.

DMONC can be tested while always providing

redundancy for IL2 functions when the NOM is

restarted, or one of the DMONs is tested, while IL1

and IL0 functions become unavailable on the LRU

when the NOM is shut-down or rebooted. This enables

non-destructive run-time tests on the DMONs,

resulting in a great benefit of this architecture, since

unavailability is reduced, even in the case that only a

single LRU is present in the system. Furthermore, if

safety MCU type DMONs have been selected with

special internal hardware units to test internal units or

detect errors at run-time, a processor or SoC-wide

BIST can be executed periodically, resulting in a SoC

restart and loss of internal state (destructive test).

These tests are usually executed at startup in current

applications, mainly in the automotive domain, but can

be used in our configuration in a non-destructive

fashion during runtime, greatly enhancing the

detection of latent faults in the DMONs.

Common cause failure scenarios are mitigated

effectively by hardware dissimilarity between the

NOM and the MON/DMON devices, as required in the

highest certification levels. Note that the potential for

CCFs exist in the DMONC, if both DMONs consist of

the same devices, which could in theory lead to a

double failure and an associated DU board level

failure. Proper isolation of the DMONs is therefore

the aerospace domain, but also for industrial certification. If they

are used to detect/mitigate errors/failures, they must be analyzed

and tested accordingly.

15

critical, in terms of power supply, physical board

location, cooling, etc. to reduce common effects on

those devices if possible. To eliminate this concern

entirely, dissimilar devices should be used for each

DMON, but this leads to additional development effort

and project complexity and should be discussed very

early in the design process with certification

authorities.

Aerospace Certification (ARP 4761/4754, DO-

254/178)

Compared to the industrial standards, the respective

aerospace guidance for hardware (DO-254) and

software (DO-178) are rather vague on COTS items.

As a result, with more and more requests from the

industry, two documents have been issued by the

EASA and the FAA in order to provide additional

guidance on COTS parts and especially on complex

COTS devices. These documents, the CAST-32 by

FAA and the CM-SWCEH-001 (hardware aspects)

and CM-SWCEH-002 (software aspects) by EASA,

either present their current position on on multi-core

processors (CAST-32 is limited to two cores, more

than two cores not recommended) or provide

additional guidance on highly complex COTS parts in

general. We will therefore examine the architecture in

the light of the CM-SWCEH-001 (SWCEH from here

on). The certification memorandum defines 16

activities which are applicable depending on the DAL

and the product service experience (PSE). Since our

goal is to justify the use of a single board up to DAL

C, a LRU cluster of two units up to DAL B and a LRU

cluster of more than two units up to DAL A, resulting

from potential FDAL A functions being executed on

the multi-core, all SWCEH-activities must be

executed and documented, since low/none PSE can be

provided for any multi-core SoC and highly-complex

classification (see CM-SWCEH-001, Section 9.3.13,

device classification acc. to activity 1). Relevant from

a technical point of view are activities 1, 4, 5, 12, 13,

15 and 16. We will ignore process and documentation

activities within this work.

Besides the hardware and software specific guidance,

the ARP4754 and ARP4761 must be followed for

12 SWCEH activity 13, sufficient PSE for DAL A after >105 hours

in aircraft use

13 Base events in the FTA and markov analysis

14 Identification and justification of these units required by

SWCEH activity 4

most certification efforts to achieve compliance to the

specific certification specification. Extending the

ARP4754 FDAL/IDAL classification, we added the

impact level definition, which also allows the use of

the standard FDAL and IDAL definitions within each

category to remain compliant to existing regulation.

SMONC and DMONC do not contain a single point of

failure, as shown by the FTA and markov analysis in

Appendix III. Again, neither the multi-core SoC, nor

the MON or a single DMON is on a critical failure

path. Nevertheless, harsh environment conditions

entail at least two LRUs from DAL B onwards, due to

the possibility for mechanical printed circuit board or

component failures under vibrations, shock or thermal

stress. The derived board level FTA and markov graph

can further be used to extend the system/function fault

trees. While it is possible to show with these analysis,

that any failure of the multi-core is non-critical in

general, a black-box approach to avoid certain

activities for the multi-core is only permitted when

field-based evidence12 on failure rates and the failure

modes13 is available, or can be estimated in form of an

FMEA of the device. The device level FMEA should

provide transient and permanent failure rates, for each

function unit of the SoC, in order to calculate a

resulting total event probability in the application

environment, based on the used functions14. In this

context, a very pessimistic assumption is required to

justify activity 12, in which we assume that every

internal failure in the multi-core will lead to a wrong

result, no result, or untimely result condition of this

complex device. This is necessary, because sufficient

independence of internal function units within the

multi-core cannot be claimed under any

circumstances, due to the extreme complexity 15 of

these SoCs by the semiconductor manufacturer.

Likewise, deactivated units must be checked

periodically, to ensure that they remain disabled, by

disabling power, clock or both and restrict bus access

for those units16 when possible and applicable.

Extensive architectural mitigation is performed on the

board level, as suggested by activity 15, removing the

multi-core device from any direct failure path in the

15 Multi-layer routing on the die; no isolation substrates between

function units, cores, busses due to timing constraints; etc.

16 Internal, complex function unit can access memory as a bus-

master, for example complex communication peripherals or

graphic processor units

16

case of single faults. Multi-point failures can be

mitigated by DMONC, if both DMONs do not fail

simultaneously, as shown by the FTA and markov

analysis. Note that it is possible to mitigate common

mode failure scenarios by dissimilar multi-core or

monitoring devices within each LRU in a redundant

cluster. We will not explore this path any further in this

work.

Activity 5 results in a great impact on documentation

and analysis, in order to comply with the described

actions. The first part, out of three, of activity 5 is

accomplished by not relying on any internal function

units to ensure safe operation of the multi-core device.

Note that internal units will be used to ensure

determinism and partitioning on the multi-core, but

not on the board level, effectively canceling their

effect on the safety of the LRU. The second part

recommends that extensive validation should be

performed, which is possible in the proposed

architecture with fault injection, run-time trace

(offered by most modern multi-core SoCs) and other

test strategies. The third and fourth paragraph of

activity 5 require a substantial development effort. The

exact use case must be documented with great depth,

accompanied with an in-depth device documentation

and analysis. However, this can be achieved, given our

proposed architecture and architectural mitigation

strategy, with very little impact on overall system

safety and certification outcome, since the multi-core

is no longer in a critical failure path and only degrades

the overall availability of the system in a realistic

worst-case scenario. The exact nature of the

assessment of activity 5, will most likely be subject to

extensive discussions with the authorities in a live

project, but could be reduced to a documentation task

with limited certification risk given the architectural

precautions and mitigations.

WCET and Mixed-Criticality Partitioning on the

Multi-Core SoC

Common to both the industrial and aerospace domain

is the need for strong determinism and partitioning on

the multi-core device, especially with applications

with mixed criticality levels running concurrently on

the same device17.

17 SWCEH activity 5 and activity 16, IEC 61508-3 Annex A and

F

In order to overcome the WCET and partitioning issue

in the certification context, we suggest the method

proposed in [6], [9] and [10] , which uses a single core

equivalence approach to determine WCET in the

contention scenario on the shared bus, and temporal

isolation via software-driven, per-core memory

bandwidth management. [6] and [9] provide a good

overview of related work and techniques explored.

Partitioning is especially needed in the mixed

criticality scenario, where less well tested applications

with lower SIL/DAL levels execute alongside highly

critical functions, due to the failure mode of non-

critical functions contending the shared memory or

shared interconnect of other cores for critical

functions18 . In terms of internal function units, the

proposed method only relies on the core local

performance counters, which become safety relevant

if used for this purpose. Therefor these counters have

to be verified for correct operation during design, with

the associated documentation provided. Likewise, to

detect latent faults, a dynamic run-time validation

must be conducted in regular intervals (depending on

the application domain). This check is rather simple

and non-destructive, by logging the current event

counter value, conducting a defined number of events

to be logged (e.g. memory transactions, cache misses

by accessing non-cached regions, etc.) and comparing

the resulting counter value with the expected result.

When augmenting the proposed method in [10], with

a per-function execution profile like we proposed,

tighter bounds can be placed on the detection time,

much like with [17], where this approach is used to

detect malicious instructions for a security reason,

where we propose this method to also provide

unspecified program flow detection for safety reasons.

In [6], the properly isolated cores are then used to

derive a WCET analysis, conducted on the single core

under the assumption that a pre-allocated memory

bandwidth is available per core which bounds the

WCET in the contented SoC. In previous generations

of safe systems, WCET analysis was either conducted

statically by formal methods and verified during test

(tool support available) while triggering the identified

worst case memory consumption or timing path on the

real system within a measurement/trace setup or

hardware-in-the-loop arrangement. Likewise, WCET

18 Not only due to SEU, but also related to undiscovered design

errors on less well tested, non-critical functions.

17

analysis can be conducted using the single core

equivalence approach in the same manner, while

worst-case profiles on each core are generated during

the validation phase. These profiles ensure

determinism in the field, even in the case of SEU

introduced rogue cores or undiscovered software

design errors in less stringent certified software on

other cores, by allowing the RTOS instance to suspend

the execution of non-critical tasks on a core or

prematurely detecting abnormal program execution

symptoms for critical functions. Note that, current

generations of multi-core SoC already feature

extensive time and data trace capabilities via dedicated

interfaces (Nexus AURORA, ARM ETM/ITM, etc.)

which can be exploited to conduct precise on-target

measurements with an unmodified binary image to

provide further confidence during validation of the

design.

Conclusion

Although no guidance is currently provided on the

certification of high-complex, COTS multi-core SoCs,

a suitable architecture can be derived, which fits into

current regulation and builds on the simplest concept

possible. If one cannot be sure, that a part, device or

system can function without any failures under any

conditions, another system, or group of such, must

provide the means necessary to detect the failure and

mitigate its effects. The failed complex system itself

cannot under any circumstances be used to detect his

own failure, since it has already failed19. Note that this

approach also denies all possible pathways to use

different cores of the COTS multi-core as redundant

compute channels to mitigate errors outside another

core’s local elements, due to the common failure

modes.

During the course of this paper, we presented two

architectural configurations to accomplish compliance

with current regulatory frameworks for certification of

COTS multi-core SoCs. The first approach utilizes a

simple centralized command-monitor pattern, with

redundant output paths, to detect failures via cross

comparison and is especially useful when the

application already requires more than one LRU, or

even higher numbers of units distributed throughout

the physical system. The second approach distributes

the monitoring and incorporates the low-speed

19 Special safety MCUs excluded

interfaces into these units, providing on-board voting,

error masking and a hardware fault tolerance build in

on the LRU level. It is designed for physical systems

with stringent size, weight and power requirements,

where a large number of LRUs is either not feasible or

cannot be justified due to commercial constraints.

System functions have been categorized into separate

impact levels, to reflect their impact on the system

behavior in case of wrong computation results and

complete loss of functions. This classification is used

to distribute functions according to their level to the

on-board cross comparison or voting for on-board

error detection, localization and masking, or to inter-

LRU voting in a cluster of redundant units.

The proposed high-level software architecture

provides fast error detection within the multi-core

device and to separates functions of different

criticality levels executing on different cores, with

little computational overhead and complexity.

Associated software and measurements are future

work on actual hardware.

With a FTA and markov analysis, we showed that no

LRU failure mode could directly be associated with an

error inside the multi-core device, resulting from the

board level architecture, while addressing certain

requirements by domain specific standards and

guidance. As a result, we propose that certification of

systems based on COTS multi-core processors is

possible, even with current regulatory frameworks and

the inherent hesitation of certification authorities.

Related Work

Academic contributions to the topic mainly focus on

either custom function unit integration into multi-core

ASICs or entirely purpose build devices, like [18],

[19] or [17], in order to either enforce, monitor or

enhance determinism and core decoupling. While they

provide guidance for future generations of multi-core

SoC design, these works do not explicitly address

certification strategies and shortcomings of their

designs, and are also of scope for almost any

application, due to high cost of custom ASICs. Other

academic works focus on WCET calculus ([20], [6],

[10], [11], [9]), while also not explicitly considering

design constraints due to certification, in terms of

possible common failure scenarios, where the correct

18

function of any core in the SoC can no longer be

guaranteed by a line of code, and the certification

aspects when internal function units are used to

guarantee certain safety claims.

Future Work

In our future work, we will assemble a testbed for the

DMONC and conduct measurements on the error

detection and mitigation methods described, as well as

the watchdog implementation. A certifiable, industry

standard RTOS microkernel will be used on the multi-

core in multiple instances to implement the proposed

the software architecture. The institute of flight

dynamics will provide a certifiable flight control

application suite with baseline control, autopilot

software, on-line flight path planning and automatic

landing based on augmented visual data to serve as a

benchmark with a certifiable, model-based developed

application collection. The final timing and validation

verification example will be integrated in one of the

existing hardware-in-the-loop aircraft system

simulations existing at the institute.

Acknowledgement & Disclaimer

This work was funded by a doctoral research grand,

funded by MicroSys Elecronics GmbH. The author

thanks the FEA and QorIQ team from Freescale

Semiconductor (future NXP Semiconductor) for the

insight into current and future devices, as well as Mr.

Ramold and his group at TüV Süd Rail GmbH for the

health discussions and critical reviews on the

architectural configurations and certification aspects.

Any opinions, findings and conclusion, especially in

the terms of certifiability, do not necessarily reflect the

views of TüV Süd Rail GmbH.

Due to the nature of the grand, all rights remain with

the author. This is a working paper, stating the current

status of a work in progress and is therefore subject to

change without notice. The author invites the

community for critical review and suggestions.

Version 1.0

19

References

[1] "Functional safety of electrical/electronic/programmable electronic safety-related systems (IEC

61508-x:2010)," International Electrotechnical Commission, 2011.

[2] ISO - International Organization for Standardization, „ISO 13849-x:2008 Safety of machinery -

Safety-related parts of control systems,“ ISO - International Organization for Standardization, 2008.

[3] C. A. S. Team, "Position Paper CAST-32 Multi-core Processors," May 2014. [Online]. Available:

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-

32.pdf. [Accessed 10 November 2015].

[4] EASA, „CERTIFICATION MEMORANDUM - SWCEH - 001 Issue No.: 01,“ EASA, 2011.

[5] Thales Avionics, „EASA 2011.C31 MULCORS Project. The Use of MULticore proCessORS in

Airborne Systems, CCC/12/006898-Rev.07,“ EASA, 2011.

[6] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha and H. Yun, "WCET(m) Estimation in Multi-

Core Systems using Single Core Equivalence," 27th Euromicro Conference on Real-Time Systems

(ECRTS), 2015.

[7] Micrel, "EtherREL™ Network Fault Recovery," Micrel, [Online]. Available:

http://www.micrel.com/index.php/etherrel.html. [Accessed 13 November 2015].

[8] TSN Task Group, "Time-Sensitive Networking Task Group," IEEE 802.1, [Online]. Available:

http://www.ieee802.org/1/pages/tsn.html. [Accessed 13 November 2015].

[9] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "Memory Bandwidth Management for

Efficient Performance Isolation in Multi-core Platforms," IEEE Transactions on Computers, 2015.

[10] "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in

Multi-core Platforms," Real-Time and Embedded Technology and Applications Symposium (RTAS),

2013.

[11] J. Nowotsch, M. Paulitsch, A. Henrichseny, W. Pongratzy und A. Schachty, „Monitoring and

WCET Analysis in COTS Multi-core-SoC-based Mixed-Criticality Systems,“ Proceedings of the

Conference on Design, Automation & Test in Europe, 2014.

[12] ECSS / ESA-ESTEC, „ECSS-E-ST-50-12C - SpaceWire - Links, nodes, routers and networks,“

ECSS, 2008.

[13] SAE Aerospace, „ARP4754-A GUIDELINES AND METHODS FOR CONDUCTING THE

SAFETY ASSESSMENT,“ SAE Aerospace, 2010.

[14] SAE International, „ARP4761 Guidelines for Development of Civil Aircrat and Systems,“ SAE

International, 1996.

20

[15] SC-180, „DO-254 Design Assurance Guidance For Airborne Electronic Hardware,“ RTCA, 2000.

[16] T. Brunnengräber, „Functional Safety Suite,“ Thomas Brunnengräber, [Online]. Available:

http://www.thomas-brunnengraeber.de/fusasu.html. [Zugriff am 13 November 2015].

[17] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim und L. Sha, „SecureCore: A Multicore-based Intrusion

Detection Architecture for Real-Time Embedded Systems,“ Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2013.

[18] J. Perez, D. Gonzalez, C. F. Nicolas, T. Trapman und J. M. Garate, „A safety certification strategy

for IEC-61508 compliant industrial mixed-criticality systems based on multicore partitioning,“ 17th

Euromicro Conference on Digital System Design, 2014.

[19] B. Motruk, J. Diemer, R. Buchty, R. Ernst und M. Berekovic, „IDAMC: A Many-Core Platform

with Run-Time Monitoring for Mixed-Criticality,“ IEEE 14th International Symposium on High-

Assurance Systems Engineering (HASE), 2012.

[20] J. Bin, S. Girbal, D. Gracia Pérez, A. Grasset and A. Merigot, "Studying co-running avionic real-

time applications on multi-core COTS architectures," International Conference on Information and

Communication Technology for Embedded Systems (ICITES'14), 2014.

21

Appendix I

ID UC1 UC2 Description

RQ1 x The compute platform shall satisfy a safety claim of up to SIL2 / KAT3 (Pl.a-d) with a

single LRU, Safety Claim of SIL3-4/KAT4 (Pl.d-e) depending on system architecture

and other failure mitigation means on system level

RQ2 x x The compute platform shall satisfy a safety claim of SIL4/KAT.4 (Pl.e) with two LRUs

or more

RQ3 x The compute platform shall be certifiable in accordance with DAL C using one single

LRU

RQ4 x The compute platform shall be certifiable in accordance with DAL B with two LRUs

maximum

RQ5 x The compute platform shall be certifiable in accordance with DAL A with at least three

or four LRUs (1oo3/1oo4/2oo5/2oo6, etc.)

RQ6 x x The LRU shall provide on-board fault detection / diagnosis / functional monitoring to

detect wrong results of critical functions (IL2). A faulty computation result of any IL2

function shall not be distributed by the LRU.

RQ7 x The LRU shall provide a fail-passive / fail-silent safe state in a redundant configuration.

RQ8 x The LRU shall provide means to reach a safe state via separate system mode transitions

requiring complex actions.

RQ9 x x The LRU shall be able to maintain the safe state.

RQ10 x The LRU shall provide a fail-operational fallback operating mode, in order to execute

complex system mode transitions required to reach a system safe state.

RQ11 x The LRU shall satisfy ISO13849 KAT3 single fault tolerance.

RQ12 x x The LRU shall detect latent faults in its nominal compute channels by online monitoring

or cross comparison.

RQ13 x x Fault accumulation may only lead to a unsafe LRU state if multiple, physically

independent subsystems of the LRU are subject to failures (nominal and monitoring

failing at the same time).

RQ14 x x Complex, multi failure scenarios which disrupt the nominal and monitoring compute

channels of an LRU shall be mitigated on the system level via redundancy.

RQ15 x x The LRU shall be designed such that system functions of different criticality and impact

level can be executed side by side on the multi-core platform in a safe way. The

partitioning of different functions must be guaranteed at all times.

RQ16 x x The LRU shall provide legacy interfaces such as CAN, RS232/485, ARINC429 or

similar databus communication interfaces to support existing infrastructure, sensors or

actors.

RQ17 x x The LRU shall provide at least two pairs of redundant modern high-speed interfaces

such as Ethernet (AFDX, EtherCAT, Powerlink, etc.), TTP, SpaceWire, with at least

50Mbit/s average throughput per interface, as well as a redundant, high-speed cross

channel interconnect with at least 100Mbit/s average throughput per interface.

RQ18 x x The LRU shall be designed to mitigate common mode failure, with regards to common

complex COTS parts used within the LRU.

Table 2: Requirements for a LRU for the presented use-cases. Columns UC1 and UC2 signify if the

requirement originates from the respective use-case

22

Appendix II

23

24

Appendix III

Base Events

Name Description Model λop λsb D WBk Trep Tchk Dt t0 β

MC transient failure SEU (Estimation, at 40kft,

5.00E-05 on Ground, best
conservative guess based on

NDA data)

Repairable 5,00E-03 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1

MC permanent failure Latch-Up (Estimation based on
QoiQ P2020 NDA data, best

conservative guess)

Non
repairable

1,50E-08 1,00E-13 1.0 1.0 0.0 1.0 0.0 0.0 0.1

SMON transient failure SEU (Estimation, best

conservative guess)

Repairable 5,00E-05 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1

SMON permanent failure Latch-Up (Estimation, best

conservative guess)

Non

repairable

1,50E-08 1,00E-13 1.0 1.0 0.0 1.0 0.0 0.0 0.1

DMON permanent failure Latch-Up (MPC5744
estimation, NDA data)

Non
repairable

1,00E-08 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.1

DMON transient failure SEU (MPC5744 Estimation

based on NDA FMEDA Data,

40kft)

Repairable 3,00E-03 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1

FPGA transient failure SEU (based on Artix-7A50T

estimation on 40000ft above

New York (600x flux), 100%
device utilization with 50%

ciritical bits)

Repairable 2,00E-04 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1

FPGA permanent failure Latch-Up (based on 7-series

Tj=55°C estimate)

Non

repairable

1,50E-08 1,00E-13 1.0 1.0 0.0 1.0 0.0 0.0 0.1

25

First Aggregate to Device Level

26

LRU Fault Trees and Markov Diagrams

27

Resulting System Reliability Calculation with different Redundancy Levels

28

Markov Models

	Working Paper - Safety Critical Systems based on COTS Multi-Core Processors
	Abstract
	Introduction
	High Level System Architectures
	“Small System” Use-Case (UC1)
	“Large System” Use-Case (UC2)
	Requirements for an LRU

	Board Level System Architectures
	Non-Distributed Monitoring Configuration
	Distributed Monitoring Configuration
	Software Architecture Considerations, Common Circuitry and Interconnects

	Safety and Certification Aspects
	Industrial Certification (IEC/TR 61508, EN ISO 13849)
	Aerospace Certification (ARP 4761/4754, DO-254/178)
	WCET and Mixed-Criticality Partitioning on the Multi-Core SoC

	Conclusion
	Related Work
	Future Work
	Acknowledgement & Disclaimer
	References
	Appendix I
	Appendix II
	Appendix III
	Base Events
	First Aggregate to Device Level
	LRU Fault Trees and Markov Diagrams
	Resulting System Reliability Calculation with different Redundancy Levels
	Markov Models

