
1 INTRODUCTION 
 
During the past ten years, several collapses of wide 
span roofs occurred in Northern Europe during win-
ter under high snow loads, in some cases leading to 
fatalities (Frühwald et al. 2007). Many of these roofs 
were built with timber elements (solid or glulam 
timber). These failures can be attributed to design er-
rors, lack of quality of the elements or bad execu-
tion. In addition, failure can be caused by lack of 
maintenance or by unforeseen events that lead to a 
lower capacity (damage) or higher loads than ex-
pected. The failures most likely originate from errors 
made during the design phase, followed by errors 
made during the execution, while failures due to ma-
terial deficiencies or maintenance were relatively 
uncommon, which was also found in an extensive 
study by Ellingwood (1987) that compiled results 
from a series of investigations on failed structures 
during the years 1979 - 1985. 

In this context, attempts have been made to eva-
luate the robustness of wide span timber roofs (e.g. 
Kirkegaard and Sørensen 2008, Cizmar et al. 2009, 
and Dietsch & Winter 2010). These studies were 
performed within the framework of the COST action 
on robustness of structures. Generally, robustness of 
a structure is understood as the insensitivity to local 
failure and the avoidance of progressive collapse. It 
is a property of the structure itself, independent of 
possible causes of initial local failure (Starossek 

2006). Many authors (Starossek et al 2008, Ionite et 
al. 2009) relate robustness to structural redundancy, 
which requires static indeterminacy and the avoid-
ance of progressive collapse. Baker et al. (2008) use 
the ratio between direct and indirect expected dam-
age as a measure of robustness. This definition also 
includes the consequences of failure, and it requires 
computation of the risk (direct and indirect).  

Against this background, the goal of this study is 
to investigate the behavior of a wide span timber 
roof with a secondary structure designed according 
to three different structural configurations (simply-
supported, continuous and lap-jointed purlins). 
These configurations were subject to a previous de-
terministic analysis of the system of primary ele-
ments (beams) and secondary elements (purlins) car-
ried out by Dietsch & Winter (2010). In the present 
study, a risk assessment of the three systems is per-
formed by considering (probabilistically) all possible 
failure scenarios. An intermediate result of the risk 
assessment is the probability distribution of the con-
sequences given a failure of the system; this distribu-
tion can be interpreted as a measure of robustness. 
The assessment also accounts for the possibility of 
systematic errors (which are modeled by weakened 
sections that occur randomly in the secondary struc-
ture).  
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ABSTRACT: Secondary structures in wide-span timber roofs are either realized as statically determinate or 
indeterminate systems. The latter are often preferred since they are more efficient in utilizing the material and 
enable load distribution in case of a local damage, but they also facilitate progressive collapse. The aim of this 
study is to compare the performance of different configurations of secondary structures in wide-span timber 
roofs, with respect to reliability, robustness and risk. To this end, a risk assessment of three configurations is 
performed by considering (probabilistically) all possible failure scenarios of purlin elements in the roof. In 
this initial study, failure of the primary beams is not considered. The results show that the static determinate 
configuration leads to a system that is less sensitive to local damages but has an overall higher risk. It must be 
further investigated whether this duality is also observed for the full system. 
 



2 CASE STUDY 
 

The structural system studied is exemplary for 
common structural designs for wide-span roofs of 
sport-arenas, industrial factories or farm storage 
buildings, see Figure 1. The investigated roof covers 
an area of ℓ×w = 30.0×20.0 m2 and is supported by 
6  primary pitched cambered beams at a distance of 
6.0m. In this study, these primary beams will be as-
sumed intact (i.e. their probability of failure is zero).  
 

 
Figure 1. Geometry of the roof (Dietsch and Winter 2010). 

 
The secondary elements (purlins) are mounted on 
the primary elements, which feature a pitch angle of 
10°. This system has been subject to a previous de-
terministic analysis (Dietsch and Winter 2010), 
where four different configurations of purlins were 
considered: (a) simply supported purlins; (b) conti-
nuous purlins; (c) purlins in a Gerber system and (d) 
lap-jointed purlins. For the present study, three dif-
ferent configurations were chosen as depicted in 
Figure 2: (a) purlins designed as simply supported 
elements; (b) purlins designed as continuous beams; 
(c) purlins designed as lap-jointed beams. 

 

 
Figure 2. Three investigated purlin configurations 

The purlins are made from solid structural timber, 
which is commonly applied for secondary structures 
in wide-span timber roofs due to its guaranteed 
properties resulting from a controlled manufacturing 
process. The timber strength class used is C24 fea-

turing a characteristic value of the bending strength 
fm,k = 24 N/mm2 according to EN 338 (2003). The 
purlins feature a cross section of b×h = 100×200 
mm2. The distance between the axis of the purlins is 
chosen so that the utilization factor according to EC5 
(2004) is in the range 0.9 < 𝜂 < 1. The resulting 
distances ep between purlins are: a) 1.0m, b) 1.2m 
and c) 1.6m. 

3 RISK ASSESSMENT 
 
In the following, the risk associated with structural 
failure of the secondary system shall be computed. 
The consequences of these failures are considered to 
be proportional to the failed area of the roof FA . 
Since there is no interest in computing absolute val-
ues of the risk, the risk can be defined as: 

𝑅𝑖𝑠𝑘 = E[𝐴𝐹] = � 𝑎

𝐴𝑟𝑜𝑜𝑓

0

𝑓𝐴𝐹(𝑎)𝑑𝑎  (1)  

where E[ ] denotes the expectation operation and 
𝑓𝐴𝐹(𝑎) is the probability density function (PDF) of 
the failed area. 

In the analysis, we account for the possibility of a 
systematic weakening of the structure, which can be 
due to errors in the production and/or construction 
process. Let D be the event that such errors are 
present. Two separate material models are employed 
to compute 𝑓𝐴𝐹|𝐷�(𝑎) and 𝑓𝐴𝐹|𝐷(𝑎), as described in 
3.3. The unconditioned PDF of the failed area is then 

𝑓𝐴𝐹(𝑎) = 𝑓𝐴𝐹|𝐷�(𝑎)𝑃𝑟(𝐷�)
+ 𝑓𝐴𝐹|𝐷(𝑎)𝑃𝑟(𝐷)  (2) 

where 𝑃𝑟(𝐷) is the probability that a systematic 
weakening of the structure is present.  

Regular design procedures are based on the as-
sumption that systematic errors are prevented by 
quality control and other measures, i.e. it is assumed 
that 𝑃𝑟(𝐷) = 0 . Since robustness can be interpreted 
as the ability of the structure to sustain unforeseen 
actions, an indicator for robustness is the difference 
between the total risk, calculated with Eqs.(1) and 
(2) and 𝑃𝑟(𝐷) > 0, and the risk conditional on no 
errors, calculated with Eqs. (1) and (2) and Pr(D) =
0.   

3.1 Structural model 

For this analysis, only the bending failure mode is 
considered, shear failures, buckling failures and fail-
ures of joints are neglected, since in this case the 
bending failure is the main failure mechanism. 



Bending failure at cross-section j is described by the 
limit state function:  

𝑔𝑗 = 1 − �
𝑀𝑆𝑥,𝑗

𝑀𝑅𝑥,𝑗
+
𝑀𝑆𝑦,𝑗

𝑀𝑅𝑦,𝑗
� (3) 

𝑀𝑆𝑖,𝑗 denotes the bending moment and 𝑀𝑅𝑖,𝑗  denotes 
the bending capacity at cross section j in direction i. 
(We have a two-axial stress field due to the roof in-
clination of 10°) This limit state function is obtained 
by a first-order approximation of the limit of the re-
sistance domain in the elastic stress-deformation 
field given in the EC5. Several authors (e.g. Cizmar 
et al. 2009, Kirkegaard et al 2008, Köhler 2007, To-
ratti et al. 2007) introduce a correction factor in the 
limit state function to account for the approximation 
made by this failure criterion. Since we believe that 
further investigation is necessary to better under-
stand this factor, it is omitted in this study. 

The bending moments are given as 

𝑀𝑆𝑥,𝑗 = 𝑎𝑙𝑥,𝑗(𝑄 ∙ 𝐶 + 𝐺 ∙ 𝑎𝑐𝑠 + 𝑃) (4) 

𝑀𝑆𝑦,𝑗 = 𝑎𝑙𝑦,𝑗(𝑄 ∙ 𝐶 + 𝐺 ∙ 𝑎𝑐𝑠 + 𝑃) (5) 

where 𝑎𝑙𝑥,𝑗 ,  𝑎𝑙𝑦,𝑗  are load coefficients that depend 
on the structural configuration (a-c) and the location 
j along the longitudinal axis; 𝑎𝑐𝑠 is the cross section 
area of the purlins; the remaining variables are ran-
dom variables describing the loads:  

− Snow load on the ground Q; 
− Shape factor C (snow load on the roof); 
− Timber specific weight G; 
− Permanent load P. 

The bending capacities in Eq. (3) are described by  

𝑀𝑅𝑥,𝑗 = 𝑅𝑗 ∙
2𝐼𝑥
𝑑𝑦

 (6) 

𝑀𝑅𝑦,𝑗 = 𝑅𝑗 ∙
2𝐼𝑦
𝑑𝑥

 (7) 

Where 𝑅𝑗 is the bending strength at cross section 𝑗, 
𝐼𝑥 and 𝐼𝑦 are the inertia of the section and 𝑑𝑥,𝑑𝑦 are 
the width and depth of the purlins. The resistance of 
the elements is computed neglecting any time-
dependency of the property of the material. 

Each purlin is evaluated at discrete cross sections 
at distances of 0.5m along its longitudinal axis, 
based on the approximate distance between weak 
sections (e.g. knots) in the timber (Thelandersson et 
al. 2003). Failure at a section j occurs when 𝑔𝑗 ≤ 0, 
where 𝑔𝑗 is defined by Eq. (3). The purlin is mod-
eled as a series system, so any failure of a section 
leads to failure of the purlin. Failure of a purlin leads 
to changes in the static scheme for configurations (b) 
and (c). Therefore, upon failure of one or more sec-
tions, the coefficients 𝑎𝑙𝑥,𝑗 and 𝑎𝑙𝑦,𝑗in Eqs. (4) and 
(5) are recalculated and all sections are then eva-

luated with these values. In this way, the possibility 
of progressive failures is accounted for. This is illu-
strated in Figure 3. 
 

 
Figure 3. A possible failure scenario for the three configura-
tions 

 
Furthermore, failure of the roof system F is defined 
as the failure of one or more purlins. Therefore, the 
roof fails, when any of the discrete elements fail. 
This is justified by considering that the failure of an 
element will be detected immediately and corrective 
actions will be taken upon failure of one element.  

3.2 Probabilistic model 
The probabilistic model of the loads and of timber 
material properties is based on the Probabilistic 
Model Code of the Joint Committee of Structural 
Safety (JCSS 2006).  

The specific weight 𝐺 for structural timber is 
modeled by a Normal distribution with mean 
4.2kN/m3 and a coefficient of variation (COV) of 
10%. Geometrical properties of the purlins are as-
sumed to be deterministic due to the quality control 
of the manufacturing process. The permanent load 
(from the roofing) is assumed to be Normal distri-
buted with mean value of 0.4kN/m2 and COV=0.1 
(Dietsch and Winter 2010, JCSS 2006). 

The snow load 𝑄 varies with time. Because we 
are neglecting duration of load effects, it is sufficient 
to model the maximum snow loads during a snow 
event. We assume that snow events occur according 
to a Poisson process with rate 𝜆 = 1.175 per year; 
the maximum snow load in each event 𝑄𝑚 is then 
modeled by a Gumbel distribution with mean 
0.384kN/m2 and COV=0.4. With this model, the 
characteristic value of the annual maximum snow 
load equals 0.8kN/m2, which corresponds to snow 
zone 1 in Germany at an altitude of about 480m 
above sea level, see DIN EN 1991-1-3/NA (2010). 

 Figure 4 shows one realization of the snow load 
process, where 𝑡𝑖 are the times of occurrence of the 
snow events and 𝑄𝑚𝑖 are the snow loads at the 
events. 

 



 
Figure 4. Train pulse of the snow load on the ground 

 
With the model of snow load given above, it is ne-
cessary to compute the distribution of the annual 
maximum snow load 𝑄𝑚𝑎𝑥  , as described in the fol-
lowing. 

Let n be the number of snow events in a year and 
let 𝑄𝑛 be the maximum snow load in the n snow 
events. The cumulative probability function (CDF) 
of 𝑄𝑛 is obtained as a function of the CDF of the 
maximum snow load in each event 𝑄𝑚 as 

𝐹𝑄𝑛(𝑞) = �𝐹𝑄𝑚(𝑞)�
𝑛

 (8) 

The number of snow events per year is a random va-
riable with probability mass function (PMF) 𝑝𝑁(𝑛). 
The CDF of the annual maximum snow load is 
therefore 

𝐹𝑄𝑚𝑎𝑥
(𝑞) = ��𝐹𝑄𝑚(𝑞)�

𝑛
∞

𝑖=0

∙ 𝑝𝑁(𝑛) (9) 

𝑝𝑁(𝑛) is the Poisson PMF with parameter 𝜆𝑇 =
1.175 and 𝐹𝑄𝑚(𝑞) is the Gumbel CDF with parame-
ters 𝑎 and 𝑏. Inserting in Eq.(8), the unconditioned 
CDF of the annual maximum snow load is: 

𝐹𝑄𝑚𝑎𝑥
(𝑞) = 

= ��exp �−exp �−
𝑞 − 𝑏
𝑎

���
𝑛 (𝜆𝑇)𝑛

𝑛!

∞

𝑛=0

exp(−𝜆𝑇) 

= exp �𝜆𝑇 �exp �−exp �−𝑞−𝑏
𝑎
�� − 1��  

(10) 

 
The load on the ground, Q(t), is transformed to 

the snow load on the roof by multiplying it with the 
shape factor C. The shape factor is model by a 
Gumbel distribution with mean 𝜇𝐶 = 0.78 and COV 
equal to 0.35, following Sanpaolesi (1999) for a 10° 
pitch. This value accounts for the redistribution of 
the snow due to wind.  

Uncertainty in the bending strength 𝑅 is caused 
mainly by non-homogeneous material characteris-
tics. Timber contains growth defects in the form of 
knots (Figure 5), fissures, zones of compressed 
wood, bark pockets, wane and resin pockets and 
changing fiber orientation, all of which lead to an in-
creased variability of material strength.  

 

 
Figure 5. Presence of defects (knots) in a timber element 

 
Solid timber, like other types of structural timber, 
displays considerable strength variability between 
and within structural members, which must be ac-
counted for in reliability analysis. To this end, it is 
commonly assumed that the strength along the beam 
(clear wood) is constant except within the section in 
which a defect occurs (weak zone) (Thelandersson et 
al. 2003, Piazza et al. 2005, Köhler 2007). The clear 
wood strength and the weak zone strength are de-
scribed by stochastic variables, while the occur-
rences of the weak zones can be modeled as a Pois-
son process (JCSS 2006) or Gamma distributed 
(Köhler 2007). Here, we model the variability of 
timber strength according to the Isaksson Model (as 
reported in Thelandersson et al. 2003), summarized 
in the following. 

It is assumed that the bending resistance within 
one section 𝑗 of 0.5m length is constant and is de-
fined by  

𝑅𝑖𝑗 = exp�𝜇ln𝑅 + 𝜛𝑖 + 𝜒𝑖𝑗� (11) 

where the index i indicates the purlin. Here, 𝜇ln𝑅  is 
the logarithmic mean of the bending strength, 𝜛𝑖 is a 
factor that accounts for the purlin-to-purlin variabili-
ty and 𝜒𝑖𝑗 is a factor that accounts for the variability 
among cross sections 𝑗. Figure 6 illustrates the mod-
el. 

 

 
Figure 6. Lengthwise variation of bending strength for Isaksson 
model (JCSS 2006). 

 
The factor 𝜛𝑖   is Normal distributed with zero mean 
and standard deviation 𝜎𝜛 = �0.4𝜎ln𝑅2 , where 𝜎ln𝑅  is 
the standard deviation of ln𝑅𝑖𝑗.The factor 𝜒𝑖𝑗  is also 
Normal distributed with zero mean and standard 
deviation 𝜎𝜒 = �0.6𝜎ln𝑅2 . It is assumed that ϖi and 
𝜒𝑖𝑗  are statistically independent. 

From this model, it follows that the logarithm of 
bending strengths ln𝑅𝑖𝑗  of the cross sections 
𝑗 = 1, … , 𝑛𝑗 in a single purlin 𝑖 are correlated Nor-
mal random variables with correlation coefficients: 



𝜌𝑙𝑛𝑅 = 𝜎𝜛2

𝜎𝜛2 +𝜎𝜒2
= 0.4    (12) 

In the case of a timber beam of class C24, we com-
pute the parameters of the strength model from the 
characteristic value of bending strength (24𝑀𝑃𝑎) 
and imposing a COV=0.25 (JCSS 2006).The result-
ing parameter of the Lognormal distribution are 
𝜇ln𝑅 = 3.58 and 𝜎ln𝑅 = 0.246. 

The probabilistic model is summarized in Table 
1. 

 
Table 1. Stochastic model of timber elements 

 r.v. Distribution μ COV 
Snow load on  
the ground [kN/m2] Q Gumbel 0.384       0.40 
Occurrence [1/y] T Poisson 1.175 0.92 
Shape Factor [\] C Gumbel 0.78  0.35 
Density [kN/m3] G Normal 4.20 0.10 
Permanent  
load [kN/m2] P Normal 0.4  0.10 
Bending  
strength [MPa] Rij Lognormal  36.97 0.25 
Bending  
strength [MPa] RDij Lognormal 29.57 0.25 

3.3 Modeling systematic errors in the structure 
In order to study the behavior of different structural 
configurations when systematic errors are present, 
we need to define a probabilistic model for these er-
rors. Following Eq.(2), the event that systematic er-
rors are present is denoted by D. Due to their nature, 
no probabilistic models of such errors exist; there-
fore, our model will be purely hypothetical and 
serves only to compare the different structural confi-
gurations.  

We assume that systematic errors D can occur as 
design errors, manufacture error (wrong cross sec-
tion, wrong strength grade) or execution errors (pro-
duction, execution of holes in the joints, finger joints 
etc.), leading to significant reductions in bending 
strength locally, e.g. at the finger joints. We model 
the occurrence of these weak sections by a Bernoulli 
process with rate 𝑝 = 0.30. The strength at the weak 
sections, 𝑅𝐷, is modeled by a Lognormal distribution 
whose mean value is reduced by 20% compared to 
the intact sections. The COV of 𝑅𝐷 is identical to the 
one of the intact element.  

4 NUMERICAL INVESTIGATION 

4.1 Computations 
Computations are performed with Monte Carlo Si-
mulations (MCS) with 105 samples. MCS enable the 
evaluation of the full distribution of the damaged 
area, 𝑓𝐴𝐹|𝐷�(𝑎) and 𝑓𝐴𝐹|𝐷(𝑎), as required in Eq. (2). 
As an independent check, and to assess the sensitivi-

ty of the results on the probabilistic model, we addi-
tionally use First-Order Reliability Method (FORM) 
to compute the probability of system failure, 
𝑃𝑟�𝐹(𝑡)�. 

4.2 Results 
Table 2 summarizes the probability of failure of the 
critical sections for the three structural configura-
tions, which correspond to the sections that are 
checked in the deterministic design. These calcula-
tions assume that there are no systematic errors in 
the purlins. The results confirm that the design relia-
bility is identical for the three configurations, which 
is expected since all three were designed to have the 
same utilization factor. It is furthermore noted that 
the reliability index is lower than the target value 
given in Eurocode 0, which is 𝛽 = 4.7 for a one-
year reference period. The FORM sensitivity factors 
presented in Table 3 show that the uncertainty in the 
snow load 𝑄, the shape factor 𝐶 and the bending 
strength 𝑅 determine the reliability. The difference 
between the calculated reliability indexes and the 
target value of Eurocode 0 might be explained by the 
significant uncertainty in the shape factor 𝐶. 

Table 4 summarizes the probability of system 
failure in 50 years given that there are no systematic 
errors 𝑃𝑟 (𝐹|𝐷�) for the three structural configura-
tions. As observed, the reliability of the three sys-
tems is not identical, due to the varying numbers of 
critical sections. Configuration (a) has the largest 
number, since it contains more purlins and each pur-
lin has a critical section (in the middle of the spans). 
Configurations (b) and (c) have only two critical sec-
tions in each line (in the outer spans). Furthermore, 
configuration (c) has less purlins than (b) due to the 
larger possible distance between the purlins. The dif-
ferences between the FORM and the MCS results in 
Table 4 can be explained by the approximations 
made in the FORM analysis.  

 
Table 2.  Probability of failure of a critical section j, 
𝑃𝑟�𝐹𝑗(1𝑦𝑟)|𝐷�� and corresponding reliability index 𝛽𝑗 . 

 𝑃𝑟�𝐹𝑗(1𝑦𝑟)|𝐷��  𝛽𝑗   
(a) Simply supp. 7.4·10-6 4.33  
(b) Continuous  7.9·10-6 4.32  
(c) Lap-Jointed  7.0·10-6 4.34 
 

 
Table 3. FORM sensitivity factors for a single purlin 
  𝛼𝑄     𝛼𝐶  𝛼𝐺   𝛼𝑃   𝛼𝑅  
(a) Simply supp. 0.604 0.597 0.0080 0.037 -0.526 
(b) Continuous  0.604 0.597  0.0078 0.037 -0.526 
(c) Lap-Jointed  0.604 0.597 0.0077 0.037 -0.526 

 



Table 4.  Probability of system failure 𝑃𝑟(𝐹(50𝑦𝑟)|𝐷�).  
 MCS FORM                    
                    (95% confidence interval)    
(a) Simply supp. 4.51·10-2 ÷4.76·10-2 1.81·10-2  
(b) Continuous 1.75·10-2÷1.92·10-2 1.45·10-2 
(c) Lap-Jointed 1.39·10-2 ÷1.54·10-2 1.32·10-2 

 
 

Because degradation of the material has not been 
considered, the failure rate is approximately constant 
over the service life period. 

Figure 7 shows the computed CDF of the failed 
area 𝐴𝐹 conditional on the system having failed 𝐹 
and on the absence of systematic errors 𝐷�, 
𝐹𝐴𝐹|𝐹,𝐷�(𝑎). It can be observed that a failure in the 
structural system with simply supported purlins (a) 
results in smaller damages than the other configura-
tions. In configuration (a), a smaller number of pur-
lins (and consequently a smaller proportion of the 
roof area) will fail. In the other two, statically inde-
terminate, configurations, progressive collapse me-
chanisms lead to a larger number of purlin failures 
once the first section has failed (see Figure 3). The 
continuous purlin configuration (b) behaves better 
than the lap-jointed configuration (c). Table 5 lists 
the probability of system failure given that there is a 
systematic weakening of the system, 𝑃𝑟 (𝐹|𝐷), for 
the three structural configurations. As expected, this 
leads to an increase in the probability of system fail-
ure compared to the case of no weakening.  

 

 
Figure 7. 𝐹(𝐴𝐹|𝐹,𝐷�) for the three systems without systematic 
weakening. 

 
Table 5. Probability of system failure 𝑃𝑟(𝐹(50𝑦𝑟)|𝐷) 
confidence  𝑃𝑟(𝐹(50𝑦𝑟)|𝐷)    
 interval at 95%  𝑝 = 30%      
(a) Simply supp. 9.38·10-2 ÷9.57·10-2 

(b) Continuous 5.21·10-2 ÷5.50·10-2 
(c) Lap-Jointed 2.94·10-2÷3.15·10-2 
 
 
Figure 8 shows the computed CDF of the failed area 
𝐴𝐹 conditional on the system having failed 𝐹 and on 
the presence of systematic weakening 𝐹𝐴𝐹|𝐹,𝐷(𝑎). 
The three configurations show the same trend as in 
the case of the error-free system (Figure 7), howev-

er, in the case of systematic weakening the average 
size of the failed area is slightly lower. This is ex-
plained by the fact that, in this case, the uncertainty 
in the capacity has a stronger effect. This leads to a 
decrease in the statistical dependence among failures 
of individual sections and, therefore, large numbers 
of purlin failures become less likely.  
 

 
Figure 8. 𝐹(𝐴𝐹|𝐹,𝐷) for the three systems with systematic 
weakening. 

 
Table 6 lists the expected values of the size of the 
failed area 𝐴𝐹 given system failure in both cases: the 
higher the static indeterminacy, the higher the ex-
pected area failed.  
 

 
Table 6. Expected value of area failed 

 E[𝐴𝐹|𝐹,𝐷�] E[𝐴𝐹|𝐹,𝐷] 
 𝑝 = 0 𝑝 = 30%   
(a) Simply supp. 2.87 2.52  
(b) Continuous 4.04 3.89  
(c) Lap-Jointed 5.39 5.30 

 
 

Following Eq. (2), we can compute FAF|F (i.e. the 
distribution of the failed area when it is unknown 
whether a systematic weakening of the system is 
present or not) as  

𝐹𝐴𝐹|𝐹(𝑎) = 

= 𝐹𝐴𝐹|𝐷�(𝑎)𝑃𝑟(𝐷�|𝐹) + 𝐹𝐴𝐹|𝐷 (𝑎)𝑃𝑟(𝐷|𝐹)  
(13) 

where the probability Pr(D|F) is computed by 
Bayes’ rule as 

𝑃𝑟(𝐷|𝐹) = 𝑃𝑟(𝐹|𝐷)𝑃𝑟(𝐷) /𝑃𝑟(𝐹)  (14) 

𝑃𝑟(𝐹) = 𝑃𝑟(𝐹|𝐷)𝑃𝑟(𝐷)
+ 𝑃𝑟(𝐹|𝐷�) 𝑃𝑟(𝐷�) (15) 

Figure 9 and Figure 10 show the CDF of the failed 
area AF conditional on the system having failed F. In 
Figure 9 we assume a lower probability of having 
systematic errors (𝑃𝑟(𝐷) = 0.01) than in Figure 10 
(𝑃𝑟(𝐷) = 0.10). However, it can be observed that 
the difference between the results obtained with 
these two assumptions is minor (as is the difference 



to the results obtained for the system without weak-
ness). The reason is that the effect of the weakness 
on the conditional distribution is low, as seen from 
comparing Figure 7 with Figure 8. 
 

 
Figure 9. F(AF|F) for the three configurations for Pr(D) = 1%.  

 
Figure 10. F(AF|F) for the three configurations for Pr(D) =
10%. 

 
Table 7 lists the expected values of the size of the 
failed area AF given system failure F, for the two 
values of 𝑃𝑟(𝐷). 
 
Table 7. Expected value of area failed given the failure event 
(%). 

 E[𝐴𝐹|𝐹] E[𝐴𝐹|𝐹]
 𝑃𝑟(𝐷) = 1%       𝑃𝑟(𝐷) = 10% 
(a) Simply supp. 2.86 2.81 
(b) Continuous 4.04 4.00 
(c) Lap-Jointed 5.39 5.37 
 
 
EN 1991-1-7 includes a requirement that a failure 
should not lead to a failed area in excess of 15% of 
the total area. To check this “robustness” criterion, 
we calculate the probability that the failed area ex-
ceeds 15% of the total area given a failure, Table 8.  

 
Table 8. Probability of the failed area exceeding 15% of the to-
tal area upon failure (for 𝑃𝑟(𝐷) = 0.1).  
 1− 𝐹(𝐴𝐹 = 15%|𝐹) 
(a) Simply supp. 0.027 
(b) Continuous 0.035 

(c) Lap-Jointed 0.032 

 

Finally, the risk, which is defined as the expected 
size of the failed area E[AF] in Eq. (1), is summa-
rized in Table 9.  
 
Table 9. Expected value of area failed (%). 

 E[𝐴𝐹] E[𝐴𝐹]
 𝑃𝑟(𝐷) = 1%         𝑃𝑟(𝐷) = 10% 
(a) Simply supp. 1.3·10-3 1.4·10-3 

(b) Continuous 0.8·10-3 0.9·10-3 

(c) Lap-Jointed 0.8·10-3 0.9·10-3 

5 DISCUSSION 

When designing a structural system it must be en-
sured that none of the limit state conditions is vi-
olated, in accordance with the code. This ensures an 
acceptable reliability of the system. In addition, the 
system should be designed for robustness, for which, 
however, there are at present no commonly applied 
quantitative criteria. Finally, from a decision-
theoretic point-of-view, the optimal structural design 
is the one minimizing the total expected cost (design 
and maintenance cost plus risk). In this study, we in-
vestigated different configurations of secondary 
structures in wide-span timber structures. All three 
configurations comply with the code requirements 
and the critical sections all have the same reliability 
(Table 2). However, the system reliability of the 
three configurations is different because of the vary-
ing number of elements and the fact that system fail-
ure is defined through a series system (Table 4). 

In terms of robustness, it can be argued that struc-
tural system configuration (a) consisting of simply 
supported purlins is the optimal one, because a fail-
ure in this configuration leads to the smallest failed 
area (Figure 9 and Figure 10) and it has the lowest 
probability of not fulfilling the 15%-area require-
ment (Table 8). These calculations include the pos-
sibility of a random but systematic reduction of 
strength (e.g. due to gross errors). 

However, the risk calculated for configuration (a) 
is higher than for configurations (b) and (c), which 
are statically indeterminate (Table 9). This is due to 
the fact that the probability of system failure is high-
er for configuration (a), even though the conse-
quences are lower. Therefore, it is argued that de-
spite the fact that configuration (a) is more robust, 
this study indicates that configurations (b) and (c) 
are more optimal. In addition, configuration (c) is 
the cheapest, thus supporting this choice of this con-
figuration from a risk (or rather expected cost) pers-
pective. This points to a general problem in the defi-
nition of robustness, which is beyond the scope of 
this paper, namely that a more robust system might 
often be less optimal from a risk analysis point-of-
view. These conclusions, drawn from the results pre-
sented, are also dependent on the fact that the dis-
tances ep between the purlins were adapted in order 



to receive the same utilization factor for all systems. 
In reality, the distances are based on requirements 
from the roof cladding. If the same distances would 
be applied to all systems, assuming a consistent uti-
lization factor, the three systems would show a more 
similar behavior. If configurations (b) and (c) would 
be modified to have the same distance between pur-
lins than (a), they would become slightly more ro-
bust but would also have a higher probability of sys-
tem failure and thus exhibit a higher risk. 

The presented study is limited in scope and not 
sufficient to make final conclusions on which confi-
guration is optimal for secondary structures in wide-
span timber structures, because of the assumption 
that the primary beams are intact. In future work, the 
model will be extended to include such failures. 
However, the results obtained from this study do 
provide valuable insight in the observed behavior 
(namely that the statically indeterminate configura-
tions are less robust but more optimal) might also 
hold for other systems. The risk-based approach pre-
sented in this paper facilitates such investigations.  

6 CONCLUSIONS 

Three different configurations of secondary struc-
tures in wide-span timber structures are compared 
with respect to their reliability, robustness and risk. 
Despite the fact that all three systems are designed to 
have the same reliability in the critical sections, the 
statically indeterminate configurations have a higher 
system reliability due to the smaller number of ele-
ments. On the other hand, the configuration with ex-
clusively statically determinate elements exhibits 
lower consequences in the case of failure, which can 
be interpreted as a higher robustness. However, this 
configuration has the highest risk. It is concluded 
that robustness and risk can be contradictory criteria. 
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