
Automated Generation of Hybrid System Models for Reachability Analysis of

Nonlinear Analog Circuits

Hyun-Sek Lukas Lee1, Matthias Althoff2, Stefan Hoelldampf1, Markus Olbrich1, and Erich Barke1

1Institute of Microelectronic Systems, Leibniz Universität Hannover, Germany

{lee, hoelldampf, olbrich, eb}@ims.uni-hannover.de
2Institute of Robotics and Embedded Systems, Technische Universität München, Germany

althoff@in.tum.de

Abstract— We address the problem of formally verifying non-

linear analog circuits with an uncertain initial set by computing

their reachable set. A reachable set contains the union of all possi-

ble system trajectories for a set of uncertain states and as such can

be used to provably check whether undesired behavior is possible

or not. Our method is based on local linearizations of the non-

linear circuit, which naturally results in a piecewise-linear sys-

tem. To substantially limit the number of required locations, our

approach computes linearized locations on-the-fly depending on

which states are reachable. We can show that without the pro-

posed on-the-fly technique, the conversion to piecewise-linear sys-

tems is infeasible even for a few nonlinear semiconductor devices

(discrete state-space explosion problem). Our method is fully au-

tomatic and only requires a circuit netlist. Piecewise-linear sys-

tems have gained popularity not only for verification, but also for

accelerated simulation of nonlinear circuits. Our method pro-

vides a guaranteed bound on the number of linearization loca-

tions that have to be explicitly computed for such a nonlinear cir-

cuit.

I. INTRODUCTION

Design verification of analog/mixed-signal (AMS) circuits

has become increasingly costly due to constantly increasing

complexity. Despite intensive developments in design verifi-

cation of AMS circuits, up to 70 % of the design time is spent

on verification activities [33]. One of the main reasons for the

huge verification effort lies in the interplay between continuous

and discrete dynamics, resulting in so-called hybrid dynamics.

The ultimate goal to overcome this problem is to formally

verify AMS circuits. However, formal techniques do not scale

well to larger circuits. This work presents a step forward and

shows that formal verification of analog circuits is possible for

circuit sizes that were previously infeasible. Our approach can

be naturally extended to the verification of AMS circuits as

discussed later.

Due to its growing importance, formal verification of analog

and mixed-signal (AMS) designs has been surveyed by Zaki

et al. in [41] in four categories: equivalence checking, auto-

mated state-space exploration, run-time verification and proof-

based methods. We briefly summarize these categories and

focus on work that has appeared since the 2008 survey.

The categories surveyed have very distinct features and are

used in different design stages and for different verification

purposes. Run-time verification analyzes signals using moni-

tors synthesized from specifications, which can be applied on-

line or offline to real circuits [30, 34, 38, 24]. Run-time veri-

fication is a very practical approach due to its small computa-

tional cost, but cannot guarantee conformance to specification

due to the finite number of tested signal traces.

Equivalence checking determines the maximum error of the

input-output behavior or other distance measures between two

system models [35, 36]. It can be seen as a supporting method

for other verification approaches since it makes it possible to

obtain simplified models that are more amendable for formal

verification.

For the verification of behavioral models, two main ap-

proaches exist: state-space exploration and theorem proving.

Theorem proving is a deductive technique that guarantees

properties by applying proof rules, which simplify the formula

to be checked (typically requiring human intervention) until

one obtains atomic statements which are true or false [13].

State-space exploration can be seen as an exhaustive search

of the state space to determine whether formal specifications

are met.

Since we use a state-space exploration technique, we focus

the remaining literature survey on this approach. One line of

research discretizes the state space of the continuous circuit dy-

namics to obtain purely discrete systems [26, 20, 18, 28] or re-

places continuous models by Boolean ones [25]. This makes it

possible to use model checking algorithms for discrete systems

[11], but at the expense of an exponentially growing state space

due to discretization (often limiting those approaches to 4 con-

tinuous state variables). Another possibility is to directly per-

form state exploration on the hybrid dynamics, which is also

referred to as reachability analysis [4]. There is a rich litera-

ture on reachability analysis of hybrid systems so that we fo-

cus on the articles that are applied to analog and mixed-signal

(AMS) designs.

Most works directly use polyhedra [19, 12, 15] to represent

reachable sets or simplifications of them, such as regions speci-

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

8B-3

725

fied by difference-bound matrices (polyhedra with 45◦ and 90◦

angles) [29], boxes computed via Taylor approximations and

interval arithmetic [40], or zonotopes [3]. Another approach to

explore the state space is to use SMT-based techniques, which

have exponential complexity in the number of constraints, but

can be made more efficient using guidance from simulations

[39]. Other techniques besides the ones mentioned in the sur-

vey [41] are a Boolean satisfiability (SAT) based method that

directly works with a circuit-level netlist [37], and statistical

model checking returning probabilities on satisfying temporal

properties [10].

Our verification concept is based on piecewise-linear (PWL)

models for nonlinear analog circuits. Approximating a circuit

by a hybrid system with linear continuous dynamics is not

completely new, see e.g. [8, 7, 42]. Previous work demon-

strates that one can efficiently generate PWL models of analog

circuits from a given netlist, which makes it possible to accel-

erate AMS circuit simulation [22].

We extend and improve the generation of piecewise-linear

models and their formal verification in several aspects:

• Our hybrid model is created on-the-fly, drastically reduc-

ing the required number of locations.

• We can formally guarantee that the number of regions cre-

ated on-the-fly is the maximum required number.

• We integrate a scalable verification technique that com-

putes the reachable set with zonotopes, resulting in a com-

plexity of O(n5) with respect to the number of continuous

state variables n.

• A crucial step in reachability analysis of hybrid systems is

the intersection with surfaces determining the transitions

to another location with different continuous dynamics.

This step is drastically accelerated by integrating a tech-

nique that avoids geometric intersections.

The innovations are presented as follows: We state the prob-

lem formulation in Sec. II. Next, the generation of hybrid au-

tomata starting from a netlist of nonlinear circuits is introduced

in Sec. III. We describe our reachability analysis in Sec. IV,

which is combined with an on-the-fly generation of the hybrid

model in Sec. V. Finally, we show results of our numerical

experiments in Sec. VI and conclude this paper in Sec. VII.

II. PROBLEM FORMULATION

Our goal is to compute the reachable set of analog circuits,

which are transformed on-the-fly to piecewise-linear systems.

The overall dynamics of all piecewise-linear systems is for-

malized by a hybrid automaton [9]. Since hybrid automata are

differently defined based on the application domain and per-

formed analysis, we present our definition of a hybrid automa-

ton with time-invariant, linear continuous dynamics in each lo-

cation and guard sets modeled as halfspaces:

Definition 1 (Hybrid Automaton) The hybrid automaton

used in this work is defined as a tuple HA = (V , X , U , T, g,

h, f) with:

• the discrete state space V = {v1, . . . ,vξ}. Elements of V

are referred to as locations.

• the continuous state space X ⊆R
n and input space U ⊂

R
m.

• the set of discrete transitions T ⊆ V ×V . A transition

from vi to v j is denoted by (vi,v j).

• the guard function g : T→ 2X (2X denotes the powerset

of X), which associates a guard set g((vi,v j)) with each

transition (vi,v j).

• the flow function f : V ×X ×U → R
n, which defines a

vector field for the time derivative of x: ẋ = f(v,x,u).

The guard sets g are modeled as halfspaces H = {x|nT x ≤
d; x,n ∈ R

n; d ∈ R}.

x1

x2

location v1 location v2

unsafe
set

initial
set

reachable
set

halfspaceguard

intersection

etc.

possible

trajectory

Fig. 1. Illustration of the evolution of a reachable set of a hybrid automaton.

The combined discrete and continuous state (v(t),x(t)) starts

from (v0,x0). x(t) changes according to the flow function,

while v(t) remains constant. If the continuous state hits a guard

set, the corresponding transition is taken immediately. In the

event of hitting more than one guard set at the same time, the

transition is chosen non-deterministically. After the transition

from the previous location vi to the next location v j is taken (in

zero time), the continuous evolution is continued in the next lo-

cation. This procedure is illustrated in Fig. 1. Given the behav-

ior of the hybrid automaton, we are interested in the reachable

continuous states:

Definition 2 (Exact Reachable Set) Given an initial location

v0 and a set of initial continuous states X 0, the continuous

reachable set Re
vi
(r) of a hybrid automaton as specified in Def.

1 at time r in location vi is:

R
e
vi
(r) =

{
x̃
∣∣∃ some trajectory (v(t),x(t)) of HA with

v(0) = v0
,x(0) ∈X

0 ⊂X , such that v(r) = vi, x(r) = x̃
}
.

The exact reachable set can only be computed for a limited

class of hybrid automata [27]. Therefore, we compute over-

approximations Rvi
(t) ⊇ Re

vi
(t). In order to compute for all

times, we compute reachable sets for consecutive time inter-

vals [tk−1, tk], where tk = k r, r ∈R
+ is the time increment, and

k ∈ N.

III. FROM NONLINEAR CIRCUITS TO HYBRID AUTOMATA

In this section, we describe the generation of a hybrid au-

tomaton starting from the netlist of a nonlinear circuit. At first,

8B-3

726

the initial intention of this modeling technique is presented,

followed by the extensions necessary for reachability analysis.

An accelerated simulation of AMS circuits based on

piecewise-linear models has been presented in a previous work

[23]. Speedup is achieved by avoiding numerical integration

and directly using the linear time-domain solution

yk(t) = yk,0 +∑
i

ak,ie
λit (1)

of the system. To succeed, this approach requires piecewise-

constant inputs (implicitly given by the digital part of AMS

circuits) and a linear or at least linearized circuit. We solve

the latter problem by replacing all nonlinear circuit devices by

piecewise-linear models [22].

−0.75 0 0.75

VD (V)

0

0.25

0.5

0.75

ID (A)

(a) Diode model (4 sections). (b) MOSFET model (12 triangles).

Fig. 2. Piecewise-linear behavioral models of diodes and MOSFETs.

Exemplary PWL models for diodes (one input) and MOS

field-effect transistors (two inputs) are shown in Fig. 2. A cir-

cuit index c uniquely describes the active regions of all PWL

models, defined as follows:

c =
n

∑
i=1

(
(ri−1)

i−1

∏
j=0

m j

)
, (2)

where n is the number of PWL models in the circuit, m j the

number of regions (sections or triangles) of the jth model and

ri the currently active region of the ith model and m0 = 1. For

reachability analysis, we directly map the circuit index c to a

location vc of the hybrid automaton as in Def. 1.

We apply the Modified Nodal Approach (MNA) [21] to the

linearized circuit netlist and obtain the system equations where

the parameters of the PWL models remain symbolic. When

calculating the dynamics of location v, the parameters are re-

placed by numerical values according to the active regions ri.

An approach similar to [32] then transforms the system equa-

tions to a linear state-space representation:

ẋ(t) = Avx(t)+Bvu(t) (3)

y(t) =Cvx(t)+Dvu(t). (4)

The right-hand side of the state Eqn. (3) is the flow function f

as described in Def. 1.

IV. REACHABILITY ANALYSIS

In this section, we describe our approach for reachability

analysis for a single location. We start with an initial set of

states and compute the continuous reachable set until a guard

set is hit. Hitting a guard set implies that a discrete transition

to another location is enabled. In order to determine the initial

set of the new location, the intersection with the guard set has

to be computed. In case, another guard set is hit before all con-

tinuous states have left the current location, a further discrete

transition is enabled and a further guard intersection has to be

computed until no more guard intersections occur. All initial

sets and reached locations are forwarded to Alg. 1, which is de-

scribed later. We begin with the reachable set computation for

the continuous evolution followed by describing the approach

for guard intersection.

A. Continuous Evolution

Reachability analysis of linear systems is mainly reduced to

computing the reachable set of the first time interval, since later

time intervals are easily obtained by matrix multiplication. For

linear time-invariant systems as in (3), the reachable set of the

first time interval [t0, t1] is computed as shown in Fig. 3:

1. Compute the reachable set at t = t1, neglecting uncertain

inputs (the homogeneous solution, Rh(t1));

2. Generate the convex hull of the solution at t = t1 and the

initial set; and

3. Enlarge the convex hull to ensure enclosure of all trajec-

tories for the time interval t ∈ [t0, t1], including the con-

sideration of curved trajectories.

The result of this procedure is the reachable set of the first time

interval R([0,r]) and the particular solution xp(r) due to the

constant input. The computation of further time intervals is

computed iteratively as described in [16]:

R([kr,(k+1)r]) = eAr
R([(k−1)r,kr])+ xp(r)

Further details and background information on computing the

reachable set of linear time-invariant systems can be found in

[1].

R(t0)

Rh(t1)

convex hull

of R(t0),

Rh(t1)

R([t0, t1])

� � �

enlargement

Fig. 3. Steps for the computation of an overapproximation of the reachable

set.

B. Guard Intersection

Most approaches compute the intersection of reachable sets

with guard sets geometrically, see e.g. [9, 17, 14]. This is

done by first intersecting all reachable sets of individual time

intervals [tk−1, tk] with the guard set in an exact or overapprox-

imative way. In a second step, the individual intersections are

8B-3

727

unified into one or a few sets in order to bound the number

of initial sets for continuing the reachability computations in

the newly reached location, see [14]. This procedure is illus-

trated in Fig. 4a for polyhedral sets where Rg is the intersection

with the guard set and the displayed vertices indicate individ-

ual intersections. When using representations other than gen-

eral polyhedra, such as zonotopes [17] or template polyhedra

[14], the intersection with polyhedral guard sets (which is the

most common type) might result in large overapproximations.

This problem is avoided by general polyhedra [9], but there

are two problems with polyhedral computations: (i) the result

is not numerically stable unless infinite precision arithmetic is

used [6], and (ii) the unification of individual intersections by

a convex hull is computationally expensive [5].

x1

x2

R(0)

vertex Rg

R([tk, tk+1])

(a) Classical approach.

x1

x2

R(0)

Rg

R([tk, tk+1])

R(tη)

(b) New approach.

Fig. 4. Guard intersection using the classical and the new approach.

We propose a new technique to avoid geometric operations

and directly map reachable sets to sets enclosing guard inter-

sections. We compute this mapping from the last reachable

set at a point in time tη that does not intersect the guard. It

is obvious that although for [tη , tη+1] there is an intersection,

there is no intersection for tη since there was no intersection for

[tη−1, tη]. In Fig. 4b, the mapping from R(tη) (bold border) to

the overapproximative guard intersection Rg is indicated by a

curved arrow. In order to focus on the novelty of this work,

we refer to [2] for a more detailed description of the mapping-

based guard intersection.

V. REACHABLE SET OF A NONLINEAR CIRCUIT

Alg. 1 presents the interplay between the generation of

the hybrid model from a netlist as described in Sec. III and

the reachability analysis for a single location as described in

Sec. IV. At first, the reachable set R(t = 0) is initialized as

the set of initial states X 0. The function circuitModel(C , L)

returns the linearized netlist Clinear,symbolic, where C is the non-

linear circuit netlist and L contains the PWL models. Sym-

bols replace the PWL models of this linearized netlist. When

computing the system equations for a specific location, numer-

ical parameters according to their active regions replace those

symbols. In order to determine the initial location, a DC solu-

tion using the input u(0) = 0 provides the initial index c using

(2).

The function systemEquations(Clinear,symbolic,c,u) computes

the system equations, where u is the input of the system. It

returns S = {Av,Bv,Cv,Dv} of (3) and (4) for the location v.

The hybrid automaton is generated by the computation of the

flow function f , the guard set g and the transitions T where T

is the next location according to its guard g j. The computa-

tion of a guard function g j is described in Sec. III. The func-

tion reach(v,Rg, t) refers to the computation of the reachable

sets within a location as described in Sec. IV. The resulting

reachable set Rv is computed for a time interval [t, tη] within a

location, where t is the absolute time and tη is a point in time

that does not intersect the guard. The index cnext indicates the

next location, where Rg,next is the set of intersection with the

guard. Finally, Rtotal contains the reachable set of the hybrid

automaton.

In this work, no more than one guard is hit at the same time.

Due to this reason, we simplified the presented Alg. 1 to a

shortened form. In general, for hitting several guards at the

same time, the reader is referred to [1].

Our approach can be integrated into a mixed-signal setup

for the verification of AMS circuits [23]. When linked to the

digital simulator of the co-simulation setup, our hybrid models

are stimulated by the digital circuit part. Specified converters

provide a mapping from the digital outputs to the inputs of the

hybrid model and vice versa.

Input: Nonlinear circuit netlist C , PWL models L ,

initial state set X 0, input u, tend;

Output: Reachable set of hybrid automaton Rtotal;

Clinear,symbolic← circuitModel(C ,L);
c← DCSolution(Clinear,symbolic,u(0)← 0);

Rg← initialSet(X 0);
Rtotal←{};
t← 0;

do

S ← systemEquations(Clinear,symbolic,c,u);
for j← 1 to allGuards do

[CT ,d,T]← halfspaceParameters(S ,c);

g j← guard(CT ,d);
Tj← transition(g j,T);

end

f ← flowFunction(S);
v← location(T, f);
[Rv,Rg,next,cnext, tη]← reach(v,Rg, t);
c← cnext;

Rg←Rg,next;

Rtotal←{Rtotal,Rv};
t← tη+1;

while exist(c) ∧ t < tend;

Algorithm 1: Computing the reachable set of a nonlinear circuit.

8B-3

728

VI. EXPERIMENTAL RESULTS

We demonstrate our approach for two different analog cir-

cuits classes: a scalable nonlinear transmission line (NLTL)

[31] with N stages (Fig. 5a) and a MOSFET driver circuit

(Fig. 5b) from the field of power electronics. All computa-

tions were performed in C++ (model generation) and MAT-

LAB (reachability analysis) on a 64 bit system with an Intel

i7-2600K processor at 3.4 GHz and 16 GB RAM.

V0

R0 R1 L1

C1 D1

R2 L2

C2 D2

RN LN

CN DN

(a) Nonlinear transmission line (NLTL) with N stages.

Q1

1 kΩ450 μF
1 kΩ

V0

1 Ω

1 mF

100 μF

n1

n2
2 mF

1 Ω

10 V

(b) MOSFET driver circuit.

Fig. 5. Exemplary circuits.

Tab. I compares the full-model approach and the on-the-fly

approach for different NLTL circuits. By using the full-model

approach, all theoretically possible locations are computed in

advance, without considering reachable or not reachable loca-

tions. Due to run-time and memory limitations, circuits larger

than NLTL9 are infeasible. The on-the-fly approach exceeds

this limit. In case of NLTL10, only 14 out of 1 048 576 loca-

tions have been visited during the reachability analysis. The

computation of one location takes approximately 0.126 s.

TABLE I

MODEL SIZES AND GENERATION RUN-TIMES FOR CIRCUIT NLTLN .

N #Locations

Full-Model Approach On-the-Fly Approach

Model Size Total

Time

Size per

Location

#Visited

Locations

Total

Time

2 16 73.69 kB 1.7 s 4.17 kB 6 0.76 s

3 64 443.00 kB 6.6 s 6.48 kB 8 0.95 s

4 256 2.35 MB 26.2 s 8.96 kB 10 1.24 s

5 1024 12.03 MB 106 s 11.59 kB 10 1.25 s

6 4096 59.26 MB 420 s 14.38 kB 10 1.27 s

7 16 384 284.16 MB 1746 s 17.32 kB 11 1.32 s

8 65 536 1.30 GB 8489 s 20.43 kB 12 1.54 s

9 262 144 6.03 GB 63 456 s 23.69 kB 13 1.67 s

10 1 048 576 n/a n/a 27.11 kB 14 1.95 s

Fig. 6a represents the reached set of NLTL2 with an input of

2 V. The initial state set of NLTL2 has a size of 0.01 V×0.01 V

centered at the origin. The reached set is projected onto the

state variables VC1
and VC2

. Fig. 6b shows the reached set of

the driver circuit with an input of 4.25 V and an initial set with

a size of 0.1 V×0.1 V, projected onto Vn1
and Vn2

.

0

0.2

0.4

0.6

0.8

1

1.2

V
C

1
(V

)

0 0.2 0.4 0.6 0.8 1
VC2

(V)

(a) Projection onto VC1
and VC2

for an initial set of states (gray rectangle)

of 0.01 V×0.01 V and the reference simulation (solid line).

0

1

2

3

4

5

6

7

8
V

n
2

(V
)

0 1 2 3 4 5 6 7 8 9

Vn1
(V)

(b) Projection onto Vn1
and Vn2

for an initial set of states (gray rectangle)

of 0.1 V×0.1 V and the reference simulation (solid line).

Fig. 6. Reach set of NLTL2 circuit (a) and MOSFET driver circuit (b).

The reference simulation trajectories are fully enclosed by

the reachable set. The continuous evolution of both state vari-

ables results in a stable steady state, which is highlighted by

zooming into these regions (Fig. 6). Finally, Fig. 7 shows

the run-times of the reachability analysis for different sizes of

NLTL circuits with up to 10 stages.

0

25

50

75

100

125

150

R
u
n
-t

im
e

(s
)

2 3 4 5 6 7 8 9 10
NLTLN

Fig. 7. Run-times of reachability analysis.

8B-3

729

VII. CONCLUSION

In this paper, we addressed the problem of formally verify-

ing nonlinear analog circuits by computing their reachable set.

The verification concept is based on piecewise-linear models

from nonlinear analog circuits. The results show that the con-

version to piecewise-linear systems is infeasible even for rela-

tive small nonlinear circuits if the complete hybrid automaton

is computed. We presented an efficient on-the-fly approach to

tackle the state-space explosion problem. A method which au-

tomatically generates hybrid automata starting from a nonlin-

ear circuit netlist is introduced. According to an uncertain set

of initial states, all possible continuous trajectories are fully en-

closed by the reachable set. Even for the largest NLTL circuit

with 10 stages, only 14 out of 1 048 576 locations have been

visited during the reachability analysis and its overall run-time

is less than 144 s as shown in Fig. 7.

ACKNOWLEDGMENT

The authors gratefully acknowledge partial financial support
by the German Research Foundation (DFG) under grant num-
ber AL 1185/2-1.

REFERENCES

[1] M. Althoff. Reachability Analysis and its Application to the Safety Assessment of

Autonomous Cars. Dissertation, Technische Universität München, 2010. http://nbn-

resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-963752-1-4.

[2] M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in reach-

ability analysis of hybrid systems. In Hybrid Systems: Computation and Control,

pages 45–54, 2012.

[3] M. Althoff, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li, and L. Pileggi. Formal

verification of phase-locked loops using reachability analysis and continuization.

Communications of the ACM, 56(10):97–104, 2013.

[4] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler. Recent

progress in continuous and hybrid reachability analysis. In Proc. of the 2006 IEEE

Conference on Computer Aided Control Systems Design, pages 1582–1587, 2006.

[5] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms? Com-

putational Geometry: Theory and Applications, 7:265–301, 1997.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware

and software systems. Science of Computer Programming, 72:3–21, 2008.

[7] W.-K. Chen, editor. Feedback, nonlinear, and distributed circuits. CRC

Press/Taylor & Francis, 3rd edition, 2009.

[8] L. O. Chua and A.-C. Deng. Canonical piecewise-linear modeling. IEEE Trans.

Circuits Syst., 33(5):511–525, 1986.

[9] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system verifi-

cation. IEEE Transactions on Automatic Control, 48(1):64–75, 2003.

[10] E. Clarke, A. Donzé, and A. Legay. On simulation-based probabilistic model check-

ing of mixed-analog circuits. Formal Methods in System Design, 36:97–113, 2010.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

[12] T. Dang, A. Donzé, and O. Maler. Verification of analog and mixed-signal circuits

using hybrid system techniques. In A. J. Hu and A. K. Martin, editors, FMCAD,

volume 3312 of Lecture Notes in Computer Science, pages 21–36. Springer, 2004.

[13] W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and L. C. Paulson. Formal verifi-

cation of analog designs using MetiTarski. In Formal Methods in Computer-Aided

Design, pages 93–100, 2009.

[14] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,

A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid sys-

tems. In Proc. of the 23rd International Conference on Computer Aided Verifica-

tion, LNCS 6806, pages 379–395. Springer, 2011.

[15] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying analog oscillator circuits

using forward/backward abstraction refinement. In G. G. E. Gielen, editor, DATE,

pages 257–262. European Design and Automation Association, Leuven, Belgium,

2006.

[16] A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid

Systems: Computation and Control, LNCS 3414, pages 291–305. Springer, 2005.

[17] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid systems

reachability analysis. In Proc. of Hybrid Systems: Computation and Control, LNCS

4981, pages 215–228. Springer, 2008.

[18] D. Grabowski, D. Platte, L. Hedrich, and E. Barke. Time constrained verification of

analog circuits using model-checking algorithms. Electronic Notes in Theoretical

Computer Science, 153(3):37–52, 2006.

[19] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards formal verification of analog

designs. In ICCAD, pages 210–217. IEEE Computer Society / ACM, 2004.

[20] W. Hartong, R. Klausen, and L. Hedrich. Formal verification for nonlinear analog

systems: Approaches to model and equivalence checking. In R. Drechsler, editor,

Advanced Formal Verification, pages 205–245. Springer US, 2004.

[21] C.-W. Ho, A. Ruehli, and P. Brennan. The modified nodal approach to network

analysis. IEEE Trans. Circuits Syst., 22(6):504–509, June 1975.

[22] S. Hoelldampf, H. L. Lee, D. Zaum, M. Olbrich, and E. Barke. Efficient gener-

ation of analog circuit models for accelerated mixed-signal simulation. In IEEE

International SOC Conference (SOCC), pages 104–109, Sept. 2012.

[23] S. Hoelldampf, D. Zaum, M. Olbrich, and E. Barke. Using analog circuit behavior

to generate SystemC events for an acceleration of mixed-signal simulation. In IEEE

International Conference on Computer Design (ICCD), pages 108–112, Oct. 2011.

[24] K. Jones, V. Konrad, and D. Nicković. Analog property checkers: a DDR2 case

study. Formal Methods in System Design, 36:114–130, 2010.

[25] A. V. Karthik, S. Ray, P. Nuzzo, A. Mishchenko, R. Brayton, and J. Roychowdhury.

Abcd-nl: Approximating continuous non-linear dynamical systems using purely

boolean models for analog/mixed-signal verification. In Proc. of 19th Asia and

South Pacific Design Automation Conference, pages 250–255, 2014.

[26] R. P. Kurshan and K. L. McMillan. Analysis of digital circuits through symbolic

reduction. IEEE Trans. on CAD of Integrated Circuits and Systems, 10(11):1356–

1371, 1991.

[27] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid sys-

tems. In Hybrid Systems: Computation and Control, LNCS 1569, pages 137–151.

Springer, 1999.

[28] S. Little, D. Walter, K. Jones, C. J. Myers, and A. Sen. Analog/mixed-signal circuit

verification using models generated from simulation traces. Int. J. Found. Comput.

Sci., 21(2):191–210, 2010.

[29] S. Little, D. Walter, N. Seegmiller, C. J. Myers, and T. Yoneda. Verification of

analog and mixed-signal circuits using timed hybrid Petri nets. In Proc. of the 2nd

International Conference on Automated Technology for Verification and Analysis,

pages 426–440, 2004.

[30] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In

Y. Lakhnech and S. Yovine, editors, FORMATS/FTRTFT, volume 3253 of Lecture

Notes in Computer Science, pages 152–166. Springer, 2004.

[31] Y. Nakasha. Impulse generator utilizing nonlinear transmission line, Mar. 16, 2010.

US Patent 7,679,469.

[32] S. Natarajan. A systematic method for obtaining state equations using MNA. Cir-

cuits, Devices and Systems, IEE Proceedings G, 138(3):341–346, June 1991.

[33] R. A. Saleh and A. R. Newton. Mixed-Mode Simulation. Kluwer Academic Pub-

lishers, 1990.

[34] G. A. Sammane, M. H. Zaki, Z. J. Dong, and S. Tahar. Towards assertion based

verification of analog and mixed signal designs using PSL. In FDL, pages 293–

298. ECSI, 2007.

[35] A. Singh and P. Li. On behavioral model equivalence checking for large ana-

log/mixed signal systems. In Proc. of IEEE/ACM Int. Conf. on Computer-Aided

Design (ICCAD), pages 55–61, 2010.

[36] S. Steinhorst and L. Hedrich. Equivalence checking of nonlinear analog circuits for

hierarchical ams system verification. In Proc. of 20th Int. Conference on VLSI and

System-on-Chip, pages 135–140, 2012.

[37] S. K. Tiwary, A. Gupta, J. R. Phillips, C. Pinello, and R. Zlatanovici. First steps

towards SAT-based formal analog verification. In Proc. of the International Con-

ference on Computer-Aided Design, pages 1–8, 2009.

[38] Z. Wang, N. Abbasi, R. Narayanan, M. Zaki, G. Al Sammane, and S. Tahar. Veri-

fication of analog and mixed signal designs using online monitoring. In Mixed-

Signals, Sensors, and Systems Test Workshop, 2009. IMS3TW ’09. IEEE 15th Inter-

national, pages 1–8, June 2009.

[39] L. Yin, Y. Deng, and P. Li. Simulation-assisted formal verification of nonlinear

mixed-signal circuits with bayesian inference guidance. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 32(7):977–990, 2013.

[40] M. H. Zaki, G. A. Sammane, S. Tahar, and G. Bois. Combining symbolic simulation

and interval arithmetic for the verification of AMS designs. In FMCAD, pages 207–

215. IEEE Computer Society, 2007.

[41] M. H. Zaki, S. Tahar, and G. Bois. Formal verification of analog and mixed signal

designs: A survey. Microelectronics Journal, 39(12):1395–1404, 2008.

[42] Y. Zhang, S. Sankaranarayanan, and F. Somenzi. Piecewise linear modeling of

nonlinear devices for formal verification of analog circuits. In Formal Methods in

Computer-Aided Design (FMCAD), 2012, pages 196–203, Oct. 2012.

8B-3

730

