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Abstract In this paper, we propose a novel global ob-
ject descriptor, so called Viewpoint oriented Color-Shape
Histogram (VCSH), which combines 3D object’s color
and shape features. The descriptor is efficiently used in
a real-time textured/textureless object recognition and
6D pose estimation system, while also applied for ob-
ject localization in a coherent semantic map. We build
the object model firstly by registering from multi-view
color point clouds, and generate partial-view object color
point clouds from different synthetic viewpoints. There-
after, the extracted color and shape features are corre-
lated as a VCSH to represent the corresponding object
patch data. For object recognition, the object can be
identified and its initial pose is estimated through match-
ing within our built database. Afterwards the object pose
can be optimized by utilizing an iterative closest point
strategy. Therefore, all the objects in the observed area
are finally recognized and their corresponding accurate
poses are retrieved. We validate our approach through
a large number of experiments, including daily complex
scenarios and indoor semantic mapping. Our method is
proven to be efficient by guaranteeing high object recog-
nition rate, accurate pose estimation result as well as
exhibiting the capability of dealing with environmental
illumination changes.
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K. Kühnlenz
Institute of Advanced Study, Technische Univer-
sität München, D-80333 München, Germany. E-mail:
koku@tum.de

1 Introduction

To interact with autonomous mobile robots in unstruc-
tured environments, it is essential for a robot to success-
fully recognize objects, estimate its accurate pose and
perform high-level tasks in real time. Therefore, object
recognition and pose estimation plays a crucial role in a
wide range of robotics applications, and is at the heart
of high-level tasks such as object localization for seman-
tic mapping. However, due to large invariance in respect
to object size, position, and its viewpoint, heavily clut-
tered environment, occlusions in the scene, it is a greatly
challenging problem [1–5].

Some previous approaches have been developed to
address the challenges mentioned above. Among those
approaches, an efficient object descriptor plays a most
critical role. There is a large variety of object descrip-
tors using diversified features. For 2D images, SIFT [6],
SURF [7] and HOG [8] are the most popular features
which can be extracted based on object’s photometric
properties (texture). Apart from the gray-scale features,
color-based features are also widely proposed for object
recognition [9–12]. However, the photometric features
have the limitation of being not able to cover all potential
poses in 3D space. While for 3D depth images, a wide va-
riety of geometric quantities such as local patches [13],
local moments [14], volume [15], polygon surface [16],
spherical harmonics [17], contour [18] and edge [19] try
to emulate comparable features, in order to be used for
geometric descriptors. However, these geometric features
only describe 3D object’s shape primitives while ignoring
the photometric information on the object surface.

With the massively increasing usage of new-released
RGB-D sensors such as Kinect and stereo cameras, which
can provide both photometric and geometrical informa-
tion, multi-dimensional photometric and geometrical fea-
ture based object descriptor gets to be powerful alterna-
tive for object recognition and pose estimation by utiliz-
ing such sensors, as have been considered in the works
[20–24]. Furthermore, an object should be recognized
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whatever pose it is (scale and rotation invariant), thus
the viewpoint component is also necessary to be inte-
grated into the object descriptor building [25–30].

Inspired by above, we propose a novel object de-
scriptor efficiently combining object’s color and shape
features within a textured/textureless object recognition
and 6D pose estimation system. The main contributions
of this paper thereby include:

– A novel object descriptor Viewpoint oriented Color-
Shape Histogram combining color and shape features,
as well as object viewpoint component;

– A real-time object recognition and pose estimation
system which gives high recognition rate and accu-
rate 6D pose recovery under various unstructured en-
vironment;

– 3D object recognition and localization for the coher-
ent semantic mapping;

– Performance evaluation on object recognition rate,
pose accuracy and stability analysis with respect to
illumination changes;

– Live demonstrations and state-of-the-art comparisons;

Parts of our system have been previously described in
[43], this paper presents more comprehensive descrip-
tions as well as significant extensions and enhancements,
then applying to various highly challenging scenarios as
well as coherent semantic mapping.

The remainder of this paper is organized as follows:
Section 2 reviews the state of the art and related work.
Section 3 provides detailed description of VCSH, its in-
tegration within object recognition and pose estimation
system and object localization in semantic map. The
experimental results including the pose accuracy eval-
uation, stability analysis with illumination and runtime
performance are presented in Section 4. Finally, Section 5
summarizes the paper and proposes future development
roads.

2 Related Work

A large variety of approaches have been proposed for
object recognition and pose estimation. Within those
approaches, the key role - object descriptors could be
mainly classified into two categories: global descriptor
and local one. Global object descriptor extracts features
from the well segmented and clustered object data [20,
29, 32]. The object needs to be well clustered and it is
sensitive to partial occlusions. Instead, the local descrip-
tor is based on pair-to-pair feature matching from real-
scene data which causes high computational cost for final
recognition and pose recovery [21,23,24,31,33].

More specifically, for global object descriptors, VFH
[29] as an extension of FPFH [31], integrates the view-
point variant component into the 3D geometrical fea-
tures. However, it neither allows for object’s full pose es-
timation nor considers texture or color feature. Wohlking-
er et al. proposes a global 3D descriptor ESF (Ensemble

of Shape Functions) [32], which creates the database by
generating synthetic views through CAD object mod-
els. The combination of angle, point distance and area
shape functions are applied on randomly selected point
pairs, while local distribution features are accumulated
into global descriptor. Nevertheless, ESF neglects the ob-
ject’s photometric information, thus being not able to ac-
curately provide pose estimation. Tang et al. [20] directly
uses the Naive Bayes matching method for object recog-
nition and pose recovery. The object global hue value
histogram is generated from the complete mesh object
model as object’s color feature. Combining with the ex-
tracted 3D SIFT from object’s texture, the object can
be recognized and its pose can be estimated. However,
this approach needs the detailed mesh model for training
and these objects are restricted to be fully textured.

For local object descriptors, SHOT (Signature of His-
tograms of Orientations) divides the spherical volume
around one point into spherical grids based on the local
reference frame [24]. Normal of each point falling into a
certain grid is compared with normal of centering point.
The angle relationship is counted and represented as his-
togram on each grid which are then concatenated as a
descriptor. CSHOT as an extention of SHOT that adds
color information to construct descriptor is presented
in [33]. This method relies on a local reference frame,
but the reference frame could not be stably estimated
for object with rotational symmetry such as basketball.
A real-time object recognition system [21] is proposed
using ConVOSCH object descriptor which correlates the
geometrical with visual RGB data, but the object’s accu-
rate pose is not possible to be recovered. Choi et al. [23]
defines a local object color point pair feature descriptor,
which is represented as a hash table combining the geo-
metrical and HSV color information. However, the color
information is only utilized for pruning potential false
matches while not considered as a general object de-
scriptor for recognition and pose estimation. Moreover
this approach produces high computational cost and is
sensitive to high dimensional parameter settings respec-
tive to different scenes.

3 Proposed Approach

In this section, we provide details on the design of our
VCSH descriptor, and how it is integrated into a ob-
ject recognition and pose estimation system, and finally
show that it is efficiently applied for object localization
in semantic mapping.

The framework of our proposed approach is illus-
trated in Figure 1. During the offline training phase, we
first build the complete 3D object model by register-
ing all the object’s RGB-D data of different poses into
a single coordinate frame. By using the centroid of ob-
ject model as origin, we generate a sphere with a certain
radius. On the surface of this sphere, a big mount of
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Fig. 1 Overview of real-time textured/textureless object
recognition and pose estimation system using viewpoint ori-
ented color-shape histogram descriptor.

viewpoints are homogeneously generated with their di-
rection pointing to the sphere origin. Using each of these
generated viewpoints, an object patch data which rep-
resents the object identification and the corresponding
viewpoint pose, is generated. Subsequently VCSH can
be computed as a global object descriptor for each ob-
ject patch data, within which the color and shape infor-
mation of all points is used for the descriptor genera-
tion. Consequently, an object is represented by the gen-
erated VCSH set and stored into the database. During
the online recognition and pose estimation phase, the ob-
ject data is segmented and clustered from the real world
scene, and we compute its corresponding VCSH. There-
after, the closest hypothesis is retrieved from our gen-
erated descriptor database by nearest neighbor search-
ing, with outputting object identification and its initial
pose. Finally, the recognized object’s accurate 6D pose
can be estimated through pose optimization and verifi-
cation step. In addition, the object recognition and pose
estimation system is applied into the coherent seman-
tic map, for the robotic exploration in large-scale map
and for further object manipulation. Next we explain the
corresponding parts that are involved in greater details.

3.1 Building 3D Object Model

Our proposed object model building platform consists
of a rotatable plane and a stationary Kinect sensor. Af-
ter segmentation from the plane and Euclidean distance-
based clustering, object color point cloud data {Of} for
each single view and its transform {TFf} relative to the
initial frame O0 are captured, where f = {0 · · ·F} is the
frame index. By registering {Of} with {TFf} into a sin-
gle object coordinate, the whole 3D model Ω then can
be generated as a cluster of color point cloud,

Ω = O0 ∪ TF−11 ·O1 ∪ · · · ∪ TF−1F ·OF . (1)

In order to eliminate noises, the Moving Least Squares
(MLS) algorithm [36] is utilized to smooth the whole 3D
model. Note that the detailed object mesh model and
surface texture information are not necessary here.

Azimuth

Elevation

Fig. 2 Sampling the synthetic viewpoints in the upper hemi-
sphere for object patch data generation: Red vertices repre-
sent the virtual camera viewpoints and the red circles illus-
trate some generated data from synthetic viewpoints.

3.2 Synthetic Viewpoints Generation

For each object model Ωi, i = {1...I}, we generate J ob-
ject patch data Mj with synthetic viewpoint V Pj where
j = {1 · · · J}. Note that the viewpoint is the sensor’s
view direction relative to the object. As the view direc-
tion should be considered to cover object’s potential 6D
poses, the synthetic viewpoints are therefore generated
on a half sphere surface, with the origin being the ob-
ject model’s centroid. The synthetic viewpoint position is
generated on the sphere surface in elevation and azimuth
direction homogeneously. And its direction is pointing to
the sphere’s origin. With the generated synthetic view-
point V Pj , object patch data Mj could be generated
according to V Pj from the whole 3D object model Ω by
using ray-casting method, as illustrated in Figure 2. A
pseudocode is also given out in Algorithm 1.

It is necessary to mention that the object model Ω
is not only restricted to the raw color point cloud model
as in our platform, but also potential for CAD models.

Subsequently, a global object descriptor is needed
to describe each Mj with its viewpoint V Pj for object
recognition and 6D pose recovery.

3.3 Viewpoint oriented Color-Shape Histogram

For recognition and pose recovery for objects in our daily
life, an object descriptor which consists of both color and
shape information is prerequisite. In particular, this de-
scriptor should be able to differentiate the objects which
have same shape but different colors and also could deal
with textured/textureless objects. In order to fulfill afore-
mentioned requirements, a novel object descriptor view-
point oriented color-shape histogram is proposed here
based on both color and shape features of an object. Dur-
ing VCSH construction, firstly the color of each point p in
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Algorithm 1 Object patch data generation using sam-
pled synthetic viewpoint

Ω; //whole 3D object model
M ; //generated object patch data
V P ; //related synthetic viewpoint
ε; //threshold for point in a line
for(iter = 0; iter < Ω.size; iter + +){

p = Ωiter; //point in Ω
L = line3D(V P, p);
Flag(false); //flag of occluded
for(iter1 = 0; iter1 < Ω.size; iter1 + +){

if(iter1 6= iter)
p? = Ωiter1; //another point in Ω
if(dist(p?, L) < ε && ‖V P − p?‖ < ‖V P − p‖)

//point in line and closer to viewpoint (occluded);
Flag = true;
break;

};
if(Flag == false)push p into M ;

object patch data Mj is smoothly ranged and color dis-
tributions for different ranges are estimated. Secondly,
the shape features are estimated to describe each point’s
geometrical relationship with the viewpoint V Pj and the
Mj ’s centroid c. Finally, the extracted color and shape
feature are correlated and built as VCSH to describe each
object patch data Mj .

3.3.1 Smoothed Color Ranging

To represent the uniqueness of color feature for each
object patch data, the feature needs to be character-
ized and color distributions for different ranges should
be estimated according to their color values. HSV color
space is employed here for better characterizing each
point’s color feature, due to its robustness to illumination
changes [10]. As shown in Figure 3, there are chromatic
and achromatic areas in SV space, in which the chro-
matic area represents the true color space while achro-
matic area represents the gray scale space. That is, the
histogram is divided into 8 regions as REu with the in-
dex of u = {0 · · · 7}, in which six are for chromatic area,
and the other two are for achromatic area [39].

To be more detailed, firstly, we consider the six true
color histogram regions RE0 to RE5, which represents
six typical colors CR0 to CR5. Each point’s hue value
then can be quantized into a certain color region CR.
However, the hard quantization can not represent the
true color correctly. To overcome this issue, a smoothed
ranging method is proposed, by estimating two distri-
butions wH for two consecutive histogram regions RE
in true color space. The detailed steps are presented as
follows:
– Identify CRn: red as CR0 = 0, yellow as CR1 = 60,

green as CR2 = 120, cyan as CR3 = 180, blue as
CR4 = 240, purple as CR5 = 300. Consequently, six
histogram ranges are divided based on the color index
CR, as REu → CRn where u = n = {0 · · · 5}.
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Fig. 3 Left: smoothed color range and estimation of contri-
butions for adjacent regions in HS space. Right: illustration
for the chromatic and achromatic areas in SV space.

– For each color point p, its hue value H is ranged into
two consecutive histogram regions REu and REu+1

as u = bH/60c, if u = 5, the next histogram region
REu+1 would be reset to RE0.

– Estimate color distributions wHu , wHu+1 according
to the ranged adjacent regions REu, REu+1 in true
color space, based on the distance from hue value H
to CRn and CRn+1:

wHu
= (H − CRn+1)/60, wHu+1

= 1− wHu
. (2)

Secondly, we consider the achromatic area which con-
sists of two histogram regions RE6 and RE7. When one
of the saturation S and value V is near 0 in HSV space,
the point color will be represented as gray scale. Since
the color in achromatic space is highly sensitive to illu-
mination changes, the previous estimated distributions
wHn and wHn+1 in true color space should be redesigned
according to the influence from S and V . In order to
capture the nature color, a soft decision method [34] is
employed and we update both chromatic and achromatic
components of the histogram. The weight wC of chro-
matic and wG of achromatic component is determined
by S, V , and their sum equals unity:

wC = Sr(1/V )r1 , wG = 1− wC , (3)

where r, r1 ∈ [0, 1]. To give best precision on true color,
r = 0.14 and r1 = 0.9 are chosen empirically. Further-
more, V is quantized while distribution w6 and w7 are
calculated for regionsRE6 andRE7: w6 = wG if V < 0.5,
otherwise w6 = 0; while the value of w7 is converse.

We therefore update all the previous estimated color
distributions as wu and wu+1, by considering the chro-
matic weight wC ’s influence on true color representation.

wu = wHu
· wC , wu+1 = wHu+1

· wC . (4)

Finally, each point p with HSV color value is ranged
into three histogram regions 〈REu, REu+1, RE6|RE7〉 wi-
th respective contributions being 〈wu, wu+1, w6|w7〉.
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Fig. 4 Shape features of point p. c is the centroid of object
patch data. np is the normal of p. v is the synthetic viewpoint
direction. cp is c’s projection point on the tangent plane of p
(blue rectangle frame). dc and dp are the distances from c to
p and from c to cp. α is the angle between v and np, and β
is the angle between v and the line segment cp.

3.3.2 Shape Feature Extraction

After the color contributions have been estimated for the
specific histogram regions, it is necessary to extract each
object patch data M ’s shape features F = {f0 · · · fm}
for the final histogram building, where m is the point
number in M . With object patch data M representing
the partial data of the object from viewpoint V P , each
point p’s geometrical information should be extracted in
order to describe the object shape accurately and ro-
bustly. Partly inspired by the work in [35], we extract
the shape features depending on point p’s relationship
with the centroid of M and viewpoint V P . As a global
descriptor, the surface normal np of each point p in M
and the centroid c of M are computed at first. The rela-
tionship of p and c represents the 3D shape of the object
cluster. The relationship of p and V P indicates the rota-
tion of the object cluster relative to the sensor direction.
Note that V P and c are represented as the object’s 6D
pose.

As shown in Figure 4, the tangent plane of p is de-
fined as a plane that is orthogonal to p’s normal np. The
centroid c is projected to this tangent plane as a point
cp. A four dimensional geometrical feature f consists of
two distances and two angles components 〈dp, dc, α, β〉,
which are calculated as:

dp = ‖p− c‖ , dc = ‖cp − c‖ ,
α = arccos(np · (p− c)), β = arccos(v · (p− c)).

(5)

In object partial data M , each point p’s feature f is
calculated. Therefore, for single object model O which
contains J object patch data, the final feature set is
F = {f0 · · · fm} with m points, representing the object’s
shape from a certain viewpoint V Pj .

3.3.3 Color and Shape Feature Correlation

To describe an object patch data M with the viewpoint
V P discriminatively and comprehensively as a histogram,

the VCSH descriptor should be correlated with these two
different features. In the smoothed color ranging phase,
the whole histogram has been segmented into eight re-
gions. Every component in each point’s shape feature f
has 30 bins, therefore each RE contains 120 bins inside.
Each p’s two distance components 〈dp, dc〉 are indexed
as 〈INdp , INdc〉 by the quantization using their values
scaling from minimum value 〈dpmin , dcmin〉 to maximum
value 〈dpmax

, dcmax
〉. Two angle components 〈α, β〉 are

indexed as 〈INα, INβ〉 by the quantization using their
values with the range of 0 to 90◦as follows:

INdp = b30 · (dp − dpmin
)

dpmax
− dpmin

c,INdc = b30 · (dc − dcmin)

dcmax
− dcmin

c,

INα = b α
90
· 30c,INβ = b β

90
· 30c.

(6)

During the object’s color and shape features correlation
step, each p’s color contributions as 〈wu, wu+1, w6|w7〉
for three histogram regions 〈REu, REu+1, RE6|RE7 〉
are incrementally added into 〈INXdp , INXdc , INXα,
INXβ〉. The final certain bins index INX in VCSH re-
garding to each of these three REm,m ∈ [u, u + 1, 6, 7]
are quantized as follows:

INXdp = INdp + 120 ·m,
INXdc = INdc + 120 ·m+ 30,

INXα = INα + 120 ·m+ 30 · 2,
INXβ = INβ + 120 ·m+ 30 · 3.

(7)

The whole histogram has incremental value corre-
sponding to color contributions from all the points in
M . During final object recognition phase, the object’s
descriptor should not change with varying distance at
same view direction. However the histogram’s absolute
value of each bin will change according to the object
cluster point number. To overcome this problem, the
values of histogram are finally normalized with point
number. Thus, VCSH could be viewed as a geometrical
constrained color feature histogram. As shown in Fig-
ure 5, color contributions of all points in object patch
data respected to different viewpoints are incrementally
added into the certain indexes of whole VCSH, based
on smoothed color ranging and shape feature extraction.
An example of two picked points in object patch data
for the final VCSH generation is illustrated within Fig-
ure 5, with the step of color-shape features extraction
and correlation step. Each patch data of object could be
represented as one VCSH. The final correlated histogram
has (6 + 2) × (30 × 4) = 960 dimensions. The computa-
tional complexity of VCSH is O(n), where n is the point
number of object patch data M . Consequently, the final
generated histogram gives the possibility for high suc-
cessful object recognition rate, accurate pose estimation
and real-time processing.
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Fig. 5 VCSH training processing with smooth color ranging, shape feature extraction and feature correlation steps. All
points’ color contribution in object patch data respected to different viewpoints incremented into the whole VCSH’s indexing,
based on smoothed color ranging and geometrical features’ indexing. VCSH is normalized with the points’ size to deal with
sensor-object distance scaling finally.

3.4 Object Recognition and Pose Retrieval

With the built object VCSH descriptors database, we are
now going to get the object cluster’s identification label
L and its general pose P in real scene. Our system first
segments and clusters the object cluster C from the back-
ground. Two frameworks of segmentation and clustering
are proposed to accommodate different environments for
object recognition and pose estimation:

Planar Background Environment The environ-
ment could be simplified as all the objects being with a
planar background, for example a table surface as shown
in Figure 8a. With the raw RGB-D image from Kinect
sensor, the largest plane surface could be extracted by
RANSAC [29], the object clusters Ck will be segmented
from the plane surface and clustered by Euclidean dis-
tance [41].

Cluttered Background Environment The clut-
tered background environment is represented as a heav-
ily cluttered background. It is difficult to constrain the
objects’ localization for segmentation and clustering, as
the target objects have the possibilities of being with var-
ious pose as shown in Figure 8b. Aiming to solve that,
the initial background image is trained in off-line phase
based on Octree data structure [40]. With the extracted
foreground data, the object clusters Ck will be segmented
and clustered by Euclidean distance [42].

Based on object clusters Ck, the real scene objects’
VCSH is calculated. The chi-squared distance χ2 be-
tween the real scene object’s VCSH value H(C) and

Hij in the trained database is calculated for the best
matching, through fast approximate K-Nearest Neigh-

bors (KNN) method based on kd-trees [29]. ˆ〈L,P 〉 as
the best matched object identification and correspond-
ing pose could be extracted as:

ˆ〈L,P 〉 = arg min
〈L,P 〉ij

χ2(H(C), Hij). (8)

Note that in VCSH definition, P in ˆ〈L,P 〉 represents
the rotation of the object respect to the sensor’s view-
point. The centroid of the object cluster in real scene
indicates the current position, which is used to update
P as the object initial pose.

3.5 Object Pose Optimization and Verification

Due to the sampling rate of the synthetic viewpoints
during VCSH database building, although the estimated
pose P is recovered as the best matched pose from the
built database, P may be not the real pose. Consequently,
iterative closest point (ICP) method is employed to fur-
ther optimize the estimated pose [37, 38], providing a
transform Ticp. The sources for ICP are point cloud data
of the best matched object patch data and object cluster
in real scene. ICP’s accuracy and iteration speed strongly
rely on the given initial guess, which could be provided
by our estimated pose P . The final pose of the object
Pfinal is optimized according to the extracted initial pose
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P and the ICP optimized transform Ticp. Therefore, the

final updated object pose Pfinal = T−1icp · P is signifi-
cantly accurate while the iteration speed is fast enough
for real-time recognition and pose estimation.

Next pose verification is necessary to make sure that
the optimized pose Pfinal is the correct estimation. The
new object patch data Mrec will be generated by Pfinal
and recognized objects 3D model Ω using Algorithm 1.
Since the final pose is optimized, the detected object
patch data Mrec might be not in the object model patch
dataset that generated from the synthetic viewpoints
during modeling. With the calculation for the difference
between Mrec and the real object cluster data Ck, the
given threshold composed by the photometric and geo-
metrical difference could reject the false positives.

3.6 Object Localization in Semantic Map

Semantic mapping has attracted huge attention in the
robotic applications, especially for wide-range navigation
and exploration. Therefore, it is obvious that a coher-
ent semantic map, which provides both semantic level
understanding and metric representation of the environ-
ment, is very important for intelligent robot to success-
fully and efficiently perform daily tasks. To fulfill these
requirements, our VCSH is an important component for
this coherent semantic map building. VCSH could be uti-
lized for the 3D object recognition and accurate pose es-
timation efficiently and successfully, which provides the
possibility for the object localization in the large-scale se-
mantic map. And these results could be retrieved in real
time during robot mapping building process. Moreover,
VCSH has no constrain for the object type. It can deal
with texture and textureless objects using the object’s
color and shape information.

As our coherent mapping building stratage, the laser
range data is firstly processed by a grid mapping algo-
rithm to generate an occupancy grid map of the environ-
ment and to provide a coherent global coordinate system.
In our work, we have used the GMapping [44] algorithm
for this purpose. The resulting grid map is then used as
input for the process of parametric environment abstrac-
tion which uses rectangular space units to approximate
the geometry and the topology of the perceived envi-
ronment. Within each space unit, unknown areas of the
grid map are detected based on connected-components
analysis. Such areas are considered as obstacles which
can not be traversed by robots. More details on para-
metric environment abstraction can be found in [45]. On
the other hand, 3D objects are localized in the global se-
mantic map using our proposed object recognition and
6D pose estimation method. Finally, a coherent seman-
tic map that captures the geometrical, topological and
object information of the operating environment is gen-
erated by incorporating the 3D object information into
the parametric environment model.

Calibration Ball

Object Rotatable Plane

a) Raw image of modeling platform b) RGB_D data acquisition

c) Some samples of the built 3D object models 

Fig. 6 Object 3D modeling, model data represents as the
color point clouds.a) the platform for modeling; b) all frames
object data from Kinect sensor; c) some objects models in
our dataset.

Fig. 7 Extract nine closest object VCSHs with relevant
viewpoints in the dataset, after the recognition step using
the simulation data. The green markers present the distances
to the chosen VCSH as the target.

4 Experimental Results

We perform experiments where the goal is to evaluate
our proposed viewpoint oriented color-shape histogram
descriptor and the entire system. First, an object dataset
consisting more than 25 objects is built, where some ob-
jects have the same shape but different color informa-
tion on the surface. As shown in Figure 6a, the platform
could be rotated by different angles using a KUKA arm
end-effector controller. With a stationary Kinect sensor
mounted on the robot, the color point cloud of the ob-
ject can be captured with respect to the different rotating
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Table 1 Map of the state-of-the-art methods on 3D object recognition and pose estimation: ConVOSH, CPPF and our VCSH
could be applied for textured and textureless objects. ConVOSH can not retrieve 6D pose. CPPF as a local descriptor, faces
the real-time challenge with high computational cost. Notice that the numerical values come from their respective papers,
and in particular those numbers refer to their own datasets, therefore the results are illustrated for a rough comparison.

Name Stratege Type Feature Object Dataset Success Pose Error
Recognition(R) Local(L) Shape(S) Constrains Size Rate T R

Registration(RG) Global(G) Texture(T) (%) (mm) (deg)
6D Pose(P) Color(C)

ConVOSCH [21] R L S + C No 63 72.2 NaN NaN
LINEMOD [30] R+P L S + C Uniform 15 96.6 NaN NaN

Color
VFH [29] R G S Depth 60 98.1 NaN NaN

Only
CPPF [23] RG +P L S + C No 10 80 15 15
Tang [20] R+P G S + T Textured 35 90 50 10

Our VCSH R+P G S + C No 25 92 23.4 1.59

angles. Furthermore, a calibration ball is used to deter-
mine and optimize the final object model’s coordination.
In total, for each object, 25 frames of data with 10◦ as an
angle step are captured at different poses. Some objects
have the same shape but different color information such
as COLA, SPRITE can. Some objects are textureless
such as the emergency button (Figure 6c). During object
model building, we assume that the object is standing on
the table, its bottom part data is not in considered for the
whole object model. During the object patch data gen-
eration, the viewpoints are sampled on the upper sphere
surface around the object origin with radius of 0.8m. For
every 10◦ in elevation range [10◦, 80◦] and every 2◦ in
azimuth range [0◦, 360◦], a synthetic viewpoint and the
relative object patch data are both generated. Therefore,
7 × 180 = 1260 synthetic views patch data for each ob-
ject model are generated totally. In our database, each
viewpoint object patch data contains around 1000-2000
color points. Consequently, each object is represented as
1260 VCSH descriptors respect to different viewpoints,
which cover object’s full potential poses.

To demonstrate our performance, we design multiple
challenging scenarios. Some special objects are chosen
to present VCSH’s stability of recognition and also pose
accuracy. There are some objects which have the same
shape but the different visual information, some with
texture or textureless surface. This challenge of com-
mon object recognition and accurate pose estimation
with high speed, could not be solved by existing tech-
niques [20–23,29,31]. We firstly use the object patch data
within the database to perform closest VCSH retrieval
accuracy. One VCSH in database is chosen to present the
correction of its recognition and the relevant viewpoint
retrieval. As shown in Figure 7, the green scores present
these nine closest neighbors’ VCSH distances with the
target. The chosen object patch data’s VCSH could be
recognized correctly. All the object patch data in dataset
can be correctly retrieved with 100% success rate.

Secondly, we demonstrate real time object recogni-
tion and 6D pose estimation using the real scene RGB-

Table 2 Runtime performances of our VCSH and Tang [20]
on similar scenarios.

Single Feature Pose
Object Train Extract Recognize Recovery

Our VCSH 2 min 5 ms 37 ms 0.83 s
Tang [20] 7 min 5 s 1 s 14 s

D data, which is captured from a single Kinect on an
autonomous mobile robot. Because of Kinect’s data ac-
quisition range, the objects should be within the distance
of 0.5m to 3.5m respect to the sensor. The recognized ob-
jects’ 3D models are projected into the real scene with
estimated 6D poses as shown in Figure 8. For the pla-
nar background scenario Figure 8a, we extracted the ob-
ject cluster with the assumption that the planar surface
where all the objects standing on should covers the 50%
of the whole point clouds. Figure 8b illustrates the clut-
tered background scenario. The background should be
trained at first, and all the objects have no geometri-
cal constrains in real scene. The objects for the experi-
ments include the textured (teabag box and milk bottle)
and also the textureless (emergence button). Same shape
and different color objects are also tested such as various
teabag boxes to present the necessary for the object de-
scriptor combined with color and shape features. All the
trained objects could be correctly recognized and their
estimated poses are highly accurate. Note that the works
are partially based on Point Cloud Library 1.

Our VCSH is a global object descriptor combining vi-
sual and shape features. Its geometrical feature is based
on the centriod of the object cluster in real scene. With
these limitations, all the objects for the demonstrations
should be rigid and not be reflective or transparent. In
addition, these objects should be well segmented from
the environment background. As described in Sec. 3.4
and experimental results shown in Figure 8, our system
could effectively deal with planar background and clut-

1 http://www.pointclouds.org

http://www.pointclouds.org
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Real Scene RGB-D Image 3D Object Model Backprojection after Recognition and Pose Estimation

View 0 View 1 View 2 View 3

a) Experiment Results in Planar BackGround Environment 

b) Experiment Results in Cluttered Background Environment 

Fig. 8 Recognized objects’s 3D models are projected onto the real scene with estimated 6D poses: a) within planar back-
ground environment; b) within cluttered background environment. Left one: real scene RGB-D data from the sensor. Right
four: the different view results after object model backprojected into the scene data after recognition and pose estimation.
Different color frames illustrate different objects.

tered environment background. To analyze the object oc-
clusion’s influence for the final results, we utilized multi-
ple experiments for multiple objects with manual config-
urations for occlusion. During the experimental testing,
if the object’s occluded colored point clouds are less than
8% of the ideal whole object data, our VCSH provides

stable and correct results for both of recognition and 6D
pose estimation.

Furthermore, we apply our object recognition and 6D
pose estimation method in semantic mapping for an in-
door environment, as illustrated in Figure 9. As shown
in Figure 9a, the resulting coherent semantic map cor-
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Fig. 9 Object localization in coherent semantic map. a) The abstract environment model. Black ellipses indicate space units.
Solid black edges mean that two space units are connected by one or more doors. Dashed edges imply that two space units
are adjacent but not connected by doors. Blue rectangles show the detected objects. Blue edges show the belongingness of
these objects. b) The resulting grid map of the perceived environment. c) We plot the 3D semantic map directly onto the
corresponding grid map (blue=walls, green=doors, cyan=detected tables with 3D objects). The current robot information
including acquired RGBD data are highlighted by the dashed yellow rectangle. d) Details on 3D object localization. This
semantic map includes identification and pose of each object in the global coordinate system and their belongingnesses.

rectly interprets the perceived environment with space
units U1, U2 · · ·U6 and a corresponding topology (con-
nectivity by doors and adjacency). In Figure 9b, these
detected obstacles essentially represent the furniture of
the perceived environment, such as tables and cabinets.
3D parametric model along with the detected 3D objects
are shown in Figure 9c. Here the detected table planes
and objects are back-projected in the map. Figure 9d
depicts the details of object recognition and localization.
In space units U1, U2 and U5, several 3D objects are
recognized and localized regarding their 6D poses. By
cell-wise checking of our parametric model and the input
grid map, we measured an accuracy of 94.1% for geome-
try approximation. The mismatch of 5.9% is mainly due
to some not-fully-explored areas of the input map.

Table 1 presents the state-of-the-art methods on the
topic of object recognition and 6D pose estimation. There
are mainly two types of descriptors including global and
local. In particular, the local type is similar to the method
of model registration. It could solve the problem when
object data contains occlusions, using the pairwise match-
ing with different features. However, this method re-
quires high computational cost and is not suitable for
real-time processing such as robotic applications. Fur-
thermore, most of the local object descriptors must have

the prior knowledge about the object’ existence in real
scene, such as CPPF [23]. Instead, in this paper, we
introduce a new global object descriptor VCSH. Com-
pared with other global methods as VFH [29] and Tang
[20], we can retrieve accurate 6D pose, which cannot be
solved in VFH [29]. Moreover, VFH [29] only uses shape
features, thus cannot distinguish the objects with same
shape but different visual appearance. The most simi-
lar work Tang [20] to ours, uses the SIFT feature based
on the objects surface texture information. This method
constrains the target objects be be textured with high
quality and cannot deal with the textureless object, such
as emergency button in our dataset. Our VCSH is based
on object’s color and shape features, thus has no ob-
ject model type constraints, and could deal with the tex-
tured and textureless objects. Comparatively, most of
the methods have their object model constrains, such
as textured (Tang [20]), uniform color (LINEMOD [30]),
depth only (VFH [29]). To the best of our knowledge,
we are currently among the first to solve these problems
with high recognition rate, accurate 6D pose estimation
and low computational cost, without any object model
constrains by combining the photometric and geometric
information.
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a) Experiment setup for pose accuracy evaluation b) Estimated pose and ground truth of the sensor

c) 6D pose estimation in different frames (translation and rotation)

Frames Frames

Frames Frames

Fig. 10 Object pose accuracy evaluation in different frames with different robot positions: a) experiment setup for evaluation
with omni-direction platform robot and QUALISYS tracker system; b) the estimated sensor trajectory with 10 frames; c)
the estimated pose and ground truth in translation and rotation.

In general, our framework can reach the correct recog-
nition and pose at 92%, correct recognition but wrong
pose at 6% and 2% for wrong recognition over 1000
demonstrations. Computational cost and runtime perfor-
mance are very important for applying our framework
into the autonomous mobile robot’s applications. The
runtime performance for single object recognition and
pose recovery is evaluated, we compare with the result
from Tang et. al. [20] as shown in Table 2 on similar
scenario setups. All experiments run on AMD X6 3.0
GHz with 8GB of RAM, while Tang et al. use 6-core
3.2GHz i7 with 24GB of RAM. For the single object
recognition and pose recovery, it costs around 1s with-
out any GPU speed-up architecture. Our framework’s
runtime outperformance brings the opportunities for the
real time robotic applications, for instance, object grasp-
ing and manipulation based on perceptual system.

To further evaluate the pose accuracy using our pro-
posed approach, QUALISYS motion capture system 2 is
employed to capture the ground truth of the sensor pose.

2 http://www.qualisys.com/

The robot with the Kinect senor moves around the sta-
tionary object. The camera pose is estimated with two
methods for accuracy analysis: 1) recovered pose respect
to the stationary object from our proposed method; 2)
estimated pose using QUALISYS system as the ground
truth. By transforming these data into the world coor-
dinate, we compare the estimated pose with its ground
truth to get the pose recovery accuracy, as shown in Fig-
ure 10. The root mean square error (RMSE) during the
whole 10 frames is calculated for the pose accuracy anal-
ysis. From Table 1, the 6D pose error compared with
the ground truth are 23.4 mm in translation and 1.59
degrees in rotation, while in work [20] are 50mm and 10
degrees respectively. Our VCSH outperforms Tang et.
al.’s method both in translation and rotation accuracy
with similar object models for the similar scenarios.

As the object’s color information as photometric fea-
tures is extracted for VCSH generation, the stability
with illumination changes is a crucial aspect, therefore it
needs to be analyzed. We utilize one light meter DT1309
to estimate the object’s surrounding illumination inten-
sity under an adjustable white LED array light. The sta-

http://www.qualisys.com/
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a) Set up for the illumination stability analysis b) Examples of real scene data under 10 and 225 lux

c) Histogram distance to the target of different object under different illumination

Auto Ranging Light Meter Kinect 

Adjustable White LED Array Light

Fig. 11 Stability analysis with illumination change: a) experimental setup with adjustable white LED array and light meter
to measure the illumination density; b) some real scene data recored under the different illumination densities; c) five objects’s
estimated VCSH distances to the relative targets under sixty different illumination densities from 10 lux to 700 lux.

bility is evaluated by the differences between the esti-
mated objects’ VCSH under various illumination condi-
tions and their target VCSH (correct identification and
pose) in database. As illustrated from Figure 11, when
the illumination intensity exceeds 50 lux, all the objects’
histogram differences remain under 220 and would be
stable until 700 lux, which is the maximum illumination
intensity. Note that the object modeling environment is
under around 230 lux, while most of the common indoor
and outdoor light condition is from 150 to 400 lux. From
the result of stability analysis, our recognition and pose
estimation framework, especially VCSH object descrip-
tor is stable enough under varying illumination intensity.

From above experimental results, our proposed ap-
proach consisting of a novel object descriptor VCSH is
efficient and robust. It guarantees high object recognition
rate, fast and accurate pose estimation as well as exhibits
the capability of dealing with illumination changes.

5 Conclusion and Future Work

In this paper, we presented a framework consisting of a
global object descriptor Viewpoint oriented Color-Shape
Histogram, which combines color and shape information
for object recognition and 6D pose estimation. The pro-
posed approach could be easily integrated into various
robotic perception system for daily textured/textureless
objects recognition and 6D pose estimation in real time.
In addition, we successfully incorporated within a coher-

ent semantic map, which could be used for robot explo-
ration of objects in large-scale map.

Our approach achieves 92% success object recogni-
tion rate for both of correct object identification and
pose retrieval. The estimation error of recognized ob-
ject’s 6D pose is under 24mm in translation and 1.6 de-
gree in rotation. Our proposed framework has light com-
putation cost. For a single object, it spends less than
1s to recognize and estimate it’s accurate pose estima-
tion after the pose optimization. Moreover, our VCSH
is efficient and stable enough under varying illumination
intensity in the common environment. Our experimen-
tal results demonstrate that the proposed approach is
proven to be efficient by guaranteeing high object recog-
nition rate, accurate pose estimation result. Moreover,
it exhibits the capability of dealing with environmental
illumination changes. Future work will focus on the sys-
tem speed up based on GPU implementation and model
building of wider-variety objects.
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