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ABSTRACT 

Movement has been essential to many scientific and social studies. Understanding human 

mobility in the urban context is of great importance to ease individual travel planning and 

improve the transportation infrastructure as well. With the development of positioning and 

communication technologies, urban mobility can be captured in the form of temporally or-

dered location sequences, namely spatial trajectories, at an unprecedented massive scale 

in nowadays modern cities. Furthermore, open data initiatives such as OpenStreetMap 

have transformed the way that these data are shared and accessed. More and more tra-

jectory data are exposed to academia and industry and has been proved to be invaluable 

resource to comprehend urban mobility. However, these data often suffer from poor data 

quality and lacking semantic information. Many tasks such as map matching, activity 

recognition that serve the purposes of enhancing the data quality or enriching data seman-

tic can be formulated as labeling spatial trajectories. This thesis has revisited these tasks 

from a unified perspective and develop probabilistic models using probabilistic graphical 

model (PGM) for a holistic representation of the trajectory data, in particular, in the context 

of urban road networks. 

The key issue precedent to the model development is to understand the uncertainty that 

resides in the trajectory data and the specific tasks. In the comparative study of tasks of 

labeling spatial trajectories, two types of tasks are identified, namely localization and be-

havioral classification. They distinct in label size and the semantics that the labels bear. 

More importantly, the comparison has facilitated the comprehension of three sources of 

the uncertainty in labeling spatial trajectories. And map matching of low sampling rate GPS 

trajectories and taxi status inference, are selected in the thesis as core tasks for the model 

development. 

With the insight from the comparison of labeling spatial trajectories, the tasks are formu-

lated as computing the probability of the label assignments given spatial trajectory data. 

This discriminative formulation eases the probabilistic modeling by allowing inducing arbi-

trary non-dependent features to compute the overall probability mass. The modeling fol-

lows the standard procedure of application of PGM. First, the graphical structure is de-

signed to represent the structural dependency among the data instances and the labels. 

Specialized treatments are made for localization task, as it requires to deal with huge set 

of labels. Secondly, a large set of features are induced based on both empirical evidences 

and domain knowledge. Each of these features are associated with parameters that need 

to be estimated from the training data. Parameter-tying strategy are discussed for practical 

concerns. Thirdly, inference and learning are developed based on the graphical structure. 

In order to avoid overfitting the data and to find most relevant features in the model, the 

training objective is regularized using  norm. 

To evaluate the proposed models for study tasks, two test datasets are derived from the 

real world dataset, Shanghai taxi floating car data (FCD). The implementations consist of 

label data preparation for localization task, feature extraction in spatial database and 

model development for training and testing. Experiments on test datasets have shown that 
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the proposed models can reach the equivalent performance to the state-of-the-art in solv-

ing the tasks of labeling trajectories and exhibit merits in providing comprehensive repre-

sentation and reliable label assignments. 

  



 

 

III 

 

ZUSAMMENFASSUNG 

Bewegung ist für viele wissenschaftliche und soziale Studien unerlässlich. Das Verständnis 

menschlicher Mobilität im urbanen Kontext ist von großer Bedeutung, um die Planung indi-

vidueller Reiserouten zu unterstützen und zu der Verbesserung von Verkehrsinfrastruktur-

planungen beizutragen. Mit der Entwicklung der Positionierungs- und Kommunikationstech-

nologien kann urbane Mobilität in Form von zeitlich geordneten Standortsequenzen, nämlich 

räumlichen Trajektorien, in den heutigen modernen Städten mit einem beispiellos enormen 

Ausmaß erfasst werden. Darüber hinaus haben Open Data Initiativen wie OpenStreetMap 

die Art und Weise wie diese Daten gemeinsam genutzt und abgerufen werden gänzlich ver-

ändert. Immer mehr Trajektorien werden der Wissenschaft und Industrie zur Verfügung ge-

stellt, die sich als wertvolle Ressource erweisen um urbane Mobilität zu verstehen. Aller-

dings besitzen diese Daten häufig eine schlechte Datenqualität sowie mangelnde semanti-

sche Informationen. Viele Aufgaben wie Map Matching und Aktivitätserkennung die Zwecke, 

die der Verbesserung der Datenqualität oder der Datenanreicherung mit Semantik dienen, 

können als Labeling räumlicher Trajektorien bezeichnet werden. Ziel dieser Arbeit ist es, 

diese Aufgaben aus einer gesamthaften Sicht zu überdenken und Wahrscheinlichkeitsmo-

delle mit einem Probabilistisch Graphischen Modell (PGM) zu entwickeln für eine ganzheit-

lichen Darstellung der Trajektorien, insbesondere im Kontext urbaner Straßennetze. 

Die zentrale Frage, die der Modellentwicklung vorangeht, ist es die Unsicherheit zu verste-

hen, mit denen die Trajektorien Daten und die spezifischen Aufgaben behaftet sind. In der 

Vergleichsstudie von Aufgaben zum Labeling räumlicher Trajektorien werden zwei Arten 

von Aufgaben identifiziert, nämlich die Lokalisierungs- sowie die Verhaltensklassifizierung. 

Diese beiden Aufgaben unterscheiden sich sowohl in der Labelgröße, als auch in der Sem-

antik, die die Labels innehaben. Darüber hinaus fördert der Vergleich das Verständnis der 

Unsicherheit aller drei Quellen beim Labeling räumlicher Trajektorien. Zwei Aufgaben, Map 

Matching einer niedrigen GPS-Trajektorien Abtastrate sowie Taxistatus Schlussfolgerungen 

wurden ausgewählt, um die Modellentwicklung voranzubringen. 

Mit den Erkenntnissen aus dem Vergleich des Labeling räumlicher Trajektorien werden die 

Aufgaben, nach der Berechnung der Wahrscheinlichkeit der Labelzuordnung, gegebener 

räumlichen Trajektorien formuliert. Diese unterschiedliche Formulierung ermöglicht der pro-

babilistischen Modellierung aus induzierten beliebig unabhängigen Features die Gesamt-

wahrscheinlichkeit zu berechnen. Die Modellierung folgt dem Standardverfahren für die An-

wendung des PGMs. Zuerst wird die graphische Struktur entworfen, um die strukturelle Ab-

hängigkeit zwischen den Dateninstanzen und den Labels darzustellen. Spezialisierte An-

wendungen werden für die Lokalisierungsaufgabe kreiert, da diese riesige Mengen von La-

bels verarbeiten muss. Zweitens wird eine große Auswahl an Features induziert, basierend 

sowohl auf empirischen Beweisen wie auch auf Fachwissen. Jedes dieser Features wird mit 

Parametern, die aus den Trainingsdaten geschätzt werden müssen, verbunden. Die Para-

metergebundenen Strategien werden für praktische Belange diskutiert. Drittens werden 

Schlussfolgerungen und Lernprozesse auf Basis der graphischen Struktur entwickelt. Um 

eine Überanpassung der Daten zu verhindern und auch die wichtigsten Features im Modell 

zu finden, wird das Trainingsziel mit der  Norm reguliert. 
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Um die entwickelten Modelle die Anwendung in Aufgaben zu evaluieren, werden zwei Test-

datensätze aus dem realen Datensatz, Shanghai Taxi Floating Car Data (FCD) abgeleitet. 

Die Implementierungen bestehen aus der Labeldatenvorbereitung für Lokalisierungsaufga-

ben, Merkmalsextraktion in der räumlichen Datenbank und Modellentwicklung für Training 

und Prüfung. Experimente mit Testdatensätzen haben gezeigt, dass die vorgeschlagenen 

Modelle eine äquivalente Leistung im Vergleich zu neueren Methoden bei der Lösung von 

Aufgaben des Labeling von Trajektorien und der Präsentation eines Mehrwerts bei der Be-

reitstellung einer umfassenden und zuverlässigen Labelzuordnung erreicht. 

  



 

 

V 

 

TABLE OF CONTENTS 

 

ABSTRACT .......................................................................................................................................... I 

ZUSAMMENFASSUNG ..................................................................................................................... III 

TABLE OF CONTENTS ...................................................................................................................... V 

ABBREVIATIONS ............................................................................................................................. VII 

LIST OF TABLES ............................................................................................................................ VIII 

LIST OF FIGURES ............................................................................................................................. IX 

CHAPTER 1. ....................................................................................................................................... 1 

1.1. MOTIVATION 1 
1.2. GOAL 3 
1.3. THESIS STRUCTURE 4 

CHAPTER 2. ....................................................................................................................................... 5 

2.1. SPATIAL TRAJECTORIES IN ROAD NETWORK 5 
2.1.1. Moving Objects and Spatial Trajectories 5 

2.1.2. Urban Road Network 7 

2.2. LABELING SPATIAL TRAJECTORY 9 
2.2.1. Knowledge Discovery in Trajectory Data: A Retrospective Overview 10 
2.2.2. Labeling Spatial Trajectories 11 

2.3. STATE-OF-THE-ART OF STUDY TASKS 17 
2.3.1. Map Matching 17 

2.3.2. Inferring Taxi Status 24 

CHAPTER 3. ..................................................................................................................................... 27 

3.1. UNCERTAINTY IN LABELING SPATIAL TRAJECTORIES 27 
3.1.1. Imprecise Positioning 27 
3.1.2. Sampling 28 

3.1.3. Behavioral Dynamic 30 

3.2. DISCRIMINATIVE MODELS FOR SEQUENCE LABELING 32 
3.2.1. Probabilistic Graphical Models 32 
3.2.2. Generative versus Discriminative Classifiers 33 
3.2.3. Conditional Random Fields 34 
3.2.4. Feature Extraction 36 
3.2.5. Inference on Graphical Models 37 

3.2.6. Discriminative Learning 38 

CHAPTER 4. ..................................................................................................................................... 39 

4.1. CHAIN STRUCTURED CRF 40 

4.2. STATE GENERATION 44 
4.2.1. State Generation Workflow 44 

4.2.2. Redundancy Elimination 47 

4.3. FEATURES EXTRACTION 48 
4.3.1. Features 48 
4.3.2. Parameter Tying 50 



VI 

 

4.4. INFERENCE ON CHAIN 51 
4.5. PARAMETER ESTIMATION 53 

4.5.1. Maximum Likelihood 53 
4.5.2. Gradient Ascent 55 
4.5.3. Learning with Partially Observed Model 56 

4.5.4. Feature Selection via  Regularization 57 

4.6. CHAIN CRF FOR BEHAVIORAL CLASSIFICATION 58 
4.6.1. Inferring Taxi Status 58 
4.6.2. Model 59 

4.7. SUMMARY 61 

CHAPTER 5. ..................................................................................................................................... 63 

5.1. RAW DATASETS 63 
5.1.1. Shanghai Taxi FCD 63 
5.1.2. OSM Road Network 64 

5.2. IMPLEMENTATIONS 66 
5.2.1. Labelling Using An Interactive Routing Tool 66 
5.2.2. Feature Extraction in Spatial Database 68 

5.2.3. Path: A Matlab Toolbox For Labeling Spatial Trajectories 69 

5.3. LABELING TASK I – MAP MATCHING OF LOW-SAMPLING RATE GPS TRAJECTORIES 70 
5.3.1. Experiment Setup 70 

5.3.2. Experiment Results 72 
5.3.3. Case Study 75 

5.4. LABELING TASK II – INFERRING TAXI STATUS 77 
5.4.1. Experiment Setup 77 

5.4.2. Experiment Results 78 

5.5. DISCUSSIONS 82 

CHAPTER 6. ..................................................................................................................................... 83 

6.1. CONCLUSIONS 83 
6.2. OUTLOOK 84 

REFERENCES .................................................................................................................................. 91 

ACKNOWLEDGEMENTS ................................................................................................................. 99 

CURRICULUM VITAE ..................................................................................................................... 101 

 

  



 

 

VII 

 

ABBREVIATIONS 

OSM  OpenStreetMap 

PGM  Probabilistic Graphical Model 

UMG  Undirected Graphical Model 

HMM  Hidden Markov Model 

CRF  Conditional Random Fields 

API  Application Programming Interface 

SQL  Structured Query Language 

  



VIII 

 

LIST OF TABLES 

Table 2.1 Clarification of spatial trajectory related terminology. ................................................... 7 

Table 2.2 Comparison of example labelling tasks. ...................................................................... 14 

Table 3.1 Generative versus Discriminative Models. .................................................................. 34 

Table 4.1. Features used in the CRF for map matching. ............................................................ 50 

Table 4.2 Features used in the CRF for status inferring. ............................................................ 61 

Table 5.1 Attributes of Shanghai taxi FCD records. .................................................................... 64 

Table 5.2 Attributes of routable OSM road network data. ........................................................... 65 

Table 5.3 Specification of training/test set................................................................................... 70 

Table 5.4 Evaluations of map matching results on GPS trajectories of 120s sampling interval. 74 

Table 5.5 Specification of training/test set for taxi status inference. ........................................... 78 

Table 5.6 Evaluations of taxi status inference of occupied taxi GPS. ......................................... 80 

Table 5.7 Confusion matrix for CRF_L1. ..................................................................................... 81 

  



 

 

IX 

 

LIST OF FIGURES 

Figure 1.1 OpenStreetMap database statistics of registered users (blue curve) and user gpx 

uploads (track points, pink curve). ......................................................................................... 1 

Figure 2.1 Trajectory of a moving object (an ant), representative of its movement path over 

time (Dodge, 2011). ................................................................................................................ 6 

Figure 2.2  Road network around TUM main campus: (left) mapping of roads around TUM 

campus (source: Google Maps), (right) plain visualization of geometries of roads (road 

network data from OSM). ....................................................................................................... 8 

Figure 2.3 An overview of steps that compose the KDD process (Fayyad et al., 1996). ............ 10 

Figure 2.4 Failure cases of finding nearest roads for map matching in crossover, 

spur/spaghetti intersections, parallel roads, bypass (Krumm et al., 2007). Black thin lines 

indicate trajectory of GPS observations, white thick roads are correct matching results 

obtained from Krumm’s method, and grey thick roads are results of finding nearest 

roads..................................................................................................................................... 18 

Figure 3.1 Distance between location observations and the nearest roads (Y. Wang et al., 

2011). A comparison of estimated positioning accuracies of taxis GPS data in three 

cities, Beijing, Shanghai and Guangzhou, in China. (a) Log-scale histogram of the count 

of distinct location observations according to their distance to the nearest road. (b) The 

ratio between the difference to the nearest and the second nearest roads within 100 

meters................................................................................................................................... 28 

Figure 3.2. Trajectory data of the same movement in road network with varying sampling 

intervals. ............................................................................................................................... 30 

Figure 3.3 Temporal dynamics of the mobility status in terms of speed (top), turning angle 

(middle) of a sample series of the taxi #10058 and its status (bottom). The sample series 

starts at 12:25 and ends at 15:19 in 2010-4-1. .................................................................... 31 

Figure 3.4. Different perspectives on probabilistic graphical models (Koller & Friedman, 

2009): (a) medical diagnosis using a Bayesian network to infer the causal relationships 

among diseases (Flu, Hayfever) and symptoms (Muscle-Pain, Congestion), (b) a sample 

Markov network. ................................................................................................................... 33 

Figure 3.5. Different graphical structure CRF. (a) chain, (b) grid and (c) tree. Note that only 

the graphical structures for output variables are depicted for grid and tree. ........................ 36 

Figure 4.1 An example of map matching of spatial trajectory (red dash line) in road network 

(grey lines). The ground truth driving route is marked in a green line. ................................ 39 

Figure 4.2. A chain-structured CRF for 3 GPS observations. The map on top illustrates a 

simplified situation of identifying roads and paths given GPS observations in the road 

network. This requires 5 random variables , , , 

,  to build the CRF. Thus, nodes  linking with observations 

(shaded nodes) are point nodes while nodes  are path nodes. ................................... 40 

Figure 4.3 Mapping of a sequence of location observations (red dots) and their projections on 

the associated point states (blue dots). The 1st Node has only 1 point states while the 5th 

node has the most, 7 point states. ....................................................................................... 42 

Figure 4.4 Mapping of path states (blue lines) of a sequence location observations (red dots). 

35 alternative path states are found between the 5th node and the 7th node. ...................... 42 

Figure 4.5. State generation workflow. ........................................................................................ 45 

Figure 4.6. Example of point state (blue dot) redundancy of a GPS point (red dot). 4 

redundant states are marked with red circles. ..................................................................... 46 



X 

 

Figure 4.7. State transition graph of a 4 node sequence. Redundancy elimination yields to 

retain fully connected states (green nodes) while remove partially connected states (red 

nodes)................................................................................................................................... 47 

Figure 4.8. An example of missing values. Because of the missing road (red link in the red 

circle), the actual path (indicated by the green arrow) chosen by car cannot be covered 

by all the path states (blue lines) between 3rd node and 5th node. ....................................... 56 

Figure 4.9 Mapping of service trajectories of a taxi in one day in Shanghai, China. Occupied 

trajectories is illustrated in green while nonoccupied trajectories are illustrated in red. The 

trajectories are also marked with serial numbers which indicate the taxis’ temporal 

activities throughout the day. ............................................................................................... 59 

Figure 5.1 Shanghai OSM road network at scale 1:203,669. ..................................................... 66 

Figure 5.2 Web-based interactive routing tool, OSRM, for labelling GPS trajectories for map 

matching. .............................................................................................................................. 67 

Figure 5.3 Entity Relationship Diagram of the database design for feature extraction. .............. 69 

Figure 5.4 The spatial distribution of GPS trajectories in the test data for map matching (Top). 

The statistics of sample trajectories (Bottom): travel distance (upper left), trip duration 

(upper right), observation count (bottom left) and daytime period in hour (bottom right). ... 71 

Figure 5.5 Distribution of the sample feature data. In each block, (up) is raw feature, (middle) 

is rescaled feature, (bottom) is standardized feature. .......................................................... 72 

Figure 5.6 5-fold cross-validation estimates for optimal hyper-parameter . .............................. 74 

Figure 5.7 Learned weights in  regularized CRF for map matching. ........................................ 75 

Figure 5.8 Map matching results of CRF_L1 (red) overlaid by ground truth (green) on the 

road networks (grey). ........................................................................................................... 76 

Figure 5.9 Error instance: parallel road. GPS points are marked as red triangles, recovered 

path is marked in red and the ground truth is marked in green. .......................................... 76 

Figure 5.10 Error instance: U-turn. GPS points are marked as red triangles, recovered path is 

marked in red and the ground truth is marked in green. ...................................................... 77 

Figure 5.11 Error instance: Starting/ending points. GPS points are marked as red triangles, 

recovered path is marked in red and the ground truth is marked in green. ......................... 77 

Figure 5.12 50 taxis’ one-day trips in Shanghai, China. Blue lines represent occupied taxi 

trips and red lines are vacant. .............................................................................................. 78 

Figure 5.13 5-fold cross-validation estimates for optimal hyper-parameter . Horizontal green 

dash lines mark the highest performance, and the vertical green dash lines indicate the 

power used to compute the hyper-parameter. ..................................................................... 80 

Figure 5.14 Learned weights in  regularized CRF for taxi status inference. ............................ 81 



1 

 

CHAPTER 1.  

Introduction 
 

 

 

1.1. Motivation 

With the development of positioning and communication technology, collecting and sharing 

position data has become an everyday routine in modern cities for many social sectors. 

Moreover, this practice has reached a wide range of levels of the social structure, which 

leads to a wide coverage in both spatial and temporal scale of urban mobility on various 

granularities. Thousands of taxis report their position logs via telecommunication to the taxi 

dispatch centers for fleet management, millions of mobile users’ locations are collected 

anonymously to provide contextual information in the location based service (LBS), and 

GPS-enabled wearable devices (e.g., Garmin Fenix) also boost huge interests of recording 

running tracks for sharing and analysis for personalized fitness plan. These temporally or-

dered location data, which capture all sorts of the urban mobility in the road networks and 

share a common data scheme, are often referred to as spatial trajectories. 

 
Figure 1.1 OpenStreetMap database statistics of registered users (blue curve) and user gpx uploads 

(track points, pink curve). 

Besides the unprecedented scale of the data being captured, the way that these trajectory 

data are distributed and accessed have also been revolutionized. Rather than being kept 

alone as a private asset, more and more trajectory data are shared via the internet for free. 
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By the time of writing, OpenStreetMap, a crowdsourced world mapping project, has received 

around 5 billion track point uploads from its worldwide volunteer users, and nearly 50% of 

the data are uploaded in recent three years (see Figure 1.11). Furthermore, the open data 

initiatives have been promoted in some modern cities in the form of legislation. A cartogra-

pher has managed to FOIL (the act of acquiring the data using FOIL - The Freedom of 

Information Law) one-year 50GB taxi trip and fare data from the local Taxi and Limousine 

Commission in New York for free2. And now the initiative of urban open data has endorse-

ments also beyond US cities. 

Due to movement’s essential role to scientific and social studies, the availability of the 

massive trajectory data has triggered many efforts from the industry. For instance, Google 

is reportedly to have collected anonymized GPS data from authorized android handsets to 

provide a so-called time-in-traffic feature, which allows users to check current traffic condi-

tions and estimate the travel time of their routing plans3. Turning to these constantly re-

freshed data has largely shortened the update cycles of dynamic traffic status. Moreover, as 

mobile apps becomes increasingly contextual, knowing what user’s current activity – still, 

walking, cycling and in-vehicle can help to determine the right content to display. The mobile 

operating system (OS) android now has a built-in application programming interface (API) 

to extract this contextual information by classifying sensor data streams on the mobile de-

vices. These data-driven endeavors have proved the trajectory data to be an invaluable 

resource to obtain better knowledge of urban mobility and lay grounds for many real world 

applications. 

Unfortunately, a wide range of positioning sensors are used in the data collection pro-

cess, which has no guaranteed individual positioning accuracy and no rigid data collection 

protocol is followed to ensure the consistency. Thus, trajectory data often suffer from poor 

data quality, e.g., imprecise positional data, missing data attributes, erroneous attribute val-

ues. Moreover, the trajectory data are often captured for positioning purpose only and sel-

dom record semantic information intentionally. A lot of work has been done to enhance the 

data quality or enrich the data semantics so that to ease the utilization. For instance, map 

matching of trajectory data onto road networks (Lou et al., 2009a; Newson & Krumm, 2009; 

Yang & Meng, 2015), infer transportation modes (Yuan, Zheng, & Xie, 2012; L. Zhang, 

2014), activity recognition (Lin Liao, Patterson, Fox, & Kautz, 2004). Note that all these tasks 

share the common output format, that is, a sequence of discrete label assignments.  

These tasks of labeling spatial trajectories all have to resolve the uncertainty in the data, 

which roots either in the imprecise measurement or the ambiguous correspondences be-

tween observed data and the inquest labels. Many proposals are suggested to address 

these issues for individual tasks, which in general either adopts probabilistic modeling phi-

losophy (i.e., to model the probabilistic distribution of the given data and the inquest labels) 

or favors a practical solution that yields the best outcome. The latter solution, though achieve 

                                                   
1 Users and GPX uploads. http://wiki.openstreetmap.org/wiki/Stats#Accumulated_users_and_GPX_ 

uploads. 
2 FOILing NYC’s Taxi Trip Data. http://chriswhong.com/open-data/foil_nyc_taxi/. 
3Google Maps gets real-time traffic, crowdsources Android GPS data. http://www.techspot.com/ 

news/48015-google-maps-gets-real-time-traffic-crowdsources-android-gps-data.html 

http://wiki.openstreetmap.org/wiki/Stats#Accumulated_users_and_GPX_ uploads
http://wiki.openstreetmap.org/wiki/Stats#Accumulated_users_and_GPX_ uploads
http://www.techspot.com/
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better result sometimes, is not capable of providing holistic representation of the trajectory 

data and thus couldn’t facilitate the comprehension of the data. As for probabilistic methods 

for labeling spatial trajectories, the performance of the model mostly relies on finding the 

relevant variables (or features), which are mostly handcrafted. In this thesis, the tasks of 

labeling spatial trajectory in road network are investigated from a unified perspective, and 

we attempt to build a comprehensive model using probabilistic graphical model.  

1.2. Goal 

Driven by the ever fast growing need of making sense of open access trajectory data col-

lected in urban context, labeling spatial trajectories in road networks serves the purpose of 

facilitating the general utilization of these noisy, ill-structured, semantically poor raw trajec-

tory data. In particular, it intends to improve the data quality and enrich the data semantic 

upon which high quality LBS and various other applications can be built. Moreover, this the-

sis leverages machine learning techniques to approach these goals. It involves following 

research tasks. 

 Comparative study of the tasks of labeling spatial trajectory. Labeling spatial 

trajectory refers to many trajectory-related tasks that share the formalism of se-

quential labeling. To materialize the concept, further discussion should be raised 

so as to identify the commons and uniqueness among the corresponding tasks. 

In order to motivate the model development, specific labeling tasks should be 

selected according to suggested categorization. 

 Model development using probabilistic graphical model. The model develop-

ment proceeds to resolve the task-dependent uncertainty using probabilistic 

graphical model (PGM). PGM is a modeling language that leverages the merits 

from both graph theory and probability and is suitable for capturing the structural 

dependencies in the trajectory data. With the designed graphical structure, fea-

tures are induced to approximate the probability mass, given the label assign-

ments. 

 Feature selection in structure prediction. Feature selection is to find the most 

relevant feature set for the predictive models, which helps to reduce the model 

complexity and avoid overfitting of the data. In particular, the requirement for the 

application of feature selection technique to labeling spatial trajectory needs to be 

discussed. 

 Implementation and evaluation of proposed model. In order to test the feasi-

bility and performance of the proposed predictive model, implementation is done, 

which consists of three tasks, namely preparation of test dataset and label data, 

feature extraction from geospatial vector data and modeling training and testing. 

Furthermore, the effects of preprocessing on final performance also need to be 

discussed. 

This thesis covers the entire pipeline of developing a predictive model for labeling spatial 

trajectories, and elaborates both theoretical concerns and engineering aspects of the data 

driven practice on the real world dataset. 
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1.3. Thesis Structure 

Having discussed the motivations and clarified the goals, the author organizes the rest of 

the thesis as follows. 

Chapter 2 introduces the data and the problem of labeling spatial trajectories. The data, 

including both spatial trajectories and road network, are described briefly in terms of con-

cepts, data models and various data sources. As for the labeling tasks, first a general scope 

of knowledge discovery is given to identify the overlaps and gaps between our focus and 

the neighboring topics, then the labeling spatial trajectories is categorized into two types of 

tasks, namely localization and behavioral classification. The classification is further ramified 

in the characteristics. 

Chapter 3 proceeds to the discussion of challenges in labeling spatial trajectories and 

introduces the theoretical basis of our work, PGM. The challenges arise from both the noisy 

and sparse data and the tasks themselves, that is, the distinguishability of the labels inquest. 

The theoretical fundamentals of the model development are explained by narrowing the 

candidate modeling tools that fit the target problem most. In addition, standard issues on 

designing graphical structure, feature induction and selection, inference and learning are 

discussed. 

Chapter 4 discusses the model development for the two study tasks using undirected 

graphical model (UGM). First, a chain structured graphical structure is developed for labeling 

spatial trajectory and specific refinement is made for the task of localization, which needs to 

review a large number of labels. Then, two feature sets are developed for the two tasks 

accordingly. Furthermore, the choices of inference and learning algorithms are made for 

training and feature selection using  regularization. 

Chapter 5 elaborates the practical issues in the implementation and evaluation using two 

test datasets. Three tasks are involved in the implementation: label data preparation for 

localization tasks, feature extraction in spatial database, and model development for training 

and testing. Both test datasets are derived from Shanghai floating car data (FCD) using 

specific preprocessing procedures for individual tasks. In the end, experiment results and 

case study are given to demonstrate the feasibility of the proposed models. 

Chapter 6 concludes the major findings of the thesis and envisions the further develop-

ment that can be built on our work.  
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CHAPTER 2.  

Fundamentals and Related Works 
 

 

 

This chapter aims to introduce the basic concepts, identify the study domain and discuss 

the specific tasks that have motivated the author. First, two research subjects, spatial tra-

jectories and road networks, are conceptually discussed. Secondly, the research domain 

that labeling spatial trajectory resides in is sketched. Finally, two study tasks, map matching 

and taxi status inference are discussed by reviewing the state-of-the-art. 

2.1. Spatial Trajectories in Road Network 

2.1.1. Moving Objects and Spatial Trajectories 

The study of movement has always been an key issue in many areas of scientific investiga-

tion or social analysis, which involves a broad range of moving objects, such as human, 

animal and vehicles (F. Giannotti & Pedreschi, 2008). Cartographers leverage the GPS 

traces of vehicles to update and refine outdated road network in terms of more accurate 

geometry or updated semantic information. Ecologists analyze patterns in animals’ traces 

collected in the field or from tracking devices for animal behavioral study. Traffic engineers 

explore the city-wide taxi GPS traces in order to understand urban mobility and develop 

more realistic traffic models. Urban planners investigate the activities revealed in the move-

ment and thus to evaluate the regional functions. That is, a variety of application domains 

enjoy the insightful outcome from the study of movement across geographic space 

(Gudmundsson, Laube, & Loon, 2012). 

A Moving object can be referred to as a point (object) that changes its location over a 

certain period of time. The term is derived using the modeling language adopted in geosci-

ence that treats the objects as point, line or polygon. The resulting paths in the space they 

move can be represented as time-referenced location sequences, namely spatial trajecto-

ries. For practical reasons, the movement can only be observed or recorded at finite mo-

ments and thus making spatial trajectories contain only a finite set of location observations. 

See Figure 2.1 for an illustration of moving object, spatial trajectories. 
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Figure 2.1 Trajectory of a moving object (an ant), representative of its movement path over time 

(Dodge, 2011). 

To be concrete, we give a few examples to demonstrate the aforementioned concepts 

and motivate some applications. 

- Taxi floating car data (FCD) collected by taxi companies for fleet management and 

dispatch system. With the GPS-enabled devices installed in the taxis (often linked to 

the meters), taxis’ coordinates as well as their speed, direction, occupation status, 

can be collected in a specified time interval. 

- Besides GPS, position logs can be obtained from mobile phones which mark users’ 

locations referenced to the cells in the telecommunication network. These mobility 

data streams with recording users entering a cell – (userID, time, cellID, in) – users 

exiting a cell – (userID, time, cellID, out) (Fosca Giannotti & Pedreschi, 2008). Note 

that the users’ locations are not explicitly given but need to be estimated by refer-

encing to the locations of the cell towers. 

- Zebra fish’s movement data derived from video sequences using video tracking soft-

ware at 30 frames per second (Soleymani, Cachat, & Robinson, 2014). The data are 

used for study on fish’s behavior under different dosing conditions. 

As can be seen form these examples, spatial trajectory provides a concept model to fa-

cilitate general study on the data of such kind and, in general, comprise three components 

such as space, time, and moving objects (Andrienko, Andrienko, Bak, Keim, & Wrobel, 

2013). Space refers to a set of places or locations, in which location can be referenced in 

various manners, e.g., geographic coordination. Time, often seen as indexes of the loca-

tions, can be simply a universal time or relative time moments, e.g., elapsed time, abstract 

time stamps. Moving objects are in most cases only reflected using a unique identifier, but 

it is a fundamental component for the individual pattern discovery and collective behavior 

discovery. 

With the advent of more reliable and low-cost object-tracking technologies, trajectory data 

can be collected at an unprecedented scale at a routine basis and thus have stimulated 

diverse and fast growing research to model, manage, analysis these data. Although trajec-

tory data confirm the concept model of spatial trajectory, they do not necessarily obey a 
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common data model or data format. In other GIS literatures, there exists some other terms 

bearing the same meaning of what we use in this thesis. Table 2.1 attempts to clarify the 

correspondences among different terms. 

Table 2.1 Clarification of spatial trajectory related terminology. 

This thesis Equivalent terminology 

moving object moving entity, mobile object, dynamic object 

spatial trajectory trajectory, mobile trajectory, GPS trajectories, GPS trace 

raw data FCD, mobility data, movement data 

This work focuses on movements that reveal mobility in urban environment. Therefore, 

we discuss the predominant means of transportation that facilitates and shapes the move-

ments of such kind. 

2.1.2. Urban Road Network 

Urban transportation network refers to the infrastructures that facilitate urban mobility of hu-

man, vehicle, goods, etc. In a modern city, it’s often composed of a variety of mono-modal 

components such as motorized road network for private car driving, pedestrian way network 

for walking, and public transit networks including underground, suburban and tram lines for 

passenger transporting (L. Liu, 2011). The transportation networks considered in this work 

are mostly the ones that use carrier type of road, namely urban road network. However, the 

discussion can be generalized to other carrier types that share similar network models for 

the mobility application. 

The study of road network is of widespread interest in the GIS community. In a GIS sys-

tem, road network is modeled as points (e.g., road intersections) and lines (e.g., roads) while 

retaining their topological relationships, geographic positions and shapes. Besides the con-

nectivity among roads, each road is characterized by attributes such as road classification 

(e.g., national highway, provincial highway, and county highway in China), traffic regulation 

(e.g., minimum speed limit, maximum speed limit, prohibit of U-turn), Point of Interests 

(POIs, e.g., school, restaurant, hotel) and so on (Gong, 2011). And for routing purposes, a 

graph representation needs to be constructed from a road network. Figure 2.2 shows the 

map representation of a sample road network and its underlying road network data model. 
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Figure 2.2  Road network around TUM main campus: (left) mapping of roads around TUM campus 

(source: Google Maps4), (right) plain visualization of geometries of roads (road network data from 

OSM). 

There exists a number of road network datasets collected from either public or private 

organizations. Most of these datasets are tailored for specific applications (e.g., navigation, 

traffic engineering) and thus differ in geometry, accuracy, actuality and resolution for the 

roads in the same geographic area. Therefore, there are dedicated research to develop 

automatic methods of road network conflation in order to provide an integrated data service. 

(M. Zhang, 2009) performed extensive evaluations on four road network datasets including 

ATKIS5, Tele Atlas, NAVTEQ and OpenStreeMap6 (OSM), which we use here as an exam-

ple to rationalize the choice of road network dataset for the study on spatial trajectory. 

- ATKIS (Amtliches Topographisch-Kartographisches Informationssystem, the official 

topographic information system in Germany), produced via map digitization and ob-

ject extraction from remote sensing imagery, is a general topographic dataset that 

serves as an information basis on top of which application-dependent data can be 

added (Volz, 2006). It contains a road layer which is composed of geometries and 

general-purposed attributes of road centerline with an accuracy of 3m. 

- Tele Atlas, acquired by TOMTOM7, is data vendor that provides a fully attributed 

geospatial dataset for navigation, location-based services (LBS), and general mobile 

and internet mapping applications. The Tele Atlas road network data is acquired 

through both map digitization, field measurement. As one of the leading data vendors 

in the market, it provides an accuracy that is less than 10m in built-up area while 25m 

outside built-up area in Europe. 

                                                   
4 https://www.google.de/maps/@48.1494453,11.5688217,17z?hl=en 
5 http://www.adv-online.de/Geotopography/ATKIS/ 
6 https://www.openstreetmap.org/ 
7 http://www.tomtom.com/ 

http://www.adv-online.de/Geotopography/ATKIS/
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- NAVTEQ, now merged to HERE8, is a leading data vendor that provides digital nav-

igable maps on a global basis. Similar to Tele Altas, NAVTEQ, road network data 

contains both geometries and rich navigation-related attributes which are captured 

through map digitization and field measurement. 

- OSM is a free, editable map of the whole world built by volunteers (“OSM wiki,” 2015). 

The OSM road network data is created via GPS-enable field measurement using a 

variety of consumer mobile devices and road digitization from satellite imagery. As 

OSM adopts a free structure for data acquisition, the road network data contains the 

geometries and an arbitrary number of attributes. 

The selection of road network data for study on spatial trajectory data largely depends on 

the availability of the data, quality of the data (e.g., coverage, positional accuracy, richness 

of routing relevant attributes) and so forth. Though being criticized for its heterogeneous 

quality, OSM has enjoyed a steady growth throughout the years and has been adopted for 

many governmental and commercial usage. Furthermore, OSM road network data has a 

relatively good quality in the mega cities (Y. Wang, Zhu, He, Yue, & Li, 2011), which make 

it a conceivably choice for this work. 

2.2. Labeling Spatial Trajectory 

Due to the essential role of movement in nature and social system, a wide range of research 

efforts have been made to carried out on spatial trajectory. And thus making spatial trajectory 

related research a multidisciplinary/interdisciplinary field that can be applied to movement 

ecology, behavioral studies, transportation, and so forth (Dodge, 2011). Among these appli-

cation domains, it often requires to label individual point in the trajectories with statuses in 

query such that the physical measurement can be better interpreted to understand the target 

movement, and we call these tasks labeling spatial trajectory. 

For example, map matching needs to assign each data point in the location sequence to 

the road that moving object traveled on, location-based activity recognition identifies the 

activities (e.g., at home, at work, at bar) occurred at each location in the trajectory data, and 

transportation mode detection reveal the transportation modes (e.g., walk, cycling, driving, 

bus, subway) being used at each data point. In these tasks, each location-based observation 

is assigned to task-specific labels, i.e., roads in map matching, activity types in activity recog-

nition and transportation modes in transportation mode detection. 

Labeling spatial trajectory serves a number of useful purposes in the context of cartog-

raphy and geographic information science (GIS): 1) Data semantic enrichment. Transporta-

tion mode detection enables high-level query such as “How many transportation modes do 

passenger use during a day?” 2) Data quality enhancement. Map matching calibrates the 

sparse and noisy location observations on to road network which leads to more accurate 

location data. 

In the following sections, a bigger scope of spatial trajectory related research with a focus 

in computation is introduced which helps to identify the interrelationships between labeling 

                                                   
8 https://www.here.com/. 

https://www.here.com/
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spatial trajectory and its neighboring topics. Then a detailed discussion of labeling spatial 

trajectory is given. 

2.2.1. Knowledge Discovery in Trajectory Data: A Retrospective 

Overview 

The diverse and fast growing research on trajectory data have led to a wide range of publi-

cations in the past decades. In general, labeling spatial trajectory falls in the category of 

trajectory data mining and knowledge discovery for its close relationship with classification. 

In order to sketch the scope of this focal research topic, we follow the line of works in Geo-

graphic Knowledge Discovery (GKD) and spot on several major milestones in the develop-

ment of movement research in GIS community in recent years, including international re-

search collaborations, research seminars and book publications. 

GKD is a special case of Knowledge Discovery in Database (KDD) which deals with ge-

ospatial data. KDD is an interactive and iterative process that is designated to identify valid, 

novel, useful and understandable pattern in data (Fayyad, Piatetsky-Shapiro, & Smyth, 

1996). As illustrated in Figure 2.3, a typical KDD process includes several steps including 

investigation of the application domain, selection of a target dataset, data cleaning and pre-

processing, data transformation, application of data mining methods, interpretation of the 

discovered pattern, in which data mining methods serve as a critical step to identify the 

patterns in the data. Note that patterns in general refer to various forms, e.g. a particular rule 

in a classifier or a linear component in a regression model. Following Fayyad’s definitions, 

Miller and Han shed lights on GKD and argued that it is a nontrivial special case which 

requires systematic investigation due to high while interrelated dimensionality, spatial de-

pendency and heterogeneity, complexity in spatial objects and diverse data types of the 

geospatial data (Miller & Han, 2001). In their book collection, Smyth contributed his early 

vision of the opportunities of applying data mining techniques to mobile trajectories based 

on the framework of “stored behavior - predicted behavior” (Smyth, 2001). 

 
Figure 2.3 An overview of steps that compose the KDD process (Fayyad et al., 1996). 
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Fostered in the project GeoPKDD – Geographic Privacy-Aware Knowledge Discovery 

and Delivery9, the book (Fosca Giannotti & Pedreschi, 2008) put forwards the research in 

trajectory data mining with a special focus on privacy issues. Being motivated by the practice 

of mining mobile phone log data, they proposed a three-step process for knowledge discov-

ery in mobility data, namely trajectory reconstruction, knowledge extraction and delivery of 

obtained information. Trajectory reconstruction is to reconstruct trajectories for individual 

moving objects from the raw mobility data such as mobile phone log data, taxi FCD, etc. 

Knowledge extraction refers to adapting data mining techniques to trajectories such as clus-

tering, frequent pattern discovery and classification. As for knowledge delivery, interpretation 

of obtained information as well as designing appropriate representation and visualization to 

facility user’s explorative reasoning are of major concern. 

With the thrive of GPS-enabled mobile devices, the COST Action IC0903 MOVE10 carried 

on the focus of knowledge discovery regarding massive moving objects and echoed the six-

year series of Dagstuhl Seminars11 under the theme of Representation, Analysis and Visu-

alization of Moving Objects (Bitterlich, Sack, Sester, & Weibel, 2008; Gudmundsson et al., 

2012; Sack, Speckmann, Loon, & Weibel, 2010). The series attracted researchers with var-

ious backgrounds and foster discussions on topics of data modeling, management of trajec-

tory data, movement ecology, pattern discovery in movement data, visual analytics and so 

forth. Practical issues concerning benchmarking of movement data analysis also received 

consistent attention. 

Another notable effort beyond the GIS community is the comprehensive work addressing 

the development of computational methods for spatial trajectories that facilitate the applica-

tions in transportation and social networking in the urban context (Y Zheng, 2015; Yu Zheng 

& Zhou, 2011). The book proposed a technical framework that illustrates the various tasks 

and applications regarding computing with spatial trajectories. The framework put topics into 

two category, namely foundation and advanced topics. Foundation includes the tasks of 

preprocessing, indexing and retrieving trajectory data prior to and within database. And ad-

vanced topics mainly focus on application-oriented tasks such as activity recognition, trajec-

tory analysis for driving, privacy issues, trajectory pattern mining and location-based social 

networks. An updated framework devoted to trajectory data mining is given in (Y Zheng, 

2015). 

2.2.2. Labeling Spatial Trajectories 

Bearing in mind the examples listed before, labeling spatial trajectories refers to the tasks 

that requires performing point-wise label assignment. The term labeling, in this thesis, refers 

to a more general categorization other than annotation, tagging which are more often ad-

dressed in the literatures (Parent & Spaccapietra, 2013). The distinction is that labeling spa-

tial trajectories may serve multiple purposes rather than solely semantic enrichment of tra-

jectory data (e.g., trajectory annotation). This categorization provides a new perceptive to 

                                                   
9 http://www.geopkdd.eu 
10 http://www.move-cost.info/ 
11 https://www.dagstuhl.de/en/program/dagstuhl-seminars/ 
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study the common characteristics of labeling tasks other than being restricted in ad hoc 

solutions. 

Labeling tasks can be classified into two types based on the specific label set in the tasks, 

namely localization and behavioral classification.  

 Localization refers to the task of inferring the actual positional information of the 

points in the trajectory. In this task, labels are often modeled as a set of candidate 

positions where the moving objects were observed. For example, labels in map 

matching are a set of candidate roads that were traveled on (note that the observa-

tion may deviate from the roads due to noise in the positioning process). 

 Behavioral classification shares the same purpose with trajectory annotation and 

is designed to infer the states/labels of the moving objects, which often vary across 

specific applications. For example, labels in transportation mode detection are trans-

portation modes that need to be classified. 

There exist several differences between these two types of labeling tasks. Firstly, labels 

in behavioral classification bear clearer semantics than those in the localization tasks. Sec-

ondly, localization tasks often have larger label spaces, which may introduce huge compu-

tational cost in finding the most likely assignments. Therefore, these distinctions require non-

trivial treatments in specific solutions. 

Furthermore, multiple policies can be used in labeling spatial trajectory regarding the 

granularity ranging from point-based, segment-based to trajectory-based. Point-based pol-

icy means the designed models or algorithms assign labels to individual points. Segment-

based policy needs to perform segmentation first which groups consecutive points in the 

trajectories into meaningful segments and assume that they share the same labels. Trajec-

tory-based policy means that all points in the trajectory share the same label. These policies 

differ in the temporal scale of observations to be considered, and thus reveals varying de-

grees of flexibilities in the label assignments. Point-based method encourages straightfor-

ward point-by-point processing workflow while often suffers from being inflexible in evaluat-

ing the pattern embedded in the varying number of neighboring points. Segment-based pol-

icy may embody the risk of being too “aggressive” in the step of segmentation. 

To be concrete, we compare several labeling tasks in terms of size and semantic of label 

set, applied methodologies and the input datasets in Table 2.2 below.  

 As it can be seen in the table, the tasks of localization have much larger label sets 

than the tasks of behavioral classification. And the sizes could increase dramatically 

depending on the spatial extension of the moving space, e.g., indoor localization 

(Krumm & Horvitz, 2004) considers much less candidate locations than city-wide lo-

calization in road network (Hunter & Herring, 2009). Furthermore, the distinguisha-

bility among the labels also differentiate the two tasks. In localization, labels are con-

sidered as specific locations. The distance between two labels often reveal the mo-

bility of the moving objects in the study space and thus the label transition can be 

represented using the traveling cost (e.g., all the tasks in localization model the label 

transition as a cost function of routing in the reference graph such as skeleton graph 
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for indoor walking space, road network.). However, labels for behavioral classifica-

tion may reveal varying degree of difficulties in label assignments. For examples, 

stop versus moving are easier to be classified since only two features12 are needed 

(Krumm & Horvitz, 2004). And for multiple labels, a few labels are harder to classify 

than others (Shamoun-Baranes et al., 2012). 

 A variety of methods were applied in the example tasks, ranging from tailored search 

algorithms to probabilistic models with well-established theoretical grounds. Most 

popular methods in the list fall into the class of graphical model, which correspond to 

the dependency analysis in the conventional data mining methods (Fayyad et al., 

1996). These methods, in general, investigate two probabilistic modeling efforts, 

namely the label-observation dependencies and label-label dependencies. Label-

wise dependencies include dependency between neighboring labels, e.g., user’s 

motion status changes from stop to moving (Krumm & Horvitz, 2004) or dependen-

cies among multiple labels in arbitrary positions in the trajectory, e.g., (Lin Liao, Fox, 

& Kautz, 2005b) introduced a soft constraint implemented as summation aggregation 

among the label assignment for activity recognition. Rather than explicitly modeling 

labels’ temporal dependencies in the model, segmentation-based methods explore 

the dependencies by employing a segmentation procedure first, e.g., (Yu Zheng, Liu, 

Wang, & Xie, 2008) first segmented consecutive GPS observations into groups and 

then performed segment-based classification to identify different transportation 

modes. The third class of methods tailors a greedy search algorithm to find the opti-

mal segments under predefined spatial-temporal criteria (Buchin, Kruckenberg, & 

Kölzsch, 2012). 

 Trajectory data also exhibit a number of distinctions in the study examples. Firstly, 

these data are collected via various positioning techniques with different positioning 

limitations in the moving environment (e.g., WiFi signal readings are used in the in-

door localization), which requires different preprocessing and features for labeling 

tasks accordingly. Secondly, the sizes of the dataset in terms of number of location 

samples pose a significant difference among the tasks. And efforts have been rarely 

made on the determination of an appropriate size of the dataset so that it’s sufficiently 

large for modeling learning and validation. Thirdly, a varying number of moving ob-

jects are being evaluated ranging from only one moving object to hundreds of them. 

And there’s also a task that studies the learnability of common behaviors among 

different users (Lin Liao et al., 2005b). Finally, all localization tasks use an auxiliary 

dataset which serves as reference for positioning and help to generate the label set. 

However, the auxiliary dataset can be considered as an optional side information in 

behavioral classification which makes no compromise in model’s performance (Yu 

Zheng et al., 2008). 

                                                   
12 Note that, in this thesis, the term feature is used equivalent to variable, predicator which follows the 

usage in the machine learning literatures. Reader shouldn’t confuse the meaning that is specified in 

the Open GIS consortium as an abstract entity. 
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Table 2.2 Comparison of example labelling tasks. 

Labeling Task #Label Labels 

Methodology 

Trajectory data Auxiliary data 

model/algorithm seg13 #feature 

Localization 

Indoor location inference 

(Krumm & Horvitz, 2004) 
317 locations HMM NO 4 

4586 WiFi signal readings from 10 
walks with sampling rate of 36Hz 

corridor 
graph 

Path Inference 

(Hunter, Abbeel, & Bayen, 
2013) 

14 roads CRF NO 10 

Dataset 1: Supervised learning using 
700,000 samples of 10 taxi in 2 days 
with sampling interval of 1sec 

road network 
Dataset 2: Unsupervised learning using 
600,000 samples of 600 taxis in 1 day 
with sampling interval of 60sec 

Map matching 

(Newson & Krumm, 2009) 
 roads HMM NO 2 

4605 samples of 1 car with sampling 
rate of 1Hz 

road network 

Behavioral classification 

                                                   
13 seg is abbreviated for segmentation. 
14  refers to the size of road network  which is often very large. 
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Pedestrian motion infer-
ence 

(Krumm & Horvitz, 2004) 

2 stop, moving HMM NO 2 
8870 WiFi signal readings with sam-
pling rate of 36Hz 

─ 

Mobility detection 

(Sohn et al., 2006) 
3 

stop, walking, 
driving 

Boosted logistic 
regression 

YES 7 
GSM traces of 3 mobile phone users in 
78 days with sampling rate of 1Hz 

─ 

Geese trajectory segmen-
tation 

(Buchin et al., 2012) 

2 flight, stop Greedy search NO 4 
location samples of mitigating geese in 
4 months with maximal sampling inter-
val of 2hr 

─ 

Oystercatcher behavior 
classification 

(Shamoun-Baranes et al., 
2012) 

3/815 

fly, forage, 
body care, sit, 
stand, handle, 
walk, aggres-

sion. 

Decision tree NO 17 

16434 GPS observations and associ-
ated 972406 accelerometer observa-
tions (1 GPS associated with ca. 60 ac-
celerometer measurement) of 3 oyster-
catchers. 702 GPS observations are la-
beled in the field work. 

GADM16 

Taxi status classification 

(Zhu et al., 2011) 
3 

parking, occu-
pied, nonoccu-

pied 

Decision tree + 
HSMM 

YES 26 
25million GPS samples of 600 taxis with 
sampling interval of 1 min 

road network, 
POI 

Transportation mode de-
tection 

(Yu Zheng et al., 2008) 

4 
walk, car, bus, 

bike 
Decision tree YES 6 45 users’ GPS logs covering 20,000km ─ 

Activity recognition 

(Lin Liao, Fox, & Kautz, 
2005a) 

7 
work, sleep, lei-

sure, visit, 
Relational Mar-
kov Network 

NO 5 
Dataset 1: single user GPS logs in 4 
months (400 visits to 50 different 
places) 

road network, 
POI 

                                                   
15 In total 16 states are introduced, but they are aggregated to 3 and 8 states in the model development. 
16 Geographic database of global administrative areas. http://www.dadm.org 

http://www.dadm.org/
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pickup, on/off 
car, other Dataset 2: five users GPS logs in one 

week (25-35 visits to 10-15 places) 
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2.3. State-of-the-art of Study Tasks 

Having introduced labeling spatial trajectory, we now zoom in to specific tasks with the pur-

pose to unveil the common insights. These tasks cover both types in labeling spatial trajec-

tory, namely localization and behavioral classification. The trajectory data are collected us-

ing the same positioning techniques and reflecting the same type of movements. In addition, 

we are more interested in the domain transportation as it provides huge potential of applica-

tions which may benefit from our study. Therefore, we choose low sampling rate map match-

ing of taxi GPS trajectories for localization and inferring taxi status for behavioral classifica-

tion in this work. 

In the remainder of this section, we discuss the two study tasks in terms of problem state-

ment, challenging issues, and state-of-the-art. 

2.3.1. Map Matching 

Map matching was first raised to provide accurate location information in an in-vehicle route 

guidance system (Collier, 1990), in which location-based observations (i.e., position, direc-

tion, speed) are estimated from on-board sensors (e.g., wheel rotation counters) through 

dead reckoning. Driven by the demand on location-based services and fast growing interests 

in knowledge discovery in trajectory data, map matching has been an active research topic 

throughout the years. However, the scope of the research has moved beyond vehicle route 

guidance system and it now serves as a fundamental technique for a broad range of real-

world applications and research tasks (Yu Zheng & Zhou, 2011), such as travel time esti-

mation, fleet management, route choice study, etc. Though each of these applications could 

raise specialized requirements for the problem, the map matching tasks share the common 

goal of associating the position data with the road data. More specifically, the process iden-

tifies the road segment in the road network data for each position data and the position on 

the road where the position data is recorded. 

The fundamental need of investigating map matching is caused by the fact that the loca-

tion measurements are often noisy due to the inherent inaccuracy in the positioning sensors 

and complicated positioning environments (e.g., signal delay and blocking in urban canyon 

for GPS), and thus the location data often deviate from the road center line. Note that most 

of map matching methods assume that a high quality road network dataset is given, which 

may not be true all the time (Quddus, Ochieng, & Noland, 2007). A straightforward idea is 

to snap each observation point to the closest road. Unfortunately, finding the nearest road 

often fails in the complex urban road networks. Krumm et al. (2007) reported the failure of 

map matching relying on the nearest roads in a number of local road structures including 

cross over, spur/spaghetti intersection, parallel roads, bypass and so forth (Krumm, Letchner, 

& Horvitz, 2007) (See Figure 2.4). Even though nowadays positioning sensors could achieve 

relative high accuracy, there are still problems with map matching in the real world data (H 

Wei, Wang, Forman, & Zhu, 2013). Therefore, a specialized method is necessary to tackle 

these problems. 
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Figure 2.4 Failure cases of finding nearest roads for map matching in crossover, spur/spaghetti inter-

sections, parallel roads, bypass (Krumm et al., 2007). Black thin lines indicate trajectory of GPS ob-

servations, white thick roads are correct matching results obtained from Krumm’s method, and grey 

thick roads are results of finding nearest roads. 
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In addition to the noisy measurement, more challenges have been addressed in numer-

ous literatures throughout the years. The major research focuses in recent years are sum-

marized as follows. 

 Accuracy. Different levels of accuracy are required in the applications. For ATT 

services (navigation and road guidance, distance-based pricing, etc.), high sam-

pling rate (e.g. 1 Hz-30Hz) is used and demands horizontal position accuracy of 

10m for each position estimation (Quddus et al., 2007). However, road-level ac-

curacy, namely only the correspondence between position data and road segment 

is required in analyzing historical position data in road network, e.g., route choice 

analysis (Frejinger, 2008), traffic flow analysis (Giovannini, 2011), mobility pattern 

discovery.  

 Runtime Efficiency. Efficiency becomes critical in real world application, which 

requires map matching either in real time or at a massive scale. A wide range of 

techniques has been used to tackle this issue with different phases and aspects 

of the map matching. For instance, use adaptive search range for GPS position 

errors to reduce the number of candidate road, build spatial index to facilitate the 

spatial query, simplify the road network to reduce search space(K. Liu, Li, He, Xu, 

& Ding, 2012), employ parallel computing to speed up the process at either algo-

rithm level or program level. Many of the efforts are highlighted in the GIS 

CUP2012 (Ali, Krumm, Rautman, & Teredesai, 2012).  

 Robustness. The position data may reveal varying degree of difficulties for map 

matching in terms of nosiness (inaccuracy of the position measure) and sparse-

ness (sampling interval), which depends on positioning techniques, data collec-

tion protocols, etc. Hence, general map matching methods are required to main-

tain consistent performance of accuracy and efficiency when the data deteriorate. 

In particular, low-sampling rate GPS data in urban context attract most attentions 

in recent development of map matching. 

 Online/off-line. Online/off-line refers to two different scenarios of map matching. 

Online task aims at generating matching results of current position data when only 

historical data are available. And off-line task offers fully observed position data 

for the trip. Therefore, online processing often accompanies the navigation task 

while off-line is considered for post processing such as traffic flow analysis. This 

leads to a concern of tradeoff between accuracy and latency in the development 

of map matching approaches. Proposed strategies include fixed/sliding windows, 

finding convergence point (Goh, Dauwels, & Mitrovic, 2012), and dynamically de-

termine the output point with specified cost (G. Wang & Zimmermann, 2014). 

 Incomplete map data. Map data, namely the road network data, is another cru-

cial input for map matching. In addition to the positional inaccuracy, map data may 

also suffer incompleteness, i.e., missing minor road segments or newly con-

structed roads, incorrect driving directions. This is addressed by examining the 

matching results against a confidence threshold and thus identifying the portions 

of trajectory data for missing roads (Pereira, Costa, & Pereira, 2009; Torre, 

Pitchford, Brown, & Terveen, 2012). 



20 

 

 Other variants. There exist other efforts that variates from conventional map 

matching tasks, such as matching position data beyond road networks (Chen & 

Bierlaire, 2013), jointly tackle map matching and other tasks (e.g., behavior de-

tection(Lin Liao, 2006), travel time estimation(Li, Ahmed, & Smola, 2015), model-

ing trajectory data uncertainty(K. Zheng, Zheng, Xie, & Zhou, 2012), joint match-

ing and map building(Torre et al., 2012)). 

The aforementioned focuses, either solely or jointly, have shaped the development of 

map matching methods. In particular, the level of accuracy has led to two directions of re-

search. As for the point level accuracy, appeared in early years for navigation, methods that 

are capable of dealing continuous variables are considered, e.g., Kalman fitler, Particle filter; 

while for road level accuracy, methods for discrete variables are favored, e.g. HMM. Mean-

while, some focuses are addressed jointly. For instance, efficiency gain can be achieved 

either in the overall design of the method, i.e. global matching or incremental matching, or 

in a single phase of the overall process.  

An extensive literature survey of map matching methods is carried out in (Quddus et al., 

2007) which suggested four categories for its kind, namely geometric, topological, probabil-

istic and advanced methods. Geometric methods use geometric properties in terms of dis-

tance, direction to identify likely matching pair. Topological methods consider the connectiv-

ity between road segments. Probabilistic methods explicitly model the error regions of the 

position measures so as to assign probability/weight to individual candidate that intersects 

with the regions. Advanced methods rely on methods such as Kalman filter, particle filter, 

fuzzy logic, Hidden Markov Model (HMM), etc. Another categorization, global matching and 

incremental methods, is suggested in (Brakatsoulas & Pfoser, 2005). In global matching, the 

entire trajectory is used to determine the matching output while only a chunk of trajectory 

data is used in incremental methods. 

For modern map matching research, more and more efforts are focused on the road-level 

accuracy on low sampling rate trajectory data. And from the methodology’s perspective, 

most recent methods fall into the category of advanced methods. Unfortunately, there exists 

no commonly agreed state-of-the-art methods (Ali et al., 2012), probably due to the lack of 

benchmarking dataset, varying characteristic of the available datasets and diverse research 

motives. However, HMM based method and its variants are the most cited state-of-the-art 

in recent map matching literature, which often make use of both geometric and topological 

properties of the data while measure the affinity between position data and road network in 

terms of likelihood or weight. Therefore, a more focused review on HMM-based methods 

and statistical methods is provided in the following section.  

To ease the representation, these methods are presented in three groups, namely HMM 

based methods, HMM variants, and empirical probabilistic models.   

HMM based methods  

HMM is a statistical model for segmenting and labeling sequence data. It models the joint 

probability of the observation sequence and state sequence. Given the initial probability of 

states, probability of individual observation conditioned on states (observation probability), 

probability of current state conditioned on previous state (transition probability), then the 

(hidden) state sequence can be solved with maximum likelihood. The solution is solved via 
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Viterbi algorithm. Then a basic HMM based map matching method is used to model the 

states and design the observation and transition probability.  

(Newson & Krumm, 2009) model the states as road segments and use these states gen-

erate the GPS observations. The observation probability is set to the Gaussian distribution 

of the distance between observation and the nearby road, while the transition probability is 

computed as exponential distribution of the difference between the length of the shortest 

path and the distance between successive observations. The two parameters are estimated 

via statistical tests on samples draw from the test data. 

(Goh et al., 2012) penalized the above observation probability with speeding factor and 

train a Support Vector Machine (SVM) with Radial Basis Funciton (RBF) for the transition 

probabiltiy to combine the  distance discrepancy and the momentum change of the traveled 

path found via A* algorithm. The training uses 3000 path instances with binary label, that is 

being either actual path or not. To reduce the output latency, a varying sliding window (VSW) 

is designed for online traffic sensing. 

(Raymond & Morimura, 2012) model the states with shape points in the road data rahter 

than the observation’s projection on the road, which is claimed to have improve the 

suboptimality in viterbi algorithm introduced in the conventional modleing. And the travel 

distance between successive road points is used to determine the transition probability.  

(Ren, 2012) uses an exponential distribution with a topological index for the transition 

probabilty in the map matching of GPS data. Meanwhile, a method based on the movement 

pattern recognition and a monocular visual odometry are explored as supplements to assure 

uninterrupted pedestrian navigation services. 

(Song, Lu, Sun, Huang, & Chen, 2012) adds a multiplicator of speed limit to the 

observation probabilty and empirically tune the parameter for varying sampling rates to 

reduce HMM breaks (due to very small transtiiton probability when actual path’s length is 

much larger than the trajectory distance. And the multi-threading technology is used to 

improve the runtime efficiency. 

(Torre et al., 2012) consider the matching with missing roads in the roadnetwork. In the 

transition probability, information that includes max out-degree of the road, backtracking for 

U-turn, etc. is derived following a rule base. The method is feasible to recognize missing 

roads using a move forward/backwards machanism within viterbi decoding controled by a 

predined cutoff distance. 

(Oran & Jaillet, 2013) use a cumulative proximity weight rather the common choice of the 

shortest distance and the parameterization for robust accuracy performance over varying 

sampling intervals, which gain a small margin (~1.5%) in the test. 

(Osogami & Raymond, 2013) finds a multiobjective path for the transition path using a 

convex combination of travel distance and turns and Maximum Entropy Inverse 

Reinforcement Learning for parameter estimation on travel routes only.  

(G. Wang & Zimmermann, 2014) improves the online Viterbi decoding algorithm using 

ski-rental model to control tradeoff between accuracy and latency. By exploring the 

uncertainty in the current states, the output window size can be determined dynamically,  
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and thus achieve an error- and latency-bounded performance compared to other online 

strategies. 

(Assam & Seidl, 2014) uses Gaussian distribution of tangent distance between top-m gps 

points pattern and road point pattern. Its transition probability is a weighted distance in which 

the weight is estimated using a statistical test of likely road geometry transitions.  

HMM variants 

(Li et al., 2015) develop a HMM model for interpolation and extrapolation on either 

location or time. The model jointly estimates the traveled path, travel time and speed. In 

particular, the motion between successive observations, the probability of turns made at 

intersection, and the traveled time with inverse Gaussian distribution are considered. The 

model is trained using an efficient inference algorithm over millions of trajectory data. 

Extenstive experiments on multiple datasets show reasonable accuracy of model with full 

model setting.  

(Lou et al., 2009a) proposes a ST-Matching method which comprises spatial analysis and 

temporal analysis. The spatial analysis is used to compute the Gaussian distribution of the 

closet distance from GPS to its nearby roads and the ratio of distance between neighboring 

observations to the shortest travel distance between them. Temporal analysis is used to 

compute the cosine distance between actual average speed and typical speed constraint on 

the shortest path. Then the multiplications are summed over the trajectory. A sliding window 

strategy is used for online processing. The method outperforms the Average-Fréchet-Dis-

tance –based method in the test on low sampling rate. 

(Rahmani & Koutsopoulos, 2013) used an adaptive search region based on the 

characteristic of the local roads and design a comprehensive cost function of A* algorihtm 

for path finding. It extended the work of (Lou et al., 2009b) by considering non link addictive 

criteria such as overall path frechet distance in overall path finding.  

(H Wei, Wang, Forman, Zhu, & Guan, 2012) proposed a HMM equivalent formulism with 

interchangeable term derived from either (Lou et al., 2009b) or (Newson & Krumm, 2009). 

The term sampling interval is used in the max weight formulism to achieve a robust accuracy 

on varying sampling interval. The global weight is optimized by tuning two parameters 

beforehand to fit the training data.  

(Srivatsa, Ganti, Wang, & Kolar, 2013) investigated the fitness of Markovian assumption 

in trajectory modeling using Chapman-Kolmogorov equation and found that it doesn’t hold, 

especially for the ones with specific destinations. Based on the analysis, an optimal path-

finding algrotim is used instead of viterbi decoding for overal likelihood maximization. The 

algoirthm finds the closet path among top-K shortest paths by iterative trials on taking 

alternative path at the longest roads from the previous trail. 

(H Wei et al., 2013) combined global maximum weight and global geometric method e.g., 

Fréchet distance. Following a global geometric method by constructing a free space 

between graph and trajectory, a previous formulation (H. Wei et al., 2012) is used in the 

dynamic programming in order to find the optimal path subjected to Fréchet distance. 

(Tao & TIMMERMANS, 2013) applied Bayesian Belief Network (BBN) to combine 

multiple decision factors for matching. More specifically, a tree structure graphical 
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representation binary classifier for individual GPS position is built which incorporates six 

decision variables, e.g., PDOP, DirectionDiff, DistToRoad, Connectivity, AngleDiff, 

RoadAzimuth. The model is trained with a small set (<1000 samples). The map matching 

also starts with an origin-detection process to calibrate the origin point using user profile 

(associated in the test data). 

(Hunter et al., 2013) developed a path inference filter using a chain strucutre Conditional 

Random Fileds (CRF) with a small set of features for map matching. The model is suggested 

to be superior than HMM by covercoming the selection bias problem in transiton path 

selection. With benefit from the discriminative power of the CRF, the model is designed to 

fit the data better than HMM with a richer, non-independent feature set. 

Empirical Probabilistic Model 

(Giovannini, 2011) studied map matching for traffic flow analysis and proposed a four-

step solution, including data aggregation to reorganize, modify, remove errorneous raw GPS 

data, affinity-based data matching in which the affinity is computed as the product of position 

and direction error distribution based on Cauchy distribution to retain the sensitivity on the 

tails in the distribution. With the data projection, each datum is identified to have several 

candidate matches. With these alternatives, a refined A* algorithm is used to find optimal 

paths with the shortest travel time while satisfying the constraint from the data recording. 

Eventually a global optimal path is found, using solely the travel time cost. Being different 

from other map matching methods, the weight of individual candidate road is not used in the 

global path finding.  

(Bierlaire, Chen, & Newman, 2013) developed a probabilistic measurement model of 

smart phone data for map matching. The model captures the dependency between the 

observed position sequence and a hypothetical path over continuous position space along 

the path using integrals rahter than summation in HMM. The topology of the road network, 

DDR (domain of data relevance) is used to reduce solution space for an efficient integral 

computation. A traffic model based on speed patterns, i.e., stop, low speed, regular speed 

traveling is used to describe motions between succesive observations. Furthermore, a path 

generation algorithm is developed to find path and update the likelihood iteratively. (Chen & 

Bierlaire, 2013) extended the probabilistic measurement model from (Bierlaire et al., 2013) 

for multimodal map matching of smartphone data which were derived from sensors of GPS, 

Bluetooth, accelerometer. 

(Sarlas, 2013) employed a route choice model for transition path identification. This 

model computes the probability of the candidate paths, which are selected among a list of 

shortest paths with added randomness.  

(Westgate, 2013) investigated map matching for travel time estimation using Bayesian 

approach. By directly modeling the persistent bias in GPS data, the traveled path is modeled 

as missing data with GPS error and its unchanged bias in the likelihood of the data, which 

explores three statistical characteristics, namely individual GPS readings, multinomial logit 

choice model for unknown traveled paths as a function of traveled time, and lognormal 

distribution for the travel time between successive GPS observations. The probability is 

computed using the Metropolis-within-Gibbs framework. A test on simulated data show that 
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the model with both GPS bias and independent error outperforms the reduced method in 

true and false positive rates. 

As can be summarized from the aforementioned research works, the development of 

map matching reveals the follwing characterstics. Firstly, HMM-based methods have 

dominated the field and demonstrated a superior accuracy. The modeling of the transition 

probabiity is the most challenging step with the HMM and shows significant impact on the 

overall accuracy of the model. Unfornately, the real world route planning is a complex 

decision-making procedure which is not yet full understood. Therefore, current practice often 

requares a lot of enginneering efforts in designing the probability which needs combined 

intuitions and heuristic rules. Moreover, the parameters governing the probabiltiy or the 

weight measure is eitheir estimated from the data or predefined based on empirical evidence. 

Secondly, test datasets were different, not much effort was made in preprocessing the data, 

which also leads to confusion in applying and evaluating the proposed methods. Thirdly, 

map matching is still earning much attention in the community with an increasing need in 

processing large scale trajectory data for variosu accademic tasks.  

2.3.2. Inferring Taxi Status 

Inferring taxi status means to classify taxi’s occupancy for each position log in the trajectory 

data. More specifically, a taxi turns its status to occupied when it picks up passengers and 

switches to vacant when it drops them off. Taxis tend to reveal different traveling behaviors 

in these two statuses. For example, occupied taxis have specific destinations so that they 

are more likely to take the fastest paths which ensure more profits, but vacant taxis tend to 

slow down and search around in the local streets for passengers17. Therefore, the capability 

of identifying taxi trips of being occupied can be useful for many applications such as intelli-

gent routing service that incorporates regular traffic information (Yuan, Zheng, Zhang, & Xie, 

2010), identify the pick-up/drop-off hotspots in the city for better taxi service recommenda-

tion, and even estimate the traffic demands for better urban planning. To acquire this infor-

mation, it’s straightforward to manually mark the starting points and ending points with meter 

installed in the taxi, and integrated the data with the GPS recordings. Unfortunately, there 

exist some GPS datasets without the meter data and thus give rise to the study of taxi status 

inference (Ganti, Srivatsa, Ranganathan, & Han, 2013; Zhu et al., 2011).  

Only a few literatures have directly addressed taxi status inference problem. Therefore, 

some related works in mining taxi mobility data, activity recoginition, transportation mode 

detection are also selected for methodolgy comparison. 

(Zhu et al., 2011) investigated the problem of inferring from GPS trajectories the taxi 

status of being occupied, vacant and parking. First, a parking place detection algorithm is 

developed to find the parking point sets in the trajectories, which uses of a density-based 

algorithm for candidate point sets and a supervised model to reduce the false detection of 

traffic jam. Then the non-parking trajectories are classified via a two-phase inference model. 

For individual GPS observations, a decision tree with probabilistic outputs is used and fed 

                                                   
17 The service could vary in different cities, e.g., instead of searching passenger on the street, the 

taxis in Munich tend to wait at specific sites and pick up passengers with a reservation at specific 

locations. 
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with features extracted from trajectory alone, historical trajectories, road network and POIs. 

And for observation sequences, a Hidden Semi Markov Model (HSMM) is used to capture 

various duration patterns in the output sequences of the decision tree. Experiments show 

that parking status is relatively easy to recognize, while for the other two statuses, even the 

training with five times so much test data an accuracy of only 75% is achieved.  

(Ganti et al., 2013) introduced the distance/time stretch factor for taxi pick-up/drop-off 

point inference following the heuristic that taxis take the shortest path when they are 

occupied. Then a HMM model is developed to incorporate this feature in the emission 

probability computation. The output of HMM model is post-processed by a clustering 

algorithm for pointwise decision on the final outputs. The parameters of the model, stretch 

factor and window size, are empirically chosen for the corresponding test datasets. Despite 

its simplicity, the model outperformed baseline method by a factor of 2 in the extensive 

experiments.  

(Phithakkitnukoon, Veloso, Bento, Biderman, & Ratti, 2010) studied the problem of 

predicting the number of vacant taxis given the location and time. A predicator based on 

Naïve Bayes classifier is built independently for each cell in the study area, which accounts 

the time of the day, the day of the week and the weather condition. The work discusses the 

error-based learning for parameter estimation and evaluates the adequacy of data using 

mutual information. The study case reveals that traffic demands vary across the urban area 

and the regions with larger demands often have higher variances. 

(L. Liao, Fox, & Kautz, 2007) developed an acitvity model using hierachical Conditional 

Random Fields for place extraction and activity recognition from GPS traces. The model is 

built with three layers, the lowest layer consists of GPS readings (all matched to the road 

patch), the middle layer contains activity nodes, and the top layer consists of significant 

places. This graphic structure enables the model to capture complex dependencies among 

different abstract layers, but with a high compulational load for inference and parameter 

estimation. Therefore, approximate inference and learning algorithms are used for efficient 

reasoning. 

(L. Zhang, 2014) investigated the problem of classificaton of six transportation modes 

from the GPS tarjectories. First, a trajectory is segmented into sub-trajectories by identifying 

stops using a greedy search algorithm with prefined rules. Then a multi-stage classification 

method is developed to detect transporation modes recursively. In the first stage, fuzzy-logic 

is used to detect walk, bike and the mode with motorised vehilces. Then a supervised SVM 

is used to classify the rest of the modes. The sequential dependency among the modes is 

also explicitly applied after the classificaton in the first stage. 

(Yu Zheng et al., 2008) proposed a method to learn the transporation mode from GPS 

trajectories. The method empolys a segmentation procedure, an inference model, and a 

post-processing procedure. During the segmentation, the change points in the trajecotry are 

detected, following a set of predefined rules with multiple threshold parameters. Then the 

segmented sub-trajectories are classified using both structured prediction (e.g., CRF) and 

single output classifiers (e.g., Decision Tree, SVM) for comparisons. Some of the latter ones 

are used in postprocessing so as to enforce a transportation mode transition in the post-

processing. The experiments show that the segmentation based on change points  
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outperforms the segmentation based on uniform duration and uniform length. The inference 

based on Decision Tree outperforms the inference based on CRF. 

It can be noticed from the selected literatures that the task of taxi status inference is not 

well solved. (Ganti et al., 2013) reported that less than 80% recall is achieved on a realworld 

dataset18 with an expected error range of 10m, and the performance drops dramatically 

when the sampling rate decreases. The inference of taxi status raises a number of intriguing 

issues.  

First, there is a label uncertainty. The fundamental idea underneath the task is the mobility 

patterns (i.e. speed, direction) have the adeque information to infer the status/label in query, 

e.g., occupied/vacant, activities (work, sleep, leisure, visiting, etc), transportation modes 

(walk, bike, car, bus, tram). The real difficultiy relies in the distinguishablity of status. For 

example, walking is easier to identify than the driving mode by bus or car (L. Zhang, 2014; 

Yu Zheng et al., 2008). And for taxi status inference, simply applying common indicators 

such as speed and direction can not yield statisfying results (Ganti et al., 2013) even though 

it’s only a binary classificaition for the individual position logs. 

Secondly, current practices intend to incorporate the heuristics in the inference methods 

and various approaches such as mutli-stage inference which recursively solves the labeling 

tasks (L. Zhang, Thiemann, & Sester, 2010), unified inference framework with complex 

structure (L. Liao et al., 2007), have been tested. Each of these methods enjoys certain 

advantages over the others. To ensure the overall performance, most works tend to employ 

the multi-stage strategy, e.g., segmentation with post-processing procedure to explicitly 

leverage the empirical insights. 

Thirdly, despite the reasoning power of inference framework (e.g. graphcial models), 

model building can still be challenging as 1) contributions to the overall performance of the 

inference model may not be evaluated directly (Yu Zheng et al., 2008), especially when 

preprocessing and post-processing are invovled; 2) finding the most relevant feature 

variables may achieve a better performance than complex inference framework (Ganti et al., 

2013); 3)  the application of the structured prediction method (e.g., HMM, CRF) may suffer 

from a careless design of the input in terms of irregular temporal scale (e.g., length of the 

segment) from the preprocessing steps. 

  

                                                   
18 Shanghai Jiao Tong University. SUVnet-Trace Data. http://wirelesslab.sjtu.edu.cn 
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CHAPTER 3.  

Discriminative Models for Labeling Spa-

tial Trajectories in Road Networks 
 

 

 

Labeling spatial trajectories refer to the tasks involving location sequences such as localiza-

tion in road networks (map matching of high sampling rate trajectories) (Newson & Krumm, 

2009), route reconstruction (map matching of low-sampling-rate trajectories) (Hunter et al., 

2013; Lou et al., 2009a; Yang & Meng, 2014), trajectory segmentation (Sankararaman, 

Agarwal, Molhave, Pan, & Boedihardjo, 2013) and activity recognition (L. Liao et al., 2007), 

etc. These labeling tasks need to handle uncertainty, whether due to the imprecise obser-

vations, partial observability, nondeterminism, or a combination of them all. There are nu-

merous sources of uncertainty in spatial trajectories ranging from inherent errors of the po-

sitioning devices to the pragmatic aspect that only discrete statuses are recorded for the 

continuous movements (Trajcevski, 2011). 

This chapter first investigates the uncertainty in labeling spatial trajectories in the urban 

road network, and then introduces the probabilistic graphical model, which lays the founda-

tion of the thesis to resolve the uncertainty in labeling spatial trajectories. 

3.1. Uncertainty in Labeling Spatial Trajectories 

The uncertainty in the labeling tasks is discussed by addressing three types of sources, 

namely imprecise positioning, sampling and nonlinear behavioral dynamics. The first two 

root in the process of data collection while the last one unfolds the inherent nature of moving 

objects’ behaviors. 

3.1.1. Imprecise Positioning 

Moving objects can be located using a variety of positioning techniques, such as Global 

Positioning System (GPS), network-based techniques, etc. Regardless of the fact that now-

adays GPS’s Standard Positioning Service (SPS) provides a Global horizontal accuracy of 

2.849 meters at a 95% confidence level (FAA, 2014), the positioning information often bears 

an uncertainty because a GPS receiver only approximates the actual position of the respec-

tive sensor or object due to physical limitations and measurement errors of the sensing 

hardware (Lange, Weinschrott, Geiger, & Blessing, 2009). Moreover, positioning with GPS-

enabled devices in the urban context has been suffering from signal blocking and multipath 

effects which are still unsolved issues (Bourdeau, Sahmoudi, & Tourneret, 2012; Groves, 

2011). 

Besides the unsatisfactory positioning techniques, research practices often need to deal 

with noisy location data which may be: 
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 Legacy datasets that are collected with less accurate positioning devices. 

 Crowd-sourced location data using a variety of unknown positioning devices with 

varying positioning accuracies. 

 Inconsistent location data collected in complex urban environments (Figure 3.1 illus-

trates the estimation of varying positioning accuracies in three mega cities in China). 

 Inaccurate reference data, e.g., outdated road network (Quddus et al., 2007). 

 

 
Figure 3.1 Distance between location observations and the nearest roads (Y. Wang et al., 2011). A 

comparison of estimated positioning accuracies of taxis GPS data in three cities, Beijing, Shanghai 

and Guangzhou, in China. (a) Log-scale histogram of the count of distinct location observations ac-

cording to their distance to the nearest road. (b) The ratio between the difference to the nearest and 

the second nearest roads within 100 meters. 

Many research works have been done to model the uncertainty of the position information 

which can be categorized to pdf-based models and shape-based models (Lange et al., 

2009). The pdf-based models employ two-dimensional probability density functions (e.g. 

two-dimensional Gaussian distribution) to describe positions under uncertainty at the spec-

ified moment. The shape-based models describe uncertain spatial extent of positions using 

geometric shapes with probabilities. In the context of labeling spatial trajectories, the uncer-

tainty can be addressed using a similar notion of pdf-based models. But rather than using 

solely the position information of one observation, more information as well as more neigh-

boring observations are used to resolve the issue collectively. 

3.1.2. Sampling Rate 

In practice, moving objects are observed at discrete time intervals, that is, trajectory data 

are the discrete samplings of the continuous movements. The sampling is necessary for 

following reasons: 
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 Efficient tracking and management of moving objects 

Efficient tracking and management aims to reduce the cost of collecting the trajectory 

data. The cost may refer to computation power in city-scale vehicle fleet management, 

on-board data storage and transmission cost in vehicle tracking, battery consumption of 

mobile applications, etc. In these cases, the sampling achieves cost reduction by filtering 

out the redundant location observations. Two strategies can be used for sampling, 

namely time-based and distance-based, both retain the observations at a specified 

time/distance interval. 

 Users’ engagement in the Location-based social network service (LBSNS) 

Another data source of spatial trajectories is the LBSNS, such as location-enabled 

tweets19, check-ins in Facebook20 and Foursquare21, Microsoft’s GeoLife22. Unlike the 

tracking and management, these trajectory data are collected voluntarily thus sampling 

unnecessarily complies with a universal rule among the diverse users. As a result, the 

sampling intervals could range from seconds to days based on individual user’s engage-

ment in the service, i.e., intensive user engagement leads to high sampling rate and vise 

versa. 

Sampling introduces another uncertainty to the labeling tasks, which results in an infor-

mation loss in the trajectory data. And the degree of the uncertainty varies when different 

sampling intervals are applied. As an example, Figure 3.2 shows four spatial trajectories of 

the same movement in the road network but with different sampling intervals. The 10s tra-

jectory has the highest sampling rate (i.e. shortest sampling interval), thus it captures the 

finest details of the movement. The 30s, 60s, 120s trajectories are derived from the 10s 

using the time-based sampling strategy, which can only sketch the movement at coarse 

scales. In general, the larger the sampling interval is, the more uncertainty the data embod-

ies. It can be verified in the same example (see Figure 3.2) that the route choices at the end 

of the 120s trajectory (bottom right sections) are totally “filtered out”. Note that the statement 

only holds if the moving objects share the equivalent mobility in the space they travel. In the 

context of road network, the mobility accounts for the connectivity of the local road networks 

and the speed limits on individual roads. 

                                                   
19 https://support.twitter.com/articles/122236-adding-your-location-to-a-tweet#  
20 https://www.facebook.com/help/461075590584469/ 
21 https://support.foursquare.com/hc/en-us/articles/201065340-Check-ins 
22 http://research.microsoft.com/en-us/projects/GeoLife/ 

https://support.twitter.com/articles/122236-adding-your-location-to-a-tweet
https://support.foursquare.com/hc/en-us/articles/201065340-Check-ins
http://research.microsoft.com/en-us/projects/GeoLife/
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Figure 3.2. Trajectory data of the same movement in road network with varying sampling intervals. 

3.1.3. Behavioral Dynamic 

Inferring moving objects’ behavior thus to extract semantics from raw location observations 

is a common goal of various labeling tasks. Behavior, in the context of labeling spatial tra-

jectories, bears the meaning of the range of actions made by individual moving objects in 

conjunction with their moving space under various stimuli. Behaviors of interest could range 

from route choices made by drivers to the types of transportation modes (e.g. walk, bike, 

driving). 

The basic assumption used in behavioral classification of spatial trajectories is that there 

exists a consistent mapping between moving objects’ mobility states and their changes and 

the behavior of interest. Thus recognition of mobility patterns is crucial to the classification 

tasks. The mobility status can be described in a set of the movement variables, such as 

speed, sinuosity, turning angle, etc. Figure 3.3 shows the temporal dynamics of the move-

ment variables, speed and turning angle, in contrast to the service status (i.e., binary code 

with 1 for occupied that the taxi is with passengers and 0 for non-occupied that the taxi is 

without passengers) of the taxi #10058. The data are obtained directly from the on-board 

GPS-enabled device in the taxi. Note that they can also be estimated from the location ob-

servations, in which case the scale issue should be considered for unbiased estimations 

(Laube & Purves, 2011). 
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Figure 3.3 Temporal dynamics of the mobility status in terms of speed (top), turning angle (middle) of 

a sample series of the taxi #10058 and its status (bottom). The sample series starts at 12:25 and 

ends at 15:19 in 2010-4-1. 

The behaviours of moving objects often reveal a dynamic nature as the movement vari-

ables change in a nonlinear way. This complexity gives rise to the uncertainty in the mapping 

between mobility pattern and the behaviour of interest. Take the case shown in Figure 3.3 

as example, the taxi travels with irregular speed patterns as well as multiple in-between 

stops (probably at the traffic lights), which doesn’t’ align well with the changes of its status 

in the temporal dimension. The turning angle may have indicated the first switch of status 

for the increased turning angles (probably caused by the driving manoeuvres when ap-

proaching the destination) but failed to capture the next status switch. A possible interpreta-

tion, in this case, could be that the two exceptionally long stops (two speed line sections with 

constant zero values) can better match the switching events as they occur right before the 

taxi drop-off/pick-up passengers. 

The above status inferring example illustrates the uncertainty associated with behavioural 

dynamics and motivate the need to find a relevant representation of the mobility pattern of 

moving objects for behavioural classification. As it can be shown in the later sections, the 

representation is the key issue to achieve good performance in the labelling tasks. 
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3.2. Discriminative Models for Sequence Labeling 

The need for labeling sequence data, or predicting multiple variables that depend on each 

other over a set of definite states, arises in a wide variety of problems in several scientific 

fields. In information extraction, the task of Name-Entity Recognition (NER) require to tag 

text elements with pre-defined categories such as names of persons, organization, loca-

tions, etc. In computer vision, image patches are labelled with their semantic classes 

(since image data can be modeled as pixel sequence). And in geoscience, moving objects 

are localized, their behaviors classified, the evolving physical states of the geographic phe-

nomena are predicted. 

Probabilistic models describe data that can be observed from a system, and they are 

often used to infer unknown quantities and make predictions on unseen data (Ghahramani, 

2012). In particular, probabilistic modeling for sequence labeling is to build probabilities of 

paired observation and label sequences in order to maximize the number of correct label 

assignments in the output sequence. Graphical models, a marriage between probability and 

graph theory, are well studied and understood for such problems. 

In the remainder of this section, the fundamentals of probabilistic modeling for labeling 

sequence data including modeling, feature extraction, inference and learning are introduced. 

3.2.1. Probabilistic Graphical Models 

Probabilistic graphical models are a powerful framework which combines uncertainty 

(probabilities) and logical structure (independence constraints) to compactly represent 

complex, real-world phenomena (Koller, Friedman, Getoor, & Taskar, 2007). To realize 

that, a graph representation is used to explicitly address the dependency among the ran-

dom variables which characterize different perspectives of a target problem with uncertain-

ties. In this graph, nodes account for random variables and edges between the nodes 

claim the dependency between the corresponding variables. Many probabilistic models 

such as Hidden Markov Models, Kalman filters can be described using this general model-

ing language. 

The motive of endorsing graphical representation in probabilistic modeling for multiple 

random variables is the compact yet powerful expressivity that it induces. Real world appli-

cations normally involve jointly modeling dozens or even hundreds of variables, i.e., a 

 image requires  variables. And it can be daunting to describe them naively 

(a distribution with  binary random variables would need  numbers). In contrast, a graph-

ical representation describes a distribution in a compact way by exploring its underneath 

structure and allows it to be constructed and utilized effectively (Koller & Friedman, 2009). 

The local structures of the graph, cliques formed by a subset of variables that are fully con-

nected, assert the conditional dependencies among the random variables. Meanwhile, the 

distribution represented by the graph can be broken down into a product of factors, each of 

which is defined on a much smaller possibility space rather than the one over all the varia-

bles. These dual perspectives of a graphical representation, namely a set of conditional 

dependencies and the factorization of the distribution, are found to be equivalent which are 

most useful in the modeling and design inference algorithms respectively (Sutton, 2012). 
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Graphical models comprise two classes of models, Bayesian networks (or directed graph-

ical models) and Markov networks (or Markov random fields, undirected graphical models), 

see Figure 3.4 for illustrative examples. Bayesian networks use a directed graph in which 

edges have directions associated with them, while Markov networks use an undirected rep-

resentation. These two classes of models share the merits of the graphical models but differ 

in the dependencies they can encode and the factorization that they induce (Koller & 

Friedman, 2009). Unlike Bayesian networks, it’s not that intuitive for Markov networks to 

correspond a local structure in the graph to either probabilities or conditional probabilities. 

Markov networks utilize the notion of energy (origins from statistical physics) defined on the 

cliques in which nodes are fully connected in the graph, and derive the probability by nor-

malizing the sum of the energy. Detailed discussion on this is given in the later section. 

 
Figure 3.4. Different perspectives on probabilistic graphical models (Koller & Friedman, 2009): (a) 

medical diagnosis using a Bayesian network to infer the causal relationships among diseases (Flu, 

Hayfever) and symptoms (Muscle-Pain, Congestion), (b) a sample Markov network. 

3.2.2. Generative versus Discriminative Classifiers 

Modeling the probability of multiple random variables over a discrete set of states, namely 

predicting the output states/labels  given multiple observations  in classification, the 

models fall into two categories: generative models and discriminative models. Generative 

models use join probabilities of observations and output variables , which intend to 

describe how the observations can be generated by the class variables. Discriminative 

models construct the conditional probability of the output variables given observations 

. Though these two might be converted to each other using Bayes’s rule, 

  (3.1) 

they are distinct approaches in practice and both have potential advantages in practice 

(Sutton, 2012). Table 3.1 gives a few examples for these two categories. 
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 Single output Sequence output 

Generative 
Naive Bayes, 

Restricted Boltzmann Machine 
Hidden Markov model 

Discriminative 
Logistic Regression, Support Vector Ma-

chine, Neural Networks 
Conditional Random Fields 

Table 3.1 Generative versus Discriminative Models. 

Since it’s tempting to know which class of models enjoys better performance of classifi-

cation (the count ratio of correctly classified examples among all in the test), comparisons 

are often made by investigating a generative-discriminative pair of models such as naive 

Bayes and logistic regression for discrete input, Normal Discriminant Analysis and logistic 

regression for continuous input. (Ng & Jordan, 2002) appealed for such a purpose. Ng and 

Jodan argued with both theoretical and empirical evidences that the two classes of models 

may outperform each other with varying example sizes, the so-called “two-regime” behavior. 

That is, logistic regression creates fewer asymptotic errors (indicating a better theoretical 

performance), but it can only outperform the naive Bayes when the size of training examples 

has reached a certain threshold. And the empirical results reveal no general knowledge of 

how large the thresholds should be for different domains. Furthermore, they suggests that, 

in practice, the cold-start performance of logistic regression can often be improved via reg-

ularizations and a hybrid classifier that inherits merits from both models should be consid-

ered. And the superior performances hold for classifier for sequence output, such as Condi-

tional Random Fields versus its generative counterpart Hidden Markov Model in many ap-

plications. 

Discriminative models also enjoy advantages in the modeling stage and they may very 

well get along with rich, overlapping input variables, or say features. As shown in the Eq. 

(3.1), discriminative models don’t need to model the interdependencies among the input 

variables  for   , which is otherwise a difficult task. For example, in map matching of 

GPS trajectories, it’s not straightforward to model the dependency between the width of the 

road and the number of the traffic lights on it when you attempt to incorporate contextual 

information of the road networks the moving objects are traveling in. And it could be trouble-

some to model these dependencies in generative models, which may either require to model 

the dependencies explicitly, thus raise the difficulty of tractability or retreat to simpler inde-

pendence assumptions with may influence the performance. More detailed discussions can 

be found in (Sutton, 2012). 

As for the graphical representation, it’s natural to represent the generative models with 

the form  using directed graphical model, while discriminative models use more 

often undirected graphs. 

3.2.3. Conditional Random Fields 

The Conditional Random Fields (CRF) is an undirected graphical model used to compute 

the probability of a label sequence conditioned on the observation sequence (Lafferty, 
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McCallum, & Pereira, 2001), namely segmenting and labeling sequence data. The model 

was first proposed for natural language processing (NLP) and outperformed previous 

methods of Hidden Markov model (HMM) and Maximum Entropy Markov Model (MEMM) 

on the task of Penn treebank part-of-speech (POS) tagging23. The superior performance 

as discussed in the paper, was achieved by retaining the discriminative nature of MEMM 

while solving the label bias problem of its kind. CRF was soon successfully applied to a va-

riety of problems in NLP (Sha, Pereira, & Science, 2003), computer vision (He, Zemel, & 

Carreira-Perpinan, 2004), computational biology (Bernal, Crammer, Hatzigeorgiou, & 

Pereira, 2007), and so on. 

To formulate CRF, let  denotes the observation sequence of length 

, in which each entry  is an observation at position  in the sequence, 

 denotes the associated label sequence that takes values from a finite set 

, i.e. a simple case of binary classification . Then, a general CRF can be given 

as follows 

  (3.2) 

where  indexes a subset of variables  in which variables fully depend on each 

other,  is an associated potential function of the variable set  that maps the inputs to a 

non-negative value, and  is a normalization function of input  defined as 

  (3.3) 

and the  means the sum of all possible labels settings. Thus, the CRF defines a 

probability that factorizes on  factors of the inputs and labels. In a graphical language, 

the model can be described using an undirected graph with  cliques. Note that equation 

(3.3) only gives a modeling framework that shows how the probability should be factorized 

in the graph and the final model is obtained by specifying the potential functions. 

The potential function  is often rewritten as . The function 

 called an energy function has an origin in statistical physics and is 

used to describe the probability of a physical state that depends inversely on its energy (i.e. 

configuration of a set of electrons) (Koller & Friedman, 2009). The energy function can be 

specified using the weighted sum of a set of predefined feature functions . Each feature 

function maps the values of the variables that it takes a real number, a feature. The weights 

 indicate how compatible the features are in the specific classification task. Then it 

yields 

  (3.4) 

By substituting  in Eq.(3.2), a CRF yields a log-linear form of 

                                                   
23 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 
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  (3.5) 

The subscripts of feature functions indicate that for each clique, in the graph representa-

tion, a unique feature set can be used. But it is also allowed to encourage similarity among 

the cliques that have the same structure by specifying the same set of feature functions 

and tying parameters, namely use identical weights for the same feature functions in the 

cliques. This results repeated local structures in the graph. 

One typical implementation of CRF is to use a chain structure, in which dependency as-

sumptions are made only between current label variable  and its preceding neighbor  

and the same set of features with tied parameters are used. It yields 

  (3.6) 

where  

  (3.7) 

for which the graphical representation is shown in Figure 3.5 (a). 

 

Figure 3.5. Different graphical structure CRF. (a) chain, (b) grid and (c) tree. Note that only the graph-

ical structures for output variables are depicted for grid and tree. 

3.2.4. Feature Extraction 

Besides the CRF framework, feature functions should be defined in order to concretize the 

probabilistic models. The features, i.e., outputs of the feature functions, represent the raw 

data (e.g., word sequence, image pixels, GPS trajectory) in binary, categorical or continu-

ous values. Note that a feature bears the same meaning to a variable, an attribute, or a 

predictor across the communities of statistics, machine learning and data mining. For in-

stance, in the task of localizing a GPS point to local road network, features can be the bi-

nary indicator of the road being an arterial road or a residential street, the sphere distance 
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between the GPS point and a nearby road, or a categorical transformation of the real-val-

ued distance to qualitative values {VERY_CLOSE, CLOSE, FAR, VERY_CLOSE}. 

Finding a good data representation is very domain specific and related to available meas-

urement (Guyon & Elisseeff , 2006). Feature engineering is the procedure that serves such 

a purpose in classification tasks, which could be further specified as two tasks - feature 

construction and feature selection. Feature construction is the procedure to transform the 

input raw data into a set of features (or feature data), which is a key step conditioning sub-

sequent classification procedure. Thus, it has been a long-term endeavor in machine learn-

ing community to explore new feature instances and methods to derive them for specific 

tasks. The task can be carried out either manually with human expertise or automatically. 

See (Sutton, 2012) for examples of how to design features of CRF for NLP tasks. 

Often, to improve the classification result of the CRF, more features should be used (the 

feature set can be easily expanded using automatic feature induction (McCallum, 2003)). 

However, this leads to a dilemma that using more features also increases the risk of over-

fitting. Therefore, feature selection, to find the most relevant feature subset, is of great inter-

est. Besides improving classification accuracy, it could also yields runtime data reduction in 

the memory, less complexity in parameter estimation (more features could result in more 

parameters to be estimated which will be explained in later section), and parsimonious mod-

els for easier statistical interpretations. Generally speaking, feature selection methods fall 

into three categories, filters, wrapper methods and embedded methods. 

3.2.5. Inference on Graphical Models 

Applications of probabilistic models can be realized using two different types of inference 

tasks, probability query and finding most likely assignments. Probability query computes

, namely the conditional probability of a subset random variables  given a sub-

set of observed random variables , e.g., query the probabilities of certain diseases given 

the symptoms of the patient. Finding most likely assignments is to find the assignments of 

the random variables with the maximum probability, for which a common case is to find the 

joint assignments of all the output variables  with the maximum probability given ob-

served random variables  by computing . 

The complexities of the inference tasks largely depend on the graphical structure of the 

probabilistic models. For simple graphs without loops such as chain and tree, both inference 

tasks can be computed exactly with efficient algorithms. However, for more general models 

with loop in the graph, e.g., grid structured model for image data, exact inferences are often 

intractable or suffer from a slow computational performance. Since real world applications 

or complex models often require intensive computation on a very large dataset, efficiency 

become a critical issue thus making exact algorithm less appealing in the practice. There-

fore, inference tasks on complex model often resort to compute the approximate probabili-

ties using either sampling-based methods, e.g., MCMC (Andrieu, Freitas, Doucet, & Jordan, 

2003) or variational methods, e.g., Belief propagation (Yedidia, Freeman, & Weiss, 2001), 

for which the quality of approximation has to be evaluated. Note that inference often serves 
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as a subroutine in learning the model since finding the optimal parameters requires the iter-

ative evaluation of the model at each step. Thus, efficient training can often benefit from the 

selection of an efficient inference algorithm. 

3.2.6. Discriminative Learning 

Learning graphical models, in general, is to construct a model  from a set of data in-

stances  for an underlying probabilistic distribution . The goal 

of learning might vary due to a range of different purposes, such as density estimation, task 

specific learning, and knowledge discovery (Koller & Friedman, 2009). Therefore, there exist 

various metrics to evaluate the learned model  in contrast to the truth distribution . As 

for discriminative models, the expected conditional log-likelihood  

  (3.8) 

is often used to measure model’s capability of predicting  given , where  denotes 

the expected value of the given quantity (computed from the model) with data instance  

sampled from the distribution . The higher value the expectation gets, the better the model 

approximate the truth distribution. 

Since the truth distribution is unknown for real-world applications, the expectation is often 

approximated by averaging over a sufficiently large data set . And by exploiting the stand-

ard assumption that the data instances are independent and identically distributed (IID), it 

yields to compute 

  (3.9) 

This numerical criterion serves as an objective function to quantify the preference of different 

models in terms of finding the optimal parameters . Therefore, learning can be formulated 

as an optimization problem. The choice of learning algorithms depends on the specification 

of the model. Thus, we will address this issue accordingly in the subsequent chapters. 
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CHAPTER 4.  

A Chain Structured Model 
 

 

 

This chapter discusses the probabilistic modeling of spatial trajectories in road network us-

ing CRF. Map matching is performed to demonstrate the modeling effort, for which the au-

thor will show later that the derived model can also be applied to other applications. 

Map matching is to recover the original route from a sequence of GPS observations (see 

Figure 4.1 for an example). More precisely, given a sequence of observations of a moving 

object, map matching finds the corresponding label sequence, namely the roads that are 

traveled on. The basic attributes of the GPS observations collected by positioning sensors 

include latitude, longitude and timestamp, while extra information such as instant speed, 

acceleration, heading direction etc. can also be obtained from the sensors. Another input 

data is the road network, which comprises the geometric representation and the navigational 

data such as speed limit, driving directions, etc. For vehicles’ trajectory data, only roads for 

driving are required, while other transportation networks are needed in the multimodal rout-

ing scenario (Chen & Bierlaire, 2013). 

 
Figure 4.1 An example of map matching of spatial trajectory (red dash line) in road network (grey 

lines). The ground truth driving route is marked in a green line. 
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4.1. Chain Structured CRF 

In map matching, two tasks need to be solved, namely localization of the individual GPS 

observations in the road network and finding the transition paths between two subsequent 

observations. Localization finds the actual roads where the vehicles’ locations are observed. 

Finding the transition paths is to determine the actual path the vehicle takes in the road 

network. As discussed in Section 3.1, the GPS locations can be quite noisy in the urban 

area, which makes the localization based on finding nearest roads often unsuccessful in 

urban road network. This may be a reason for the standard approach to jointly solve locali-

zation and finding transitions in recent map matching research (Lou et al., 2009a; Newson 

& Krumm, 2009; Yang & Meng, 2015). Making use of the latent observations of the transition 

paths in the road network largely improve the matching accuracy for trajectories with high 

sampling rates, because it eliminates many infeasible candidates by imposing topological 

constraints. However, the performance drops dramatically when the sampling rate de-

creases, which imposes huge information loss in finding the transition paths. To address 

these challenges, a CRF-based probabilistic model is proposed. 

The CRF model addresses the two tasks by employing a chain structure that comprises 

two types of nodes in the graphical representation, point nodes and path nodes (see Figure 

4.2). These two types of nodes correspond to the alternating observations of the locations 

and the transition paths, and they jointly determine the output road sequence. Note that the 

transition paths are implicitly observed from both the trajectory data and the road network. 

Observations are paired with point nodes with edges for dependencies, while edges be-

tween point nodes and path nodes impose a feasibility constraint that is explained later in 

this section. 

 
Figure 4.2. A chain-structured CRF for 3 GPS observations. The map on top illustrates a simplified 

situation of identifying roads and paths given GPS observations in the road network. This requires 5 

random variables , , , ,  to build the CRF. 
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Thus, nodes  linking with observations (shaded nodes) are point nodes while nodes  are 

path nodes. 

More precisely, given a sequence of location observations  of length 

 and the road network . A sequence of random variables  of 

length  are used for the sequence labeling. Let  be the position index in the 

sequence, observations, point nodes and path nodes are defined as follows 

 Observations 

 is the set of variables that represents observations of the moving object. Each 

variable  can be either a scalar or a multi-dimensional vector of a variety of sensory 

measurements of moving objects’ behavior, e.g. location, instant speed, direction. 

 Point nodes 

The point nodes  are the random variables that resolve the uncer-

tainty of the roads being traveled on. Thus, each node  is connected to the ob-

servation  in the graph. The set of roads  associated with point node  

are called its point states in the road network .  

 Path nodes 

The path nodes  are the random variables that address the uncer-

tainty in the transition paths. Each path node  is defined on a set of transition paths 

 between subsequent observations , which are called the path 

states of the path node  in the road network . Note that a path state is modeled 

as a sequence of roads, i.e. . 

Both point states and path states are generated from the observation sequence  and 

the road network . For each point node, the point states may include all the roads in the 

road network. However, it’s often impractical since the size of the road network can be very 

large, especially for the mega cities. For example, the road network data of Shanghai, China 

from OSM has 24.roads This leads to a very large point state space which raises 

huge challenges of computation complexity in terms of space and time in the model infer-

ence. Fortunately, it’s often unnecessary to consider all the roads in the road network thanks 

to the accuracy achieved by nowadays’ positioning technologies. Therefore, only those 

roads within the “confidence” range of the positioning sensor need to be included as the 

point states. Note that due to heterogeneity of the positioning conditions and the density of 

road networks, point nodes could have varying numbers of point states (see Figure 4.3). 

                                                   
24 Statistic is made on data from https://mapzen.com/metro-extracts/ in Dec, 2014. 

https://mapzen.com/metro-extracts/
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Figure 4.3 Mapping of a sequence of location observations (red dots) and their projections on the 

associated point states (blue dots). The 1st Node has only 1 point states while the 5th node has the 

most, 7 point states. 

For each path node, the path states  can also be restricted to a finite set of feasible 

transition paths in the road network, for which “feasible” bears the meaning of satisfying all 

mobility constraints, e.g., driving directions on single roads, turn restriction at the crossing, 

maximum driving distance under speed limits in the sampling intervals. Unfortunately, it can 

still yield a huge number of alternative paths in the road network. Moreover, the number 

grows dramatically if the sampling rate decreases in dense areas of road network (see Fig-

ure 4.4). There are two strategies to address large sets of path states, eliminate redundant 

path states in state generation and apply efficient algorithms for model inference. Both strat-

egies will be discussed in the following sections. 

 
Figure 4.4 Mapping of path states (blue lines) of a sequence location observations (red dots). 35 

alternative path states are found between the 5th node and the 7th node. 
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The rationale of using path nodes to explicitly model transition paths is that it allows the 

model to evaluate more than one transition path between two point states/roads. This may 

avoid an early elimination of ground truth for low sampling rate trajectories, for which ground 

truths may be the results of multi-objective routing rather than simply fastest path finding. 

Furthermore, modeling a transition path as a node rather absorbing it into the edge can 

reduce memory in use for model inference. 

To complete the graphical model, edges are introduced to claim the dependencies among 

the nodes. As already shown in Figure 4.2, edges are used only between subsequent nodes 

yielding a chain structured CRF. The chain structure implements the First-order Markovian 

assumption, which assumes that the next node only depends on the current node and not 

on the sequence of preceding nodes. As it will be shown in later sections, this simple struc-

ture enjoys nice properties for model inference and learning. Given the graphical represen-

tation, the probability of labels  conditioning on the observations  is proportional to the 

product of the clique potentials 

 
 
 

where  is the potential function at position , which can take neighboring labels and arbi-

trary observations as input. For the simplest case, it may be further assumed that the po-

tential is time invariant (i.e. same potentials are used for the cliques at all positions in the 

chain), thus yielding a normalized quantity 

  (4.10) 

where normalization constant  is derived by sum over all possible label sequences: 

  (4.11) 

Note a dump label  is used for the notation convenience. The CRF also has 

an exponential form of 

  (4.12) 

where  is point feature function defined on point nodes that expresses the compatibility 

between the observations and their point states (i.e. nearby roads),  is path feature func-

tion defined on path nodes that reveals the utility of the path states (i.e. the transition paths), 

 and  are weights of the these feature functions that can be learned from the exam-

ple trajectories data. The last term  is a binary function that enforces the connectivity 

between the point states and path states.  is set to 1 if the input point state shares either 

the starting road or the ending road of the input path state and 0 otherwise. This term can 

be seen as a fix to the loose modeling of the point states and the path states. And the design 

of the feature functions will be discussed in detail in Section 4.3. 
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4.2. State Generation 

States encode the knowledge of interest to be extracted from the raw observation data. In 

some prediction tasks, states are defined already in the formulation of problem (e.g., binary 

states of occupied with passengers and non-occupied without passengers in the classifica-

tion of taxis’ states), while others require the generation of states for individual observation 

sequences (e.g., prediction tasks involve sequential localization such as map matching). 

States and their generation are briefly explained to justify the modeling concerns in the pre-

vious section. In practice, however, this process is more important as it might appear to be, 

and it could affect both the accuracy and the efficiency of the prediction model. Therefore, 

the details are discussed in the setting of map matching in this section. 

4.2.1. State Generation Workflow 

As explained previously, two types of states are needed accordingly for two types of nodes 

in the CRF model, namely point states and path states. Point states resolve the uncertainty 

of localizing single GPS observations while path states recover the partial route choice be-

tween two GPS observation. 

Theoretically, it’s straightforward to consider all feasible states in the model thus to avoid 

the risk of missing true candidates. A common practice (Hunter et al., 2013; Lou et al., 

2009a; Newson & Krumm, 2009) is to first search point states for all point nodes using a 

buffer with predefined radii and a threshold of the state’s number and then using routing 

algorithm to find path states among two sets of the point states of subsequent point nodes 

for the path node. However, the problem arises when processing lowing sampling rate ob-

servation sequence in the mega-city road network: 

 Running routing algorithm is time consuming in the large road network and the effi-

ciency is dominated by the size of the input road network (Zhan & Noon, 1998). The 

size can be measured in terms of the number of nodes and edges in the graph rep-

resentation of a road network; 

 A large number of point/path states are generated, in which huge redundancy can 

be identified which thus turns to be a waste of computation in the later model infer-

ence. 

In order to resolve the dilemma between the computing efficiency and the risk of missing 

true candidates, a state generation workflow (see Figure 4.5) is designed based on the 

above observations, which comprises four steps: 
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Figure 4.5. State generation workflow. 

Step 1 Subnetwork Extraction 
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Extract a subnetwork of a much smaller size from the overall road network for current 

GPS trajectory using a feasible range. The feasible range can be implemented in two ways: 

1) Free space feasible range. A polygonal range defined by a buffer query on the location 

point sequence. The radii are set to the maximum moving distance obtained from the maxi-

mum speed and sampling interval (Brakatsoulas & Pfoser, 2005); 2) Network-based feasible 

range. The feasible range is obtained based on the moving distance in the road network 

which takes into account the speed limit of the roads (K. Liu et al., 2012). Either way can 

produce relatively small subnetwork that counts as the upper bound of the uncertainty of the 

moving objects in the road network. 

Step 2 Point States Search 

Search point states for each GPS observation in the subnetwork with buffer query and 

remove co-located point states. The buffer query is carried out with predefined radii that 

represent the accuracy of the positioning devices. The redundancy in point states is defined 

as the co-location of two point states being at the end of the road segments, which is caused 

by the modeling of the road network (see Figure 4.6). For each co-located point cluster, only 

the one associated with the source road is kept which retains the larger possibilities of rout-

ing choices. 

 
Figure 4.6. Example of point state (blue dot) redundancy of a GPS point (red dot). 4 redundant states 

are marked within red circles. 

Step 3 Path States Generation 

Search path states for each point state pairs in the subsequent point state sets in the 

subnetwork. The search is implemented using a top-K routing algorithm, Yen’s algorithm 

(Martins & Pascoal, 2003), with predefined parameter  to control the complexity for certain 

point state pair. 

Step 4 Redundancy Elimination 

Redundancy Elimination using forward-backward message passing. The last step is to 

ensure the topological connectivity of all states, i.e. each point/path states should be able to 

proceed/backtracking to the states associated with the last/first GPS observations. The ne-

cessity of this procedure is that the previous search operation is carried out in a local scope 

that tends to violate the topological integrity. Rather than perform this connectivity checking 



 

 

47 

 

on a single state basis, a dynamic programming algorithm is proposed for this purpose, 

which is discussed in the next section. 

4.2.2. Redundancy Elimination 

Redundancy elimination is to remove the point/path states that fail to connect to the states 

associated to the first and last point nodes. The global operation on the state sequence 

eliminates the redundancy introduced in the node-wise local search, thus reduces the com-

putational burden on the later model inference, which involves enumerating the states for 

summation throughout the observation sequence (See Section 4.4). The problem can be 

illustrated in a simplified example (see Figure 4.7). In the example graph, each column of 

nodes represent the states associated to the point/path node at position , links among them 

represent the available connections. In this case, two groups of states fail to stratify the 

condition of full connection, e.g. the state at the top of position 3 fails to connect to any of 

the states in the last position, namely position 4, and the states at bottom of position 3 and 

4 fail to connect to the starting position. Note that the number of the states in each column 

does not have to be equivalent and tends to be very large in the practical cases. 

 
Figure 4.7. State transition graph of a 4 node sequence. Redundancy elimination yields to retain fully 

connected states (green nodes) while remove partially connected states (red nodes). 

The graph illustration also lays the foundation of the proposed algorithm. Rather than 

checking the full connectivity for all states individually with a worst case computation com-

plexity of  for a sequence with length of  and state number of  at each node, a 

linear complexity can be achieved using dynamic programming on the above state transition 

graph. 

Let  be the set of all the states (i.e., including both point states and path states) of a 

CRF model,  be a  binary path transition matrix constructed using all the path nodes 

in the CRF which contains  nodes and  states at each node, binary entry  at row 

 and column  of  is assigned to 0 if the path state is redundant and 1 otherwise, binary 

 is the associated weight of the link between  and  is assigned to 1 if the two states 

have valid connection and 0 otherwise. Note that for a model that comprises nodes with vary 

numbers of states,  is set to the maximum state number. Thus, the algorithm is given as 

follows 
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Algorithm: REDUNDENCYELIMINATION 

Input:   

Ouput:  

1:  Build path transition matrix  from ; 

2: Set ; 

3:  Set ,  

// Forward pass 
4: for  

5:   , ; 

// Backward pass 
6: for  

7:  ,  

8: Remove path states in  if their associated ; 

9: Remove point states in  if they have none of the associated path states; 

10: Return ; 

The algorithm is executed in two passes on the transition graph. For each pass the mes-

sage “the current state links with any of the states at previous node” using  function to 

aggregate the binary codes, which result 1 if connected or 0 otherwise. Thus, the forward 

pass propagates the message “connected with any state at the first node” and the backward 

pass propagates for the last node. Only those nodes connected to both first and last node 

states remain 1 in the end. The link value  can be computed based on the rules that 

enforce path state transition behaviors, e.g. the value can be set to 0 if 1) two path states 

are connected; or 2) two paths are connected but result in a U-turn. Note that more rules 

can be added to restrict the desired transition behaviors. For observation sequences that 

have outliers with no fully connected path states, the algorithm would eliminate all the states 

of the sequences. To fix this, we simply assign the states of all the outliers to 1. 

The effect of applying redundancy elimination varies from trajectory samples and the local 

road network. Take the example trajectory illustrated in Figure 4.5, more than 10% of original 

states are eliminated which can also be visually identified in the last two steps in Figure 4.5. 

4.3. Features Extraction 

Two types of feature functions are used in the model, namely point feature functions  

and path feature functions . These features are arbitrary, real valued functions of the 

observations and the labels that allows the CRF to incorporate domain knowledge, such as 

the moving status of a vehicle could indicate whether it’s traveling on the highway, the cho-

sen paths should possess certain utilities that the drivers preferred.  

In this section, we first given examples of features considered in the model, then discuss 

the issue of parameter tying. 

4.3.1. Features 

Two examples of feature functions are described as follows to show how features encode 

information. 
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Distance error feature. , this point feature informs 

the deviation of the GPS observation from the nearby road , where  is the indicator 

function that returns 1 if the expression in the bracket holds and 0 otherwise,  is the 

distance from the GPS location of observation  to the road . For a random variable  

over a set of finite roads , e.g.  over three roads  at position  in the trajec-

tory, three features are needed 

  

  

  

Thus, this set of features allows the CRF to evaluate individually the deviation of the 

observation from the set of road labels being considered. Furthermore, if a univariate Gauss-

ian distribution over the deviation  rather than the deviation itself should 

be encoded (e.g., to capture the randomness in the positioning device which is often Gauss-

ian), then the features take the form 

  

And following features are used in the model 

  

  

  

Note that in practice, only one bias term, , is used for one label. 

Path length feature. , this path feature simply describes the travel 

distance in the transition path , where  is the sum of the total length of the roads 

within the path and the travel distance between the end roads. 

A full list of features used in CRF for map matching is reflected in the following table.  
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Name Type Description 

distance error node/point distance between location of observation  and the nearby 

road. To induce a Gaussian distribution of the feature, its 
square term is also used. 

direction error node/point difference between direction of observation  and the tan-

gent direction of its closest point at the nearby road. To in-
duce a Gaussian distribution of the feature, its square term is 
also used. 

length difference node/path difference of length of travel path and the distance between 
the locations of two subsequent observations  and  

length ratio node/path ratio of length of travel path and the distance between the 
locations of two subsequent observations  and  

length node/path length of traveled path 

avg. speed limit node/path average speed limit of the roads in the path 

min. travel time node/path travel time on the path with speed limits 

# left turn node/path number of left turns the driver makes 

# right turn node/path number of right turns the driver makes 

highest road class node/path the highest road class in the path. The road class is an or-
dered attribute in the road network data, and a higher class 
indicates higher speed limits and better road conditions e.g. 
more lanes, wider and better road surface. See (“OSM 
Key:Highway,” 2015)  

lowest road class node/path the lowest road class in the path 

road class change node/path the number of changes of the road class 

cosine speed node/path cosine distance of the speed limits and the speed of the ob-
servations  and  

time constraint node/path difference between the actual time and the minimum travel 
time in the path 

avg. link length node/path average length of the roads in the path 

# link node/path the number of roads in the path 

path size node/path this attribute describes the correlation between the path state 
and other path states for the path node. See definition in 
(Frejinger, 2008) 

path size (time-
based) 

node/path this attribute is based on travel time for path state correlation  

transition constraint edge indicator of feasible transition between two path states, with 
0 indicating feasible and –inf otherwise 

Table 4.1. Features used in the CRF for map matching. 

4.3.2. Parameter Tying 

As shown in the above examples, features reflect our domain knowledge of the specific 

problem and can be induced in a manual fashion. However, it’s often difficult to know what 

features fit best to the classification problem in advance, especially when little prior 

knowledge is given, features can be also induced in an automatic way (McCallum, 2003). 
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Thus, the number of features can grow quickly which also leads to a large number of pa-

rameters. For example,  feature functions with  road labels in road network  would 

need  parameters, for which  is often very large. In map matching, it’s often un-

necessary to specify unique parameters for each road (the feature functions learn a univer-

sal knowledge for the entire road network rather than one single road). Therefore, the pa-

rameters of the features can be tied across the positions in the trajectory and it requires at 

most  parameters with  corresponds to the largest size of candidate label sets at 

each positions. Note that  thus it largely reduces the computation complexity of pa-

rameter estimation. 

4.4. Inference on Chain 

Efficiency is the most critical concern when choosing algorithms for the inference tasks on 

probabilistic graphical models. The two essential parts of the computation is discussed in 

this section. 

1. Normalization 

Computing the normalization given in Eq.(4.11) requires to sum over all possible label se-

quences. For graphical models with general structures the computation is intractable (Koller 

& Friedman, 2009). For example, for a chain with  random variables with  labels, the 

computation complexity of brute force method, namely enumerating every possible label 

sequence, is . Fortunately, an efficient computation can be achieved for the chain 

structured graphical model using dynamic programming algorithms. In this section, we dis-

cuss the normalization function using backward variable elimination. 

By definition in Eq.(4.11), the normalization is given as 

 

Rather than computing the sum from outside-in, we can push the  inside the product 

bypassing the potentials that don’t depend on the summation and cache then the interme-

diate results. 

  

where 
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This term is a vector that stores the sum over the labels of , thus eliminates the variable 

in the rest of the computation. By eliminating the variables backwards, the normalization 

finally yields 

  (4.13) 

In the computation,  vectors are used to cache the computation results at position 

 

  (4.14) 

  (4.15) 

  (4.16) 

Where the notation  indicates the sum over the chunk of the label sequence  

starting from  to . This reduces the computation complexity to  for  ran-

dom variables with  labels, which is linear with respect to the length of the label se-

quence. Note that the chain structure ensures the variable elimination process to proceed 

along the variable list thus the expensive label enumerations are broken into a much 

smaller scale of two neighboring random variables. 

2. Marginal Probabilities 

As discussed before, there are two inference tasks that we are interested in, particularly in 

the context of CRF for spatial trajectory, computing the marginal probabilities , 

and finding the most likely assignments. And similar to the normalization function, the com-

putation of marginal probabilities is used as a subroutine in both inference and parameter 

estimation procedure. In this section, it’s shown that the quantities can be efficiently com-

puted using variable elimination in a forward-backward fashion. 

Marginal probability of variable  taking  can be given as 

  (4.17) 

To compute the quantity given the normalization constant, only the right most term needs 

to be computed. Using the similar variable elimination trick for computing the normalization 

constant, we expand the product and cache the intermediate results yielded from both sides, 

i.e.,  

  (4.18) 
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Recall that we’ve used backward variable  (see Eq. (4.16)), and similarly we can 

define a forward variable which caches the computation results from the head of the label 

sequence.  

  (4.19) 

  (4.20) 

  (4.21) 

Thus, the marginal probability can be computed as 

  (4.22) 

 requires the same computing complexity as  which is also linear to the length 

of the label sequence. To implement, it only requires computing the sequence of the forward 

variables  and the sequence of the backward variables , 

then the marginal probabilities can be computed by dividing the normalization constant. 

3. Finding Most Likely Labels 

Finding most likely labels is of direct interest in applications of CRF, e.g., it returns the most 

likely road sequence for map matching, which is to compute 

  (4.23) 

This requires no significantly different effort from the forward-backward algorithm discussed 

before, which also computes over all possible label sequences. The only operation is to 

replace the sum operation  with max operation  while computing the quantities for 

each label assignment. The algorithm, called Viterbi, is discussed in detail in (Rabiner, 

1989). The main steps are: 

Step 1: In the forward pass on the label sequence, compute the maximum probability of the 

visited label sequence for each label at current position. 

Step 2: In the backward pass on the label sequence, trace back the label entries with the 

maximum probabilities at each position. 

4.5. Parameter Estimation 

The inference requires learned weights of the feature functions thus to compute the clique 

potentials, which can be estimated by training CRF with labeled data. For example, in the 

context of map matching, labeled data is the GPS observation sequences with actual road 

sequences. 

4.5.1. Maximum Likelihood 

A common training scheme for CRF is to maximize the (conditional) log likelihood of the 

labeled data. With the i.i.d. (independent and identical distribtued) assumption on examples, 
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the total likelihood is simply a product of the likelihood of individual examples (sum in the 

logarithm domain). Therefore, given a labeled data set  with  training examples 

, training the model (recall Eq.(4.12)) is to maximize 

  (4.24) 

in which the constraint term  is resolved to 0 since all point states and path states are 

connected in the labels. 

From the perspective of optimization, the terms of point features  and path features  

reveal no difference in the optimization procedure. Thus, we rewrite the log likelihood of the 

labeled data  with the parameter vector  as 

  (4.25) 

where  is a real-valued vector which stacks all the 

 parameters associated with the feature functions, and similarly 

 is the stack vector for features. This formulation 

allows the following discussion in the framework of log-linear model. 

In practice, a large number of features are often used to achieve better prediction accu-

racy. However, this also raises a risk of overfitting, i.e., the learned model manages to 

achieve a low prediction error rate on the labeled data yet fails to generalize it to unseen 

data. To resolve the dilemma of better fitting the labeled data and low generalization error, 

the log likelihood is often trained with a penalty term, so-called  norm, which is the negative 

sum of the quadratic parameters. Thus, training CRF with  penalized log likelihood is to 

maximize 

  (4.26) 

with respect to the parameters , where  is a non-negative hyper parameter that controls 

the amount of the penalty, i.e., the larger the value of , the greater the amount of penalty 

and  for no penalty. 

In the log likelihood  given in Eq (4.25), the first term  is linear w.r.t. the parameters 

, the second term  is a negative logarithm of a sum of exponentiated linear com-

binations of  which thus is concave w.r.t.  (Boyd & Vandenberghe, 2004). Furthermore, 

the negative  norm is a differentiable concave term. Thus, training the CRF model is to 

maximize an unconstrained concave objective function. The convexity ensures that the ob-

jective function has only one global optimum. 
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4.5.2. Gradient Ascent 

A typical solution to maximize an unconstrained real-valued objective function is to use gra-

dient ascent, which employs a line search strategy to iteratively approach the local maxi-

mum. Since the objective function used to train the CRF model is concave, the local maxi-

mum is the global optimum. After each iteration, the searching in the solution space goes a 

step more towards the direction in which the objective function increases. To determine how 

far to move along the direction, the evaluation of the log likelihood in Eq.(4.26) and its gra-

dient is necessary 

  

in which the first term can be formulated as the expectation of -th feature under empirical 

distribution, and the second term yields the expectation of the -th feature under the distri-

bution of CRF model. Thus, the above equation can be written as 

  (4.27) 

That is, the scaled gradient of -th feature equals to the difference between the two ex-

pectations. When the gradient is zero, the two expectations are equal and thus the model 

fits the data best. 

Computing the regularized likelihood requires the inference algorithm introduced in the 

previous section for the partition function. And computing the gradients needs the inference 

for the marginal probabilities. Note that the quantities depends on the input  thus it re-

quires to run the inference whenever the likelihood is computed, which raises the efficiency 

concern of the inference on CRF. Furthermore, the gradient ascent is relatively slow in terms 

of the convergence rate; that is, it requires many more computationally expensive likelihood 

computations. This motivates the use of optimization methods with a fast convergence rate. 

More efficient alternatives that also use a line search strategy are Newton’s methods, 

which consider the trace of the search by including second-order derivatives of the function, 

Hessian matrix, in the updates of the parameters. This largely improves the rate of the con-

vergence but requires to compute the inverse Hessian matrix which would take up a large 

memory space when the number of the parameters grows, thus leads to unstable interme-

diate computation result as most Hessians are poorly conditioned (Press, Teukolsky, 

Vetterling, & Flannery, 1992). Thus, quasi-Newton method, e.g. Broyden-Fletcher-Goldfarb-

Shannon (BFGS) and its limited memory version, attracts a lot of interest as it approximates 

the Hessian rather than computing it directly, which is also empirically proven to be a suc-

cess in the context of CRF (Sha et al., 2003). Other improvements are also investigated, 

such as conjugate gradient descent which constrains the directions of consecutive gradients 

to be orthogonal (Wallach, 2002), stochastic gradient descent that randomly selects one 
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training example rather than scan over all of them in a single iteration thus yielding fast 

parameter updates (Vishwanathan, Schraudolph, Schmidt, & Murphy, 2006). 

Among all the alternatives for solving the optimization problem in parameter estimation, 

we are interested in Limited-memory L-BFGS method for its superior performance in the 

NLP tasks (Sha et al., 2003). 

4.5.3. Learning with Partially Observed Model 

In practice, the data set  could have missing values. The problem arises when certain 

values were not collected for some examples in the data collection, or the variables cannot 

be observed. In map matching, missing values occur when the road network contains er-

rors, e.g., missing roads with less traffic or incorrect road attributes for routing (double-way 

roads assigned with one way). An example of missing roads is illustrated in the Figure 4.8. 

 
Figure 4.8. An example of missing values. Because of the missing road (red link in the red circle), the 

actual path (indicated by the green arrow) chosen by car cannot be covered by all the path states 

(blue lines) between 3rd node and 5th node. 

A straightforward way to deal with missing values is to delete the partially observed ex-

amples from the training data, and to train only with complete data. However, the labelled 

data are often manually prepared, and it would be too expensive to remove the entire ex-

ample data sequence for a small portion of nodes with missing values. 

To address this issue, a common practice proposed in the literature (Koller & Friedman, 

2009; Murphy, 2012; Quattoni & Wang, 2007) is to consider the variables with missing val-

ues separately using hidden variables in the formulation of the model and its log likelihood 

function which enjoys a similar learning scheme, e.g. gradient ascent (hidden means that 

the variables are not assigned with any values in the training data). 

Let  be the vector of label variables observed by the model among all label variables 

,  be the vector of label variables with missing values in ,  denotes the -th 

feature on the sequence . Recall the model in feature stack form in Eq.(4.25), the partially 

observed model is given as 

  (4.28) 
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And the log likelihood of the labeled data set  is 

  (4.29) 

where 

  (4.30) 

is the unnormalized distribution. The term  is the same as the partition 

function , except that a subset of  is fixed at . Similar to derivation of the gradient 

of the fully observed model, the gradient of the partially observed model is 

  (4.31) 

where unlike  , in both expectations, a subset of  are marginalized over . 

4.5.4. Feature Selection via  Regularization 

To achieve a better classification performance, a large number of features are used in the 

CRF. This yields a lower error rate on training data while raising the risk of high generaliza-

tion error on test data. A common technique to tackle this problem is to add a penalty term 

to the objective function which penalizes learning large weights of feature functions in train-

ing. In this section, we discuss the other kind of regularization techniques,  regularization, 

and explain how to perform the feature selection with it. 

 regularization adds an absolute term to the objective, which tends to reduce the 

weights to exactly zero in training. It has to solve 

  (4.32) 

where  again is used to tune the amount of penalty. The objective also remains con-

vex while become non-differentiable at , which requires extra treatment to solve this 

optimization problem. 

Having the advantage of producing a sparse model (having many parameter set to ), 

optimizing  regularization has invoked a lot of interest in machine learning community. A 

variety of optimization methods are proposed to solve the problem. Since the convexity of 

-regularized objective ensures the finding of a unique optimal solution, those methods can 

be distinguished by how they handle non-differentiability of the objective function.  There-

fore, we mainly consider the efficiency in terms of running time while choosing optimization 

algorithms. Some comprehensive experimental reviews have been reported in (Schmidt, 

Fung, & Rosaless, 2009; Schmidt, 2010), which stimulated our interest in the Projected 

Scaled Sub-Gradient (PSS) methods for its fast convergence rate and consistent perfor-

mance across different types of data set. We also find it more successful on GPS trajectory 

data. 
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Still, we have to choose the hyper parameters  and  which are difficult to determine 

in advance. As for , we tune the hyper parameters by evaluating the resulting error rates 

using a geometric sequence of decreasing from  to , where  is large enough to 

reduce all weights to zero. The justification of using a geometric sequence is that the target 

value is close to  and more trials are needed to approach it. And we use the same hyper 

parameter for  for comparison. 

4.6. Chain CRF for Behavioral Classification 

In this section, we show the use of a chain structured CRF for another type of sequential 

labeling task – inferring taxi status (i.e. occupied/non-occupied) from the spatial trajectories. 

In this task, binary states are given and thus state generation is not needed. This leads to 

one major difference in the semantics of the labels in map matching and status inferring that 

the labels in the latter task embody a more meaningful structure. Therefore, it’s interesting 

to study status inferring as a complementary of the map matching. In the remainder section, 

we explain the practical need of status inferring, and then discuss the modeling using a chain 

structured CRF. 

4.6.1. Inferring Taxi Status 

Inferring taxi status from taxis’ spatial trajectories is to determine the associated binary stat-

ues for each data point in the trajectory data, and we focus on the states describing whether 

a taxi is occupied by passengers in this thesis (see Figure 4.9 for examples). This information 

is useful for many applications, e.g., better understand the taxi demands across the urban 

area, recognize taxi anomaly for being non-occupied for exceptionally long period, identify 

occupied taxi trajectories for accurate traffic estimate (since non-occupied taxis usually slow 

down to look for passengers along the roads25). The practical need of solving this problem 

is that in some taxis the taximeters (i.e. the electronic device used to calculates passenger 

fares) are not linked to the positioning devices (e.g., GPS) (Zhu et al., 2011) and thus the 

status data are missing in the trajectory data. Therefore, it’s tempting to learn the mobility 

patterns from taxis with status information and use them to infer the taxi status where the 

data is missing. 

The challenges of inferring taxi status in twofold: 1) the mobility pattern associated with 

the status is uncertain as illustrated in Figure 3.3 and thus it requires to develop more in-

formative features; 2) for low-sampling rate trajectory, the geometric information of the tra-

jectory is not available which often accounts for critical information to discover status related 

mobility pattern (Matsubara, Li, & Papalexakis, 2013). Previous study (Zhu et al., 2011) re-

lies heavily on the map matching result and the POI data. However, we are interested to 

develop a solution using only the trajectory data and the road network. Note that a critical 

effort in status inferring is to identify the status transitions that corresponds to the activities 

of pickup/dropoff passengers, namely segment the sensor data sequence. 

                                                   
25 This behavior may vary in different countries but it is the case in our test data collected in China. 
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Figure 4.9 Mapping of service trajectories of a taxi in one day in Shanghai, China. Occupied trajecto-

ries are illustrated in green while non-occupied trajectories are illustrated in red. The trajectories are 

also marked with serial numbers which indicate the taxis’ temporal activities throughout the day. 

4.6.2. Model 

Similar to the modeling for map matching discussed in previous section, probabilistic mod-

eling with UGM requires the design of the graphical structure and a set of informative fea-

tures. For taxi status inferring, we also use a chain structured CRF to model the sequential 

inputs but use a different definition of the label variables. 

More precisely, given a sequence of location observations  of length 

 and the road network , a sequence of random variables  of 

length  are used for the sequence labeling. Let  be the position index in the se-

quence, observations and nodes are defined as follows 

 Observations 

Sharing the similar definition with map matching,  is the set of variables that are 

represented as a multi-dimensional vector of a variety of sensory measurements of 

moving objects’ behavior, e.g. turning angle, average speed. 

 Nodes 

The nodes  are the random variables that resolve the uncertainty of the 

status of the taxis. Thus, each node  is connected to the observation  in the 
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graph. For each node , there exists a set of binary status (i.e., occupied/non-occu-

pied) of the taxi. 

Using a chain structure, the probability of the label assignment sequence conditioned on 

observation sequence can be formulated as 

   

where  is the unary potential defined on each observation-node pair using the prior 

knowledge of the taxis’ mobility and spatial behavior such as slowing down to find passen-

gers (relatively low average speed), less likely to find passengers on the highway.  is the 

pairwise potential defined on the node-node pair for the label/state transitions (  is used 

as dummy term for brevity),  is the normalization constant that sums over the label 

space of the node sequence. The exponential parametrization is given as 

  (4.33) 

where  and  are feature functions for unary potential and pairwise potential accordingly. 

Detailed specification of features used in the model is given in Table 4.2 Features used in 

the CRF for status inferring. 
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Name Type Description 

window speed 
mean 

node Arithmetic mean of the speed of the GPS observations 
within the specified consecutive observations, window, de-
pending on the taxi status. The function takes the form, 

, where  is a window 

function centered at position  in the data sequence and 

computes the mean speed of the  consecutive observa-

tions. The window size is set to achieve an operation scope 
of 1mins, 2mins (e.g., for trajectory with 10s sampling inter-

val,  is set to 7 to achieve 1mins). 

window speed vari-
ance 

node Variance of the speed of the GPS observations in the speci-
fied window depending on the taxi status. The window size 
is set as the same as window speed mean. 

window turning an-
gle mean 

node Arithmetic mean of the turning angle of the GPS observa-
tions in the specified window depending on the taxi status. 
The window size is set to 2mins. 

window turning an-
gle variance 

node Variance of the turning angle of the GPS observations in the 
specified window depending on the taxi status. The window 
size is set as the same as window turning angle mean. 

time of the day node Hour of the day of the GPS observation. 

nonoccupied clus-
ter index 

node Cluster index of GPS observations within the specified win-
dow for non-occupied observations. The cluster index is 
computed as the number of observations in unit area of the 
convex hull polygon that is generated by the set of observa-
tions. The window is set to 2mins. 

status continuity edge Binary indicator that yields 1 if the previous node shares the 
same status. 0 otherwise. 

speed change at 
pickup/dropoff 

edge Real-valued function that indicates the change in speed be-
tween two nodes. When they have different status labels, a 
taxi pickup or dropoff occurs. 

Table 4.2 Features used in the CRF for status inferring. 

Sharing a similar way of defining the feature functions as discussed in Section 4.3.1, the 

features for taxi status inferring emphasize the mobility pattern (i.e., mean, variance of the 

mobility variables such as speed, turning angle), temporal information and label transitions. 

As for the parameter tying, we share the parameters across the states for node features 

while explore a variety of tying strategies for label transitions. 

Since the same graphical structure is used in the model for taxi status inferring, we invest 

no extra effort in choosing algorithms for both inference and parameter estimation as dis-

cussed in the previous sections. 

4.7. Summary 

In this chapter, the probabilistic modeling of spatial trajectory in road network is discussed 

under the framework of CRF, for which some highlights can be summarized as follows 
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1. A chain structured model is proposed in the context of map matching. The model 

allows an arbitrary number of transition paths which could be helpful for trajectory 

data with a low sampling rate.. 

2. With regard to the large number of states the model needs to evaluate, a state gen-

eration workflow as well as a redundancy elimination algorithm is proposed to reduce 

the computational complexity. 

3. The issues of model inference and learning as well as the problem of missing values 

in the data are addressed. 

4.  Regularization is proposed to learn a sparse model to achieve competitive labeling 

performance with much less model complexity. 
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CHAPTER 5.  

Experiments and Implementations 
 

 

 

In order to verify the feasibility and evaluate the performance of the proposed models, ex-

tensive experiments have been conducted. The experiments fall into two categories, namely 

localization and behavioral classification. In particular, map matching of GPS trajectories in 

road network and taxi status inferring, are tested on the real-world dataset. 

This chapter first introduces the test data, spatial trajectories and road network used in 

the experiments. Then the implementations including feature extraction, probabilistic mod-

eling, inference and learning, and labelled data preparation are discussed. Experimental 

results for both representative tasks are presented in the end as well as empirical studies of 

some most relevant research questions that arise in the practice. 

5.1. Raw Datasets 

Both map matching and taxi status inference are tested using the same real-world trajectory 

dataset, Shanghai taxi floating car data (FCD). The road network data in the corresponding 

area is extracted from OpenStreetMap26 (OSM). The choices of test data are made for fol-

lowing reasons: 

1. Shanghai, China, is one of the largest cities in the world and it has a highly developed 

and complex urban road network which may serve as an adequate test bed to 

demonstrate the power of the proposed models. 

2. Taxi trajectory data enjoy a high spatial coverage of the urban road network and 

more consistent driving behavior (compared to normal drivers, taxi drivers are more 

experienced). 

3. OSM road network for big cities is of relatively good qualities in terms of spatial cov-

erage, completeness of attributes and it’s free to access. 

The details of the test data are described in the remainder of this section. 

5.1.1. Shanghai Taxi FCD 

Shanghai Taxi FCD dataset stores the movements of ca. 7000 taxis in 8227 days since 1 

April 2010 to 30 June 2010, which use a sampling rate of 10s28. The raw data is provided in 

text files using the format of space separated values. Each text file stores all taxis’ GPS data 

                                                   
26 www.openstreetmap.org 
27 Several days’ data are missing. 
28 A few records have shorter or longer sampling intervals. 

http://www.openstreetmap.org/
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within 24 hours that results 40 million records per day in average. The attributes of each 

record are listed in Table 5.1. 

Name Description Example Data Type29 

date date of GPS observation 2010-03-01 Date 

time time of GPS observation  20:37:16 time without timezone 

company abbreviation of taxi company’s name QS character varying(4) 

taxi id number identifier of a taxi 18384 Integer 

longitude longitude in degree 121.531167 double precision 

latitude latitude in degree 31.22658 double precision 

speed instant speed in km/h 39.5 double precision 

direction instant heading direction of a taxi, 
range from 0 to 355, in which 0 indi-
cate north and value increases clock-
wise. 

245 Integer 

occupied binary code, with 1 for occupied and 0 
otherwise 

1 Integer 

signal binary code, with 1 for validate GPS 
record and 0 otherwise 

1 Integer 

server date time date time that the record is saved in 
the server 

2010-03-01 
20:37:36 

timestamp without 
time zone 

Table 5.1 Attributes of Shanghai taxi FCD records. 

To efficiently access such huge amount of the GPS data for query, analysis and mapping, 

the data are imported into the spatial database PostgreSQL30 with extension PostGIS31 that 

supports spatial queries. And the database management system (DBMS) is deployed on a 

Linux server configured with a SSD storage drive. 

The FCD data often comes with errors, such as invalid attribute values (e.g., 25:34:16 for 

time, 100 for longitude), missing values, or even malformatted records. These records are 

removed from the data. 

5.1.2. OSM Road Network 

OpenStreeMap (OSM) is a free, editable map of the whole world that is built by volunteers. 

Due to its open nature and steadily improved data quality (Haklay, 2010), OSM has become 

increasingly popular for research and real-world applications. 

OSM road network is extracted using the service Metro Extracts32 which supports up-

dated city-based extraction with multiple data formats, such as OSM PBF, shapefile, etc. 

                                                   
29 Data type complies with the data types used in PostgreSQL 
30 http://www.postgresql.org 
31 http://postgis.net/ 
32 https://mapzen.com/metro-extracts/ 
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Then road data is converted into routable data format using OSM2PO33 thus to support 

routing analysis required in the labeling tasks. In the end, the routable road network is im-

ported into the same DBMS. The attributes of the converted OSM road network is listed in 

Table 5.2. 

Name Description Example Data Type34 

osm_id identifier of the road 8621489 bigint 

osm_name name of the road 居家桥路 char varying 

osm_source_id identifier of the source node of the road 115443169 bigint 

osm_target_id identifier of the target node of the road 115443115 bigint 

class class code of the road according to OSM’s 
‘highway’ tag35. In general, a smaller num-
ber indicates roads with high speed limits 
such as highway. 

32 int 

length Road length in km 0.2868539 double precision 

kmh speed limit in km/h 50 int 

cost travel time from source node to target node 
computed by length/kmh 

0.0057370784 double precision 

reverse_cost travel time from target node to source node 
computed by length/kmh. For two-way 
road, reverse_cost is equal to cost, while 
it’s set to 1000000 for one-way road. 

0057370784 double precision 

x1 longitude of source node 121.5555711 double precision 

y1 latitude of source node 31.263319 double precision 

x2 longitude of target node 121.557088 double precision 

y2 latitude of target node 31.2610903 double precision 

geom_way polyline geometry of the road  geometry 

Table 5.2 Attributes of routable OSM road network data. 

OSM road network for Shanghai contains in total 10927136 roads and 77895 nodes, 

which is illustrated in Figure 5.1. 

                                                   
33 http://osm2po.de/ 
34 Data type complies with the data types used in PostgreSQL 
35 http://wiki.openstreetmap.org/wiki/Key:highway 
36 Statistics based on the data retrieved in Dec, 2014. 
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Figure 5.1 Shanghai OSM road network at scale 1:203,669. 

5.2. Implementations 

The implementations for the experiments involve three major tasks, namely labeling, feature 

extraction and model development (training and testing). Labeling is to identify the labels for 

each data instance, e.g. find the road sequences given location sequences. In the setting of 

supervised learning, labeled data is required for both training and testing. Feature extraction 

is to derive a numerical representation from the (labeled) dataset. And model development 

deals with the implementation of the proposed model. 

5.2.1. Labelling Using An Interactive Routing Tool 

Labeling is a common task in developing learning machines, since labeled data is required 

in the experiment for performance test of either supervised or unsupervised learning. In our 

task, map matching doesn’t have the ground truth data and thus we have to manually pre-

pare the labeled data. Labeling for map matching may refer to various efforts depending on 

the specific goals in the applications, e.g. finding corresponding road sequences, finding the 

actual positions on the roads, which requires different definition of the labels. Since we are 

more interested in the routing behaviors, we do the labeling only at the road-level. 

Labeling for map matching is a non-trivial task because the manual solution without ap-

propriate concern would yield erroneous labels and consume huge amount of time. In our 

first trial, a bare-hand solution is used that we do the labeling in ArcMap by manually check-

ing one GPS point at a time, which takes 20 hours to match 1400 GPS points. Furthermore, 

the matched data contain many errors due to reasons such as skipping short road segments, 

missing GPS points. 

Fortunately, there exists a practical way to overcome the deficiency of the bare-hand 

solution by taking advantage of an interactive routing tool. More specifically, we use Open 
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Source Routing Machine (OSRM)37 to perform this task. Though OSRM is originally de-

signed to find optimal (e.g. shortest/fastest) path in road networks, its interactive routing 

adjustment interface makes it eligible for the labeling tasks (many routes don’t follow short-

est/fastest path). Figure 5.2 shows the mapping of the results (i.e., road sequence for the 

given GPS trajectory) as well as the detailed turn-by-turn routing instructions display on the 

left. Having set the origin (green balloon) and the destination (red balloon), OSRM computes 

the optimal path automatically, and then we can alter the route by simply drag the route (blue 

line between the origin and destination) to match the given GPS trajectory. And each adjust-

ment would be marked with a yellow balloon. As shown in the figure, two adjustments are 

made to recover the original route. Further post processing is needed to elaborate the label 

information in a machine-readable form38. 

 
Figure 5.2 Web-based interactive routing tool, OSRM, for labelling GPS trajectories for map matching. 

This interactive routing tool manages to assist us in labeling 14000 GPS points in around 

2 hours (100x boost in time efficiency) and also help us to gain the insight of a variety of 

routing cases that detour from the optimal paths. However, there still exists difficulty to en-

sure the labels’ quality which needs manual fixes, e.g., routes that cannot be found using 

optimal path finding, routes that contain a U turn which cannot be found by the OSRM (even 

with the adjustment), erroneous road data (i.e. missing end roads, outdated road topology) 

in the OSM road network. 

                                                   
37 http://project-osrm.org/ 
38 Post processing is done using a python script that to retrieve the road sequence from the road 

network using the sampled location sequence exported by the OSRM. Since the sampling is done 

using the road network, it eligible to recover the road sequence by finding nearest neighbor. 
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5.2.2. Feature Extraction in Spatial Database 

Feature extraction from GPS trajectories in road network involves non-trivial spatial analysis 

such as spatial queries, route planning, etc. Though a variety of spatial analysis tools can 

be used to perform these tasks, we choose spatial databases as the feature extraction plat-

form for following reasons: 

1. Full functionality. Spatial database such as PostgreSQL is well equipped with a wide 

range of spatial analysis tools to support spatial analysis tasks, e.g., PostGIS for 

spatial queries, pgRouting for route planning, etc. 

2. Interoperability. Spatial database enjoys the flexibility to export geospatial data into 

a variety of formats for further use such as mapping and plotting, which are critical 

means to explore large datasets. 

3. Flexibility. Spatial database embraces a natural language alike query interface, SQL. 

This is particularly helpful in the iterative development of features for the predictive 

model, which eases the engineering efforts in the debug-and-test cycle. 

Taking advantage of the abovementioned properties, we develop a feature extraction 

module on top of PostgreSQL using PL/pgSQL, and thus we may generate feature data from 

raw trajectory data in database by performing SQL queries. Take the labeling task of map 

matching for example, the data model for feature extraction is illustrated using an Entity 

Relationship Diagram (ERD) with Craw’s foot notation39 in Figure 5.3. Note that, for taxi sta-

tus inference, the table Graph_State only contains two binary records and depends no more 

on the table Road. 

                                                   
39 https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model  

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model


 

 

69 

 

 
Figure 5.3 Entity Relationship Diagram of the database design for feature extraction. 

5.2.3. Path: A Matlab Toolbox For Labeling Spatial Trajectories 

As for the model development, we implement the proposed model using Matlab for its fast 

scripting capability for prototyping and the rich libraries for graphical models, e.g., Bayes Net 

Toolbox40 (BNT) for directed graphical model, UGM41 for undirected graphical model. More 

specifically, our implementation is built upon on Mark Schmidt’s UGM, which is a set of well 

documented Matlab functions that implements undirected graphical of discrete data with 

pairwise potentials, i.e., decoding, inference, sampling and training. 

UGM follows a similar principle of code design as Kevin Murphy did in BNT, a simple data 

structure for representing the graphical structure of the model using an adjacency matrix, all 

inference and optimization methods are designed to share the function signature so that 

they may work in a plug-and-play fashion. Though UGM is capable of building model with 

arbitrary graphical topology, it doesn’t support high-order potentials (potentials with 3 or 

more than 3 random variables as the input) which makes it less favorable. 

Thanks to UGM’s scalable architecture, our implementation only needs to focus on the 

model building (i.e. initiating the graphical structure using adjacency matrix, parameters 

binding). Furthermore, UGM suffers a poor performance in terms of runtime efficiency, which 

becomes worse for large dataset since the inference sweeps the whole dataset for each 

objective evaluation in the optimization. In order to take the fully advantage of the multicore 

                                                   
40 https://github.com/bayesnet/bnt 
41 http://www.cs.ubc.ca/~schmidtm/Software/UGM.html 

https://github.com/bayesnet/bnt
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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computing platform, we adopted the parallelism in the data sweep code (i.e. for loop) using 

Matlab’s specialized parfor loop implementation. 

5.3. Labeling Task I – Map Matching of Low-Sampling Rate GPS 

Trajectories 

We first evaluate our model using the task map matching of low-sampling rate GPS trajec-

tories. The experiments involve data preparation, model training, testing and evaluation. In 

the following sections, we first introduce the experiment setup, then present the experimental 

results, and assess the results using specific sample cases. 

5.3.1. Experiment Setup 

The test dataset for map matching is extracted from the Shanghai Taxi FCD dataset, records 

GPS trajectories of 70 taxis in one day across the downtown area in Shanghai, China. It 

comprises 124 trajectories in total and 13767 GPS observations covering an overall length 

of 788 km after eliminating some erroneous trajectories, e.g. extremely short trips and trips 

losing long distance GPS observations. Spatial distribution of the trajectories in the test da-

taset and statistics of sample trajectories are demonstrated in Figure 5.4. The rationale of 

using a geographic constraint of passing through downtown area is to collect the most rep-

resentative (complex routing scenarios) and challenging (dense road network) map match-

ing cases in Shanghai while retain a relative small size of test data. 

Since the data source doesn’t provide the ground truth labels, we prepare the labeled 

data as discussed in Section 5.2.1. With the labeled high-sampling rate data (i.e. 10s sam-

pling interval), we degrade the test data (10s sampling interval) to 120s sampling interval 

using an even sampling strategy, and thus yielding total labeled 1458 GPS observations. 

Furthermore, we randomly split it into a training set and a test set with a ratio of 7:3 (see 

Table 5.1 for details), the entire training set is used to estimate the hyper-parameters via 5-

fold cross validation. These settings are applied to both  and  regularization. 

 #Trajectory #GPS observations #Paths 

Training set 87 1099 1009 

Test set 38 479 436 

Table 5.3 Specification of training/test set. 



 

 

71 

 

 
Figure 5.4 The spatial distribution of GPS trajectories in the test data for map matching (Top). The 

statistics of sample trajectories (Bottom): travel distance (upper left), trip duration (upper right), ob-

servation count (bottom left) and daytime period in hour (bottom right). 

Having extracted the feature data as discussed in Section 5.2.2, preprocessing such as 

rescaling and standardization are compared with their application to the entire dataset be-

fore feeding them to our model. This step is crucial for both identifying the most relevant 

features and gaining a regular objective function surface for the optimization so as to avoid 

trapping the optimizer in certain dimension with extremely large weight. In the test, we find 

that using standardization gains a slightly improvement on both accuracy performance and 

runtime efficiency. 
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Figure 5.5 Distribution of the sample feature data. In each block, (up) is raw feature, (middle) is re-

scaled feature, (bottom) is standardized feature. 

5.3.2. Experiment Results 

We use both Error Rate and Overall Confidence to evaluate the matching accuracy of the 

model on the given test dataset, which are defined as follows. 

 Error Rate quantifies the matching accuracy in terms of the proportion of the count 

of incorrect matching instances among all instances with a range of [0, 1], the smaller 

the better, which can be computed as 
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In the evaluation, we compare the error rate for point, path, and total (including both 

point and path) separately with the purpose of discriminating the model capability in 

matching points and inferring paths. Though these two subtasks are interrelated, it 

is still tempting to compare the error rates individually because inferring paths are 

considered more difficult than matching points. 

 Overall Confidence is designated to reveal the capability that the model may discrim-

inate truth candidates among false ones. Each matching instance (i.e. point or path) 

is often assigned with a confidence with a range of [0, 1], where higher confidence 

indicates better performance even when the two models achieve the same error 

rates. As for the entire dataset, we endorse the definition in ACM GIS cup 2012(Ali 

et al., 2012) but with focus solely on the confidence which yields 

  

The metric takes the values in [-1, +1], where -1 means all label assignments are 

incorrectly assigned and 1 means all label assignments are correctly assigned. 

A 5-fold cross validation is used to estimate the optimal hyper-parameter  for the model 

with  regularization. The candidate parameter is geometric sequence computed as 

 (see Section 4.6 for details). In the experiment, we use the base of 0.3 

and change the power term from 0 to 10 with unit increase to generate the candidate pa-

rameters. Figure 5.6 shows the varying accuracy of the model in terms of total error rate 

(top) and overall confidence (bottom) as the power term increases. The error rate drops 

radically as the power term increases and increase gradually after a tipping point. The trend 

of overall confidence matches well with the error rates and yields the optimal performance 

with the same setting. And we pick the hyper-parameter using the one standard error rule 

(i.e. pick the  that is one standard error higher than the optimal value but with less model 

complexity) that the model reach the peak performance and remain stable as the power term 

increases to 5, which is marked with the green vertical line. Note that we use the same 

hyper-parameter for  regularization. 
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Figure 5.6 5-fold cross-validation estimates for optimal hyper-parameter . 

Methods #Feature 

 ErrRate   

OverallConf 

Point Match Path Discovery Total 

Hunter_c 6 .139 .204 .170 .521 

Hunter_s 2 .176 .289 .230 .403 

CRF_L2 21 .131 .186 .157 .598 

CRF_L1 19 .129 .177 .152 .640 

Table 5.4 Evaluations of map matching results on GPS trajectories of 120s sampling interval. 

We evaluate the matching accuracies of our model against baseline methods using the 

aforementioned two metrics. More specifically, the error rate is compared on finer perspec-

tives, that is, the results are evaluated in three categories of point match, path discovery, 

and total error rate which treats the point and path equally. And the number of features used 

in the model is represented to show the complexity of the model, the bigger the count is, the 

higher the complexity the model contains. The results are summarized in Table 5.4. 

Hunter_c and Hunter_s are the baseline methods which also developed based on CRF and 

follow a learning procedure for parameter (Hunter et al., 2013). CRF_L2 is our  regularized 

CRF trained with BFGS (Sha et al., 2003), and CRF_L1 is  regularized CRF trained with 

Projected Scaled Sub-Gradient (PSS) methods (Schmidt, 2010). The major differences 

compared to the baselines is that our models are built on a different formulation of the graph-

ical model and they incorporate a comprehensive feature set and also employ feature se-

lection in the training phase using  regularization. 

Several intriguing points can be made from the results. First, path discovery is more chal-

lenging than point match to all methods in the test. And using a much richer set of features 

for path discovery has led to more success (8.5% lower in error rate) for Hunter_c, and this 
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confirms the behavior in the original paper. Secondly, both of our models can outperform 

baselines in each category of evaluation with recognizable margins. The one with the best 

performance, CRF_L1, yields boosts in the metric of overall confidence that it outperforms 

Hunter_s with a margin of 24% and Hunter_c with a margin of 11.9%. The results show that 

incorporating more relevant features (by applying feature selection) can lead to better fit of 

the data and improved accuracy of the labeling task. Furthermore, it’s a surprise that 

CRF_L1 only outperforms and CRF_L2 on overall confidence without noticeable improve-

ments on the total error rate. 

The weights of the features learned from the training set in our model is illustrated in 

Figure 5.7. The weights’ magnitude indicate the relevance degree of the feature to the map 

matching task. Among all the features, distance error (DistErr), the number of left turns 

(#LeftTurn), the number of links in the path (#Lnk) and the number of different road classes 

in the path (#RoadClass) are the most relevant ones. 

 
Figure 5.7 Learned weights in  regularized CRF for map matching. 

5.3.3. Case Study 

In order to investigate the effectiveness of the proposed model (CRF_L1) for map matching 

beyond the plain numbers, the matching results in both model training and testing are 

mapped on the road network in comparison with the true labels. As illustrated in Figure 5.8, 

all recovered routes are overlaid by the ground truth, i.e., manually labeled routes using high 

sampling rate position data. With visual inspections, the mapping shows that the proposed 

model managed to recover the routes with meaningful paths (without paths composed by 

irregular geometric shapes). However, there also exists (red) paths that deviate from the 
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ground truths in several local road network contexts, and these mismatched instances (in-

cluding both points and paths) are categorized based on their likely causes. The major error 

cases are missing label (18.3%), parallel roads (13.7%), U-turn (13.0%), starting/ending 

point (10.0%), and position outlier (9.9%). Missing label occurs when observations locate in 

the dense road networks and true states are unexpectedly eliminated due to the predefined 

count of states in implementation. Parallel road (see Figure 5.9) and U-turn (see Figure 5.10) 

happen when the model fits the observations well but makes no sense compared to real-

world driving experience. Starting/ending point (see Figure 5.11) can be eliminated by com-

bining contextual information, e.g., it’s more likely to start a trip in the roads close to the 

building areas rather than in the middle of express roads. 

 
Figure 5.8 Map matching results of CRF_L1 (red) overlaid by ground truth (green) on the road net-

works (grey). 

 
Figure 5.9 Error instance: parallel road. GPS points are marked as red triangles, recovered path is 

marked in red and the ground truth is marked in green. 
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Figure 5.10 Error instance: U-turn. GPS points are marked as red triangles, recovered path is marked 

in red and the ground truth is marked in green. 

 
Figure 5.11 Error instance: Starting/ending points. GPS points are marked as red triangles, recovered 

path is marked in red and the ground truth is marked in green. 

5.4. Labeling Task II – Inferring Taxi Status 

For the second labeling task, inferring taxi status, the empirical evaluations are conducted 

using a new test dataset derived from Shanghai FCD. The dataset, different from the one 

used in the map matching task, obeys no restriction of geographic extent but allows full 

mobility in the urban area, which helps to collect a variety of taxi trips. For example, long taxi 

trips from downtown hotel to suburban airport, medium long trip for commuting between 

business building and passenger’s apartment. Following a similar organization of the exper-

iments of map matching, data preparation and preprocessing, experiment settings, model 

training and testing, evaluation are discussed. 

5.4.1. Experiment Setup 

The test dataset for taxi status inference targets 50 taxis, which consists of the GPS trajec-

tories from their one-day activities in Shanghai. To make a more faithful evaluation on the 

error-prone raw floating car data, a data preprocessing procedure is designed to build the 

test dataset.  

The preprocessing procedure includes three steps: 1) Taxi trip extraction from FCD using 

the identifier of the taxis and given taxi status. Each trip bears one consistent taxi status as 

indicated in the raw data, namely the trip is either occupied or vacant. The end points of trip 

are the pick-up/drop-off points. 2) Trip-based validation to eliminate erroneous trips or cor-

rect them. For examples, remove starting trips of the day that are recorded as occupied 

while the taxi is actually idle. And if temporal gaps are found within the trips, the trips are 

broken into sub-trips. The gaps may indicate the fact that the taxi drivers are taking breaks 

or making work shifts during the day. 3) Successive trips (trips that have temporal separation 

of no more than 3mins) are merged into one trajectory. Thus, it may be used to test the 

status transition within the same trajectory. Note that the resulting trajectories may contain 

a variety number of trips (with minimum number of one) with varying length. 
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Then the preprocessing procedure yields a test dataset that consists of 480 sample tra-

jectories. These samples are built of 1999 trips, 23171 GPS observations, and with approx-

imately equal number of occupied trips and the vacant ones. The spatial distribution of the 

trajectories is shown in Figure 5.12.  

 
Figure 5.12 50 taxis’ one-day trips in Shanghai, China. Blue lines represent occupied taxi trips and 

red lines are vacant. 

Since the raw data have already the taxi status (see Table 5.1), we randomly split the 

data into a training set and a test set with a ratio of 7:3 (see Table 5.5 for details), similar to 

the experiment for map matching. The entire training set is used to estimate the hyper-pa-

rameters via 5-fold cross validation. These settings are applied to both  and  regulariza-

tion. 

 #Trajectory #GPS #Trip 

Training set 336 16220 1399 

Test set 144 6951 600 

Table 5.5 Specification of training/test set for taxi status inference. 

5.4.2. Experiment Results 

We use Precision and Recall (Friedman, Hastie, & Tibshirani, 2009) to evaluate the pro-

posed model on this sequential prediction problem using the aforementioned test dataset. 
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Different to the metric error rate or overall confidence, precision and recall are computed on 

a class/label basis. Since for the second labeling tasks, the labels bear a more consistent 

meaning, and thus new metrics are used to distinguish the model’s performance on individ-

ual label. The two metrics are defined as follows. 

 Precision quantifies the labeling accuracy in terms of the ratio of the count of correctly 

labeled instances among all labeled instances with a range of [0, 1], the larger the 

better, which can be computed as 

 

 Recall quantifies the labeling accuracy in terms of the proportion of the count of cor-

rect labeled instances among all labeled instances of the same kind with a range of 

[0, 1], the larger the better, which can be computed as 

 

In order to estimate the optimal hyper-parameter , a 5-fold cross validation with a pa-

rameter search using geometric sequence (base of 0.3, power ranges from 0 to 10) is ap-

plied on the training set. Figure 5.13 shows how the precision and recall change for both 

statuses while manipulating the hype-parameter (top two for Occupied and bottom two for 

Vacant). For the status of occupied, increasing the power term (decreasing the hyper-pa-

rameter) yields increasing precision and recall simultaneously. Both metrics reach their best 

results as power term is set to 4 and decrease slightly afterwards. However, the outcomes 

are different for the status of vacant. Increasing the power term manages to obtain better 

precision but only in the exchange of the performance in recall. The best result for precision 

is achieved with almost the smallest hyper-parameter trial, while the largest hyper-parameter 

leads to the highest recall. Then for the overall hyper-parameter selection, a tradeoff has to 

be made, that is the better prediction for occupied can be yielded at the cost of worse pre-

diction for the other. In this experiment, we are more interested in identifying the occupied 

trips and thus the hyper-parameter is set with the preference of higher precision and recall 

for this status. With the one standard error rule, the power term is set to 3, which applies to 

both  and  regularization. 
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Figure 5.13 5-fold cross-validation estimates for optimal hyper-parameter . Horizontal green dash 

lines mark the highest performance, and the vertical green dash lines indicate the power used to 

compute the hyper-parameter. 

Methods #Feature Precision Recall 

CRF_L2 28 .647 .461 

CRF_L1 9 .649 .548 

Table 5.6 Evaluations of taxi status inference of occupied taxi GPS. 

The results of our model on the test set are summarized in the Table 5.6. Two methods, 

CRF_L2 and CRF_L1, are evaluated, which shows that the both models manage to 

achieve at moderate precision and recall for identifying the occupied data. In particular,  

regularized CRF model yields a slightly better result with much less model complexity 

(68% features are eliminated in the training). Surprisingly, using more features doesn’t ap-

pear to improve the prediction compared to the one-feature model proposed in (Ganti et 

al., 2013), which suggests using HMM with a stretch factor operated on a window basis. 
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Furthermore, the confusion matrix of CRF_L1 is also given to demonstrate the label-de-

pendent performance of the model. Even though the hyper-parameter is set with a prefer-

ence of the status of occupied, the model performs better for labeling vacant data. 

 Occupied Vacant  

Occupied 1443 1572 

2 

.479 

R
e
c
a
ll 

Vacant 818 2790 .773 

 .638 .640 Accuracy: 

 .639 
 Precision 

Table 5.7 Confusion matrix for CRF_L1. 

The weights of the selected features in  regularization are plotted in Figure 5.14. All 

features that retain a non-zero weight after training are plotted in the order of their magni-

tudes. The code name of the feature indicates the window size on which it is applied, e.g., 

SpeedMean-W3-1 indicates that mean speed applied window of three successive observa-

tions for status occupied (-2 is for vacant). As it’s shown in the figure, all the selected features 

are node features (including the two bias terms). And SpeedVarW31, SpeedMeanW72, 

SpeedMeanW151, SpeedMeanW152 have the largest weights that are learned from the test 

dataset. Surprisingly none of the transition/edge features are retained in the feature selec-

tion. 

 
Figure 5.14 Learned weights in  regularized CRF for taxi status inference. 
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5.5. Discussions 

In this section, some discussions are brought forth for the issues arise in the experiments of 

labeling spatial trajectories in the road network, which attempt to clarify the use of the pro-

posed method for further applications. 

The empirical study of the two labeling tasks has shown that the proposed methods are 

feasible to solve the problem. In map matching, the CRF_L1 outperforms the baselines with 

a small margin, but it generates a significantly high confident predictions (ca.12%) which 

demonstrates its capability of tackling uncertainty. As for taxi status inference, the CRF_L1 

achieves similar results while consuming more features than baseline. Both labeling tasks 

have shown the effectiveness of applying feature selection technique,  regularization, in 

the model training leads to a huge reduction of the model complexity and improvements of 

the performance. 

Both of the labeling tasks can be formulated using the same modeling framework, and 

benefit from the common efforts in the model development in terms of designing the graph-

ical structure, applying inference and learning algorithm, etc. However, some distinct efforts 

that help to improve the overall performance can be highlighted as follows.  

 In the early experiments of map matching, missing label (i.e., true labels are not 

covered in the candidates) is the major error source. This is partly because the orig-

inal models have fixed the number (usually small) of candidate paths. Therefore, a 

special focus is set on the design of the graphical structure. Using a specific path 

node in the graph allows to consider an arbitrary number of labels, which helps to 

avoid early elimination. Since taxi status inference only deals with binary labels, the 

label size requires no special treatment. 

 As shown in the feature selection results for taxi status inference (see Figure 5.14), 

features that are applied with window function dominates in the feature set. Using 

window function helps to examine a wider range of mobility characteristics of taxi 

movement, which compensates the limitation of the chain structure.  

 The feature selection has shown different effects on the two labeling tasks. More 

features are eliminated in the taxi status inference, while  regularization improves 

the likelihood which leads to higher probability output in the final label assignments. 

Besides the model development, there also exist some practical concerns in the imple-

mentation. First, both tasks could suffer from poor label quality, e.g., error-prone manually 

labeled data in map matching, false taxi status recording when the taxi is parking. Though 

visual inspection can help to justify some cases, more reliable and automatic approaches 

are needed to account for bigger volume of data. Secondly, preprocessing is needed to 

clean and transform the data so that the proposed models can be applied. 
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CHAPTER 6.  

Conclusions and Outlook 
 

 

 

6.1. Conclusions 

This thesis is dedicated to labeling spatial trajectories in road network. It provides a novel 

perspective to review the currently fast evolving research topics in trajectory data mining. 

Being motivated by two types of labeling tasks, the author makes his major efforts on the 

modeling of the trajectory data using probabilistic graphical models. The thesis work along 

with the gained insights is summarized as follows. 

 Labeling spatial trajectory serves the purpose of semantic enrichment and quality 

enhancement for spatial trajectories. Due to the essential role of movement study in 

multiple disciplines and unprecedented availability of spatial trajectory data, the prob-

lem has been widely addressed by researchers with various backgrounds in recent 

years. In this work, the problem is further categorized into localization and behavioral 

classification. Both tasks tackle the uncertainty in the data. The task of localization 

is to infer the actual position of the moving objects while the behavioral classification 

infers the latent states which can’t be observed in the data. Moreover, a comparative 

study is carried out to discuss the commons and uniqueness of the two tasks. For 

instance, localization usually uses a much larger label set than behavioral classifica-

tion. Both tasks can be addressed with search-based method or statistical models, 

and auxiliary data are often used to provide contextual information or location refer-

ence. In particular, map matching at low-sampling-rate of GPS trajectories and taxi 

status inference are selected as study tasks. An in-depth literature review shows that 

the graphical model has been successfully adopted to solve these problems. 

 Labeling spatial trajectories share some common challenges despite the variety of 

the positioning techniques that are used for data collection. Three challenges, 

namely imprecise positioning, sampling rate and behavioral dynamics are common 

and they all together contribute to the uncertainty in labeling tasks. To address the 

uncertainty issues, the discriminative models for sequence labeling are studied. In 

particular, this thesis investigates the probabilistic modeling of spatial trajectory data 

in road network using CRF, which is popular for its merits of allowing arbitrary non-

independent features and discriminative learning for a better fit of the data. More 

specifically, chain structured CRF are designed for both labeling tasks. In general, 

the graphical structure of the model aligns with the spatial trajectory data and uses 

one node for each location, but an extra node is taken for the localization task in 

order to make the model flexible when the labeling space grows and the sampling 

rate decreases. Then, a large set of features are induced with a parameter tying 
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strategy for practical use. Furthermore, an inference algorithm is selected according 

to the graphical structure which produce exact and efficient solutions. In order to 

maintain the tradeoff between the prediction power and the risk of overfit,  regular-

ization is used to perform the feature selection in training the model simultaneously. 

 The proposed method is implemented for evaluation on real-world dataset. The im-

plementation serves three tasks, namely label data preparation and preprocessing, 

feature extraction, and modeling training and testing. A manual labeling procedure 

is designed for the localization tasks, which relies an interactive route planning tool 

and volunteers with driving experiences. Due to large workload, repeated visual in-

spections are needed to ensure the label quality. Though labels are provided for 

behavioral classification, but validation is also required for the error prone status at-

tributes in the real-world data. A feature extraction module is implemented on spatial 

database using PL/pgSQL, which eases the early phase of understanding the data 

and examine the feature designs. The model training and testing are developed us-

ing Matlab for prototyping. 

 Experiments are conducted on two test datasets that are derived from the real-world 

dataset. The results have shown that the proposed method is feasible in solving the 

two tasks. In map matching, the developed model outperforms the baselines mar-

ginally while yielding a significant increase in the confidence of the outputs. And in 

taxi status inference, the results are equally good as the reported state-of-the-art, 

but it demonstrates the effectiveness of applying the feature selection in reducing 

the model complexity. The weights of selected features also reveal the relevant fea-

tures for specific tasks. In the end, a case study is also performed for map matching, 

which shows the cases where the model fails. 

6.2. Outlook 

This thesis work can serve well as stepping stones for further investigation into the topic of 

labeling spatial trajectories, which is drawing growing interests in research communities. 

Some of the potential developments are envisioned here. 

 The sampling issue of the trajectory data has been addressed in this work in terms 

of path discovery at low-sampling rates. The proposed model treats those unob-

served paths between successive location observations equally by computing their 

potential in the graphical model using the same set of features. However, the actual 

movement in the urban traffic could cause stops at traffic lights or in traffic jams, that 

is, the current model makes no difference to these two dramatically different mobility 

statuses in the sampling intervals. Statistically speaking, the model is legit. But this 

simple treatment could lead to an undesired smoothing effect on the probability of 

the data, making the prediction less certain. A refinement can be tried to enhance 

the fidelity of the model, which is using binary latent variables associated to the path 

nodes to decide if the taxis have stopped. 

 Though the chained structure model manages to generate reasonable results for the 

labeling tasks, what is a true underlying structure of trajectory data, e.g., long term 
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dependency, remains an open question. This question is invoked by the manual la-

beling experience that even for long taxi trips, the driver tend to make only a few 

decisive turning points rather altering the route all the way through. 
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APPENDIX A: NOTATION AND MATHEMATICAL 

CONVENTIONS 

The notations used in the thesis follow the conventions employed by (Barber, 2012; 

Halperin, Hartley, & Hoel, 1965; Murphy, 2012). 

A.1 General Math notation 

   A set from which values are drawn from (e.g. ). 

   Size (cardinality) of a set. 

   The real numbers. 

 The natural numbers. And we make no difference in the notations of 

 and . 

   The integer numbers. 

   Exponential function . 

   Natural logarithm of , namely . 

   Indicator function,  if  is true, else . 

 Arguments  of the maximum . 

 Arguments  of the minimum . 

A.2 Vector and Matrix 

Vectors are denoted using boldface lowercase letters, and boldface uppercase to denote 

matrices. Vectors are assume to be column vectors, unless noted otherwise. 

,  A -dimensional column vector with real-val-

ued components. 

 Transpose of a column vector, a -dimensional 

row vector. 

      Norm of the vector . 

      Length of a vector . 

, ,     Scale multiplication. 

 Vector addition. 

   Scalar product of vectors. 
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   A  matrix. 

      Transpose of a matrix. 

      Inverse of a matrix. 

      Identify matrix. 

A.3 Multivariate Calculus 

Partial derivative. Consider a function of  variables,  or . The partial 

derivative of  w.r.t.  is defined as the following limit (when it exists) 

 

 

Gradient vector. For function  the gradient is denoted  or : 

 

A.4 Probability 

   A random variable. 

   A sample observation or non-random variable. 

  Probability that a random variable , cumulative probability 

function. 

   Probability that , probability (density) function. 

   Conditional probability of conditioning  on . 

 Estimate of parameter, normally Greek letters are used to denote un-

known parameters. 

     Expected value of random variable. 

  Estimated expected value of random variable with respect to distri-

bution . 

 or  Expected value of random variable with respect to distribution . 

  Kullback-Liebler divergence from distribution  to . 

    is distributed according to distribution . 

   Normalization constant of a probability distribution. 

A.5 Graphical model 

   Cliques of a graph. 
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   Potential function for clique . 

   A graph. 

   Edges of a graph. 

   Nodes of a graph. 
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