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Zusammenfassung

Ein partitionierter Ansatz zur Losung multiphysikalischer Pro-
bleme resultiert in einer Co-Simulation. Vorhandene Softwareum-
gebungen hierfiir sind beschrankt auf Kopplung von zwei Teilsys-
temen, wie z.B. in einer Fluid-Struktur-Interaktion, oder spezi-
fische gekoppelte Probleme mehrerer Teilsysteme. Diese Arbeit
présentiert eine neue Softwareumgebung namens EMPIRE zur
Losung genereller multiphysikalischer Problemstellungen. Verwirk-
licht wird dies durch die Freiheit fiir den Nutzer flexible Co-
Simuloation-Szenarien aufbauen zu kénnen. Die Anwendung von
Softwaretechniken, wie z.B. dem Client-Server-Modell, Program-
mierschnittstelle und Objektorientierung, garantiert zusétzlich
Modularitat, Erweiterbarkeit und Nutzbarkeit.

Die Anwendung der Kopplungsbedingungen am Interface zwei-
er physikalischer Felder macht auf Grund der unterschiedlichen
Netzauflésungen beider Seiten eine Mapping-Technik notwendig.
Drei Mapping-Algorithmen fiir Oberflichennetze werden dafiir
untersucht: Nearest Element Interpolation, Standard-Mortar Me-
thode und duale Mortar Methode. Probleme der Mortar Metho-
den bei gekriimmten Kanten werden durch den neu entwickelten
Enforced-Consistency-Ansatz gelost. Aulerdem sei erwéhnt, dass
die duale Mortar Methode zu schwach oszilierenden Ergebnissen
fithren kann. Basierend auf den Analysen und Testbeispielen wird
auch eine allgemeine Regel der Wahl eines passenden Mapping-
Algorithmus vorgeschlagen.

Bei Modellierung von Strukturen mit eindimensionalen Bal-
kenelementen werden auf Grund des fehlenden Oberfléchennetzes
spezielle Mapping-Algorithmen notwendig. Bereits vonhandene
Methoden sind beschrénkt auf lineare Balkenelementen und klei-
ne Deformationen. Diese Arbeit entwickelt daher den Co-rotating
Algorithmus, um auch mit groflien Verschiebungen und Rotatio-
nen umgehen zu kénnen.

Bisher fand EMPIRE Anwendung in vielen praktischen Pro-
blemen, wie diversen Fluid-Struktur-Interaktionen, Simulation
einer Windkraftanlage unter Beriicksichtigung von Fluid, Struk-
tur, Getriebe/Generator und Regelung sowie der Optimierung
von gekoppelten Fluid-Struktur-Problemen. Auf Grund der Fle-
xibilitdt und leichten Erweiterbarkeit von EMPIRE ist darauf
zu hoffen, dass es zu einer weit verbreiteten Plattform fiir die
Entwicklung von neuen Algorithmen und fiir Simulationen mul-
tiphysikalischer Problemstellungen wird.
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Abstract

Partitioned strategy for solving multiphysics problems re-
sults in co-simulation. Existing software environments of co-
simulation are restricted to two-partitions coupled multiphysics
problems such as fluid-structure interaction, or more-partitions
coupled problems with specific scenarios. This work develops a
co-simulation software environment named EMPIRE which can
solve a general multiphysics problem. This is realized by allowing
the user to set up co-simulation scenarios flexibly. Besides, soft-
ware techniques such as server-client model, application program
interface and object oriented programming are applied to obtain
good modularity, extendability and usability.

When applying the coupling conditions on the interface be-
tween two physical domains, mapping is required due to different
grid resolutions from both sides. Three mapping algorithms deal-
ing with surface meshes are comparatively investigated which are
nearest element interpolation, the standard mortar method and
the dual mortar method. The problem of the mortar methods
at curved edges is solved by the newly developed enforcing con-
sistency approach. It is also found that the dual mortar method
can give slightly oscillatory results. Based on the analysis and
tests, a general rule of choosing a suitable mapping algorithm in
practice is suggested.

When the structure is modeled by 1D beam elements, special
mapping algorithms are needed since the surface mesh from the
structure is missing. Existing methods in literature work only for
linear beam elements with small deformation. This work develops
a co-rotating algorithm which can handle large displacements and
rotations.

So far, EMPIRE has been applied in many practical multi-
physics problems including fluid-structure interaction, simulation
of a wind turbine where fluid, structure, gearbox and a control
unit are coupled, as well as optimization of fluid-structure cou-
pled problems. Due to the flexibility and extendability of the
software, it is hoped that EMPIRE could become a widely-used
platform for both algorithm development and simulation of mul-
tiphysics problems.
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Chapter 1

Introduction

Fluid-structure interaction (FSI) is the interaction between a struc-
ture and the fluid around it. Examples of application can be found
in civil engineering where lightweight structures vibrate under wind
load [59, 60, 95, 69, 11, 91], in aeronautical engineering to study the
flutter of wings [89, 26, 18], in marine engineering where interaction
happens between ocean waves and ships or other offshore structures
[119, 142], and in medical engineering where interaction can happen
between arteries and blood flow [9, 126] or between airway and airflow
[135]. The works on FSI from the multibody community can be found
in e.g. [4, 24, 85, 104]. An FSI problem contains a structure domain, a
fluid domain and the interface between them. Each domain is described
by its own governing equations, and the interaction is described by the
coupling conditions at the interface.

FSI is a typical multiphysics problem with two partitions. Some
multiphysics problems can have three and more partitions, such as
acoustic-fluid-structure interaction [6, 88], control-fluid-structure inter-
action [120] and optimization of FSI [66, 93, 5, 65, 1]. Similar to FSI,
each domain has its own governing equations, and different domains are
coupled with each other through the coupling conditions at the inter-
faces. All the governing equations and the coupling conditions consti-
tute the global system of equations of a multiphysics problem.

The global system of equations can either be solved with the mono-
lithic or the partitioned strategy. The monolithic strategy solves the
global system as a whole, and the global Jacobian matrix is usually de-
rived to apply the Newton-Raphson method. Due to the complexity it
is mainly applied in relatively simple problems, e.g. the geometry is in
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1D /2D or the equations of the domains are linear. With the partitioned
strategy, the two domains are solved separately and they exchange data
at the interface according to the coupling conditions. Existing simu-
lation programs of the single domains can be reused which brings big
benefits: on the one hand, the time of software development is largely
reduced; on the other hand, the scope of FSI problems that can be
solved is broadened. The remaining task is to provide a co-simulation
software environment where the simulation programs can be coupled
together.

There are quite a number of successful co-simulation environments
for FSI and general two-partitions coupled problems, which apply mod-
ern concepts and techniques such as object oriented programming, ap-
plication program interface (API), server-client model and peer-to-peer
model [76, 55, 57]. However, they either do not work for more-partitions
coupled problems or can only deal with such problems of fixed types.
This work aims at developing a flexible co-simulation environment which
can solve general multiphysics problems. The flexibility means that
there should be no restriction on the number of programs that are cou-
pled as well as the coupling process.

Beside the development of a co-simulation environment, this work
also researches on mapping algorithms. Due to separate discretiza-
tions, the grids of two coupled domains at the interface are usually
non-matching, so data from one interface mesh has to be mapped to
the other and vice versa. Note that the mapping here deals with sur-
face coupled problems instead of volume coupled problems. Mapping
algorithms usually perform interpolation or solve the weak form of the
coupling conditions. When the structure in an FSI problem is mod-
eled by 1D beam elements, special mapping algorithms are needed since
the surface mesh from the structure model is missing. Existing map-
ping algorithms in literature are restricted to linear beam elements with
small deformation. This work will investigate and improve mapping al-
gorithms for surface meshes and develop a new mapping algorithm for
nonlinear beam elements with large displacements and rotations.

The thesis is outlined as follows:

e Chapter 2 derives the governing equations of structure, fluid and
FSI as well as the numerical models of them. Partitioned coupling
algorithms for solving FSI problems are presented with different
classifications. At the end of the chapter, from FSI co-simulation
the concept of general co-simulations is abstracted which can also
contain more than two partitions.



Chapter 3 presents the newly developed co-simulation software en-
vironment EMPIRE. It starts with the requirements of the soft-
ware, and continues with the design concepts that solve the re-
quirements. The implementation is briefly shown with the class
diagrams of object oriented programming. The configuration and
the runtime behavior of EMPIRE are also presented.

In Chapter 4, different mapping algorithms dealing with surface
meshes are investigated including nearest element interpolation,
standard mortar method and dual mortar method. The inconsis-
tency problem of the mortar methods on curved edges is solved
by the newly developed enforcing consistency approach. The al-
gorithms are tested on representative geometries as well as on a
wind turbine blade.

In Chapter 5, special mapping algorithms dealing with 1D beam
elements are developed including a linearized and a nonlinear al-
gorithm. The nonlinear one is based on the idea of co-rotating
formulation in nonlinear structural analysis. Both algorithms are
tested in convergence tests on a beam with constant square cross
section. The corotating algorithm is also applied on airfoil surfaces
under artificially large displacements and rotations.

Chapter 6 presents three co-simulation examples using EMPIRE.
The first one is FSI simulation of a flat membrane in a wind tunnel,
and the simulation results are compared with the measurements.
The second one is FSI simulation of a wind turbine whose blades
are modeled by linear beam elements. The rigid body rotation is
realized by transforming the forces to a rotating coordinate system
where the beam elements are modeled. The last example is the
shape optimization of a prototypical hydrofoil where three codes
are coupled including an optimizer, a fluid solver and a structure
solver.

The thesis is concluded in Chapter 7.






Chapter 2

Fluid-Structure Interaction
and Co-Simulation

In FSI, the structure and the fluid domains maintain their own dynam-
ical characteristics, meanwhile they interact with each other at the in-
terface which is often called the wet surface. Both domains are modeled
individually as a continuum which leads to partial differential equations
describing the conservation of mass, momentum and energy. Numerical
methods for solving the equations are studied by computational struc-
tural mechanics (CSM) and computational fluid dynamics (CFD). The
finite element method (FEM) is the dominant numerical treatment in
CSM while the finite volume method (FVM) is a major treatment in
CFD. The interaction is realized by the kinematic and dynamic bound-
ary conditions on the wet surface, which respectively describe the con-
formity of geometry and the balance of load. These coupling conditions
together with the governing equations of both domains constitute the
complete description of an FSI problem. The global equation system
can be solved in a partitioned way where both domains are solved sep-
arately. This results in a co-simulation of programs of the individual
domains.

This chapter presents firstly the derivation of governing equations
of the structure and the fluid as well as the numerical treatments of
them. Then the coupling conditions are derived to complete the estab-
lishment of the equation system of FSI, and the solving schemes of it
are introduced thereafter. The chapter ends with a discussion of general
multiphysics problems which can contain two or more than two parti-
tions. The content of this chapter serves as theoretical background of
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the co-simulation software environment EMPIRE, which will be pre-
sented in the next chapter.

2.1 Structural Mechanics

The structure is considered undergoing small stains which can be ap-
plied for many civil engineering problems. Despite the small strain
assumption it can have large displacement and rotation, which requires
geometrically nonlinear formulation. The material is further assumed as
homogenous and isotropic so that the Saint-Venant-Kirchhoff material
law is applied. The derivation of the governing equations is only briefly
summarized and the details can be found in many text books e.g. [7],
[14] and [140].

2.1.1 Governing Equations
Kinematics

The kinematics describe the deformation of the structure. Here, the
Lagrange description is applied where physical fields are defined on the
material points of the structure. These material points form the struc-
ture domain {25 corresponding to the initial configuration. Given a
material point x € (), if its position at the current configuration is
denoted by x¢, then the displacement vector on x is

u=x; — X. (2.1)

The relation between an infinitesimal length dx at the initial configu-
ration and the length after deformation dx; can be described by the
deformation gradient F as

- dXt

Codx
The Green-Lagrange strain tensor E that allows large displacement and
rotation is defined as

(2.2)

E= %(FTF -1), (2.3)

where I is an identity matrix.

Constitutive equation

The constitutive equation describes the relation between stress and
strain. The 2nd Piola-Kirchhoff stress tensor S is the stress measure that
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is defined on the initial configuration. The corresponding strain mea-
sure of S is the Green-Lagrange strain E. Since the linear Saint-Venant-
Kirchhoff material is assumed in this work, the constitutive equation is
derived as

S=X\tr(E) I+ 2uE. (2.4)

The Lamé constants Ag and us are directly related to the Young’s mod-
ulus E and the Poisson’s ratio v as

ESZ/S o Es
A+rv)d—20) M7 o0vuw)

S

(2.5)

Dynamics

The dynamics describe the force balance on the structure which can be
derived as

d?u

Zr V- (F-8S) + psbs, (2.6)

where pg is the density of the structure and by is the body force. The

equation states the balance among the inertia, the internal elastic force

and the external body force.

Boundary and initial conditions

The boundaries are classified into two different types namely the Dirich-
let boundaries I'Y and the Neumann boundaries I'?. The displacement
field is specified on I'* while the traction field is specified on I'?. The
boundary conditions are written as

u=nu at I'Y, (2.7a)
n-(F-S)=p at T2, (2.7b)

where u and p are respectively the displacement and traction specified
on the corresponding boundaries, while n is the normal of I'?. Note that
I'Y and I'? are boundaries of €25 so they are also defined at the initial
configuration.

Since (2.6) contains a second order time derivative, two initial condi-
tions are needed where both the initial displacement ugg and the initial
velocity vy are specified as

u(t =0) = uy in Q, (2.8a)
du
i in Q. 2.
i, Vo in (2.8b)
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2.1.2 Weak Form

In order to solve the problem numerically, the weak form of (2.6) needs
to be formulated first as

d2
/p—l;-éudﬂs—&—/ S:5EdQs:/ pbs-éudQS—F/ p-dudl?,
o, dt Q , e
(2.9)

where du is the test function which is also interpreted as virtual dis-
placement, and JE can be expressed by du. The terms in (2.9) are
individually defined as

s Qs

d%u
Wayn = /QS p@ -oudQ, (2.10a)
Wine = / S : dEdQ, (2.10b)
Qs
Wt = / pbyg - du d)y +/ p-éudl?, (2.10¢)
Qg e

where dWg,,, contains the inertia part of the virtual work, 6W;,, is the
internal virtual work and dW,,; the external virtual work. Obviously

6Wdyn + 6W'Lnt = 6We:rt~ (211)

2.1.3 Discretization in Space and Time
Spatial discretization

To apply the FEM, the continuous domain €)g is disretized into a mesh
with elements and nodes. The continuous displacement field u(x) is
approximated by interpolating the discrete displacements U with the
help of shape functions N(x) as

u;(x) = N(x)TU;, (2.12)

where ¢ = x,y or z which denotes a component of the 3D vector.
Applying (2.12) in (2.10) the following equations can be finally ob-
tained:

Wayn = 6UT MU, (2.13a)
§Wine = 6UT £7(U), (2.13b)
6We:ct - 6UT fe:rt7 (2130)
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where U represents the second order time derivative of U, and the
expression U that will be introduced later represents the first order
time derivative. M is the mass matrix and f** the external force. The
internal force £ is a nonlinear function of U. So the semi-discrete
form (only discretized in space) of (2.9) can be written as

MU + £ (U) = foot, (2.14)

In practice (2.12) is defined on each element and (2.14) is obtained by
assembling the elemental evaluations. Damping effect in the structure
can be modeled by adding a damping matrix C in (2.14) as

MU + CU + fi"(U) = £t (2.15)

which results in a more general description.

Time discretization

Up to now, the time derivatives in (2.15) have not been numerically
treated yet. Time discretization is also called ’time integration’ since
the variables evolute to the next time step by integrating the derivatives
over the time step length. Two widely-used time integration methods for
structural dynamics are presented here namely the Newmark-5 method
[101] and the Generalized-a method [28].

The Newmark-3 method supplements (2.15) with two additional
equations:

MU, + CU, + f"(U,,) = feot (2.16a)

. 1 . .
U, = (U, 1 +AtU, | + (5 — B)At*U,,_1) + BA*U,, (2.16b)
U, = (U,_1 + (1 —7)AtU, 1) + yAtU,, (2.16¢)
where n is the current time step number with n = 1,2, ..., neng, At is
the time step length which is assumed constant, and 8 and  are the

factors that determine the proportion between the quantities at n — 1
and n.

The generalized-o method reuses 2.16b and 2.16¢ but modifies 2.16a

9
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as
M [(1 — am) U, + amUn_l}
+C [(1 — af)ﬂn + ann_l}

+ (1= apf™(U,) + apf™(U,_1)
= (1 —ap)f® + a5, (2.17)

where a,, and oy are two additional factors to control the proportion
between the quantities at n — 1 and n.

Both methods are stable and of second order accuracy. Moreover,
the generalized-a method owns a characteristic of numerical damping
on the high frequency modes. For more details please refer to [82].

After spatial and time discretization, the numerical model of the
structure is completely established. Regardless of which time integra-
tion method is chosen, the final system of equations is solved repeatedly
at each time step with the increment of n. Initial values Uy and U,
are used in the first iteration to start the solving process. The bound-
ary conditions are applied by fixing the boundary values U and f¢**.
The nonlinear system of equations is solved by the Newton-Raphson
method, which is out of the scope of this thesis.

2.2 Fluid Dynamics

This section derives the numerical model of incompressible Newtonian
flow. The incompressibility assumption which means that the flow has
a constant density can also be valid for compressible flow. For example,
wind with velocity under 0.3 ¢ ~ 100 m/s can be modeled as an incom-
pressible fluid, where c is the speed of sound. The governing equations
of fluids are usually based on the Eulerian description, i.e. the variables
are defined on fixed spacial points. But for FSI problems, the fluid
boundary at the wet surface is deformable, so the equations based on
the Euler description have to be converted to those based on the arbi-
trary Lagrangian-Eulerian (ALE) description, where the variables are
defined on moving points.

2.2.1 Governing Equations in Eulerian Form

The governing equations of incompressible flow are briefly introduced
below. For more details the reader is referred to standard textbooks on

10
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fluid mechanics e.g. [83] and [132]. Following the Eulerian description,
the fluid fields are defined on fixed spatial points x with x € Q, where
Q¢ denotes the fluid domain.

Conservation of mass

The conservation of mass is written as
V-v=0, (2.18)

where v denotes the flow velocity. The equation specifies that the
amount of fluid coming into an infinitesimal volume per unit time is
equal to that coming out of the volume.

Conservation of momentum

The conservation of momentum is written as
ov

1
aJrV-(vv) = EV'O’f‘i’bf, (2.19)

where pr denotes the flow density, o the Cauchy stress tensor and by the
body force. For Newtonian flow, the Cauchy stress tensor is consisted
of a pressure part and a viscous stress part as

2
o = —pL+ ps | Vv + (Vv)T — g(V -, (2.20)
where p is the pressure and ps the dynamic viscosity. Combine 2.19 and

2.20 it is obtained that

1
ov +V-(vw)=V:(15Vv)— —Vp+ by, (2.21)
ot Pt

with the kinematic viscosity vy = pg/ps.

Boundary and initial conditions

As in structural mechanics, the boundaries are also classified into Dirich-
let boundaries I'f where velocity v is specified and Neumann boundaries
I'Y where traction p is specified. The boundary conditions are written
as

V=V at T'f, (2.22a)
n-of=p at T'7. (2.22Db)

11
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The initial conditions set the initial velocity and pressure fields as

v(t =0) = vy in Q, (2.23a)
p(t = O) = Pfo in Qf. (2.23b)

2.2.2 Governing Equations in ALE Form

The arbitrary Lagrangian-FEulerian (ALE) description [64, 38, 39] intro-
duces new observation points which can move in space. And the fluid
fields are defined on the moving points. If these points follow the mo-
tion of the material points, it becomes the Lagrangian description as in
structural mechanics; if they are fixed in space, it becomes the Eulerian
description.

The displacement of an observation point is defined as

uy = X — Xo, (2.24)

where x; is the current spatial position and xq the initial position. Note
that x¢ is understood as a fixed observation point while x; the current
spatial coordinates. The velocity of an observation point is defined by

_dug

= . 2.2
Vg dt ( 5)

The conservation of momentum in (2.21) can be transformed into
ALE form as

ov

1
—| +(V-—-vy) - Vv=V-(5VVv)— —Vp+b;. (2.26)
ot |, Pt

The following points are to be noted:
e The time derivative is defined on a fixed observing point xq.

e The spatial derivatives are evaluated with respect to x; instead
of x¢ because of their definitions. Although fluid variables are
defined on xg, but they can be converted onto x; using the relation
between x¢ and x;.

Redefine the fluid domain ¢ by the current positions of the observation
points with Q¢ 3 x4, so ¢ can move now. The conservation of mass in
(2.18), the boundary conditions in (2.22) and the initial conditions in
(2.23) which are defined in Q¢ remain the same form.

12



2.2. Fluid Dynamics

To complete (2.26), v, or u, should be provided. This work con-
siders only the computation of u,. Normally, the displacement of the
moving boundaries I'y is given, so the task is to find an equation that
governs the boundary value problem. One choice is the Laplace’s equa-
tion as

V.- (TyVuy) =0, (2.27)

where Iy is the diffusivity. It can be uniform or a function of the distance
to the boundaries [75]. The boundary condition is written as

u, = U, on I'Y, (2.28)

where I'Y denotes the moving boundaries. In case of FSI, I'f are the
wet surfaces. Moreover, they are part of I'Y, because the fluid velocity
on the wet surfaces should be equal to the velocity of the “walls”. This
can be expressed as
d ﬁ!] u u v
V=4 on I'f (T} €T¥). (2.29)

The movement of the fluid domain is also called mesh motion, since
the observing points become the nodes after meshing. An equation
governing the grid motion like 2.27 is often called a mesh motion solver.

2.2.3 Discretization in Space and Time
Spatial discretization

The FVM is based on the integral form of the governing equations. An
integral form of (2.21) based on the Eulerian description can be obtained
by integrating each term in the equation on a finite volume V as

/—dV+/V~(Vv)dV:

1
/ V- (Vv dV — / Lopav + / bedV.,  (2.30)
Vv Vv Pt Vv

Let V; denote a moving finite volume. With the Reynold’s transport
theorem

Q/ vavi= [ Davi+ [ v vv)av;, (2.31)
at ‘/} Vt a Vt

13



2. FLUID-STRUCTURE INTERACTION AND CO-SIMULATION

the integral form of the conservation of momentum based on the ALE
description is obtained as

o [ vavis [ 9l - vV avi-
8t Vi Vi

1
AV (VfVV) dV; — —VpdV; + / b dV;. (2.32)
Ve v, Pt Vi

And the integral form of the conservation of mass is written as
/ V.-vdV, =0. (2.33)
Vi

Gauss’ divergence theorem is applied in (2.33) and (2.32) so they
can be simplified as

/ v-ndS; =0, (2.34a)
Sy

9/ vth—|—/ (v —=vg)v] -ndS, =
ot Jy, s,

1
/(Vva)-ndSt—/ —pndSt—F/ bedV;, (2.34b)
Sy S, Pt Vi

where S; is the surface of V; and n the normal of dS;.
The grid motion equation in (2.27) can also be rewritten in the same
way, which results in

/(FgVug) -ndS =0. (2.35)
S

With FVM, the fluid domain is spatially descritized into cells of
certain types, e.g. tetrahedron or hexahedron. Equations (2.34) and
(2.35) are evaluated on each cell and all cell-based evaluations are finally
assembled to construct the global equation. The methods of evaluating
the integrals are briefly explained below:

e Volume integrals are approximated by the multiplication between
the integrand evaluated at the cell center and the volume of the
cell.

e Surface integrals are calculated by summing up the evaluations
on all faces of the cell. On each face, dS; is approximated by the
area of a face and n becomes the face normal. The values at the

14



2.2. Fluid Dynamics

face centers are interpolated with schemes such as central differ-
encing, upwind differencing, the hybrid method, total variation
diminishing and so on. For details the reader is referred to [132].

Time discretization

Time discretization needs to be applied for the time derivative term
in (2.34b). Two methods are presented here, namely the first and the
second order backward differencing formula (BDF1 and BDF2).

Let n denote the current time step, and At the constant time step
length. The time derivative of an arbitrary variable ¢ is approximated
via BDF'1 as

oo 1
ot At

Note that BDF1 is also called backward Euler. While it is approximated
via BDF2 as

(¢" —¢" ). (2.36)

8¢ 1 n n—1 n—2
9 = 9L (3™ — 4" + 9" 7). (2.37)

In (2.36) and (2.37), ¢ can be replaced by fw vdV; to approximate
the time derivative term in (2.34b). Also, it can be replaced by u, to
approximate v, in (2.25).

The nonlinear discretized momentum equation can be solved with
the pressure-correction algorithms such as SIMPLE, PISO or their vari-
ants. The PIMPLE algorithm [72] as a variant of PISO is the default
choice in this work.

2.2.4 Turbulence Modeling

Flow turbulence is a complex phenomenon and still a challenging topic
in CFD. According to the Boussinesq assumption, it can be modeled
by additional viscous stresses in the momentum equation, i.e. v is re-
placed by vg + v in (2.21), where vg is the turbulence viscosity. vg can
be calculated with methods of reynolds-averaged Navier-Stokes (RANS)
or methods of large-eddy simulation (LES). Different methods of turbu-
lence modeling are reviewed in e.g. [107], [123] and [138]. As a method
of RANS, the k-w-SST [94] is chosen as the default turbulence model
in this work which can give satisfactory results in both the near-wall
region and the fully turbulent region.
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2.3 Fluid-Structure Interaction

The numerical model of an FSI problem is established by coupling the
fluid and the structure at their interface. The coupling conditions and
the solution schemes are presented in this section.

2.3.1 Coupling Conditions

The kinematic and the dynamic coupling conditions on the wet surface
denoted by I' are respectively defined as

ur = ug on I, (2.38a)
Pf = Ps on I, (238b)

where u; and ug are the displacements from the fluid and the struc-
ture respectively, pr and ps the tractions from them respectively. The
kinematic condition in (2.38a) describes that the fluid and the struc-
ture domains deform consistently at the wet surface without overlaps
or gaps. It can be alternatively expressed with velocity which is equiv-
alent. The dynamic condition in (2.38b) specifies the load balance at
the interface. One important remark is that I' corresponds to the initial
configuration. Therefore, the traction in the fluid domain should be
transformed to the initial configuration if necessary before applying the
dynamic coupling condition.

The coupling conditions are applied to the individual domains as
boundary conditions. But it should be noted that, only one of the two
conditions in (2.38) is allowed on a boundary, since Dirichlet boundaries
and Neumann boundaries cannot overlap. This results in a Dirichlet-
Neumann partitioning. The structure domain usually becomes the Neu-
mann partition, i.e. it takes ps as the Neumann boundary condition
(see (2.7b)) and ug as the unknown to be solved; the fluid domain be-
comes the Dirichlet partition, i.e. it takes ug as the Dirichlet boundary
condition not only for the mesh motion solver in (2.28) but also for
the momentum equation in (2.29), and ps becomes the unknown to be
solved.

Mapping between non-matching grids

Due to separate discretizations, the grids at the wet surface from the
fluid and the structure are generally non-matching. Therefore, a map-
ping technique is required to apply the coupling conditions on the non-
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matching grids. Mapping is one main topic of this thesis, which will be
presented in detail in Chapter 4 and 5.

2.3.2 Coupling Algorithms

The FSI problem can be solved either with the monolithic strategy or
the partitioned strategy. With the monolithic strategy, the global Ja-
cobian matrix is usually derived so that the two partitions are solved
simultaneously or in a block-sequential way by Newton-Raphson itera-
tions [48, 125, 115]. Since the Jacobian matrices are not always easy to
derive, the monolithic strategy is often applied to specific FSI problems
e.g. the piston problem in 1D [17, 96, 130] and arterial simulations in
1D/2D [63, 68]. With the partitioned strategy, the two partitions are
solved separately, i.e. they advance separately in time. As a result, the
fluid and the structure partitions can be simply expressed as black box
solvers whose inputs and outputs are the interface variables as

f=F(s), (2.39a)
s = S5(f). (2.39Db)

In the equation, F' represents the fluid solver that takes the motion
of the wet surface s (displacements or velocities) as input and outputs
the load f (nodal forces or tractions), while S represents the structure
solver that takes f as input and outputs s. Note that when the output
from one solver is assigned to the other solver as input, mapping is
needed. Compared with the monolithic strategy, the advantage of the
partitioned strategy is that existing fluid and structure codes can be
reused.

A solution scheme of (2.39) is called a coupling algorithm here. There
are different ways to categorize coupling algorithms:

e According to whether the Jacobian matrices are used, they can be
categorized into fixed point iteration and Newton-Raphson itera-
tion.

e According to whether the solvers are run sequentially or in par-
allel, they can be categorized into block Gauss-Seidel and block
Jacobi.

e According to the number of iterations, they can be categorized
into loose coupling and iterative coupling.

The details are given below.
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2. FLUID-STRUCTURE INTERACTION AND CO-SIMULATION

Fixed point iteration vs. Newton-Raphson iteration

A fixed point iteration can be formulated either with one of s and f or
both. For example, a fixed point iteration can be formulated as

s=SoF(s). (2.40)

The equation means that the fluid partition advances in time first with
given s, then the structure partition advances in time using the output
from the fluid partition f. The output s is fed back in an iterative way.
The residual vector of one iteration is defined as

r=So0F(s)—s. (2.41)

When ||r|| is below a given tolerance ¢, the fixed point iteration is con-
verged and all the variables at the current time step are solved. The
fixed point iteration can also be defined with f, but the one in (2.40)
is used more often in practice, since an FSI simulation usually starts
with initial displacements equal to zero. This is also regarded as a block
Gauss-Seidel process, since the two solvers run in sequence.

Another fixed point iteration can be formulated with both s and f
as

f=F(s), (2.42a)
s = S(f). (2.42b)

The equations look the same as the definition of the black boxes in
(2.39), but they are interpreted here in a way that the outputs of the
solvers are fed back into them iteratively. In this case the residual
vectors can be defined as

ri =f — F(s), (2.43a)
rs =s — S(f). (2.43b)

When ||r¢]| and ||rs|| are below given tolerances er and e, the fixed point
iteration is converged and all the variables at the current time step
are solved. This is also regarded as a block Jacobi process, since both
solvers run in parallel. Compared with the block Gauss-Seidel method,
one solver does not use the new output from the other immediately.
Although the solvers can run in parallel, but this method is still slower
if the computation time for the structure partition is much smaller than
that for the fluid partition, which is a more usual case in FSI.
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2.3. Fluid-Structure Interaction

The Newton-Raphson iteration converges normally faster than the
fixed point iteration since the Jacobian matrices are used. There are
also a block Gauss-Seidel way and a block Jocobi way to formulate
the Newton-Raphson iteration. The block Gauss-Seidel way uses the
definition of residual in (2.41), and the corresponding Jacobian matrix
can be derived as

dr dSoF(s) dS dF
Jy=—=—7-——"2>-1I=——-1, 2.44
ds ds df ds ( )

so the Newton-Raphson equation can be written as
J,As = —r. (2.45)

The block Jacobi way uses the residuals defined in (2.43), and the
corresponding global Jacobian matrix can be derived as

orp  Or dF
Jrf,f Jrf‘s _ 37ff aisf _ I —ds (2 46)
Je. o Jr.. % % _% I | .
s, i 2

so the Newton-Raphson equation in this case can be written as

Jrf,f Jrf)s Af B —rf
[Jrs,f J] (As =\ ) (2.47)

Note that if setting ry = 0 in the above equation, the block Jacobi
method becomes the block Gauss-Seidel method.

Equations above are very similar to the equations resulting from the
monolithic strategy. However, these equations are expressed with the in-
terface variables but the equations from the monolithic strategy contain
also the variables inside the fluid and the structural domains. It can be
seen that the Jacobian matrices d E and 43 Gf are the key of building the
Newton-Raphson equations. However, they are usually not available so
they have to be approximated with certain algorithms, e.g. the inter-
face block quasi-Newton method [133], interface quasi-Newton methods
[35, 34], vector extrapolation [84] and interface Newton-Krylov/GMRES
methods [97, 116, 92, 80]. With these algorithms, the solvers are still
regarded as black boxes, and the Jacobian matrices are approximated
based on the results from several runs.

Block Gauss-Seidel vs. block Jacobi

Regardless of fixed point iteration or Newton-Raphson iteration, the
black box solvers run iteratively, and a general work flow of block Gauss-
Seidel fashioned coupling algorithms can be extracted which is presented
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2. FLUID-STRUCTURE INTERACTION AND CO-SIMULATION

in Algorithm 1. Analogously, a general work flow of block Jacobi fash-
ioned coupling algorithms is also extracted which is presented in Algo-
rithm 2. In these algorithms, n denotes the current time step and m the
current iteration, and the inputs have additional hats in the notations
such as § and f.

Algorithm 1 General work flow of a block Gauss-Seidel coupling algo-
rithm

1: for n =1 to nepq do
m=1
Compute initial guess ™8
while |"r"|| > ¢ do
TTLI.n — msn _ 7n§n
Compute ™*18§" based on { *r", 2r™, ... , ™r" } and { !s",
2gn ..., ms" } (relaxation, Newton-Raphson, etc.)
9: m=m+1
10: end while
11: end for

" (extrapolation)

Algorithm 2 General work flow of a block Jacobi coupling algorithm

1: for n =1 to nenq do

2 m=1

3 Compute initial guess ™§" and ™f" (extrapolation)

4 while ||'rZ|| > €5 or ||"r}|| > € do

5: /ITLfTL — F(ﬂ’lén)

6 mgn — S(mfn)

7 mréz — mgn _ mgn

9: Compute ™1™ and ™" based on { 'r7, 2r?, ... mr? 1,
{tsm, 2™ o, ms™ b { el Arp, rf}and{lf"Qf" ,
mfn g (relaxahon7 Newton-Raphson, etc.)

10: m=m+1

11: end while

12: end for
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Loose coupling vs. iterative coupling

The coupling algorithms can be further categorized into two types:

e loose/staggered/explicit coupling which means that only one iter-
ation is performed for each time step (the while loops in Algorithm
1 or 2 are executed only once);

e iterative/implicit coupling which means that iterations are per-
formed until convergence.

Loose coupling algorithms suffer from instability problems [110, 17,
109, 54, 77] since the interface residual is not converged. To improve the
stability, an initial guess at the beginning of each time step is computed
by extrapolating from the data of previous time steps, as shown at line
3 of Algorithm 1 and 2. This procedure is termed as extrapolation or
prediction in literature. Examples of prediction can be found in the
improved serial staggered algorithm with a leap-frog type procedure
[41, 109], or in the generalized serial staggered algorithm [43] where
velocity and acceleration of the wet surface are used. These algorithms
are found to be more stable from practical aeroelastic tests than those
without prediction. Obviously, a closer initial guess results in a smaller
interface residual and hence bigger stability. A simple but effective
linear extrapolation is used in this work as (time step length is assumed
constant):

Ign — g9gn =1 g2, (2.48)

Iterative coupling algorithms can also use extrapolation to improve
the initial guess. Moreover, relaxation or Newton-Raphson can be used
during the iterative process to reduce the number of iterations, as shown
at line 8 in Algorithm 1 and at line 9 in Algorithm 2. Examples of ef-
fective iterative coupling algorithms in literature include Aitken relax-
ation [71, 99], vector extrapolation, interface Newton-Krylov methods
and interface quasi-Newton methods. Comparison of these algorithms
with benchmark examples can be found in [99, 35, 55, 36], where the
results show that the Aitken relaxation is competitive with the others in
many cases. Due to its simplicity of implementation and efficiency, the
Aitken relaxation is chosen as the default iterative coupling algorithm
in this work. It is implemented in a block Gauss-Seidel fashion, and
computes the new input ™+18™ with a relaxation factor ™w as

Mg = (1 - "w) ™S+ Mw™s = ™8 + "wr, (2.49)
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2. FLUID-STRUCTURE INTERACTION AND CO-SIMULATION

where the superscript n is dropped for simplicity in notation. When
m = 1, a user defined initial relaxation factor 'w is used; otherwise, the
relaxation factor is calculated dynamically as

m—er(mr _ m—lr)

(mr _ mflr)T(mr _ mflr) :

m,w —_ _m-—1

(2.50)

If the relaxation factor is fixed instead of computed dynamically, it is
called constant relazation.

2.4 General Co-Simulation

FSI is a typical multiphysics problem containing two coupled physical
domains. This work also interests in structure- or fluid-related multi-
physics problems with more than two physical domains. Two examples
are given first.

For aero-elasticity analysis of wind turbines, usually the rotational
velocity is fixed in FSI simulations e.g. in [62, 69]. As shown in [136]
and [120], wind turbines with dynamical rotational velocity can be sim-
ulated through co-simulation with an additional generator solver. The
framework of the three solvers coupled co-simulation is shown in Fig.
2.1. The fluid solver f = F(s) takes the displacements of the blade
surfaces s as input, and outputs the wind load on the blades f. The
structure solver s = S(f, g) takes f and the resistance torque g due to
power generation as input, and outputs s. The generator model extracts
the rotational velocity out of s to compute g. Note that g is a scalar
computed from an ordinary differential equation. The coupled problem
can be solved in a general way by nested loops, i.e. two partitions are
coupled together as a combined partition which is converged in an inner
loop, and the combined partition is coupled to the remaining partition
in an outer loop. For example, the structure and the generator solvers
can be coupled in the inner loop while the structure and the fluid are
coupled in the outer loop. However, this problem has its specialty that
the fluid partition and the generator unit are independent, so it is de-
fined as a bi-coupled problem in [128]. The best solution of a bi-coupled
problem is to group the independent partitions together, then the need
of an inner loop is removed due to the independence. Note that in both
cases there is an outermost time step loop.

Another example is the optimization of a fluid-structure interacted
problem. Besides a fluid and a structure solver, the co-simulation con-
tains an optimizer where the optimization algorithm is implemented,
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s
Fluid Structure
f=F(s) f | s=S(f.9)
A
g S
Generator
g=G(s)

Figure 2.1: Co-simulation of a wind turbine with dynamic velocity.
Three solvers are coupled in the co-simulation including a fluid, a struc-
ture and a generator solver.

as shown in Fig. 2.2. A constraint optimization problem is considered
here, which can be formulated as min p = P(q), with equality con-
straints P.(q) = 0 and inequality constraints P;(q) < 0 [102]. Here,
p = P(q) represents the fluid-structure coupled system, where q de-
notes the vector of design variables and p the scalar of objective, which
can be computed out of the fluid or structure fields. The optimizer
outputs q to the fluid or the structure solver or both, and takes p and
the gradient Vp as inputs. The gradient helps to decide the direction
of optimal searching, and can be approximated with finite difference
approach or be computed through sensitivity analysis [49, 66, 37]. The
problem is solved in nested loops where the optimization iteration is the
outermost loop.

In [47], structure related mulitiphysics problems appearing in prac-
tice are reviewed, including

e fluid-structure-interaction,

e thermal-structure-interaction,

e control-structure-interaction,

e control-fluid-structure-interaction,

e fluid-structure-combustion-thermal-interaction,

e fluid-structure-optimization.
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| s |
| Fluid Structure |
| f=F(s) f s=5(f) |
| -
| :
: p=P(q) |
q P, P
Optimizer
min p=P{q)
P.(q)=0
Pilq)<0

Figure 2.2: Co-simulation of fluid-structure-optimization. Three solvers
are coupled in the co-simulation including a fluid solver, a structure
solver and an optimizer.

FSI simulations where structures are modeled as rigid bodies (multi-
body systems) can be found in e.g. [103].

Partitioned analysis of a general multiphysics problem is summarized

as follows:
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e A coupled problem is governed by the equations of the individual

physical domains and the coupling conditions between them.

e Each partition can be rewritten by a black-box solver with inputs

and outputs, which are the variables appearing in the coupling
conditions. In this way, the global system is reformulated by the
black-box solvers and the communications (equations) between
inputs and outputs.

e A global solution scheme specifies in which sequence the solvers

and the communications are performed. The fixed point iteration
in FSI is one example. If there are more than two solvers, the prob-
lem can be solved in nested loops. An alternative is to use the in-
terface Jacobian-based co-simulation algorithm (IJCSA) proposed
in [120]. This algorithm requires Jacobian matrices regarding the
interface variables form the individual domains to formulate the
global Newton-Raphson equation, but the Jacobian matrices are
not always available from black box solvers. No matter which al-
gorithm is used, more physical domains result in lower efficiency.
Therefore, possibilities of simplification should be considered as



2.5. Summary

much as possible, such as elimination of unimportant partitions
or coupling conditions, using loose coupling or even one-way com-
munication to replace iterative coupling.

2.5 Summary

This chapter aims at presenting the theoretical background of the co-
simulation software environment developed in this work. The content
is summarized below.

The governing equations of structure and fluid are derived as well
as the boundary and initial conditions. Methods of space and time
discretizaton are also presented so that the numerical models of both
problems are established.

Regarding FSI, the coupling conditions between the fluid and the
structure domains are defined at the interface. The governing equa-
tions of the individual domains together with the coupling conditions
constitute the mathematical description of FSI. Due to separate dis-
cretizations, a mapping technique is required for applying the coupling
conditions. The partitioned strategy enables to solve the coupled equa-
tions in a co-simulation where each partition becomes a black box solver.
Different coupling algorithms for solving the coupled problem are re-
viewed which can be categorized in different ways: fixed point iteration
or Newton-Raphson iteration; block Gauss-Seidel or block Jacobi; loose
coupling or iterative coupling. Beside mapping and coupled equations
solving, extrapolation (prediction) is also an important technique which
helps to stabilize co-simulations.

A general co-simulation can also contain more than two partitions.
Similar to partitioned FSI, each partition is rewritten into a black box
solver with inputs and outputs, and the coupling conditions specify
the relations between the inputs and outputs. More-partitions coupled
problems can be either solved as nested two-partitions coupled problems
or by the IJCSA which requires Jacobian matrices. But with more
solvers and more coupling conditions, the solution process will become
more lengthy. To reduce the complexity and improve the efficiency,
it is suggested to remove unimportant partitions or connections, and
use loose coupling or even one-way communication to replace iterative
coupling.
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Chapter 3

Co-Simulation Environment

EMPIRE

Some commercial software codes are able to solve multiphysics problems
within a single program, since they usually own the source codes of
solving the individual physical domains. But this work aims at solving
multiphysics problems in a co-simulation, where different simulation
programs run in parallel with individually stored data and the programs
exchange data in the runtime. This is a typical parallel process of
multiple program multiple data (MPMD).

There exist several software projects that provide a co-simulation
environment for partitioned FSI analysis, including commercial codes
such as MPCCI [76] and in-house research codes such as COMA [55, 56]
and preCICE [57, 58]. An overview and comparison of the existing works
is given in [57]. From these projects the following trends can be found:

e The message passing interface (MPI) is favored for data commu-
nication across programs due to its high-speed communication im-
plemented by hardware and high-level interface functions.

e The generality is more and more considered in the software devel-
opment, i.e. an environment is more compatible to new algorithms
and new solvers. Besides, the same co-simulation environment can
be used in general coupled problems with two partitions instead
of only in FSI.

e There are mainly two ideas for software interfacing, which are
called the library and the framework approaches in [57]. With
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the library approach, a software library of coupling functionali-
ties with application program interface (API) is provided. The
developer of a solver needs to write an adapter by inserting func-
tions of the API at certain places in the old code to participate
in a co-simulation. With the framework approach, an interface is
defined which is to be implemented by the developer of a solver.
And the adapter is already written and provided which calls only
the interface functions. The benefit of this approach is that the
synchronization among programs can be guaranteed. One exam-
ple of the framework approach is the functional mock-up interface
(FMI) [52], which is implemented by several commercial codes so
that they can be easily adapted for different uses. Shortly spo-
ken, one approach provides an interface of the coupling software
and the other approach provides the interface of the software be-
ing coupled. But the two approaches can be used in combination
since they are independent.

o Client-server model is widely used, where the solvers are the clients
and a new coupling supervisor is the server. The coupling func-
tionalities including mapping, extrapolation, coupled equations
solving are implemented in the server, which is an additional pro-
gram that runs in parallel with the clients. The clients cannot
communicate directly with each other but only via the server.
An alternative is the peer to peer (P2P) model, where the solvers
directly communicate. And the coupling functionalities are imple-
mented in a library which is integrated into the individual solvers
instead of in an additional server program. This model is more
efficient in the sense that the communication via the server is
avoided.

Although some of the works in literature provide big generality for co-
simulation with two solvers, they have not considered the case with
more than two solvers or they can only work for customized cases with
fixed numbers of solvers and fixed scenarios of co-simulation.

In this work, a co-simulation environment EMPIRE (Enhanced Mul-
tiPhysics Interface Research Engine) is developed to solve general mul-
tiphysics problems. This chapter starts with the requirements of EM-
PIRE, which are followed by the design concepts and the implementa-
tion. The configuration of co-simulations and the run-time behavior are
presented at the end.
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3.1 Requirements

In software engineering, requirements elicitation is the first step in the
development circle which defines the purpose of the software [22]. Im-
portant requirements of EMPIRE are listed below:

1. Flexibility: it should be flexible to allow a general co-simulation
scenario, i.e. the number of solvers to be coupled and the sequence
of communications among them are flexible. This serves as the
main novelty of the new co-simulation environment.

2. Usability: it should provide necessary coupling functionalities in-
cluding mapping, extrapolation and coupled equations solving (cou-
pling algorithms); besides, the effort of adapting a solver code in
order to participate in a co-simulation should be small.

3. Extendability: it should be extendable for new functionalities.

3.2 Design Concepts

The design concepts that solve the requirements are presented here.

3.2.1 Client-Server Model

The client-server model is chosen which allows an arbitrary number of
clients, as shown in Fig. 3.1. The clients are the solvers of individual
partitions and the server is an additional coupling program released by
EMPIRE with the name Emperor. As mentioned at the beginning of
this chapter, the clients communicate with each other indirectly through
the server. As a result, one solver can be replaced by an alternative that
solves the same physical problem without affecting the others. The
client-sever model is chosen instead of the P2P model, because the cou-
pling functionalities are “naturally” centralized into the server code. In
case of P2P model, these functionalities must be distributed among the
clients, and it is not obvious that which functionalities belong to which
clients. What’s more, high-speed hardware communication on modern
computers makes the time spent on communication negligible, which
also facilitates the client-server model.

The library approach is used, i.e. a library EMPIRE_API is provided
to the clients. The interface of the library defines the types of data to
be communicated and provides the functions of communicating (sending
or receiving) these data. The predefined data types include mesh, field
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and signal. Field is the type of data defined on a mesh and signal
represents a number or an array of numbers. A solver needs to be
adapted by inserting the API functions at certain places e.g. receiving
data before solving the domain and sending data after that. An adapter
needs to be compiled with the library EMPIRE_API. The library is
internally written in C++ but offers an interface (header file) in C,
so that solvers written in languages compatible with C, e.g. C, C++,
Fortran, Python, Java, MATLAB and so on can be compiled with it.
The framework approach is not applied, since it is impossible to define
all possible behaviors of different solvers in different co-simulations by
interface functions. However, if the type of a co-simulation is fixed,
the framework approach can be used in combination with the library
approach. But this work does not go further in this direction.

The server-client model is realized via MPI-2.2, where functions of
the connection between different programs and functions of communi-
cation on raw data types such as int and double are provided.

Co-simulation environment EMPIRE
o T
4‘ - dZI
Program 1 2 Y Program 3
z T
z--j =
L L
- —
Emperor L
= \ z
< <,
Program 2 ¥ & Program n
T T
= =
L |11}

Figure 3.1: Co-simulation within EMPIRE.

3.2.2 Flexible Co-Simulation Scenario

The scenario of a co-simulation can contain all activities in the process
of solving the coupled problem. However, the concept Co-simulation
scenario defined here concentrates on the communication process. An
artificial coupling scenario is given as an example in Fig. 3.3, where
all connections (communications) between the server and the clients
are defined both statically and dynamically. The index of a connection
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indicates its order in a sequence of connections. Note that connections
la and 1b actually belong to the same connection, where the data flow
from Program 1 to Program 2 through Emperor. The same applies
to connections 2a and 2b. The statical diagram specifies the sender
and receiver of each connection, and the dynamical diagram specifies
the order of communications. With both diagrams, the co-simulation
scenario is clearly defined.
Two questions need to be considered:

e How to model a flexible co-simulation scenario?

e How to synchronize the server and the clients in a flexible co-
simulation scenario?

From the example in Fig. 3.3 it can be seen that a co-simulation sce-
nario can be modeled by loops and sequences of connections. Example
of loops can be time step loop, iterative coupling loop and optimization
loop. Inside a loop, there can be a sequence of communications or even
inner loops. One example of sequence of connections is the displacement
and the force exchanges during an FSI co-simulation.

Given a defined co-simulation scenario, the order of communication
calls in all programs can be derived. Fig. 3.4 shows the communication
calls in the individual clients corresponding to the example in Fig. 3.3.
It can be seen that the sending and receiving must be synchronized as
well as the exiting-loop actions. The runtime behavior of the server
could be automatically configured according to the co-simulation sce-
nario. However, the runtime behavior of the clients cannot be controlled
since they are written by other persons, so the synchronization among
the server and the clients cannot be guaranteed automatically. To help
avoid non-synchronization mistakes, pseudo codes are provided to the
persons writing the clients. The pseudo codes can be automatically gen-
erated according to a given co-simulation scenario. They are just the
text representation of what is shown in Fig. 3.4, which contain only
communication calls.

The flexibility in defining co-simulation scenarios also enables a free
choice between the block Gauss-Seidel process and the block Jacobi
process, as shown in Fig. 3.2, where the index of a connection locates
above the arrow and the notation of the communicated data locates
below it. The indexes still indicate the orders of the connections that
are executed in a sequence. Note that although connection 1 is called
before connection 2 in Fig. 3.2b, the two solvers can be regarded as
running in parallel since the connections take very little time.
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Figure 3.2: Set up connections in block Gauss-Seidel and block Jacobi
processes for FSI.
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Figure 3.3: An artificial co-simulation scenario where all connections
are defined both statically and dynamically.(a) Statical diagram. (b)
Dynamical diagram.
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3. Co-SIMULATION ENVIRONMENT EMPIRE

3.2.3 Flexible Data Operation

The data structure of a connection in Emperor allows multiple inputs
and multiple outputs to provide biggest flexibility. Besides, data oper-
ations inside a connection are modeled as filters, which can also have
multiple inputs and outputs, as shown in Fig. 3.5. Examples of filter
include the mapping operation and some arithmetic operations such as
addition of two fields.

inputs outputs
——>—>{ filter 1 [ 2] filter 3 L—I—:—»
—>

Figure 3.5: A connection with multiple inputs and multiple outputs and
arbitrary filters.

o

3.3 Implementation

The software EMPIRE has two parts of codes namely the server Em-
peror and the library EMPIRE_API. The latter is straightforward to
implement and is much smaller than the server code, so the implemen-
tation of it is omitted here. All the coupling functionalities are imple-
mented in Emperor in the way of object oriented programming. The
design of the classes in Emperor is presented here with class diagrams in
order to offer a general picture of the whole program. The class names
are written in the serif font.

3.3.1 Data Storage

The interface data of all clients are also stored in Emperor. There
exist three types of data including mesh, field and signal. They are
implemented by the classes AbstractMesh, DataField and Signal respec-
tively. The sub-classes FEMesh and IGAMesh are derived from Ab-
stractMesh, which implement the finite element mesh and the isoge-
ometric mesh [70, 10] respectively. These data types correspond to
those in EMPIRE_API because data are communicated between Em-
peror and EMPIRE_API. Objects of DataField are contained in objects
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of AbstractMesh, since fields are defined on meshes. Interface data of
each client are stored in a container which is represented by the class
ClientCode. Communication functions are called within ClientCode to
communicate with external clients. The class diagram of these classes
is shown in Fig. 3.6.

Signal

ClientCode f—

%
%

AbstractMesh k>——*| DataField

T
| |

FEMesh IGAMesh

Figure 3.6: Data storage in Emperor (UML Class diagram).

3.3.2 Co-Simulation Scenario

The sequences and loops during coupling are implemented by the class
AbstractCouplinglogic. It is written following the composite pattern i.e.
an object of AbstractCouplinglogic can contain a list of objects of the
same type, as shown in Fig. 3.7. When one object of AbstractCou-
plinglLogic is executed, the sub-objects that it contains are executed in
sequence iteratively.

The sub-classes of AbstractCouplinglogic are listed below:

e Connection. It is the basic unit of coupling which does not contain
any sub-objects of AbstractCouplinglogic to execute. It imple-
ments a communication/connection which can have multiple in-
puts and outputs, as shown in Fig. 3.5. An input defines that the
data flow from a client to the server, and an output defines that
the data flow from the server to a client. Between receiving inputs
and sending outputs, a sequence of data operations implemented
by the class AbstractFilter can be performed.

e lterativeCouplinglLoop. It implements the iterative coupling for
solving coupled equations. Take iteratively coupling for FSI as
an example, two objects of Connection which are communications
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of displacements and forces can be added to an object of Iter-
ativeCouplingLoop. The connections are executed iteratively un-
til convergence. Class AbstractCouplingAlgorithm implements the
coupling algorithms used in iterative coupling, e.g. Aitken relax-
ation. The residual is implemented by the class Residual. When
the L2 norm of the residual is below a user defined limit, the server
will inform the clients to exit the loop. AbstractCouplingAlgorithm
needs Residual because most coupling algorithms use residuals to
update the values for the next iteration.

e TimeSteplLoop. It implements the time step loop. Unlike lterative-
CouplingLoop, the number of iterations to be performed is fixed by
the number of time steps. Transient FSI solved by iterative cou-
pling can be modeled by an object of TimeStepLoop wrapping an
object of IterativeCouplingLoop. The class AbstractExtrapolator im-
plements extrapolation algorithms and is called by TimeStepLoop.

e OptimizationLoop. It implements the loop of an optimization pro-
cess. An object of ClientCode which is the optimizer will notify
the server whether the optimal is found or not. Then this will be
further broadcast from the server to the other clients.

e CouplinglogicSequence. The number of iterations is set to one.
One instance of this class will be initialized by default in each
co-simulation, which is called coSimulation. It is the root where
all objects of AbstractCouplinglLogic are added in a recursive way.
In the runtime, the server executes coSimulation to start a co-
simulation.

3.3.3 Coupling Functionalities

The basic coupling functionalities implemented in Emperor are map-
ping, extrapolation, coupled equation solving (coupling algorithms).
Besides, the code provides an interface for data operations through the
filter concept so that new operations can be easily added.

Mapping

The base class of mapping is AbstractMapper, which requires two ob-
jects of AbstractMesh to initialize the mapping operator. During map-
ping, it operates on objects of DataField which are defined in the ob-
jects of AbstractMesh, so that one field is computed according to the
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DataField or Abstract- DataField or
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Figure 3.7: UML Class diagram of AbstractCouplinglLogic.

other. The mapping algorithms are implemented in the derived classes
of AbstractMapper, as shown in Fig. 3.8. The classes are listed in the
following:

e NearestNeighborMapper. The nearest neighbor interpolation is im-
plemented. It has low accuracy since the data on a point is directly
assigned from that on its nearest neighbor. But it is the default
choice for the case of matching interface grids.

NearestElementMapper. The nearest element interpolation is im-
plemented where the data is computed through projection on the
nearest element and interpolation within it. It is more accurate
and usually used in a consistent way.

BarycentriclnterpolationMapper. The barycentric interpolation is
implemented which is very similar to the nearest element interpo-
lation. The nearest element is replaced by the triangle constructed
by the nearest three nodes.
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e MortarMapper. The standard and the dual mortar algorithms are
implemented in this class which are usually used in a conservative
way.

e CurveSurfaceMapper. The linearized and co-rotating algorithms
for mapping with structural beam elements are implemented. The
details are presented in Chapter 5.

e IGAMortarMapper. The algorithm for mapping between an isoge-
ometrical structural surface mesh and a FEM fluid surface mesh
is implemented. The development and implementation of the al-
gorithm is not done by the author, but it is the work of [3]. The
algorithm is applied in the optimization example in Chapter 6.

DataField |« --p  DataField
¥ $ e <L
Mesh Mesh
1A mesh A lA mesh B
' Abstract-.
Mapper
NearestNeigh- NearestElem- Barycentricinter-
borMapper entMapper polationMapper
IGAMortar- CurveSurface-
MortarMapper Mapper Mapper
Figure 3.8: UML class diagram of AbstractMapper.
Extrapolation

The base class of extrapolation is AbstractExtrapolator.
class of it is LinearExtrapolator which implements the linear extrapola-
tion. But new extrapolation algorithms can be easily added by extend-

ing AbstractExtrapolator.

38

One derived



3.3. Implementation

AbstractEx-
trapolator

f

LinearExtra-
polator

Figure 3.9: UML class diagram of AbstractExtrapolator.

Coupling algorithms

The base class of coupling algorithms for solving coupled equations is
AbstractCouplingAlgorithm. The derived classes ConstantRelaxation and
Aitken implement the constant and Aitken relaxation algorithms respec-
tively. Other derived classes including GMRES which implements the
Newton-Krylov algorithm and IJCSA which implements the IJCSA al-
gorithm are not part of this work. New coupling algorithms can be
easily added by extending AbstractCouplingAlgorithm.

-l %
AbstraCtC.OUp k>"] Residual
lingAlgorithm

.

Aitken

Constant-
Relaxation

Figure 3.10: UML class diagram of AbstractCouplingAlgorithm.

Filters

The base class of filters is AbstractFilter. One derived class is Map-
pingFilter, which calls an object of AbstractMapper to perform mapping
during a connection. Filters doing arithmetic operations or realizing
other purposes are skipped. New filters can be easily added by extend-
ing AbstractFilter.
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Datafield or finputs 1] Abstract- %, outputs]DataField or
signal * Filter * | signal
MappingFilter Abstract-

Mapper

Figure 3.11: UML class diagram of AbstractFilter.

3.4 Configuration and Runtime Behavior

The server is configured by an XML input file, which defines the in-
stances of the classes introduced in 3.3. In the input file, an instance of
a class is denoted by the class name with the first letter of lowercase,
e.g. an instance of ClientCode is a clientCode. Moreover, the word “ab-
stract” is removed from the name of an instance of a base class. Such
an instance has an attribute type which specifies the actual type. For
example, an instance of AbstractMapper is a mapper, and its attribute
type can be assigned as MortarMapper. The input file has six important
blocks that are listed below:

1. Definition of clientCodes. An arbitrary number of clientCodes is
allowed. Each clientCode can contain multiple meshes and signals
and each mesh can contain multiple dataFields. In the runtime, the
server waits until all clients defined in the input file are connected;
each client sends meshes (if defined) to the sever; and the sever
allocates memory for the meshes, dataFields and signals. Since the
interface data are defined here, the remaining blocks in the input
file will refer to these data.

2. Definition of mappers. Each mapper refers to two meshes defined
previously to initialize the mapping operators.

3. Definition of couplingAlgorithms. In each couplingAlgorithm, resid-
uals are defined.

4. Definition of extrapolators.

5. Definition of connections. Inputs and outputs and a list of filters
that will be executed in sequence are defined in each connection.
If necessary, a mappingFilter can be defined which calls a mapper
defined previously.
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6. Definition of couplinglLogics. As mentioned before, the instance
coSimulation exists in each input file by default. It is the root
couplingLogic under which all sub-couplingLogics are defined re-
cursively.

During the runtime, the server and the clients cooperate in the fol-
lowing sequence:

1. The server opens a port and the clients are connected to the server
through it.

2. The server initializes clientCodes and receives meshes from the
clients if defined. Then the storage of all interface data is allocated
in the server.

3. The server initializes mappers, couplingAlgorithms, extrapolators,
connections and couplinglLogics.

4. The server executes the instance coSimulation then the co-simulation
is started. The server runs through the recursively defined cou-
plingLogics, and the clients should send and receive data in syn-
chronization with the server. The co-simulation is finished after
coSimulation is finished.

5. All clients disconnect from the server. All programs are exited.

The co-simulation scenario and the functionalities are completely
defined by the XML input file. And the runtime behavior of the server
is automatically configured. The runtime behavior of the clients should
also follow the defined co-simulation scenario, but this is not assured
automatically. Mistakes can happen in manually written codes and
non-synchronization is caused. As mentioned before, the server is able
to output pseudo codes for the clients as a help to check mistakes in the
communication calls.

3.5 Summary

The co-simulation environment EMPIRE provides a software solution
for general multiphysical co-simulations. During the design and the
implementation three requirements are concerned namely flexibility, us-
ability and extendability.

The ingredients of co-simulation include black box solvers with in-
terface data (inputs and outputs), data exchange and data operations
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during data exchange. Client-server model is applied in EMPIRE. The
clients exchange data with each other through an additional server pro-
gram, which is also in charge of data operations such as mapping, pre-
diction or relaxation. A library named EMPIRE_API is provided to
the clients which defines the types of interface data including mesh,
field and signal. It also provides the send and receive functions of these
data. To participate in a co-simulation, each solver can be adapted eas-
ily by inserting these functions at proper places in the existing control
sequence.

The biggest novelty of EMPIRE is that it allows the user to define
a co-simulation scenario flexibly, which consists of loops and sequences
of connections. Given a defined co-simulation scenario, the runtime be-
havior of the server and the clients regarding communication can be
derived. And in practice, it is used to configure the runtime behavior of
the server program and write pseudo codes for the clients. Flexible data
operations during connections are realized by the filter concept. More-
over, regular coupling functionalities such as mapping, extrapolation
and coupled equations solving are provided.

The current implementation of EMPIRE already supports various
types of co-simulations. Moreover, the concepts and the data structures
allow the software to be extended for future needs, i.e. new classes can
be added to the existing code structure and new functionalities can be
added by extending the abstract classes.
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Chapter 4

Mapping with Surface Meshes

Mapping is needed in general surface coupled multiphysics problems,
but it is discussed here in the context of FSI. As introduced in Chapter
2, a numerical FSI model consists of three main parts namely the fluid
equations, the structure equations and the coupling conditions at the
fluid-structure interface which define the equivalence of the interface
displacement and traction. The fluid and structure meshes at the fluid-
structure interface are usually non-matching due to the need of separate
discretization with resolutions which are adapted to the requirements
of the different physics (see Fig. 4.1). Therefore, a mapping technique
is required to apply the interface boundary conditions between non-
matching interface meshes.

Different widely used mapping algorithms for surface meshes are in-
troduced in [32, 46] which can be differentiated into two main types.
Algorithms of the first kind use interpolation. According to the nature
of interpolation the sum of the coefficients is usually equal to 1, so the
consistency of mapping is guaranteed, i.e., a constant data field can be
exactly recovered. The accuracy of mapping is dependent on the poly-
nomial order and the number of data points used in an interpolation
model. Nearest neighbor interpolation is the simplest example where
only a single neighboring node is used. In barycentric interpolation,
three neighboring nodes are searched to build up a barycentric coordi-
nate system (i.e. a linear triangular element) where the shape functions
are used for interpolation. It is similar to nearest element interpolation
where the nearest element is searched. RBF interpolation [12, 112, 122]
can apply an arbitrary number of neighboring nodes to form a higher
order radial basis function model. Within the second type of map-
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Figure 4.1: Non-matching meshes at the fluid-structure interface in an
FSI simulation of an airfoil. (Only a vertical slice of the fluid mesh is
shown.)

ping algorithms, a weak form of the interface boundary conditions is
constructed and solved. The standard mortar method [15] applies the
Galerkin approach which can minimize the L2 norm of the deviation
between two fields [21]. A dual mortar method is introduced in [139]
which diagonalizes the coefficient matrix (which has the form of a mass
matrix) to reduce the computational cost. The standard and the dual
mortar methods are not only used in contact mechanics [113, 114] but
also in FSI [46, 73, 129, 79].

Consistency is the basic criterion for mapping algorithms which spec-
ifies that a constant field should be mapped exactly. Another criterion
is the conservation of energy which helps to derive a special mapping
operator for traction/force as presented in [42]. In [32], the direct use
of the mapping algorithms is called consistent mapping while using a
mapping operator derived from the energy conservation is called conser-
vative mapping. The consistent mapping is renamed as direct mapping
in our work to avoid ambiguity in the discussion of consistency. The
mortar algorithms are usually used in a conservative way e.g. in [42] for
partitioned FSI and in [46, 129, 79] for monolithic FSI. But the conser-
vative mapping in combination with interpolation based methods can
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result in unphysical traction fields as shown in [32]. In this chapter,
the direct and conservative mapping of nearest element interpolation
and the mortar algorithms are assessed and compared because these
algorithms have similarity in formulation and popularity in practice as
well.

Mortar algorithms are not consistent at curved edges of the wet
surface due to the discrepancy between the integration domains. To
tackle this problem, state of the art works [129, 29, 111] evaluate the
integrations on the common contact area and the latter two papers use
a scaling approach to improve the condition of the resulting matrix.
The scaling approach does not work if a fluid element is totally not
overlapped by structure elements. This can happen in the case of high
mesh density ratios, which is a typical scenario for FSI with highly
turbulent flow simulation on very fine meshes. To solve the problem, a
robust enforcing consistency approach is developed in this work which
embeds inter-/extrapolation into the mortar matrices.

This chapter starts with the interface coupling conditions and the
discretization in Section 4.1. Criteria of consistency and energy conser-
vation are introduced in Section 4.2. Section 4.3 introduces the nearest
element interpolation, the standard and the dual mortar methods com-
paratively with the consideration of consistency and energy conserva-
tion. Moreover, the newly developed enforcing consistency algorithm is
presented. The convergence behavior of different algorithms is tested in
Section 4.4. In Section 4.5, special examples including a wind turbine
blade are tested to demonstrate the inconsistency of the mortar meth-
ods and the oscillating problems happening when using conservative
mapping. Finally, this chapter is concluded in Section 4.6.

4.1 Interface Coupling Conditions and
Discretization

The kinematic and dynamic coupling conditions at the continuous in-
terface I' corresponding to the initial configuration are:

ps(x) =pi(x)  (xeT), (4.1b)
where ug(x) and ug(x) are the displacement fields while p¢(x) and ps(x)

are the traction fields at the wet surface from the fluid and the structure
respectively. The following points have to be clarified:
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e The notations denote scalar fields which represent the z-, y- or
zth component of the corresponding vector fields, respectively.
Since the vector fields are treated componentwise in the same
way in mapping, i.e. the same mapping operator is used for each
component, scalar fields are used in the derivation of mapping
operators instead of vector fields for the purpose of conciseness.

e I' corresponds to the initial configuration. Usually the traction
from the fluid is computed from the Cauchy stress which is defined
on the current configuration, in this case transformation is needed.

The conservation of the interface energy is expressed as

/Fuf(x)pf(x) dF:/uS(x)ps(x) dr. (4.2)

r

The equation is still expressed by the scalar fields and it enforces that
each individual part of the energy computed from a component (z-, y-
or zth) is equal rather than only the sum is equal. The equation is
satisfied obviously if (4.1) is satisfied.

The continuous interface I' is discretized separately into I't from the
fluid side and T’y from the structure side. In the following, I't and Ty
will be called the fluid mesh and the structure mesh respectively. Note
that they are interface meshes used in mapping. The continuous fields
ug(x), pr(x), us(x) and ps(x) are discretized into uf(x), pf(x), ul(x)
and pl(x) as

ug(x) = uf(x) = NF (x)Ug (x €Ty), (4.3a)
pe(x) = pi(x) =Nf (x)Pr  (x €T}), (4.3b)
us(x) ~ ul(x) = NT (x)U, (x eTy), (4.3¢)
px) ~ph(x) = NP, (x€Ty), (43d)

where N¢(x), Uy, P¢ are respectively the shape functions, nodal dis-
placements and nodal tractions of the fluid mesh, while Ng(x), Us, Py
are the same terms of the structure mesh.

The fluid and the structure nodal forces F¢ and Fy are defined by

Fr = [ Ng(x)pf(x)drly, (4.4a)

¢
= X h X . .
FS‘/FSNS( Jpl () T, (4.4b)
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They can be rewritten as
Fr = [ Ni(x)N{ (x)P;dl'y = MgPy, (4.5a)

It
F, = / N, (x)NT(x)P, dl's = M, Py, (4.5b)

Iy

where Mg and Mg are the mass matrices of the fluid and the structure
mesh respectively. Inserting (4.3) into (4.2), the discrete form of the
energy conservation at the interface can be obtained as

U{F; = UIF,. (4.6)

4.2 Direct and Conservative Mapping

A mapping algorithm derives a discrete form of the boundary conditions
in (4.1) which results in a mapping matrix. The direct displacement
mapping matrix Hgs defines the discrete form of (4.1a) as

U; = H,U,. (4.7)

The direct traction mapping matrix Hg defines the discrete form of
(4.1b) analogously as

P, = HyP;. (4.8)

If all row-sums in a mapping matrix are equal to 1, the mapping is
consistent, i.e. a constant field can be mapped exactly.

The conservative traction mapping matrix can be derived from the
interface energy conservation equation and an existing displacement
mapping matrix: given Hyg, it can be derived from (4.6) that

F, = H.F;. (4.9)

It can be rewritten with tractions as
P, = M_'H MgP;. (4.10)
The conservative mapping saves the explicit computation of Hg¢, since

it is constructed by transposing the existing Hg. If Hyg is consistent,
the conservative mapping also leads to the conservation of the resultant
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force, since

Ng ns nf

Y F(@) =) HL(,/)F:())

i=1 =1 j=1
ne Ng ng
=Y Fi(j) Y HL(i.j) =Y Fi(j) (4.11)
7j=1 1=1 Jj=1

where ny and ng are the numbers of the nodes of the fluid and the
structure mesh respectively.

The displacement is usually mapped directly in practice. Regarding
the traction, it must be chosen between the direct mapping in (4.8) and
the conservative mapping in (4.10). They can give different results since
generally Hyr # M_'HIMjg. Both methods have pros and cons. On
the one hand, conservative traction mapping guarantees the conserva-
tion of the resultant force and energy whereas it can lead to inconsistent
traction fields. On the other hand, direct traction mapping is usually
consistent but it results in difference in the resultant force and energy.

4.3 Mapping Algorithms

An interpolation algorithm constructs the mapping matrix by the weights
of interpolation. Mortar algorithms solve the the weak form of (4.1a)
as

/FNt(X)(Uf(X) —ug(x))dI’ = 0, (4.12)

where N;(x) is the vector of test functions. The discretized form is
/ N, (x)N{ (x) dI' Ug = / N;(x)N7T (x)dI' U,. (4.13)
r r

The difference of the mortar algorithms lies in different test functions.
The nearest element interpolation, the standard and the dual mortar
methods are comparatively introduced and discussed in the following.
All algorithms are implemented regarding linear triangular elements
and bilinear quadrilateral elements. Elements of other types can be
converted into the two types before mapping as an approximation.

4.3.1 Nearest Element Interpolation

In the displacement mapping with the nearest element interpolation,
each fluid node x¢; (for i = 1,...,n¢) is projected to its nearest element
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in the structure mesh and the unknown value is assigned as the result of
interpolating the projection point x¢; inside the element (see Fig. 4.2a).
The weights of interpolation are

w = NL(xk), (4.14)

for each node with index [ in the nearest element. w; is assigned to
the Ith column in the ith row of Hg. The row-sum is equal to 1 since
the sum of the weights is 1, so the consistency is assured. One remark
is that the projection lying outside of the nearest element as shown in
Fig. 4.2b usually happens at the curved edges. In this case, the domain
where the shape function is defined is expanded for extrapolation which
results in some negative weights.

The process above can be alternatively formulated by setting the
test functions in (4.13) as Dirac delta functions [46]:

/ A¢(x)NY (x)dI' Uy = / A¢(x)N7 (x)dI' Us. (4.15)
r r
The Dirac delta functions are defined as
%) if x =xg -
Ag; = the=1,... 4.16
fl(x) {0 ifX#Xfi ) w1 7 9 anfv ( )

where x¢; represents the ith fluid node. Since [, Ag(x)N{ (x)dl’ = 1,
there is

H;, = / A¢(x)NT(x)dT. (4.17)
r

To evaluate Hgg, the fluid node x¢; is projected to the structure element
to get the projection x};. Then NI (x},) are put into the ith row of His.
This is exactly the same process as the projection and interpolation
inside the nearest element. The direct traction mapping operator Hgs
can be obtained in an analogous way.

The conservative traction mapping can be derived from (4.10) as

/ N,(x)NT(x)dI'P, = / N, (x)Af (x) dT Fy. (4.18)
r r

The equation can be interpreted in a way that a new weak form of the
traction field is constructed where the structure shape functions become
the test functions and the Dirac delta functions are used as interpolation
functions of the discrete field F¢. The non-continuity of the Dirac delta
functions explains the high oscillations in Py found by [32].
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In Fig. 4.3 the algorithm is tested with an 1D example, where the
data are mapped from the structure to the fluid mesh using direct map-
ping. Both meshes have equidistant nodes and linear shape functions.
The resulting Hy; is

Hfs =

O O O ulrulw
O g gl gl gl O
— g~ © O O

The corresponding conservative mapping matrix is

29 17 1 _1 _1 3
50 25 25 5 25 50

AT |3 2 12 12 2 3
Mss HfsMﬁ' - 25 25 25 5 25 25
3 _1 _1 1 11 29

50 25 5 25 25 50

Conservative mapping of a given constant traction field P = (1,1,1,

1,1,1) results in PT = (%, %, %), which demonstrates the inconsis-

tency of the conservative mapping with nearest element interpolation.

o fluid node o fluid node

M structure node W structure node
oXr;

(a) Inside. (b) Outside.

Figure 4.2: Projection to the nearest element in nearest element inter-
polation.

4.3.2 Standard Mortar Method
Standard mortar method sets Ny(x) = N¢(x) in (4.13) as

/F N;(x)N{ (x) dT' Ug = /F N¢(x)NT (x) dT' U, (4.19)
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— — fluid field

i . - - structure field
PR o fluid node

- ~ B structure node

Figure 4.3: Using nearest element interpolation in an 1D test.

In this work, the integration domains corresponding to I' are chosen as

NGONT (0 Us = [ NeGONI(odlas U, (4.20)
T Tsor

where I's_.¢ is the overlap area between the fluid elements and the pro-
jection of the structure elements. The structure elements are projected
on the fluid elements so that N¢(x)NZ(x) can be evaluated. Rewrite
(4.20) in matrix-vector form:

MgU; = MU, (4.21)

where My is the same mass matrix of the fluid mesh as in (4.5a). With
(4.7) the direct displacement mapping matrix is obtained:

Hy = M ' M. (4.22)
The direct traction mapping matrix can be derived analogously as
Hy = M_'M;. (4.23)

However, the standard mortar algorithm is usually applied in a conser-
vative way.

Inserting (4.22) into (4.10) the conservative traction mapping oper-
ator can be derived:

M, P = MEM;'MgP; = MLPy. (4.24)

Comparing (4.23) and (4.24), the only difference between Mg and M,
lies in the integration domains, which are I't_,s and ['s_¢ respectively.
If Tt = T's (which means the integration domains are the same but not
necessarily the meshes are matching), e.g. both meshes are generated
from the same rectangle, the direct and the conservative traction map-
ping matrices are equal. If I't # I’y which is true for general geometries,
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4. MAPPING WITH SURFACE MESHES

the matrices are not exactly but only approximately equal. The error
comes from the facet error both inside the domain and at curved edges.
The detailed proof of the inconsistency of the standard mortar method
is put in A.1.

The same 1D example is also tested for this algorithm as shown in
Fig. 4.4, where Hy is

219

‘ —-

220 110 220
67 21 1
110 55 110
37 19 _ 7
220 22 220
He=1 "7 1 &7
220 22 220
1 21 67
110 55 110
_ 1 1 219
220 110 220

It is interesting to compare Fig. 4.4 with Fig. 4.3: although the stan-
dard mortar algorithm cannot interpolate the values exactly, it is able
to minimize the deviation between the two dotted curves using the
Galerkin approach. The corresponding conservative mapping matrix
is

29 17 1 13 1 3

50 25 50 50 25 5
—19qT _3 2 27 27 2 _3
Mss Hfstf = 25 25 50 50 25 25
3 1 13 _ 1 17 29

50 25 25 50 25 50

Conservative mapping of a given constant traction field P} = (1,1,1,
1,1,1) results in PT = (1,1,1), so the conservative mapping with the
standard mortar algorithm is consistent for this special test (since the
domain is flat and the boundaries are matching exactly).

— — fluid field
N ---- structure field
ST ® fluid node
P N W structure node

Figure 4.4: Using the standard mortar method for the 1D test.

Enforcing consistency

The integration on the right hand side (RHS) of (4.20) can be computed
by assembling element-wise evaluations. Fig. 4.5 shows one part of
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the global integration domain I's_,f, where the shape functions of a
projected structure element and the shape functions of a fluid element
are evaluated and then multiplied. The details of the clipping process
will be presented in Section 4.3.4.

e fluid node e fluid node
B structure node M structure node
=51
€t
i
6f
P & p;

(a) A fluid and a neighboring struc- (b) Projecting both elements on

ture element. the plane.
_________ P/ L
(c) Clipping to get the overlap (d) Triangulation.
area.

Figure 4.5: Procedure of computing one part of the integration domain
I's_,¢ which is the overlap between a fluid element and a neighboring
structure element (this figure is an adapted presentation of the one in
[114]).

As shown in A.1, the standard mortar method is not exactly consis-
tent since I'y # 'yt due to curved edges of an interface. An example is
given in Fig. 4.6a, where a planar surface with a curved edge is shown.
Since the fluid elements at the curved edge are clipped by the struc-
ture elements, the integral on the area without overlap is equal to 0, so
the displacement field cannot be transferred to the fluid elements com-
pletely. The problem gets more severe when the mesh density ratio is
higher as shown in Fig. 4.6b where some fluid elements are totally out of
contact with the structure mesh. The same phenomenon also happens
on 3D curved surfaces, where fluid elements are not fully overlapped
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by projected structure elements. The best solution is to expand the
shape functions of structure elements beyond its discretized boundary
and compute the mortar integral also outside the discretized boundary.
However, automatically detecting the fluid elements at curved edges
and using a different clipping algorithm for these elements raise big
complexities for implementation. Since the problem happens only to a
small part of the wet surface, it can be solved by directly adjusting the
numbers in the matrices using the consistency constraint. The state of
the art is to scale up the structure shape functions to compensate the
deficit due to the area out of contact [29, 111]. However, the method
cannot handle fluid elements totally out of contact with structure ele-
ments as shown in Fig. 4.6b, because the scaling factor becomes infinity.
These elements can be regarded as out of contact in contact problems,
but they must move together with other fluid elements in FSI problems
so that the wet surface moves as a whole. Moreover, this effect can
naturally arise in FSI, where highly turbulent flows on fine meshes are
coupled to structural discretizations which are typically much coarser.

The idea of scaling is also used in this work as the first step of
enforcing the consistency. The scaling factor can be derived from the
consistency constraint which requires that all row-sums of Mg and Mg
in (4.21) are the same (this condition is obtained by assuming that
constant fields Uy = 1y and Uy = 14 can satisfy (4.21)). The scaling
factor for each row i of My, is defined as

i 2 My _ Jr, Ni(x) dT
SreoMy e Ni(x)dDs”

« for i =1,...,n. (4.25)

And My, is updated as
My =M{ x o', fori=1,..,ngj=1,..,ns. (4.26)

It can be interpreted in a way that the structure shape functions in ith
row are scaled up by o' in (4.20). The consequence is that the structure
displacement field is amplified to compensate the loss of data on the
area out of contact. However, the scaling factor approaches infinity if
related fluid elements are totally out of contact.

The newly developed enforcing consistency approach embeds the
nearest element inter-/extrapolation into the weak form. It is based on
the computed scaling factors. If the scaling factor a® of the k-th fluid
node has o* < C, scaling in (4.26) is used; Otherwise, nearest element
inter-/extrapolation will be activated. The weights w; are computed as
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- - -

- = boundary of interface
o fluid node
W structure node

\ - = boundary of interface
N o fluid node
~ W structure node

(b) High mesh density ratio.

Figure 4.6: Different discretizations of a planar surface with a curved
edge. Only part of the elements are drawn to highlight the contact
relation.

in (4.14) for each node [ in the nearest element. They are then used to
modify Myg: all entries in the k-th row of My, are set to 0 except Mfsl
which is calculated by

M =w, [ NF(x)dIy. (4.27)
Iy

The method is consistent since the row-sums are equal. In (4.27), w,
can be moved into the integration then it takes the place of the struc-
ture shape function, so the embedded approach can be interpreted as
replacing the structure shape function by a constant function with the
value wy.

If C = 1, the scaling is never used. But it is found that the scal-
ing can give acceptable result if the portion in contact is big enough.
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Therefore, it is chosen as C' = 1.1 based on many practical examples.

To compare the performance between scaling and the new algorithm,
a simple example with only one structure and two fluid elements is de-
signed, as shown in Fig. 4.7a. The displacement is set to 0 at the upper
edge and 1 at the lower edge of the structure element. The reference
result in Fig. 4.7b comes from using the nearest element interpolation
which is consistent due to its ability of extrapolation. Different results
of using scaling and the new enforcing consistency algorithm are shown
in Fig. 4.8. It can be seen that the scaling gives almost constant field
on the area out of overlap, while the embedded inter-/extrapolation is
able to represent the gradient but it is overestimated. The overestima-
tion is a result of using constant functions at the places of structure
shape functions in the weak form. The error due to the overestimation
is bounded since the value of the constant function is interpolated from
the structure shape function. Moreover, the embedded method still has
the advantage in handling fully non-overlapped fluid elements in which
case the scaling would fail.

2
17778
1.5556

- 1.3333
11111
0886888

0.666ET
0.44444
nezzezz

0

(a) Test example. (b) Reference result.

Figure 4.7: Simple example with one structure element and two fluid
elements. The structure element has edges of length 1 and the fluid
elements has edges of length 0.5 as shown in (a). The source field and
the reference mapping result are shown together in (b).
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2
17778
I 1.5556
- 1.3333

11111
0.88883

0.666ET
0.44444
nezzezz

0

2

17778
I 1.5556

13333

11111
0.88880

0BBBGET
0.44444
022222

]

(a) Scaling. (b) Embedded inter- and extrapo-
lation.

Figure 4.8: Different results from applying different enforcing consis-
tency algorithms in the standard mortar method.

4.3.3 Dual Mortar Method
The vector of dual shape functions N¢(x) is defined as
Ni(x)NJ(x)dly = 67 [ Ni(x)dly, fori,j=1,..,n¢ (4.28)
Ff 1_‘f

where 6% is the kronecker delta, which is equal to 0 if 7 # j and 1 if
i = j. Nf(x) is computed element-wise so that it is not continuous
across elements. The reader can refer to [113] for the details of its
computation.

In (4.20), replacing the test functions by N; results in

N (x)NT (x) dI's Uy = / Ni(NT(x)dly; Us.  (4.29)
T¢ Tsor
This can be rewritten in matrix-vector form as

DgUs = M Us. (4.30)

Dy is a diagonal matrix according to the definition in (4.28), so (4.30)
can be solved directly by inverting Dg, which is the well-known advan-
tage compared to the standard mortar method.
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With (4.7) the direct displacement mapping matrix is obtained:
Hi = D' My, (4.31)
And the direct traction mapping matrix can be obtained analogously as
Hy = D M. (4.32)

However, the dual mortar algorithm is usually applied in a conservative
way as the standard one.

The conservative traction mapping is obtained by applying (4.31) in
(4.10) as

M. P, = M{.D;'MzPs, (4.33)

which can be rewritten as
/ N, (x)NT (x) dl's Py = / Ny (x)NF(x)dly s Py, (4.34)
I's j RN

f’f is an average of P¢ defined as
P; = D;'MgPy, (4.35)
whose entries are explicitly computed by

5 fl“f Nfi<X)p?(X) de
Py = T NaGodl (4.36)

In (4.34) a new weak form is obtained where Ng(x) becomes the test
functions and Py is interpolated by N?(x) which is the non-continuous
dual shape functions. As a result, non-continuous traction field is
mapped to the structure. Whether the non-continuity appears in the
structure traction field depends on the grid density of the structure
mesh. If the structure mesh is coarser than the fluid mesh, the non-
continuity is blurred out. Otherwise, it will appear in the form of slight
oscillations.

It can also be seen that the conservative traction mapping in (4.33)
is not equal to the direct traction mapping in (4.32). However, the
conservative mapping is consistent if I'r = I's. The detailed proof of the
inconsistency of the dual mortar method is put in A.2.

Using the dual mortar method for the same 1D test in Fig. 4.4 gives
almost the same result as the standard one and Hy, of the dual version
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is

1 0 0
3 2
5 5 0
7 17 _ 1
o 40 20 40
He=| " 17 7
40 20 40
2 3
O 5 5
0 0 1

The corresponding conservative mapping matrix is

29 67 1 _1 _ 1 3
50 100 100 1 20 50
_3 9 53 53 9 _3
M 'HEMg = 25 100 100 100 100 25
3 _ 1 _1 _ 1 67 29
50 20 1 100 100 50

Conservative mapping of a given constant traction field P} = (1,1,1,
1,1,1) results in PT = (1,1,1), so the conservative mapping with the
dual mortar method is consistent for this special test (since the domain
is flat and the boundaries are matching exactly).

Enforcing consistency

The dual mortar method has also the inconsistency problem at curved
edges as the standard version. The same enforcing consistency algo-
rithm is applied to modify M. The scaling factor for each row 7 of M,
is defined as

D frf Ni (x) dr¢ fpf N (x) dry
TSN o NN, NG dr
for i = 1,...,n;. If a scaling factor oF satisfies 0 < o < 1.1 (1.1 is
an empirical number as in the standard mortar and a® can be negative

since dual shape functions have negative range), then I\A/Ig is updated
by scaling as

. (4.37)

Mg = l\A/Ilﬁz xab, fori=1,...n,j=1,.. ns. (4.38)

Otherwise, nearest element inter-/extrapolation will be performed to
compute the weights w; for each node [ in the nearest element. All
entries in the k-th row of M are set to 0 except M?Sl which is calculated
by

MF = w, [ NF(x)dTy. (4.39)

Ty
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Due to the diagonal matrix in the dual mortar method, the value on the
fluid node is equal to the inter-/extrapolated result. Applying the dual
mortar method on the same example in Fig. 4.7 gives the result shown
in Fig. 4.9. The scaling gives again almost constant field on the area
out of contact and the embedded inter-/extrapolation can represent the
gradient more accurately since the values of the four lower nodes are
actually inter-/extrapolated.

2
I 17778
15556
- 13333

-1 1111
0.88880

0.BBBGT
044444
n2zzzz

0

2

I 17778
1.5556
13333

11111
0.88883

0.6BEE7
0.44444
0.2ezez

0

(a) Scaling. (b) Embedded inter- and extrapo-
lation.

Figure 4.9: Different results from applying different enforcing consis-
tency algorithms in the dual mortar method.

4.3.4 Implementation of Mortar Methods

The implementation realized in this contribution allows mixed meshes
which may consist of both linear triangular and bilinear quadrilateral
elements. Elements whose geometry is a concave quadrilateral or a
polygon with more than four edges can be first converted into allowed
types before mapping.

The computation of the direct displacement mapping matrix Hg
according to (4.22) or (4.31) will be presented. The conservative traction
mapping matrix can be obtained thereafter by transposing Hg. For each
fluid element, the elemental contribution to Mg or Dg is computed by
Gauss integration and then assembled. One remark is that bilinear
quadrilateral elements are always projected on the normal plane at the
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center when computing Mg or Dg. This treatment avoids inconsistency
caused by implementation. The algorithm for computing My or My, is
similar to that in [114] which is listed below (see Fig. 4.5):

1. Loop over the fluid elements, for the i-th fluid element e}:

a)

d)

Determine the search radius for neighbor searching. The ra-
dius should be big enough to contain all structure elements
which are in contact with ef. It is computed based on the
edge lengths of e} and its neighboring elements.

Search for the structural nodes within the radius and struc-
ture elements containing these nodes are regarded as neigh-
boring elements. Attention should be paid on thin structures
such as an airfoil, where fluid elements on the upper surface
may be falsely regarded as in contact with some structure
elements on the lower surface, or vice verse, since there will
be overlapped area after projection. This can be avoided by
comparing the normal directions of the structure elements
and the normal direction of e}. Structure elements that have
wrong normal directions are regarded as out of contact and
are removed from the set of neighboring elements.

Loop over the remaining neighboring elements, for the j-th
element e:

i. Form plane p from the normal n and the geometric center
of et, see Fig. 4.5a.

ii. Project both el and e} to p to get & and ¢}, see Fig.
4.5b. (If €} is a triangle, it does not have to be projected
since et = ét.)

iii. Clip &} by & to get étNé! using the Sutherland-Hodgman
algorithm in [53], see Fig. 4.5c.

iv. The polygon formed by éNé! is triangulated by its cen-
troid, see Fig. 4.5d.

v. Perform Gauss integration on the triangles to compute
one part of My or Mfs. Add the result into the global
Mfs or Mfs.

End loop.

2. End loop.

3. Apply the enforcing consistency algorithm. The scaling factors
are computed according to (4.25) or (4.37), which are used to
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determine whether to scale the entries in the mortar matrix or to
reset them through inter- /extrapolation. The details can be found
in Section 4.3.2 and 4.3.3.

Hg does not have to be computed explicitly. Instead, the equations
(4.21) and (4.30) are solved with given Us. The sparse matrices are
stored in the compressed row storage (CRS) format to be storage effi-
cient.

4.3.5 Computational Cost

The computation includes the construction of mapping matrices during
the initialization stage and data mapping during the running stage.
The computational cost of constructing a mapping matrix is domi-
nated by the neighbor searching procedure. The neighbor searching
library FLANN ([100]) is used which has efficient tree-like data struc-
tures. Once a tree is constructed, the neighbor searching process can
be parallelized with multiple threads. Assume that a single qualitative
number N can represent the number of nodes or elements of both the
structure and the fluid meshes, then the construction of a tree costs
O(N -log N), and the neighbor searching also costs O(N -log N) with a
single thread. One data mapping operation costs O(N) except for the
standard mortar method where additional factorization and equation
solving are required. In this work, the solver PARDISO [117] is used
for solving sparse linear systems.

Highly fine meshes are generated from the catenoid surface in Sec-
tion 4.4.2 to investigate the computation time. The fluid mesh has
2000 x 2000 quadrilateral elements and the structure mesh has 700 x 700
quadrilateral elements. The test is performed on a machine with Intel®
Core™ i7-2600 processors. The time used in direct displacement map-
ping with different mapping algorithms is given in Table 4.1. It can be
seen that the dual mortar algorithm is as efficient as the nearest element
interpolation in data mapping. The standard mortar algorithm takes
more time but it is still small compared with the time that would be
taken in solving the whole equation system of FSI.

4.4 Convergence Tests

The convergence behavior of different mapping algorithms is tested on
three prototypic geometries with increasing geometrical complexity.
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Computation time (sec.) Initialization Mapping
Nearest element interpolation  9.03 0.05
Standard mortar method 108.95 0.7

Dual mortar method 69.18 0.04

Table 4.1: Computation time of different algorithms on the test case.

4.4.1 Evaluation of Discretization Error and Mapping
Error

Assume a continuous field g(x) is defined on a curved surface T" which
is meshed into I'y, as illustrated in Fig. 4.10. The deviation between
g(x) and a corresponding discrete field on I'; is

€(x) = g(x) — Na(xa) " Ga, (4.40)

where x, is the projection of x on T'y, N,(x,) is the shape function
vector of T', evaluated at x, and G, are the nodal evaluations of g(x)
on I'y. (Because N, (x) with x € " cannot be evaluated directly, it is
approximated by N,(x,) with x, € I';.) The global error is defined by
the root mean square (RMS) of the deviations on n sampling points as

- \/Z?‘l(g (x7) = Na(x)7Ga)?

n

(4.41)

The larger n is, the more accurate is the error estimation. The evalua-
tion of N, (x%)TG, is exactly the same process of mapping G from I,
to the sampling mesh using nearest element interpolation. If G, results
from the discretization of g(x), € is defined as the discretization error;
if it results from mapping, € is defined as the mapping error.

The error evaluation approach has the following advantages:

e The error over the whole continuous domain is reflected by dense
sampling.

e Discretization and mapping errors are evaluated on the same sam-
pling mesh, so they can be compared together.

4.4.2 Geometries and Analytical Fields

The convergence behavior of different mapping algorithms is tested with
three different geometries of increasing complexity: flat, singly curved
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o P/ « sampling points

Figure 4.10: Discretization of a curved surface (represented by a 2D
curve) with linear elements. Sampling points are used in error evalua-
tion. In fact, the sampling points form an additional sampling mesh.

and doubly curved. The geometries and the analytical fields on them are
shown in Fig. 4.11, where the first two come from [32]. The extruded line
is defined by y = 0,2 € [—0.5,0.5] and the eztruded curve is defined by
y = 0.2sin(27z), z € [-0.5,0.5]. Both are extruded in the z-direction to
form a surface. The displacement and traction fields are defined by the
same analytical function g(x,y, z) = 0.01 cos(2wz). Both geometries are
meshed equidistantly into 26 x 2* fluid elements and 5 x 2* structure ele-
ments along the length direction, with k£ € {0,1,2,3,4,5}. The sampling
mesh corresponding to each geometry has 10000 equidistant elements
along the length direction. The catenoid is described parametrically
by & = cos(u)cosh(v), y = v and z = sin(u) cosh(v) with u € [0, 7]
and v € [—1.5,1.5]. The displacement and traction fields are defined by
g(x,y, 2) = sin(3z + 3y). The geometry is meshed into (11 x 2¥)? fluid
elements and (5 x 2¥)2 structure elements, with k& € {0,1,2,3,4,5}. The
sampling mesh has 2000% elements. All meshes are structured and con-
sist of quadrilateral elements. It needs to be emphasized that the fluid
elements are not fully overlapped by the structure elements at curved
edges of the catenoid, as shown in Fig. 4.12. Another remark is that the
curved edges of the extruded curve do not cause inconsistent displace-
ments because the fluid elements are fully overlapped by the projected
structure elements.

4.4.3 Results and Conclusions

The prescribed fields are mapped between the structure and fluid meshes
at the same refinement level, i.e. with the same value of k. Direct
mapping of displacement is carried out with all algorithms. The trac-
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(c) Catenoid.

Figure 4.11: Test geometries and the analytical fields defined on them.

tion is mapped both directly and conservatively using the nearest ele-
ment interpolation but it is only mapped conservatively with the mortar
methods. The results are shown in Fig. 4.13, 4.14 and 4.15, and the
conclusions are given in the following:

e The discretization error converges with 2nd order on all geometries
as a result of bilinear shape functions.

e With nearest element interpolation, the direct traction mapping
gives always good results but the conservative traction mapping

is not convergent and the error stagnates from a certain level of
refinement on.
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Figure 4.12: The meshes of the catenoid when k = 0.

e Both mortar methods give very close results.

e Both mortar methods have 2nd order convergence on the extruded
line and the extruded curve i.e. in the case that the elements of
one mesh are fully overlapped by the (projected) elements of the
other.

e Due to the curved edges on the catenoid, the direct displacement
mapping with both mortar methods shows a deterioration of the
convergence rate. The enforcing consistency method helps to im-
prove the convergence rate of the direct displacement mapping,
but the convergence rate of the conservative traction mapping is
compromised. The reason is that the load on the area out of
overlap is additionally added to the structure nodes at the curved
edge as a result of force and energy conservation. This is the
common problem of all enforcing consistency methods. However,
it must be stressed that the improvement of the local quality of
the mapped displacements i.e. smoothness of the edges in the de-
formed configuration is much more significant. Otherwise, it can
lead to distortion of the fluid mesh at the curved edges in the
deformed configuration which typically results in failure of fluid
computation.

e If traction is mapped in a direct way with the nearest element
interpolation method, difference in energy will be caused as shown
in Fig. 4.16. But the difference converges approximately with 2nd
order.
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Figure 4.13: Convergence of the discretization and the mapping errors

on the extruded line.
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Figure 4.14: Convergence of the discretization and the mapping errors

on the extruded curve
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Figure 4.15: Convergence of the discretization and the mapping errors

on the catenoid. The dual mortar method gives very close results to the
standard one, so it is not additionally presented.
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Figure 4.16: Convergence of energy difference from the direct use of
nearest element interpolation on different geometries.

4.5 Examples

Three examples are presented in this section. The first two examples
consist of simple geometries to demonstrate the problems that may hap-
pen when using mortar methods or doing conservative mapping. These
problems are reproduced in the third example of a wind turbine blade
which is a typical situation for the need of robust non-matching grid
treatment in practice.

4.5.1 Circular Plate

The circular plate is a typical example of geometries with curved edges.
The structure mesh has 8 triangular elements and the fluid mesh has two
levels of refinement with 691 and 2856 triangular elements respectively,
as shown in Fig. 4.17. The nearest element interpolation is not tested
since it does not have the inconsistency problem.

Firstly, a constant displacement field with value 1 is assigned on
the structure mesh as shown in Fig. 4.18, which is mapped to both
fluid meshes with the standard and the dual mortar methods. The
results without enforcing consistency are shown in Fig. 4.19. It can be
seen that both methods are inconsistent due to the curved edge. The
constant field can be recovered by applying the enforcing consistency
algorithm which is guaranteed by definition, so the results are not shown
additionally. One remark is that the scaling approach cannot be applied
for the finer fluid mesh since the fully non-overlapped fluid elements
cause scaling factors equal to infinity.
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4.5. Examples

However, the smoothness of the deformed mesh is

Another displacement field in the z-direction is assigned to the struc-
ture mesh, where 0 is defined on the centered node and 1 on the other

pure scaling on the coarser mesh is shown in Fig. 4.22. Applying it

on the finer mesh leads to program error since some scaling factors ap-
proach infinity. It can be seen from the results that the deformed mesh

is somehow evened at the edge which means the gradient in the dis-

range of the dual shape functions make the dual mortar method more
sensitive to inconsistency problem. The results from applying embed-

plying mortar methods without enforcing consistency results in highly
distorted deformed meshes. The results from using the standard mortar
method on both meshes are shown in Fig. 4.21. The results of applying
placement field cannot be recovered by scaling. Moreover, the negative
ded inter-/extrapolation on both fluid meshes are shown in Fig. 4.23.
It can be seen that the gradient of the field at the edge is recovered
smoothly by the dual mortar method but it is slightly overestimated by
the standard one.

nodes. The field and the deformed mesh are shown in Fig. 4.20. Ap-

still acceptable in the overestimation case.
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the structure mesh.

(a) Coarser fluid mesh overlapped by (b) Finer fluid mesh overlapped by

the structure mesh.
are shown with the structure mesh overlapping on them to visualize the

two fluid meshes with different levels of refinement. The fluid meshes
area out of contact.

Figure 4.17: Meshes of a circular plate including one structure mesh and



4. MAPPING WITH SURFACE MESHES

Figure 4.18: Constant field on the structure mesh.
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(c) Standard mortar on finer mesh.
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(d) Dual mortar on finer mesh.

Figure 4.19: Results from mapping the constant field using mortar
methods without enforcing consistency.
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(a) Field. (b) Deformed mesh.

Figure 4.20: A displacement field in z-direction on the structure mesh
and the resulting deformed mesh.
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(a) Coarser mesh. (b) Finer mesh.

Figure 4.21: Deformed meshes from the standard mortar method with-
out enforcing consistency. Those from the dual mortar method are
similar, hence they are not additionally shown.
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(b) Dual mortar.

(a) Standard mortar.

Figure 4.22: Deformed meshes from enforcing consistency with pure

scaling on the coarser mesh.
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(a) Standard mortar on coarser mesh. (b) Dual mortar on coarser mesh.
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(c) Standard mortar on finer mesh. (d) Dual mortar on finer mesh.

Figure 4.23: Deformed meshes from enforcing consistency with embed-
ded nearest element inter-/extrapolation.
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4.5.2 Finer Structure Mesh

As shown in previous sections, the conservative mapping with nearest
element interpolation generally gives bad results. Moreover, the conser-
vative mapping with the dual mortar method will give oscillating results
when the structure mesh is finer than the fluid mesh. This situation can
also happen within some sub-domains of complex coupling surfaces if
the structure and the fluid meshes are generated independently from
each other. The problem is demonstrated with the geometry of the ex-
truded line and the same analytical field as shown in Fig. 4.11a. The
fluid mesh has 50 elements with gradient spacing in order to obtain
non-continuous dual shape functions, while the structure mesh has 111
equal-sized elements, see Fig. 4.24. The results of conservative map-
ping with all mapping algorithms are shown in Fig. 4.25 and also drawn
along the z-direction in Fig. 4.26. The standard mortar method gives
results almost coincided with the analytical solution while the dual one
gives results with small oscillations superposed on the correct solution;
the nearest element interpolation gives unacceptably large oscillations.

i.. \ \

(a) Fluid mesh.
y

L.

Figure 4.24: Meshes of the rectangular surface including a coarser fluid
mesh with 50 elements and a finer structure mesh with 111 elements.

(b) Structure mesh.

(a) Standard mortar.

Figure 4.25: Traction field from conservative mapping of different algo-
rithms.
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Figure 4.25: Traction field from conservative mapping of different algo-

rithms.
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Figure 4.26: Traction along the length direction from conservative map-
ping with different algorithms. NE stands for nearest element interpo-

lation.
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4.5.3 Wind Turbine Blade

In this section, the mapping on the blade surface of the NREL phase VI
wind turbine is tested with different mapping algorithms. The displace-
ment and traction fields on the blade surface are extracted from the FSI
simulation presented in Section 6.2.1 and are applied in the following
mapping test. The surface meshes from the structure and the fluid sides
are shown in Fig. 4.27 and Fig. 4.28. It can be seen that the structure
mesh is finer in the length direction at some part and the tip surface
has curved edges.

The displacement field on the structure mesh and the mapping re-
sults on the fluid mesh are shown in Fig. 4.29. It can be seen that
all algorithms give good results. The enforcing consistency algorithm is
used for the mortar methods to eliminate the error at the curved edge of
the blade tip as shown in Fig. 4.30. Otherwise, the distorted fluid ele-
ments at the curved edges can result in failure of the fluid computation.
The traction field on the fluid mesh and the mapped results on the struc-
ture mesh are shown in Fig. 4.31 (only the field in the inflow direction
is drawn to emphasize the turbulent eddies). The conservative mapping
with the nearest element interpolation gives highly oscillatory results
and the same with the dual mortar method gives small oscillations su-
perposed to the correct solution. Satisfactory results are obtained from
the direct mapping with the nearest element interpolation and the con-
servative mapping with the standard mortar method. But force and
energy are only approximately conserved in the former case.
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4. MAPPING WITH SURFACE MESHES

(a) Structure mesh part one.

1

(b) Fluid mesh part one.

(c) Structure mesh part two.

(d) Fluid mesh part two.

Figure 4.27: The surface meshes of the turbine blade. They are shown
in two parts due to the high refinement. The structure surface mesh
has 105,348 quadrilaterals and 1,776 triangles and the fluid surface mesh
has 87,712 quadrilaterals and 4 triangles.
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(a) From structure. (b) From fluid.

Figure 4.28: The meshes at the tip of the blade.
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(a) Structure displacement field.
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(b) Nearest element interpolation.
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(d) Dual mortar.

Figure 4.29: Displacement field on the structure mesh and mapping
results on the fluid mesh from direct mapping with different algorithms.
The displacements are shown in magnitude.
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(a) Without enforcing consistency.

(b) With enforcing consistency.

Figure 4.30: Deformed meshes resulting from standard mortar method
at the tip. The dual mortar method gives very close results which are
not additionally presented.
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(a) Fluid traction field.
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(b) Direct mapping with nearest element interpolation.
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(e) Conservative mapping with dual mortar method.

L D

s L]

(f) Zooming in to highlight the oscillations in (e). The
unphysical oscillations are superposed to the turbulent
eddies.

Figure 4.31: Traction field on the fluid mesh and the mapped results
on the structure mesh. Only the component in the inflow direction is
presented.
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4.6 Summary

Three mapping algorithms dealing with surface meshes are investigated
and compared, namely the nearest element interpolation, the standard
mortar method and the dual mortar method. The mortar methods are
inconsistent at curved edges where some fluid surface elements are not
fully in contact with structure surface elements, due to the discrepancy
between the integration domains from the two partitions. This prob-
lem is solved by the newly developed enforcing consistency approach
where inter-/extrapolation is embedded into the mortar matrices. It
is superior than the state of the art solutions using scaling because it
can handle fully uncovered fluid elements. Both the analysis and the
test examples have shown that the mortar methods are suitable for
conservative mapping. But the dual mortar method can give slight os-
cillations where the structure mesh density is higher, although it is more
efficient than the standard version. For nearest element interpolation,
conservative traction mapping is less accurate and can give very high
oscillations in traction; direct traction mapping is more accurate, but
then the interface energy is only approximately conserved.

How to choose mapping algorithms in practice is suggested next. For
the case that only the nearest element interpolation method is available,
although it is less accurate and may bring large oscillations, but the ac-
curacy of deformation is usually acceptable if a structure is stiff and
insensitive to these locally appearing errors. However, the stress distri-
bution close to the wet surface inside the structure is also less accurate
and can have oscillations as a consequence. In contract, if structures
are sensitive to the local errors such as soft membranes, or if a more
accurate stress distribution close to the wet surface is pursued, then
the direct traction mapping should be used, though there is a slight
difference in the energy. For the case that the mortar algorithms are
available, the dual mortar method can be applied in most problems.
But the slight oscillations in the traction field should be distinguished
from those caused by turbulent eddies. In the worst case, the standard
mortar method can be used which performs stably well.
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Chapter 5

Mapping with Beam Elements

A beam structure has one spatially dominant direction and therefore can
be modeled and analyzed as an elastic curve which is discretized by 1D
elements in FEM. 1D models are widely used in the aeroelastic analysis
of beam-like structures such as wind turbine blades [62, 124], airplane
wings [131, 108] or other composite beams [13], as a simplification of
modeling these structures with solid or shell elements [105, 19, 69, 120].
Additional cross section analysis is required for modeling with 1D ele-
ments to extract the properties of cross sections [90, 16, 25]. In struc-
tural wind engineering, slender buildings and bridges are also modeled
as 1D curves at the pre-development stage, to analyze the dynamical
response to the wind loads [121, 67].

In FSI simulation of a beam structure, data have to be mapped be-
tween 1D beam elements and a fluid surface mesh. Different from the
case that both meshes are surface meshes, the relation between the 1D
elements and the surface mesh needs to be built. Since the 1D mesh
usually has only a small number of elements, the ability to represent
the rotation degrees of freedom (DOFs) is important for the mapping
accuracy and the smoothness of the deformed surface. Both [2] and [30]
apply radial basis function (RBF) model for the problem. The former
uses linearized rotations as parameters inside the RBF model while the
latter creates a new intermediate mesh so that mapping techniques for
surface meshes can be reused. The two methods require a big number
of 1D elements and are restricted to small rotations. However, geomet-
rical nonlinearity should be considered when mapping on flexible beam
structures that undergo large deformation and rotation. The struc-
tural analysis of geometrically nonlinear beam elements can be found in
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[8]. The algorithm for the reconstruction of the deformed beam surface
is inspired by the co-rotating formulation of nonlinear beam elements
[81, 45, 87, 33].

This chapter focuses on deformation mapping which is also called
surface reconstruction. A co-rotating algorithm which can recover large
displacements and rotations is presented and evaluated in a compre-
hensive way. Since the algorithm is based on the assumption that cross
sections remain rigid, it is required to relate a surface node with the
cross-section passing through it. This is realized by an efficient algo-
rithm which assumes that all cross sections are parallel. Structured and
unstructured surface meshes at the fluid are handled in different ways
with the consideration of efficiency. Moreover, the convergence behav-
ior of the co-rotating algorithm is assessed also in comparison with a
linear kinematics algorithm, which clearly demonstrates the limits of
the latter approach that is frequently used in practice.

To handle linking rigid body motions and coordinates transforma-
tions, the idea of forward kinematics is used, i.e. a rigid body motion op-
erator is defined to describe rigid body motion and coordinates transfor-
mation between different coordinate systems (also called frames). The
operator is equivalent to the 4 x 4 Denavit-Hartenberg matrix, which
condenses a rotation matrix and a translation vector together. Similar
applications can be found in multibody system [118], robotics [31] and
skeletal animation [106], where rigid elements connected by hinges are
handled. It is different to the mapping problem discussed here while the
structure body is elastic. The rigid body motion operator here helps to
provide mathematical description of the mapping algorithms.

The details of the formulation and the implementation of the defor-
mation mapping are presented in Section 5.1, including the determina-
tion of the cross section passing a surface node, the definition of a rigid
body motion operator as well as the interpolation of the rotations and
displacements at a given cross section with either the linearized or the
co-rotating algorithm. Section 5.2 presents the load mapping briefly.
The convergence behaviors of the linearized and the co-rotating algo-
rithms are tested with analytically prescribed deformations, as shown in
Section 5.3. Moreover, the smoothness and robustness of the co-rotating
algorithm are demonstrated in Section 5.4, with examples of an airplane
wing and a wind turbine blade under artificially large deformation. Fi-
nally, this chapter is concluded in Section 5.5.
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5.1. Deformation Mapping

5.1 Deformation Mapping

The deformation mapping is based on the assumption that the cross
sections of a beam remains rigid so that the displacements of the fluid
surface nodes can be determined from the rigid body motion (RBM) of
the corresponding cross sections. It is accomplished in two steps: the
cross section that passes through a given surface node is determined
in the first step; the rotation and translation of the cross section are
interpolated from the DOF's of a corresponding 1D element in the second
step.

5.1.1 Determine Cross Section

A simple and efficient algorithm is implemented in this work which as-
sumes that all cross sections are parallel. It is valid since a beam struc-
ture is straight or only slightly curved in most cases, i.e. the tangential
direction of the beam axis does not change a lot. With the normal of
the parallel cross sections n.s, the plane of the cross section passing a
surface node @ can be computed as shown in Fig. 5.1. The intersection
P between the plane and a beam curve element is defined as the center
of the cross section. It is easily achieved in the implementation: the
nodes on both meshes are projected to the line defined by n.g, then P
is equal to the new coordinate of @ in the direction of n.s. Since the
rotation is defined around P, the beam curve should be located as close
to the elastic or the shear center as possible. For the case that both cen-
ters do not coincide, the beam curve should be placed properly so that
the numerical error with respect to the kinematic theory is minimal.

Figure 5.1: The planes of cross sections are assumed parallel. The cross
section passing a surface point @) intersects with an 1D element at P,
which is defined as the center of the cross section.
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5. MAPPING WITH BEAM ELEMENTS

When surface nodes locate outside an outermost cross section plane
which passes one end of the beam curve as in Fig. 5.2, their motions will
be assigned according to the DOFs at the curve end, i.e. these nodes
move together as a rigid body.

Figure 5.2: Surface nodes can locate outside the leftmost and the right-
most planes.

The efficiency of the algorithm can be further improved if the surface
mesh is a structured mesh, see Fig. 5.3b. In this case, the surface
nodes are projected as before to the line of n.,, then they are sorted
by the new coordinate in the n.s direction. A structured mesh usually
has the same number of nodes n, for each row along the beam length
direction, therefore every n, nodes are grouped together according to
the positions after sorting. The nodes at the tip or the root of the
beam surface should be separately grouped if the number of them is
different than n,.. The nodes belonging to the same group are regarded
as also belonging to the same cross section and are assigned with the
same RBM. The preprocessing usually cannot guarantee that the nodes
of the same group have the same coordinate in the n., direction, so the
average of all the coordinates is chosen as the center of the cross section.

The simple and efficient algorithm above relates each surface node
to a point on an 1D element. Some remarks regarding its accuracy and
usage are given below:

e There is numerical error if the identification of the center is wrong,
e.g. in case that the some 1D elements do not locate exactly
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(a) unstructured (b) structured except at the root

Figure 5.3: Two meshes of the same surface. The cross section is sep-
arately computed for each node on the unstructured mesh, while the
nodes on the structured mesh can be divided into rows along the length
direction, and the nodes of the same row are regarded as on the same
cross section.

at the beam axis, or the elastic center and the shear center do
not coincide. As a result, the translation of the cross section is
accurate, while the rotation has error, i.e. the rotation radii are
wrong though the orientation of the cross section after rotating is
still correct. The overall deformed shape is satisfactory but some
cross sections are shifted around the correct location.

e There is also numerical error if the beam is curved, since the
parallel cross sections are not always orthogonal to the beam axis.
This will lead to error in the shape details, e.g. wrong distribution
of angle of attack along an airwing. This is why only slightly
curved beams are allowed as mentioned before.

e The two error sources above can also lead to numerical error in
load which is computed in a energy conjugated way. But similarly,
the error can be regarded as a local effect which is bounded.

e The algorithm can also handle connected beams. An example of
the latter case is illustrated in Fig. 5.4, where two beams are con-
nected by a rigid joint. This serves as a basic case for a topology
of multiple beams. To solve the problem, partition b is modeled as
infinitely rigid, which does not participate in the mapping. The
mapping is performed in two groups: between a and AU B as well
as between ¢ and C'. Surface nodes of partition B will follow the
rigid body motion defined on the top end of partition a.
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5. MAPPING WITH BEAM ELEMENTS

B C

Figure 5.4: Mapping between beams connected by a rigid joint. The
three partitions of the beam elements are denoted by small letters while
those of the surface elements are denoted by capital letters.

5.1.2 Rigid Body Motion and Coordinates
Transformation

The RBM of a cross section is naturally defined in a coordinate system

whose origin is the center, since a rotation is attached to a center. But

the motion has to be finally transformed to the global coordinate system

where the surface nodes are defined. In the following, an operator is
defined which helps to describe RBM and coordinates transformation.

Definition of rigid body motion operator

In this work, the RBM operator ® : R> — R3 based on a certain
coordinate system is defined as:

B(x) = Rx + t, (5.1)

where R is a rotation matrix (3 x 3), t is a translation vector and x are
the coordinates of a point.
The inverse of ®(x) is also an RBM operator:

dlx) =R '(x—t)=R"x - R"t. (5.2)

R~! = R7 since R is an orthogonal matrix. Assume two RBMs are
respectively defined as ®1(x) = Rix + t; and ®2(x) = Rox + to, the
total motion of doing ®; and ®5 in a sequence results in a composite
RBM operator:

(I)(X) = (I)Q OCIH(X) = R2(R1X+t1) +t2 = R2R1X+ (Rgtl +t2). (53)
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5.1. Deformation Mapping

Note that only RBMs defined on the same coordinate system can be
combined.

The RBM operator can also be used for the transformation of co-
ordinates between different coordinate systems. Assume a coordinate
system B is defined on another coordinate system A, and eZ, e;j‘ and
ef are the orthonormal base vectors of A which are equal to (1,0,0)7,
(0,1,0)T and (0,0,1)T respectively, while eZ, eyB and e’ are the or-

A

thonormal base vectors of B defined with respect to e, e; and ef.
A QA A

The rotation from [e7 e, ef] (a matrix constructed from the three

vectors) to [ef el eP] defined on A can be obtained as

Rionled o ef]=[ef of o] —

Ri.p= [eg];3 eyB ef} . (5.4)

Moreover, assume that t 4, g defined on A denotes the translation from
the origin of A to that of B, if a point has coordinates x4 in A and and
coordinates xg in B, the transformation between them can be derived
as
e ey el]lxa=[el e el]xp+[el e el|ltasp (55)
=Rapxp t+tas,

which can be rewritten by an RBM operator as
x4 =Pap(xB) =Rapxp+ta,s. (5.7)
The inverse transformation can be derived as
xp = 41, p(xa). (5.8)

What is to be emphasized is that ® 4_, g as well as its components R4 _, g
and t4_p are defined on A. The notations will be kept as a style for
coordinates transformation in the following. Another remark is that the
transformation here can contain translation which is different from the
term in the FEM context where it contains only rotation.

Transformation of rigid body motion

Fig. 5.5 shows three coordinate systems and the transformations be-
tween them. They are:

e The global coordinate system (GCS) with axes X —Y — Z and
origin O.
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5. MAPPING WITH BEAM ELEMENTS

e The element coordinate system (ECS) with axes  — y — z and
the same origin O as the GCS. Each 1D element has its own ECS.
The z axis is parallel to the element and the other two axes can
be defined arbitrarily following the orthogonality. (It is chosen
here that the y axis locates in the X — Y plane and the z axis
is obtained through the right hand rule.) The rotation from the
GCS to the ECS is defined by Rg— .

e The section coordinate system (SCS). Each cross section has its
own SCS. Its axes are parallel to those of the ECS and its origin lies
at the center of the cross section P. The translation between the
ECS and the SCS is defined by tz_, p, which is the displacement
from O to P.

Given ®p as the RBM of a cross section defined on the SCS, it can
be transformed to the GCS as

dc=Rgopotpspo®poty', po RS ) (5.9)

where R or t is used instead of ® in order to represent pure rotation
or translation. (5.9) should be interpreted from right to left in a way
that a point is transformed through two steps from the GCS to the
SCS, then an RBM is applied on it, and finally its new position is
transformed back to the GCS through the inverse operations of the
former two transformation steps. With ®4 the displacement vector of
a surface node x (also defined on the GCS) on the cross section can be
computed as

u = ds(x) — x, (5.10)

which is the equation of deformation mapping.

Except ®p, the other terms in the expression of ®¢ in (5.9) can
be computed from geometrical relations. The rotation and translation
in ®p can be interpolated from the DOFs of a linear or nonlinear 1D
element, which will be introduced in the following.

5.1.3 Interpolation of Rigid Body Motion

Rotation can be described by an angle § around a unit vector n, or
a rotation vector § = 6n = (0,,60,,0,)7. The relation between the
rotation vector and its equivalent rotation matrix is [81]

R = cos 01 + sin 0 + (1 — cos#)nn” (5.11)

90



5.1. Deformation Mapping

RG%E Y

z
t
_ y E—P \
Z/|F)‘(~~--_____~ / S¢S X
GCS 7O ~x
ECS
Figure 5.5: The global coordinate system (GCS), the element coordinate

system (ECS), the section coordinate system (SCS) and the transfor-
mation between them.

where I is the identity matrix and 0 is a 3 x 3 matrix as a compact form
of the cross product between n and an arbitrary vector x:

NX =1n X X.
For a small rotation (5.11) can be linearized as
R ~1I+ 0n. (5.12)

In this case, the entries in the rotation vector can be regarded as three
separate rotations around the axes of the coordinate system.

The 1D beam element in this work has six DOFs on each node
including a displacement vector and a rotation vector. Before interpo-
lation, the displacement vector (vx;, vy, in)T and the rotation vector
(Ox4,0v;,07;)T defined on the GCS are transformed to the ECS which
results in (Vas, Uyi, v,:)T and (0, eyi,ezi)? where ¢ = 1 or 2 being the
node index (see Fig. 5.6). The displacement vector can be transformed
as

(Vzis Vyis v21) " = Reoa(vxis vy, vz:) " (5.13)
For small rotations, the rotation vector can be transformed in the same
way:

(0214 0y, 0:0)" = Rpc(0xi,0yi, 02:)T . (5.14)
For large rotations, the equivalent rotation matrix of (6x;, Oy, 07;)7
denoted by Rg; is computed using (5.11) and transformed to the ECS
as

Rpi = RGL, pReiRes 5, (5.15)
and then Rp; is converted to (0, 0y, 6.:)T by solving (5.11).
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5. MAPPING WITH BEAM ELEMENTS
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Figure 5.6: DOF's of a beam element corresponding to different coordi-
nate systems.

Linearized Algorithm

The linearized algorithm in the following uses shape functions of a two-
node Bernoulli beam element where the kinematic relationship is lin-
earized. The details of the element formulation can be found in [141].
Assume P has parametric coordinate £ on the 1D element as

¢ = M 1, (5.16)
where x and x; are respectively the x-coordinate of P and node 1 on
the ECS, and [ is the length of the element which can be regarded as
unchanged for a linear element (I = xs —x1 where x5 is the z-coordinate
of node 2 on the ECS).

Define (vg,vy,v;)T and (0, 60,, 0,)7 as the displacement vector
and the rotation vector on P respectively. Then v, and 6, can be

interpolated with linear shape functions:

Uy = (Nf Né) (vﬂ /UQ;Q)T, (5.17a)
6, = (NI NI (61 0.2)", (5.17b)

where ) 1
Ni=5(1=¢), Np=5(1+9), (5.18)
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5.1. Deformation Mapping

While vy, 0, v, and 0, can be interpolated with Hermitian cubic shape
functions:

vy= (N N Ny NE) (v 0 vy 6a2) (5.19a)
0. =v, =
(NU/ NG' Nv/ N@’) (’U 0 0 T
1 1 2 2 i 01 vy Bia) (5.19b)
vo=(NY NI Ny NE)(va1 —0,1 v —04)" . (5.19¢)
0, =—v, =
(N N Ng' N (< O v 6,)"
1 1 2 2 21 Uy1 V22 y2) , (5.19d)
where
v 1 2 0 1 2
Ny = (1 =87(2+9), Ny =Sl =6 (1 +¢),
1 1
Ny =50 +£6)?(2-9), NY = —5la+ 2(1—¢), (5.20a)
3 1
Ny = -5 (1-OA+6.  N{'=-7(1-6)(1+30),
3 1
Ny = S+ -6, N§'=—1(1+£)(1—35). (5.20b)

After interpolation, ®p in (5.9) can be constructed from (vs, vy, v;)7
and (0., 0,, 0,)7.

Co-rotating Algorithm

Since a large rotation cannot be decomposed into three individual rota-
tions, the linearized algorithm cannot be used on beam elements with
large rotations.

The solution in this work is inspired by the idea of co-rotating beam
elements, where the motion of an 1D element is decomposed into an
RBM and a linear deformation with six natural modes including elon-
gation, twist, symmetric and anti-symmetric bendings as shown in Fig.
5.7.

The newly developed co-rotating algorithm for mapping contains
three steps as shown in Fig. 5.8:

1. Displace the end nodes according to (v, vyi, v2i)T. This process
also includes the elongation of the element.
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\u’%%
/L(V\QGN‘N

z<— 0 X
ECS

Figure 5.7: Natural deformation modes of a beam element. From top
to bottom and left to right they are sequentially elongation, twist, sym-
metric bending in z — z plane, anti-symmetric bending in = — z plane,
symmetric bending in x — y plane and anti-symmetric bending in x — y
plane. (This figure is an adapted presentation of the one in [81].)

2. Rigid body rotation around the axis (length direction) of the ele-
ment.

3. Twist and bend the element. The RBM of the element is already
carried out in the first two steps. The third step includes only
the twist mode and the symmetric and anti-symmetric bending
modes where rotations can be linearized.

oA

P

Figure 5.8: The rigid body motion of a cross section can be decomposed
into three steps. The cross represents the cross section.

The SCS also moves with the RBM of the element in the first step
in order to perform rotations in the next two steps. The motion should
be transformed back to the original SCS after the third step. Define
®4, Rs and ®; as the RBM operators for the three steps as shown in
Fig. 5.8, then ®p in (5.9) can be computed as:

q)pzédoq)lORsO@;loq)d
= (I)doq)l Ol%S (521)
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5.1. Deformation Mapping

It shows that the total motion can also be interpreted as the combination
of the three motions in a different order without any transformation be-
tween coordinate systems. How the individual operators are computed
is presented in the following.

The translation vector ¢4 in ®,4 is computed by interpolating (v,
Vyis v,;)T on P using the linear shape functions in (5.18). The rotation
in &, is computed as [81]

Ry = (I-2nn")[—e,,e,, e.], (5.22)

with
n= (e, +el)/le;+ eﬂ ) (5.23)

where e,, e, and e, are the base vectors of the ECS which are equal to
(1,0,0)T, (0,1,0)T and (0,0,1)7 respectively, and e¢ is the normalized
vector in the new element length direction. So far @, is obtained.

The RBMs on both end nodes can be constructed from (vg;, vy,
v.:)T and (0, Gyiﬁzi)T which are denoted by ®p;. Since the RBM of
the first step on both end nodes ®4; can be computed with (v, Vyi, vzi)T
and R, the remaining motion can be computed by ®;;,0Rs = <I>JZ.1 odp,;.
®;; contains no translation since both end nodes are already displaced
in the first step, so ®;; = Ry; and therefore ®;; o Ry = R;;Rs. RyiR
contains small rotations from bending and twist and may also contain a
big axial rigid rotation. The axial rotation needs to be extracted from
the combined rotation Ry;Rs. After computing (63,05, 57T as the
equivalent rotation vector of Rj;R, the angle of the axial rotation can
be approximated as

1 S S
b, = 5(631 +030). (5.24)

The approximation is valid since 7, is the dominant entry in the ro-
tation vector. Besides, an approximation of #; is enough because the
purpose is to deduct the large axial rotation so that the remaining ro-
tations can be linearized. So far, R is also obtained which can be
constructed from 6, and e, using (5.11) with n = e,.

After deducting the axial rotation the remaining rotation on the end
nodes can be computed as

R, = @;il o®p; 0 R;l, (5.25)

which contains twist and bending. The equivalent rotation vectors
on the end nodes (0L,,0!. 6'.)7 can be computed from Ry; by solv-

zi Yyir Yzt
ing (5.11), and the displacement vectors on them have (v}, v!;,vL))T =
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5. MAPPING WITH BEAM ELEMENTS

(0,0,0)”. Both vectors are used to interpolate the displacements and ro-
tations on P using the linearized algorithm introduced in Section 5.1.3.
Then ®; in (5.21) can be constructed from the results of interpolation.
So far, @4, Ry and ®; in (5.21) are all obtained.

5.2 Load Mapping

The forces on the surface nodes are used to compute the forces and
moments on the curve nodes in the load mapping. The force vector fg
on a surface node @ is transferred to P first, as illustrated in Fig. 5.9.
This results in a force vector fp and a moment vector mp on P with

fp = fo, (5.262)
mp = PQ x fo. (5.26b)

where 1@ is the difference vector from P to @ in the deformed config-
uration.

L
‘ P original

) 10
mp™ 4
GCS ¢ \ deformed
fo

Figure 5.9: Transfer a nodal force to the center of the cross section.

The next task is to transfer fp and mp to the end nodes of the
corresponding 1D element. It is based on the conservative mapping idea
that is presented in Chapter 4. It also corresponds to the computing
of consistent nodal forces and moments in beam FEM ([141, 78]), i.e.
the forces and moments are distributed to the end nodes with the same
shape functions for the conjugated displacements and rotations. For
linear 1D elements, fp and mp are firstly transformed to the ECS,
resulting in (f7, £, f2)" and (mf,m},mI)". With (5.17) and (5.19)
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5.3. Convergence Tests

conservative mapping gives

fPu, = (fENL fPNL) (v4 vxg)T, (5.27a)
mP0, = (mEN! mPNY) (001 6a2)" (5.27b)
fyvg=(fyNY fN? fUNS f7ND)

(vy1 01 vye 9z2)T7 (5.27c)
mPe, = (mfN{” mP N mP Ny mng/)

(Uyl 921 Uyg QZQ)T, (527(1)
flv.=(fENY fENY fENY fPND)

(Uzl —Gyl V22 —eyg)T, (5276)

m., = (mij{” mijf/ ml Ny’ m5N§I>

(_Uzl Gyl —Uz2 on)T . (527f)
For nonlinear 1D elements, the increments of DOF's (d vy, d vy, dv)T
and (d0g;,d 8, d6.;)T are defined as aligned with the element in the
co-rotating configuration, which corresponds to the second step in Fig.
5.8. Since the increments are small, the same shape functions used for
the DOFs in (5.17) and (5.19) can be used for them. To apply conser-
vative mapping, fp and mp are firstly transformed to the co-rotating
configuration, and since now they are aligned with the conjugated incre-
ments of DOFs, they can be also distributed with (5.27). The process
above is repeated for each surface node, and the forces and moments
are accumulated to obtain the final load on the 1D elements.

5.3 Convergence Tests

A beam with constant square cross section is used in the convergence
tests of deformation mapping. It has length [ = 10 in the x direction and
constant square cross section in the y — z plane with the size a =1 x 1
(z, y and z represent the axes of the GCS from here on). The surface
of the beam is meshed equally with 100 elements in x direction and
10 elements in both y and z directions. The beam curve locates at
the axis of the beam. It is discretized equally into 2¥ elements where
k€ {1,2,3,4,5,6}. The meshes are shown in Fig. 5.10. The DOFs of
the 1D elements are generated from analytical functions and are mapped
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5. MAPPING WITH BEAM ELEMENTS

to the beam surface mesh with both the linearized and the co-rotating
algorithms. The convergence behaviors of both algorithms are tested.

Figure 5.10: The curve and surface meshes of a beam with square cross
section. The surface mesh is displayed with two different styles.

5.3.1 Bending

The beam curve is clamped on the left end and bent into an arc in the
x — y plane without changing its length. The analytical function of the
arc can be obtained as

z\2 . .
y=-r|1l—1/1- (;) with 0 < z < rsin(a), (5.28)

where « is the rotation angle (slope) at the right end and r = L is the
radius of the arc. The displacements and rotations of an arbitrary point
x on the beam axis can be derived:

Uy = rsin(—0,) — x,
uy = —(r—rcos(—0,)) with0 <z <. (5.29)

Three test cases with @ = 20°, 40° and 60° are performed for which
the arcs are plotted in Fig. 5.11. The DOFs on the beam elements
are computed according to (5.29) and are mapped to the beam surface
nodes with both the linearized and co-rotating algorithms. The ref-
erence displacements on the surface nodes are computed based on the
RBMs defined by (5.29). The error of the displacements in the L2 norm
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is defined as

(5.30)

where U contains the displacement vectors on all surface nodes resulting
from mapping and U’ contains the reference values. The error with
respect to different refinement levels of the beam curve is shown in
Fig. 5.12. The co-rotating algorithm gives smaller error and converges
with an order of 2.08. Theoretically interpolations with cubic functions
give fourth order accuracy in displacement and third order accuracy
in rotation. The reduction of the convergence order to 2.08 is due to
the fact that the derivatives are approximated by the rotation angles
instead of the tangent functions of them. The deformed surface meshes
with £ = 4 are shown in Fig. 5.13 and Fig. 5.14.

>

6 L
0=0° —

8 4=20° ——
0.=40°
0=60° —

_10 L L

0 2 4 6 8 10

X

Figure 5.11: Plot of the function in (5.28) with | = 10 and different
values of a.

5.3.2 Bending and Twist

The beam is twisted first and then bent with the same analytical func-
tion as in Section 5.3.1. The twist angle is linearly distributed along
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linear, «=20° —8— co-rotating, 0.=20° —A—
linear, a=40° —l— co-rotating, 0=40° +
linear, a=60° —@— co-rotating, 0=60° —V—

L2 error

Figure 5.12: Convergence of deformation mapping error of both lin-
earized and co-rotating algorithms under different a.

the length as

X

where 3 is the twist angle at the right end. Three tests with o = =
20°, 40° and 60° are performed. The reference results are computed
from the analytical functions as in the bending test. The error of the
displacements of the surface nodes in the L2 norm with respect to dif-
ferent refinement levels of the beam curve is shown in Fig. 5.15. The
deformed surface meshes with £k = 4 are shown in Fig. 5.16 and Fig.
5.17.

It can be seen that the co-rotating algorithm is again more accurate,
but the convergence order decreases during refinement e.g. from 1.93 to
1.39 for a = 8 = 60°. Additional error comes from the step where 3D
rotation is decomposed into three individual rotations. However, the
co-rotating algorithm already fulfills the requirements of a convergence
order higher than 1 and a smooth surface without distorted elements.

with 0 < 2 <, (5.31)
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linear, a=p=20° —g— co-rotating, a=p=20° —A—

linear, a=pf=40° —l— co-rotating, a=p=40° —dhk—

linear, a=f=60° —@— co-rotating, a=p=60"° —F—
1E+00

1E-01

L2 error

Figure 5.15: Convergence of deformation mapping error of both lin-
earized and co-rotating algorithms under different o und g.
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5. MAPPING WITH BEAM ELEMENTS

5.4 Practical Examples

The co-rotating algorithm for mapping large displacements and rota-
tions is further tested on two more complex geometries. The first is
a wing of an airplane which can be found in [20]. The meshes of the
beam curve and the surface are shown in Fig. 5.18. The beam curve
is a straight line passing the 0.4 chord at the root and 0.5 chord at the
tip. It is equally meshed by 8 elements. It is applied with the same an-
alytically described twist and flapwise bending as in section 5.3.2 with
a = 8 =60°. The result is shown in Fig. 5.19. One remark is that the
nodes are connected by straight lines instead of curves in the deformed
1D mesh due to the limit of the visualization.

The second geometry is the blade of the NREL phase VI wind tur-
bine [61]. The beam curve is a straight line passing the axis of the
cylindrical root section which is equally meshed by 8 elements. Two
surface meshes are tested: an unstructured mesh with triangles and
a structured mesh with quadrilaterals allover except some triangles at
the tip. For the surface reconstruction of the unstructured mesh a rigid
body motion operator has to be computed for each fluid node. The
efficient treatment proposed in Section 5.1.1 is used here for the struc-
tured mesh, so each 198 fluid nodes along the beam length direction are
regarded as belonging to the same cross section, except the 793 nodes
at the blade tip. It results in only 208 rigid body motion operators for
the individual cross sections. The treatment is quite practical since re-
solving the boundary layer of turbulent flows usually leads to structured
boundary meshes. The meshes are shown in Fig. 5.20. The beam is
applied with the same analytically described twist and flapwise bending
as in section 5.3.2 with 8 = 60° and « = 180°, which means it is bent
into a half circle. Such big deformation do not happen in reality but it
is used to test the performance of the co-rotating algorithm. The results
are shown in Fig. 5.21 and Fig. 5.22.

The tests on both geometries result in the smooth deformed surfaces
without distorted or collapsed elements, and thus verify the robustness
and smoothness of the co-rotating algorithm for large displacements and
rotations.
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Figure 5.18: The curve and surface meshes of the airplane wing.
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Figure 5.19: The curve and surface meshes of the airplane wing after
deformation.
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v

A3

(a) The curve and the unstructured surface meshes. The unstructured
mesh has 20876 elements and 10458 nodes.

v

A

(b) The structured mesh which has 41680 elements and 41779 nodes.

Figure 5.20: The curve and the surface meshes of the blade of the NREL
phase VI wind turbine.
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Figure 5.21: The curve and the unstructured surface meshes of the blade
after deformation with three different views. The unstructured surface
mesh is displayed with two different styles.
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5.5 Summary

This chapter focuses on the surface reconstruction of a 2D fluid surface
mesh from an 1D beam mesh in the context of FSI. The mapping is
achieved by two steps: the cross section of a surface node is determined
in the first step and the rotation and translation of the cross section is
interpolated in the second step. The co-rotating algorithm is able to
interpolate large displacements and rotations. The convergence tests
show its accuracy and satisfactory convergence behavior under pure
bending as well as under combined twist and bending, which cannot
be achieved by the linearized algorithm. The tests on an airplane wing
and a wind turbine blade demonstrate the smoothness and robustness
of the co-rotating algorithm with only a small number of 1D elements
and under artificially large deformation.

The mapping is based on the beam kinematics with simplifications.
The elastic and the shear centers are assumed coincided, and the cross
sections are assumed rigid and orthogonal to the beam axis during de-
formation. This corresponds to the assumptions for nonlinear slender
beams as in the so-called theory of elastica. When the assumptions are
not valid, e.g. in case of Timoshenko beam or warping, the algorithms
can be extended by adding more parameters related to warping or shear
deformation. However, the presented algorithm has a wide range of ap-
plications and can give approximate solution when these factors are not
severe.

A comparison between mapping with beam elements and mapping
with surface meshes introduced in Chapter 4 is given below. For linear
beam elements, the nodal rotations can be operated as vectors so it also
results in a mapping matrix. But DOFs on the same node are coupled
meaning that the mapping matrix does not work in a componentwise
way. For nonlinear beam elements, the rotation angles appear inside
trigonometric functions, so the mapping operator is nonlinear. The
consistency criterion is easy to realize since pure translation can be
exactly mapped. With regard to the load mapping, the conservative
mapping presented in Section 4.2 is the same process as computing the
consistent nodal forces and moments presented in Section 5.2.
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Chapter 6

Co-Simulation Examples

The co-simulation environment EMPIRE has been validated with FSI
benchmark examples such as a flow past a cylinder attached with an
elastic flag [127] and a driven cavity with flexible bottom [134]. The
works of validating EMPIRE can be found in [136] and [50]. Besides,
the co-simulation environment has been also applied in many industrial
FSI problems especially with respect to civil engineering. Moreover,
applying EMPIRE in co-simulations with more than two partitions has
been presented in [120], where fluid-structure-control coupled problems
are studied.

In this chapter, three co-simulation examples are selected to be pre-
sented, including:

e FSI simulation of a flat membrane in a wind tunnel. The mem-
brane is modeled as a zero-thickness object in the fluid domain,
and the interface contains the upper and lower surfaces of the
membrane. One difficulty comes from solving the mesh motion
with sharp edges at the interface. The simulation results can be
compared with the measurements from the wind tunnel experi-
ments.

e FSI of wind turbine blades. The blades are modeled by a large
number of structural shell elements in another work. However,
they are modeled by only a small number of beam elements in this
work and the mapping algorithms for beam elements presented in
Chapter 5 can be used. Since the fluid model is exactly the same,
the results due to different structural models are compared.
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e Shape optimization of a prototypical 2D hydrofoil. The optimiza-
tion problem is simple in the sense that there are only one single
design variable and one single objective, and the fluid and struc-
ture models are small. But it is a representative case of optimiza-
tion on a multiphysics problem.

In the following, the examples will be presented in Section 6.1, 6.2 and
6.3 sequentially.

6.1 Flat Membrane in a Wind Tunnel

To study the basic aeroelastic behavior of membrane structures under
wind load, experiments on a simple flat membrane are carried out by a
research group in Harbin institute of technology in China. The experi-
ments have measured the structural and the fluid properties individually
as well as some properties during interaction. Due to the simplicity in
the geometry and the physical properties of both the membrane and
the wind, the problem can serve as a benchmark for FSI simulation on
membrane structures. The establishment, conditions and measurements
of the experiments can be found in [27].

To guarantee the quality of the FSI simulation, models of the single
partitions are validated first before the coupled problem is simulated.
The in-house structural solver Carat++ [51] and the open-source fluid
solver OpenFOAM [137, 74] are used for solving the individual domains.
They are coupled within EMPIRE to solve the FSI problem.

6.1.1 Experiments

The experiments are briefly introduced here with a focus on the param-
eters which relate to the numerical models and the post-processing.

Geometry

The installation of the flat membrane and the measuring instruments
inside the wind tunnel is shown in Fig. 6.1, which is also sketched in Fig.
6.2. The membrane is located in parallel to the ground with a height
of H = 400 mm. It is rectangular and has a length of L = 600 mm and
a width of B = 1200 mm. The longer edges of the membrane surface
are fixed by two steel cylindrical tubes with a diameter of 12 mm. The
thickness of the membrane is 0.4mm. The test section of the wind
tunnel has a height of 3m and a width of 4m.
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6.1. Flat Membrane in a Wind Tunnel

Figure 6.1: Experiment setup of the flat membrane in a wind tunnel
(photographed from [27]).

Wind properties

The wind tunnel is able to generate a smooth flow with almost constant
profile of velocity and turbulence intensity. The flow velocity at the
inlet is 10m/s with a turbulence intensity of 0.5%. The air flow has
a kinematic viscosity of 1.81-107°m? /s and a density of 1.2250 kg/m3
which are measured at 15°C.

Membrane properties

The material of the membrane is latex with a density of 1033.45 kg/ m3,
a Young’s modulus of 1.638 x 10~3 GPa and a Poisson’s ratio of 0.4. A
pretension of 30 N/m is added on the membrane by the two cylindrical
steel tubes fixing the longer edges.

Measuring

Three laser displacement meters are installed on the wind tunnel floor
to measure the vibration of the membrane. They are located under the
L/4, L/2 and 3L/4 positions of the center line of the membrane along
the inflow direction. During the experiment, the displacements are sam-
pled with a frequency of 500 Hz for a total time of 100s. The hot wires
over the membrane are used to measure the wind velocities at different
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Figure 6.2: Sketch of the experiment setup of the flat membrane (pho-
tographed from [27]). The displacements under wind load are measured
at the center line with three equidistant laser displacement meters.

positions. When comparing the simulation results with the measure-
ments, only the displacements are considered which can represent the
aeroelastic behavior of the membrane.

To validate the single fluid model, the flat membrane is replaced
by a glass plate with the same geometry except that it has a different
thickness of 18 mm, as shown in Fig. 6.3. Note that the cylindrical
tubes fixing the longer edges are not needed. The experiment is con-
ducted with the same flow condition as that with the membrane. The
wind pressures on the upper and lower surfaces of the glass plate are
measured by pressure transducers, which are distributed equidistantly
at the center lines along the inflow direction of the upper and lower sur-
faces, as shown in Fig. 6.4. The pressures are sampled with a frequency
of 625 Hz for a total time of 20s.

The eigenfrequency of the membrane under 30 N/m pretension is
measured as 7.0 Hz. Note that it is the single measurement provided to
validate the numerical model of the membrane.

6.1.2 Structure Model and Validation

The structure is modeled by 40 x 40 equal-sized nonlinear membrane
elements as shown in Fig. 6.5. The geometry, material properties and
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6.1. Flat Membrane in a Wind Tunnel

Figure 6.3: Experiment setup of the glass plate in the wind tunnel
(photographed from [27]).

—» wind direction

Figure 6.4: There are 29 equidistant pressure measurement locations
at the center line of the upper and lower surfaces of the glass plate,
respectively.

pretension are set according to the description in Section 6.1.1.

An eigenfrequency simulation is perfromed first on the membrane.
The simulated 1st eigenfrequency is 7.10 Hz with a mode shown in Fig.
6.6. The error is 1.4% compared with the measured value 7.0 Hz.

For the transient FSI simulation, the generalized-a method is used
for time integration. The time step size is 0.001s and the total time is
20s.

6.1.3 Fluid Model and Validation

Due to different geometrical details between the rigid plate and the flat
membrane with the fixing cylinders, two different meshes of the fluid
domain are created for both cases. The first mesh is used in the CFD
simulation of the glass plate in the wind tunnel, as shown in Fig. 6.7.
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6. CO-SIMULATION EXAMPLES

Figure 6.5: The flat membrane is modeled by 40 x 40 membrane ele-
ments.

Lo
Figure 6.6: Simulated eigenvector regarding the first eigenfrequency of
the flat membrane.

The second mesh is used in the FSI simulation of the flat membrane in
the wind tunnel, as shown in Fig. 6.8. Both meshes have very close grid
densities and they are different mainly around the individual obstacles.
Moreover, the boundary conditions, the solution algorithms and time
step size are the same in both simulations. As a result, the validation
of the former model can justify the latter one for the FSI simulation.

Glass plate

The fluid mesh in Fig. 6.7 is structured and has ~ 1.0 million cells.
The height of the cells next to the plate surfaces is 6 mm which gives a
y+ value approximately between 4 and 120 during the simulation. The
flow velocity and turbulence intensity at the inlet follow the experiment
description in Section 6.1.1. The k-w-SST method is chosen for turbu-
lence modeling. The values of k£ and w at the inlet are computed out
of the turbulence intensity. Central difference is used to interpolate the
diffusion term and the Vanleer’s TVD scheme is used to interpolate the
convection term. The PIMPLE algorithm is chosen for solving the in-
compressible Navier-Stokes equations. The time step size is 0.001 s and
the total time is 20s. The maximal CFL number during the simulation
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6.1. Flat Membrane in a Wind Tunnel

is around 33 while the average is 0.13.

The pressure and velocity fields from the CFD simulation at 20 s are
shown in Fig. 6.9. The statistical results of the simulated pressures at
the measuring locations in the last 10s are compared with those from
the measurements, as shown in Fig. 6.10. The meaning of the box-and-
whisker plot is illustrated in Fig. 6.11. From the results it can be seen
that:

e In the measurements, the minimums and maximums are far be-
yond the regular range of deviation, so it is a sign of problems of
the measurements at single times. Therefore, the extremes in the
measurements cannot be trusted, but the standard deviations are
still meaningful.

e The standard deviations from the simulation are smaller than
those from the measurement. The difference can come from the
time-averaged behavior of the turbulence model, or the objects
not modeled in the simulation such as the wooden blocks that
fixing the glass plate (see Fig. 6.3).

e A very good agreement regarding the mean values is obtained,
especially from the 20% position to the right end. However, the
mean values around the leading edges are not accurately simu-
lated, where the wind starts to hit the obstacle.

It is found in practice that the results can hardly be improved by increas-
ing the grid density or choosing another turbulence model. However,
the results are accepted since the deviations and especially the mean
values on a major part of the plate are satisfactory. So the fluid model
is considered as validated in the average sense.

Flat membrane

The fluid mesh in Fig. 6.8 is structured and has ~ 1.1 million cells. The
height of the cells next to the membrane surfaces is 6 mm which gives a
y+ value between 2.5 and 115 during the FSI simulation. The settings
of the fluid part for the FSI simulation are the same as those for the
CFD simulation with the glass plate.

The meshes on the membrane upper and lower surfaces are matching.
They are overlapped i.e. the thickness is modeled as zero. One of the
meshes is shown in Fig. 6.12. The grid density is higher around the free
edges of the membrane to deal with the problem of the Laplace’s mesh
motion solver. The details are given below.
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Figure 6.9: Flow fields around the plate at 20s of the CFD simulation.

Let’s first consider a 2D heat transfer example in Fig. 6.13a, where
an internal zero-thickness object has temperature of 1°C and the do-
main boundaries have temperature of 0 °C. The temperature field solved
by the Laplace’s equation solver has oval-like contour lines, and the
temperature around the ends of the object is smaller than that on the
object. If the temperature field becomes the mesh displacement field in
the vertical direction (scaled with a certain factor), a deformed mesh
can be obtained as shown in Fig. 6.13b. It can be seen that the cells
around the ends of the object are distorted. The reason is that the dis-
placements of the cells around the end points are smaller than the ones
on these points. The problem is more severe if the cells have a larger
length ratio. In practice it is found that even more advanced diffusivity
algorithms cannot solve the problem.

Coming back to our case, the two free edges (the shorter edges) of
the membrane in 3D correspond to the two end points of the object in
the 2D example, i.e. the 2D example represents a cross section of the
wind tunnel orthogonal to the inflow direction. And it is found that the
FSI simulation will crash due to distorted cells around the free edges
if the cells have a relatively big length ratio. As a workaround, the
length ratio is reduced for these cells, which at least guarantees that
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Figure 6.10: Comparison between the simulated and measured pressures
on the surfaces of the glass plate.
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Figure 6.11: Meaning of the box-and-whisker for statistical analysis.

Figure 6.12: Fluid mesh at the membrane surface. There are 63 elements

in the direction of the shorter edges and 60 elements in the direction of
the longer edges.

distorted cells will not happen in this simulation. Improvement of the
Laplace’s mesh motion solver is not further studied in this work, but
one idea is shared here that the cells around the sharp edges should take
approximately the same displacements as those on the edges.

6.1.4 FSI Simulation and Results

Displacements and forces are exchanged at the upper and lower sur-
faces of the membrane. In the co-simulation, each client defines two
meshes which coincide with each other. But the surface meshes form
the structure and the fluid are non-matching as shown in Fig. 6.5 and
Fig. 6.12, so the standard mortar mapping algorithm is used. Since
the wet-surface is a simple rectangular plane, the algorithm can be used
in a conservative way without enforcing consistency. The sum of the
fluid forces on the upper and lower membrane surfaces is assigned to
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Figure 6.13: An illustration of the problem when solving the mesh dis-
placement by the Laplace’s equation. The temperature field in (a) is
applied as the mesh displacement field in (b).

125



6. CO-SIMULATION EXAMPLES

the structure partition as external forces. The displacements of the
upper and lower surface meshes from the structure are the same so
there are also no gaps between the upper and lower membrane surfaces
in the fluid domain. Iterative coupling is used in combination with the
Aitken’s relaxation method. Linear extrapolation is used for prediction.
The iterative loop at each time step is converged after two iterations
with an absolute residual below 1-10~7m. So the interaction is quite
stable.

The deformed membrane and the flow around it at different times
are shown in Fig. 6.14. The simulated displacements on the membrane
at the measuring locations are compared with those from the measure-
ments, as presented in Fig. 6.15. The statistical results of them in the
last 10 seconds are given in Fig. 6.16. Note that the displacement is
defined on the location of a laser meter instead of on a material point
of the membrane. From the figures it can be seen that:

e The deformation of the membrane is a 3D phenomenon, i.e. the
internal region has a larger deformation than the edges and the
wind over the membrane can flow in the z-direction.

e The simulated displacements have a smaller amplitude of oscilla-
tion than the measured ones. And the high-frequency modes in
the displacements as a sign of turbulence are not reproduced in
the simulation.

e The ranges of the simulated displacements locate within those of
the measured values, but the standard deviations of the simulated
values are considerably smaller.

Similar to the CFD simulation results, the results of the FSI sim-
ulation are satisfactory only in the average sense. And the dynamical
behavior of the interaction between the wind and the membrane is not
accurately simulated. To get better results in the future, more stud-
ies should be put in turbulence modeling. What’s more, as a potential
benchmark example, the pressure measuring over the glass plate should
be improved. More data should be measured as well e.g. higher order
eigenfrequencies and displacements at more locations.
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6.1. Flat Membrane in a Wind Tunnel

(c) 19.7s.

Figure 6.14: Results of the FSI simulation at different times. The sur-
face above shows the pressure field on the upper surface of the membrane
while the surface below shows the pressure field on the lower surface.
The grid surface shows the deformation with a scaling factor of 5.
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(f) 20.0s.

Figure 6.14: Results of the FSI simulation at different times. The sur-
face above shows the pressure field on the upper surface of the membrane
while the surface below shows the pressure field on the lower surface.
The grid surface shows the deformation with a scaling factor of 5.
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Figure 6.15: Evolution of the displacements at three measured locations
from the FSI simulation and the experiment.
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Figure 6.15: Evolution of the displacements at three measured locations
from the FSI simulation and the experiment.
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Figure 6.16: Statistical results of the simulated and measured displace-
ments at different measured locations.
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6.2 NREL Phase VI Wind Turbine

The NREL phase VI wind turbine has two blades with a diameter of
10.058 m and its hub height is 12.192 m. Experiments are performed on
it by the National Renewable Energy Laboratory (NREL) in the USA
to study the aerodynamic behavior of wind turbines. The wind turbine
is well documented in [61] including the geometries, structural and flow
properties and the experiment results. Therefore, the problem is chosen
for CFD and FSI simulations in many works such as [69], [86] and [98].

Among the existing works, [120] uses EMPIRE to perform a co-
simulation with up to four solvers, including a fluid solver, a structure
solver, a generator solver and a controller of the pitching angle. Different
from the other works where the rotational velocity of the wind turbine
is fixed, the co-simulation in [120] enables dynamical rotational velocity.
Besides, the so-called “emergency brake maneuver” is simulated where
the controller can brake the rotation by changing the pitching angle of
the blades.

In this work, an FSI simulation of the wind turbine is performed
where the blades are modeled by structural beam elements. The map-
ping algorithms for beam elements developed in Chapter 5 can be used.
The validated fluid model in [120] is reused in the FSI simulation here,
but the structural shell model is replaced by a beam model.

6.2.1 Previous Simulation with Shell Elements

The FSI simulation of the NREL phase VI wind turbine in [120] is briefly
introduced here. The commercial code Abaqus is used as the structure
solver and OpenFOAM is used as the fluid solver. The fluid model here
will be reused in the new FSI simulation where the structure is modeled
by beam elements.

Structure Model

Each blade is modeled by ~ 60 thousands nonlinear shell elements in
Abaqus. The composite structures and the installed instruments have
also been taken into consideration. The geometries of one blade is shown
in Fig. 6.17. The CSM model is validated against a few structural prop-
erties given in the documentation. The results will be comparatively
presented later together with those from the beam model.
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Figure 6.17: Shell model of one blade (photographed from [120]).

Fluid Model

The fluid domain is shown in Fig. 6.18a. The rotation of the blades is
realized by a region rotating with the blades. A side view of the rotating
region is given in Fig. 6.18b. The interface between this region and the
region outside is called arbitrary mesh interface (AMI), where the data
are mapped via the standard mortar method [44]. The mesh has totally
~ 9.9 million cells, and especially there are ~ 2.6 million cells around
each blade surface as shown in Fig. 6.19. It results in an average y+ of
~ 7 and a maximum y+ of ~ 12 on the blade surface.

The air has a density of 1.23 kg/m3 and a kinematic viscosity of
1.46 - 107> m?/s. The inlet turbulence intensity is 0.5%. The test case
concerned in this work has an inlet wind velocity of 7m/s. The rota-
tional velocity is 72r/min and the pitching angle of each blade is 3°.

Regarding the numerical algorithms, the BDF2 method is used for
time integration and second order accurate spatial interpolation schemes
are used for the diffusion and the convection terms in the momentum
equation. The k-w-SST method is used for turbulence modeling.

The simulated pressure coefficients at different locations on the blade
radius are checked against the measurements. The results show very
good agreement which are not further presented here. For details the
reader is referred to [120].

FSI Simulation and Results

The displacements and forces are exchanged at the blade surfaces. And
each solver sends two meshes to the server which are the individual
blades. The standard mortar mapping algorithm is used on the blade
meshes with enforcing consistency, which is already presented in Section
4.5.3. The iterative coupling is not affordable in this case since solving
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(a) Fluid domain.

ol

(b) The rotating region.

Figure 6.18: Fluid domain of the wind turbine simulation.
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Figure 6.19: Part of the fluid mesh around the wind turbine blade.
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6.2. NREL Phase VI Wind Turbine

the fluid domain takes a lot of time. As a result, loose coupling is used
in combination with linear extrapolation.

The blade tip displacement and the rotor shaft torque over time are
shown in Fig. 6.20. These results will be compared with those from the
FSI simulation with beam elements.

1300 : : -0

: Rotor shaft torque: CFD ———
1 S FSI -~ -0.0014

Tip displacement blade 1: - - FSI

Rotor shaft torque (Nm)
Tip displacement (m)

Time (s)

Figure 6.20: Simulation results including the rotor shaft torque and the
tip displacement in y direction (photographed from [120]). The torque
from a CFD simulation is given as a reference where the blades are rigid.

6.2.2 New Simulation with Beam Elements

Different from the work that is presented before, the turbine blades are
modeled by beam elements in this work. Carat++ is chosen as the struc-
ture solver. The fluid model built inside OpenFOAM in the previous
work is reused without changes. Another simple client is written which
is in charge of transforming the loads from the original coordinate sys-
tem to the rotational coordinate system. The three clients are coupled
in EMPIRE to accomplish the FSI simulation of the wind turbine.

Structure model and validation

The beam model is built based on the beam properties of the blades
at 26 different cross-sections given in [61]. The properties include mass
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per unit length pA (kg/m), axial stiffness EA (N), edgewise stiffness
EI,, (Nm?), flapwise stiffness EI,, (Nm?) and distance from center of
rotation x (m), where E is the Young’s modulus, A is the area of the
cross-section, I, and I,, are respectively the area moment of inertia
in the flapwise and edgewise directions. The beam properties are not
measured, but estimated via some cross-section analysis tools e.g. [90,
16] instead. However, it is mentioned in the original document of these
properties [61] that ”a satisfactory match between blade frequencies
predicted with the structural estimates and the measured frequencies
has not been achieved”.

Each blade is modeled by 10 beam elements as shown in Fig. 6.21.
The distributions of the stiffness and mass properties over the blade
length are linearly interpolated within the 26 discrete positions and
then integrated on the beam elements to obtain the element properties.
However, as the problem that has been mentioned before, following the
documented beam properties results in big differences between simu-
lated and measured values in center of gravity, total mass and eigen-
frequencies. The simulated first eigenfrequency is 50% higher than the
measured one which means the numerical model is too stiff. There-
fore, the element properties are scaled in order to obtain a satisfactory
agreement.

J @

Figure 6.21: Beam model of the blade with 10 elements.

The final properties of the beam elements of one blade is given in
Table 6.1. The Young’s modulus is set as F = 2.5 - 107 Pa, the density
as p=1 kg/m3 and the Poisson’s ratio as 0.2. One remark is that the
single values of E, p, A, I.., I, here do not have physical meanings
since the values of F and p are artificially set. But the combinations of
them namely pA, EA, El,, and EI,, do have physical meanings. The
beam elements are rotated around the beam axis by 3° according to the
given pitching angle.

The eigenfrequencies and the tip displacement under gravity load
are simulated with the beam elements. The simulated results as well
as the total mass and center of gravity in the numerical model are
compared with those form the shell model in [61] and those from the
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Elem. z; (m) 29 (m) A (m?) I, (m?) I, (m*)

1 0.32 0.529  18.1421  0.199407 0.152649
2 0.529 1.029  18.1421 0.0804055  0.0674528
3 1.029 1.529  16.2441  0.0311405 0.11323

4 1.529 2.029 16.0413 0.0233819  0.117525
5 2.029 2,529  14.3230 0.0178074  0.0998286
6 2.529 3.029  11.8717  0.0120966  0.0681247
7
8
9
1

3.029 3.529  10.7029 0.00871279  0.0497703
3.529 4.029  9.54008 0.00583339 0.0352038
4.029 4.529  8.43026 0.00368089 0.0238397
0 4.529 5.029 7.36111 0.00214558 0.0152379

Table 6.1: Setup of the beam elements.

measurements, as shown in Table 6.2. The results in the table are
clarified in the following:

e In fact, the beam model is set based on the documented cross-
section properties and tuned based on the first five properties of
the shell model. That is the reason why these properties between
them are very close. There are no more available information from
the shell model so the beam model can approach the shell model
only based on these limited properties.

e [t is found that to obtain satisfactory first and second flapwise
eigenfrequencies at the same time is not possible by just scaling
the documented values, so it is decided to make the first eigen-
frequency closer. The bigger differences in the second flapwise
eigenfrequency and the tip z-th displacement are due to different
mass and stiffness distributions as well as different background
theories of the two structure models. Since the distributions of
stiffness and mass in the shell model are not given, the results
cannot be improved.

e Although the total mass, the center of gravity and the first eigen-
frequencies are very close, these properties are only related to the
most basic dynamical behaviors. The differences in other prop-
erties show that both models are similar in the overall sense but
different in the local sense.
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The eigen modes are shown in Fig. 6.22 and the deformation due to the
gravity load is shown in Fig. 6.23.

For transient analysis in the FSI simulation, the generalized o method
is used for time integration with a time step size of 0.001s and a total
time of 5s.

Property Measured ~ Shell [120] Beam  Unit Diff.
value %

Total mass 60.2 60.12 60.12 kg O

Center of gravity  2.266 2.287 2.285 m 0.09

First flapwise 7.313 7.901 7.909 Hz 0.10

eigenfrequency

Second flapwise 30.062 30.981 32.734 Hz  5.66

eigenfrequency

First edgewise 9.062 12.740 12.761 Hz  0.16

eigenfrequency

Tip z-th displace- 2.333 2.625 mm 12.5

ment under gravity

Table 6.2: Measured and simulated structural properties of the blade.
The differences are defined between the results of the shell model and
the beam one.

(a) First flapwise eigenmode.

) Second flapwise eigenmode.

L.. M

(c) First edgewise eigenmode.

Figure 6.22: Eigenmode shapes of the beam model.
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Z Displacement
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Figure 6.23: Deformation of the blades under gravity load. The defor-
mation is scaled up with a factor of 500.

Computation of forces

During the FSI simulation, the beam elements are solved in a coordinate
system rotating with the blades as shown in Fig. 6.24, so the blades can
be modeled as cantilever beams that are clamped at the roots. Linear
beam elements are used since the deformation of the blades under the
wind load is small. To model the rigid body rotation of the blades,
an additional client beamForces is implemented which computes the
total forces on the beam elements in the rotating coordinate system.
The coupling scenario of the FSI problem is shown in Fig. 6.25. In
beamForces, the fluid forces f are added with the gravity forces fg,
and then the results are transformed to the rotating coordinate system
with the matrix R. The total forces f; is equal to the sum of the fluid
forces, the gravity forces and the centrifugal forces f. which are constant.
Note that the deformations s are defined on the rotating coordinate
system, but they do not have to be transformed because the adapter in
OpenFOAM needs also deformations defined on this coordinate system
instead of the global one. In fact, beamForces is only a tool for the
structure solver implemented externally instead of a physical partition.

FSI simulation and results

For FSI simulation, the linearized mapping algorithm for beam elements
is used due to small bending deformation. Mapping happens between
connections 2a and 2b as well as between connections 4 and 1. Loose
coupling is chosen in combination with linear extrapolation in time,
so the connections are wrapped by a single time step loop. The L2
norm of the interface residual regarding the displacements stays between
1-107"m and 1-10~%m during the simulation, i.e. the solution process
is stable.

The blade tip displacement and the rotor shaft torque over time are
shown in Fig. 6.26. A time series of the simulation is presented in
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Figure 6.24: The rotating coordinate system defined on one blade.
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Figure 6.25: Coupling scenario of the FSI simulation of the wind turbine.

Fig. 6.27, where the vortices in the flow fields are visualized by the
isosurfaces of the Q-criterion [40].

Compared with the results from the shell model in Fig. 6.20, the
following can be concluded:

e The torques are very close but the average tip displacement from
the beam model is about 30% larger. Both torques are also close
to the one resulting form the CFD simulation, this means the
torque is almost not affected by the aeroelasticity of the blades
because they are stiff enough.

e The differences in the tip displacements are caused by the differ-
ences in the structural properties of both models. This cannot
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Figure 6.26: Results of the FSI simulation with the beam model.

be improved due to the inaccurate data given in the experiment
document and the limited information from the shell model.

e Compared with the shell model with &~ 60 thousands nonlinear
shell elements, there are only 10 elements in the beam model. Us-
ing beam elements saves not only the modeling but also the com-
putation effort. Given more accurate cross-section analysis tools,
the beam model is a good choice for complex beam structures.
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Figure 6.27: Q-criterion isosurface colored by velocity magnitude on the
flow field from the FSI simulation. The bending deformation is scaled
with a factor of 70.
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Figure 6.27: Q-criterion isosurface colored by velocity magnitude on the
flow field from the FSI simulation. The bending deformation is scaled

with a factor of 70.
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6.3 Shape Optimization of a Prototypical Hydrofoil

A shape optimization example is presented here which aims at demon-
strating the application of EMPIRE in coupled problems with more
than two partitions and more complex coupling scenarios. The example
is shown in Fig. 6.28 where a prototypical hydrofoil attached to a string
is put inside a channel flow. The shape of the hydrofoil is described as
a NURBS surface with control points. A single design variable controls
the shape of the hydrofoil by displacing the control points. The hydro-
foil moves vertically due to the lift force to a stable position and the flow
becomes steady. The goal of the optimization is to minimize the drag
force on the hydrofoil. Numerical models are not validated analytically
or by experiments. This example is designed to present the establish-
ment and mechanism of an optimization framework rather than to find
the optimal of a certain practical problem.

| 20m [
5.5m |
- drag force
inlet [ e outlet [ |10m
— 5m
reference shape design range
0.2m

e i

Figure 6.28: Sketch of the shape optimization problem of a prototypical
hydrofoil. The control points at the bottom are colored by red which
can move according to the design variable.

Three clients are coupled in the co-simulation: OpenFOAM is chosen
as the fluid solver, the mechanical system is written in a new client me-
chanicalClient and the optimizer is written in MATLAB which applies
the optimization toolbox there.
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6.3. Shape Optimization of a Prototypical Hydrofoil

6.3.1 Fluid Model

The fluid mesh with the reference shape is shown in Fig. 6.29. It is
actually a 3D mesh with a constant width of 1 m in the z direction. The
width is discretized by only one cell, and the front and back boundaries
are set to "empty” in OpenFOAM so that the 3D model is internally
solved in 2D.

The flow properties are close to water i.e. the kinematic viscosity
is 1-107°m?/s and the density is 1 - 103 kg/ms. The upper and lower
boundaries are set to slip walls and the pressure is set to 0 at the outlet.
In order to obtain a steady state in the flow field, the velocity at the
inlet is set to a small value as 0.5 m/s. The first-order scheme BDF1 is
chosen for time integration. Regarding spatial interpolation, the central
difference algorithm is used for the diffusion term while the upwind
algorithm is used for the convection term. The PIMPLE algorithm is
used for solving the Navier-Stokes equations. The time step is set to
0.1s which results in a maximum CFL number around 4.5. The total
time is 100s.

A fluid simulation is performed first on the fixed hydrofoil. The
evolution of the lift and drag forces is shown in Fig. 6.30. It can be
seen that the flow arrives at a steady state before 100s. The pressure
and velocity fields around the hydrofoil at 100s are shown in Fig. 6.31.
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Figure 6.29: The fluid mesh and the zoomed-in region around the hy-
drofoil.

6.3.2 Structure Model

The structure of the hydrofoil is simply modeled as a mechanical system
with one degree of freedom which is the displacement in the vertical
direction. The stiffness is set as K = 1000N/m. Since the hydrofoil
will move to a stable position, the displacement at the stable position
can be computed by u = f/K, where f is the lift force from the steady
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Figure 6.30: Evolution of the lift and drag forces during the CFD sim-
ulation.
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Figure 6.31: Flow fields at 100s in the CFD simulation.
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state flow. The mass is set to M = 2000kg. The damping is set as C' =
50 Ns/m to stabilize the interaction between the flow and the hydrofoil.
The values of K, M and C are tuned with several try-runs and the
chosen values can lead to a steady state of FSI. The mechanical system
can be described by an ordinary differential equation (ODE) as M +
Cu + Ku = f where the dots over u denote the time derivatives. The
ODE is implemented inside the client mechanicalClient. The Newmark-
[ algorithm is used for time integration. The time step and the total
time are the same as in the fluid model.

For FSI simulation, mechanicalClient holds a mesh of the wet-surface
which is matching to the one from the fluid solver. The input of this
client is the forces on the mesh and the output is the displacements on

146



6.3. Shape Optimization of a Prototypical Hydrofoil

it. Internally, f is computed by summing up the nodal forces in the
vertical direction, and then u is solved and assigned to all mesh nodes.

6.3.3 FSI Simulation

An FSI simulation is performed first with the reference shape. The near-
est neighbor mapping algorithm is used since the interface meshes from
both clients are matching. Iterative coupling is used in combination
with linear extrapolation. The simulation is run for 100s to guarantee
that a steady state is reached.

The evolution of the lift and the elastic forces is shown in Fig. 6.32.
The forces become almost equal and constant after 50 seconds, which
is a sign of steady state. A series of flow fields at different times are
shown in Fig. 6.33.
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Figure 6.32: Evolution of the lift force and the elastic force of the spring
during the FSI simulation.

6.3.4 Optimization

The coupling scenario of the co-simulation is shown in Fig. 6.34, where
the connections are defined both statically and dynamically. The cou-
pling is realized by putting the transient FSI problem inside the opti-
mization loop (loop 1). The FSI simulation is set up in the same way
as shown in Section 6.3.3, except that the shape of the hydrofoil in the
fluid is changed.
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Figure 6.33: Flow field during the FSI simulation at different times.
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Optimizer

The optimizer is written in MATLAB. It owns a mesh of the hydrofoil
modeled by a NURBS surface. It calls a MATLAB routine fmincon to
minimize a MATLAB function which triggers one FSI simulation each
time it is called. After fmincon finds the minimum, the optimizer will
inform Emperor the convergence which will be then broadcast to the
other clients, then the co-simulation is finished.

Shape parametrization. The shape of the hydrofoil in 2D is mod-
eled by one NURBS curve with 9 control points, the first and the last
of which are coincided. Their positions are shown in Fig. 6.28. The pa-
rameters of the NURBS curve are the same as those used for describing
a circle With 2nd order polynomials. The knot vector is (0,0,0, 1 1 4,

é,é, 4,4, 1,1,1) and the weights are (‘2[,1, V2 .1, ‘2[,1, V2 .1, ‘f)
The shape in 3D can be modeled by a NURBS surface with 18 control
points by extruding the NURBS curve in the third direction with linear
polynomials. The parameters of the NURBS surface are sent from the
the optimizer to Emperor as an isogeometric mesh (represented by the
class IGAMesh in Emperor).

Design variable. The shape is changed by moving the control
points at the bottom in the vertical direction. These control points
are moved with the same displacement, while the other control points
are fixed in space. The displacement denoted by ¢ is the single design
variable of the optimization. It is equal to 0 at the reference shape.
The range of ¢ is [—0.1,0.1]. The extreme shapes at the upper and
lower bounds are shown in Fig. 6.28. The displacements of all the
control points are denoted by ugp, which can be derived from ¢ (the
displacement on a control point is either equal to ¢ or 0). Note that
these displacements should be differentiated from the displacements of
the hydrofoil during FSI simulation, which are denoted by u.

Mesh morphing. Mesh morphing is the method of changing the
shape of a mesh by changing certain parameters. The mesh morphing
of this problem is realized by the isogeometric mortar mapper which
maps ugj, from the isogeometric mesh to the finite volume surface mesh,
which is used in connection 1. Note that the total displacements u; =
U, + u determine the actual shape and location of the hydrofoil in the
fluid domain. For the mechanical system mesh morphing is not needed
because it contains only a single mass point.

Objective. The objective is the drag force p at the steady state, i.e.
the goal is to minimize p which is dependent on ¢. p is of type Signal
which is internally a single float number. It is computed out of the fluid
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forces f.

Minimization. The routine fmincon in MATLAB is used, which
is able to find the minimal of a scalar objective regarding multiple de-
sign variables with non-linear equality and inequality constraints. For
the problem here, the initial value, upper and lower bounds of ¢ are
passed into fmincon. Besides, a function p = P(q) has to be passed into
fmincon as well. fmincon will run the function iteratively by feeding a
new value of ¢ into it and obtaining a new value of p from it. After
each iteration, fmincon will calculate the update of the design variable
Aq based on certain algorithms. For this problem, fmincon is config-
ured as follows: the interior point algorithm [23] is used which employs
sequential quadratic programming (SQP) and trust regions; the deriva-
tives are approximated by finite difference; the termination tolerance of
the objective is set to 2 - 107* N; the initial value of ¢ is 0.1, the upper
and lower bounds of ¢ are 0.1 and —0.1. The function p = P(q) is also
written in MATLAB. It first computes ug, out of ¢ and then sends uyy,
to Emperor to trigger one FSI simulation. After the FSI simulation is
finished, it receives p from OpenFOAM and returns it to fmincon.

Optimization and results

Before optimization, FSI simulations with prescribed shape updates are
precomputed to obtain a first impression of the relation between the ob-
jective and the design variable, as shown in Fig. 6.36. It can be foreseen
that the drag force has a minimum inside the interval [—0.06, —0.02].

The same configuration of the FSI simulation in Section 6.3.3 is used
in the optimization. So the steady state of the FSI problem is solved
in a transient simulation with nested time step and iterative coupling
loops. The overall coupling scenario is set up by wrapping the nested
loops for the FSI coupling inside an optimization loop.

The optimization is performed and the optimal is found after 12
optimization iterations. The outputs of fmincon are shown in Table 6.3.
The “FSI-count” is the number of FSI simulations performed, which is
the same as the number of optimization iterations. The “opt-count”
is step number of the optimization algorithm in fmincon. And each
step contains two FSI simulations since the finite difference method is
used to compute the “optimality” which is actually the derivative. The
drag forces dependent on the shape updates are drawn in Fig. 6.37,
where the finite difference evaluation of the derivative can be clearly
seen from the curve of the optimization process. Different shapes during
the optimization process are drawn in the Figure. The optimal design
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is found to be at —0.04908, in which case the steady state flow fields at
100s are shown in Fig. 6.35.

Opt.- FSI- Design  Objec- Step Optimality
count count tive length
1 1 0.1 17.62

2 0.099 17.568 0.2 5.212e+01
2 3 -0.1 10.86

4 -0.099  10.828 0.07671 8.434e+01
3 5 -0.02329 10.565

6 -0.02429 10.534 0.03773 2.053e+01
4 7 -0.06102  9.9879

8 -0.06202  9.998 0.00920 1.013e+-01
5 9 -0.05182  9.9316

10 -0.05282  9.9345 0.00374 2.925e+00
6 11 -0.04808  9.9283

12 -0.04908  9.9280 0.00029 2.516e-01

Table 6.3: Statistics of the optimization process.
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Figure 6.34: Coupling scenario of the optimization problem. (a) Statical
diagram. (b) Dynamical diagram.
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Figure 6.35: Flow fields at the last time step of the FSI simulation with
the optimized shape.
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Figure 6.36: Lift and drag forces at the stead state of the FSI simulations
with prescribed design updates.
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Figure 6.37: Design and objective during the optimization process. Up-
date of the shapes is also drawn.
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6.4 Summary

During the development of EMPIRE;, it has been successfully validated
by benchmark cases as well as applied in practical multiphysics co-
simulations including FSI, FSI plus control and generator, and opti-
mization of FSI. This chapter presents three examples of them.

The first example is the FSI simulation of a flat membrane in a wind
tunnel. It is modeled as a zero-thickness object in the fluid domain,
and the upper and lower surfaces are two separate interfaces defined for
coupling. Compared with the given experimental measurements on the
displacements, there is a good agreement in the mean values and the
standard deviations.

The second example is the FSI simulation of the NREL phase VI
wind turbine. Compared with another work, each blade is modeled by
only 10 linear beam elements instead of 60 thousand nonlinear shell
elements. The mapping algorithm for linear beam elements presented
in Chapter 5 is applied. The beam elements are modeled in a coordinate
system rotating with the blade, and a third client helps to transform the
forces to this coordinate system. As a result, three programs are coupled
in the co-simulation. The simulation results from the shell model and
those from the beam model are compared. They have very close torque
but the beam model has considerably larger displacements. The main
reason is the lack of known structural properties to make the beam
model approach to the shell model.

The third example is the shape optimization of a prototypical 2D
hydrofoil. It locates inside a channel flow and is connected to a spring,
which results in steady state FSI. This example aims at demonstrating
the use of EMPIRE in a co-simulation with more partitions and a more
complex coupling scenario. The shape of the hydrofoil is described by
NURBS parameters and is morphed by one design variable. The objec-
tive is the drag force on the hydrofoil. The optimizer is implemented in
MATLAB so that existing optimization routines can be reused.
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Chapter 7

Conclusion and Outlook

This thesis starts with the computational models for fluid, structure and
FSI problems. A general multiphysics problem can contain two or more
than two partitions. The partitioned strategy of solving multiphysics
problems results into co-simulation, where the governing equations of
the individual partitions are rewritten into black box solvers, and the
coupling conditions specify the relations between the inputs and outputs
of different solvers.

A software environment named EMPIRE is newly developed to sup-
port co-simulations for general multiphysics problems. The structure
is based on client-server model, where the black box solvers exchange
data with each other through an additional server program. The server
is also in charge of performing data operations on interface data. A
library with API is provided for the clients where the types of interface
data are defined and the send/receive functions of them are also pro-
vided. The biggest advantage of EMPIRE compared with other existing
co-simulation environments lies in the flexibility, i.e. the user is allowed
to set up an arbitrary co-simulation scenario which contains loops and
sequences of connections.

Another main focus of this work is the mapping technique, which ap-
plies coupling conditions on non-matching meshes at the fluid-structure
interface. Three mapping algorithms for surface meshes are investigated
namely nearest element interpolation, standard mortar method and dual
mortar method. It is found that the mortar methods have inconsistency
problem at curved edges, which is solved by the newly developed enforc-
ing consistency approach. When doing conservative traction mapping,
the dual mortar method can give slight oscillations and nearest element
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interpolation can give large oscillations. In case that only nearest ele-
ment interpolation is available, conservative mapping can still be used
if the structure is relatively stiff and if accurate stress distribution close
to the wet surface is not pursued. Otherwise, direct mapping can be
used. In case that the mortar methods are available, the dual mortar
method is generally a good choice. The standard mortar method can
be used if slight oscillations are not accepted.

Mapping with beam elements require a different technique than map-
ping with surface meshes, where nodal displacements on the surface
mesh are computed according to the DOFs of the 1D beam elements.
The mapping algorithms are based on the assumptions that the cross
sections remain rigid and the beam elements locate at the beam axis.
The interpolation of the rigid body motion of a cross section according
to the DOFs of a beam element is realized either with the linearized
or the co-rotating algorithm. Different tests have shown that the lin-
earized algorithm works well for beams with small deformation and the
co-rotating algorithm can handle large displacements and rotations.

Three co-simulation examples are presented including FSI simula-
tion of a flat membrane in a wind tunnel, FSI simulation of a wind
turbine whose blades are modeled by beam elements, and shape opti-
mization of a prototypical hydrofoil. Other examples especially with
respect to FSI with control can be found in the work of [120]. These
examples have not only validated the coupling functionalities of EM-
PIRE, but have also demonstrated its capability in supporting flexible
co-simulation scenarios.

Due to the time limit of this PhD work, EMPIRE has only been
applied for a limited number of multiphysics problems. As the case
for all software, EMPIRE can only be further developed with more
practical applications. Nevertheless, since the requirements of flexibility
and extendability are well realized by the data structures, it has big
potential in solving new types of multiphysics problems. As an open-
source project with application of modern software techniques, it is
hoped that EMPIRE can be used by more research groups in the future
as a platform of algorithm development and multiphysics co-simulation.
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Appendix A

Proof of Inconsistency of
Mortar Methods

A.1 Standard Mortar Method

Let 1 and 15 be the constant discrete fields equal to one on the fluid
and the structure mesh respectively. If the direct displacement mapping
is consistent, Ur = 1 and U = 1 should satisfy (4.20). Since Nlef =
1¢(x) and NT1, = 14(x), we have in (4.20)

LHS = Nf(X)NfT (X)].f de = Nf (X)lf(X) de, (Ala)
Iy

e
RHS—/ N (x)NT (x) 1, dT o = / Nt (x)1,(x) dTasr. (A.1b)

If the conservative traction mapping is consistent, Py = 15 and Py = 1¢
should satisfy (4.24). In (4.24) we have

LHS = M1, = / N, (x)NF(x)1,dT = / N, ( x)dTlg, (A.2a)
RHS = Mfslf = / NS(X)Nf (X)lf drsﬁf
s—f

= / Ni(x)1¢(x) dDgs. (A.2b)

s—f
n (A.1) and (A.2), generally LHS # RHS except when the integration
domains on both sides are the same, so both methods are inconsistent.

However, the discrepancy between both integration domains is limited

157



A. PROOF OF INCONSISTENCY OF MORTAR METHODS

since they are discretizations of the same continuous geometry. There-
fore, the direct and the conservative mapping with the standard mortar
algorithm are not exactly but approximately consistent.

A.2 Dual Mortar Method

If the direct displacement mapping is consistent, Us = 1y and Ug = 15
should satisfy (4.29). In (4.29) we have

LHS = [ Ni(x)NF(x)1dly = [ Ne(x)1¢(x)dTy, (A.3a)
Ff Ff

RHS = / N ()N (x)1, T = / Ni(x)1,(x) dTyr. (A.3D)
1_‘54>f Fsaf

If the conservative traction mapping is consistent, Py = 15 and Py = 1¢
should satisfy (4.33). In (4.33) we have

LHS = M1, = / N, (x)NT(x)1,dl, = / N (x)14(x) dT, (A.4a)
T, Ts
RHS = M{D;'Mg1; = M1, = / N (x)N7 (x)1; dT_
Fs~>f
= / N, (x)1¢(x) dTs 5. (A.4D)
Fs%f

In (A.3) and (A.4), generally LHS # RHS except when the integration
domains on both sides are the same. So the same conclusion can be
derived as in A.1 for the dual mortar method.
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