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Learning Techniques for Neurorobotics -

A Survey on the Role of the Factor Time

Neurorobotics enables the interaction of simulated biological neural networks with both virtual

and real environments in closed perception-action loops. Controlling robotic actuators, processing sensor
readings and implementing goal-directed behavior requires the adjustment of synaptic weights by means of
learning. The temporal dynamics of the detailed neural models employed in neurorobotics enable the use
of learning techniques which incorporate a notion of time. This poster provides an overview of concepts

and methods from this field with a special focus on prospective applications in neurorobotics.

SINGLE NEURONS

Short-Term Plasticity (STP)

STP models temporary short-term facilitation
and depression of synaptic efficacies caused by
sustained spiking activity. In the absence of
spikes, the synapse recovers within a few
hundred milliseconds, a timescale relevant in
tasks like motor control (Tsodyks et al., 2013).

Spike-Timing-Dependent Plasticity (STDP)
STDP (e.g. Bi et al., 2001) v

iIs a theoretical model for

the experimentally ob- |p

served change of synaptic

weights based on the rela- At
tive timing At between

presynaptic and postsyn- LTD
aptic spikes. If a presynap-

tic spike precedes a postsynaptic one the syn-
aptic weight is increased, which is referred to
as Long-Term Potentiation (LTP). Analogously,
anticausal spike pairs yield Long-Term De-
pression (LTD). Variations of this concept rely
on different learning windows or use spike
triplets instead of pairs. STDP enables the
learning of temporal spike correlations.

Reward-Modulated STDP (R-STDP)

STDP operates on the timescale of millisec-
onds. To incorporate external feedback with
delays in the order of seconds, R-STDP (e.g.
Legenstein et al., 2008) stores a trace of po-
tential weight updates in a synaptic tag. An
external reward modulates the trace and
triggers the actual weight update.

RECURRENT NEURAL NETWORKS

Reservoir Computing

Reservoir computing techniques (e.g. Jaeger et
al., 2009) leverage the temporal dynamics of
recurrent neural networks for computation. Dif-
ferent methods based on analog neurons (Echo
State Networks) and spiking neurons (Liquid
State Machines) were conceived independently
by Jaeger (2001) and Maass et al. (2002). The
reservoir, a recurrent neural network with fixed
synaptic weights, is generated randomly and
projects the input into a high-dimensional fea-
ture space. Dedicated linear readout units with
trainable weights map the reservoir state into
the output space. Learning requires adapting
only these output weights and is therefore
considerably simpler compared to computing
weight updates for the complete network.

Reservoir
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Associative Memory

Hopfield nets (Hopfield, 1982) implement as-
sociative memory based on the attractor dy-
namics of a recurrent neural network topol-
ogy. Jaeger (2014) introduced conceptors for
storing different dynamical patterns in a sin-
gle reservoir. With an extension called auto-
conceptors, these patterns can be accessed
by presenting a cue of the desired output.

NEURAL NETWORK HIERARCHIES

Multiple Timescales Recurrent Neural
Networks (MTRNNs)

MTRNNSs (Tani, 2014) are hierarchically organ-
ized neural networks which are composed of
several recurrent neural networks with para-
metric biases (RNNPBs). They encompass two
directions of information processing. A top-
down pathway predicts perceptual and internal
states based on an intentional state which is
provided as one of the inputs. Learning is per-
formed bottom-up and driven by the actual
perceptions. Each RNNPB runs at an own
timescale with slower dynamics corresponding
to higher levels of abstraction. By setting the
prediciton of a higher level as intentional state
of the lower, the slow high-level dynamics pro-
vide context to the lower control levels.

high level Hierarchical Temporal
slow.dynamics Memory (HT|V|)
Intentional State The HTM algorithms con-
¢ ceived by Hawkins et al.

(2011) model layer 3 of
neocortical brain regions
at a very abstract level. A
spatial pooler maps input
to sparse distributed rep-
resentations. Future input
is predicted by a temporal
pooler. Since the predic-
tions change slower than
T the input, the output be-
0 : comes more stable and
uput/Learning .
low level changes on a slower time-
fast dynamics scale in higher regions.
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