
Neural Networks 72 (2015) 152–167
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2015 Special Issue

Neuromorphic implementations of neurobiological learning
algorithms for spiking neural networks
Florian Walter ∗, Florian Röhrbein, Alois Knoll
Institut für Informatik VI, Technische Universität München, Boltzmannstraße 3, 85748 Garching bei München, Germany

a r t i c l e i n f o

Article history:
Available online 18 August 2015

Keywords:
Neurorobotics
Brain-inspired robotics
Spiking neural networks
STDP
Neuromorphic
Learning

a b s t r a c t

The application of biologically inspiredmethods in design and control has a long tradition in robotics. Un-
like previous approaches in this direction, the emerging field of neurorobotics not only mimics biological
mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual bi-
ological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales
is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting per-
spective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with
a standard programming language. Like real brains, their functionality is determined by the structure of
neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics conse-
quently requires the application of neurobiological learning algorithms to adjust synaptic weights in a
biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips
by means of learning. First, we provide an overview over selected neuromorphic chip designs and ana-
lyze them in terms of neural computation, communication systems and software infrastructure. On the
theoretical side, we review neurobiological learning techniques. Based on this overview, we then exam-
ine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final
discussion puts the findings of this work into context and highlights how neuromorphic hardware can
potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of
neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize
advanced cognitive capabilities with spiking neural networks.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Neurorobotics seeks to establish an experimental link between
robotics and neuroscience by running biologically plausible sim-
ulations of neurobiological structures on robots. Differently from
other approaches which draw only basic inspiration from neural
mechanisms, a close correspondence between simulation and bio-
logical reality is therefore essential in order to make findings from
both disciplines seamlessly exchangeable (Seth, Sporns, & Krich-
mar, 2005). Especially in the light of strong experimental evidence
on the important role of the precise timing of the action potentials
emitted by biological neurons (Bohte, 2004), this is a strong moti-
vation for the use of spiking neural networks in neurorobotic appli-
cations. While classical neuron models from artificial intelligence
are coarse approximations based on simplistic threshold logic and

∗ Corresponding author.
E-mail addresses: florian.walter@tum.de (F. Walter),

florian.roehrbein@in.tum.de (F. Röhrbein), knoll@in.tum.de (A. Knoll).

http://dx.doi.org/10.1016/j.neunet.2015.07.004
0893-6080/© 2015 Elsevier Ltd. All rights reserved.
activation functions, spiking neurons employ dynamic models to
reproduce the temporal dynamics exhibited by biological neurons
as closely as possible. This allows for a diverse variety of efficient
temporal neural codes (Gerstner & Kistler, 2002) and enables neu-
robiological learning based on spike-timing dependent plasticity
(Bi & Poo, 2001; Markram, Lübke, Frotscher, & Sakmann, 1997;
Sjöström, Turrigiano, & Nelson, 2001). The superior computational
power of spiking neurons compared to artificial neuronmodels has
also been theoretically proven by Maass (1997).

1.1. Spiking neural networks for neurorobotic applications

While spiking neural networks have been studied extensively
in theory, there are considerably less results on real-world appli-
cations. This is mainly due to the fact that the execution of these
networks is computationally extremely expensive because ev-
ery single neuron is a small dynamical system which needs to
be considered individually. The simulation of spiking neural net-
works with practically relevant sizes in the order from thousands
up to millions of neurons therefore requires powerful hardware

http://dx.doi.org/10.1016/j.neunet.2015.07.004
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.07.004&domain=pdf
mailto:florian.walter@tum.de
mailto:florian.roehrbein@in.tum.de
mailto:knoll@in.tum.de
http://dx.doi.org/10.1016/j.neunet.2015.07.004

F. Walter et al. / Neural Networks 72 (2015) 152–167 153
to achieve reasonable performance. In case of neurorobotics, the
demands are even higher. To allow for interactions with the envi-
ronment, the neural network must be executed in biological real-
time.1 At the same time, energy and space are very limited in most
robots. But also for other applications, the requirement for pow-
erful workstations and high performance computing to achieve
acceptable simulation speeds is currently a major obstacle for a
broader use of spiking neural networks. Moreover, it seems para-
dox that simulating a tiny fraction of the human brain is only
possible at a multiple of its power consumption. This can be at
least partly explained by the completely different paradigms un-
derlying standard Von Neumann CPUs on the one hand and neural
networks on the other. While the former implement a sequential
model of computation which is based on a centralized local stor-
age, information processing in the latter is massively parallel and
distributed.

1.2. Early neuromorphic chip designs

The bad performance results achieved with standardmicropro-
cessors early motivated the development of neuromorphic hard-
ware designs which are specifically dedicated to the efficient
simulation of neural networks. First concepts for the VLSI im-
plementation of chips tailored to the execution of artificial neu-
ral networks date back to the end of the 1980s (Graf, Jackel, &
Hubbard, 1988; Sivilotti, Emerling, & Mead, 1986). However, the
idea of mimicking neural structures with hardware is even older.
As pointed out by Floreano, Ijspeert and Schaal (2014), a first
approach towards neurorobotics has already been made in the
1950s by Walter (1950) who used electric tubes as neuron-like
elements for controlling a simple mobile robot. At the end of
that decade, the Perceptron, an artificial neuron with a learning
rule for classification tasks, was introduced by Rosenblatt (1958)
and implemented in hardware as the Mark 1 perceptron (Bishop,
2006, p. 196). Synaptic inputs were provided by an array of 400
photocells. To allow for autonomous learning, the efficacies of
the individual synapses were controlled by motor-driven poten-
tiometers. While these early physical devices are analog by design,
analog computation also dominates neuromorphic integrated cir-
cuits. For the case of artificial neural networks, it is pointed out by
Murray, Del Corso and Tarassenko (1991) that this is mainly due
to the fact that the arithmetic operations required to compute a
neuron’s state can be implemented much more efficiently using
analog units. The inferior accuracy compared to digital logic is
compensated by the fault-tolerant information processing of neu-
ral systems. This, however, is not true for problems related to the
transmission of analog signals between the neural computation
units. With the spike-based communication of biological neurons
in mind, Murray and Smith (1987) therefore proposed hybrid neu-
romorphic systems which transmit signals digitally as series of
pulseswhile the neural computations are still carried out by analog
circuitry. This pulse-stream architecture not only solves the prob-
lems caused by analog signal transmission but also enables the cre-
ation of larger networks by multiplexing several streams of pulses
over a common wire (Murray et al., 1991). An extensive review of
early hardware designs for the execution of artificial neural net-
works is available in Heemskerk (1995).

1.3. Neuromorphic hardware for neurorobotics

First work on neuromorphic integrated circuits for the execu-
tion of spiking neural networks was published only a few years

1 Following the convention from Schemmel et al. (2010), the term biological real-
time will refer to the temporal dynamics experimentally observed in biological
neurons and biological neural networks throughout this work.
after the pioneering research of Sivilotti et al. (1986) on dedicated
hardware for artificial neural networks. Today, there is a huge va-
riety of analog and digital neuromorphic chips available, each of
them designed with different priorities in mind (Furber, Galluppi,
Temple, & Plana, 2014;Merolla et al., 2011; Renaud, Tomas, Bornat,
Daouzli, & Saighi, 2007). Unlike in earlier years, research and devel-
opment are no longer only driven by prospective applications in
machine learning and computer vision. The high degree of biologi-
cal plausibility of the simulated spiking neural networks opens up
a completely new field of applications in neuroscience which is re-
lyingmore andmore on large-scale simulations of brain structures
to validate models against experimental findings and to make pre-
dictions based on theoretical hypotheses. In turn, new results from
neuroscientific research can contribute to improve existing hard-
ware designs. Inspired by this synergistic loop, the EU-funded Hu-
man Brain Project has been established with the goal of integrating
all available knowledge about the human brain into a large com-
puter simulation (The Human Brain Project, 2015). To achieve this
goal, the project specifically promotes the development of power-
ful neuromorphic hardware designs.

Neuromorphic chips for spiking neural networks are a key
ingredient for neurorobotics since they enable the execution of
realistic brain structures at low power consumption and in biologi-
cal real-time. But analogously to themicrocontrollers encountered
in classical robots, these chips need to be programmed. It is clear
that this cannot be done using a standard programming language.
Like a real brain, the neural network running on a neuromor-
phic chip needs to learn the desired behavior. Appropriate biolog-
ically plausible methods for unsupervised learning, reinforcement
learning and supervised learning have been studied extensively
in computational neuroscience. But it is often unclear which of
these algorithms can be implemented onwhich type of neuromor-
phic architecture. This work tries to fill this gap by reviewing both
selected hardware designs from neuromorphic engineering and
neurobiological learning techniques. In Section 2, we present six
current neuromorphic processors based on both analog and digital
computation. This overview is complemented by a brief discussion
of neuromorphic sensors as a natural means of interfacing neu-
rorobotic agents with the environment. Section 3 is dedicated to
algorithms for neurobiological learning and thus provides the
theoretical foundations for applying neuromorphic hardware to
real-world tasks. The actual implementation of learning on the
neuromorphic processors presented is discussed in Section 4. Sec-
tion 5 puts the results of this work into the context of robotics
and argues how the proposed neuromorphic hardware designs can
contribute to the field of autonomous robotics. A summary of the
results is provided in Section 6.

2. Neuromorphic devices—an overview

Every microprocessor architecture must address two central
questions (Murray et al., 1991): How are computations performed
andbywhichmeans of communication is involved data exchanged?
Standard Von Neumann CPUs use registers and RAM to store and
exchange data. This data also includes the instructions for the
arithmetic and logical units which perform the actual computa-
tions. In spiking neural networks, information is exchanged via
spikes which are generated in a neuron’s soma, then propagated
along its axon and finally reach other neurons via synaptic con-
nections. Every spike arriving at a neuron elicits a change in its
membrane potential. A commonly used model for describing the
temporal dynamics of this potential is the leaky integrate-and-fire
neuron (Gerstner & Kistler, 2002):

τm
du
dt
= −u(t)+ R · I(t) (1)

t(f) : u(t(f)) = ϑ. (2)

154 F. Walter et al. / Neural Networks 72 (2015) 152–167
Instead of explicitly expressing the complex interplay of different
types of ionic currents, the above equations define a phenomeno-
logical approximation. As usual in computational neuroscience, the
dynamics of the neuron are described by an electrical circuit with
the voltage u(t) being the membrane potential. In case of the con-
sidered leaky integrate-and-fire neuron, the circuit consists of a
resistor R and a capacitor C operating in a parallel configuration.
When setting τm = RC, u(t) can be expressed with Eq. (1). Spikes
are emitted at times t(f) when the membrane potential reaches a
predefined threshold ϑ from below.

Unlike the membrane potential, spikes are discrete events. The
actual shape of the current pulse is irrelevant. All information
is encoded in the time of emission and the originating neuron.
Many neuromorphic chips therefore implement an address event
representation (AER) protocol for the transmission of spikes be-
tweenneurons (Boahen, 2000). Like thepulse-streamarchitectures
mentioned in the last section, AER uses digital circuitry for inter-
neuron communication. But with the main information being en-
coded already in the time of spike, there is no need for additional
modulation which would be required to encode analog signals.
All information is carried by a single pulse. Multiplexing and thus
more efficient usage of connection lanes between different sets of
neurons is achieved by including an identifier of the source neuron
in the AER packets.

In the next two subsections, we present six neuromorphic mi-
croprocessors realizing different approaches for computation and
communication. Four of them implement the AER paradigm for
propagating spikes throughout the network. Our focus is on de-
signs which are under active development and which are in prin-
ciple suited for large-scale spiking neural network simulations. An
exhaustive review of all neuromorphic chips availablewould go far
beyond the scope of this paper. To get an idea of the huge diversity
of the field, we refer the reader to work of Indiveri et al. (2011)
for an overview over analog implementations of different neuron
models. The last subsection is dedicated to neuromorphic sensors.
In a brief introduction to this strongly related field of research, we
show how these types of sensors can complement neuromorphic
microprocessors as input devices in neurorobotic applications.

2.1. Analog neuromorphic chips

The modeling of neural dynamics based on functionally equiv-
alent electrical circuits gives way to direct physical implementa-
tions of neuron models. The resulting analog neuromorphic chips
emulate biological neurons by means of electric currents and volt-
ages. Compared to the digital designs from the next subsection,
these silicon neurons (Cruz-Albrecht, Derosier, & Srinivasa, 2013)
enable continuous state updates without discretization errors. By
leveraging the inherent dynamics of their analog building blocks
for computation, they allow for a higher integration density than
digital chips (Renaud et al., 2007). On the downside, analog com-
putation is susceptible to noise. Indiveri et al. (2011) therefore
point out that exact quantitative simulation results are only pos-
sible with digital circuitry.

Although basic design principles like the AER paradigm are
shared amongmany neuromorphic microprocessors, different pri-
orities and project goals have yielded unique architectures with
special functional and topological properties. The first of the four
chips presented in the following is designed for maximum flexi-
bility regarding the types of supported network topologies. In con-
trast, the chips discussed in the second and third part are strongly
optimized for energy-efficient operation. The ROLLS neuromorphic
processor presented in the last subsection implements three dif-
ferent types of synapses with individual properties and temporal
dynamics.
2.1.1. The BrainScaleS Project
The neuromorphic hardware architecture presented in the fol-

lowing was initially conceived in the FACETS Project (Meier, 2013)
and the BrainScaleS Project (Meier, 2015). Today, development is
continued within the Human Brain Project. The central element
of this architecture is the High Input Count Analog Neural Network
(HICANN) chip which contains a total of 131072 synapses and
– depending on the configuration – up to 512 neurons (Fieres,
Schemmel, & Meier, 2008; Schemmel, Fieres, & Meier, 2008). The
simulation of larger networks is enabled by wafer-scale inte-
gration, i.e. the parallel operation of many chip dies on a com-
mon wafer. This technique allows for the integration of 384
HICANNchips on a singlewafer of 20 cmdiameter (Schemmel et al.,
2010).
Computation. Every HICANN chip contains an Analog Network Core
(ANC) which is comprised of 512 dendrite membrane circuits and
two arrays of synapses (Schemmel et al., 2010). As illustrated
in Fig. 1, the dendrite membrane circuits are organized in
two symmetric columns. They act as basic building blocks for
the application-specific assembly of neurons. Each of them is
connected to a rowof the corresponding synapse arraywhich leads
to a minimum number of 224 synapses per neuron. Neurons with
larger synapse count can be configured with the neuron builder
which contains a switch matrix for combining up to 64 dendrite
membrane circuits to a single unit. With every of the dendrite
membrane circuits being driven by 224 synaptic inputs, the total
number of synapses per neuron supported by the architecture
amounts to 14336. The spikes arriving via these synapses drive
the analog circuitry which emulates the neural dynamics of the
conductance-based exponential integrate-and-fire neuron (Brette
& Gerstner, 2005). Synaptic weights are stored locally at every
synapse in digital memory cells with 4-bit precision. For spike
transmission, the weight is converted to an analog value. The
conversion scale is controlled by a programmable conductance
parameter. The resulting analog weights determine the size of the
postsynaptic potentials which are forwarded to the corresponding
dendrite membrane circuits in response to incoming spikes. Each
of the circuits has two configurable inputs which emulate ion
channels with different reversal potentials. Setting appropriate
values for these potentials allows, for example, to create excitatory
and inhibitory synaptic connections. A switch in each synapse
circuit selects the input of the corresponding dendrite membrane
circuit to which incoming spikes are forwarded. Altogether, these
mechanisms determine how synaptic impulses arriving at a
connected group of dendrite membrane circuits contribute to the
overall membrane potential. The emission of spikes is controlled
by dedicated circuits located in the block Digital Event Generation.

All model parameters governing the dynamics of synaptic spike
transmission, ion channels and the membrane potential are kept
in programmable analog storage cells (Schemmel et al., 2008).
Compared to biological neurons, these parameters are orders of
magnitude smaller. The consequences of this are twofold: First, the
electrical circuitry implementing the neuron model can be built
smaller. Second, shrinking down the overall scale of physical units
inherently comes along with a speedup of the resulting dynamics.
As a result, the neurons emulated by the ANC run from 103 up
to 105 times faster than biological real-time, enabling extensive
experimental studies which are possible with neither standard
hardware nor with biological nervous systems.
Communication. The highly accelerated neuron emulation requires
a powerful communication system which is able to forward
spikes between ANCs which are located in different regions of
a single wafer or which may even be distributed across several
interconnected wafers. The following paragraph is based on the
detailed technical descriptions given by Fieres et al. (2008) and
Schemmel et al. (2008).

F. Walter et al. / Neural Networks 72 (2015) 152–167 155
Fig. 1. Architecture of a single Analog Neural Network Core (ANC) (Schemmel
et al., 2010). Each ANC has a symmetric structure with two 224 × 256 arrays of
synapses. Every row of these arrays is connected to a membrane circuit, yielding
a maximum number of 512 neurons per ANC. The Neuron Builder can be used to
combine up to 64 membrane circuits to form neurons with more synaptic inputs.
Synapse Drivers receive presynaptic spikes and inject them into the synapse arrays.
Separate blocks implementweight updates via STDP (see Section 4.1). The gray bars
indicate communication lanes for spike transmission.

Spike transmission within a wafer is carried out by a network
of horizontal and vertical data lanes interconnecting the ANCs in a
grid-like layout. A schematic illustration of this Layer-1 communi-
cation system is depicted in Fig. 2. Every horizontal pathway con-
tains 64 bus lanes, each of which transfers the spikes of up to 64
neurons. The neurons in the ANCs are therefore partitioned into
groups of 64 units. All neurons belonging to a group are connected
to a priority encoder which ensures that at every time instant only
one spike is propagated from the neuron builder to the bus lane.
In case several neurons of the same group emit concurrent spikes,
the one originating from the neuron with the highest priority is
forwarded first. All other spikes are delayed. Every spike is rep-
resented as a data packet storing a 6-bit identifier of the source
neuron. Following the AER paradigm, the timing of the spike is di-
rectly encoded in the timing of the data packet.2 Repeaters at the
boundaries of each HICANN chip enable signal transmission across
the whole wafer without data loss. Crossbar switches at the inter-
sections of horizontal and vertical pathways route spikes towards
the ANCs containing their target neurons. The vertical data buses
thus gather spikes for all connected ANCs which explains their in-
creased width of 256 lanes. As depicted in Figs. 1 and 2, the ANCs
are connected to these lanes via the Synapse Drivers at both sides
of the synapse arrays. Each synapse driver provides the input of a
selectable bus lane to two rows of synapses. Further constraints on
the connectivity are imposed by the restriction that a certain bus
lane can only be connected to at most one synapse driver within
one ANC. However, this is partly mitigated by a mechanism allow-
ing neighboring synapse drivers to share their input. As soon as
a spike packet arrives at a synapse driver, the first two bits of its
address are decoded, yielding a group of synaptic circuits. Every
of these circuits contains a further decoder which checks the re-
maining four address bits and forwards the spike to the dendrite
membrane circuit in case of a match.

The Layer-1 communication described above enables flexible
signal transmission between the chips of a single wafer. Commu-
nication between different wafers involves considerably longer la-
tencies and cannot be realized with Layer-1 packets. A separate
Layer-2 communication protocol therefore stores the timing of

2 Fieres et al. (2008) argue that this communication mechanism does not follow
theAER scheme.However, they refer to a specific arbitration-based implementation
of AER from Mortara and Vittoz (1994) while the definition assumed in this paper
addresses solely aspects related to the encoding of information in AER packets.
Fig. 2. Illustration of the Layer-1 communication infrastructure. Emitted spikes are
first injected into the horizontal bus which has a width of 64 lanes. The vertical
buses with 256 lanes then deliver the spikes to the synapse drivers. Note that the
ANCs are rotated by 90°with respect to Fig. 1.

spikes digitally in the payload of the packets. The required inter-
faces are implemented in 12 FPGAs3 per wafer (Jeltsch, 2014). Ev-
ery FPGA is equipped with two 1 Gbit uplinks for direct communi-
cation with other FPGAs and Ethernet connections. While it is pos-
sible to use the latter option for Layer-2 communication, another
important purpose of the Ethernet interface is to provide an input
and output channel for external devices. However, since the band-
width available for real-time communication with external hosts
is limited, each of the FPGAs additionally contains an internal stor-
age for up to 2.5·108 spike eventswhich can be injected at runtime
with low jitter (Jeltsch, 2014).

Programming. The previous two paragraphs give clear proof of the
high complexity of the BrainScaleS system. Running an actual neu-
ral network on the platform requires amapping of neurons to ANCs
and a corresponding configuration of the neuron builders, synapse
drivers, crossbar switches, etc. Making the platform accessible to
researchers from other fields requires an automated mapping be-
tween high-level descriptions of neural networks and low-level
settings of hardware parameters. Based on this motivation, the
software framework PyNN was developed by Brüderle et al. (2009).
PyNNdefines a convenient interface for specifying neural networks
in the programming language Python. A simulator-specific back-
end converts these specifications to executable representations for
the selected simulator. By exchanging the backend, a neural net-
work can be easily run on different types of simulators and hard-
ware.

The mapping of a neural network specified with PyNN to
a configuration set for the BrainScaleS system is performed in
two steps (Fieres et al., 2008). First, the neurons of the model
must be assigned to the ANCs. Based on this assignment the
routing can be computed. Since there is no arbitration mechanism
governing access to the bus lanes, it is in general crucial to ensure
that each lane is connected to the output of at most one ANC.
However, disabling the repeater circuits between ANCs also allows
for splitting lanes and thus connecting one lane to several ANCs. At
the beginning, the routing algorithm connects ANCs with adjacent
neurons by setting the crossbar switches accordingly. In a second
step, the configurations for the synapse drivers and the address
decoders of the synapses are computed. Due to connectivity
constraints imposed by the hardware architecture, not all synaptic
connections might be realized.

3 Field-programmable gate arrays.

156 F. Walter et al. / Neural Networks 72 (2015) 152–167
Fig. 3. The architecture of a single Neurocore (Benjamin et al., 2014). All neural
circuits are arranged in a 256 × 256 grid which is surrounded by transmitters and
receivers for sending and retrieving spikes. An integrated router is connected to
the parent core and the child cores. As shown in the inset at the bottom, a single
neuron is comprised of 4 synaptic populations, 4 gating variables and circuitry
implementing the dynamics of the dendrite and the soma.

2.1.2. Neurogrid
Most of the space on the HICANN chip discussed in the last sec-

tion is occupied by the synapse arrays. But still, when one wants
to maximize the number of neurons emulated per chip, the re-
sulting 224 synaptic inputs per unit are relatively small. More-
over, the at most 512 neurons accommodated on an ANC are not
sufficient for complex real world applications. The Neurogrid neu-
romorphic hardware platform developed by the Brains in Silicon
research group at Stanford University implements a much higher
number of neurons and synapses at the trade-off of decreased flexi-
bility (Boahen, 2015). Neurogrid consists of 16 interconnectedNeu-
rocores. Each of them contains 65536 analog two-compartment
neurons, yielding a total of 1 048576 neurons with up to six billion
synapses (Boahen, 2015). Fig. 3 provides an overview of the archi-
tecture of a single Neurocore. The complete system description in
the following paragraphs is based on the documentation published
by Benjamin et al. (2014) and Merolla, Arthur, Alvarez, Bussat and
Boahen (2014).
Computation. The 16 Neurocores of the Neurogrid system are
optimized with respect to energy efficient operation while at the
same time accommodating a large number of neurons with many
synaptic inputs. As shown in the upper part of the architecture
diagram from Fig. 3, the silicon neuron circuits are arranged
in a quadratic grid with 256 rows and columns. Realizing a
two-compartmental dynamic model, every neuron has separate
circuits for its soma and the dendrite. Incoming spikes from
presynaptic afferents enter through four synapse population circuits
and elicit time-varying synaptic conductances. A shared dendritic
tree propagates the changes also to neighboring neurons to model
the dynamics of overlapping dendrites found in biological neural
networks. Currents from the synapse populations enter both the
soma and the dendrite. Moreover, the soma also receives input
from the dendrite. Spike generation is controlled by an emulated
sodium current which triggers a reset pulse. The refractory period
after spikes is realized by a potassium conductance. Finally, two
channel populations implement conductances driving the dendrite.

The detailed behavior of all the circuits mentioned above
can be controlled by parameters hold in on-chip RAMs of every
Neurocore. The silicon neurons implemented by these circuits
operate in biological real-time using energy-efficient subthreshold
operation of the involved electronic elements. One of the most
notable features of the neuron model emulated by the Neurocores
is its shared dendrite architecture. Unlike in the synapse array
of the HICANN chip which contains separate circuits for every
single synapse, all synapses of a Neurocore neuron share only
four synaptic population circuits. The individual weights of the
virtual synapses are stored in a RAM. As already explained earlier, a
shared dendritic tree additionally emulates crosstalk between the
dendrites of neighboring neurons. While this approach requires
multiplexing of the synapse circuits over all incoming spikes, it
allows for a considerably larger number of synapses per neuron
compared to an architecture with dedicated synapse circuits.

Communication. Spike transmission in the Neurogrid system is car-
ried out by a digital communication infrastructure which is based
on the AER paradigm. As shown in the upper part of Fig. 3, ev-
ery Neurocore contains both a transmitter and a receiver. Outgoing
and incoming spikes are gathered and delivered row-wise, i.e. all
spikes of neurons placed in the same row of the array are trans-
mitted in a single packet and delivered in parallel. Pipelining of the
involved processing steps enables an even higher performance by
already initializing the spike transmission for the next row while
the packet for the previously processed one is being sent. Addi-
tional speed is gained by parallel use of the four synapse popula-
tion circuits available for every neuron. A router contained in every
Neurocore is responsible for forwarding packets to their destina-
tion. To avoid deadlocks in the communication system caused by
competing packets, the routers implement a provably deadlock-
free wormhole routing protocol which is based on a binary tree
topology. As illustrated in Fig. 4, all 16 Neurocores are connected
according to this topology. The protocol encompasses two steps, in
the first of which the data packet generated by a Neurocore trav-
els upward the tree until it reaches the lowest common ancestor
of the source node and the target node. In the second step, the
packet is forwarded down into the subtree containing the desti-
nation Neurocores. Multicast routing is accomplished by copying
the data packet to all child nodes as soon as it arrives at the low-
est common ancestor of the destination nodes. Every Neurocore fi-
nally decides locally if a received packet is processed or discarded.
The routing information itself is completely encoded in the packet,
which allows for fast processing without memory lookups.

Themechanisms required for themulticast routing described at
the end of the last paragraph are completely implemented in every
Neurocore. They realize secondary axon-branching for connecting
corresponding locations in different Neurocores. The Daughter
Board depicted in Fig. 4 is capable of primary axon-branching which
is required for freely configurable synaptic connections.

Programming. The Neurogrid system includes a complete software
stack for the definition, simulation and visualization of spiking
neural networks on the hardware platform. A graphical user
interface provides access to hardware settings and is used to
control and visualize simulations of neural networks which are
constructed using the Python API NGPython. Further components
implement the transmission and mapping of data between the
hardware and the software. The controllers FX2 and CPLD depicted
in Fig. 3 handle host communication via a USB.

F. Walter et al. / Neural Networks 72 (2015) 152–167 157
Fig. 4. Connection topology of the Neurogrid system (Benjamin et al., 2014).
The numbered boxes correspond to the 16 Neurocores. The chips CLPD and FX2
implement communication with the host via USB. The Daughter Board enables
primary axon-branching for arbitrary synaptic connectivity between any pair of
neurons.

2.1.3. The HRL SyNAPSE Project
One of the principal challenges in neuromorphic hardware de-

sign is to find an efficient way of realizing potentially arbitrary
connectivity between the neurons while at the same time sim-
ulating as much synapses per neuron as possible. In case of the
HICANN chip discussed in Section 2.1.1, this issue is resolved
by physically implementing a huge number of discrete synapses
which occupy a considerable portion of the space on the chip.
Neurogrid shares synaptic circuitry and uses a special routing
protocol to enable high spike rates while maintaining dense
connectivity. In this section, we introduce yet another neuromor-
phic implementation of synapses by discussing a neuromorphic
chip design developed within the DARPA-funded HRL SyNAPSE
Project (DARPA, 2015; Srinivasa & Cruz-Albrecht, 2012). It is based
on synaptic time multiplexing (STM) and uses memristors to store
synaptic weights. Fig. 5 provides a high-level schematic overview
over its architecture. The chip contains a grid of 24×24 nodes. Ev-
ery of these nodes emulates a neuron with 128 synapses, resulting
in a maximum network size of up to 576 neurons and up to 73728
synaptic connections. The overall power consumption of the sys-
tem amounts to 130 mW. In the following three paragraphs, we
will explain how the chip realizes neural computation and how it
is programmed.
Computation. It has been already mentioned above that the
architecture of the HRL chip is based on the STM paradigm. As
indicated by the name, this means that a single synaptic circuit
on the chip computes multiple logical synapses of the simulated
neural network. The justification that this is feasible is based on the
same arguments as in case of the AER communication scheme: The
electrical circuitry is able to operate at much higher speeds than
biological neurons. Therefore, a single synaptic circuit can easily
emulate multiple logical synapses by quickly switching between
the corresponding parameter sets. The jitter introduced by this
multiplexing isminimal compared to the temporal timescale of the
dynamics of the individual neurons and the neural network (Cruz-
Albrecht et al., 2013).

The inset at the bottom of Fig. 5 depicts the main components
of a single node on the chip. The actual computation of neural
dynamics is implemented in the Processing Core. Unlike the
architectures discussed before, the HRL chip emulates a simplified
version of the leaky integrate-and-fire neuron model which is
highly optimized for low energy consumption (Cruz-Albrecht,
Yung, & Srinivasa, 2012). The model neither supports inhibitory
synaptic input nor does it have a refractory period following
after spike emission. Moreover, the emitted spikes are uniform
rectangular voltage pulses which are forwarded to the synaptic
circuits of other nodes. On arrival of a presynaptic spike, these
Fig. 5. Simplified system architecture schema of the neuromorphic chip developed
by theHRL SyNAPSE Project (Cruz-Albrecht et al., 2013). The upper part of the figure
depicts the complete chip. It is comprised of 576 nodeswhich are arranged in a two-
dimensional grid of 24×24 nodes. The details of a single node are shown in the inset
at the bottom. Every node contains storage for synaptic weights, a neural circuit for
the actual processing and routing logic for forwarding and receiving spikes from
other nodes.

circuits generate a postsynaptic current in the corresponding
neuron circuit. The actual strength of this current is determined
by the weight of the synapse.

Every node contains only a single synaptic circuit. STM enables
this circuit to emulate up to 128 logical synapses. The correspond-
ing synapticweights are stored in the 8×16memristor array shown
in Fig. 5. In every cycle period of the synaptic multiplexing, each
logical synapse is assigned a slot of 100 µs. Within a single slot,
multiplexers (MUX) are used to address the corresponding cell of
the memristor array. The synaptic efficacy stored in this cell is
then converted to a 3-bit digital value (ADC) and forwarded to the
synapse. At the end of the time slot, possible weight changes are
converted to an analog value (ADC) and stored in the correspond-
ing memristor cell. In addition to the memristors, the nodes of the
HRL architecture also contain auxiliary CMOS memory for storing
synapticweightswhich can be used to operate the chipwithout the
memristors. Additional memory further allows for the adjustment
of various neural parameters and time constants (Cruz-Albrecht
et al., 2013).
Communication. Data exchange with other external devices is
enabled by the input/output channels depicted at the top of Fig. 5.
The horizontal and vertical axonal routing channels shown at the
bottom transmit spikes to other nodes of the same chip. Since the
mapping of synapses changes in every STM time slot, the routing
configuration of the nodes must be adapted correspondingly. For
this reason, every node contains a connection memory which
stores the configuration of a set of switches that control the routing
along the axonal data lanes (Cruz-Albrecht et al., 2013). At the
beginning of a new time slot, the states of these switches are
adapted according to the corresponding entry of the connection
memory. It is important to note that there is no AER protocol
required since the routing mechanism establishes point-to-point
connectivity between the presynaptic neuron and its postsynaptic
receivers (Minkovich, Srinivasa, Cruz-Albrecht, & Youngkwan Cho,
2012). In particular, this implies that – if an appropriate routing

158 F. Walter et al. / Neural Networks 72 (2015) 152–167
configuration can be determined – there is a guarantee that all
spikes can be transmitted without data loss due to congested
interconnects.
Programming. Executing an arbitrary network topology on the
HRL neuromorphic architecture requires to determine a mapping
which assigns neurons to processing nodes and synapses to STM
time slots with an appropriate routing. The first task is the
placement problem, the second one the routing problem (Minkovich
et al., 2012). Each task is solved in a separate step. In the
following,wewill only give a quick outline of the general principles
underlying the mapping algorithm. For a complete description of
the neuromorphic compiler, the reader is referred to the work of
Minkovich et al. (2012).

The placement of the neurons is solved heuristically in four
consecutive steps. First, an initial mapping of neurons to nodes
is computed using an iterative quadratic wirelength minimization
algorithm which minimizes the total length of axonal routing
lanes occupied for connecting the neurons. At the same time,
this also minimizes the number of switches required to set up
the routes. In the second step of the placement algorithm, the
density of clusters of neurons is reduced by applying diffusion-
based smoothing. The actual assignment of neurons to nodes is
carried out in the legalization phase using bipartite matching from
graph theory. Finally, the resulting placement is further improved
by a simulated annealing algorithm which tries to heuristically
reduce the wirelength by moving single neurons to their optimal
positions.

The routing is set up based on the placement computed by
the algorithm described above. First, an estimate of the minimum
number of time slots necessary to implement the given neural
network is computed and synapses are distributed over these slots
in a round robin fashion. If an A∗ routing algorithm finds collision
free routes between all synapses in all time slots the resulting
switch configuration can be computed. Otherwise, the assignment
process is restarted with an increased number of time slots. If no
more free time slots are available the network cannot be executed
on the chip without omitting synaptic connections. In a final step,
the resulting switch configurations for each STM time slot are
compressed to reduce the amount memory required to store the
configuration data on the nodes.

2.1.4. The ROLLS neuromorphic processor
One of the most recent chip designs presented in this review

was developed by Qiao et al. (2015). The Reconfigurable On-line
Learning Spiking (ROLLS) neuromorphic processor contains 256
analog silicon neurons and a total of 131072 synapses. Compared
to previous chip designs which already implement many of the
features realized in the ROLLS neuromorphic processor (Indiveri &
Fusi, 2007), the new design integrates a considerably higher num-
ber of neurons and offers a huge amount of different configuration
options. Like its predecessors, the ROLLS chip is able to operate in
biological real-time. The power consumption in typical scenarios is
4 mW (Qiao et al., 2015). Special focus has been put on the imple-
mentation of different synaptic plasticity mechanisms, which will
be discussed in Section 4.3. In the following, we will only consider
how the ROLLS neuromorphic processor emulates neural dynam-
ics and how it is programmed. A schematic overview of the chip
architecture is available in Fig. 6.
Computation. The 256 analog neurons of the ROLLS chip are
depicted as triangles at the bottom of the figure. Like the silicon
neurons of the HICANN chip, they emulate the dynamics of the
exponential integrate-and-fire neuron model. Every neural circuit
is connected to three different types of synaptic circuits. The first
256×256 synapse array at the top of Fig. 6 contains synapseswhich
store configurable but fixed synaptic weights with a precision of 2
Fig. 6. Schematic overview over the ROLLS neuromorphic processor (Qiao
et al., 2015). The chip contains two 256 × 256 grids of synapses for short-term
plasticity (STP) and long-term plasticity (LTP) (see Section 4.3). A synapse de-
multiplexer can assign several rows of synapses to a single silicon neuron. The
additional virtual synapses above the neuron circuits can simulate background
activity of the neural network. A bias generator stores global network parameters.
The analog digital converter (ADC) can be used to read analog state information
from neural and synaptic circuits. The test structures are irrelevant for the neural
simulation.

bit. Each of the synapses can be declared to be either excitatory
or inhibitory. To enable operation in biological real-time in spite
of small circuit sizes, the electrical circuitry is realized based on
the Differential Pair Integrator (DPI) (Bartolozzi & Indiveri, 2007).
In every column of the grid, two of these integrators emulate the
temporal dynamics of the synaptic AMPA and GABA receptors for
excitatory and inhibitory synapses, respectively. Every synaptic
circuit contains a pulse generator which is attached to the AER
communication bus and generates pulses in response to AER
events. The synapses in the second 256 × 256 array only operate
in excitatory mode. Consequently, there is only one DPI circuit
per column which emulates the synaptic NMDA receptors. The
efficacies are adapted during runtime based on a learning rule
which will be discussed in Section 3.1.3. Finally, a third array
contains 256×2 virtual synapseswhich have configurable weights
and support both excitatory and inhibitory connectivity. Unlike the
other synaptic circuits which correspond to individual connections
between neurons, the virtual synapses operate in a shared mode
which allows for connecting the postsynaptic neuron to a large
population of presynaptic neurons through a single synapse.While
this approach is considerably more efficient in terms of space
compared to individual circuits for every connection, it implies that
all synaptic connections emulated by a virtual synapse share the
same parameters.

As already mentioned above, the 256 silicon neurons emulate
the exponential integrate-and-fire model. By default, every neural
circuit receives input from the 514 synapses of its column. The
Synapse De-Multiplexer allows for the configuration of neurons
with more synaptic inputs by combining arbitrarily many synapse
columns. Like in the case of the HICANN chip, the neural circuits

F. Walter et al. / Neural Networks 72 (2015) 152–167 159
whose synaptic input column has been connected to other neurons
are no longer available for simulation. Merging synapses therefore
allows for increased connectivity at the price of a smaller network
size.
Communication. All neural spikes generated and received by the
ROLLS neuromorphic processor are transmitted using an AER
protocol with 8-bit neuron addresses. As illustrated in Fig. 6, the
corresponding input and output blocks are placed next to the
synapse arrays. The AER Output block implements an arbitration
mechanismwhich ensures that notmore than one neuron accesses
the AER bus at a given time. Spike retrieval via the AER Input blocks
and network connectivity are controlled by digital configuration
logic present in every synapse. There are three different modes
of operation defined by the architecture. In direct activation mode,
the synapse is activated by AER packets with matching row and
column addresses. If the broadcast activation mode is enabled, it
also processes special AER broadcast events which are addressed
row-wise. Finally, enabling the recurrent activation mode of a
synapse placed at row j in column i will connect it to the neuron
from column j.

The AER bus handles both the internal communication between
the neurons on the chip and the external communication with the
host computer and other peripheral devices. In addition, theAnalog
Digital Converter (ADC) circuit shown in the bottom left of Fig. 6
converts the analog currents of selected neurons and synapses to
digital signals and thus allows to monitor the internal state of the
chip at runtime.
Programming. Besides the analog circuitry which emulates the
neural dynamics, every neuron and synapse on the chip also
contains digital logic for controlling model parameters and
network connectivity. The configuration options of the latter have
already been explained in the last paragraph. Global parameters
which apply to all neurons and synapses, respectively, are set
in the Bias Generator which, for example, stores time and leak
constants. Additional parameters in the neural circuits further
allow to choose between different constants provided by the bias
generator. Based on this mechanism, the chip is able to simulate
up to four differently parameterized populations of neurons.

TheAERprotocol and the configuration interface share the same
bus which implements an address space of 21 bits. The addresses
available on the bus are partitioned to accommodate three types
of messages. Addressing events correspond to AER input and are
thus forwarded to the synapse arrays. Local Configuration events
set parameters of a specific synapse or neuron circuit. Finally,
global system properties like the configuration of the Synapse De-
Multiplexer or the Bias Generator can be controlled by sending
Global Configuration signals.

Unlike for the other chips presented in this paper, there is no
dedicated software tool for configuring and monitoring the ROLLS
neuromorphic processor. However, the authors point out that they
have implemented the formal hardware specificationswhich allow
the configuration of the chip with the PyNCS framework (Stefanini,
Neftci, Sheik, & Indiveri, 2014). Akin to the already discussed PyNN,
PyNCS is an abstraction layer interfacing high-level descriptions
of neural networks with the low level configuration interfaces of
simulation tools. In addition, PyNCS defines an extensible modular
architecture with a generic hardware interface which can be easily
augmented with support for new AER-capable neuromorphic
devices. PyNCS simulations are not limited to a single chip but
also support hybrid setups with different types of neuromorphic
architectures. This is possible because all spikes are transmitted
via the AER protocol, which enables data transmission between
different chips by rather simple address space translations. With
all architecture-specific functionality being hidden behind abstract
high-level programming interfaces, Stefanini et al. (2014) refer to
PyNCS as a microkernel for neuromorphic systems.
Fig. 7. A single neurosynaptic core of the IBM TrueNorth chip (Preissl et al., 2012).
The Synaptic Crossbar contains a grid of 256× 256 synapses. Incoming spike events
are stored in buffers to simulate axonal delays. The actual neurons are depicted as
triangles below the Synaptic Crossbar.

2.2. Digital neuromorphic chips

Analog neuromorphic hardware emulates biological neurons
using physical systems driven by equivalent dynamics. It has al-
ready been pointed out that analog silicon neurons can be imple-
mented very efficiently both in terms of the number of electronic
elements, space and energy consumption. However, analog com-
putation underlies noise and external influences like temperature
and is thus not suited for experiments relying on exact and repro-
ducible results. In the following,we present two digital approaches
to neuromorphic hardware design. While the TrueNorth chip de-
veloped by IBM is based on a completely new architecture, the
SpiNNaker system relies on standard Von Neumann microproces-
sors to keep track of the neural dynamics.

2.2.1. IBM TrueNorth
The IBM TrueNorth chip is developed as a part of the DARPA-

funded SyNAPSE research program (DARPA, 2015). It is assembled
from 4096 identical and independently operating neurosynaptic
cores. Each of these cores implements 256 digital silicon neurons.
Every of these neurons receives spikes from 256 synapses which
are arranged on a crossbar as depicted in Fig. 7 (Merolla, Arthur,
Alvarez-Icaza et al., 2014). Differently from the other architectures
discussed so far, the focus is not on simulating the brain for
research purposes but on creating an efficient tool for concrete
applications (Preissl et al., 2012). Nevertheless, the chip operates
in biological real-time.
Computation. The model underlying the digital neurons in the
neurosynaptic cores is derived from the standard leaky integrate-
and-fire neuron (Cassidy et al., 2013). Special additions include
the option to configure stochastic parameter variations and
different kinds of leaks increasing or decreasing the membrane
voltage. All of the introduced parameters can be set individually
for every neuron in a neurosynaptic core. As shown in the
architecture diagram in Fig. 7, incoming spikes are forwarded
via a Synaptic Crossbar. Every neuron receives input from 256
axons and thus has 256 synapses. However, the architecture
allows only for four distinct synaptic weights per neuron. These
weights are not assigned to synapses but to four different axon
types. The contribution of a spike originating from axon i to the
membrane potential of neuron j is computed as follows (from the

160 F. Walter et al. / Neural Networks 72 (2015) 152–167
supplementary material of Merolla, Arthur, Alvarez-Icaza et al.,
2014):

At(i) · wi,j · S
Gi
j . (3)

In the above equation, the bit At(i) is set to one if a spike arrives
on axon i at time t . The variable wi,j controls whether the synapse
is active and SGij stores the synaptic weight which applies to the
type Gi assigned to axon i. The contribution of all incoming spikes
to the neuron states is computed by a dedicated controller on the
neurosynaptic core which stores all state information in a central
memory block. State updates are triggered by a global clock run-
ning at a frequency of 1 kHz. Real-time execution is accomplished
by setting the step size of the updates to 1 ms. The synchroniza-
tion of state updates across all neurons and neurosynaptic cores
ensures one-to-one correspondence of the performed computation
with software simulations (Merolla, Arthur, Alvarez-Icaza et al.,
2014).
Communication. All neurosynaptic cores of a TrueNorth chip are
interconnected by a two-dimensional mesh of horizontal and
vertical wires (Merolla, Arthur, Alvarez-Icaza et al., 2014). Signal
transmission within this network is controlled by routers which
are placed at the intersections of the horizontal and vertical
pathways. Spikes generated by the neurons on a neurosynaptic
core are converted to data packets storing an axonal delay, relative
offsets to the destination core within the mesh and an axon
address. The routers forward the packets based on the offsets
using a deadlock-free dimension-order routing protocol (Merolla,
Arthur, Alvarez-Icaza et al., 2014). As soon as the spike reaches its
destination axon, the scheduler inserts it into a buffer. After the
axonal delay time has passed, the spike is delivered to its target
neurons.
Programming. The IBM TrueNorth chip is specifically targeted at
commercial applications. The toolchain provided by the manufac-
turer is therefore considerably different from other neuromorphic
platforms which are designed mainly for research purposes. Most
notably, the chip is programmed using a novel Corelet Language
(Amir et al., 2013). A TrueNorth program, i.e. a specific configura-
tion of a network of neurosynaptic cores, is abstracted by so-called
corelets which can be hierarchically composed of other corelets.
Every corelet forms a closed subsystem, accessible only via input
and output ports. The Corelet Language defines a grammar and ab-
stractions for all relevant components of the hardware. Completed
corelets are stored in a Corelet Library for later reuse. Finally, the ap-
plication development is supported by a Corelet Laboratory, which
also enables the execution of TrueNorth programs on the Compass
simulator (Preissl et al., 2012).

2.2.2. SpiNNaker
An inherent drawback of all types of silicon neurons is limited

flexibility. Their hard-wired physical implementationmakesmajor
changes impossible after chip fabrication. Adaptions or improve-
ments require a new chip design and expensive prototyping. The
SpiNNaker architecture solves these issues by replacing the silicon
neuronswith standardmicroprocessors. The project was originally
conceived at the University of Manchester (APT Group, 2015) and
is today further developed as part of the Human Brain Project. A
SpiNNaker chip contains 18 ARM microprocessors, each of which
is capable of simulating around 1000 spiking neurons with about
1000 synapses each in biological real-time (Painkras et al., 2012;
Stromatias, Galluppi, Patterson, & Furber, 2013). The architecture
allows for an integration of up to 65536 chips (Furber et al., 2013).
The following paragraphs are based on the system documentation
published by Furber et al. (2014, 2013) and Xin Jin et al. (2010).
Computation. Fig. 8 gives a schematic overview of the architecture
of a single SpiNNaker chip. Computations are carried out on
Fig. 8. Architecture of a single SpiNNaker chip (Furber et al., 2014). Every chip
contains 18 cores. A System Network-On-Chip provides access to shared resources
like a SDRAM or peripheral devices. External communication with other SpiNNaker
chips is implemented by a dedicated router which connects each chip to six
neighbors (see also Fig. 9).

energy-efficient embedded ARM968 multi-core microprocessors
which run at a clock rate of 200 MHz. Small but very fast local
memory units store instructions and data. Every ARM core is
further equipped with a controller handling timers and interrupts,
a DMA controller and a controller for accessing the SpiNNaker
communication network. Other devices on the chip like the 128MB
shared memory are accessible via a System Network-on-Chip. Out
of the 18 cores on a chip, only 16 are available for the execution
of application code. One dedicated core is reserved for monitoring
and management tasks while another core is kept as an unused
spare to achieve increased fault tolerance. The use of general
purpose ARM cores makes it possible to implement arbitrary
neuron models. Within the limits of the system, the programmer
can define whether the dynamics will be evaluated in biological
real-time or at a different timescale. Special care must be taken
since the system only supports fixed point arithmetic.
Communication. All chips in a SpiNNaker system are intercon-
nected by a toroidal mesh. An illustration of the resulting topology
is provided in Fig. 9. Although the toroidal connectivity pattern is
fixed by the SpiNNaker architecture, the protocol implemented by
the routers on the individual chips allows for the simulation of neu-
ral networks of arbitrary connectivity. This topological virtualiza-
tion is possible because data transfers over the mesh network are
extremely fast compared to the timescale of biological real-time
neural dynamics. As depicted in Fig. 8, the on-chip routers have six
output ports connecting a node to neighboring chips in horizontal,
vertical and diagonal direction. The connections in the latter direc-
tion add additional redundancy and allow for emergency routes in
case of defective links.

All spikes emitted by the neurons of a chip are forwarded to
its local router. If the target neuron resides on the same chip, the
spike is transmitted directly. Otherwise, it is propagated to one of
the six neighboring chips. Every spike is represented by an AER
packet which carries only the address of the source neuron and
additional management information. All routers forward packets
based on the source address which is looked up in a local routing
table. The table entries also control multicasting by sending an
incoming packet to more than one output port. A default route
for source neuron addresses not listed in the routing table simply
redirects packets on a straight line to the next output. The routing
mechanism is completely implemented in hardware. It is fully
asynchronous and thus non-deterministic. In particular, packets

F. Walter et al. / Neural Networks 72 (2015) 152–167 161
Fig. 9. Toroidal connection topology of the SpiNNaker architecture (Furber &
Brown, 2009). Every numbered node corresponds to a single SpiNNaker chip. The
arrows indicate the connectivity between neighboring chips. For a better overview,
edges wrapping around the borders of the grid are printed in thin dashed lines.

which cannot be forwarded within a certain time-frame are
discarded to avoid deadlocks (Navaridas, Miguel-Alonso, Plana,
Lujan, & Furber, 2009).
Programming. Neural networks running on SpiNNaker are defined
with PyNN, the same utility which is also used in the BrainScaleS
project for programming the HICANN chip. The actual translation
of a PyNNmodel to executable SpiNNaker code is implemented by
an application called PACMAN which maps neuron populations to
cores and computes the entries of the routing tables. Although the
system architecture is clearly optimized for neural computation,
it is possible to write arbitrary applications for SpiNNaker by
programming the cores directly.

All SpiNNaker programs are built upon a basic infrastructure
of system software and libraries. The dedicated monitor core
present in every chip runs the SpiNNaker Control and Monitor
Program which acts as a basic system software and implements
the SpiNNaker Datagram Protocol (SDP). SDP packets are used for
inter-chip communication and also enable data exchange over the
system’s Ethernet port. The actual application code is linked to the
SpiNNaker Application Runtime Kernel (SARK). SARK provides basic
hardware abstraction and a communication link to the monitor
core. Finally, an optional API called Spin1 implements a completely
event driven software execution model with a priority-aware
scheduler.

2.3. Neuromorphic sensors

In analogy to biological neural networks, every of the six neu-
romorphic hardware platforms presented in the previous sec-
tions transfers all application data solely in the form of spikes.
In consequence, attaching a sensor to one of these chips – a very
common use case in neurorobotic applications – requires a con-
version of the sensor output to spikes. While this is definitely
feasible, a more elegant solution is to use a neuromorphic sen-
sor which directly mimicks the functionality of biological sen-
sory organs. The differences between conventional and neuro-
morphic sensors are best highlighted at the example of silicon
implementations of retinas. Unlike a standard image sensor which
synchronously captures a complete image in every time step, these
retinas only emit spikes to indicate relevant changes in the scenery.
According to a classification made by Delbruck, Linares-Barranco,
Culurciello and Posch (2010), there are four types of neuromorphic
retinas. Spatial contrast and spatial difference sensors avoid spatial
information redundancy by only transmitting intensity ratios and
differences, respectively. Analogously, temporal contrast and tem-
poral difference sensors only react to input changes occurring over
time. For a detailed discussion of neuromorphic sensor devices, we
refer the reader to the work of Liu and Delbruck (2010). A direct
comparison of different types neuromorphic retina sensors is avail-
able in Delbruck et al. (2010).

3. Learning in spiking neural networks

The dynamics implemented by a neural network are defined
by its connectivity and its synaptic efficacies. Learning implies
the adaption of the latter ones. The optimal connectivity pattern
for a given task can be inferred by evolutionary processes and
genetic programming, which are both beyond the scope of
this paper. However, it should be mentioned that the ROLLS
neuromorphic processor can change its connectivity at runtime
(Qiao et al., 2015), which is an important prerequisite for
implementing an evolutionary algorithm in an autonomous robot.
In this section, we provide a brief and non-exhaustive overview
of learning techniques for spiking neural networks. The focus is on
simple local learning ruleswhich only rely on information available
locally at every synapse and therefore allow for biologically
plausible neuromorphic implementations. The second subsection
briefly covers global synaptic update rules. In the last section,
we discuss two methods enabling neural information processing
without neuromorphic synaptic plasticity.

From a simplified abstract point of view, the goal of all learning
methods presented in the following subsections is to modify the
neural output produced in response to a given input spike train.
Every neuron receives spikes from its presynaptic afferents. The
synaptic weight wk of a synapse k determines the contribution
of an incoming spike to the neuron’s membrane potential. By
implicitly or explicitly adapting these weights wk, a learning
algorithm can control the properties of the produced output spike
train. The actual meaning of a spike train, i.e. the information it
carries, is defined by a neural code. Over time, researchers have
proposed many different types of such codes. A review is available
in an introductory paper by Ponulak and Kasinski (2011).

Depending on the specification of the desired output signal
in the learning task defined above, one can distinguish between
unsupervised learning, reinforcement learning and supervised
learning. Unsupervised learning algorithms process the training
data completely autonomously and do not require any external
control or teaching signal. In reinforcement learning, a reward
signal generated in response to previous output guides the learning
process towards a desired solution. Finally, supervised learning
allows for a complete specification of the desired system output
by a teacher.

3.1. Local learning rules

In the following, we will provide an overview of common local
learning rules which update synaptic efficacies solely based on
information available locally at a neuron. For this reason, they
are biologically plausible and especially suited for neuromorphic
implementations.

3.1.1. Short term plasticity
One of the most basic mechanisms of synaptic plasticity ob-

served in biological neurons is short term plasticity (STP). It comes
in two different forms known as habituation and sensitization (Kan-
del & Siegelbaum, 2013). The former describes a decay of synaptic
efficacy caused by repeated occurrences of a stimulus and is com-
monly referred to as short-term depression. Sensitization causes an
opposite effect and is therefore also called short-term potentiation.

162 F. Walter et al. / Neural Networks 72 (2015) 152–167
Fig. 10. Two examples for STDP windows. The solid line indicates potentiation,
the dashed line depression. In the first example at the top, the parameters for both
windows are identical. At the bottom, the LTP portion is slightly scaled down by a
multiplicative constant and τ+ < τ− .

3.1.2. Spike-timing dependent plasticity
The probably most prominent and intensively studied form of

local neural learning is spike-timing dependent plasticity (STDP)
(Bi & Poo, 2001; Markram et al., 1997; Sjöström et al., 2001).
STDP models changes of synaptic efficacies based on a causality
relation between spikes occurring within a defined time window.
If a presynaptic spike is followed by a postsynaptic one, the
relationship is regarded as causal and the synapse is strengthened.
Anti-causal spike sequences with a postsynaptic spike preceding a
presynaptic one lead to synaptic depression. These two processes
are commonly referred to as Long-TermPotentiation (LTP) and Long-
Term Depression (LTD). Based on the original definition of STDP,
researches have proposed additional variants which, for example,
use different definitions of causality ormodified learningwindows.
The general STDP update rule is usually formulated as follows
(Morrison, Diesmann, & Gerstner, 2008):

1w+ = F+(w) · exp(−|1t|/τ+) if 1t < 0 (4)

1w− = −F−(w) · exp(−|1t|/τ−) if 1t ≥ 0. (5)

In the formulas above, 1t is the time difference between the
presynaptic and the postsynaptic spike. The functions F+(·) and
F−(·) model how the weight update depends on the current
synaptic weight. τ+ and τ− are time constants which describe the
width of the STDP window. Different examples for such windows
are depicted in Fig. 10. After evaluating the STDP window, the new
weight is computed as follows:

w← w +1w+/−. (6)

Depending on F+(·) and F−(·), one can distinguish between
different basic types of STDP. Setting F+(w) = λ and F−(w) =
λα yields Additive STDP. Multiplicative STDP weight updates are
accomplished analogously by defining F+(w) = λ(1 − w) and
F−(w) = λαw. In both casesw ∈ [0, 1)must hold.λ is the learning
rate and α an asymmetry parameter. An extensive review of STDP-
based synaptic plasticity rules is available inMorrison et al. (2008).

Reward-modulated STDP (R-STDP) extends the basic STDP
mechanism with support for reinforcement learning (Legenstein,
Pecevski, & Maass, 2008). In contrast to the STDP windowwhich is
only a few milliseconds wide, reward delivery can be delayed for
seconds. To solve the credit assignment problem, pairs of spikes are
stored in an eligibility trace. As soon as the reward is triggered, the
synaptic update is determined as a product of the reward signal
and the eligibility trace.

STDP also allows for supervised learning. Supervised Hebbian
Learning forces neurons to produce the desired output by injecting
synaptic currents during the training phase (Ponulak & Kasinski,
2011). The Remote Supervision Method improves on this basic
mechanism by combining both a causal and an anti-causal STDP
process to update synaptic efficacies (Ponulak & Kasiński, 2009).

3.1.3. Spike-driven synaptic plasticity with bistable synapses
The plasticity rule discussed in the following was originally

proposed by Brader, Senn, and Fusi (2007). It is specifically
designed to allow for an easy implementation with electrical
circuits. Differently from the other mechanisms discussed so
far, the rule is based on bistable synaptic dynamics in order to
guarantee high robustness of the stored memories in the presence
of random background activity in the neural network.

Unlike in the STDP protocol, changes of the synapticweights are
only triggered on the arrival of presynaptic spikes. Every synapse
is bistable, which means that it has a depressing state J− and a
potentiating state J+. Transitions between these two states depend
stochastically on the spike history. Every spike produced by the
postsynaptic neuron increases a leaky calcium variable C(t) with
slow decay. The internal state of the synapse is stored in another
variable X(t)which is updated on the arrival of a presynaptic spike
at time tpre as defined in the following (Brader et al., 2007):

X → X + a if V (tpre) > ΘV and Θ l
u < C(tpre) < Θh

u (7)

X → X − b if V (tpre) ≤ ΘV and Θ l
d < C(tpre) < Θh

d . (8)

V (·) denotes themembrane voltage of the neuron, a and b are jump
sizes, ΘV is a voltage threshold and the remaining variables are
thresholds for the calcium variable. In case no spikes arrive at the
synapse, X(t) converges towards one of the two stable synaptic
states according to the following dynamics:

Ẋ = α if X > ΘX and Ẋ = −β if X ≤ ΘX . (9)

The synaptic plasticity model described above is able to reproduce
the STDP protocol (Brader et al., 2007). It consequently supports
the supervised Hebbian learning principle. Compared to STDP,
the stop-learning conditions defined by the thresholds and the
bistability mechanism extend storage capacity and memory
lifetime of spiking neural networks (Qiao et al., 2015).

3.2. Global learning rules

Global learning rules exist for both reinforcement learning and
supervised learning. In this context, the term global refers to the
fact that an implementation of the learning rule explicitly relies on
external mechanisms to control the update of a neuron’s synaptic
efficacies. Note that this not necessarily precludes the biological
plausibility of these methods.

Policy Gradient methods form a prominent class of algorithms
within the field of reinforcement learning (Senn & Pfister, 2014).
Synaptic efficacies are updated based on the gradient of a function
predicting the future reward. Temporal Difference learning extends
this concept by estimating not only the reward received in the next
step but a weighted sum of all future expected reward signals. An
extensive overview of existing algorithms is provided by Senn and
Pfister (2014).

The SpikeProp algorithm developed by Bohte, Kok, and La
Poutré (2002) is a global supervised learning rule for feedforward
networks of spiking neurons with multiple layers. Being derived

F. Walter et al. / Neural Networks 72 (2015) 152–167 163
from the classical backpropagation algorithm for artificial neural
networks, it updates synaptic efficacies using a biologically
implausible gradient update rule. Biological plausibility also does
not apply to the PBSNLR algorithmwhich converts spiking neurons
to perceptrons and thereby transforms the problem of supervised
spike sequence learning to a classification task (Xu, Zeng, &
Zhong, 2013). The Finite Precision learning algorithm proposed by
Memmesheimer, Rubin, Ölveczky and Sompolinsky (2014) is able
to reproduce spike patterns within given tolerance windows. The
authors argue for the biological plausibility of their approach but
also state the necessity of an external control whichmeans that the
learning rule cannot be implemented locally.

3.3. Static networks

Neural networks can also perform useful computationswithout
supporting synaptic plasticity. The Reservoir Computing paradigm
(Lukoševičius & Jaeger, 2009) leverages the dynamics of recurrent
neural networks to project input data into a complex high dimen-
sional space. The synaptic efficacies of the reservoir neurons are
fixed. The actual output is computed by adjusting the connection
weights of readout units which are connected to the reservoir neu-
rons with an appropriate learning rule. Neuromorphic hardware
can be used to speed up the complex simulation of the reservoir
dynamics while the adaption of the readout units’ weights is per-
formed on a host computer.

Another way of avoiding the implementation of synaptic
plasticity is to use the methodology developed by Stewart
and Eliasmith (2014). The theoretical core of their proposed
approach is formed by the Neural Engineering Framework (NEF)
which defines a mapping from vectors, functions and differential
equations to corresponding neuron populations, synaptic weights
and network connections. Thus, the NEF can be used to directly
synthesize a given algorithm which is based on these compute
primitives to a corresponding spiking neural network. Learning
is thereby replaced by a direct analytical derivation of synaptic
weights. Advanced cognitive functions beyond purely numerical
computation can be realized using the Semantic Pointer Architecture
(SPA) which allows to store and modify syntactically structured
data using the NEF compute primitives. The construction and
simulation of neural networks based on NEF and SPA is supported
by the dedicated software tool Nengo.

4. Learning with neuromorphic hardware

Section 2 gave an introduction to six selected neuromorphic
hardware platforms. In the previous section, we provided an
overview over different algorithms available for learning in net-
works of spiking neurons. In the next subsections, we will link
these findings by analyzing which of the discussed learning tech-
niques can be implemented on the HICANN chip from the Brain-
ScaleS project, the HRL SyNAPSE chip, the ROLLS neuromorphic
processor, the TrueNorth Chip developed by IBM and the SpiN-
Naker platform. Note that we only review learning mechanisms
which are implemented on-chip to run online during the execu-
tion of the network. Offline weight updates can performed on any
neuromorphic platform with configurable synaptic weights by it-
eratively executing the network, computing offlineweight updates
on a host computer and transferring them back to the chip. For ex-
ample, such an approach has been realized by Schmuker, Pfeil, and
Nawrot (2014) on a previous version of the HICANN chip.

Neurogrid is not included in the following discussion since
the platform does currently not implement any form of synaptic
plasticity. As pointed out byBenjamin et al. (2014), this is due to the
shared dendrite architecture which spreads synaptic input across
the dendritic tree to neighboring neurons and thus does not allow
for an adaptation of individual synaptic weights. However, the
authors emphasize that Neurogrid in principle supports a shared
synapse architecture with individual synaptic weights which are
stored in a RAM on the daughter board and thus could be adapted
via a learning rule. It is therefore not unlikely that a future release
of Neurogridwill implement synaptic plasticity. Currently,without
any on-chip learningmechanisms available, Neurogrid can be used
as an accelerator for reservoir computing or must be programmed
with the Neural Engineering Framework (Choudhary et al., 2012).

4.1. Synaptic plasticity circuits on the HICANN chip

The ANCs of the BrainScaleS wafer-scale hardware platform
support both STP and STDP. The former is implemented by
partitioning the efficacy of a synapse into an active and an inactive
portion (Schemmel, Bruderle, Meier, & Ostendorf, 2007). For every
spike transmitted by the synapse, the inactive portion is increased.
At the same time, a continuously running recovery process shifts
efficacy back to the active portion. This mechanism allows for the
implementation of both habituation and sensitization by scaling
the maximum synaptic conductance proportional to the active
portion or the inactive portion, respectively. The electronic circuits
implementing this functionality are documented in Schemmel
et al. (2007) and work for both excitatory and inhibitory synaptic
connections.

All synapses of the HICANN chip also implement long-term
synaptic plasticity based on the STDP protocol. To reduce the
required electronic circuitry, the plasticity logic is split into an
analog part locally available at every synapse and aDigital STDPUp-
date Control logic which is time-multiplexed among all synapses
of an array (see also Fig. 1) (Pfeil et al., 2012). Each synapse has
access to its presynaptic spikes. Since all spikes emitted by a post-
synaptic neuron are propagated back to the synapse array (Schem-
mel et al., 2008), it can keep full track of all spike timings relevant
for STDP. Two separate capacitors measure causal and anti-causal
STDP modifications (Schemmel, Grubl, Meier, & Mueller, 2006). At
the arrival of a presynaptic spike, the capacitor representing causal
spike relationships is charged. Due to a leak current, this charge
decays exponentially, which corresponds to the exponential func-
tions in Eqs. (4) and (5). On emission of a postsynaptic spike, the re-
maining charge in the capacitor is accumulated. A separate circuit
handles anti-causal STDP events analogously. When the STDP up-
date controller triggers a weight update for a certain synapse, the
accumulated causal and anti-causal portions are compared. Based
on a configurable threshold criterion, the synaptic weight is poten-
tiated or depressed. Instead of computing the weight-dependent
scaling factors F+(·) and F−(·) explicitly, the actual weight updates
are determined using a programmable lookup table (Schemmel
et al., 2007). The newweight is then converted to a 4-bit value and
stored in the synapse. It is important to note that the use of a shared
controller for weight updates is only possibly because the dynam-
ics of STDP-induced synaptic plasticity are slow compared to the
dynamics of the neurons (Pfeil et al., 2012).

By programming the lookup table of the STDPupdate controller,
it is possible to reproducemany different types of update rules like
the additive and multiplicative ones introduced earlier. Similarly,
by flipping signs, it is also possible to realize anti-causal STDP.
However, due to the implementationwith analog circuitry, it is not
possible to change the exponential shape of the STDP windows.

4.2. The STDP protocol of the HRL SyNAPSE chip

All synapses of the HRL SyNAPSE chip are excitatory and sup-
port basic additive STDP (Cruz-Albrecht et al., 2012). The user can
configure the width of the STDP window by setting the time con-
stants τ+ and τ−. F+(·) and F−(·) are realized as constant functions

164 F. Walter et al. / Neural Networks 72 (2015) 152–167
with configurable values A+ and A−. Similarly to the HICANN chip,
the explicit calculation and storage of timing differences between
pairs of spikes is avoided by continuous accumulation of depres-
sion D and potentiation P (Cruz-Albrecht et al., 2012):

τ− · Ḋ = −D τ+ · Ṗ = −P. (10)

On the arrival of a spike, the state variables are updated according
to the equations below:

D← D+ A− P ← P + A+. (11)

At the end of every STM timeslot the actual synaptic update is com-
puted as

1w = P − D (12)

and then applied to the current value in the memristor array.
The update logic described above is implemented using three

integrator circuits. Two of them are leaky and accumulate the in-
coming pre- and postsynaptic spikes according to Eqs. (10) and
(11). They are connected to a third integrator which corresponds
to Eq. (12). Compared to the STDP logic of the HICANN chip which
allows for the configuration of arbitrary weight-dependent update
rules via lookup tables, the mechanism implemented in the HRL
architecture is rather restricted since F+(·) and F−(·) are constant
by design.

4.3. STP and STDP mechanisms implemented in the ROLLS neuromor-
phic processor

As depicted in Fig. 6, the ROLLS chip contains two arrays with
256× 256 synapses each. Those in the upper array marked with S
implement a short-term depression plasticity mechanism which
can be activated if the corresponding synapse is operating in
excitatorymode (Qiao et al., 2015). In the initial state, theweight of
the synapse is completely determined by the stored 2-bit weight.
Internally, this weight emulated by a current. On spike arrival a
capacitor in the STP circuit is discharged by a configurable amount
and the current decreases. Spikeswhich arrive before the capacitor
voltage has recovered are consequently transmitted with a lower
effective synaptic weight and cause the capacitor to discharge
even further. This behavior exactly reproduces the desired STP
dynamics.

The second array contains synapses marked with L which im-
plement the spike-driven bistable synapse plasticity rule from Sec-
tion 3.1.3. All relevantmodel parameters like the jump size and the
bistable drift threshold can be globally programmed by the user
in the Bias Generator. The value of the calcium variable is com-
puted in the corresponding neuron circuit and provided to every
synapse. Signals from the neural circuits also control jump blocks
in the synapses which increase and decrease the synaptic state
variable by the given jump sizes. Another logic block implements
the bistable synaptic dynamics depending on the current value
of the state variable and the drift threshold. Although the learn-
ing rule supports STDP, the underlying mechanisms considerably
differ from the STDP-based plasticity circuits of the other chips
considered so far. A direct comparison is therefore not possible.
However, the bistable synapse model has proven as a highly capa-
ble learning mechanism in different experimental setups (Brader
et al., 2007; Qiao et al., 2015).

4.4. Extensions for the TrueNorth Chip

The current design of the IBM TrueNorth Chip does not real-
ize any synaptic plasticity mechanisms. The complete functional-
itymust be programmed using the Corelet Language. However, Seo
et al. (2011) proposed a possible extension to the chip designwhich
implements a probabilistic digital version of STDP where every
synapse is set to either 0 or 1. Themain difference to the TrueNorth
architecture is an extended digital neuron circuit which con-
tains additional circuitry realizing the synaptic plasticity. Addition-
ally, transposable SRAM cells allow for equally fast row-wise and
column-wise access of the synaptic array during weight updates.

In the extended neuron circuit, the output of the digital leaky
integrate-and-firemodel is forwarded to an integrated STDP circuit
which is shared among all synapses connected to the neuron. Two
8-bit counters C+ and C− measure the time elapsed since the last
presynaptic and postsynaptic spike, respectively. On spike emis-
sion, C+ and C− are set to programmable values C+set and C−set . The
counters then decaywith configurable step sizes of C+decay and C−decay
in every time step.Whenapresynaptic update is triggered, the con-
sidered neuron checks the C+ counter values of all its presynaptic
afferents. To enable probabilistic updates, each value is compared
to random number. Depending on the outcome of this comparison,
the corresponding weight is set to a configurable 1-bit value (i.e. 0
or 1) or left unchanged. Additional parameters allow for special ac-
tions in case the counter is zero. Postsynaptic weight updates are
performed analogously by considering the counters C− of the tar-
get neurons.

The learning mechanism described above can be configured
to reproduce both an STDP and an anti-STDP protocol. However,
compared to the other neuromorphic STDP-implementations
considered so far, there is no close correspondence to experimental
results or physiological processes.

4.5. Implementing STDP on SpiNNaker

The general purpose ARM microprocessors in the SpiNNaker
chips enable the implementation of arbitrary local and global
learning rules. Of course, the system also supports alternative ap-
proaches based on fixed synaptic weights. For example, the Neu-
ral Engineering Framework and Nengo (Galluppi, Davies, Furber,
Stewart, & Eliasmith, 2012) are available on SpiNNaker. The actual
challenge lies in an efficient use of the available system resources
to achieve maximum performance. This becomes clear when con-
sidering the STDP implementation developed by Jin, Rast, Galluppi,
Khan and Furber (2009).

On SpiNNaker, all synapses of a neuron group are stored in a
dedicated memory region called the synapse block. Every row of
thismemory corresponds to a single synapsewith a synaptic delay,
a postsynaptic index and a synapticweight. Depending onwhether
this storage is indexed by the presynaptic or the postsynaptic
neuron, long term depression or long term potentiation can be
implemented efficiently but not both at the same time. For this
reason, STDP updates are only triggered by presynaptic spikes
to allow for efficient memory access and caching mechanisms.
Since the postsynaptic spikes required for the STDP update are not
yet available at the arrival time of a presynaptic spike, the event
handling of this spike is deferred to the future. This is possible
because the communicationmechanismof SpiNNaker operates at a
much faster timescale than the dynamics of the simulated neurons.
As soon as all spikes fitting into the current STDP learning window
have arrived, the update of the synaptic weights is initiated. This
mechanism ensures that the synapse block is always accessed in
an efficient way.

Among all the neuromorphic platforms considered in this
paper, SpiNNaker is the most versatile one in terms synaptic
plasticity rules. Since the neural simulation is executed on gen-
eral purpose ARMCPUs, it is possible to implement arbitrary learn-
ing rules. In the particular case of STDP, the system can simulate
learning windows of any shape and arbitrary weight update rules
including the additive and multiplicative ones discussed in Sec-
tion 3.1.2. However, it is important to keep in mind that inefficient
implementations of these rules directly affect the performance of
the system andmight render neural network simulation in biolog-
ical real-time unfeasible.

F. Walter et al. / Neural Networks 72 (2015) 152–167 165
Table 1
Overviewof themain features of the different neuromorphic hardware architectures presented in thiswork. All data is taken from the sources referenced in the corresponding
sections of the text. Varying numbers of neurons and synapses result from configurable chip topologies. In the column indicating the execution speed of the neural network,
BRT refers to biological real-time. Note that the numbers on the power consumption cannot be compared directly between chips due to different measurement procedures.
There is no data available in the literature on the power consumption of a single HICANN chip. The wafer-scale system with 384 chip consumes 1 kW of power.

Architecture Type Neurons Synapses/neuron Learning rules Speed Power

2.1.1 HICANN Analog+ AER 1–512 224–14336 STP, STDP 103–105 BRT n/a
2.1.2 Neurogrid Analog+ AER 1048576 6 · 109 in total None BRT 2.7 W
2.1.3 HRL SyNAPSE Analog+ STM 576 128 STDP BRT 130mW
2.1.4 ROLLS Analog+ AER 1–256 512 (+2)–131072 STP, STDP BRT 4 mW
2.2.1 IBM TrueNorth Digital 1 048576 256 None BRT 63mW
2.2.2 SpiNNaker ARM CPU+ AER 1000 1000 Any BRT 1 W
5. Neuromorphic chips for robotic applications

So far, the neuromorphic architectures presented in this work
have been reviewed mainly in terms of their technical realization.
In this section, we will discuss their potential of advancing the
field of autonomous robotics. As a guide, the most relevant fea-
tures and properties of all chips are summarized in Table 1. Proba-
bly one of themost pressing issues which should be addressed first
is whether all of the presented chips operate precisely enough to
reliably simulate the neural network dynamics. This question par-
ticularly arises because of the low synaptic weight resolution of
only a fewbits implemented by theHICANN chip, theHRL SyNAPSE
chip and the ROLLS neuromorphic processor. However, an exper-
imental study performed by Pfeil et al. (2012) used a benchmark
problem to demonstrate that both low-resolution synaptic weight
storage and inaccuracies caused by chip manufacturing processes
are uncritical.

As can be seen easily, all listed architectures execute neural
networks at very low power consumption, which makes them
ideally suited for mobile autonomous robotics. The only exception
is the HICANN chip which is only available as a wafer-scale system
with a power consumption of 1 kW. However, the extremely
high execution speed renders this system inappropriate for real-
time applications in robotics anyway. Instead, a very promising
use case for systems of this type are off-line simulations for the
evaluation of neural network topologies and the optimization of
synaptic connectivity. The results of these simulations can then
be used to set the parameters of one of the real-time capable
chips.

Another huge advantage of neuromorphic chips is their inher-
ent support for massively parallel information processing, which
makes them highly capable of handling multi-modal sensory in-
put efficiently and responsively. For example, Qiao et al. (2015)
have demonstrated the feasibility of implementing an image clas-
sification algorithm on the highly efficient ROLLS neuromorphic
processor based on input signals from a silicon retina. Similarly,
in another study, the SpiNNaker system enabled the control of a
small mobile robot by presentation of visual cues (Furber et al.,
2014). These examples clearly prove that neuromorphic chips
have a huge potential of efficiently implementing algorithms from
computer visionwhich could previously only be executed onwork-
stations. In recent years, the power of these workstations has in-
creased drastically with the advent of powerful GPUs with general
purpose programming interfaces for scientific computing tasks,
bringing huge momentum to the field of deep learning in artifi-
cial neural networks (Raina, Madhavan, & Ng, 2009). In the field of
spiking neural networks, GPU acceleration is implemented by the
simulator CARLsim (Richert, Nageswaran, Dutt, & Krichmar, 2011)
using NVIDIA CUDA (NVIDIA Corporation, 2015). In a study by
Richert et al. (2011), CARLsim was able to simulate a cortical net-
work with 138 K neurons and 30 M synapses slightly faster than
real-time. These results render GPUs a strong competitor for neu-
romorphic hardware designs. However, they neither offer the com-
pact size of a small SpiNNaker system nor the high maximum
speedup of the HICANN chip. Moreover, most neuromorphic de-
signs are based on highly modular architectures and can be easily
extended to support the simulation of larger networks. Neverthe-
less, as pointed out by Krichmar, Coussy and Dutt (2015), GPUs can
be a useful tool for easily testing neural network designs before
running them on neuromorphic chips.

Besides power-efficient operation and parallel information
processing, neuromorphic hardware can also simplify the pro-
gramming of robots. With neural networks being very general and
abstract descriptions of system behavior, they can be easily ported
between different platforms without having to pay attention to
low-level details of underlying processors or operating systems.
Moreover, the AER protocol enables seamless integration of other
neuromorphic hardware. Finally, two even more important argu-
ments in favor of employing neural networks and neuromorphic
chips in autonomous robots are their inherent support for learn-
ing and their proven fault tolerance. In the SpiNNaker architecture,
for example, the latter aspect is addressed by reserving one of the
18 cores in each chip as a spare (Furber et al., 2013). Additionally,
the redundant toroidal connection topology adds fault tolerance to
the communication system. Both of these two special architectural
properties enable the system to compensate for errors occurring
over its lifetime, which is another notable advantage over GPUs.

6. Conclusion & outlook

In this work, we have reviewed how neurobiological learning
is implemented on neuromorphic hardware designs which enable
the efficient execution of large-scale spiking neural networks
with millions of neurons. Neurobiological learning is essential in
the emerging field of neurorobotics in order to achieve a close
correspondence to biological nervous systems.

In a first step, we presented six different neuromorphic archi-
tectures based on analog and digital computation. The HICANN
chip developed by the BrainScaleS project implements analog sil-
icon neurons. The focus of the design clearly lies on maximum
configuration flexibility. At the same time, the system runs up to
105 times faster compared to biological real-time, making it es-
pecially suited for extensive experimental studies. Neurogrid is
another analog neuromorphic hardware which is composed of 16
individual Neurocores. Unlike the HICANN chip, these cores run
in biological real-time and are thus suited for neurorobotics. The
system is optimized for extremely energy-efficient operation. As
it turned out, this comes at the price of less flexibility since maxi-
mum performance is only achieved for layered neural network ar-
chitectures. In a recent publication by Menon, Fok, Neckar, Khatib,
and Boahen (2014), Neurogrid was used to implement a robot con-
troller. The HRL SyNAPSE chip uses memristors to store synap-
tic weights. It is not based on the AER protocol but incorporates
STM and thus avoids the need for large arrays of synaptic cir-
cuits. The most notable feature of the ROLLS neuromorphic pro-
cessor is its support for a bistable synapse dynamics model which
has proven to reliably retain memories even in the presence of

166 F. Walter et al. / Neural Networks 72 (2015) 152–167
background noise. The TrueNorth chip from IBM is based on dig-
ital silicon neurons. However, it is mainly designed for commer-
cial applications and thus only implements very abstract neuron
and synapse models. Moreover, there is no support for multicast
routing. The SpiNNaker architecture achieves maximum flexibil-
ity regarding the types of supported neuron models and network
topologies by interconnecting standardARMmicroprocessors in an
efficient event-based toroidal routing mesh.

The second part of this work provided an overview of differ-
ent types of learning rules for spiking neural networks. A con-
ceptual distinction was made between local methods which rely
completely on information available at every neuron and global
methods which require additional external input. Almost all of
the local rules considered in this review are based on STDP. How-
ever, we also reviewed a spike-based plasticity rule with bistable
synaptic dynamics which was specifically designed for neuromor-
phic hardware. Global rules are much more diverse and often
involve the computation of gradients. The Neural Engineering
Framework was introduced as an alternative approach for imple-
menting neural networks without learning by precomputing fixed
synaptic weights.

Based on the results from the previous sections, we illustrated
in Section 4 how the neuromorphic chips presented at the be-
ginning implement neurobiological learning. Although the Neuro-
grid platform is in principle capable of adapting synaptic weights,
it does currently not support any type of synaptic plasticity and
therefore requires precomputed weights. This also applies to the
IBM TrueNorth chip. Like in the case of Neurogrid, future releases
could be extended to support on-chip learning via STDP. The HI-
CANN chip implements both STP and STDP. Differently from the
STDP protocol of theHRL SyNAPSE chip, it relies on lookup tables to
compute weight-dependent synaptic updates and therefore sup-
ports many different update rules. While the ROLLS neuromorphic
processor also supports STP, its most interesting feature is a spike-
driven plasticity rule based on bistable synapses. The SpiNNaker
system turned out to be the most versatile platform in terms of
learning since it can be programmed to support arbitrary plasticity
rules. However, we illustrated at the example of an existing STDP
update rule that efficient implementations are not trivial and re-
quire additional considerations.

In the last section, we finally put our results of the review into
the context of robotics and argued that the low power consump-
tion and the massively parallel processing of neuromorphic chips
has not only the potential of advancing neurorobotics but the field
of autonomous robotics in general. Table 1 can serve as a starting
point for the selection of an appropriate neuromorphic archi-
tecture for the targeted application. From a theoretical perspec-
tive, the maximum number of simulated neurons, synapses and
spikes as well as simulation speed and power consumption seem
to be sufficient to completely characterize the performance of a
neuromorphic system.However, representative benchmarks could
definitely contribute to a more practically oriented performance
estimation. To the best knowledge of the authors, such a standard-
ized benchmark suite for neuromorphic hardware does not exist
yet. An initial step towards this goal has been made by Brüderle
et al. (2011)who defined a set ofmodel experiments to support the
development of the HICANN chip. Currently, the definition of stan-
dardized neuromorphic benchmarks and corresponding datasets
is an active topic of discussion in the neuromorphic research com-
munity (Rast et al., 2015). However, the huge diversity of differ-
ent approaches and paradigms in neuromorphic hardware designs
makes it difficult to benchmark different platforms consistently. In
any case, as stated by Rast et al. (2015), a neuromorphic benchmark
suite should focus onproblemswith constraints on time andpower
to clearly demonstrate the advantages of neuromorphic chip de-
signs over conventional hardware architectures.
Future releases of the reviewed neuromorphic chips will
benefit from both new findings in neuroscience as well as novel
manufacturing processes. From a neurorobotics point of view,
it is very desirable that all architectures support biologically
plausiblemechanisms of synaptic plasticity. Only thendetailed and
realistic simulations of the brain will be possible. The SpiNNaker
system with its freely programmable learning rules is a first
step in this direction. In any case, neuromorphic chips are an
enabling technology for neurorobotics and allow researchers to
investigate the neural foundations of complex cognitive functions
and processes.

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme
(FP7/2007–2013) under grant agreement no. 604102 (HBP).

References

Amir, A., Datta, P., Risk, W.P., Cassidy, A.S., Kusnitz, J.A., & Esser, S.K. et al.
(2013). Cognitive computing programming paradigm: A Corelet Language
for composing networks of neurosynaptic cores. In 2013 international joint
conference on neural networks. IJCNN 2013 - Dallas (pp. 1–10).

APT Group, 2015. SpiNNaker: Project Description.
URL: http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/.

Bartolozzi, C., & Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural
Computation, 19(10), 2581–2603.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J.-
M., et al. (2014). Neurogrid: Amixed-analog-digital multichip system for large-
scale neural simulations. Proceedings of the IEEE, 102(5), 699–716.

Bi, G.-Q., & Poo, M.-M. (2001). Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annual Review of Neuroscience, 24(1), 139–166.

Bishop, C. M. (2006). Information science and statistics, Pattern recognition and
machine learning . New York: Springer.

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips
using address events. IEEE Transactions on Circuits and Systems Part II: Analog
and Digital Signal Processing , 47(5), 416–434.

Boahen, K. (2015). Brains in silicon: Project homepage.
URL: http://web.stanford.edu/group/brainsinsilicon/.

Bohte, S. M. (2004). The evidence for neural information processing with precise
spike-times: A survey. Natural Computing , 3(2), 195–206.

Bohte, S. M., Kok, J. N., & La Poutré, H. (2002). Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing , 48(1–4), 17–37.

Brader, J. M., Senn, W., & Fusi, S. (2007). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Computation, 19(11),
2881–2912.

Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity. Journal of Neurophysiology, 94(5),
3637–3642.

Brüderle, D., Müller, E., Davison, A. P., Muller, E., Schemmel, J., & Meier, K.
(2009). Establishing a novel modeling tool: a python-based interface for a
neuromorphic hardware system. Frontiers in Neuroinformatics, 3.

Brüderle, D., Petrovici,M., Vogginger, B., Ehrlich,M., Pfeil, T.,Millner, S., et al. (2011).
A comprehensive workflow for general-purpose neural modeling with highly
configurable neuromorphic hardware systems. Biological Cybernetics, 104(4–5),
263–296.

Cassidy, A.S., Merolla, P., Arthur, J.V., Esser, S.K., Jackson, B., & Alvarez-Icaza, R. et
al. (2013). Cognitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores. In 2013 international joint conference on
neural networks. IJCNN 2013—Dallas (pp. 1–10).

Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., Gao, P., et al. (2012).
Silicon neurons that compute. In A. Villa, W. Duch, P. Érdi, F. Masulli, & G. Palm
(Eds.), Lecture notes in computer science: Vol. 7552. Artificial neural networks and
machine learning—ICANN 2012 (pp. 121–128). Berlin, Heidelberg: Springer.

Cruz-Albrecht, J. M., Derosier, T., & Srinivasa, N. (2013). A scalable neural chip
with synaptic electronics using CMOS integrated memristors. Nanotechnology,
24(38), 384011.

Cruz-Albrecht, J. M., Yung, M. W., & Srinivasa, N. (2012). Energy-efficient neuron,
synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits
and Systems, 6(3), 246–256.

DARPA, 2015. Systems of neuromorphic adaptive plastic scalable electronics
(SYNAPSE): Project homepage. URL:
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_
Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx.

Delbruck, T., Linares-Barranco, B., Culurciello, E., & Posch, C. (2010). Activity-driven,
event-based vision sensors. In 2010 IEEE international symposium on circuits and
systems—ISCAS 2010 (pp. 2426–2429).

Fieres, J., Schemmel, J., &Meier, K. (2008). Realizing biological spiking networkmod-
els in a configurable wafer-scale hardware system. In 2008 IEEE international
joint conference on neural networks. IJCNN 2008—Hong Kong (pp. 969–976).

http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref3
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref4
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref5
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref6
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref7
http://web.stanford.edu/group/brainsinsilicon/
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref9
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref10
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref11
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref12
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref13
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref14
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref16
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref17
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref18
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx
http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_(SYNAPSE).aspx

F. Walter et al. / Neural Networks 72 (2015) 152–167 167
Floreano, D., Ijspeert, A. J., & Schaal, S. (2014). Robotics and neuroscience. Current
Biology, 24(18), R910–R920.

Furber, S., & Brown, A. (2009). Biologically-inspired massively-parallel
architectures—computing beyond a million processors. In Ninth international
conference on Application of concurrency to system design, 2009. ACSD’09.

Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The SpiNNaker project.
Proceedings of the IEEE, 102(5), 652–665.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2013). Overview of the SpiNNaker system architecture. IEEE Transactions on
Computers, 62(12), 2454–2467.

Galluppi, F., Davies, S., Furber, S., Stewart, T., & Eliasmith, C. (2012). Real time
on-chip implementation of dynamical systems with spiking neurons. In 2012
international joint conference on neural networks. IJCNN 2012—Brisbane (pp. 1–8).

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: single neurons,
populations, plasticity. Cambridge, UK, New York: Cambridge University Press.

Graf, H. P., Jackel, L. D., & Hubbard, W. E. (1988). VLSI implementation of a neural
network model. Computer , 21(3), 41–49.

Heemskerk, J. N. H. (1995). Overview of neural hardware: Neurocomputers for brain-
style processing, design, implementation and application. (Ph.D. thesis), Leiden
University.

Indiveri, G., & Fusi, S. (2007). Spike-based learning in VLSI networks of integrate-
and-fire neurons. In 2007 IEEE international symposium on circuits and
systems (pp. 3371–3374).

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-Cummings,
R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron circuits. Frontiers in
Neuroscience, 5.

Jeltsch, S. (2014).A scalableworkflow for a configurable neuromorphic platform. (Ph.D.
thesis), Universität Heidelberg.

Jin, X., Rast, A., Galluppi, F., Khan, M., & Furber, S. (2009). Implementing learning
on the SpiNNaker universal neural chip multiprocessor. In C. Leung, M. Lee, &
J. Chan (Eds.), Lecture notes in computer science: Vol. 5863. Neural information
processing (pp. 425–432). Berlin, Heidelberg: Springer.

Kandel, E. R., & Siegelbaum, S. A. (2013). Cellular mechanisms of implicit memory
storage and the biological basis of individuality. In E. R. Kandel, J. H. Schwartz,
T. M. Jessel, S. A. Siegelbaum, & A. J. Hudspeth (Eds.), Principles of neural science
(pp. 1461–1486). New York: McGraw-Hill.

Krichmar, J. L., Coussy, P., & Dutt, N. (2015). Large-scale spiking neural networks
using neuromorphic hardware compatible models. ACM Journal on Emerging
Technologies in Computing Systems, 11(4), 36:1–36:18.

Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback.
PLoS Computational Biology, 4(10), e1000180.

Liu, S.-C., & Delbruck, T. (2010). Neuromorphic sensory systems. Sensory Systems,
20(3), 288–295.

Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3), 127–149.

Maass, W. (1997). Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9), 1659–1671.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic
efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297),
213–215.

Meier, K. (2013). The FACETS project: Project homepage. URL: http://www.facets-
project.org/.

Meier, K. (2015). BrainScaleS: Project homepage. URL https://brainscales.kip.uni-
heidelberg.de/.

Memmesheimer, R.-M., Rubin, R., Ölveczky, B. P., & Sompolinsky, H. (2014).
Learning precisely timed spikes. Neuron, 82(4), 925–938.

Menon, S., Fok, S., Neckar, A., Khatib, O., & Boahen, K. (2014). Controlling articulated
robots in task-space with spiking silicon neurons. In 2014 5th IEEE RAS & EMBS
international conference on biomedical robotics and biomechatronics.

Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., & Modha, D.S. (2011).
A digital neurosynaptic core using embedded crossbar memory with 45pJ per
spike in 45nm. In 2011 IEEE custom integrated circuits conference—CICC 2011 (pp.
1–4).

Merolla, P., Arthur, J., Alvarez, R., Bussat, J.-M., & Boahen, K. (2014a). A multicast
tree router for multichip neuromorphic systems. IEEE Transactions on Circuits
and Systems. I. Regular Papers, 61(3), 820–833.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014b). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197), 668–673.

Minkovich, K., Srinivasa, N., Cruz-Albrecht, J. M., Cho, Youngkwan, & Nogin,
A. (2012). Programming time-multiplexed reconfigurable hardware using a
scalable neuromorphic compiler. IEEE Transactions on Neural Networks and
Learning Systems, 23(6), 889–901.

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of
synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459–478.

Mortara, A., & Vittoz, E. A. (1994). A communication architecture tailored for analog
VLSI artificial neural networks: Intrinsic performance and limitations. IEEE
Transactions on Neural Networks, 5(3), 459–466.

Murray, A. F., Del Corso, D., & Tarassenko, L. (1991). Pulse-stream VLSI neural
networks mixing analog and digital techniques. IEEE Transactions on Neural
Networks, 2(2), 193–204.

Murray, A. F., & Smith, A. V.W. (1987). A novel computational and signallingmethod
for VLSI neural networks. In D. Seitzer (Ed.), ESSCIRC’87, thirteenth european
solid-state circuits conference (pp. 19–22). Berlin: VDE-Verlag.

Navaridas, J., Miguel-Alonso, J., Plana, L. A., Lujan, M., & Furber, S. (2009).
Understanding the interconnection network of SpiNNaker. In Proceedings of
the 23rd international conference on Supercomputing (pp. 286–295). Yorktown
Heights, NY, USA: ACM.
NVIDIA Corporation (2015). Parallel programming and computing platform —
CUDA. URL: http://www.nvidia.com/object/cuda_home_new.html.

Painkras, E., Plana, L.A., Garside, J., Temple, S., Davidson, S., Pepper, J., Clark, D.,
Patterson, C., & Furber, S. (2012). SpiNNaker: A multi-core System-on-Chip for
massively-parallel neural net simulation. In 2012 IEEE custom integrated circuits
conference. CICC.

Pfeil, T., Potjans, T. C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al.
(2012). Is a 4-bit synaptic weight resolution enough?—Constraints on enabling
spike-timing dependent plasticity in neuromorphic hardware. Frontiers in
Neuroscience, 6.

Ponulak, F., & Kasiński, A. (2009). Supervised learning in spiking neural networks
with ReSuMe: Sequence learning, classification, and spike shifting. Neural
Computation, 22(2), 467–510.

Ponulak, F., & Kasinski, A. (2011). Introduction to spiking neural networks: Informa-
tion processing, learning and applications. Acta Neurobiologiae Experimentalis,
71(4), 409–433.

Preissl, R., Wong, T. M., Datta, P., Flickner, M., Singh, R., & Esser, S. K. (2012).
Compass: A scalable simulator for an architecture for cognitive computing. In
2012 SC—international conference for high performance computing, networking,
storage and analysis (pp. 1–11).

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., et al.
(2015). A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses. Frontiers in Neuroscience, 9.

Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised learning
using graphics processors. In Proceedings of the 26th annual international
conference on machine learning , ICML’09. (pp. 873–880). New York, NY, USA:
ACM.

Rast, A., Alibart, F., Azghadi, M.R., Bamford, S., Bennett, C., & Celiker, O. et al.
(2015). Benchmarking neuromorphic systems: Discussion group. In The 2015
CapoCaccia cognitive neuromorphic engineering workshop.

Renaud, S., Tomas, J., Bornat, Y., Daouzli, A., & Saighi, S. (2007). Neuromimetic ICs
with analog cores: an alternative for simulating spiking neural networks. In
2007 IEEE international symposium on circuits and systems (pp. 3355–3358).

Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An efficient
simulation environment for modeling large-scale cortical processing. Frontiers
in Neuroinformatics, 5, 19.

Rosenblatt, F. (1958). The perceptron: A probabilisticmodel for information storage
and organization in the brain. Psychological Review, 65(6), 386–408.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., & Millner, S. (2010). A
wafer-scale neuromorphic hardware system for large-scale neural modeling.
In 2010 IEEE international symposium on circuits and systems—ISCAS 2010
(pp. 1947–1950).

Schemmel, J., Bruderle, D., Meier, K., & Ostendorf, B. (2007). Modeling synaptic
plasticity within networks of highly accelerated I&F neurons. In 2007 IEEE
international symposium on circuits and systems (pp. 3367–3370).

Schemmel, J., Fieres, J., & Meier, K. (2008). Wafer-scale integration of analog neural
networks. In 2008 IEEE international joint conference on neural networks. IJCNN
2008—Hong Kong (pp. 431–438).

Schemmel, J., Grubl, A., Meier, K., & Mueller, E. (2006). Implementing synaptic
plasticity in a VLSI Spiking Neural Network Model. In International joint
conference on neural networks, 2006. IJCNN’06.

Schmuker, M., Pfeil, T., & Nawrot, M. P. (2014). A neuromorphic network for generic
multivariate data classification. Proceedings of the National Academy of Sciences
of the United States of America, 111(6), 2081–2086.

Senn, W., & Pfister, J.-P. (2014). Reinforcement learning in cortical networks. In D.
Jaeger, & R. Jung (Eds.), Encyclopedia of computational neuroscience (pp. 1–9).
New York: Springer.

Seo, J.-s., Brezzo, B., Liu, Y., Parker, B.D., Esser, S.K., & Montoye, R.K. et al. (2011).
A 45nm CMOS neuromorphic chip with a scalable architecture for learning in
networks of spiking neurons. In 2011 IEEE custom integrated circuits conference—
CICC 2011 (pp. 1–4).

Seth, A. K., Sporns, O., & Krichmar, J. L. (2005). Neuroroboticmodels in neuroscience
and neuroinformatics. Neuroinformatics, 3(3), 167–170.

Sivilotti, M. A., Emerling, M. R., & Mead, C. A. (1986). VLSI architectures for
implementation of neural networks. In AIP conference proceedings, Vol. 151
(pp. 408–413).

Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity. Neuron, 32(6),
1149–1164.

Srinivasa, N., & Cruz-Albrecht, J. (2012). Neuromorphic adaptive plastic scalable
electronics: Analog learning systems. IEEE Pulse, 3(1), 51–56.

Stefanini, F., Neftci, E. O., Sheik, S., & Indiveri, G. (2014). PyNCS: a microkernel for
high-level definition and configuration of neuromorphic electronic systems.
Frontiers in Neuroinformatics, 8.

Stewart, T. C., & Eliasmith, C. (2014). Large-scale synthesis of functional spiking
neural circuits. Proceedings of the IEEE, 102(5), 881–898.

Stromatias, E., Galluppi, F., Patterson, C., & Furber, S. (2013). Power analysis of
large-scale, real-time neural networks on SpiNNaker. In 2013 international joint
conference on neural networks. IJCNN 2013—Dallas.

The Human Brain Project, 2015. Project Homepage.
URL: https://www.humanbrainproject.eu.

Walter, W. G. (1950). An imitation of life. Scientific American, 182(5), 42–45.
Xin, J., Lujan, M., Plana, L. A., Davies, S., Temple, S., & Furber, S. B. (2010). Modeling

spiking neural networks on SpiNNaker. Computing in Science & Engineering ,
12(5), 91–97.

Xu, Y., Zeng, X., & Zhong, S. (2013). A new supervised learning algorithm for spiking
neurons. Neural Computation, 25(6), 1472–1511.

http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref22
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref24
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref25
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref27
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref28
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref29
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref31
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref32
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref33
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref34
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref35
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref36
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref37
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref38
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref39
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref40
http://www.facets-project.org/
http://www.facets-project.org/
http://www.facets-project.org/
https://brainscales.kip.uni-heidelberg.de/
https://brainscales.kip.uni-heidelberg.de/
https://brainscales.kip.uni-heidelberg.de/
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref43
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref46
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref47
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref48
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref49
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref50
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref51
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref52
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref53
http://www.nvidia.com/object/cuda_home_new.html
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref56
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref57
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref58
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref60
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref61
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref64
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref65
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref70
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref71
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref73
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref75
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref76
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref77
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref78
https://www.humanbrainproject.eu
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref81
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref82
http://refhub.elsevier.com/S0893-6080(15)00141-0/sbref83

	Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks
	Introduction
	Spiking neural networks for neurorobotic applications
	Early neuromorphic chip designs
	Neuromorphic hardware for neurorobotics

	Neuromorphic devices---an overview
	Analog neuromorphic chips
	The BrainScaleS Project
	Neurogrid
	The HRL SyNAPSE Project
	The ROLLS neuromorphic processor

	Digital neuromorphic chips
	IBM TrueNorth
	SpiNNaker

	Neuromorphic sensors

	Learning in spiking neural networks
	Local learning rules
	Short term plasticity
	Spike-timing dependent plasticity
	Spike-driven synaptic plasticity with bistable synapses

	Global learning rules
	Static networks

	Learning with neuromorphic hardware
	Synaptic plasticity circuits on the HICANN chip
	The STDP protocol of the HRL SyNAPSE chip
	STP and STDP mechanisms implemented in the ROLLS neuromorphic processor
	Extensions for the TrueNorth Chip
	Implementing STDP on SpiNNaker

	Neuromorphic chips for robotic applications
	Conclusion & outlook
	Acknowledgments
	References

