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Abstract 

 

The inverse problem also known as parameters estimation or parameters identification is a 

common but very important task in the world of science and engineering. Its applications can be 

found in many different fields such as geoscience, nondestructive material testing, aerody-

namics, etc. Solving an inverse problem means to find a proper set of parameters of a model, to 

be well fitted, to a given data set. It can be quite tough and time-consuming if the model is 

complex and contains many parameters, especially when the relationships among the param-

eters are highly nonlinear. This research work is therefore dedicated to a general approach of 

efficiently solving inverse problems in complex systems by applying finite element method 

together with metamodel techniques. The approach is suitable for applications in the field of 

geoscience and remote sensing engineering.   

In recent decades, thanks to the rapid development of geodetic techniques such as GPS and 

InSAR, the number of observations of ground deformation in volcanic areas increased drasti-

cally. The improvement of these datasets, both in term of spatial and temporal distribution, 

higher resolution and better accuracy, provides invaluable observations of the surface defor-

mation that can be used to better understand volcanic processes and possibly improve our 

ability of forecasting the behavior and the hazards associated with a given volcano.  

Usually, volcano deformation is modeled using simple analytical solutions. In reality, the 

complexity of volcanic areas, is highly oversimplified by these models, and the estimated 

sources of deformation could be significantly biased. The use of more complex models, as 

finite element method, allows a more realistic representation of the complex geophysical sys-

tem and a more reliable simulation of a volcanic system more compatible with the improved 

observations. However, finite element models usually take long time to run and are not directly 

suitable to traditional inversion schemes.  

During the parameter identification phase, solving the inverse problems requires running 

the underlying model a significant number of times. The long time needed to run finite element 

models makes this approach inefficient. . To overcome this issue, the direct approach is modi-

fied by introducing the idea of metamodel.  

A metamodel is a mathematical approximation of the underlying system, which is very 

efficient in computation and keeps relatively good accuracy compared to the original model. 

With the self-updating procedure, metamodels can greatly reduce the number of model runs 

needed for the parameter estimation. In this way, the efficiency of the optimization process is 

significantly improved.  

The effectiveness and efficiency of the presented metamodel-based inversion approach has 

been verified by inverting synthetic examples and with the real case application to the defor-

mation of the Long Valley Caldera, CA, USA.  
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Zusammenfassung 

 

Das Inverse Problem auch bekannt als Parameterschätzung oder Parameteridentifikation, ist 

eine übliche, aber sehr wichtige Aufgabe in der Welt der Wissenschaft und Technik. Die 

Anwendung des Inversen Problems kann man in vielen verschiedenen Bereichen vorfinden, 

wie z.B. in der Geowissenschaft, in der zerstörungsfreien Prüfung, in der Aerodynamik, usw. 

Ein Inverses Problem zu lösen, heißt einen richtigen Parametersatz eines Modells, das gut zu 

einem gegebenen Datensatz passt, zu finden. Es kann ziemlich schwierig und zeitaufwändig 

sein, wenn das Modell komplex ist und viele Parameter besitzt, vor allem wenn die Bezie-

hung zwischen den Parametern stark nichtlinear ist. In dieser Dissertation wurde eine all-

gemeine Methode zur effizienten Lösung von Inversen Problemen in komplexen Systemen 

mit Hilfe der Finite-Elemente-Methode und der Metamodelltechnik entwickelt. Diese Me-

thode wurde in der Geowissenschaft und in den Fernerkundungstechniken erprobt.  

In den letzten Jahrzehnten hat man durch die schnelle Entwicklung der Fernerkun-

dungstechniken, wie z.B. GPS und InSAR immer leichteren Zugang zu Beobachtungsdaten 

mit hoher Auflösung und Genauigkeit von Oberflächenverformungen in vulkanischen Ge-

bieten.  

Die Finite-Elemente-Methode, die eine der wichtigsten Werkzeuge der Computersimu-

lation ist, liefert die Möglichkeit realistischere und anspruchsvollere numerische Modelle von 

komplexen geophysischen Systemen zu etablieren. Diese Modelle passen zuverlässiger zu 

den Beobachtungsdaten als einfache analytische Modelle. Die Finite-Elemente-Modelle 

benötigen jedoch mehr Zeit, um Ergebnisse zu liefern.  

Da das Lösen von Inversen Problemen für gewöhnlich ein Optimierungsprozess ist, 

scheint das Finite-Elemente-Modell während der Parameteridentifizierungsphase ineffizient 

zu sein, um als Verformungsmodell zu dienen, weil es mehrmals durchgeführt werden müsste, 

um den passendsten Parametersatz zu finden. Um das Effizienzproblem zu lösen, wurde die 

direkte Methode durch die Einführung der Metamodelltechnik modifiziert.  

Ein Metamodell ist eine mathematische Annäherung des vorliegenden Systems, das bei 

der Berechnung sehr effizient und im Vergleich zum Originalmodell relativ genau ist. Die 

selbstständige Aktualisierung des Metamodells bewirkt, dass die benötigte Anzahl der 

Durchläufe bei der Anwendung des Finite-Elemente-Modells stark reduziert wird. Auf diese 

Weise, wird die Gesamtberechnungszeit signifikant reduziert und die Effizienz des Opti-

mierungsprozesses wird verbessert. 

Der Erfolg und die Effizienz der vorgestellten metamodell-basierten Inversionsmethode 

wurde sowohl in synthetischen Testbeispielen als auch in einem realen Fall am Beispiel des 

Long Valley Caldera in Kalifornien überprüft. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

A typical problem in scientific and engineering studies is the search of the best model that 

can explain a set of observations. In general, scientists and engineers have background 

knowledge of the process or system they want to study that can be expressed in some 

mathematic form such as ordinary differential equation (ODE), partial differential equation 

(PDE), and linear or nonlinear algebraic equations. While the mathematical formulation of 

the process controlling the observations is often well described, the key parameters govern-

ing the behavior of the system are generally unknown and need to be estimated. If we as-

sume the underlying mechanism of the system is well understood, then, feeding the param-

eters to these mathematical models will provide some response that indicate the sensitivity 

of the system to those parameters. This way of analyze the problem is often referred as for-

ward problem. Dealing with a forward problem may include solving analytically an ODE, 

PDE or a set of linear equations, or solving it approximately through the application of nu-

merical algorithms. Still, the parameters controlling the system are fed to the solution and 

the response to the given parameters is analyzed independently by possible observations of 

the system. On the contrary, it is possible to focus on searching for the physical parameters 

that best represent some observation of the system behavior. Such kind of problem is called 

inverse problem. It was suggested by many famous scientists (e.g. Lagrange, Poisson, Gali-

leo, etc.) and firstly formalized in a mathematical sense in 1929 by the Soviet-Armenian 

physicist, Viktor Hambardzumyan.  

The inverse problem, also known as parameters estimation or parameters identification, 

is quite common and can be found in a variety of different fields, such as geoscience, com-

puter vision, nondestructive testing, ocean acoustic tomography, aerodynamics, and rocketry, 

etc. It often allows to estimate physical parameters we are interested in but that are either 

impossible or too difficult to measure or observe directly. Let’s take the nondestructive ul-

trasonic testing technique as an example. We can measure the reflected and refracted ultra-

sonic waves, however, the parameters we actually want to know are the location and size of 

possible cracks within a material. Inversion theory allows us to link the propagation of the 

ultrasonic waves to the location of internal cracks, thus identifying the possible failure point 

within the material without having to open it.  

The inverse problem is typically ill-posed, meaning that due to its definition, mathe-
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matical formulation, or limited set of observations the model parameters or the material 

properties are not univocally derived. The term "ill-posed" used here refers to the definition 

given by the French mathematician Jacques Hadamard (1902). To solve the inverse problem, 

many different methods have been developed. For simple linear inverse problems, often it is 

possible to solve the inversion problem analytically by directly inverting the observation 

matrix. However, in most cases such solution does not exist or, as in the case of a nonlinear 

inverse problem, is too complex. In those cases different optimization methods have to be 

applied (Aster et al. 2005).  

In recent decades, the rapid developments of computer science and technology allows 

the use of computer simulations as a way to model the behavior of a simplified representa-

tion of complex physical systems in many different industries and scientific fields. While 

the widespread and commonly-used pure analytical models are forced to introduce signifi-

cant simplifications, numerical computer simulations offer the possibility to consider more 

complicated factors such as time-dependent material behavior, real topography, real time 

temperature fields, as well as the heterogeneity of internal structures. Thus, despite also the 

numerical models are still only approximations of the real systems and still need to rely on a 

lot of assumptions and simplifications, computer simulations allow a better understanding 

of the characteristics of realistic physical systems. The finite element method is one of the 

powerful computer simulation tools, which has been widely used by scientists and engineers 

community since 1980s and is getting more and more popular with improving computers.  

In spite of the advantages mentioned above, computer simulations have their own 

drawbacks. In particular, the increasing complexity of the studied problems, significantly 

increases the computational cost of the simulations. Although computer power is increased 

significantly in recent times, one single run of computer simulation may take significant 

time, from minutes to several hours (even days) to provide a result. The complexity of 

problems, the efficiency of algorithms, or different hardware, can significantly impact the 

running time. For optimization procedures, where a huge number of alternative designs 

have to be investigated and simulations need to be performed multiple times, can be signif-

icantly affected by the model performance. In other words, optimization with computer 

simulations is commonly a time-consuming task and improvement in the used algorithm can 

transform an impossibly long task in a powerful tool.  

In this work, a metamodel-based approach is used to minimize the computational cost 

in computer simulation aided inverse problems. The metamodel is a mathematical approxi-

mation of the underlying computer simulation. In comparison with the original model, it is 

generally very efficient in computation and keeps relatively good accuracy. The metamodel 

can greatly reduce the needed number of runs of the computer simulation (e.g. finite ele-

ment model), and in this way improve the optimization process significantly reducing the 

total computing time.  

The range of possible applications for the presented approach is very broad, including 

mechanical engineering, electronic engineering, civil engineering, bio-medical engineering, 

material science, signal processing, metal forming, geosciences, etc. This work keeps its 

focus on solving practical inverse problems in geoscience and remote sensing engineering 
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and its application in hazards assessment in volcanic areas.  

1.2 Goal of the work 

The main goal of the present work can be summarized as below:  

 To develop a general, effective and economic approach for solving inverse prob-

lems by combining the metamodel technique together with the finite element 

technique. The proposed approach should be particularly suitable for geoscience 

applications.  

 To evaluate and validate the performance and reliability of the proposed approach 

by means of numerical tests and real case studies.  

 To obtain better understanding of the underlying mechanism behind the geody-

namic processes such as earthquakes, volcanic eruptions, and ground subsidence. 

And to establish better and more realistic geophysical models so that we can pro-

vide more valuable and convincing information for related natural hazard assess-

ments.  

1.3 Flowchart of the proposed approach 

The flowchart illustrating the general framework of the proposed metamodel-based ap-

proach is shown in Figure 1.1. The whole approach consists of three main parts. The first 

part is about how to treat the observation data. The second part is regarding how to choose a 

suitable parameterized model candidate according to the specific problem under study. And 

the third part is the core part of the proposed approach, which is an optimization procedure 

based on finite-element-aided self-updating metamodels.  
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Figure 1.1 General framework of proposed metamodel-based approach for solving 

inverse problems.  
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1.4 Structure of this thesis 

After this introductory chapter including the motivation and goal of the research, the rest of 

this thesis is organized as follows. 

Chapter 2 provides an overview of the concept of inverse problem. It includes a short 

introduction to the definitions and terms used in the field of inverse problems. Then based 

on the mathematical formulations, the characteristics of typical inverse problems and related 

solution techniques are presented and discussed. Subsequently, a further discussion about 

inverse problems in the context of geosciences applications is presented. It focuses on the 

issues and difficulties of inverse problems related to the special conditions and requirements 

of geosciences. In addition, the theoretical and methodological fundamentals used for the 

work in this dissertation are also presented.  

The modern techniques used in geodesy and remote sensing for acquiring observation 

data are generally introduced in Chapter 3. Among all the current geodetic techniques, two 

of the most commonly used tools are presented and discussed in more detail: Global Navi-

gation Satellite System (in particular the Global Positioning System, GPS for short), and the 

interferometric synthetic aperture radar, normally abbreviated as InSAR. It is worth to men-

tion that all the observed and measured data used in this work are obtained using these two 

techniques. In general, InSAR provides such large amount of observed data that would not 

be practical to invert. A weighted uniformly data selection approach based on the Combina-

tion Genetic Algorithm (CGA) is elaborated to smartly select a part of the data from the 

whole dataset without losing its overall characteristics. The selected data points are termed 

as Investigation Points (IPs) in this thesis.  

The fourth chapter provides an overview of the analytical geophysical models used for 

describing volcanos. The commonly used volcano deformation source models including 

Mogi model, finite spherical source, prolate spheroidal source, dipping point and finite rec-

tangular tension cracks are described. Further discussions include the problem of topo-

graphical effects on those models and tradeoff between different parameters.  

The metamodel techniques are covered in Chapter 5. It starts with a general review of 

the basic concepts of metamodels. To create a metamodel, a set of training data needs to be 

collected from so called sampling points. The methods for getting these sampling points are 

known as "design of experiments (DoE)". Different layouts of DoE can significantly influ-

ence the predictive behavior and overall performance of metamodels, thus a detailed discus-

sion of different DoE methods is given in this chapter. Thereafter, two types of commonly 

used metamodels are described in detail: the response surface model, and the Kriging model. 

Following, an approach for updating metamodels iteratively during the optimization process 

is presented. With this approach, the quality of the metamodel can be improved in an itera-

tive way, ensuring the good performance of the metamodel-based approach for solving in-

verse problems.  

In Chapter 6, the performance of proposed metamodel-based approach is tested apply-

ing the method to real life examples. Synthetic examples are studied to prove the usability 
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and reliability of the approach. An application to real data from Long Valley caldera, CA, 

USA will conclude the chapter.  

The final chapter of this dissertation summarizes the main achievements of the current 

work, followed by an outlook about several topics for future research.  
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Chapter 2  

Theoretical Background and the Inverse Problem 

 

This chapter first reviews the theoretical background and basic concepts relating to inverse 

problems. Then it keeps the focus more specifically on the inverse problems and related 

applications emerged in the field of geoscience. In addition, relevant publications on this 

topic are also reviewed.  

2.1 The typical inverse problem 

Mechanical and physical systems can often be represented in a mathematical formulation 

through the introduction of a generic operator G(m) (G also called forward operator) 

controlled by parameters described by a vector m. We normally referred to this process as 

parameterization of the studied physical process. The operator G(m) is commonly linking 

the observed data set d to the parameters m through a general form expressed by: 

 G(m) = d (1) 

In general, given a set of parameters m, expression (1) provides the expected value for 

the observations d. This process is normally indicated as forward modeling and the set of 

parameters m is indicated as the parametrized physical model of the studied system. The 

inverse problem aims at getting the best fit model m from the observation data d. It can 

be found in many different branches of science and engineering. Take the study of the 

Earth's gravity fields as an example, the governing equation of this specific problem is the 

Newton's law of universal gravitation gj = Gmi=Rij
2, where G is the gravitational con-

stant, mi indicates a series of anomalous masses within the planet, Rij the distance of the 

anomalous mass i from the observation point j, and gj the expected gravity acceleration 

anomaly at the point j. In this case mi is the parameterized physical model describing the 

distribution of mass anomalies within the Earth and the observed gravity anomaly is the da-

ta vector d. Equation (1) can be expressed as  
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If we know the distribution of anomalous masses mi, we can compute the expected 

values of gravity anomaly at the place gj. In general, we can observe the gravity anomalies 

(e.g. through a gravimeter or satellite observations) and we are interested in finding a possi-

ble distribution of masses that can cause the given gravity anomaly (e.g. we are interested in 

the location of a hydrocarbon reservoir). With the observed gravitational field at hand to get 

the density distribution of the Earth is a typical inverse problem. Of course it is a highly 

non-unique one. It is worth to mention that the way of parameterizing a physical model m 

is not unique, which means that one can choose different kinds of model parameters to de-

scribe the same model. For instance, in seismic tomography, we can choose to parameterize 

the problem either through seismic wave velocity v or slowness s (the inverse of seismic 

wave). Physically both parameterizations would provide the same information we are look-

ing for. In reality, the choice of the slowness parameterization simplifies significantly the 

mathematics of the inverse problem avoiding a singularity implicit in the velocity formula-

tion.  

Inverse problems can be classified according to many different criteria. (Aster et al. 

2005) One common way of categorizing inverse problems is based on the form of the phys-

ical model and the measured data. If both the model m and the observed data d are con-

tinuous functions of time and space, this kind of inverse problems is called continuous in-

verse problems. The general form of a continuous inverse problem is expressed by Equation 

(1) with d = d(x; t) and m =m(x; t).  

However, in most cases both the model and the observed data are not continuous func-

tions of time and space. In this case the operator G of Equation (1) can be expressed in 

matrix form (possibly dependent on m and d), while the observations and model parame-

ters are expressed as the vector d and m respectively. Such kind of inverse problems is 

called discrete inverse problems, or parameter estimation problems.  

Since in many cases a continuous inverse problem can be discretized and well ap-

proximated by the resulting discrete inverse problem, so in some literatures, people also 

named problems with a small number of parameters as parameter estimation problems, and 

problems with a large number of parameters as inverse problems.  

Furthermore, if the whole system under investigation satisfies the condition of linearity 

that is to say it obeys the rules of superposition (3) and scaling (4), then the problem is 

called a linear inverse problem.  

 G(m1 +m2) =G(m1) +G(m2) (3) 

 G(¯m) = ¯G(m) (4) 

In the circumstances, for a linear parameter estimation problem, the forward operator 

can be written in the form of a matrix, and so the general form (1) can be rewritten as fol-

lows.  

 Gm = d (5) 

where G is often named as the observation matrix and is independent of m and d.  
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On the other hand, for a linear continuous inverse problem, generally speaking, the op-

erator G can be represented by a linear integral operator, and the corresponding general 

form of such kind of problem is:  

 

Z b

a

g(y; x) m(x) dx = d(y) (6) 

where g(y;x) is termed as the kernel function. An equation having the form of (6) is called 

a Fredholm integral equation of the first kind (IFK for short), which belongs to a famous set 

of equations in mathematics. The problem described by an IFK is to find the function m(x) 

by given the continuous kernel function g(y;x) and the function d(y), which has exactly 

the same meaning as solving a continuous inverse problem.  

If the kernel g(y;x) in an IFK is a function only of the difference of its two arguments, 

that is to say g(y;x) = g(y¡ x), and the integral is over (¡1;+1), then the form of 

Equation (6) can be rewritten as follows  

 

Z 1

¡1

g(y ¡ x) m(x) dx = d(y) (7) 

which is the convolution of the functions g and m. Then by applying the Fourier trans-

form, we can get the solution  

 m(y) = F¡1
f

·
Fy[d(y)](f)

Fy[g(y)](f)

¸

=

Z 1

¡1

Fy[d(y)](f)

Fy[g(y)](f)
e{2¼yfdf  (8) 

where F¡1
f

 and Fy stand for the inverse and forward Fourier transform respectively.  

As mentioned earlier in this section, in reality the model we use to describe the prob-

lem is usually characterized by a finite number of parameters. Some of them are discrete by 

nature, the others which have continuous parameters can be discretized if the continuous 

functions involved are smooth enough compared to the sampling interval. (Tarantola 2005, 

Aster et al. 2005) Besides, many time continuous data are discrete because of the sampling.  

Therefore, in the rest of the thesis we will deal only with discrete problems, since often con-

tinuous problems can be discretized. Let's take a look at the general procedure of solving a 

parameter estimation problem through some simple intuitive examples.  

Imagine that there is a bomb dropped by a bomber falling in the sky. We can track the 

trajectory of the bomb using radar or other instruments. So the observation data d we have 

are the altitude positions of the bomb measured at a series of time points. We denote the 

altitude positions as h, and the series of time points as t. The observation data are the blue 

points shown in Figure 2.1. What we want to know in this specific problem is when the 

bomb will land and where it will land. To answer these questions we need to understand 

how the bomb moves during its fall, in other words, the kinematic properties of the bomb's 

motion. Since the velocity in horizontal direction Vh is constant, it can be easily calculated 

via dividing the horizontal displacement by the time. So the physical model m we want to 

solve should include the following three parameters (p=3): the effective local gravitational 

acceleration, m1, the initial velocity in vertical direction at the time when the bomb and the 
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bomber separated, m2, and the initial altitude of the bomb, m3.  

 

 

Figure 2.1 Observed data and trajectory of the bomb example. 

 

Assuming that except for the gravity there are no other forces exerting on the bomb, 

then the falling trajectory of the bomb should have a parabolic shape. The corresponding 

governing equation of such problem is like:  
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Applying Equation (9) to all the observation data, we can get the following system of 

equations.  
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 (10) 

where q  is the number of observation points.  

From Equation (10), it is clear to see that for solving m the whole system satisfies the 

condition of linearity (i.e. Equation (3) and (4)), so this problem is a linear parameter esti-

mation problem, and thus it can also be represented by the general form Gm= d intro-

duced in Equation (5) with  
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. 

Under the ideal circumstances, if both the model parameters and observation points 

have the same number (q = p= 3) and all the observations are exact (i.e. without any un-

certainties), then we can calculate m by directly inversing the observation matrix G, 

which gives 

 m = G¡1d (11) 

However, we are not living in a perfect world. In almost all the cases, the observation 

matrix G is not invertible, even if it is a square matrix, or the number of parameter is not 

the same of the number of observations. One reason why even a square matrix (i.e. same 

number of parameters and observation) is not giving a unique solution is the presence of 

uncertainties (i.e. noise) in the observation dataset. Another reason for which a unique solu-

tion is often not existing, is that generally we cannot ensure that we have enough infor-

mation from independent observations. In mathematical words, the observation matrix G 

is rank deficient. This kind of equation system is also known as the underestimated system, 

which means it has more than one solution.  

There is another case where we have more observation data points than the model pa-

rameters (q > p; rank(G) > p), i.e. there are more equations than unknowns in the system 

as shown in Equation (10), and the rank of G is larger than p. This kind of equation sys-

tems is termed as overestimated system in linear algebra.  

For an overestimated problem, the observation matrix G is no longer a square matrix, 

and so it cannot be directly inverted. Furthermore, the overestimated system has other issues 

like equation inconsistency, which means that it is impossible for us to find an exact solu-

tion which satisfies all the q  equations perfectly.  

The reason why the overestimated system has equation inconsistency is because the 

observation data d always contain uncertainties. If we denote the theoretical predicted 

values determined by the underlying physical system as d̂, then we have the following rela-

tion  

 
d = d̂+ "

d̂ = Gm
 (12) 

where " represents the uncertainties.  

Hence  

 Gm+ " = d (13) 
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Generally speaking, the uncertainties contained in the observation data result from two 

main sources. (Tarantola 2005) One source is the measurement errors produced either by 

instruments or people who manipulate the instruments. This kind of uncertainty is inevitable 

and can only be reduced by applying more advanced techniques and more accurate measur-

ing tools. The other source of uncertainties is due to the imperfection of physical models we 

use. That is because when we establish a physical model to describe a problem, we usually 

cannot take all the factors into account. Furthermore, often some less important factors or 

parameters need to be neglected because of the limit of computing power or just for the sake 

of the mathematical convenience.  

For instance, in our bomb example, we have neglected the mass distribution of the 

bomb as well as the air drag experienced by the bomb during its falling. All these factors 

have some sort of influences to the bomb's trajectory, so the real trajectory is not a perfect 

parabola and the governing equation should have more complicated form than the simple 

quadratic equation shown in (9).  

Thus we have  

 " = "m + "i (14) 

where "m is the uncertainties resulted from measurement errors and "i the uncertainties 

due to model imperfection. If we assume that all the assumptions we did to parameterize the 

model to simplify the model are suitable, then the term "i can be considered as zero. In this 

case, the uncertainties of observation data are completely produced by the noise in the 

measurements or measurement biases.  

 " = "m (15) 

In order to find the parameters that best represent the observed physical model, in the 

case that a formal inverted matrix G¡1 does not exist, we prefer to solve the equation sys-

tem (13) in an approximate sense, which means we will try to find the model parameters m 

which produce the predicted values d̂ that best fit the observation data d.  

In order to describe how well the predicted values d̂ determined by model parameters 

m will fit the observation data d, we need to define a measure of misfit. Generally speak-

ing, in most cases, the smaller the misfit measure is, the better the corresponding approxi-

mate solution will be.  

One of the commonly used misfit measures is the Euclidean norm (or the L2 norm) of 

the residuals, in other words, of the differences between the theoretical predicted values and 

the observation data.  

 kd¡Gmk2 =

v
u
u
t

qX

i=1

¡
di ¡ (Gm)i

¢2
 (16) 

The traditional least squares method is based on this kind of misfit measure. In least 

squares, our goal of solving the inverse problem is identical to minimizing the squares of 

the L2 norm of the residuals.  
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m
kd¡Gmk2

2
=) min

m
(d¡Gm)T (d¡Gm) (17) 

We can do it by applying the necessary condition at the minimum  
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which is 

 
@
¡
dTd¡ (Gm)Td¡ dTGm+ (Gm)TGm
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= 0 (19) 

which gives  

 GTG~m¡GTd = 0 (20) 

And so the approximate solution is  

 ~m = (GTG)¡1GTd (21) 

if GT G is invertible.  

It can be proven that the approximate solution ~m based on the L2 norm of residuals 

is statistically the most possible solution if the uncertainties of the data are Gaussian uncer-

tainties; that is to say, the uncertainties of the data are normally distributed. For this reason 

parameter estimations based on L2 norms are often called Maximum Likelihood method. 

However, sometimes, it is possible to have to deal with noise not Gaussian distributed or the 

presence of large outliers. In such cases, the L2 norm may not be the best choice for misfit 

measure, since the influences of outliers will be amplified significantly. To overcome this 

drawback and maintain the quality of solution, often people introduce a weight term or use 

an alternative norm to measure the misfit (e.g. the L1 norm (also called Manhattan norm)) 

of the residuals  

 kd¡Gmk1 =

qX

i=1

jdi ¡ (Gm)ij (22) 

This norm is much less sensitive to outliers compared to the L2 norm.  

The L1 norm has been widely used in the cases where outliers are present or suspect-

ed in the observation dataset. (Parker 1994, Scales et al. 2001, Aster et al. 2005) The method 

of trying to solve the inverse problem by minimizing the L1 norm of the residuals is named 

as the least absolute values method. It is worth to mention that because of the properties of 

the sum of absolute values the minimum solution of L1 norm of residuals may not be 

unique even just under linear constraints. (Tarantola 2005)  

Besides the L2 and L1 norm, there are many other norms which can be used as the 

misfit measures, e.g. the L1 norm of the residuals  

 kd¡Gmk1 = max
1·i·q

jdi ¡ (Gm)ij (23) 
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which is also known as minimax norm or Chebyshev norm. It is often used in the cases 

where there are strict constraints on uncertainties.  

The measure of misfit must be a norm in mathematical sense. Under this condition, one 

could choose any suitable forms of misfit measure according to the requirements of differ-

ent problems.  

Generally speaking, solving nonlinear parameter estimation or nonlinear inverse prob-

lems is much more difficult than solving the linear ones. It needs more time and computing 

power. In some cases, the nonlinear inverse problems can be converted to linear inverse 

problems via variable substitution, series expansion, or coordinate transformation. After 

linearization, this problem can be solved using traditional methods like maximum likelihood 

or least squares. In other cases it is not possible to linearize the problem, in this case non-

linear optimization techniques (e.g. the gradient-based Gauss-Newton (GN) and Leven-

berg-Marquardt (LM) methods) or evolutionary algorithms (such as genetic algorithm (GA) 

and simulated annealing algorithm (SA)) have to be used to obtain a solution. These meth-

ods often start with an arbitrary point in the space of the model parameters, called initial 

guess or initial solution, and then improve this initial guess in an iterative way until a suita-

ble solution is found. It should be noted that iterative models can converge to a local mini-

ma and not to the global best parameter estimation. This means that a global optimization 

techniques (such as multi-start methods) should be careful and be sure it is not converging 

to a “wrong” solution. Further details on this topic can be found in (Parker 1994, Scales et 

al. 2001, Tarantola 2005).  

Compared with the forward problems, there are several crucial issues that need to be 

considered, when solving inverse problems. Some issues like inexistence and nonunique-

ness of the inversion solution have already been mentioned before. Another essential prob-

lem often encountered in inverse solution procedure is the instability of a solution, a tiny 

perturbation in the observation data will result in significant perturbation in the solution 

model parameters. In such cases, the so called regularization techniques have to be applied. 

By introducing additional information or constraints (e.g. prior knowledge) of the model, 

the ambiguity and instability of the solution will be reduced, and so the ill-posed inverse 

problems can be successfully solved. (Zhdanov 2002, Aster et al. 2005, Tarantola 2005)  

2.2 Inverse problems in geoscience 

After talking about the typical inverse problems in general, we would like to restrict our 

scope to discuss the inverse problems in geoscience. The inverse problem is probably one 

kind of the most common problems that can be seen in nearly all the fields of geoscience. A 

number of inverse theories and methods have already been developed and successfully ap-

plied by previous researchers to deal with the problems arisen in many different geoscience 

as well as industrial applications. Typical examples include finding an ore deposits or oil 

field in mining and petroleum industries (Parker 1994, Menke 1989, Mani et al. 2006), un-

derstanding the internal structure of the planet using seismology or geophysical observa-

tions, or locating artifacts in archeological sites using geophysical observations.  
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In terms of geophysics, the observation data are usually the physical fields produced by 

natural or artificial sources and propagated through the Earth's interior (Zhdanov 2002). 

Generally we want to know the values of the parameters of those sources as well as the 

physical properties of the media through which the field is propagating. This inversion can 

provide information on things like the internal structures of the Earth or provide information 

on the processes that generated the observed field. Here we would like to take a look at 

some of the most important geophysical fields including the gravity field, the magnetic field, 

the electromagnetic field, the seismic wave field, as well as the surface deformation field. 

(Zhdanov 2002) 

As already discussed previously at the beginning of the chapter, the gravity field, pro-

vides information on density or mass distribution beneath the ground from the measurement 

of anomalous acceleration at the Earth's surface. The governing equation is the Newton's 

law of gravity and the inverse problem has the general form  

 ½ = G¡1
g (g) (24) 

where G¡1
g  is the inverse gravity operator, g , the observed gravity field, and ½, the densi-

ty distribution.  

For the magnetic field, what we want to know is the intensity of magnetization under-

ground or the magnetic susceptibility of subsurface structures, it is often used to locate ore 

deposits, since very high susceptibility minerals are often accompany with the ore deposits. 

It is typically used also to locate magmatic bodies or tectonic structures offsetting magmatic 

bodies. Another typical use is related with archeology since it is very sensitive to anthropo-

genic artifacts (like burying sites or walls). The general form of this kind of problem is  

 I =G¡1
H (H) (25) 

where G¡1
H  represents the inverse magnetic operator, I, the intensity of magnetization 

vector, and H, the corresponding observed magnetic field.  

For these two fields, since both the inverse operator G¡1
g  and G¡1

H  are linear opera-

tors, the related inverse problems are linear. (Note that both solutions are still highly not 

unique since different density distributions can produce the same gravity field).  

For the electromagnetic field, the governing equation is the Maxwell's equations 

(Stratton 1941) and our purpose is to determine the values of the electromagnetic parame-

ters of the examined media by measuring the electromagnetic fields at the ground surface. 

The general form of the related inverse problem is  

 [¾; "r;¹] = G¡1
em(E;H) (26) 

Where ¾, "r and ¹ present the electric conductivity, (some people prefer to use the re-
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sistivity ½, which is the inverse of the electric conductivity), the relative permittivity and 

the magnetic permeability, respectively, G¡1
em, the inverse electromagnetic operator, E, the 

observed electric field, and H, the corresponding observed magnetic field.  

The three electromagnetic parameters are of great importance, since they can provide 

precious information regarding the mineral content and physical structure of the rocks, as 

well as material properties about the fluids in the rocks.  

As last example let’s look at seismic wave propagation. The dominant equation for the 

seismic wave field is the wave equation. The parameters of interest is generally velocity (or 

its inverse the slowness) distribution of the material inside the Earth. Seismic velocity de-

pends on material properties typical for different rocks and/or rock status. What is generally 

measured is the arrival time of some kind of waves at a typical frequency or the polarity of 

the wave. From these observations one can solve for the source (if the velocity structure is 

known) or the velocity structure (if the source is known). Because of its high resolution, the 

seismic inversion method turns out to be one of the leading methods used especially in oil 

and gas prospecting applications (see Figure 2.2). The general form of the corresponding 

inverse problems is  

 v = G¡1
s (t;P) (27) 

where G¡1
s  is the inverse seismic operator, v, the velocity of elastic seismic wave propa-

gation, t, the travel time of the seismic waves when they reach the receivers, and P, the 

positions of seismic receivers.  
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Figure 2.2 Seismic method of prospecting for oil and gas1, CC-BY-SA-NC. 

 

Last but not least, we would like to talk about the surface deformation field, which is of 

great importance and very useful in hazard assessment, especially for some natural hazards 

like volcanic activity, landslide, ground subsidence, etc. (Fialko and Simons 2000, Hoff-

mann et al. 2001, Commend et al. 2004, Casagli et al. 2009, Liu et al. 2010, Zhang et al. 

2010, Masterlark et al. 2012)  

The inverse problems in surface deformation fields have a vast variety of different 

forms. Let's take the applications regarding volcanic activities as an example. For such 

problems, the observation data we have is the surface deformation fields of the volcanic 

area obtained by geodesic techniques, and our goal is to determine the values of parameters 

of the possible magma chamber such as its shape, dimensions, the change of its volume or 

inner pressure as well as where it locates. Based on all these information we can estimate 

and predict the possibility of, for example, volcanic eruptions in the future. The general 

form of inverse problems can be written as  

 m = G¡1
u (u) (28) 

where G¡1
u  represents the inverse deformation operator, u, the observed surface defor-

mation field, and m, the inversed model parameters of the source, such as magma chamber 

and fault.  

Not like the first two kinds of fields, the operators of inverse problems arisen in the 

latter three fields are normally nonlinear operators since the governing equations of the re-

lated physical systems have highly nonlinear relations, and thus the involved problems are 

nonlinear inverse problems (Scales et al. 2001, Zhdanov 2002). As mentioned in the previ-

ous section, solving nonlinear inverse problems is much more difficult than the linear ones. 

In this work, we will focus on solving the inverse problems in the surface deformation 

fields.  

As is well known, the structure of the Earth's interior is very complex. (Press and Siev-

er 1994) Although there are many complicated mathematical models established by previ-

ous researchers in order to describe the geophysical phenomena, they are still so simplified 

compared with the reality. This is one reason why geophysical inverse problems are gener-

ally much more difficult to solve. (Hickey et al. 2015) 

Another difficulty comes from the observation data. In the past, due to the limits of 

available geodesic tools and techniques, usually, we can only acquire data at a limited 

number of observation points, so the amount of observation data is insufficient. Nowadays, 

with several new developed techniques, we can get a huge amount of observation data on a 

wide scale in both time and space. However, as mentioned before, the observation data al-

ways contain a lot of noise. Moreover, due to the complicated geophysical system under 

                                                      

1 http://www.agilegeoscience.com/journal/2011/6/6/what-is-avo.html  

http://www.agilegeoscience.com/journal/2011/6/6/what-is-avo.html
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study, it is generally impossible to clarify each kind of noise, since there are too many 

known and unknown factors which may introduce some sort of noise into the observed data. 

(Dzurisin 2007) How to minimize the influence of existing unclear noises and obtain rela-

tively good inversed solution is a quite challenging issue.  

Because of the complexity and difficulty of the geophysical inverse problems, it has 

been suggested by many researchers (Nunnari et al. 2001, Newman et al. 2006, Liu et al. 

2010) that using a combination of different kinds of observation data (e.g. using the surface 

deformation, gravity field and magnetic field together) or using the same kind of geophysi-

cal data acquired by multiple independent sources (such as using the surface deformation 

data obtained by both GPS and EDM techniques) will lead to a much better or more accu-

rate solution than just using a single source of geophysical data. It is because a geophysical 

phenomenon usually causes observable changes in several different geophysical fields sim-

ultaneously, for instance, the intrusion of magma often results in significant changes in 

gravity, seismic wave, along with the surface deformation fields. Therefore, the more 

sources of observation data are considered, the better the final inversed solution is con-

strained. Given the increasing amount of observations (both in term of spatial coverage and 

type of observations) it is increasingly important to introduce more realistic modeling in our 

interpretation. Unfortunately, as already stated at the beginning of the chapter, using com-

plex models in combination with traditional inverse theory is not always practical. Still in 

recent years it has become a very hot topics (in particular in volcano geodesy Hickey et al. 

2013, Hickey and Gottsmann 2014). In the rest of the thesis we will discuss a novel ap-

proach to use FEM in the inversion for sources of deformations. 
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Chapter 3  

Data Acquisition and Selection 

 

In recent decades, with the help of great development occurred in computer science and re-

lated technologies, the geodetic and remote sensing techniques have taken a huge step for-

ward. Many new techniques have been invented and successfully applied in a variety of 

different fields of geoscience applications. Their ability of continuously and remotely mon-

itoring the 1-D or 3-D ground surface deformation fields on a large scale both in space and 

time as well as the quality and accuracy of observed data have been improved dramatically. 

Here, we would like to introduce two major geodetic tools, the Global Positioning System 

(GPS for short) and interferometric synthetic-aperture radar (often abbreviated as InSAR), 

which are getting more and more popular and becoming the standard ways of acquiring 

ground surface deformation data in many geophysical applications, especially for monitor-

ing volcanic areas in volcanology (Poland et al. 2006, Currenti et al. 2008b, Palano et al. 

2008, Ruch et al. 2008, Ruch and Walter 2010, Anderssohn et al. 2009, Casagli et al. 2009, 

Zhang et al. 2010). However, a thorough description about the technical details of them is 

beyond the scope of this thesis. More detailed information can be found in (Massonnet and 

Feigl 1998, Kampes 2006, Dzurisin 2007). It needs to be mentioned that all the real surface 

deformation data used in this work are acquired by applying these two techniques.  

3.1 Data acquisition techniques 

3.1.1 The Global Positioning System (GPS) 

The Global Positioning System, i.e. GPS, is a well-known term, which is familiar to many 

people through its usage in their daily life such as driving navigation or Google Maps ser-

vices. It refers to the space-based satellite navigation system that freely provides twen-

ty-four-hour location and timing information anywhere on the Earth, in all weather, to any-

one who has a GPS receiver. The GPS was firstly developed by the US government in 1973. 

It was originally designed for military use and, later, it was opened to civil and commercial 

users as well. Besides GPS, there are other similar systems in use or being planned, such as 

the Russian global navigation satellite system (GLONASS), the European Union Galileo 

positioning system, and the Chinese compass navigation system. (Rip and Hasik 2002) 

The reference surface commonly used for GPS calculations is the mean Earth ellipsoid, 
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which centers at the Earth's mass center and whose semi-major and semi-minor axes are 

defined by the Earth's equatorial and polar radii, respectively. Nowadays the most widely 

used reference ellipsoid is the World Geodetic System 1984 (WGS84), based on which the 

global coordinates system used by GPS is defined. The coordinates system is also centered 

at the Earth's center of mass. Its first axis starts from the center and points to the intersection 

of the Greenwich meridian and the Earth's equator. The third axis is along the direction of 

the Earth's rotation pole for the year 1984. And finally the second axis is perpendicular to 

the other two axes. The coordinates can be written in terms of longitude and latitude in de-

grees or use the Universal Transverse Mercator (UTM) coordinates in meters, depending on 

different demands. (Dzurisin 2007) 

The core of Global Positioning System consists of at least 24 operational satellites de-

ployed in six circular orbits at a height of 20200 km around the Earth. These orbits are cen-

tered on the Earth and fixed with respect to the distant stars instead of rotating together with 

the Earth. (Dixon 1991) All the satellites are distributed in a way that ensures for each point 

on the Earth at any time there are at least four up to ten satellites visible above the horizon.  

Each operational satellite of the constellation continuously transmits signals on certain 

frequencies to the Earth. The signals are normally modulated by the so called pseudoran-

dom noise codes, which are some sort of noise-like repeated binary pulses. And they carry 

important messages about the satellite itself such as the satellite's individual vehicle time, 

the correction for the offset of its clock, its orbits information, the satellite health status, as 

well as some information regarding the ionosphere-related delays.  

All these signals can be acquired by using the GPS receivers. With the information at 

hand, we can determine the position of a point on the Earth where the receiver locates. In 

order to calculate the position of a receiver, we need to obtain the signals from at least four 

different satellites simultaneously. Generally speaking, the more satellites are available, the 

higher the accuracy of resulting position will be.  

In the mathematically ideal case, just using the signals from three satellites is adequate 

to uniquely determine a receiver's position, because it has only three unknowns, however, 

since there is always a time offset between the receiver and the GPS time, the fourth satel-

lite is needed for timing correction. Thus we have four independent equations in total to 

solve for the four unknowns. If more satellites are available, then the number of independ-

ent equations will be more than the number of the unknowns. And the resulting receiver co-

ordinates will be much more accurate. A simplified error-free formula illustrating the basic 

principle of calculating receiver's position from GPS signals is shown below.  

 Rs
r = rsr + c£ (dtr ¡ dts) (29) 

in which 

 rs
r =

p
(xs ¡Xr)2 + (ys ¡ Yr)2 + (zs ¡Zr)2 (30) 

where Rs
r denotes the measured pseudorange between the satellite and the receiver, which 

is equal to the travel time of the satellite signals ¿  multiplied by the speed of light c, rs
r, 

the real distance between the receiver at time t and the satellite at time (t¡ ¿), dtr, the 
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time offset from GPS time of the receiver clock, dts, the satellite clock's time offset from 

the GPS time, (xs; ys; zs), the coordinates of the satellite at time (t¡ ¿), and (Xr; Yr;Zr), 

the wanted receiver coordinates at time t. (Hofmann-Wellenhof et al. 2001) 

Among these variables, the travel time of the signals can be measured by the receiver, 

the coordinates of the satellite as well as the satellite clock offset are known from the in-

formation carried by the signals, and the speed of light is a constant, so only four unknowns 

are left, which are the receiver's position and its clock offset.  

In Equation (29), no error effects are taken into account. But in practice, the GPS sig-

nals acquired by the receiver are always subjected to certain errors such as the time delays 

occurred when signals passing through the ionosphere and troposphere, the multi-path error, 

the error from model imperfection, and some kind of measurement errors. Fortunately, some 

of these errors can be easily eliminated or greatly diminished via GPS data combination and 

difference methods. (Hofmann-Wellenhof et al. 2001) As a result, in general the surface de-

formation data acquired by GPS can achieve a millimeter level accuracy in three dimen-

sions.  

Depending on different choices of reference point, the GPS positions can be classified 

as absolute positions and relative positions. The former is based on the global coordinates 

system defined before, while the latter is with respect to some local control points. In geo-

science applications, the relative positions are more often used, since we usually care more 

about the relative deformation at observation points with respect to certain local references 

than their absolute positions. There are many different relative positioning techniques 

available such as static GPS, stop-and-go kinematic GPS, rapid static GPS as well as real 

time kinematic GPS. (Hoffmann-Wellenhof et al. 2001) 

Thanks to the revolutionary developments of hardware and software happened in re-

cent years, continuously monitoring a single point's motion is possible, which leads us to 

the present most advanced GPS positioning techniques, the continuous GPS (CGPS) tech-

nique. There are many large CGPS networks currently being used for geoscience applica-

tions, especially for monitoring some of the dangerous volcanoes where it is too risky for 

people to work, since the CGPS stations can be operated remotely. The surface deformation 

data provided by CGPS networks are continuous in time and with a millimeter level accu-

racy, however, due to some natural limits (e.g. topographical restrictions for construction of 

CGPS stations) and safety concerns, the observation points are spatially too sparse. And this 

shortcoming can be overcome by applying other geodetic techniques such as interferometric 

synthetic aperture radar.  

3.1.2 Interferometric Synthetic Aperture Radar (InSAR) 

Interferometric synthetic aperture radar (InSAR) is a relatively new powerful geodetic and 

remote sensing technique used for measuring the Earth's surface deformations and topogra-

phy. The development of the InSAR technique started with the ERS-1 satellite launched by 

the European Space Agency (ESA) in 1991. And it was firstly made known to the world by 

its successful application on the M 7.3 Landers earthquake occurred to the east of Los An-
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geles, California on 28 June 1992, which was published on the 8 July 1993 issue of Nature 

(Massonnet et al. 1993). Since then, during the last two decades, it becomes more and more 

popular and turns out to be the only technique which is capable of monitoring in all-weather 

the surface deformation fields with centimeter accuracy on a wide spatial scale over 

timespans of several days to years. (Kampes 2006, Dzurisin 2007) It has been successfully 

applied in monitoring surface displacements generated by some natural hazards, such as 

volcanoes, earthquakes, landslides, as well as the ground uplift and subsidence. (Massonnet 

and Feigl 1998) 

By definition, InSAR techniques use two or more synthetic aperture radar images of 

the same area, with the help of interferometric image processing techniques, to get the sur-

face deformation fields during the time span defined by the image acquisitions. There are 

two important terms within it: the one is the synthetic aperture radar (SAR), and the other is 

the interferometric image processing. We will explain them in a little bit more detail, re-

spectively.  

Before introducing synthetic aperture radar, we need to talk about radar first. Radar is a 

term abbreviated from "radio detection and ranging". It is an active sensing system using 

microwaves to work. More precisely, the radar system transmits microwaves at certain fre-

quencies and collects the waves reflected by the targets. Based on the arrival times of the 

reflected microwaves, the radar can determine the distances between the targets and itself. 

Because of this active working style, radar system can work effectively both in day and 

night. Moreover, due to its relatively longer wavelength, radar signals can pass through 

clouds and ashes easily, which makes it a perfect geodetic tool for observing surface defor-

mation fields regardless of weather conditions. To better distinguish among targets at dif-

ferent distances at the same time get enough amount of signals reflected back to the radar, a 

suitable angle of incidence should be chosen carefully, for the satellite ERS-1 an incidence 

angle of 23 degrees is used and for the TerraSAR-X satellites we used, the incidence angles 

are 43.35 and 31.8 degrees, respectively.  

The synthetic aperture radar (SAR) firstly proposed by Carl A. Wiley in 1965 is a form 

of radar different from real aperture radars. It makes use of the different frequencies gener-

ated by the Doppler Effect in the reflected signals to distinguish different targets that cannot 

be identified by only using the real aperture radar before. Through the motion of the source, 

it is possible to simulate the use of a very large synthetic antenna, and the azimuth resolu-

tion of the radar is improved by two or three orders of magnitude, which is approximately 

equal to half of the antenna's length. (Massonnet et al. 1993, Bamler and Hartl 1998) 

Now we are going to talk about the principles of SAR interferometry techniques, which 

allow the SAR to image centimeter-scale surface deformations we needed. Not like other 

image processing techniques, SAR interferometry works based on the phase information of 

the echo signals. In order to do SAR interferometry, we need to have multiple (at least two) 

overlapping radar images of the same area. The overlapping radar images can be obtained 

by using multiple separate radars at slightly different positions observing the target area 

simultaneously or by using the same radar observing the target area from exactly the same 

position at different times. In this work, we use multiple passages of satellites and not a sin-



Data Acquisition and Selection 

23 

gle time observations by multiple satellites because we are interested in deformation and not 

only in topography. After we got the overlapping radar images, we need to co-register them 

so that we can apply subtraction on their phase information at corresponding pixels. The 

co-register operation depends highly on good spatial coherences between each radar images. 

When two overlapping radar images are successfully co-registered, the resulting image 

generated by subtracting their phase values is called an interferogram. The interferogram 

contains useful information about surface displacements which we need together with other 

signals that need to be corrected for, such as topography, delays due to atmospheric effects, 

and noises. After applying some mathematical treatments, the unwanted effects can be re-

moved from the interferogram, e.g. using the digital elevation model (DEM) we can remove 

the effect of surface topography. Then we can obtain the surface deformation from the 

treated interferogram. It should be mentioned that the deformation observed by InSAR is 

only in line of sight. A typical treated interferogram is shown below in Figure 3.1.  

 

 

Figure 3.1 Differential interferogram of the test site centered at the convention 

center in Las Vegas (Zhu and Bamler 2011). It can be seen that there 

are many fringes in the figure. Each complete interference fringe is 

shown as a spectrum of colors from violet to green to red in the inter-

AZ 

RG 
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ferogram. Each fringe results from a half-wavelength ¸=2 range change 

(i.e. the surface displacement) occurred between two image acquisitions. 

So the interferogram shown here is similar to a deformation map with 

contour lines. We can get the total amount of surface deformation by 

counting the number of complete fringes. In our case, since the wave-

length of the InSAR we use is 3.11 cm, each fringe corresponds to a 

range change of ¸=2 = 1:55 cm, which is quite a high resolution. 

 

In general, InSAR is a powerful geodetic tool and is very sensitive to the surface dis-

placements (of millimeter-scale). It is a highlighted feature required by geophysicists. But 

currently the time resolution of InSAR (i.e. the orbit repeat cycles) is not small enough, in 

our case, 11 days, so continuous monitoring is not possible.  

3.2 Data selection 

In today's geoscience applications it is normal to have a huge amount of observed data, es-

pecially for using continuous GPS and Persistent Scatterer InSAR techniques (Kampes 

2006). The dataset might contain millions of data points distributed over a huge area of 

hundreds of square kilometers. However, due to the quality of the data and the limits of 

computing power, only a part of the whole dataset can be used in further calculation. Thus 

how to efficiently and effectively select the most important part of data points from the 

whole dataset becomes a key issue, which in some sense, determines the quality of the final 

inversion solution. Considering the natural features of observation data in surface defor-

mation fields, we decide to use the so-called weighted uniformly selecting method to select 

the useful data points, which are named in this thesis as Investigation Points (IPs). The se-

lecting method is implemented by applying combination genetic algorithm (CGA) in pro-

gramming. (Chen and Hou 2006) 

Before talking about the combination genetic algorithm, we would like to first present 

a short overview of its famous family, the genetic algorithms (GA).  

3.2.1 The typical genetic algorithm 

Genetic algorithms (GAs) are a part of evolutionary computing theory, which is a rapidly 

growing field of artificial intelligence. The idea of evolutionary computing was first pro-

posed by I. Rechenberg in his work "Evolution strategies" in 1960s. His idea was then de-

veloped by many other researchers. The genetic algorithms which are inspired by the 

well-known Darwin's theory about evolution were invented by John Holland and developed 

by himself together with his students and colleagues. This led to Holland's book "Adaption 

in natural and artificial systems" published in 1975, in which the genetic algorithms are ex-

plained theoretically.   

The Genetic algorithms are basically stochastic evolutionary algorithms. They apply 

the principles of evolution found in nature to the problem of finding optimal solutions. The 
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searching methods they used imitate a few natural phenomena such as genetic inheritance 

and Darwinian strife for survival (Michalewicz 1992). In a word, the idea behind genetic 

algorithms is nothing but to do exactly what the nature does. Simply stated, the solution to 

an optimization problem solved by genetic algorithms is evolved.  

In order to better understand the working principle of the genetic algorithm, let us take 

a look at its biological background.  

As is well known, except for virus, all living organisms consist of cells. In the nucleus 

of each cell, chromosomes carry genetic information. A chromosome is a thread-like struc-

ture, in which DNA is tightly coiled many times around histones. Genes, which are made up 

of DNA, act as instructions to produce proteins and are the basic physical and functional 

units of heredity. Variant forms of a gene detected as different phenotypes are called alleles. 

Every person has two alleles of each gene, one inherited from each parent. Furthermore, 

each gene has its own position in the chromosome, which is called locus (string positions).  

The whole set of DNA is called genome. A particular set of genes in genome is called 

genotype (or individual). The genotype is a major influencing factor in the development of 

the organism's phenotype, which consists of physical and mental traits such as hair color, 

intelligence as well as left- and right-handed.  

During meiosis, DNA recombination (or crossover) occurs. Genes from parents form in 

some way a novel combination. The new created offspring can also be mutated. DNA muta-

tion means that the DNA sequence is permanently altered. Some of the changes are due to 

errors in DNA replication, and some of them may happen because of other reasons such as 

radiation or chemical induced.  

The fitness of an organism is measured by success of the organism in its life.  

Let’s take the famous rabbits example to illustrate this process more clearly. (Micha-

lewicz 1992) 

Assuming at a given time, there is a population of rabbits. Among them, some rabbits 

are cleverer and stronger, while others are not. These cleverer and stronger rabbits can run 

faster, so they are more possible to successfully escape from being caught by foxes. As a 

result, more of them can survive to make more rabbits. Of course, some of the weaker, 

dumber rabbits are lucky enough to survive as well. This survival population of rabbits be-

gins to breed. The result of breeding is a good mixture of rabbit genetic material, that is to 

say, some strong rabbits breed with weak ones, some strong with strong, some clever rabbits 

breed with dumb ones, some dumb with dumb, and so on and so forth. One thing has to be 

mentioned is that nature throws in a so-called ‘wild hare’ occasionally by just mutating 

some parts of the genetic material. The new generation of rabbits will averagely be stronger 

and cleverer than their parents in the original population because there are more cleverer 

and stronger parents survived from foxes. This process repeats again and again, so that the 

rabbit genetic material will be better and better.  

A genetic algorithm follows just the same procedure described above step by step. The 

terms used in genetic algorithms are also borrowed from natural genetics.  
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Genetic algorithm starts with a set of individuals called a population. One individual is 

also called one genotype contains one or more chromosomes.  

Each individual represents a potential solution to the problem. The search space is the 

space which consists of all the feasible solutions. An evolution process runs on a population 

of individuals corresponds to a search through the search space. This search should com-

promise both the exploitation of best individuals and the exploration of the search space. 

(Michalewicz 1992) In general, random search strategy only emphasizes on the exploration 

part with ignoring the exploitation. However, genetic algorithms proven to be a method 

which can balance exploitation and exploration of search space well.  

The population experiences a simulated evolution: for each generation, the relatively 

good individuals reproduce while the relatively bad ones die.  

Structure of genetic algorithms 

A typical genetic algorithm should include the following five components. (Michalewicz 

1992) 

1. A genetic representation for potential solution (individual) to the problem.  

2. A method to produce the first generation of individuals.  

3. An evaluation function (also called fitness function) which plays the role of the 

environment or nature, judging individuals according to their “fitness”.  

4. Genetic operators such as crossover and mutation.  

5. Parameter settings that genetic algorithm needed (e.g. population size, probability 

of using genetic operators.)  

The outline of typical genetic algorithm is below:  

1. Start: Create random initial population of n individuals (possible solutions to 

the problem).  

2. Fitness check: Evaluate the fitness function f(x) of each individual x in the 

population.  

3. New generation: Generate a new population by repeating the following steps un-

til the new population is complete.  

i. Selection: Select two individuals as parents from the population according to 

their fitness. Generally speaking, the better fitness, the bigger chance to be 

chosen.  

ii. Crossover: With a crossover probability use the selected parents to produce 

new offspring (children individual). If no crossover was performed, then the 

offspring is an exact copy of parents.  

iii. Mutation: With a mutation probability mutate a new offspring at random loci 

(position in chromosome).  
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iv. Accepting: Place new offspring in the new population considered avoiding 

duplicate offspring.  

4. Replace: Use new generation for a further run of algorithm.  

5. Check: If the end condition is satisfied, stop, and return the best solution in cur-

rent population.  

6. Loop: Go to step 2 in loops.  

It needs to make clear that the outline of GA shown above is a very general one and 

there are many things which can be implemented variously according to different kinds of 

problems.  

Several essential questions we need to consider are how to create chromosomes, what 

type of encoding should we choose, and how to implement the two basic GA operators, 

crossover and mutation.  

Then we need to think about how to deal with the selection of parents for crossover. 

This can be done in many ways, but the main idea is always to select the better parents since 

the better parents will more likely produce better offspring. Since making new generations 

only by new offspring may lose the best individuals from the last generation, elitism is often 

used. The term "elitism" means that at least one best individual is directly copied without 

any changes to a new generation, so the best solution which has been found can survive to 

the end of run. Elitism ensures that the fitness of the best individual in the new generation 

will never be worse than its parent generation, the worst case is equal.  

Representation for individuals 

In genetic algorithms, binary vectors (or binary strings) are used as the typical way of 

representing chromosomes of individuals that consist of real values. Each real number can 

be transformed into binary form. The length n of binary vector is determined by the preci-

sion requirement. That is because a n bits binary vector can only represent 2n numbers.  

For instance, a problem aims at finding x within the interval [1; 2] which makes a 

certain function y = f(x) get minimum value. The individual or solution to this problem is 

a real number with precision required to be four digit bits after the decimal point.  

According to the precision requirement, the interval [1; 2] should be equally divided 

into at least 104 cells. Since 8192 = 213 < 104 < 214 = 16384, so at least 14 bits are re-

quired to form a binary vector.  

The search space consists of all the binary vectors from 000000000000002  to 

111111111111112 (the subscript denotes the base number). After obtaining the best indi-

vidual through genetic algorithm, the solution has to be remapped back into real number. As 

the binary vectors 000000000000002 and 111111111111112 stand for the boundary val-

ues 1 and 2 of the interval, respectively. We need to first transform the best solution back 

into decimal form  



Data Acquisition and Selection 

28 

 (b13; b12;¢ ¢ ¢ ; b0)2 = (

13X

i=0

bi2
i)10 = x0, (31) 

then remap it to get the right value  

 x = 1+ x0 ¢
1

214 ¡ 1
. (32) 

For instance, if the best individual is 000100111010112, then  

 

x0 = (00010011101011)2 = 125910

x = 1+ 1259 ¢
1

16384¡ 1
= 1:077

 (33) 

so the best solution is x = 1:077.  

Fitness function  

As mentioned earlier, fitness functions play the role of environments in genetic algo-

rithms. It is an evaluation function which can be used to judge the performance (also called 

fitness) of individuals. Fitness functions could be in any form, for example, it may stand for 

the weight of a structure, the distance of a route, the stability of a machine, and the cost of a 

scheme.  

Normally the criterion of judgment is finding the minimum or maximum value of the 

fitness function. However, sometimes a scaling mechanism is needed to fix the original fit-

ness function in order to make it even more powerful to judge fitness. The most used scaling 

mechanisms are linear scaling and power law scaling, for example.  

GA operators 

Looking through the outline of genetic algorithm, the genetic operators are the most 

important component of the algorithm. All the new individuals are created by applying these 

operators to parent individuals. The two classical genetic operators are crossover and muta-

tion, which are both obtained from nature. We will discuss them respectively.  

The first genetic operator is called crossover. Simply speaking, crossover selects genes 

from parent chromosomes, and creates a new offspring. Crossover ensures the mixture of 

genetic material carried by both parent individuals; it provides the possibility to get better 

individuals.  

There are many ways developed by previous researchers to do the crossover. The sim-

plest way is to randomly choose a position in the chromosome named as a crossover point, 

and then everything before this crossover point in the new offspring is copied from the first 

parent while everything after the crossover point is copied from the second parent. Of 

course the way to do crossover can be very complex. It relies mainly on the encoding of 

chromosomes.  

It needs to be mentioned that specific crossover made for a certain problem could im-

prove the performance of the genetic algorithm dramatically.  
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When the crossover process is done, mutation occurs. Mutation randomly changes 

some genes of the new offspring with a probability equals to the mutation ratio. The signif-

icance of mutation is to avoid the case where all the solutions in a population fall into a lo-

cal optimum of the search space. So mutation is necessary for genetic algorithm to find the 

global optimum. A proper defined mutation operator can help the genetic algorithm find 

best solution a lot.  

Encoding of GA operators 

As indicated before, the means of encoding GA operators are totally based on how the 

chromosomes are encoded.  

Here several common approaches of binary encoding GA operators are given.  

I. Single point crossover  

Single point crossover is also called as simple crossover. Only one crossover point 

is randomly selected, the binary string from the first bit of chromosome to the crosso-

ver point of the offspring is copied from one parent, and the rest is copied from the 

other. It can be illustrated in the following Figure 3.2.  

 

 

Figure 3.2 Encoding of single point binary crossover.  

 

II. Two points crossover  

Now, two crossover points are randomly selected, the binary string from the be-

ginning of chromosome to the first crossover point of the offspring is copied from one 

parent, the part between the two crossover points is copied from the other parent, and 

the rest is copied from the first parent again. As shown in Figure 3.3 below.  
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Figure 3.3 Encoding of two points binary crossover.  

 

III. Uniform crossover  

All the bits of the new offspring are randomly copied from either the first parent 

or the second parent. It can be seen in Figure 3.4. 

 

 

Figure 3.4 Encoding of uniform binary crossover.  

 

IV. Arithmetic crossover 

The new offspring is created by performing some arithmetic operations on the 

parents. The arithmetic might be logic operations for example (see Figure 3.5).  
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Figure 3.5 Encoding of arithmetic binary crossover.  

 

V. Encoding of mutation 

In binary encoding, mutation is usually implemented by randomly choosing a few 

bits and switching them from 0 to 1 or from 1 to 0. As shown in Figure 3.6 below:  

 

 

Figure 3.6 Encoding of binary mutation.  

 

3.2.2 Combination genetic algorithm (CGA) 

From the mathematical point of view, the selection of investigation points (IPs) is a combi-

nation problem, which means to select m elements from total n elements (m · n) re-

gardless of the sequences of the selected elements. The selected element set is called a com-

bination, often denoted as Cm
n . The combination problem has two essential constraints. 

First of all, all the elements of a combination should belong to the original set, which means 

the selected element set should be a subset of the whole element set. The second constraint 

is that all the elements of a combination should be different from each other; in other words, 

each element can only be selected once.  
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In order to apply a genetic algorithm to the selection of investigation points, we need to 

decide how to represent the chromosomes of individuals. It needs to be mentioned that here 

in our case there is only one chromosome contained in each individual. That is to say, the 

chromosome is identical to the individual, which is one set of investigation points randomly 

selected from the whole dataset. Let us check if this case is still suitable for using binary 

vectors, first.  

Assume that there are ten data points in total, which are numbered with 1 to 10 respec-

tively, and we want to select five investigation points from all the data points, which means 

each individual is a C5
10 combination.  

Since 8 = 23 < 10 < 24 = 16, so at least four bits are required to form a binary repre-

sentation of a data point. As described above, each individual or solution to this problem 

should be a combination containing five IPs, so the length of the binary vector which repre-

sents one individual must be 4 £ 5 = 20 bits.  

For instance, if individual A is [2;3;4;5;7] and individual B is [1;4;5;8;2], the corre-

sponding binary vectors will be:  

 

Individual BIndividual B

Binary formBinary form

[1    ,    4    ,    5    ,    8    ,   2][1    ,    4    ,    5    ,    8    ,   2]

0001|0100|0101|1000|00100001|0100|0101|1000|0010

Individual AIndividual A

Binary formBinary form

[2    ,    3    ,    4    ,    5    ,   7][2    ,    3    ,    4    ,    5    ,   7]

0010|0011|0100|0101|01110010|0011|0100|0101|0111

 

Figure 3.7 Representation of individuals in binary form.  

 

It can be seen from Figure 3.7 that the binary form of the individual A is 

001000110100010101112 and of individual B is 000101000101100000102. In the typical 

GA, then one can directly apply binary crossover and mutation on them to get new legal 

offspring which are within the range of search space. However, for a combination problem, 

the binary operations may not be valid by nature.  

If we take these two individuals as parents and apply a single point crossover. The po-
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sition after the sixth bit is selected as crossover point.  

 

Parent AParent A

Parent BParent B

OffspringOffspring

001000|11010001010111001000|11010001010111

000101|00010110000010000101|00010110000010

0010000001011000001000100000010110000010

[   2   ,   0   ,   5   ,   8   ,  2   ][   2   ,   0   ,   5   ,   8   ,  2   ]
 

Figure 3.8 Simple binary crossover for the combination problem.  

 

The resulting offspring 001000000101100000102 corresponding to the combination 

[2;0;5;8;2] is illegal. First, it is not a combination since data point 2 is reduplicate. Second, 

the binary sequence 00002 (indicated by 4) does not belong to the whole dataset. So the 

resulting offspring is out of the search space.  

Similar problems will occur when applying the binary mutation operator.  

 

Offspring A Offspring A 0010001101000101011100100011010001010111

0010101101010101011100101011010101010111

[   2   ,  11  ,  5   ,   5   ,  7   ][   2   ,  11  ,  5   ,   5   ,  7   ]

Offspring A'Offspring A'

MutationMutation
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Figure 3.9 Binary mutation for the combination problem.  

 

The resulting new offspring 001010110101010101112 corresponding to the combina-

tion [2;11; 5; 5; 7] is illegal too. The data point 5 appears twice and data point 11 which 

does not exist in the whole dataset. Thus for such kind of combination problem the binary 

encoding of typical genetic algorithms is not suitable.  

With the purpose of avoiding getting illegal offspring, either we should use some rem-

edy methods to fix the chromosome in order to make it back into the search space, or one 

can apply a new way to represent chromosomes.  

So instead of using binary vectors, integer vectors are decided to be used for repre-

senting individuals for combination problems. That is to say, an integer vector [i1; i2;¢ ¢ ¢ ; ik] 

represents a combination Ck
n containing k selected investigation points. An individual is 

now represented as [2;5;7;9;10], for instance. As a consequence, a new type of encoding is 

needed to implement the crossover and mutation operators, which should be able to handle 

the integer form of individuals.  

Combination encoding of GA operators 

Though there are still two classical genetic operators: crossover and mutation, the 

combination encoding of them is different from the binary form illustrated in previous sec-

tions. It has to make sure that the resulting offspring are legal individuals, that is to say, they 

are within the search space.  

In this work, three different crossover approaches are used in the implementation for 

selecting investigation points, which are the ‘simple single point crossover’ method, the 

‘two points crossover’ method and finally the ‘mixing (or uniform) crossover’ method. (To-

ropov et al. 2007)  

I. Simple single point crossover 

Similar to single point crossover in binary encoding, one crossover point is randomly 

selected, the integer string from the first position of chromosome to the crossover point 

is copied from one parent to the offspring. However, in combination encoding, it has to 

make sure that there are no duplicate points in the offspring. So in this case, the rest 

part of offspring cannot be directly copied from the other parent individual. The pro-

cedure is done as follows.  

The other parent is inspected from the beginning and if a number is not in the off-

spring yet, it will be added to the offspring. The process will be continued in loops until 

the required number of investigation points is reached.  

It can be illustrated in Figure 3.10, where the crossover point is selected after the 

third number.  
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Parent AParent A Parent BParent B

[2 3 4|5 9 6][2 3 4|5 9 6]

Offspring AOffspring A Offspring BOffspring B

[1 4 5|2 8 6][1 4 5|2 8 6]

[2 3 4 1 5 8][2 3 4 1 5 8] [1 4 5 2 3 9][1 4 5 2 3 9]

 

Figure 3.10 Combination encoding of simple crossover.  

 

II. Two points crossover 

It is also similar to the two points crossover in binary coding, two crossover points are 

randomly selected, the integer string from the beginning of chromosome to the first 

crossover point and from the second crossover point to the end of the offspring are di-

rectly copied from one parent, and the part between the two crossover points is copied 

from the other parent. The same with the simple crossover, in combination encoding, 

we must make sure that there are no duplicate points in the offspring. So before adding 

a number from the other parent to the offspring, we need to inspect whether it has al-

ready been contained in the existing part of the offspring. If not, the number will be 

added. The process will continue again in loops until the required number of investiga-

tion points is reached. It can be seen from Figure 3.11 below. The selected two crosso-

ver points are after the second and fourth point, respectively.  
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Parent AParent A Parent BParent B

[3 4|5 7|8 9 6][3 4|5 7|8 9 6]

Offspring AOffspring A Offspring BOffspring B

[3 4 1 2 8 9 6][3 4 1 2 8 9 6]

[1 9|2 5|3 8 6][1 9|2 5|3 8 6]

[1 9 4 5 3 8 6][1 9 4 5 3 8 6]

 

Figure 3.11 Combination encoding of two points crossover.  

 

III. Mixing crossover 

In mixing crossover, all the genes (investigation points) of the offspring are randomly 

selected from the genes contained in both parents. To do so, we need to firstly create a 

select pool of all the candidate investigation points that come from both parent indi-

viduals, which means to create the union set of all the numbers in two parents. Then the 

data point is randomly selected from the select pool and put into the offspring one by 

one until the required number of investigation points is reached. To avoid the duplica-

tion in the offspring, each point in the select pool is marked as unavailable after being 

selected. The whole procedure is illustrated in Figure 3.12.  
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Parent AParent A Parent BParent B

[7 4 5 10 8 9 3][7 4 5 10 8 9 3]

Offspring AOffspring A Offspring BOffspring B

[3 2 1 4 8 9 7][3 2 1 4 8 9 7]

[1 7 2 5 3 9 8][1 7 2 5 3 9 8]

[1 9 4 5 3 10 2][1 9 4 5 3 10 2]

[1 2 3 4 5 7 8 9 10][1 2 3 4 5 7 8 9 10]Select PoolSelect Pool

 

Figure 3.12 Combination encoding of mixing crossover.  

 

IV. Mutation 

In combination encoding, in order to avoid having duplicate points in the final off-

spring, the mutation is done as follows. Firstly, a position in the offspring is randomly 

chosen as the mutation point. Then we delete all the data points that have already been 

included in the offspring from the whole dataset. After that we randomly select a data 

point from the remaining dataset, and use it to replace the previous data point at muta-

tion point. In this way, a combination mutation is finished. The process can be seen in 

Figure 3.13 below, where the mutation point is selected at the fourth position.  

 

Offspring A Offspring A 

Offspring A'Offspring A'

MutationMutation

[3 2 5 7 8 1 9][3 2 5 7 8 1 9]

[3 2 5 6 8 1 9][3 2 5 6 8 1 9]
 

Figure 3.13 Combination encoding of mutation.  
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3.2.3 Weighted uniformly selection of Investigation points (IPs) 

For geoscience applications in ground surface deformation fields, what we are most inter-

ested in is of course the deformed areas, which means the selected investigation points 

should reflect the most significant deformations as well as the most significant deformation 

changes (i.e. the gradient of deformation) contained in the original observation. Besides, the 

selected set of investigation points should also capture the whole features of the defor-

mation pattern of the original observation as well as possible; in other words, the selected 

investigation points should distribute somehow uniformly.  

Based on these two requirements, the investigation points should be uniformly selected 

from the observation dataset in general, at the same time concentrating to where large de-

formations and large deformation changes occurred.  

As mentioned before, this problem is a combination problem. Therefore, integer vec-

tors are used to represent the chromosome of individuals. More specifically, each individual 

in our case is a combination Cm
n , which stands for selecting m investigation points from 

total n observed data points. In coding, we set an ID number to all the observation data 

points, and these ID numbers are used as the elements of the integer vectors to distinguish 

each data point.  

To meet the two requirements of investigation points, we created a specified fitness 

function which is based on a simple physical analogy.  

Let’s illustrate it with an example of charged balls.  

Assuming that we have a large empty cube; many small balls with positive electric 

charge are thrown into the cube. Because of the like charge, all these small balls exert repel-

ling forces on each other. Furthermore, each position in the cube has a small charger, which 

contains different amount of electrons that can influence the balls' quantity of electric 

charge. In general, the more electrons the charger has, the less quantity of electric charge the 

ball at this position will have, and thus the smaller repelling forces it will exert on other 

balls. The amount of electrons contained in the chargers at each position is constant. There-

fore, the whole system has some kind of potential energy.  

When all the balls are released from their initial positions, they will move. And they 

will not stop moving until the repelling forces among each other reach the equilibrium. At 

that moment, the stored potential energy (here is electric potential energy) of the whole sys-

tem has the minimum value. The magnitude of repelling forces is inversely proportional to 

the square of the distance between the charged balls multiplied by the sum of weights (the 

influences due to the electrons contained in the chargers) at the positions where the charged 

balls are.  

Minimizing the function  

 minU = min

mX

p=1

mX

q=p+1

1

wpq

¢
1

L2
pq

 (34) 



Data Acquisition and Selection 

39 

will give a system of balls which are distributed weighted uniformly in the cube. The func-

tion above is used as the fitness function, where U stands for the potential energy of the 

whole system, wpq, the sum of weights at the positions where the charged ball p and q  

are, and Lpq, the distance between charged ball p and q .  

This fitness function we used to evaluate the fitness of all the potential solutions to the 

selecting IPs problem is a modified version of the Audze-Eglais objective function (Audze 

and Eglais 1977), which takes different weights of the balls into account. Here in our case, 

Lpq stands for the distance between data point p and q , and the sum of weights wpq is 

equal to the sum of wp (weight of data point p) and wq (weight of data point q).  

The weight of each data point i is calculated as follows. Assuming the surface defor-

mation field can be represented by a function F(x; y), then the second gradient of F  at the 

data point i can be written as  

 O2F =

0

B
@

@2F
@x@x

@2F
@x@y

@2F
@y@x

@2F
@y@y

1

C
A

¯
¯
¯
¯
¯
¯
¯
xi;yi

 (35) 

and so the weight of the data point i is defined as 

 wi =
p
jdet(O2F )j. (36) 

We can use a synthetic example to explain how this method works. If the whole set of 

observation data points are like the one shown in Figure 3.14, based on the calculated 

weights (see Figure 3.15), the final distribution of selected investigation points (denoted by 

blue circles) will look like the one shown in Figure 3.16. And in Figure 3.17, we plot the 

uniformly selected IPs without considering the gradient as different weight. Compared it 

with Figure 3.16, we can clearly see that including different weights in selection allows us 

to have more points selected from the important deformation area and the distribution of 

resulting IPs can capture the characteristics of the original deformation pattern much better.  
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Figure 3.14 The whole set of observation data points of the synthetic example.  

 

 

 

Figure 3.15 The calculated weights for each data points of the synthetic example.  
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Figure 3.16 Weighted uniformly selected investigation points (blue circles) in the 

whole set of data points.  
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Figure 3.17 Uniformly selected investigation points (red circles) without considering 

weights in the whole set of data points.  

 

In the example shown above, the whole dataset contains 2500 data points in total and 

120 investigation points are selected. The color codes in the figures represent the vertical 

deformation of each point.  

 

 

 

 

 

 

 

 



 

43 

 

 

Chapter 4  

Analytical Geophysical Models 

 

This chapter is dedicated to several analytical geophysical models which are typical and 

have been widely applied in the literature by many geophysicists all over the world. In the 

first section, it starts with a brief introduction to the Earth's internal structure. Then a couple 

of famous volcano deformation source models are presented and some related issues such as 

tradeoff between parameters are discussed in detail. At last, we will discuss in general the 

drawbacks and shortcomings of the analytical geophysical models.  

4.1 Volcano deformation source models 

4.1.1 Structure of Earth's interior 

As is well known, the Earth is a terrestrial planet, which also is a very complicated mul-

ti-physical system. The interior structure of the Earth can be divided into different layers 

either by its chemical (compositional) properties, or based on the rheological (mechanical) 

properties. Chemically, the Earth can be roughly divided into three major layers: crust, 

mantle and core, moreover, the crust can be further classified as oceanic crust or continental 

crust. The crust varies in thickness from very thin oceanic crust (about 5 km) up to typical 

continental crust (20~50 km), and it can reach about 65 km thick under high mountains. The 

boundary between crust and mantle is known as Mohorovičić discontinuity or Moho for 

short, named after the famous Yugoslav seismologist in 1909. As material changes, the den-

sity increases from crust to the core. The crust is principally made of less dense rock, such 

as granite (~2700 kg/m3) and basalt (~3000 kg/m3), while the mantle consists of denser rock 

like peridotite (~3400 kg/m3). The core of the Earth has a very high density (10000~13000 

kg/m3), which indicates it is a composition of metals. (Press and Siever 1994) 

Rheologically, the interior of the Earth consists of five layers: lithosphere, astheno-

sphere, mesosphere, outer core and inner core, which are distinguished by measuring the 

speed of seismic waves. The crust and part of the upper mantle together form the litho-

sphere, which is the rigid strong outer layer of the Earth ranges from about 10 to 200 km 

thick and remains elastic behavior for a long period of geologic time. Beneath it is the as-

thenosphere, a much weaker layer of the upper mantle, whose temperature can reach 

1100~1200 °C. Due to the high temperature and relatively low pressure in this layer, rock is 

ductile, and so the asthenosphere has a relatively low viscosity (1019~1024 Pa·s). (Walzer et 
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al. 2003) Therefore, it behaves like Silly Putty®, which deforms as an elastic solid in short 

term but as a viscous fluid during a long period of time. Although the asthenosphere can 

flow, it is worth pointing out that it is not liquid since both P-wave and S-wave can travel 

through it. As the depth increases, pressure is getting higher and higher. At the depth of 660 

km (Jordan 1979), the pressure is so high that it forces the rocks into a denser and more rig-

id structure, mainly the magnesium silicate olivine is transformed in spinel. In mesosphere, 

the mantle cannot flow. The outer core of the Earth is nothing but a ~2200 km thick liquid 

layer of molten metals surrounding the solid inner core. (Press and Siever 1994) 

Generally speaking, among all the layers most of volcanism primarily relates to the 

lithosphere and asthenosphere. In this thesis we limit our study to magmatism within the 

crust.  

4.1.2 Elastic half-space 

In order to approximate the ground deformation and better understand the underlying 

mechanism of volcanic activity, many different analytical models have been developed. And 

due to the complexity of the Earth's structure and composition, all the analytical models re-

quire plenty of assumptions and simplifications. As mentioned above, the Earth's litho-

sphere behaves elastically. Therefore, many analytical models describe the lithosphere as an 

ideal semi-infinite elastic body, also called an elastic half-space. By definition, the 

half-space has only one free surface, and extends to infinity in all other directions. The ma-

terial of the half-space is assumed to be homogenous and isotropic; furthermore, it also 

obeys the Hook's law, which means the strain and stress have a linear relationship.  

To describe the stress-strain constitutive relation of such material, two independent 

constants are demanded. Here in this thesis, the Poisson's ratio º  and shear modulus G 

are adopted, since these two constants are commonly used in volcanic source models. And 

of course, we could choose the Poisson's ratio º  and Young's modulus E or other combi-

nations as well, which is just a matter of convenience.  

The typical G value for the Earth's crust is in the range of 1 GPa to 100 GPa. Seis-

mologists usually take 60~70 GPa as the suitable G value, which is determined by the ve-

locity of seismic waves. However, volcanologists tend to use smaller G value like 30~40 

GPa, because in general rocks in volcanic areas are much weaker than normal due to hy-

drothermal alteration and fracturing. There are also results of laboratory testing which show 

that rocks may have a very low shear modulus around 1~2 GPa (Davis et al. 1974, Apuani 

et al. 2005b).  

The value of Poisson's ratio º  obtained by laboratory experiments on intact crustal 

rocks is in the range of 0.15 to 0.30, and it is usual to assume º  is equal to 0.25 (or ¸ = G, 

where ¸ is the Lamé’s first parameter) for the sake of convenience, since it simplifies sig-

nificantly the mathematical solution. (Segall 2010) 

Although the elastic half-space assumption ignores many features of the Earth, it can 

successfully provide a first order approximation of the surface deformation caused by 

short-term volcanic activities.  
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4.1.3 Spherical and spheroidal sources 

The first and simplest source model is a point pressure source, which is also known as the 

Mogi model after the prominent Japanese seismologist Kiyoo Mogi (1958). The Mogi mod-

el represents a magma chamber as a fluid-pressurized spherical cavity whose radius is much 

smaller than its depth (a¿ d) embedded in an elastic half-space (see Figure 4.1).  

 

 

Figure 4.1 Coordinate system and parameter definition of point pressure source. 

(Mogi 1958) 

 

The surface displacements induced by such a Mogi source are given by:  
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where Ux; Uy; Uz are three components of the displacement vector at the point (x; y; 0), 

the center of the source is at (x0; y0;¡d), a the radius of the cavity, ¢P  the pressure 

change in the source, and R=
p
(x¡x0)2 +(y¡ y0)2 +d2 the distance from the center 

of the source to the point on the free surface.  

From the formulation above, we can see there is a tradeoff between the radius a of the 

Mogi source and the pressure change ¢P . In other words, a small source with large pres-

sure change can produce the same surface displacements as a large source with small pres-

sure change. Therefore, it is common to combine a with ¢P  to form a new parameter 
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usually termed as "source strength". And the Mogi model, in total, has four independent 

parameters, three for the location plus the source strength.  

In order to be able to get the estimates of the radius and pressure change separately, 

McTigue (1987) modified the Mogi model expressions by adding higher order correlation 

terms. This kind of source model represents the surface deformation induced by a finite 

spherical source embedded in an elastic half-space. The corresponding surface displace-

ments are given by:  

 

0

@
Ux

Uy

Uz

1

A =

Ã

a3¢P
(1¡ º)

G

µ

1 +
³a

d

´3 ³ (1 + º)

2(5º ¡ 7)
+

15d2(º ¡ 2)

4R2(5º ¡ 7)

´¶
!0

@

x¡x0

R3

y¡y0

R3

d
R3

1

A(38) 

 

where all the symbols are the same as in Equation (37).  

Since the high order correlation terms have a factor (a=d)3, it affects the surface dis-

placements significantly only when the radius of the source a is similar to its depth d (i.e. 

0:2 · (a=d) < 1). When the depth of the source is larger than ten times of its radius, the 

McTigue model will give nearly the same results of surface deformation as the Mogi model. 

Figure 4.2 shows the comparison of surface deformation fields generated by Mogi and 

McTigue source model with different radius to depth ratio (a=d). In the figure, the distance 

is in unit of source depth d and the displacements are normalized by a3¢P (1¡ º)=Gd2, 

the maximum vertical displacement of Mogi model, for convenience.  
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Figure 4.2 Profiles of normalized axisymmetric horizontal (red) and vertical (blue) 

displacements generated by Mogi and McTigue source.  

 

The McTigue model can be considered to have five independent parameters: three for 

source location, radius of the source and the pressure change in the source. However, it is 

better to look at the source strength since the radius and pressure change are not fully sepa-

rated and there still are some tradeoffs between them. The tradeoffs between model param-

eters are discussed in detail later in this chapter.  

It is obvious to see that both the point and finite spherical source model will produce a 

symmetric deformation field. Since most of the data sets obtained from volcanic areas in the 

world usually show asymmetric deformation patterns, a more generalized model is required 

to better describe them (Segall 2010). To meet the needs, Davis and Yang (Yang et al. 1988) 

further extended the Mogi source model to a model with a dipping finite prolate spheroidal 

source, also known as Yang's model. There are eight parameters used in Yang's model, 

which include the semi-major, a, and semi-minor axis, b, the location of source center, 

(x0; y0;¡d), the pressure change of the source ¢P , the dipping angle µ  and the strike an-

gle Á. The definition of these parameters and coordinate system used to derive the surface 

displacement fields are shown in Figure 4.3.  
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Figure 4.3 Coordinate system and parameter definition of Yang's model. (Yang et al. 

1988) 

 

As Yang addressed in his paper, the deformation fields of such a dipping finite prolate 

spheroidal source embedded in an elastic full-space is equivalent to that generated by a 

parabolic distribution of double forces and centers of dilatation between the spheroid foci. 

By applying Mindlin's point force solutions, a half-space solution of deformation fields can 

be obtained. It is the principal idea of deriving Yang’s model.  

In order to avoid redundancy, we do not provide the detailed mathematical expressions 

of Yang's model here in this thesis. The detailed analytic solution can be found in the refer-

ence paper (Yang et al. 1988), and a correction to it was defined by Newman in the appen-

dix of his paper (Newman et al. 2006). A further correction was found as part of our work 

and validated via comparing the analytic solutions with the finite element models for the 

same parameters. The detailed form of the correction can be found in Appendix 1.  

Figure 4.4 illustrates the surface displacement fields generated by the Yang's model 

with different dipping angles (µ = 0°, 30°, 45°, 60° and 90°). The horizontal (Figure 4.4a) 

and vertical (Figure 4.4b) displacements plotted in the diagrams are in the vertical plane 

which contains the major axis of the spheroid. The origin in the figures is moved to 

(x0; y0;0), and other parameters are a= 1:0 km, b = 0:5 km, d= 3 km and ¢P = 107 

Pa. The material properties are assumed to be constant, which are shear modulus G = 40 

GPa and Poisson's ratio º = 0:25. The distance is still in units of source depth and all the 

displacements are normalized by the maximum vertical displacement generated by the pro-

late spheroid with dipping angle µ = 0° for convenience. It is obvious to see that when the 

prolate spheroid is horizontally or vertically embedded, the corresponding surface dis-

placements are symmetric; otherwise, both the vertical and horizontal displacement fields 

are skewed to the down-dip direction where the spheroid dips.  
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(a) 

 

(b) 

Figure 4.4 Normalized surface displacement fields generated by the Yang's model. 

(a). Horizontal displacement; (b). Vertical displacement.  
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If the dipping angle is 90° and the minor axis of the prolate spheroid is much smaller 

than its major axis, the Yang's model degenerated into a closed pipe model, also known as 

cigar model (see Figure 4.5), given by Bonaccorso and Davis (1999).  

 

 

Figure 4.5 Coordinate system and parameter definition of cigar-shaped source 

model (Dzurisin 2007) 

 

The closed pipe model is used for modeling cigar-shaped magma chambers or plugged 

conduits. Like the Yang's model, the solution of a closed pipe model also consists of two 

terms: an integral of a line of dilatations and a line of vertical double forces. The surface 

displacements generated by a closed pipe model are given by: 
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 (39) 

 

where a is the semi-minor axis of the degenerated spheroid, c1 and c2 the depths of the 

top and bottom of the pipe, respectively, r =
p
(x¡x0)2 +(y¡ y0)2 the horizontal dis-

tance from the source, and R1 =
p
r2 + c21 and R2 =

p
r2 + c22 the distances from the 

top and bottom of the pipe to a point on the free surface. Other symbols are the same as in 

Equation (37).  
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The horizontal (red) and vertical (blue) surface displacements produced by a cigar 

model are shown in Figure 4.6. The origin in the plot is moved to (x0; y0;0). All the dis-

placements are normalized by a2¢P=4Gc1, the source strength multiplied by the inverse of 

the top depth of the source, and the distance is in unit of top depth. It has been found that 

the change of Poisson's ratio has a significant impact on the near-field surface displace-

ments.  

 

 

Figure 4.6 Normalized surface displacements generated by a closed pipe model 

with different Poisson's ratio.  

 

If we consider the Poisson's ratio º  as a constant, then the closed pipe model has six 

parameters. But from the Equation (39) we can see, like the Mogi model, there is also a 

tradeoff between the semi-minor axis a and pressure change ¢P , so it is better to use 

source strength instead of a and ¢P  as an independent parameter. Thus, only five inde-

pendent parameters are left, which are (x0; y0) for the horizontal location of the pipe, the 

top and bottom depth of the pipe c1 and c2, and the source strength. Since the bottom 

depth c2 slightly affects only the far-field surface displacements, it can be set to infinity in 

some cases for convenience. The parameters used here to plot Figure 4.6 are a = 0:025 km, 

c1 = 2 km, c2 = 40 km and ¢P = 3£ 106 Pa.  

Apart from all the models mentioned above, there are other kinds of source models 

used to represent inflating and deflating magma chambers, like ellipsoidal source model 

(Eshelby 1959, Davis 1986), oblate spheroidal source model (Fialko et al. 2001), etc., which 

are not discussed here in detail.  
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4.1.4 Dipping point and finite rectangular tension cracks 

Another class of volcano deformation source models is used to represent tabular intrusions 

such as sills and dikes. By definition, a sill is a tabular intrusive layer of igneous rock which 

is normally parallel to the layered rock beds. In contrast, a dike is a narrow tabular body of 

rock which is perpendicular to the layering (see Figure 4.7). The width of a dike can range 

from a few centimeters to several meters, and its length can be up to several kilometers.  

 

 

Figure 4.7 Cross-sectional view of sills and dikes. (Press and Siever 1994) 

 

In general, such kind of tabular intrusions can be represented by dipping point and fi-

nite rectangular tensile cracks. Under certain circumstances, such as deep sill-like magma 

chambers, they can be represented by other simplified models like finite pressurized hori-

zontal penny-shaped cracks, for example. Here we use the general form of solutions given 

by Okada (Okada 1985, Okada 1992) to calculate the surface deformation fields. Figure 4.8 

shows the parameter definition and local coordinate system of Okada's point and finite rec-

tangular tensile faults. The point fault (left) is centered at (x0; y0;¡d), while the center of 

finite rectangular fault (right) is defined by the middle point of its lower edge. For both 

models, the faults strike along the x-axis and have a dipping angle ±  from horizontal. M0 

is the tensile moment of the point fault. For the rectangular fault, W  is the down-dip width, 

L denotes its half-length, and U  stands for the uniform opening of the fault that is nor-

mally many orders of magnitude smaller than the size of the fault.  
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Figure 4.8 Parameter definition and local coordinate system of dipping point and 

finite rectangular tensile faults. (Okada 1992) 

 

Point tensile crack:  

The surface displacements produced by a point tensile crack are given by:  

 

 

Ux =
M0

2¼G

µ
3(x¡ x0)q

2

R5
¡ (1¡ 2º)I0

3 sin2 ±

¶

Uy =
M0

2¼G

µ
3(y ¡ y0)q

2

R5
¡ (1¡ 2º)I0

1 sin2 ±

¶

Uz =
M0

2¼G

µ
3dq2

R5
¡ (1¡ 2º)I0

5 sin2 ±

¶

 (40) 

where  

 

I0
1 = (y ¡ y0)

µ
1

R(R+ d)2
¡ (x¡ x0)

2 3R+ d

R3(R+ d)3

¶

I0
2 = (x¡ x0)

µ
1

R(R+ d)2
¡ (y ¡ y0)

2 3R+ d

R3(R+ d)3

¶

I0
3 =

x¡ x0

R3
¡ I0

2

I0
5 =

1

R(R+ d)
¡ (x¡ x0)

2 2R+ d

R3(R+ d)2

 (41) 

 
q = (y ¡ y0) sin ±¡ d cos ±

R =
p

(x¡ x0)2 + (y ¡ y0)2 + d2
 (42) 

 

where R is the distance from fault center to the point at the free surface, M0 the tensile 

moment, ±  the dipping angle. Other symbols remain the same as in Equation (37).  

Figure 4.9 shows the horizontal (left) and vertical (right) surface displacement fields 
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along (Figure 4.9a) and across (Figure 4.9b) an Okada point tensile crack with different 

dipping angles (± = 0°, 30°, 45°, 60° and 90°). The origin in the plots is moved to 

(x0; y0;0), the distance is in the unit of the fault depth which is the depth of the fault center, 

and all the displacements are normalized by the maximum vertical displacement produced 

by a horizontal point tensile crack (± = 0°). To better understand the whole pattern of sur-

face deformation, a 2D plot of surface displacement fields generated by an Okada point ten-

sile crack with dipping angle ± = 90° is illustrated in Figure 4.10. Horizontal displace-

ments are denoted by arrows while vertical displacements are represented by different col-

ors.  

 

 

(a) 

 

(b) 

Figure 4.9 Normalized surface displacement fields generated by a point tensile 

crack. (a). Surface displacements along the crack; (b). Surface dis-

placements across the crack.  
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Figure 4.10 2D normalized surface deformation of Okada model induced by a point 

tensile crack with dipping angle ± = 90±.  

 

From Figure 4.9 we can see, both the horizontal and vertical surface displacements 

along the point tensile crack decrease as the dipping angle increases, and when the dipping 

angle is large (± = 75°), the surface displacements will reverse.  

For the surface displacements across the point tensile crack, they are axisymmetric on-

ly when the crack is horizontally or vertically embedded. In other cases, the displacement 

fields are skewed to the down-dip direction. The maximum vertical displacement decreases 

with increasing dipping angle, and a depression appears in the up-dip direction.   

The Okada point tensile crack has six parameters in total, which are (x0; y0;¡d) for 

the location of the fault center, M0 for the tensile moment, ±  for the dipping angle, and 

finally ¯  for the strike angle.  

Finite rectangular tensile crack:  

The surface displacements produced by a finite rectangular tensile crack are given by:  

 

N
o

rm
a

li
ze

d
 s

u
rf

a
ce

 d
ef

o
rm

a
ti

o
n

 



Analytical Geophysical Models 

56 

 

Ux =
U

2¼

µ
q2

R(R+ ´)
¡ (1¡ 2º)I3 sin

2 ±

¶°
°
°
°

Uy =
U

2¼

µ
¡ ~dq

R(R+ »)
¡ sin ±

³ »q

R(R+ ´)
¡ tan¡1 »´

qR

´
+ (1¡ 2º)I1 sin

2 ±

¶°
°
°
°
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U

2¼

µ
~yq

R(R+ »)
+ cos ±

³ »q

R(R+ ´)
¡ tan¡1 »´

qR

´
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2 ±

¶°
°
°
°

 (43) 

where 

 

I1 =
1

cos ±

»

R+ ~d
+

sin ±

cos ±
I5

I3 =
1

cos ±

~y

R+ ~d
¡ ln(R+ ´) +

sin ±

cos2 ±

³
ln(R+ ~d)¡ sin ± ln(R+ ´)

´

I5 =
2

cos ±
tan¡1 ´(X + q cos ±) +X(R+X) sin ±

»(R+X) cos ±

 (44) 

and if cos ± = 0,  

 

I1 =
»q

2(R+ ~d)2

I3 =
1

2

³ ´

R+ ~d
+

~yq

(R+ ~d)2
¡ ln(R+ ´)

´

I5 = ¡
»

R+ ~d
sin ±

 (45) 

 

p = (y ¡ y0) cos ± + d sin ±

q = (y ¡ y0) sin ± ¡ d cos ±

~y = ´ cos ± + q sin ±

~d = ´ sin ± ¡ q cos ±

R =
p
»2 + ´2 + d2

=

q

»2 + ~y2 + ~d2

X =
p
»2 + q2

 (46) 

 

where k in Equation (43) denotes the Chinnery's notation to represent the substitution:  

 f(»; ´)k = f(x0 +L;p)¡ f(x0 +L;p¡W)¡ f(x0 ¡L;p) + f(x0 ¡L; p¡W) (47) 

and in which x0 = x¡ x0.  

Figure 4.11 shows the horizontal (left) and vertical (right) surface displacement fields 

along (Figure 4.11a) and across (Figure 4.11b) an Okada finite rectangular tensile crack with 

different dipping angles (± = 0°, 30°, 45°, 60° and 90°). Again, in the plots, all the origins 

are moved to (x0; y0;0) for convenience. The distances are in the unit of fault depth which 

is defined by the depth of the middle point of the fault's lower edge. All the displacements 

are normalized by the maximum vertical displacement produced by a horizontal finite rec-

tangular tensile crack (± = 0°).  
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(a) 

 

(b) 

Figure 4.11 Normalized surface displacement fields generated by a finite rectangular 

tensile crack. (a). Surface displacements along the crack; (b). Surface 

displacements across the crack.  

 

Compared with Figure 4.9, we can see that the surface displacements along the finite 

rectangular tensile crack decrease with increasing dipping angle, which is similar to the 

point tensile crack. But the shape of vertical displacements is much broader than the one of 

point crack since the length of the crack is taken into account.  

The surface displacements across the finite rectangular tensile crack have similar fea-

tures as the point crack discussed above. However, due to the definition of the center of the 

finite rectangular crack, both the horizontal and vertical displacements have an offset of 
W
2
cos± to the origin, and of course when the rectangular crack is vertically embedded i.e. 

± = 90°, the offset will vanish.  

A 2D plot of surface deformation fields produced by a vertical Okada finite rectangular 

tensile crack (± = 90°) is provided in Figure 4.12 for comparison. The arrows represent the 

horizontal deformation and the colors illustrate the vertical one.  
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Figure 4.12 2D normalized surface deformation induced by a finite rectangular ten-

sile crack with dipping angle ± = 90±.  

 

The Okada finite rectangular tensile crack has eight independent parameters in total, 

which are (x0; y0;¡d) for the location of the fault center, L and W  for the size of the 

crack, U  for the opening of the crack, the dipping angle ± , and the strike angle ¯  for the 

orientation of the crack.  

4.1.5 Tradeoff between parameters 

As mentioned in previous sections, one big issue suffered nearly by all the analytical vol-

cano source models is that there are many tradeoffs between the parameters. Some tradeoffs 

can be easily recognized from the model's formulation, for instance, from the Equation (37) 

we can clearly see the tradeoff between the radius a and pressure change ¢P  of Mogi 

source, in that case, if a3¢P  is kept as a constant, then the deformation will not change 

with different radius a and pressure change ¢P . That is why we decide to introduce the 

new parameter "source strength S" into the model at the first place. Even so, there are still 

many other tradeoffs that are not so obvious for people to see, and we will use some specific 

examples to provide a rough idea about the tradeoffs and discuss them in more detail in this 

section. It needs to be mentioned that these tradeoffs are one of the main reasons why the 

final inversed solution of parameters may not be unique, and they also affect the stability of 

the inversion.  
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The process of finding out how much influence the tradeoffs between parameters will 

have on the inversed solution is called sensitivity analysis of solution to the change in mod-

el parameters. Here in this section, the tradeoffs of each analytical source model are illus-

trated and discussed by means of applying a grid search on two parameters while fixing the 

others. For each combination of the two parameters, we evaluate the surface deformation at 

certain given measure points and calculate the corresponding Â2 values by Equation (48). 

(Andrae et al. 2010)  

 Â2 =
X

i

(Ui ¡ U
ref
i )2

¾2
 (48) 

Mogi source model  

The Mogi source model has four independent parameters, which are x0, y0, d  and 

source strength S . Some parameters like x0 and y0 are well constrained i.e. there are no 

tradeoff between them, which can be seen from the result of grid search (see Figure 4.13). 

But for other parameters such as d and S , the tradeoff is quite clear as shown in Figure 

4.14. The star in the figures indicates the minimal Â2, i.e. the Â2 of the reference model.  

 

 

Figure 4.13 Â2 plot for the grid search of parameter x0 and y0.  
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Figure 4.14 Â2 plot and contour plot for the grid search of parameter d  and S  

(with a contour interval of 2.1).  

 

From Figure 4.14 we can see, along each contour line, all the combinations of the 

source depth d  and source strength S  are equally good in the Â2 sense, which also 

means that there is no way to distinguish the ground surface deformations produced by 

them.  

Normally speaking a reduced Â2 less than 1 can be considered as a good solution, 

here in our case, theoretically we can get Â2 = 0 (indicated by the pink star), although it 

generally never happens in reality. To be more realistic, we assume that any solution inside 

the first contour line (2.1) in Figure 4.14 (right) is a good solution. This value of Â2 is re-

lated to typical uncertainties of measured data. And if we arbitrarily choose two points (in-

dicated by the black diamonds) on the same contour line inside this region, which are A 

(¢P = ¡3:33£ 106 Pa, d = 3:26 km) and B (¢P = ¡2:70£ 106 Pa, d = 2:76 km) and 

plot the corresponding two surface deformation fields (as shown in Figure 4.15), we can 

clearly see the two deformation fields are almost identical. That is to say, in our inversion 

we cannot have any sensitivity to distinguish those two parameters.  

 

 

Figure 4.15 Surface deformations produced by different parameter settings A (left) 
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and B (right).  

 

Yang's model  

The Yang's model has eight independent parameters, so the situations of tradeoffs be-

tween parameters are much more complicated than the spherical case. The given combina-

tion of parameters used as model reference in the grid search is a prolate spheroidal source 

with semi-axis a = 1 km, b=a = 0:6, centered at point (0;0;¡3), the inner pressure P  is 

¡3£ 106 Pa, and its dipping angle µ  and striking angle ¯  are 60° and 45° respectively. 

The range of each parameter is listed in Table 4-1. For each grid search, we fix six parame-

ters to their reference values and only allow the other two parameters to vary within their 

range. Some of the results of grid searches are plotted in Figure 4.16. Again, the star in the 

figure indicates the minimal Â2, i.e. the Â2 of the reference model.  

 

Table 4-1 Range of all the parameters of Yang's model used in the grid search. 

Parameter a (km) b=a P (Pa) x0 (km) y0 (km) d (km) µ (±) ¯ (±) 

Lower bound 0:8 0:5 2£ 106 ¡5 ¡5 2:5 0 0 

Upper bound 1:2 0:7 4£ 106 5 5 3:5 180 180 
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Figure 4.16 (a)-(t) Contour plot of Â2 for the grid searches between parameters of 

the Yang's model. The pink star indicates the minimum of Â2, i.e. the 

Â2 of the reference model. The contour interval is set to 1/400 of the 

maximum of each panel in order to show the pattern more clearly. 

 

From Figure 4.16 we can see that there are multiple tradeoffs among a variety of pa-

rameters. The tradeoffs are so complex that we cannot easily know how many degrees of 

freedom we have. For some parameters such as the horizontal location of the source center 

x0 and y0, we can constrain them very well. For some parameters like the source radius a 

and b=a or a and ¢P  (see the first two panels of Figure 4.16, panels (a) and (b)), there 

are pure linear tradeoffs between them. All the parameter combinations inside the long nar-

row valley region will provide the "same" or "very similar" surface deformation fields and 

so we have no sensitivity to distinguish these parameters in the inversion. In some cases 

where one of the two parameters is well constrained, but the other one is not, e.g. between 

d and x0 (see panel (p) of Figure 4.16). And for the other parameters there are more com-

plex relations between them, which can be clearly seen from relation between the depth d  

and dipping angle µ  (see panel (q) of Figure 4.16). In fact, what we see from Figure 4.16 

are basically the marginal distributions of Â2. Since the parameter space is an eight dimen-

sional space, we should note that there could be more complex tradeoffs occurred in hyper-

space (as indicated by the plot between a and µ , see panel (e)), which cannot be easily 

seen by just applying the 2D grid search. It is also worth to mention that when calculating 

the Â2
r, we usually assume that all these model parameters are free parameters, but we must 

keep in mind that in reality the degree of freedom is smaller than the number of model pa-

rameters because of the tradeoffs discussed above.  

Okada model  

The Okada model, i.e. finite rectangular fault model, has eight independent parameters 

too. We set a combination of parameters as model reference and applied the grid search 

similar to what we did for the Yang's model. The given model reference is a rectangular 

fault with L= 3 km and W = 1 km bottom-centered at (0;0;¡3), its opening U  is 1 m, 

and the dipping angle ±  and striking angle ¯  are 45° and 30°, respectively. The ranges of 

all the parameters are listed in Table 4-2. Part of the grid search results are plotted in Figure 
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4.17.  

 

 

Table 4-2 Range of all the parameters of Okada model used in the grid search. 

Parameter U (m) W (km) L (km) x0 (km) y0 (km) d (km) ± (±) ¯ (±) 

Lower bound 0.5 0.5 2 -5 -5 2.5 0 0 

Upper bound 1.5 1.5 4 5 5 3.5 180 180 
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Figure 4.17 (a)-(t) Contour plot of Â2 for grid searches between parameters of the 

Okada model. The pink star indicates the minimum of Â2, i.e. the Â2 of 

the reference model. The contour interval is set to 1/400 of the maximum 

of each panel in order to show the pattern more clearly.  

 

Similar with the Yang's model, it can be seen from Figure 4.17 that the tradeoffs be-

tween parameters of Okada model have many different patterns as well. Due to the complex 

tradeoffs, it is also difficult to say how many degrees of freedom we have. For some param-

eters like x0, y0 and striking angle ¯ , they are well-constrained. For the dipping angle ± , 

from the figures we can see that it is generally well-constrained but the contour plot of Â2 

contains some saddle points and local minima. For the source depth d , it is not so 

well-constrained, i.e. the sensitivity of d is relatively low. For the other parameters such as 

U  and W  or U  and L, we can clearly see the tradeoffs (see the first two panels of Figure 

4.17, panels (a) and (b)) between them, which indicate that in the inversion we cannot have 

good sensitivity to determine the related parameters.  
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Chapter 5  

Metamodels Substituting Computer Simulations 

 

Although the analytical models mentioned in previous chapter have made great contribu-

tions to understanding and investigating the mechanism of geophysical phenomena, they by 

nature have some restricts - the simplifications, which are needed for obtaining analytical 

solutions. Due to the rapid development happened in the fields of computer science and 

technology, in today's world, more and more scientific and engineering methods are highly 

based on the computer-based codes and numerical computations, among which is the wide-

ly-used finite element method, for instance. These computer codes or numerical models 

normally only provide discrete information (such as nodal or elemental solutions used in 

FEM) about the underlying relationship connecting the input parameters with the output 

results or observations, that is partly because of the binary-based working principle of mod-

ern computers. With the help of numerical analysis, we are able to take more factors such as 

real topography (Williams and Wadge 1998, Williams and Wadge 2000, Trasatti et al. 2003, 

Lungarini et al. 2005, Masterlark and Feigl 2012), heterogeneity (Manconi et al. 2007, 

Manconi et al. 2010), material viscosity (Newman et al. 2006, Scandura et al. 2008), etc. 

into account in order to establish more complex and more realistic models which can be 

applied to describe and solve real problems that are too complex for the analytical models. 

(Bonaccorso et al. 2005, Currenti et al. 2008a, Del Negro et al. 2009, Manconi et al. 2009) 

However, the more complex model we have, the more time it will take to run. Although to-

day's computers have real powerful calculation ability, running complex numerical models 

is still quite a time consuming task. As mentioned in Chapter 2, the whole process of inver-

sion is actually an optimization problem and the models are usually required to be run many 

times to find the optimum. Obviously, the price of running complex numerical models hun-

dreds or even thousands of times is significant, so the time consuming issue becomes even 

more critical for solving inverse problems.  

With the aim to reduce the computation cost for solving inverse problems, an approach 

applying statistical global approximation techniques is presented. The basic idea of the ap-

proach is to construct approximations of the original complex computer codes and use them 

to replace the original codes in the optimization process (Simpson et al. 2001, Park and Jeon 

2002). It is clear that the approximations should be more efficient to evaluate than the orig-

inal models, and at the same time they should gain an insight into the core relationship be-

tween input parameters X and an output Y , that is to say, the approximations should pro-

vide the same or similar results as the original codes. If the essence of relationship between 

X and Y  is 
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 Y = f(X) (49) 

then its approximation can be written as  

 Ŷ = g(X) (50) 

and so  

 Y = Ŷ + " (51) 

where " represents the errors, including both the approximation and random ones. The ap-

proximation Ŷ  here is called a metamodel. By definition, a metamodel is an approximation 

of a simulation model, which indicates the functional relationship between the input varia-

bles X and output variable Y  of the simulation model. The metamodel and the simulation 

model have exactly the same value only on several points (known as evaluation points or 

sampling points); the values of other points are gained by other mathematic methods such as 

interpolating. In different literatures, the term "metamodel" is also known as surrogates, re-

sponse surfaces, auxiliary models, and so on, in this work, metamodel is preferred. 

(Kleijnen 2009)  

To generate a metamodel normally needs three steps.  

Firstly, we need to select an appropriate set of sampling points (X1;X2;X3; : : : ;Xk) 

to obtain information about the whole simulation model. The way to select the efficient set 

of sampling points is known as design of experiments method (DoE method), which will be 

discussed afterwards.  

Secondly, we need to choose a proper formulation of the metamodel (also known as 

metamodeling approach) according to different purpose. The common choices include line-

ar or quadratic polynomials, radial basis functions, stochastic process, network of neurons, 

and so on.  

Finally, we need to find a way of fitting the metamodel to the data evaluated at the 

sampling points. Least squares regression is one of the widely used methods to fit the model 

to the data. Besides, best linear unbiased predictor and log-likelihood have been proven to 

have better performance in stochastic cases. (Kleijnen 2009) 

Compared with the original model, a good metamodel has several advantages as fol-

lows. It can show a better expression of the relationship between X and Y ; it can provide 

reduction in computational costs (or acceleration of the analysis); and moreover, with it one 

can do simple exploration of the entire design space, which is extremely important espe-

cially for optimization process. All these benefits make the metamodel very suitable of be-

ing used in optimization. It can be used to replace the original complex models and make 

the whole inversion much more efficient. (Jurecka 2007)  

5.1 Design of Experiments (DoE) 

Since the expense and time spent on simulation of many input variables with complex rela-
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tionships among each other are non-trivial, so the number of simulation runs is really lim-

ited. Usually, only several hundred to thousand runs are feasible. Depending on these runs, a 

complete analysis of the simulation model is required. That is to say, the number of simula-

tion runs should be minimized, and at the same time the information about the model ob-

tained from these simulation runs should be as much as possible.  

Consequently, the choice of location of the sampling points (or evaluation points) is 

very important in getting a good approximation of the response, especially when evalua-

tions are expensive. The methods used for selecting the sampling points are together termed 

as design of experiments (DoE). (Jurecka 2007) 

The DoE methods were originally developed as a systematic approach for laboratory or 

field experiments to obtain a maximum of information about a data trend with the least 

amount of effort. A DoE method defines a set of experiments (FE simulations) to be per-

formed, which is expressed in terms of n input variables (input parameters) set to specific 

values. Each of these input parameter sets is called a sampling point in design of experi-

ments. Each experiment provides a single value which is also called the response value at 

the corresponding sampling point. In other words, each experiment is a selected combina-

tion of n input parameters X = (X1;X2; : : : ;Xn). The better the DoE method is, the 

more efficient the selection of X would be.  

There are many different methods to do the design of experiments (Unal et al. 1998, 

Simpson et al. 2001, Jurecka 2007). Here we provide a short review of some representative 

DoE methods.  

Factorial designs: 

Factorial design is the most fundamental kind of experimental design. There are two 

common types of factorial designs: full factorial design and fractional factorial design. The 

number of sampling points given by a full factorial design is equal to the product of the 

number of levels (e.g. the minimum and maximum of a design parameter can be called as 2 

levels, the minimum, median and maximum of a design parameter can be called as 3 levels) 

for each input parameter (e.g. 2n for n input parameters at 2 levels). The mostly used full 

factorial designs are 2n and 3n designs. Moreover, a 2n design is actually a set contain-

ing all the vertices of a n-D design space, which is of great importance for constrained op-

timization problems, since the optima sometimes locate at the vertices of the feasible do-

main.  

As the number of sampling points of a full factorial design will increase exponentially 

with large amount of input parameters, it is difficult to handle. In this case, a fractional fac-

torial design is used instead. A fractional factorial design is one section of the full factorial 

design, the most common design form is 2(n¡p), in which the section is 1=2p. It is often 

used for identifying or screening for important input parameters. In Figure 5.1 below, ex-

amples of 23 full factorial design (a) and 2(3¡1) fractional factorial design (b) are given.  
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Figure 5.1 Examples of factorial designs.  

 

Central composite design (CCD) and Box-Behnken design:  

Central composite and Box-Behnken designs are the most common second order de-

signs used to estimate quadratic effects with fewer sampling points. A central composite 

design (CCD) is based on a two level full or fractional factorial design (2n or 2(n¡p)), 

added with n0 center points and two so called ‘star’ points located at §® for each input 

parameter. For K parameters, the number of total sampling points is 2K +2K+n0. The 

Figure 5.2 shows the case that a CCD has three input parameters.  

 

 

Figure 5.2 Example of Central Composite Design.  

 

For the case of three input parameters shown above, if ® = 1, the star points will lo-

(a) (b) 
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cate at the centers of the faces of the cubic. This case is also called face-centered central 

composite design (CCFD).  

Box-Behnken designs are generated by combining the 2n factorial design together 

with some incomplete block designs, in order to make the number of factor levels used in 

experimental design as small as possible. (Box and Behnken 1960) 

Orthogonal arrays (OA): 

Orthogonal arrays method proposed by Taguchi (Taguchi et al. 1993) is created for the 

purpose of decreasing the number of sampling points used in experimental designs. A de-

sign is called orthogonal if, for every couple of input parameters Xi and Xj, the sum of 

cross product of all the P  sampling points satisfies 

 

PX

k=1

XikXjk = 0 (52) 

Orthogonal arrays are normally fractional factorial designs at 2 or 3 levels (i.e. 2(n¡p) 

or 3(n¡p)). For example, 2 level L12 arrays can evaluate 11 input parameters using only 12 

sampling points. And 2 level L16 arrays use 16 design points to estimate 15 effects. 

(Simpson et al. 2001) 

Besides, there are also other methodologies. Among these methods, one satisfactory 

method of selecting the values of input variables is the Latin hypercube designs (or Latin 

Hypercube sampling method), first proposed by McKay et al. (1979) and Iman and Conover 

(1980), which is independent of the mathematical model of a problem. These authors indi-

cated that LHD is usually good and efficient for computer experiments.  

LHD has many advantages. It has good one-dimensional projective property. It does 

better as an unbiased estimator compared with simple random sampling and stratified sam-

pling, since its variance (also called mean square error) is small. It can give much more ac-

curate estimates of the model and with it an estimate of the effect of changing input distri-

bution can be also obtained. Furthermore, it can show relative importance of each input pa-

rameter (Iman and Conover 1980). And basically it is computationally cheap to construct 

and can make the whole design space well covered. (Jin et al. 2003 and Sacks et al. 1989a)  

To describe how a Latin hypercube is generated, let us assume again, a vector of n 

input parameters X = (X1;X2; : : : ;Xn) and an output response Y . The relationship be-

tween input parameters and output is  

 Y = f(X) (53) 

The LH DoE is structured so that each parameter Xm (m= 1;2; : : : ; n) is divided 

into K  strata of equal marginal probability 1=K. Now there are Kn cells, and K  sam-

pling points (S1; S2; : : : ; SK) should be chosen from them. In practice, a Latin hypercube 

can be generated as follows. (Iman and Conover 1980) 

Firstly selecting a random number from (1;2; : : : ;K) on X1, matched with a random 

selected number on X2, and so on through Xn, all these numbers determine the location of 
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the cell where the first sampling point S1 is. Then selecting another random number from 

the remaining set on X1, matched with a remaining number randomly selected on X2, and 

so on through Xn, all these numbers determine the second sampling point S2. Repeating 

this procedure for S3 to SK  until all the numbers of (1;2; : : : ;K) is selected. As a result, 

a Latin hypercube sample is obtained.  

In encoding, the process is a little different. Instead of selecting sampling points one by 

one, the Latin Hypercube sample is done by generating a random permutation sequence of 

(1;2; : : : ;K) on X1, matched with a random generated sequence on X2, and so on 

through Xn. After that the complete set of sampling points (S1; S2; : : : ; SK) is generated. 

It is much more efficient.  

In this way, for each stratum, there is only one sampling point (i.e. experiment), which 

ensures that the entire range of each input parameter has been sampled.  

Furthermore, a random (equally likely) combination of different strata of the different 

parameters ensures that each stratum of each parameter is somehow possible to couple with 

strata of other parameters. If there are only two input parameters, it is also named as “Latin 

square”, and if there are more than two parameters, it is usually called “Latin hypercube 

sampling”. Figure 5.3 and Figure 5.4 provide examples of LHD in 2D and 3D case, respec-

tively.  

 

 

Figure 5.3 Latin hypercube design for K=5 and n=2.  

 

 

Points   
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Figure 5.4 Latin hypercube design for K=5 and n=3.  

 

5.1.1 Space-filling Latin Hypercube Designs (LHD) 

Space-filling design of experiment is a unique type of DoE. It means to treat the whole de-

sign space equally. Through literatures, many researchers have indicated that the sampling 

points should be selected to fill the whole design space. Moreover, space-filling design be-

comes necessary especially for non-random, complex, deterministic computer experiments. 

Since in deterministic computer experiments there is usually no random error, and the lack 

of random measurement error causes a lot of difficulties in computing and analysis such as 

the classical notions of experimental blocking, replication and randomization are not appro-

priate any more. (Sacks et al. 1989b)  

Several different criteria have been used to judge the space-filling property of an ex-

perimental design, e.g. the integrated mean squared error (IMSE) and the entropy of design 

region. Based on these criteria, many approaches have been developed to generate 

space-filling designs.  

The maximum entropy principle is used as a rule to create experimental designs by 

Shewry and Wynn (1987). Johnson et al. (1990) proposed the minimax and maximin de-

signs firstly. Tang (1993) constructs a special Latin hypercube design based on orthogonal 

arrays, which performs better than the original Latin hypercube designs. Maximin distance 

design based on Latin hypercube arrangements is proposed by Morris and Mitchell (1995), 

which is proven to have good projective properties in each dimension.  

Park (1994), in his paper, creates a so called optimal Latin hypercube design (OLHD) 

by combining the ideas of both Latin hypercube design and optimal designs. This OLHD 

can either maximize the entropy or minimize the IMSE, spreading the sampling points all 

over the design space.  

Points    
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As mentioned in previous section, Latin hypercube design (LHD), comparing with 

other experimental design methods, has many advantages. However, since the original LHD 

normally does not associate with any optimal properties of designs, sometimes it will be 

poor in evaluating the expected response value or in forecasting the response values at the 

untried points.  

The LHD method can be generally classified into random sampling LH method (RLH) 

and optimal LH method (OLH) in terms of how the sampling points in DOE are distributed.  

 

 

 (a)                                (b) 

Figure 5.5 Comparison of (a) Random LHD to (b) space-filling LHD.  

 

In the figures above, Figure 5.5(a) shows the random Latin hypercube design with fifty 

sampling points for two variables (input parameters), while Figure 5.5(b) shows the 

space-filling Latin hypercube design (also known as uniform LHD or OLHD) with the same 

number of sampling points and variables.  

It can be intuitively seen from the figure that the space-filling LHD would be much 

better in estimating the response values in the whole design space than the general LHD 

since the sampling points are uniformly distributed and well covering the whole design 

space.  

In order to construct an optimal Latin hypercube design, some optimality criteria have 

to be used.  

Maximin or minimax distance criterion: 

A design is called maximin distance design, if it maximizes the minimum inter-site 

distance:  

 min
1·i;j·n;i6=j

d(Pi; Pj) (54) 

where d(Pi; Pj) is the distance between two sampling points Pi and Pj. And  
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 d(Pi; Pj) = dij =

"
mX

k=1

jPik ¡Pjkj
q

#1
q

 (55) 

in which q = 1 or 2.  

It is very easy to understand this criterion. The maximin distance criterion means that 

for an arbitrary sampling point, the distances from this point to any other points are as far as 

possible. This criterion will of course lead to a well space-filling design.  

And a design is called minimax distance design, if it minimizes the distance between 

an arbitrary prediction point and its closest sampling point. Since the number of prediction 

points could be infinite, so in practice it is nearly impossible to use this minimax criterion 

unless the total number of prediction points is finite. Moreover, it is usually more 

time-consuming in computation. (Jurecka 2007, Jin et al. 2003, Johnson et al. 1990)  

Entropy criterion: 

Entropy was firstly used by Shannon (in 1948) to qualify the “amount of information”. 

Let the whole design space be a set S , which is divided into two subsets the sample set s 

and its complement set ¹s , (s[ ¹s = S; s \ ¹s = ?). XS is a vector which refers to the 

whole design space. And Xs refers to all sampled points, while X¹s refers to all points in 

set ¹s .  

For a random variable Y  with density f(Y ) the entropy is defined as  

 Ent(Y ) = ¡EY (log f(Y )) = ¡

Z

f(y) log f(y)dy (56) 

So the entropy for S  is 

 
Ent(XS) = Ent(Xs) +Ent(X¹s)

= Ent(Xs) +EXs[Ent(X¹sjXs)]
 (57) 

where X¹sjXs denotes the variable X¹s conditional on Xs. The goal of optimization is to 

minimize the second term on the right hand side of the Equation (57). Since Ent(XS) is 

constant, the goal is turned to be 

 maxEnt(Xs) (58) 

That is why it is called maximum entropy sampling method (Shewry and Wynn 1987, Cur-

rin et al. 1991). The core idea of this criterion is also very simple; it means to get a set of 

sampling points which contains as much information about the whole design space as pos-

sible.  

Besides these two criteria, there are also other widely used methods such as IMSE, 

centered L2 discrepancy criterion, etc. (Fang et al. 2000, Ye et al. 2000 and Simpson et al. 

2001) 

In the presented metamodel aided inversion approach, we chose space-filling LHD to-

gether with 2n full factorial designs as the DoE method for the n dimensional input pa-
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rameter space. The space-filling LHD part is generated based on the maximin distance cri-

terion by applying the genetic permutation algorithm (GPA).  

5.2 Metamodels 

As mentioned at the beginning of this chapter, a metamodel is by definition an approximat-

ed model of the complex simulation model. It works as a "black box", which means that 

given a set of input parameters X, it will get an output value Ŷ . Researchers have devel-

oped a variety of metamodeling formulations in order to meet different requirements in dif-

ferent fields. The widely used metamodels include polynomial regression models (Box and 

Draper 1987), Kriging models (Sacks et al. 1989b), non-uniform rational B-spline 

(NURBS), radial basis function models (Dyn et al. 1986), artificial neural networks, etc. 

(Apley et al. 2006). In this work, the polynomial regression models and Kriging models 

have been applied for the treatment of observation data and optimization process, respec-

tively. So at first we would like to provide a short overview of these two famous metamod-

eling techniques. For further interest, one can get more detailed information in (Jurecka 

2007, Kleijnen 2009).  

5.2.1 Response surface models 

Response surface models (also called Polynomial regression models) as a common meta-

modeling approach have been largely applied in the literatures. Each author has his own 

way to describe it. Box and Draper (1987) describe that "Response surface methodology 

comprises a group of statistical techniques for empirical model building and model exploi-

tation. By careful design and analysis of experiments, it seeks to relate a response, or output 

variable, to the levels of a number of predictors, or input variables, that affect it". Myers and 

Montgomery (1989) define that the response surface method "is a collection of statistical 

and mathematical techniques useful for developing, improving, and optimizing processes. It 

also has important applications in the design, development, and formulation of new prod-

ucts, as well as in the improvement of existing product designs".  

The polynomial regression model was originally used for analyzing physical experi-

ments. Assuming to have an output response Y , and all the independent factors X which 

affect Y . The true relationship between X and Y  is  

 Y = f(X) + " (59) 

where " stands for random observation or experimental errors, which is assumed to be 

normally distributed with ¹= 0 and ¾2.  

Since the true relationship function f(X) is unknown, a function g(X) is used as the 

approximation of f(X), and the Equation (59) turns to be  

 Y = g(X) + " (60) 

Low-order polynomials are often taken as the approximation function g(X). A first 

order polynomial looks like  
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 g(X) = ®0 +

nX

i=1

®iXi (61) 

which is suitable for low curvatures. A second order polynomial has the form  

 g(X) = ®0 +

nX

i=1

®iXi +

nX

i=1

®iiX
2
i +

nX

i=1

nX

j=1;i<j

®ijXiXj (62) 

which is suitable for the high curvatures. Since the second order polynomial form also takes 

the interactions of two input factors into account, it is more common in use. The coefficients 

®0;®i;®ii;®ij in the formulas can be assembled in one vector ® when using matrix nota-

tion. And so the approximation function g(X) can be written as  

 g(X) = ®T X (63) 

in which  

 X = [X1;X2; : : : ;Xn®]
T  (64) 

and each Xi(i = 1;2; : : : ; n®) is called a regressor, which is an independent function of X.  

And the coefficients can be obtained by least squares regression analysis while fitting the 

approximation model to the selected training data.  

Assuming we have k response values (assembled in vector ~Y) obtained by running 

the original complex model at sampling points Xl(l = 1;2; : : : ; k), the Equation (60) can 

be written as  

 ~Y = F®+ e (65) 

in which  

 F =

2

6
6
6
4

X 1
1 X 1

2 ¢ ¢ ¢ X 1
n®

X 2
1 X 2

2 ¢ ¢ ¢ X 2
n®

...
...

. . .
...

X k
1 X k

2 ¢ ¢ ¢ X k
n®

3

7
7
7
5
 (66) 

The least squares regression analysis is trying to get the coefficients by minimizing the 

sum of squared residuals eT e, which means nothing but  

 min( ~Y¡F®)T ( ~Y¡F®) (67) 

By applying the necessary condition at the minimum, Equation (67) can be written as  

 
@
¡
( ~Y ¡ F®)T ( ~Y ¡F®)

¢

@®

¯
¯
¯
¯
®̂

= 0 (68) 

which is  
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@
¡
~YT ~Y ¡ (F®)T ~Y ¡ ~YTF®+ (F®)TF®

¢

@®

¯
¯
¯
¯
®̂

= 0 (69) 

which gives 

 FTF®̂¡ FT ~Y = 0 (70) 

if FT F is invertible, which can be easily fulfilled as long as there are at least as many 

sampling points as the coefficients needed to be evaluated, then we have  

 ®̂= (FTF)¡1FT ~Y (71) 

and so  

 Ŷ = g(X) = ®̂TX (72) 

5.2.2 Kriging model 

The Kriging model is another kind of metamodel based on the research of D. G. Krige 

(1951), which is originally used in the field of geostatistics. It was firstly applied to model 

the responses of deterministic computer codes by Sacks et al. (1989b), and that is why the 

Kriging model is also called as DACE model. Nowadays it becomes a very famous and 

commonly used metamodel technique, which has been applied in many different fields of 

science and engineering.  

In Kriging model, the relationship between input variables X and output Y  has the 

following form:  

 Y = g(X) +Z(X) + " (73) 

where g(X) is a polynomial term as defined in Equation (63), Z(X) is assumed to be a 

normally distributed random process term with ¹= 0, ¾2 and nonzero covariance, and ", 

the approximation error.  

The key idea of the Kriging model is to use a combination of polynomial model and a 

random process to model the response values Y . The polynomial term g(X) provides a 

general trend of the true underlying function, and by introducing the Gaussian random term 

Z(X), the Kriging model can obtain exactly the same interpolation values Ŷ as the re-

sponses ~Y produced by the original underlying function at all the sampling points. That is 

to say, for the sampling points Xl(l = 1;2; : : : ; k),  

 ~Yl ¡ Ŷl = 0; (l = 1; 2; : : : ; k) (74) 

The covariance matrix of the Gaussian random term Z(X) is defined by  

 Cov
¡
Z(Xi); Y (Xj)

¢
= ¾2R (75) 

where R is the correlation matrix defined by 

 R = [R(Xi;Xj)]; 1 · (i; j) · k (76) 

in which R(Xi;Xj) represents the correlation function between any two sampling points 
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Xi and Xj of the whole set.  

The form of the correlation function is user-specified. In principle, one could choose 

any functions as long as they satisfy the conditions that R(Xi;Xj) = R(Xj ;Xi) and 

R(Xi;Xi) = 1, so that the correlation matrix R is a k£ k symmetric matrix with all 

ones along the main diagonal. Here in this thesis, we apply the Gaussian correlation ex-

pressed by:  

 R(Xi;Xj) = exp
h nX

w=1

µw(X
i
w ¡Xj

w)
2
i
 (77) 

in which µw is the undetermined so-called correlation parameter used to fit the model, X i
w 

and X
j
w are the wth component of the sampling point Xi and Xj, respectively.  

Since the assumed Z(X) is a Gaussian random process, so the parameters ®, ¾2 and 

µ can be solved by applying the maximum likelihood estimation. Assuming we have a 

vector ~Y of the response values obtained at all the sampling points Xl(l = 1;2 : : : ; k), the 

corresponding likelihood function can be written as  

 L(®; ¾2;µj~Y ) =
1

¾k
p
jRj(2¼)k

exp
³
¡

1

2¾2
( ~Y¡F®)TR¡1( ~Y¡F®)

´
 (78) 

in which F is the matrix defined as Equation (66). 

By taking the natural logarithm of L and applying the necessary condition at the 

maximum of lnL with respect to ® and ¾2 respectively, we can get  

 

@ ln
h

1

¾k
p

jRj(2¼)k
exp

³
¡ 1

2¾2 ( ~Y ¡ F®)TR¡1( ~Y ¡F®)
´i

@®

¯
¯
¯
¯
¯
®̂

= 0 (79) 

 

@ ln
h

1

¾k
p

jRj(2¼)k
exp

³
¡ 1

2¾2 ( ~Y ¡ F®)TR¡1( ~Y ¡F®)
´i

@¾2

¯
¯
¯
¯
¯
¾̂2

= 0 (80) 

which are  

 

@ ln 1

¾k
p

jRj(2¼)k
+ @

³
¡ 1

2¾2 ( ~Y ¡F®)TR¡1( ~Y ¡F®)
´

@®

¯
¯
¯
¯
¯
®̂

= 0 (81) 

 

@ ln 1

¾k
p

jRj(2¼)k
+ @

³
¡ 1

2¾2 ( ~Y ¡F®)TR¡1( ~Y ¡F®)
´

@¾2

¯
¯
¯
¯
¯
¾̂2

= 0 (82) 

which give  

 ®̂ =
¡
FTR¡1F

¢¡1
FTR¡1 ~Y (83) 

 ¾̂2 =
1

k
( ~Y¡F®̂)TR¡1( ~Y¡F®̂) (84) 
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Based on these two parameters, the third parameter µ̂ can be determined by maximiz-

ing (Booker et al. 1995) 

 max
³
¡
k

2
(ln ¾̂2 + ln jRj)

´
 (85) 

and it is usually solved numerically by applying optimization algorithms.  

With all the three parameters at hand, the approximation of the original underlying 

function can be determined by  

 Ŷ = ®̂T X+ rT (X)R¡1( ~Y¡F®̂) (86) 

in which r(X) is the correlation vector  

 r(X) =
h
R(X;X1);R(X;X2); : : : ;R(X;Xk)

iT
 (87) 

that consists of all the individual correlations between the current point X and each sam-

pling point Xl(l = 1;2; : : : ; k).  

5.3 Update procedures to improve quality of the meta-

model  

When the metamodel, instead of the original underlying function, is used in the optimiza-

tion procedure for inversion, there is a main problem needed to be solved, which is the pos-

sible uncertainty or error of the approximated response values, since all the judgments used 

in the optimization algorithm depend on these values. In other words, the quality of the 

metamodel has to be good enough in order to make the inversion results meaningful and 

trustable.  

Generally speaking, the more sampling points are used, the better the quality of the 

metamodel will be. However, including too many sampling points will significantly in-

crease the calculation time and the memory use. Thus, we need to find a compromised way 

to maintain the effectiveness as well as the efficiency of the metamodel simultaneously.  

Since what we want is to find the minimum of the underlying function, so we do not 

have to make a metamodel that is accurate everywhere, instead, what we need is a meta-

model that has a relatively good approximation to the original function near its true mini-

mum.  

According to this goal, there are two major cases which we need to focus on. The first 

case is that the true minimum of the underlying function has been captured by the meta-

model, and it is smaller than any response values taken at the sampling points, which means  

 9Ŷmin <min(Ŷ1; Ŷ2; : : : ; Ŷk) (88) 

And the second case is that the true minimum has been missed because the approximation 

errors of the metamodel at the position where the true minimum is are too large.  
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Therefore, to improve the quality of the metamodel near the minimum, more sampling 

points ought to be added at such positions where either have smaller response values or 

have large inaccuracy. Many different updating approaches have been developed based on 

this idea. (Sasena et al. 2002, Regis and Shoemaker 2005, Wang 2003, Toropov et al. 2007) 

Here in this thesis, we adopted the so-called efficient global optimization method, 

which was firstly proposed by Jones et al (1998). It considers the both cases mentioned 

above while determines the positions where to put new sampling points. And the key idea of 

the efficient global optimization method is to maximize the expected improvement 

(Schonlau 1997) of the current metamodel.  

The expected improvement used here is so defined. Assuming we have a metamodel 

(more precisely a Kriging model) trained by a set of sampling points Xl(l = 1;2; : : : ; k) 

and the corresponding response values ~Y l(l = 1;2; : : : ; k). The minimum of all the re-

sponse values is denoted as ~Yco, and it also can be called the optimum of the current meta-

model.  

For a Kriging model, by definition, every approximated value is a Gaussian random 

process Y s N(Ŷ ; ŝ2), where Ŷ  is the approximated mean value, and ŝ2 is the estimated 

variance of the approximation error, which can be determined as follows by applying the 

mean squared error  

 ŝ2 = MSE(Ŷ ) = ¾̂2

Ã

1¡

·

XT rT (X)

¸·
0 FT

F R

¸·
X

r(X)

¸!

 (89) 

in which all the symbols are the same as in Equation (64), (66), (76) and (87). Then the im-

provement of any approximation value can be defined as  

 I =max
©
(0; ( ~Yco ¡Y)

ª
 (90) 

And so the expected improvement is defined as below 

 E(I) = E(max
©
(0; (~Yco ¡Y)

ª
) (91) 

which is the expectation of the improvement defined in Equation (90). Assuming the proba-

bility density function of the Gaussian random process Y is denoted as pY, then the ex-

pected improvement can be written as  

 E(I) =

Z ~Yco

¡1

( ~Yco ¡ Y )pY(Y )dY = (~Yco ¡ Ŷ )©

µ
~Yco ¡ Ŷ

ŝ

¶

+ ŝÁ

µ
~Yco ¡ Ŷ

ŝ

¶

 (92) 

in which © and Á are the cumulative density function and the probability density function 

of the standard normal distribution N(0; 1), respectively.  

From Equation (92), it is obvious to see that the first term will be large when the new 

approximated mean value Ŷ  is a real improvement regarding the current optimum ~Yco 

and at the same time the approximation error is relative small, while the second term will be 

large when the approximation error is large. And so this criterion meets our requirements of 

finding the suitable positions to put new sampling points quite well.  



Metamodels Substituting Computer Simulations 

84 

The whole updating procedure works as follows: 

1. An initial metamodel was trained by an initial set of sampling points and their 

corresponding response values.  

2. Get the current optimum of the metamodel.  

3. Based on the current optimum, maximize the expected improvement of the current 

metamodel.  

4. Add a new sampling point at the position where the maximal expected improve-

ment locates.  

5. Run the original model to obtain the corresponding response value (observation) 

of the new added sampling point.  

6. Update the metamodel with the new set of sampling points and response values.  

7. Go to 2. 

The loop will continue until the maximum of expected improvement is smaller than a 

given threshold value, then we can get the willing optimum of the metamodel, which should 

also be a good approximation of the optimum of the original underlying function. Further-

more, since the maximum of expected improvement is not monotone decreasing during the 

metamodel updating process, the average value of the last several iterations is used for the 

stopping criterion.  

Among all the steps listed above, the most important one is the maximization of the 

expected improvement of the metamodel, which is a highly nonlinear optimization problem. 

In order to avoid the drawbacks of possibly present local minima, the so-called Particle 

Swarm Optimization (PSO) algorithm (Kennedy and Eberhart 1995) is applied here. And it 

has been proven by many literatures that the PSO algorithm is very suitable to deal with 

such nonlinear multi-parameter optimization problems. More detailed information can be 

found in (Parsopoulos and Vrahatis 2002, Yang 2009).  
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Chapter 6  

Application Examples 

 

In this chapter, the metamodel-based inversion approach proposed in Figure 1.1 is tested on 

several interpretive examples. To show the inversion ability and effectiveness of the meta-

model-based approach, firstly, three synthetic examples are presented. Thereafter, the ap-

proach is applied to a real geophysical application example about the Long Valley Caldera 

in California.  

6.1 Synthetic examples 

6.1.1 FE model without topography 

In the first synthetic example, the topography is not taken into account, so that the inversion 

results of the FE model can be easily verified by comparing with the corresponding analyti-

cal solutions.  

We use the commercial code ANSYS® version 12.1 to establish the finite element 

models. We consider a 3D cubic geometry that is 20 km long, 20 km wide and 15 km deep. 

The top surface of the cubic stands for the ground. The region we are interested in is a 

5£ 5 km2 square in the middle of the top surface, and to gain accurate results of surface 

deformation, a finer mesh is used. For those uninterested parts, a relative coarse mesh is 

applied, in order to reduce the number of elements and save the calculation time. The total 

dimension of the model is chosen to be large enough, in order to avoid the influences of the 

boundary conditions on the surface deformation results.  

For the modeling of volcanic source, two different models are applied, i.e. a spherical 

cavity at certain depth is modeled as the magma chamber for the 4-parameter Mogi source, 

and a dipping prolate spheroidal cavity at certain depth is modeled for the 8-parameter 

Yang's source. For both cases, we assume a constant inner pressure change ¢P  as loading 

case. The models are meshed with 3-D 10-node tetrahedral elements. For the model with 

Mogi source, there are 35558 elements in total, and for the model with Yang’s source, it has 

a total of 33078 elements. The FE model setup is shown in Figure 6.1.  
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(a) 

 

(b) 

Figure 6.1 (a) The setup of the FE model for the spherical source case. (b) The 

setup of FE model for the prolate spheroidal source case.  

 

For the Mogi source, we assume the radius of the cavity is a constant (0.5 km), so the 

four chosen parameters are the inner pressure change ¢P  and the coordinates of the 

source center (x0; y0; d); for the Yang's model, the chosen parameters are semi-major axis 

a, the semi-minor axis b, the inner pressure change ¢P , the location of source center 

(x0; y0; d), the dipping angle µ  and the strike angle Á.  

As boundary conditions, we assume zero normal displacements for all the side and 

bottom faces of the model. For the material properties, we assume a Young's modulus of 2.5 

GPa in the whole domain and a Poisson's ratio of 0.25, that are, common values for rocks. 

The numerical solution of the FE model has been validated by comparing results calculated 

by the related Mogi and Yang's model.  

For testing the metamodel-based inversion approach, we generated two sets of syn-

thetic data of the observed surface deformation with the parameter sets listed in Table 6-1. 
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Moreover, to be realistic, we add a random noise to the synthetic observed data. The random 

noise has a Gaussian distribution with mean zero, and its maximum value is equal to 20% of 

the maximal vertical surface deformation.  

 

Table 6-1 Parameters used to generate the synthetic surface deformation data.  

(a) Spherical source:  

¢P (Pa) x0 (km) y0 (km) d (km) 

¡3£ 106 0 2 2 

 

(b) Spheroidal source:  

a (km) b=a ¢P (Pa) x0 (km) y0 (km) d (km) µ (±) Á (±) 

0:6 0:4 ¡3£ 106 1 ¡1 2 30 50 

 

From the observed surface deformation data, 120 investigation points (IPs) (circled in 

Figure 6.2 and Figure 6.3) are selected using the weighted uniformly selection method men-

tioned in Chapter 3. The reduced Â2 used later in the optimization is calculated with the 

values of surface deformation taken only on these investigation points.  

 

 

(a)                                 (b) 

Figure 6.2 (a) Synthetic observed vertical surface deformation. (b) Nodal results of 

observed vertical surface deformation (dots) and the selected IPs (blue 

circles) for 4 parameters spherical source.  

Vertical surface deformation /km 
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(a)                                 (b) 

Figure 6.3 (a) Synthetic observed vertical surface deformation. (b) Nodal results of 

the observed vertical surface deformation (dots) and the selected IPs 

(blue circles) for 8 parameters Yang’s model.  

 

As mentioned in Chapter 5, the metamodel is an approximation of a simulation model, 

which indicates the functional relationship Y = f(X) between the input variables X and 

output variable Y  of the original model. Here in this example, X= (¢P;x0; y0; d) for 

the spherical source case; X= (a; b=a;¢P;x0; y0; d; µ;Á) for the spheroidal source case, 

and Y  represents the reduced Â2 calculated by 

 Y =

Ã
NIPX

k=1

¡
Uk(X)¡Uobs

k

¢2

¾2

!
.
(NIP ¡Npar) (93) 

where NIP  is the number of selected investigation points, Uk(X) is the surface defor-

mation at the kth investigation point calculated by FE model with the input variables X, 

U obs
k  is the observed surface deformation at the kth investigation point, ¾2 is the variance 

of the measured error contained in the observed data, and Npar is the number of parame-

ters of the source model.  

In order to create the metamodel, a set of sampling points is required. The whole set of 

sampling points X used here consists of two different parts. One part of sampling points 

Xi(i = 1;2; :::;16 for 4-parameter case; i=1;2; :::;100 for 8-parameter case) have been 

generated by applying space-filling Latin hypercube design on the corresponding source 

parameter space. The range of each parameter is listed in Table 6-2. The number of sam-

pling points is related to the dimension of parameter space. In principle, higher dimensional 

parameter space requires more sampling points, and vice versa. The other part of sampling 

points Xj(j = 1;2; :::;16 for 4-parameter case; j =1;2; :::;256 for 8-parameter case) 

are generated by full factorial design, which serves as the supplement of the LHD on the 

Vertical surface deformation /km 



Application Examples 

89 

boundaries of the source parameter space. An initial metamodel Ŷ  (more precisely a 

Kriging model) is created based on these sampling points. Then an updating procedure de-

scribed in Chapter 5 is applied to improve the quality of the Kriging model by continuously 

adding new sampling points at the position where it has the maximal expected improvement 

for the metamodel predictions. By doing so until the maximal expected improvement is 

smaller than the given threshold value, the minimum of the underlying function Y  can be 

found, and the corresponding source parameter set is the solution of the inversion.  

 

Table 6-2 Source parameters and their range. 

(a) Spherical source:  

Source parameter Unit of Meas. Range 

¢P  Pa [¡107;¡106] 

x0 km [¡5; 5] 

y0 km [¡5; 5] 

d km [1;10] 

 

(b) Spheroidal source:  

Source parameter Unit of Meas. Range 

a km [0:3;0:7] 

b=a  [0:1;0:9] 

¢P  Pa [¡107;¡106] 

x0 km [¡5; 5] 

y0 km [¡5; 5] 

d km [1;10] 

µ  ° [0;180] 

Á ° [0;180] 

 

The results of inversed source parameters which best fits the synthetic observed surface 
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deformation data are listed in Table 6-3. And they are compared with the reference values 

used to generate the synthetic data. It is obvious to see that the inaccuracies (i.e. absolute 

errors) for each inversed source parameter are different. For some parameters like coordi-

nates x0, y0 and depth d, the inversion is quite accurate, while for other parameters such 

as dipping angle µ  and striking angle Á, the absolute error is a little bit large, that is basi-

cally because of the nonuniqueness of the inversion and the trade-offs between parameters 

previously discussed in Chapter 4.  

The surface deformation fields generated by FE model with the best suitable inversed 

source parameters are compared with the synthetic observed data, and their residuals are 

shown in Figure 6.4 and Figure 6.5. It can be seen that the results show very good agree-

ments with the observed data, which proves the capability of the proposed approach in 

solving such nonlinear inversion problems.  

In order to illustrate the efficiency advantage of the proposed approach, let’s take the 

inversion of 4-parameter spherical source as an example. It takes on average 109 seconds to 

run a single FE model. And it takes about 36 seconds for the optimization algorithm to 

evaluate a new sampling point used for improving the quality of the metamodel. During the 

entire inversion process, 70 new sampling points has been added, and the FE model has 

been run 102 times in total (32 times for initial sampling points and 70 times for new added 

sampling points during updating procedure). So the whole inversion takes about 13638 

seconds (i.e. ~3.8 hours) to get the solution. However, if we applied the same optimization 

algorithm without using metamodels, the FE model would need to be run 50000 times, 

which means that it would take 5450000 seconds (i.e. ~1514 hours) to get the solution. 

Through the comparison of calculation time, it is obvious that the proposed approach is very 

efficient in solving such FE-aided nonlinear inversion problems.  

 

Table 6-3 Results of inversed source parameters.  

(a) Spherical source:  

Parameter ¢P (Pa) x0 (km) y0 (km) d (km) 

Inversed value ¡2:982£ 106 0:0039 1:984 1:999 

Reference value ¡3£ 106 0 2 2 

Absolute error 0:018£ 106 0:0039 ¡0:016 ¡0:001 
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(b) Spheroidal source: 

Parameter a (km) b=a ¢P (Pa) x0 (km) y0 (km) d (km) µ (±) Á (±) 

Inversed 

value 

0:539 0:612 ¡2:092£ 106 1:003 ¡1:09 2:035 41:39 85:12 

Reference 

value 

0:6 0:4 ¡3£ 106 1 ¡1 2 30 50 

Absolute 

error 

¡0:061 0:212 0:908£ 106 0:003 ¡0:09 0:035 11:39 35:12 

 

 

(a)                                 (b) 

 

(c)                                 (d) 

Figure 6.4 (a) The synthetic observation data used for the spherical source case. (b) 

The vertical surface deformation generated by the FE model with the 

inversed parameters. (c) (d) Absolute and relative residual vertical sur-

face deformation.  

Vertical surface deformation /km Vertical surface deformation /km 
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(a)                                 (b) 

 

(c)                                 (d) 

Figure 6.5 (a) The synthetic observation data used for the spheroidal source case. 

(b) The vertical surface deformation generated by the FE model with the 

inversed parameters. (c) (d) Absolute and relative residual vertical sur-

face deformation.  

 

6.1.2 FE model with topography of caldera 

In this example, we will go a little further to consider a more complicated case, a FE model 

including simplified topography of a caldera and heterogeneous material.  

Again, we consider a 3D cubic geometry that is 20 km long, 20 km wide and 15 km 

deep. In the middle of the top surface, there is a truncated cone-shaped volcano. The height 

of the volcanic cone is 1 km and the radii of the top and bottom base of the truncated cone 

are 2 km and 3 km, respectively. Inside the volcanic cone, there is a cylinder-shaped caldera, 

which has a radius of 1.5 km and a depth of 0.8 km. In order to obtain accurate results of the 

surface deformation in the interested area, a finer mesh is applied.  

Vertical surface deformation /km Vertical surface deformation /km 
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Right below the cylinder-shaped caldera, there is a small cylindrical part, which repre-

sents the pyroclastic debris layer and usually contains much softer material than other sur-

rounding parts of the volcanic area. This debris layer has a thickness of 0.7 km and a radius 

of 1.5 km. Its upper surface is 0.2 km above the ground level i.e. the top surface of the cu-

bic.  

For the source, here we only took a 4-parameter Mogi source with constant radius of 

0.5 km into account. And a constant inner pressure change ¢P  is considered as loading 

case. As boundary conditions, we again assume zero normal displacements for all the side 

and bottom faces of the model. For the material properties, we assume the pyroclastic debris 

layer consists of elastic material that has a Young's modulus of 30 GPa and Poisson's ratio 

of 0.25, while the other parts of the model have a Young's modulus of 70 GPa and Poisson's 

ratio of 0.25. The model is meshed with 3-D 10-node tetrahedral elements, and there are 

36259 elements in total. The setup of the FE model can be seen in Figure 6.6.  

 

 

Figure 6.6 Setup of the FE model with topography of caldera.  

 

A set of synthetic data of the observed surface deformation was generated with the pa-

rameter set listed in Table 6-4. Again, to be realistic, a random noise was added to the syn-

thetic observed data. The same as in the previous example, in total of 120 investigation 

points (IPs) are selected based on the observed surface deformation fields. The synthetic 

data and corresponding selected investigation points (denoted by circles) are shown in Fig-

ure 6.7. Furthermore, the initial set of sampling points and related metamodel were created 

in the same way as previously described in the example for the 4-parameter Mogi source 

case. The range of all the parameters stays the same (see Table 6-2).  
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Table 6-4 Parameters used to generate the synthetic surface deformation data.  

¢P (Pa) x0 (km) y0 (km) d (km) 

¡3£ 106 0 2 2 

 

 

(a)                                 (b) 

Figure 6.7 (a) Synthetic observed vertical surface deformation. (b) Nodal results of 

the observed vertical surface deformation (dots) and the selected IPs 

(blue circles) for 4D spherical source.  

 

In Table 6-5, the inversed results of source parameters are listed and compared with the 

corresponding reference values. The comparison between surface deformation generated by 

the set of reference source parameters and the set of inversed ones can be seen in Figure 6.8, 

which shows quite a good agreement with each other.  

 

Table 6-5 Results of inversed source parameters. 

Parameter ¢P (Pa) x0 (km) y0 (km) d (km) 

Inversed value ¡3:083£ 106 ¡0:099 2:01 2:062 

Reference value ¡3£ 106 0 2 2 

Absolute error ¡0:083£ 106 ¡0:099 0:01 0:062 

 

Vertical surface deformation /km 
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(a)                                 (b) 

 

(c)                                 (d) 

Figure 6.8 (a) The synthetic observation data with topography of caldera used for 

the spherical source case. (b) The vertical surface deformation gener-

ated by the FE model with the inversed parameters. (c) (d) Absolute and 

relative residual vertical surface deformation.  

 

6.2 Long Valley Caldera in California 

After seeing those synthetic examples, in this section, a real geophysical application exam-

ple is used to test the proposed metamodel-based inversion approach. The task is to identify 

the most suitable set of geophysical parameters that indicate a possible magmatic source, 

which might cause the recent observed episodic uplift occurring between 2002 and 2003 at 

Long Valley Caldera in California.  

Vertical surface deformation /km Vertical surface deformation /km 
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6.2.1 Geological background 

The Long Valley Caldera (LVC) locates in the eastern California, which is on the eastern 

edge of Sierra Nevada range, on the western edge of the Basin and Range province, and 

about 30 km south of the Mono Lake. The caldera has an elliptical shape, which covers an 

area of 32£ 17 km2 and has an average height of 2200 m (see Figure 6.9). It was formed 

more than 700000 years ago as a result of the eruption of the Bishop Tuff. (Tiampo et al. 

2000, Newman et al. 2006) 

 

 

Figure 6.9 Map of Long Valley Caldera, eastern California. (Seccia et al. 2011) 

 

In 2000, the United States Geological Survey (USGS) established a permanent contin-

uous GPS network in and around Long Valley Caldera. As seen from Figure 6.10, the net-

work includes in total 18 GPS stations and the locations of these GPS stations are well dis-

tributed. So during the uplift period of 2002-2003, the GPS network provided plenty of new 

and rich data set of the three-component surface deformation field. (Feng and Newman 

2009) And that is why Long Valley Caldera is chosen as an illustrative example here.  
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Figure 6.10 Continuous GPS network in and near the Long Valley Caldera2.  

 

6.2.2 Metamodel based inversion 

Again, we use the commercial code ANSYS® version 12.1 to establish the finite element 

models. This time we consider a 3D cuboid geometry that is 80 km long, 60 km wide and 

50 km deep. The top surface of the cuboid stands for the ground, which centers at 

(340;4175;0) in Universal Transverse Mercator (UTM) coordinate system, and no topog-

raphy is considered. The region we are interested in is a 40£ 30 km2 rectangular in the 

middle of the top surface, and to gain accurate results of surface deformation, a finer mesh 

is used. For the surrounding parts, a relative coarse mesh is applied, so as to reduce the 

number of elements and save the calculation time. The total dimension of the model is cho-

sen to be large enough, in order to avoid the influences of the boundary conditions on the 

surface deformation results.  

For the source, we only considered a 4-parameter spherical Mogi source with constant 

radius of 1 km. And a constant inner pressure change ¢P  is considered as loading case. 

For boundary conditions, we assume zero normal displacements for all the side and bottom 

faces of the model. For the material properties, a Young's modulus of 12.5 GPa in the whole 

domain and a Poisson's ratio of 0.25 (Newman et al. 2006). The setup of the FE model can 

be seen in Figure 6.11.  

                                                      

2 http://earthquake.usgs.gov/monitoring/edm/longvalley/continuous.php  

http://earthquake.usgs.gov/monitoring/edm/longvalley/continuous.php
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Figure 6.11 Setup of the FE model.  

 

The observed continuous GPS data and the corresponding estimated total error are ob-

tained from Feng and Newman (2009). It has to be mentioned that, since the station DECH 

is far from the Long Valley Caldera, so its data has been removed from the analysis. Fur-

thermore, due to the influence of the stronger Sierra Nevada bedrocks on the deformation 

field, the data from station PMTN, JNPR, MINS and LINC are also removed. (Feng and 

Newman 2009) Thus, only the data of 13 GPS stations are used for inversion and each GPS 

station is considered as an investigation point (IP) (see Figure 6.12).  

 

 

Figure 6.12 Observed horizontal (left) and vertical (right) deformation used in inver-

sion. Ellipses and bars represent 95% confidence error.  

 

An initial set of 32 sampling points is generated as described in section 6.1.1 for the 

4-parameter spherical Mogi source case. Based on this, an initial Kriging model is created, 

and then the updating procedure is applied to improve the quality of the Kriging model until 

the optimum is found. The range of each source parameter used in inversion is listed in Ta-
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ble 6-6.  

 

Table 6-6 Source parameters and their range.  

Source parameter Unit of Meas. Range 

¢P  Pa [106; 108] 

x0 km [325;355] 

y0 km [4160; 4190] 

d km [6;20] 

 

The inversed results of source parameters are listed in Table 6-7. The comparison be-

tween the surface deformation generated by the set of inversed parameters and the observed 

data can be seen in Figure 6.13. It can be seen that, for most GPS stations, the surface de-

formation fields produced by the inversed parameters are reasonable.  

 

Table 6-7 Results of inversed source parameters based on GPS data. 

Parameter ¢P (Pa) x0 (km) y0 (km) d (km) 

Inversed value 3:607 £ 107 330:17 4172:1 12:05 

 

 

(a)                                 (b) 
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(c)                                 (d) 

Figure 6.13 Observed (black arrows) and best fit model predicted (red arrows) (a) 

horizontal and (b) vertical surface deformation. (c) (d) Horizontal and 

vertical residuals of the best fit model.  

 

Besides the observation data obtained from GPS networks, there are also InSAR data 

available which observes the 02-03 uplift at Long Valley Caldera (see Figure 6.14a). Here 

we will apply the proposed approach again to invert the InSAR data. Firstly, 120 investiga-

tion points (Figure 6.14b) are selected using the weighted uniformly selection method de-

scribed in Chapter 3.  

 

 

(a)                                 (b) 

Figure 6.14 (a) Observed vertical deformation acquired by InSAR technique (un-

wrapped). (b) Weighted uniformly selected investigation points (IPs). 
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Again we assume that the uplift was induced by a 4-parameter spherical Mogi source 

with constant radius of 1 km. The FE model is the same one shown in Figure 6.11. The ma-

terial properties and boundary conditions remain the same too. The range of each source 

parameter used in inversion is listed in Table 6-6.  

The inversed results of source parameters are listed in Table 6-8. The comparison be-

tween the surface deformation generated by the set of inversed parameters and the observed 

data are shown in Figure 6.15. It can be seen that, the model with the inversed source pa-

rameters is able to fit the InSAR data reasonably well.  

 

Table 6-8 Results of inversed source parameters based on InSAR data.  

Parameter ¢P (Pa) x0 (km) y0 (km) d (km) 

Inversed value 2:217 £ 107 336:81 4175:7 11:5 

 

 

(a) 



Application Examples 

102 

 

(b)                                 (c) 

Figure 6.15 (a) Vertical surface deformation generated by the FE model with the 

inversed parameters. (b) (c) Absolute and relative residual vertical sur-

face deformation.  
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Chapter 7  

Conclusions and Outlook 

 

7.1 Conclusions 

In the present dissertation, an integrated method for solving the nonlinear inverse problem 

by combining metamodel technique together with the finite element technique is proposed 

and well discussed.  

The inverse problem is quite common in scientific and engineering world, especially in 

the fields of geophysics and geology. The inverse problem is generally hard to solve due to 

the inexistence, nonuniqueness and instability of its solution.  

To solve the inverse problem, a governing equation or model is needed to describe the 

underlying system. In the application of geophysics and geology, analytical models have 

been used to represent the complicated geophysical phenomena such as earthquakes, vol-

canic activities, etc. for many years. These analytical models have made great contributions; 

however, they are sometimes too simplified. Hence, in recent years, due to their powerful 

capability and flexibility, the computer simulation methods such as finite element technique 

have been employed to describe the geophysical system.  

As a matter of fact, solving inverse problems is an optimization process, and during the 

process, the governing equation is required to be evaluated for hundreds or even thousands 

of times. However, depending on the complexity of a finite element model, it may take 

minutes to several hours or even days to get a solution. So as to reduce the computational 

cost, metamodel technique was used here to replace the original complex finite element 

model in the inversion procedure. Furthermore, in order to ensure the quality of the optimi-

zation result, a self-updating procedure was applied.  

Generally, in the proposed approach, finite element modeling allows considering more 

realistic models to describe the geophysical problem and conveniently to simulate the relat-

ed mechanical behavior; while with the help of metamodels, the efficiency of the whole 

procedure is greatly improved. Both strengths are essential for real-time applications.  

To ensure the performance of the approach, it has been tested with synthetic examples 

and a real case of Long Valley Caldera in California. The metamodel-based inversion ap-

proach can gain relatively good results with reasonable degree of accuracy. However, it also 

indicates due to the trade-off between parameters, the sole use of one kind of data is not 
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sufficient to precisely determine all responses. The trade-offs between parameters may also 

lead to having non-unique solutions. Thus, the more independent types of geophysical data 

are involved, the better the inversion results will be.  

7.2 Future work 

There is still a vast unexplored area in the research field of solving geophysical inverse 

problem, including the following several interesting points:  

1. Considering more realistic factors into the finite element model, such as real to-

pography, viscoelastic and/or plastic material, real heterogeneous structure, multi-

ple sources, etc. 

2. Using combination of different independent kinds of geophysical data in inversion, 

such as InSAR, GPS, seismic wave data, gravity field data, electromagnetic data, 

etc., in order to better constrain the source parameters.  

3. Expanding the metamodel based inversion approach to other application fields, 

such as industrial applications and so on.  
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Appendix 1. Further corrections to Yang et al. (1988) 

In this appendix, a further correction based on the corrections given by Newman et al. (2006) 

to the analytical model for surface deformation induced by a dipping prolate spheroidal 

source embedded in an elastic half-space (Yang et al. 1988) is presented. The correction ad-

dressed here was tested by comparing analytical solutions with FEM results for different 

dipping angles.  

Page 4251: 

The original equation was 

 U
l
3 =

1

8¹(1¡ º)

ab2

c3
P lfcos µ[¡A1r2 + (3¡ 4º) ¹A1q2 + F1q2] + ¢ ¢ ¢ gj (94) 

And the corrected form should be  

 U
l
3 =

1

8¹(1¡ º)

ab2

c3
P lf¡ cos µ[A1r2 + (3¡ 4º) ¹A1q2 + F1q2] + ¢ ¢ ¢ gj (95) 
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