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Abstract— The stereo correspondence problem is still a highly
active topic of research with many applications in the robotic
domain. Still many state of the art algorithms proposed to date
are unable to reasonably handle high resolution images due to
their run time complexities or memory requirements. In this
work we propose a novel stereo correspondence estimation algo-
rithm that employs binary locality sensitive hashing and is well
suited to implementation on the GPU. Our proposed method
is capable of processing very high-resolution stereo images at
near real-time rates. An evaluation on the new Middlebury and
Disney high-resolution stereo benchmarks demonstrates that
our proposed method performs well compared to existing state
of the art algorithms.

I. INTRODUCTION

Calculating stereo correspondences from stereo image
pairs is one of the oldest and still highly active areas in
computer vision. Most stereo algorithms are either incapable
of real-time processing or are only applicable to small im-
ages. Additionally most algorithms require a prior knowledge
about the depth of the scene, manifested as fixed range of
allowed disparity values. One of the limiting factors for
real-time applications is that the complexity of most state
of the art algorithms is not only dependent on the width
w and height h of the images but also on the number of
possible disparity labels d leading to a complexity O(whd).
We propose to solve the stereo correspondence problem by
applying hashing leading to a complexity O(wh) that is
only dependent on the image size and not on the number
of disparity labels. We use simple binary strings generated
from simple intensity tests similar to the BRIEF descriptor
from Calonder et al. [6] to perform the hashing. Under mild
assumptions about the intensity tests we can show that we
can get the same results as with performing an exhaustive
search with arbitrary high probabilities. In practice the hash-
ing approach allows us to get reasonable disparity maps even
from high definition images at interactive rates. To the best
of our knowledge such a hashing scheme has not yet been
used to perform stereo matching.

A. Related work

Existing state of the art stereo matching algorithms can
be generally classified into three distinct categories. Local
methods perform data association on a per pixel basis
combined with an aggregation step with winner takes it all
disparity label selection [18]. Examples for local methods
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are algorithms using adaptive window weighting [14], [22],
which have been shown to give very good results and miti-
gate the problem of edge bleeding to some extent, which is
typical to pure block matching algorithms. Local methods are
often the only available choice for applications that need real-
time or interactive frame rates. Their runtime complexity is
dominated by the evaluation of the likelihood function, which
itself is dependent on the number of disparity labels for most
algorithms. Global methods perform a global minimization
of an energy formulation that incorporates prior knowledge
into the disparity estimation by means of regularization of
the data term with a smoothing term. The smoothing term
models the fact that neighboring pixels should have similar
disparity labels and are very likely to belong the same
surface. The graph-cuts algorithm of Boykov et al. [5] and
belief propagation [8] are well known methods belonging
to this category as well as variational formulations mainly
used for the related problem of optical flow [24]. The
computational and memory requirements of global methods
are very high and generally prohibit their usage for real-time
applications. The third category are the so called seed and
grow approaches like the sampling based methods by Cech
et al. [7] and the PatchMatch stereo algorithm by Bleyer
et al. [4], itself based on the general PatchMatch correspon-
dence algorithm by Barnes et al. [2]. While sampling can be
very fast if only a fraction of the candidates is considered, no
guarantees can be given compared to an exhaustive search
and the methods also suffer from the same problems in
textureless and ambiguous regions as the local methods. Our
method does not fit into one of these main categories but
is related to the sampling based approaches as well as the
local methods. In contrast to the sampling based methods our
method can get identical results to methods performing an
exhaustive search of the possible disparity label space with
very high probability while being independent of the size
of the disparity range and only a fraction of the possible
correspondence candidates need to be considered. Therefore
our algorithm belongs to the broad class of approximate
nearest neighbour (ANN) approaches. Most ANN algorithms
in the area of computer vision are used for fast descriptor
matching [19] and establishing general image correspon-
dences [1], [16], [10]. Many of the algorithms use tree
based data structures like KD-Trees [10] to speed up the
matching process or are based on randomized sampling
and propagation, making use of coherency [1]. Another
approach is hashing with the intention that items with small
distances are producing collisions and are therefore hashed
into the same bucket [13]. For the purpose of establishing
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dense image correspondences the objective is very often to
approximate one image with another image and to achieve a
high image reconstruction quality e.g. for compression. For
stereo correspondences the overall aim is also to establish
correspondences, but here the focus is on finding the the
real scene depth and a single correct correspondence needs
to be found for each pixel. Our algorithm is based on Locally
Sensitive Hashing [13] and we pair it with the Hamming
distance as our distance measurement. In order to work in
the Hamming space our work also uses the concept of simple
image intensity tests to generate a compact representation,
which has been successfully used in form of the CENSUS
likelihood [23] for many stereo algorithms and as a very
compact feature descriptor referred to as BRIEF by Calonder
et al. [6]. The binary strings generated by randomized tests
have already been used in [25] as a likelihood function for
binary stereo matching and their local method was shown
to be comparable with other state of the art methods in
terms of quality and speed while being robust to radiometric
differences between the image pairs.

B. Contributions

We propose to use dense binary strings similar to the
BRIEF descriptor [6] combined with a hashing scheme
based on LSH [13]. We contribute an extremely fast par-
allel algorithm and an opensource GPU implementation that
has a complexity O(wh) only depending on the width w
and height h of the image and independent of disparity
range. Further we show that under mild assumptions results
equivalent to exhaustive search within a disparity range with
arbitrary high probability can be achieved. The trade-off
between exactness and speed can therefore be precisely con-
trolled in our algorithm. The proposed algorithm is further
shown to be extremely fast on high-resolution images several
megapixels in size. We show that the algorithm is well suited
to calculate disparity maps at interactive frame rates for high-
resolution images while being a viable approach for systems
with limited computational and memory resources.

II. BINARY STEREO HASHING

Our algorithm uses binary strings for each pixel and
computes the likelihood in terms of the hamming distance
between two possible correspondences. Therefore the likeli-
hood directly depends on the binary string and we follow the
general approach used for the binary BRIEF descriptor by
Calonder et al. [6]. We perform simple binary comparisons
between pixel positions on a previously filtered image I . Our
binary string B of length N is densely calculated for each
pixel position u = (x y)> using two dimensional offsets
oi,1, oi,2 for each bit i generated in an offline phase

B(u) =

N∑
i=0

(I(u + oi,1) < I(u + oi,2)) · 2i. (1)

In our implementation we perform 256 tests and therefore
our strings are 256 bit long. We generated random offsets
and for 128 bit we used a smaller range for generating the
offsets. The remaining 128bits were split in two 64 bit blocks

Figure 1. Pattern of the intensity tests used to generate the bit string.
Offsets were generated within 3 ranges, where half the tests are very near
to the center and the other half was split into a mid- and far-ranged set.

and for each block we increased the range of possible offsets.
In Figure 1 the used pattern is shown, where offset positions
belonging to the same test are connected by a line.

Instead of performing the binary intensity tests directly
on the pixels we filter the images using a Gaussian filter
prior to performing intensity tests. The filtering step leads
to a comparison of larger areas and reduces the influence
of noise as proposed in [6]. We also tried to use a regular
pattern as used in the CENSUS transform [23] but found the
randomized pattern to work better in practice.

A. Stereo Hashing

Given a binary string for each pixel we use P previously
randomly selected bits p[i], i ∈ {0, . . . , 255} and concatenate
them to form our hash value

h(u) =

P−1∑
i=0

((B(u)� p[i]) & 1) · 2i, (2)

where� denotes a bitshift operation and & the binary AND
operation. The number of bits P determines the number of
buckets to be 2P . In general we are interested in having a
large number of buckets in order to keep the average fillrate
per bucket w

2P
low. In reality the fillrate highly depends on

how much the tests correlate and if the tests are able to
allow the distinction between visually similar regions e.g.
untextured regions. Instead of performing the hashing only
once we hash N times. Figure 2 gives an overview of the
hashing procedure.

. . . 2P

1 2 N

Figure 2. Overview of the hashing procedure: for each scanline the x
position of each pixels is hashed into N hashtables with 2P buckets using
P randomly selected bits from the bit string B. The figure illustrates this
for two pixels marked in green and blue of one scanline marked by a red
line.

The exact algorithm for the parallel hashing procedure is
given in algorithm 1. Although the overall memory require-
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ments for the offsets are known w×h×N , the exact size for
each of the buckets of one scanline is unknown. Therefore the
algorithm 1 is split into 3 phases. In the first phase the size
of each bucket is determined in lines 4− 8 using the atomic
increment operation ATOMIC INC. The previously calculated
bucket size is then used to calculate the exact offsets for each
bucket for all the scanlines in parallel (lines 9− 14). In the
remaining lines 15 to 19 the real x positions of the pixels
hashing into certain buckets are written into the previously
determined offset positions. A size counter keeps track of the
current sub offset within one bucket, which is also atomically
incremented after each addition of an element. The first and
last phase are completely performed in parallel for each
pixel.

Algorithm 1 Parallel Stereo Hashing
Require: Binary string b = B(x, y) for each pixel position

x, y, P random bit positions pi for each of the N hash
functions hi

1: function BINARY HASH(b, p, P )
2: return

∑P−1
i=0 ((b� p[i]) & 1 ) · 2i

3: function STEREO HASH(B,N )
. Determine the size of each bucket

4: buck and its members are zero initialized
5: for all pixel positions x, y in parallel do
6: for i = 1 to N do
7: hi ← BINARY HASH(B(x, y), pi, P )
8: ATOMIC INC(bucki[y][hi].len)

. Use the previously estimated size to calculate offsets
for each bucket

9: for all scanlines y in parallel do
10: for i = 1 to N do
11: for b = 2 to 2P do
12: bucki[y][b].off ← bucki[y][b − 1].off +

bucki[y][b− 1].len
13: bucki[y][b− 1].len← 0

14: bucki[y][2P − 1].len← 0

. Use the offsets to store the x position of each candidate
15: for all pixel positions x, y in parallel do
16: for i = 1 to N do
17: hi ← BINARY HASH(B(x, y), pi, P )
18: l← ATOMIC INC(bucki[y][hi].len)
19: Mi(y, bucki[y][hi].off + l) = x

20: return Buckets bucki and maps Mi

B. Stereo Hash-Matching

For the matching process given in algorithm 2 the binary
strings must also be generated from the intensity com-
parisons for the second image and also the hashing has
to be performed in an identical manner. But instead of
storing possible candidate positions in hash tables we use
the already available positions and evaluate the hamming

distance between the complete binary strings referred to by
the x positions stored inside the buckets for each of the
N hash values. Offsets values that would lead to negative
disparity values are not considered. The same skipping could
also be done for a maximum allowed disparity value. The
function HAMMING is used in the pseudo-code and computes
the hamming distance between two binary strings. Besides
the hamming distance any other likelihood function could
be used e.g. SAD, SSD or NCC. We decided to use the
hamming distance to avoid further image lookups and to take
advantage of the compact size of the bit strings.

Algorithm 2 Parallel Stereo Matching with Hashing
Require: Binary strings for right and left b2 =

B2(x, y), b1 = B1(x, y) for each pixel position x, y, P
random bit positions pi for each of the N hash functions
hi, the hashmap buckets bucki and the maps Mi

1: function STEREO HASH MATCH(B1,B2,buck,M ,N )
2: for all pixel positions x, y in parallel do
3: match← x
4: dist← P
5: for i = 1 to N do
6: hi ← BINARY HASH(B2(x, y), pi, P )
7: for i = 1 to bucki[y][hi].len do
8: cmatch←Mi(y, bucki[y][hi].off + i)
9: if cmatch > x then

10: cdist ←
HAMMING(B1(cmatch, y), B2(x, y))

11: if cdist < dist then
12: match = cmatch
13: dist = cdist
14: D(x,y) = match - x;
15: return D

C. Matching Probabilities and Parameter Settings

In the following we assume that the probability pbit of a
bit resulting from an intensity test for truly corresponding
pixels is independent for each of the tests and identically
distributed. The probability that at least one of the P bits
chosen for hashing is flipped, is therefore given by

pfail =1− pPbit. (3)

The probability pfail tells us how likely it is that two truly
corresponding pixels are hashed into two different buckets.
On the other side we hash not only once but N times.
Also here we assume that all N tries are independent and
identically distributed. The probability that at least one of
the N hashing tries succeeds is given by

ponehit = 1− pNfail (4)

= 1− (1− pPbit)
N . (5)

The resulting probabilities are highly dependent on the
stability of the intensity test and therefore the probability
pbit. The tests also need to be uncorrelated, otherwise many
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Figure 3. Probability that at least one of the N hashing tries produces a hit for pbit ∈ {0.6, 0.75, 0.9}.

pixels will be hashed to the same bucket and in the worst
case all pixels are hashed into the same bucket. In Figure
3 three plots for pbit ∈ {0.6, 0.75, 0.9} and varying values
of P,N are shown. As shown in the figure for reasonable
values for a bit flip the probability soon becomes very small
and given the bit flip probability we can easily estimate the
number tries necessary to reach a certain probability level
that values are hashed into the same bucket. Additionally it
becomes obvious that the number of bits P used for hashing
can not be arbitrarily high. The usage of too many bits P
decreases the hit probability and much more hashing tries
need to be performed to get the same overall hit probability.

Of course no guarantee can be given that the real candidate
has also the lowest distance in terms of the hamming distance
for the complete string.

III. EVALUATION

The goal of our algorithm is to show that correspondences
can be found extremely fast by employing the hashing
scheme. We do not perform any complex post-processing of
our raw disparity maps with the exception of a simple 3× 3
median filter. For all results we used P = 8, N = 8 and 256
intensity tests. The input images were blurred with a simple
Gaussian with a sigma value of 0.5 in the horizontal direction
and a sigma value of 2.5 in the vertical direction. We choose
the values for P = 8 and N = 8 after having evaluated a
vast number of combinations on the Middlebury 2014 [17]
dataset. The combination P = 8, N = 8 gave good results
and was still very fast. Figure 4 shows other combinations of
P/N and their respective error rates and processing times.
Some combinations have even lower runtimes, nearly twice
as fast, but with worse error rates. Increasing the number of
hashing tries N above a certain point only leads to a very
minor improvement of the error rate.

For the complete evaluation we used the images and eval-
uations of other algorithms provided by Sudipta et al. [20].
We used the images of the group MiddNew7 from the new
2014 Middlebury public stereo dataset [17] and the images
from the group Disney4 from the high-resolution multi-
baseline datasets used in [15]. The images in the MiddNew7
group have an average size of 5.5 megapixel and the images
in the Disney4 group an average size of 10 megapixels. We
also used the error rates and runtimes reported in [20] to
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Figure 4. Scatter plot of error in percent versus time in milliseconds for
various P/N combinations for the new Middlebury dataset. After a certain
amount of hashing tries N the error rate does not decrease any more. On
the other hand it can be seen that a high number of bits P leads to a reduced
runtime.

compare our results with SGM [12], SGM-HH an optimized
version by the author, PatchMatch [4], ELAS [9] and the
LPS algorithm [20].

As expected from a purely local method without any post-
processing our algorithm does not perform as well as most of
the others in terms of the error rate as shown by the graphs
in Figure 5. On average our method still outperforms the
PatchMatch algorithm and also SGM for the Disney dataset
as measured by the percentage of disparity estimates with
an error greater than one. In terms of error vs. runtime
the proposed approach is very attractive and we are able
to process the megapixel stereo pairs at interactive frame
rates. As shown by the scatter plot in Figure 6 the proposed
method is by far the fastest method.

In Figure 7 the results of the proposed method for the
MiddNew7 group of images are shown.

IV. CONCLUSION

We have presented a simple and extremely fast stereo
processing algorithm that uses locality sensitive hashing of
binary strings to become independent of the number disparity
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Figure 5. Percentage of disparity errors > 1.0 for all algorithms for the new Middlebury and the Disney dataset.
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Figure 6. Scatter plot of error in percent versus time in seconds in logarithmic scale for all algorithms for the new Middlebury and the Disney dataset.

labels. The method is capable of handling high definition
images in near real time while offering a competitive tradeoff
between speed and accuracy. In domains where real time
processing is essential the proposed approach alone is a
viable approach to handle high definition stereo images. In
applications where accuracy is crucial the proposed method
can be easily used in tandem with a global method [4], [3],
[11], [20] as part of the initialization phase, in place of the
two typical choices of initialization: random sampling and
sparse correspondences.

In our current implementation a randomly selected sam-
pling pattern is employed. Learning an optimized pattern
for stereo matching could lead to a further improvement
in accuracy and has been demonstrated for general purpose
feature descriptors in [21]. Also a more detailed evaluation
of the blurring and intensity test dependent blurring, together
with the correlation between the tests, is worth pursuing.
Further the proposed approach is not limited to the hamming
distance between the binary strings as a likelihood function.
Since only positions of possible candidates are stored in the
hash tables, arbitrary likelihood functions could be used for
matching and evaluation of possible candidates. Left/right
consistency checking and more sophisticated post processing

strategies [26] could also be used to improve the matching
confidence and quality.
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