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Abstract

This PhD thesis mainly consists of three parts.

In part one, unsteady and linear porous-media flow is considered, and the behavior of the
coefficients in the unsteady Darcy equation is investigated. One of the coefficients, the time
scale, can be obtained by consistent volume-averaging of the Navier-Stokes (VANS) equa-
tions together with a closure for the interaction term. Two different closures can be found
in the literature, a steady-state closure and a virtual mass approach considering unsteady
effects. These approaches are contrasted with an unsteady form of Darcy’s equation derived
by volume-averaging the equation for the kinetic energy. A series of direct numerical simu-
lations (DNS) of unsteady flow in the pore space with various complexities is used to assess
the applicability of the unsteady Darcy equation with constant coefficients. The results
imply that the new kinetic energy approach shows perfect agreement for transient flow in
porous media. The time scale predicted by this approach represents the ratio between the
integrated kinetic energy in the pore space and that of the intrinsic velocity. This ratio can
be significantly larger than that obtained by VANS using the steady-state closure for the
flow resistance term.

In part two, the extension of part one into oscillatory (sinusoidal) flow is investigated. DNS
has been performed to benchmark the analytical solutions of the unsteady Darcy equation
with the time scales obtained by VANS with a steady-state closure, and by the energy
approach. For small and medium frequencies, the analytical solutions with the time scale
by the energy approach compare well with the DNS results in terms of amplitude and phase
lag. For large dimensionless frequencies (ωτ & 10) the time scale obtained by the energy
approach is slightly bigger than the DNS results, and it can be explained in a change in the
velocity fields toward a potential flow solution. However, the time scale predicted by the
VANS approach with a steady-state closure is too small. In general, this study supports
the use of the unsteady Darcy equation with constant coefficients to solve oscillatory Darcy
flow, provided, the proper time scale has been found.

In part three, unsteady and non-linear porous-media flow is considered. The physical quan-
tity that determines the instants at which the non-linear effects set in (onset) is searched,
and the applicability of the unsteady Forchheimer equation with constant coefficients has
been investigated. Mathematical expressions have been derived to describe the onset of the
non-linear effects, and a series of direct numerical simulations (DNS) of unsteady flow in the
pore space with various complexities is used to assess these questions. The results imply
that, instead of the instantaneous pore Reynolds number, the Stokes Reynolds number based
on the Stokes boundary layer thickness should be considered to examine the onset of the
non-linear effects. Moreover, the DNS results show that some non-linear flows subjected to
a sudden step change in pressure gradient experience overshoot in superficial velocity before
the steady-state takes place, and this overshoot can hardly be expressed by the unsteady
Forchheimer equations with constant coefficients.
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1 Introduction

1.1 Unsteady porous-media flow

A porous medium is a substance that contains pores or spaces between solid material through
which liquid or gas can pass. Unsteady flows in porous media play an important role in many
various fields of technical applications and environmental problems. Some examples are listed
as follows.

The catalytic converter in a vehicle allows the conversion from harmful compounds to
less harmful ones, mainly the conversion from Nitrogen Oxides, hydrocarbons and Carbon
Monoxide to Nitrogen, water and Carbon Dioxide (Mart́ınez-Mart́ınez et al., 2010). Because
of the flow complexity, it is essentially a difficult task for engineers to optimize the geom-
etry, characteristics and position of the catalytics in order to increase conversion efficiency
and engine performance (D’Errico et al., 2000). Because the catalytic substances such as
platinum or palladium usually lie on a ceramic porous bed, porous media flow models have
been adopted by many researchers to investigate these problems (Żmudka and Postrzednik,
2011; Laxmi et al., 2013; Wahid, 2014). Many researchers also noted that due to significant
pressure and temperature oscillations, the exhaust flow is unsteady (D’Errico et al., 2000;
Hwang et al., 2007).

Fischer-Tropsch synthesis, which is responsible for conversion of synthesis gas (carbon monox-
ide and hydrogen mixture) into a mixture of linear hydrocarbons, is the most common stage
in Gas-to-liquids technology. Active catalysts might help to realize the high conversion per-
formance. The recent work of Ermolaev et al. (2015) has shown that unsteady porous media
flow models can be applied to model gas flow through Multitubular fixed-bed reactors in the
Fischer-Tropsch synthesis industry.

In the cooling system of gas turbines, e.g., coolant gas transfers through a porous wall
which requires cooling, resulting mixing between coolant gas and hot gas stream on the
other side of the wall. The mixed gas layer lies between the warmer surface of the porous
wall and the hot gas stream, which reduces the heat flux from the hot gas to the porous
wall, thus increases thermodynamic efficiencies. Such a process is referred to as transpi-
ration cooling (Cerri et al., 2007). For such problems, Dahmen et al. (2013) and Huang
et al. (2014) have conducted numerical simulations using porous media models, but are re-
stricted in steady-state solutions. Swapna and Varmab (2014) however, focused on unsteady
results.

Bioheat usually refers to heat transfer in human tissues. Example processes are heat con-
duction, heat transfer due to blood convection and metabolic heat generation (Khaled and
Vafai, 2003). Attempts have been carried out by biomedical engineers to set up accurate
models for bioheat, since it is the basis for the human thermotherapy and thermoregulation
system (Sanyal and Maji, 2001; Khaled and Vafai, 2003). These models can be developed
either by the mixture theory of continuum mechanics or by the porous-media theory (Fan

1



2 1.2 Main approaches

and Wang, 2011). In the porous media theory unsteady flows have been considered for mass
diffusion, flow convection and bioheat equations in blood flow (Fan and Wang, 2011; Khaled
and Vafai, 2003).

Submerged aquatic canopies describe many benthic organisms forming very rough surfaces
on the sea floor. The flow structure within them can significantly affect the ecology of the
benthic organisms and the biological processes such as nutrient exchange and uptake. In
turn the presence of the porous submerged canopies affect the hydromechanics occurring
withing them (Lowe et al., 2008). Understanding the flow structure within the canopies is
of significant importance. Submerged canopies in general constitute porous media. In the
ocean they will be exposed to nearly oscillatory (Lowe et al., 2005) and thus unsteady flow
due to the wave motion.

The Earth’s terrestrial vegetation plays an important role in the hydrological, nitrogen, and
phosphorus cycles. The oxidation capacity or cleansing ability of the atmosphere, e.g., can
be significantly influenced by a variety of chemical compounds that are produced by living
foliage (Fuentes et al., 2000; Guenther et al., 2006). Thus understanding the processes in
plant canopy-atmosphere exchange is of critical importance for weather, climate and envi-
ronmental forecasting as well as for agricultural and natural resource management (Patton
and Finnigan, 2013). In many cases plant canopies constitute porous media, and the heat
and mass transfer between a canopy and the atmospheric boundary layer is governed by the
turbulent flow which is unsteady (Finnigan, 2000).

In places where it is snow covered for most of the year, the chemistry of the atmosphere and
the underlying snow and firn is affected by snow-air exchanges (Albert and Shultz, 2002).
The production of CO2 in the frozen soil and how it is transported to the atmosphere also af-
fect the annal CO2 generation (Winston et al., 1995). In general, understanding the transfer
process of gas and other chemical species (e.g. CO2) through the upper layers of soil and/or
snow is of significant important for geological studies concerning glacial ice or climatology
studies concerning CO2 generation. These processes are influenced by unsteady turbulent
pressure fluctuations. This effect has been commonly treated under the term pressure pump-
ing (Bowling and Massman, 2011; Maier et al., 2011).

So far, a unique description and modeling of these unsteady flow problems cannot be found in
the literature, and different concepts on how to treat them exist.

1.2 Main approaches

Porous-media flows can be classified not only into steady and unsteady flows, depending
on whether the physical quantities inside the fluids vary with respect to time, but also
into linear and non-linear flows (if we do not consider turbulence), depending on whether
the macroscopic pressure gradient is linear to the macroscopic mean velocity. For different
combinations of these classifications, different governing equations must be considered to
describe the flows on the macro scale.

Steady and linear porous-media flows take place when the flow is steady and with a very low
pore Reynolds number Repore = Ud

ν
, where U is the macroscopic mean velocity, d is the pore

size and ν is the kinematic viscosity. In such flows, the viscous forces are dominant, and the
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Darcy’s law

∇p = aU, (1.1)

is commonly applied to predict the flow on the macro scale(Darcy, 1856), which states
that the macroscopic pressure gradient ∇p is balanced by a linear term of the macro-
scopic mean velocity U , and the coefficient a represents the linear part of the interaction
force.

For steady and non-linear flows, the pore Reynolds number Repore is usually larger than 1,
and inertia effects gain weight. The macroscopic pressure gradient becomes non-linear to
the macroscopic mean velocity. A quadratic macroscopic velocity term(Forchheimer, 1901)
has been added to correct the momentum balance

∇p = aU + bU2, (1.2)

where the coefficient b represents the quadratic part of the interaction force. This equation
is called the Forchheimer equation.

For unsteady and linear flows, a phase shift between pressure drop and macroscopic mean ve-
locity can exist (Laushey and Popat, 1968). It results from the inertia of the accelerated fluid,
and must be represented by a time derivative of the mean velocity. The resulting equation
can be written as the unsteady Darcy equation(Burcharth and Andersen, 1995; Kuznetsov
and Nield, 2006; Rajagopal, 2007; Sollitt and Cross, 1972)

∇p = aU + c ∂tU, (1.3)

where the coefficient c represents the inertia term due to flow acceleration.

For unsteady and non-linear flows, many researchers (Gu and Wang, 1991; Hall et al., 1995;
Burcharth and Andersen, 1995; Lowe et al., 2005) used the unsteady Forchheimer equa-
tion

∇p = aU + bU2 + c ∂tU, (1.4)

to describe the flow.

A summary of the macroscopic governing equations in different flow regimes can be found
in Fig. 1.1.

In steady flows, for both Darcy’s law (1.1) and Forchheimer equation (1.2), general math-
ematical expressions of the coefficients a and b have already been determined from experi-
ments (Darcy, 1856; Forchheimer, 1901). Both equations (1.1) and (1.2) have been proved
to be accurate when describing steady flows on the macro scale (for details, see section
2.2).

While in unsteady flows, a full agreement between experimental results and behavior pre-
dicted by the unsteady Darcy and Forchheimer equations (1.3) and (1.4) with fitted co-
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Figure 1.1: Macroscopic governing equations in different flow regimes

efficients has not yet been achieved, although attempts have been made to determine the
coefficients a, b, and c from experiments (Gu and Wang, 1991; Hall et al., 1995; Burcharth
and Andersen, 1995; Lowe et al., 2005). One could assume a and b in unsteady problems
to have the same values as those in steady problems, and verify this later in experiments;
the coefficient c, however, is essentially the most difficult part in these problems. Agree-
ments on a general mathematical expression of c for all porous mediums have never been
made.

For unsteady and linear flows, the general mathematical expression for this coefficient c (or
the time scale τ = c/a) can mainly be derived with the so-called Volume-Averaged Navier-
Stokes (VANS)(Whitaker, 1986, 1996) approach. It defines a volume-averaging operator,
which integrates any physical quantity inside a Representative Elementary Volume (REV)
and divide it by the volume, leading to an averaged quantity. Applying the volume-averaging
operator to the momentum equation of the Navier-Stokes equations, Whitaker (1996) derived
the volume averaged momentum equation. However, in such a system of the averaged
equations, the number of the unknowns are greater than the number of the equations, thus
a closure is required, in order to make the system of equations solvable. Whitaker (1996)
proposed that the interaction term at the pore/grain interface could be closed by the steady-
state Darcy and Forchheimer approximations. Under the conditions of unidirectional flow
through isotropic, homogeneous material at low Reynolds number, this equation can be
written with a structure identical to that of the unsteady Darcy equation (1.3), and c (or τ =
c/a) can be determined. Another closure which can be used to close the averaged momentum
equations in the VANS approach results from the so-called virtual mass approach, which
was proposed by Sollitt and Cross (1972) to account for the inhomogeneity of the flow
field surrounding individual structures in the porous material during transient flow, when
inertial nonlinearities cannot be neglected. Applying such a closure to the volume-averaged
momentum equations also results in the same form of the unsteady Darcy equation (1.3),
and one can obtain another mathematical expression of c (or τ = c/a). However, in this
way it results in a larger time scale in unsteady porous media flow, compared to the VANS
approach with steady-state closure. To the author’s best knowledge, a systematic comparison
and assessment of the different formulations of the unsteady Darcy equation (1.4) and of the
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coefficient c has not been done so far.

Many difficulties are exposed when only exploring unsteady and linear flows; while for un-
steady and non-linear flows, the situations are even more complicated. The first questions
one could instantly come across might be: at which instants do the non-linear effects set
in, and which physical variable determines the ’onset’ (starting point) of these instants in
unsteady porous-media flows? In steady porous-media flows, the answer to these questions
seems to be very simple: when the pore Reynolds number is comparable to unity, the non-
linear effects set in (e.g. Lasseux et al., 2011). While in unsteady porous-media flows, this
is not yet verified. More importantly, we still do not know if the unsteady Forchheimer
equation (1.4) with constant coefficient a, b and c can be used to describe unsteady and
non-linear flows on the macroscopic scale very accurately. This needs to be assessed. There
are still too many questions remain unanswered in unsteady and non-linear flows, and this
PhD thesis only aims to answer a few of them.

1.3 Global problem statement

This PhD thesis mainly aims to answer the following questions:

• For unsteady and linear flows, is the unsteady Darcy equation (1.3) together with con-
stant coefficients accurate, and can it be used to describe these flows on the macroscopic
scale?

• Is there a general mathematical expression for the coefficient c in unsteady Darcy
equation (1.3)? If yes, what is it?

• What would be the case in linear, oscillatory flows? Is the unsteady Darcy equation
(1.3) accurate in all frequency ranges?

• For unsteady flows, which physical variable determines the onset of the non-linear
effects?

• For unsteady and non-linear flows, is the unsteady Forchheimer equation (1.4) together
with constant coefficients accurate, and can it be used to describe these flows on the
macroscopic scale?
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2 State of the Art

2.1 Mathematical descriptions of porous media
flow

There are different ways of mathematical descriptions of porous media flow. On the pore
scale, the flow is normally described by the Navier-Stokes equations. While on the macro-
scopic scale, since macro scale is far larger than the pore scale, a full resolution of the pore
scale costs too much computational power. Thus applying models such as the VANS is neces-
sary. In this section, we discuss about these mathematical descriptions.

2.1.1 Navier-Stokes equations

On the microscopic scale, the incompressible flow of a Newtonian fluid through a porous
medium can be described by the Navier-Stokes equations :

ρ∂tu + ρu ·∇u = −∇p+ ρg + µ∇2u, (2.1)

divu = 0, (2.2)

where ρ denotes the density of the fluid, p denotes the pressure field and u denotes the
(Eulerian) velocity field. The gravitational force g will be dropped in the next sections, as
it could be lumped together with the pressure term. The convective operator is defined as
usual, i.e., u ·∇u :=

∑d
i=1 ui ∂xiu.

The Navier-Stokes equations are derived by applying Newton’s second law to a continuum,
the principle of mass conservation and a constitutive law which relates the shear stresses in
a fluid to the rate of deformation of a fluid element.

To solve the Navier-Stokes equations without applying any additional mathematical models,
one applies the Direct Numerical Simulations (DNS). In this method all turbulent eddies
in turbulent flow ranging from the large scale (L) down to the Kolmogorov scale (η) are
resolved by very fine computational grids. The ratio between large and small scales is given
by Re3/4. Thus, because of three dimensionality of the flow, the number of grid points (and
thus the required memory) scales with Re9/4. As a result, DNS is a very clean but expansive
tool for solving the Navier-Stokes equations in turbulent flow. In laminar flows however, the
Kolmogorov scales do not exit and thus grid study is necessary to determine the overall grid
resolution.

7
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2.1.2 Volume-Averaged Navier-Stokes

On the computational basis, theoretically all of the unsteady porous media flow problems
can be solved by Direct Numerical Simulations (DNS). However, due to the fact that in most
cases the macroscopic flow domain is far larger than the pore scale, fully resolving the pore
scales requires a huge amount of computational power. Thus building mathematical models
for computations with coarser grids is necessary.

The volume-averaging procedure has been applied by many authors to investigate steady-
state porous-media flow in early studies (Bear, 1972; Gray and O’Neill, 1976; Hassanizadeh
and Gray, 1979; Shapiro, 1981; Slattery, 1969; Whitaker, 1969), and further developed by
Whitaker (1986, 1996), being applied on Stokes and Navier-Stokes equations, which can be
used to derive the Darcy’s law and the Forchheimer equation.

For consistency with the prior work of Whitaker (1986), we denote the fluid phase by β and
the solid phase by σ. Figure 2.1 illustrates the β and σ phases in flow in a rigid porous
medium.

The averaging volume is denoted by V , and Vβ denotes the volume occupied by the fluid.
The superficial average of any physical quantity ϕ that is associated with the fluid phase β
is defined by

〈ϕ〉s =
1

|V |

∫
Vβ

ϕ dx. (2.3)

We also introduce the intrinsic average

〈ϕ〉i =
1

|Vβ|

∫
Vβ

ϕ dx, (2.4)

which is related to the superficial average by 〈ϕ〉s = ε〈ϕ〉i, where the ratio of the volumes
ε = |Vβ|/|V | denotes the porosity. Let us recall that we can decompose any physical quan-
tity ϕ = 〈ϕ〉i + ϕ̃ into its intrinsic average 〈ϕ〉i and a spatial deviation ϕ̃ (Whitaker, 1986).
Figure 2.2 gives an illustration of macroscopic porous medium and local volume for averag-
ing.

Whitaker (1986) applied the volume-averaging operator to the Stokes equations

0 = −∇p+ ρg + µ∇2u, (2.5)

divu = 0, (2.6)

where the gravitational force g will be dropped at this point,as it could be lumped together
with the pressure term, obtaining an averaged form of the Stokes equations:

0 = −〈∇p〉s +
〈
µ∇2u

〉
s
, (2.7)

〈divu〉s = 0. (2.8)

Note that two important assumptions has been applied to help further derive the averaged
Stokes equations, which are the length constraint and the relation between the average
of a gradient and the gradient of an average. The former (Whitaker, 1986) is defined as
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Figure 2.1: Illustration of flow through a rigid porous medium

Figure 2.2: Illustration of macroscopic porous medium and local volume for averaging



10 2.1 Mathematical descriptions of porous media flow

l� r0 � L, (2.9)

where r0 is the radius of the averaging volume, l is the pore scale and L is the macroscopic
scale, while the latter (Anderson and Jackson, 1967; Marle, 1967; Slattery, 1967; Whitaker,
1967) is defined as

〈∇ϕ〉s = ∇〈ϕ〉s +
1

|V |

∫
Aβσ

nβσϕ dA, (2.10)

where Aβσ represents the interfacial area between fluid and solid contained within the av-
eraging volume and nβσ represents the unit outwardly directed normal vector for the fluid
phase.

These assumptions (2.9) and (2.10) can be used to derive the final volume-averaged Stokes
equation from equation (2.7):

0 = −∇〈p〉i +
1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA︸ ︷︷ ︸
surface filter

. (2.11)

The second term on the right side of equations (2.11) is named later by Whitaker (1996) as
a surface filter, which represents the drag due to surface forces at the fluid-solid interface. It
is identical to what Rajagopal (2007) referred to as an interaction term. The surface filter
consists of spatial deviation terms p̃ and ũ, and the result is that the number of unknowns is
greater than the number of equations in the system, and thus the system cannot be solved
without a closure term. To close the system, spatial deviations must be converted to averaged
quantities. Whitaker (1986) proposed that for steady flow with very small pore Reynolds
number, the steady-state closure for the surface filter consists the superficial velocity 〈u〉s
and the permeability tensor K, where K can be determined by solving some boundary
value problems in a Representative Elementary Volume (REV), which would be treated as
a unit cell in a spatially periodic porous medium, and is far away from the macroscopic
boundaries, i.e., inlet and outlet of the fluid that is contained within the porous medium.
Inserting this closure back to equation (2.11) would eventually lead to the Darcy’s law.
Whitaker (1986) noted that the solution of K by means of the boundary value problems
represents a formidable computational problem, and that a unit cell in a spatially periodic
porous medium will be used to determine K. This procedure can be easily applied and
solved in simple systems with spatially periodic unit cells, such as a bundle of capillary
tubes (Whitaker, 1986).

A more developed procedure is provided by Whitaker (1996) to represent steady flow in
greater pore Reynolds numbers. In this case the Forchheimer effects due to inertia of fluids
must be counted (For more details, see section 2.2.2).

Applying the volume-averaging to the Navier-Stokes equations (2.1) and using the length
constraints (2.9) and equation (2.10), Whitaker (1996) eventually derived the following form
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of the Volume-Averaged Navier-Stokes

ρ∂t〈u〉i + ρ〈u〉i div 〈u〉i + ρε−1 div 〈ũũ〉s︸ ︷︷ ︸
volume filter

= −∇〈p〉i + µ∇2〈u〉i︸ ︷︷ ︸
Brinkman correction

+
1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA︸ ︷︷ ︸
surface filter

.
(2.12)

Whitaker (1996) considered quasi-steady flow and ignored the time derivative term on the
left hand side. He also argued that for non-linear flow the second and third terms on
the left hand side are small compared to the surface filter, using order-of-magnitude argu-
ments, the length constraints (2.9) and the concept of inertial length (Whitaker, 1982). The
Brinkmann term on the right hand side can also be ignored under the length constraints
(2.9). For non-linear flow, the surface filter is closed by a steady-state closure which con-
sists of a permeability term linear to the superficial velocity 〈u〉s and a Forchheimer term
quadratic to 〈u〉s. The permeability tensor K and the Forchheimer tensor F can both be
solved in some boundary value problems, in a unit cell identical to the one as aforemen-
tioned. Whitaker (1996) stated that solving these boundary value problems is essentially
identical to solving the Navier-Stokes equations for steady incompressible flows in a spatially
periodic system, and any Navier-Stokes code can be applied to solve these boundary value
problems.

Whitaker theoretically derived the Forchheimer equation by inserting the steady-state clo-
sure for the surface filter containing K and F back to equation (2.12). This procedure
is mainly practical in homogeneous media. Up to this point, the famous procedure of
the volume-averaged Navier Stokes equations (VANS) is restricted in steady-state prob-
lems only, as Whitaker (1996) simply neglected the time derivative term in the Navier-
Stokes.

2.2 Steady porous media flow

Before we dig into unsteady porous media flow, the state of art in steady porous media
flow will be discussed in this section. It is necessary to discuss it here because although
the unsteady porous media flows are more complex than the steady flows, the theories
behind them are similar to each other. In the next following sections, we mainly introduce
the classical Darcy’s law (Darcy, 1856), the Forchheimer equation (Forchheimer, 1901) and
different regimes concerning the flow state.

2.2.1 The Darcy’s law

In steady porous media flows, the space-averaged/macroscopic velocity is dependent on the
pressure/hydraulic gradient which causes the motion. This dependency varies with the pore
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Reynolds number which is defined as follows:

Repore =
|〈u〉s|d
ν

(2.13)

where |〈u〉s| is the magnitude of the superficial/macroscopic velocity, d is the pore/grain
size and ν is the kinematic viscosity. For very small pore Reynolds numbers (Repore � 1)
viscous forces dominate the flow and the inertia effects (forces) may be neglected. It is well
established in this case that the classical Darcy’s law describes the proportional dependency
of the averaged velocity on the pressure gradient:

∇〈p〉i = a · 〈u〉s, (2.14)

where ∇〈p〉i and 〈u〉s represent the macroscopic pressure gradient and the macroscopic
steady, superficial velocity. The proportionality constant a is dependent on the Darcy per-
meability KD of the porous medium and the dynamic viscosity µ of the fluid as a = −µ/KD.
Note that KD is intrinsic to the geometry of the porous medium studied and it can be mea-
sured from experiments using Darcy’s law. KD is a scalar in 1-D flows. In three dimensional
cases, KD becomes a tensor.

Darcy’s law implies that the driving force is entirely balanced by the resistive force. This
relation was first discovered by Darcy (1856) on experimental basis. It gives a governing
equation for one dimensional steady-state porous-media flow at very small pore Reynolds
number. Yet it does not provide any formidable computational problem directly. Up-scaling
methods on the computational basis, such as those by Whitaker (1986) and Sanchez-Palencia
(1980), theoretically substantiated Darcy’s law.

2.2.2 The Forchheimer equation and non-linear
regimes

Strong inertia regime and the Forchheimer equation

The regime in which the Darcy’s law is valid is referred to as the linear regime. The linear
regime represents a state in which the pore Reynolds number is very small and the inertia
effects are weak.

As velocities increase in magnitude, however, the inertial effects become stronger. When the
pore Reynolds number becomes comparable to unity, the linear relation between pressure
gradient and volume averaged velocity may not hold. Starting from the original publi-
cation of Forchheimer (1901), various formulations of a correction to the the linear rela-
tion (2.14) using polynomials have been proposed in literature, and they all have the same
form:

∇〈p〉i = a〈u〉s + b〈u〉ms , (2.15)

where b is a constant intrinsic to the porous medium and the density of the fluid, being a
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negative value; and m is a constant.

In early studies, m is found to be a number close to 2 (Green and Duwez, 1951; Cornell and
Katz, 1951), e.g., in the friction factor - Reynolds number plot in experiments concerning gas
flow through consolidated porous rock samples (Cornell and Katz, 1951). Many researchers
denote this regime as the strong inertia regime, in which the quadratic correction b〈u〉2s is
applied in equation (2.15) to fully represent the force balance in the flow. Equation (2.15)
with m = 2 is referred to as the Forchheimer equation, and the term b〈u〉2s is referred to as
the Forchheimer correction.

Many other experimental results also supported this quadratic correction. In a series of
experiments by Ergun (1952) to determine the friction factor of various materials in a packed
bed fashion, this quadratic formulation can be observed. Dullien and Azzam (1973) measured
the pressure drop with respect to the flow rate in capillary tubes in a wide range of the
Reynolds number, and found that the Darcy’s law is only valid up to Re = 30 − 50, and
the data over that Reynolds number should then be described by the quadratic Forchheimer
equation. MacDonald et al. (1979) used a large number of literature experimental data to test
the Ergun equation (Ergun, 1952) and the Ahmed - Sunada equation (Ahmed and Sunada,
1969), which is a rearrangement of the Forchheimer equation (Forchheimer, 1901). The
analysis proved that this quadratic term fitted all the data.

This quadratic correction is also supported on theoretical basis. By rigorous averaging of
the Navier-Stokes equations over an averaging volume and solving a steady-state closure
problem (Whitaker, 1996), the Darcy’s permeability tensor and the Forchheimer correction
tensor can be determined. This theory clearly indicates that the Forchheimer correction
is quadratic for small values of the Reynolds number. Chen et al. (2001) applied the ho-
mogenization method to the steady-state Navier-Stokes equation and eventually derived this
quadratic Forchheimer correction. Blick (1966) used the capillary-orifice model to predict
high speed flow through porous media, which consisted of a bundle of capillary tubes with
orifice plates spaced along the tubes; the distances between the orifice plates were equal
to the mean tube diameter. In this mathematical model he derived the quadratic Forch-
heimer correction term, which compared well with his experimental data. Cvetkovic (1986)
averaged the general form of the linear momentum balance of the Navier-Stokes equations
and derived a macroscopic equation which has the same form as equation (2.15) plus a time
derivative of the superficial velocity. In his macroscopic equation m = 2. Hassanizadeh and
Gray (1987) adopted the continuum approach to derive a general macroscopic equation of
fluid motion. In their theoretical derivations this quadratic correction is present. Ruth and
Ma (1992) applied the averaging theorem to the microscopic momentum equation to obtain
the macroscopic flow equation. They also studied some simple tube models of flow in porous
media. However, Ruth and Ma (1992) did not suggest a quadratic correction. They stated
that a polynomial of any order greater than one will apply. (Giorgi, 1997) used matched
asymptotics to derive a Forchheimer law for a rigid porous medium, and obtained the Forch-
heimer law by series expansion for anisotropic materials. Their derivations also supported
the quadratic Forchheimer correction.

This quadratic Forchheimer correction was not only concluded from experiments and theoret-
ical derivations, but also from computational results. Coulaud et al. (1988) conducted pore
scale simulations for 2-D cylinder arrays, with cylinders of either equal or non-equal diame-
ters, arranged in a regular pattern. The Navier-Stokes equations are discretized by the mixed
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finite-element method. Their results have fully supported the Forchheimer equation starting
from the pore Reynolds number being over 1. Ma and Ruth (1993) solved the full Navier-
Stokes equations describing flow through a diverging-converging unit cell by the vorticity-
stream function method for a wide range of flow Reynolds numbers. Their numerical results
have supported their theoretical derivations, which is considered as a further development
of the quadratic Forchheimer equation. Papathanasiou et al. (2001) simulated flow through
square and hexagonal arrays of uniform fibers, with the pore Reynolds number ranging from
0 to 160. The Navier-Stokes equations are solved on the pore scale using Finite Element
Methods. Their results have shown that when Repore < 1, the quadratic Forchheimer equa-
tion describes the computational results very well. At high pore Reynolds number they have
used a modified form of the Forchheimer equation, with the Forchheimer term expressed as
a function of porosity, to better fit the simulation results. Fourar et al. (2004) presented
simulation results of flows at high velocities through periodic 2-D staggered cylinder arrays
and 3-D hexagonal close packed spheres at various Reynolds numbers. They have observed
the quadratic correction at high Reynolds numbers and concluded that the non-linear 3D
porous-media flow can be correctly modeled by the Forchheimer’s equation. Mazaheri et al.
(2005) solved the Navier-Stokes equations on the pore scale in flow through a network model
of a porous medium, in which a network of cylindrical pores and parallelepiped connecting
throats was constructed. Their simulation results were compared with experimental results
using micro-particle imaging velocimetry (PIV) measurements and matched well. Their re-
sults have indicated that when the pore Reynolds number is large, the quadratic correction
must be applied to model macroscopic flow behaviours.

Weak inertia regime and turbulence regime

Since the 1990s, starting from the numerical results of Barrère (1990), new careful work have
supported researchers to question the quadratic correction to the Darcy’s law over the entire
Reynolds number range. At the onset of the deviation from the Darcy’s law, observations
have shown that m is not necessarily 2 in equation (2.15).

This can be found in literature concerning theoretical derivations, mostly using the homog-
enization method. Mei and Auriault (1991) used the theory of homogenization to examine
the non-linear effects due to weak convective inertia of the fluid inside the porous medium.
They have found that when the fluid inertia is small but finite, the correction term for
isotropic and homogeneous media is cubic in the macroscopic mean velocity. They also did
a study in the case of anisotropic 1D model of parallel corrugated tubes, and the correction
term is also cubic in this case. Skjetne and Auriault (1999) used multiple scale homog-
enization technique and analysis of fluid mechanical effects to model non-linear effects in
porous-media flows. They derived the general momentum and energy dissipation theorems
for flow in periodic media. They have found that when the pore Reynolds number is in
the order of O(δ−1), where δ = l/L denotes the ratio between the microscopic length l and
the macroscopic length L, the pressure gradient is proportional to the power of 3/2 in the
macroscopic mean velocity. For turbulence, however, a quadratic Forchheimer correction
term should be applied. Balhoff et al. (2010) also used the homogenization to model non-
linear effects in porous-media flows on a macroscopic level, and ran numerical simulations
that solved the full Navier-Stokes equations in a periodic sinusoidal geometry (constricted
tube). Both their derivations and simulation results have supported that for isotropic media,
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particularly at Repore < 1, the correction term is cubic in macroscopic mean velocity rather
than quadratic.

On the computational basis, many numerical results have also supported this discovery.
Firdaouss et al. (1997) performed numerical simulations on 2D periodic porous media with
different geometry configurations, including anisotropic staggered cylinder arrays with and
without central symmetry, periodic sawtooth model and a periodic irregular geometry. All
these simulations have demonstrated that for small Reynolds numbers, the nonlinear cor-
rection to Darcy’s law is cubic with respect to the superficial velocity. They also reinter-
preted some well-known filtration experiments by Darcy (1856), Hazen (1895) and Chau-
veteau (1965), and conducted a mathematical proof to support this claim. Koch and Ladd
(1997) applied Numerical simulations using a lattice-Boltzmann formulation to investigate
flow through periodic and random arrays of aligned cylinders. They have found that when
Repore � 1, the correction to Darcy’s law is cubic with respect to the superficial velocity.
Souto and Moyne (1997) used the finite volume method to solve the Navier-Stokes equa-
tions in 2D spatially periodic porous mediums consisting of rectangulars. They investigated
ordered medium such as in-line or staggered square cylinders, zigzag medium, and disor-
dered medium such as randomly distributed square cylinders. They have found that, for
isotropic media, when 1 < Repore < 20, the correction term for moderate Reynolds number
is cubic in superficial velocity. Rojas and Koplik (1998) conducted numerical computa-
tions based on a spectral element method to investigate flow through an array of cuboids of
square cross section. They have found that the correction term to Darcy’s law is cubic at
low Reynolds numbers, and quadratic when the Reynolds number is comparable to unity.
Skjetne et al. (1999) numerically solved the Navier-Stokes equations for flow in a self-affine
channel with a constant perpendicular opening (twisted channel), and verified the existence
of a so-called weak inertia regime, where the cubic correction term to the Darcy’s law is
valid. Jacono et al. (2005) ran 3D direct numerical simulations to complement the analysis
of the ”Oseen-Poiseuille” equations, which are developed from an asymptotic formulation
of the Navier-Stokes equations to study the influence of weak inertia. Their simulation re-
sults also supported the existence of the weak inertia regime, where the cubic correction is
present.

This cubic correction turns out to be more accurate than the quadratic one in the so-called
weak inertia regime, which is activated when the pore Reynolds number is in the range of
[δ1/2, 1], where δ represents the ratio between the microscopic and the macroscopic length
scales (Lasseux et al., 2011). However, when the Reynolds number increases beyond the
upper limit, the flow then enters the strong inertia regime, with the pore Reynolds number
typically ranging from about one to ten. In this regime, the Forchheimer correction is valid,
i.e., a correction to the classical Darcy’s law with quadratic dependency on the velocity can
be applied.

The recent computational results of Lasseux et al. (2011) using upscaling method has shown
that for ordered and disordered structure of porous media, the behavior of theses regimes can
be very different. In disordered structures, the Reynolds number interval corresponding to
weak inertia, that is always present, is strongly reduced in comparison to ordered structures.
This explains the reason why in most of the previous experimental results the weak inertia
regime is not observed.

Above the strong inertia regime, the flow can eventually enter the turbulence regime, when



16 2.2 Steady porous media flow

the pore Reynolds number is in the order of 100. This has been observed in experi-
ments and numerical simulations (Dybbs and Edwards; Ghaddar, 1995; Koch and Ladd,
1997).

In summary, the non-linear deviation from Darcy’s law can be classified into three different
regimes: (a) the weak inertia regime with the pore Reynolds number ranging within [δ1/2, 1],
where the non-linear correction is taken as a cubic function of the superficial velocity; (b)
the strong inertia regime with the pore Reynolds ranging in [1, 10], where the velocity
correction to the classical Darcy’s law is taken as a quadratic function, and the Forchheimer
equation is valid; and (c) the turbulence regime with a pore Reynolds number greater than
approximately 100.

2.2.3 Onset of the non-linear effects in steady porous media
flow

In early studies, the presence of the non-linear effects in porous-media flows has been at-
tributed to the occurance of turbulence (e.g. Tek et al., 1962), as in some specific flows
such as rough pipe flow, it is well known that in turbulence the driving force is quadratic
to the flow rate Cvetkovic (1986). It was discovered in later studies that much before the
onset of turbulence, the non-linear effects already set in (e.g. Scheidegger, 1960; Bear, 1972;
Dybbs and Edwards). Some researchers (e.g. Bear, 1972; MacDonald et al., 1979; Cvetkovic,
1986) believed that it is the microscopic inertial forces that give rise to the non-linear ef-
fects; while some others believed that it is the increased microscopic drag forces that caused
the non-linear effects, e.g., in the theoretical derivation of Hassanizadeh and Gray (1987),
based on order-of-magnitude analysis, they argued that when Repore ≈ 10, at the onset of
non-linear effects, macroscopic viscous and inertial forces are much smaller than microscopic
viscous forces, and the non-linear effects are then caused by the growth of microscopic vis-
cous forces. In the study of Ruth and Ma (1992), they demonstrated that the microscopic
inertial term does not cause the non-linear effects. It is the changes in the values of the
surface integral terms, which result from microscopic inertial effects distorting the velocity
and pressure fields, that leads to the non-linear effects. Hence the non-linear effects must
be modelled in the surface integral terms resulting from the averaging procedure, not by the
averaged microscopic inertial terms. This is in consistency with the derivations of Whitaker
(1996).

Despite of different arguments explaining the reason that caused the non-linear effects in
porous-media flows, the pore Reynolds number is widely accepted as the dominant variable
that determines the onset of the non-linear effects in steady flows (e.g. Dullien and Azzam,
1973; Whitaker, 1996; Blick, 1966; Hassanizadeh and Gray, 1987; Coulaud et al., 1988;
Papathanasiou et al., 2001; Fourar et al., 2004; Mazaheri et al., 2005; Mei and Auriault,
1991; Firdaouss et al., 1997; Koch and Ladd, 1997; Souto and Moyne, 1997; Rojas and
Koplik, 1998; Jacono et al., 2005; Lasseux et al., 2011). One example is that in the order-of-
magnitude analysis of Whitaker (1996), the Forchheimer tensor F , which is used to define
the quadratic correction term, is related to O(Repore), which is the oder of the magnitude
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of Repore by

F =

{
O(Repore) + O

(
(δ/d)Re2

pore

1 + O[(δ/d)Repore]

)}
, (2.16)

where δ is the boundary-layer thickness and d is the pore scale. A further derivation
gives:

{
F = O(Repore), Re� 1,

F = O(Repore) + O(Repore), Re� 1
(2.17)

This indicates that when O(Repore) is very small, F can be neglected; when O(Repore) gets
larger, F is large. It means that the onset of the non-linear (Forchheimer) behaviours in
steady porous-media flows is highly dependent on the pore Reynolds number.

While most of the researchers took the pore Reynolds number as reference, there were
exceptions as a minority. In the theoretical derivation of the Forchheimer equation by
applying the averaging theorem to the microscopic momentum equation, Ruth and Ma (1992)
examined simple tube models of flow in porous media. In these models, flow in straight and
bend tubes are investigated. They argued that a Forchheimer number based on macroscopic
scales defined as

F0 =
−bKD|〈u〉s|

µ
(2.18)

should be used rather than the pore Reynolds number to examine the onset of the non-
linear effects in steady-state porous-media flows. Here b is from equation (2.15) and KD is
the Darcy permeability.

They argued that because the macroscopic inertial effects do not necessarily scale with the
micro scale, such as the pore size, and because the microscopic inertial effects do not directly
lead to macroscopic inertial effects, it is not proper to predict the macroscopic non-linear
effects by the microscopic pore Reynolds number.

We recall the Forchheimer equation (2.15) in the strong inertia regime and reformulate it in
the following

−∇〈p〉i =
µ

KD

〈u〉s − b〈u〉
2
s , (2.19)

Ruth and Ma (1992) suggested that the constant Darcy permeability KD can be replaced
by a dynamic permeability K and equation (2.19) becomes

∇〈p〉i =
µ

K
〈u〉s, (2.20)
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where

1

K
=

1

KD

(
1 +
−bKD|〈u〉s|

µ

)
(2.21)

Ruth and Ma (1992) argued that when the Forchheimer number F0 =
−bKD|〈u〉s|

µ
becomes

comparable to unity, it indicates when the microscopic inertial effects lead to the macro-
scopic inertial effects, and this number can be used to determine the onset of the non-linear
effects.

2.3 Unsteady porous media flow

Note that in all of the aforementioned regimes, the discussions considering the velocity and
the pressure gradient are constraint to a steady-state of the macro-scale velocity. If there
are unsteady boundary conditions or an unsteady pressure gradient, the macroscopic flow
becomes unsteady and – unless the variations are very slow – equations (2.14) or (2.15) can
not be applied in this form.

2.3.1 Unsteady Darcy and unsteady Forchheimer
equations

For unsteady porous media flow, a number of studies have shown that a phase shift be-
tween pressure drop and superficial velocity can exist. It results from the inertia of the
accelerated fluid, and must be represented by an unsteady term. Laushey and Popat (1968)
conducted experiments in a closed circular tube filled with sand, which was always main-
tained fully of water, to simulate a confined aquifer. They measured the piezometric head
in the sand to represent the pressure gradient. They investigated both steady and unsteady
flows. For steady flows, they have verified Darcy’s law, while for unsteady flows, they sug-
gested that corrections in terms of the time derivatives of the pressure gradient must be
added in Darcy’s law. Burcharth and Andersen (1995) used a cylinder analogy to theo-
retically investigate one-dimensional unsteady porous-media flow equations. They stated
that for unsteady porous-media flow, macroscopic convective accelerations, which shall be
represented by a time derivative of the superficial velocity, are present in addition to the
local acceleration. Hall et al. (1995) conducted experiments in an oscillatory water tunnel
to investigate how temporal inertia affects the resistance of flow in porous media. The flows
were driven with low frequencies, and both uniformly packed spheres of equal diameter and
randomly placed stone were investigated. They not only used the time derivative of the
superficial velocity as a correction term to the Forchheimer equation to represent the phase
shift between pressure drop and superficial velocity, but also measured the coefficients in
the terms. Gu and Wang (1991) investigated water wave interactions with porous sea beds
by means of theoretical derivation and numerical computation. They explicitly noted that
Darcy’s law cannot be applied in such problems. In their model for the flows inside porous
media, they also considered this time derivative term.
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The resulting equation can be written as

∇〈p〉i = a〈u〉s + b〈u〉ms + c
∂〈u〉s
∂t

, (2.22)

where the coefficients a, b and c represent the linear and quadratic parts of the interaction
force and the inertia term due to flow acceleration. If b = 0, the expression reduces to what
is called unsteady Darcy equation. If a 6= 0, b 6= 0, c 6= 0 and m = 2, the expression is called
unsteady Forchheimer equation.

Attempts have been made to determine the coefficients a, b, and c from experiments. In the
cylinder analogy of Burcharth and Andersen (1995), which was used to investigate equation
(2.22), it was stated that a, b and c are not constants and shall be treated as instantaneous
values. However, in engineering practice, the coefficients are simply taken as constants de-
pendent on characteristic Reynolds and Keulegan-Carpenter (KC) numbers, KC = VmT/d,
where Vm is the maximum velocity in oscillatory flows, T is the oscillating period and d is
the particle diameter. In the experiment of Hall et al. (1995) in an oscillatory water tunnel
driven with low frequencies, a, b and c were measured and compared to the coefficients in
steady-state cases, as, bs and cs. They claimed that c does seem to be a constant for a given
medium and independent of the acceleration. They also claimed that as, measured from
steady-state cases, differ from a, which is generally for oscillatory cases. Other researchers
such as Gu and Wang (1991) and Lowe et al. (2005) used the so-called virtual mass term to
investigate these coefficients in problems such as water wave interactions with sea beds and
oscillatory flow inside benthic organisms.

However, a full agreement between experimental results and behavior predicted by equation
(2.22) with fitted coefficients has not yet been achieved. Experimental results even sug-
gest that the coefficients in equation (2.22) can not be taken as constant during oscillatory
flow. Moreover, it seems that a generally accepted theoretical framework of how to find the
coefficients in equation (2.22) does not exist.

2.3.2 Deriving the coefficients from VANS
approach

One way to derive equation (2.22) is by using the Volume-Averaged Navier-Stokes (VANS).
By volume-averaging the momentum equation over a representative control volume, Whitaker
(1996) derived a superficial averaged form of the Navier-Stokes equations (2.12). He also
derived a steady-state closure for the interaction term based on assumptions such as the
length constraint (2.9) and order-of-magnitude analysis. Inserting this steady-state closure
back into the averaged momentum equation (2.12) and neglecting several terms, one could
get an equation in the same form as the unsteady Forchheimer equation (2.22). Under the
condition of unidirectional flow through isotropic, homogeneous material and low Reynolds
number, this equation can be written with a structure identical to that of the unsteady
Darcy equation, and the general mathematical expression of the time scale τ = c/a can be
explicitly obtained.

This approach has been adopted by several authors because it offers a mathematically sound
framework for applications, in which strong changes in material properties such as porosity
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and permeability are present. Breugem et al. (2006) investigated turbulent flow in a channel,
which has a solid top wall and a permeable bottom wall. In the channel region, they
performed DNS, while in the homogeneous porous region, they directly applied the VANS
approach and the steady-state closure from Whitaker (1996), with the permeability and
Forchheimer tensors determined from the modified Ergun equation (Bird et al., 2002). Hill
and Straughan (2008) studied instabilities in Poiseuille flow over a porous layer. In his
study, a Newtonian fluid overlies a Brinkmann transition layer, which in turn overlies a
porous layer. The governing equations in the Brinkmann layer and the porous layer are the
Brinkmann equation and the unsteady Darcy equation, respectively, with the time constants
derived from the VANS approach. In the stability analysis of a channel flow bounded by
two porous regions by (Tilton and Cortelezzi, 2008), the channel region was modelled by the
Navier-Stokes equations, while the porous regions were modelled by the Volume-Averaged
Navier-Stokes equations. In analysis of bioheat transport, (Fan and Wang, 2011) applied
the volume-averaging procedure to the Navier-Stokes equations and an energy conservation
equation concerning temperature in the blood phase. They suggested to directly use the
steady-state closure from Whitaker (1996) to close the averaged momentum equations, while
the problem there is unsteady blood flow.

A similar formulation was used by Kuznetsov and Nield (2006), Wang (2008) and Habibi
et al. (2011) to directly derive an analytical solution for unsteady flow in a porous channel.
It has to be noted, however, that the VANS approach does not offer a theoretical approach
how to model the aforementioned coefficients for the unsteady term and the interaction
force.

2.3.3 Deriving the coefficients from the virtual mass
approach

Another way to derive an unsteady Darcy equation in the form of (2.22) was presented by
Rajagopal (2007) within the context of mixture theory. He also discussed possible implica-
tions of the unsteadiness of the flow field, suggesting consideration of a virtual mass term
if inertial nonlinearities cannot be neglected. This term was proposed by Sollitt and Cross
(1972) to account for the inhomogeneity of the flow field surrounding individual structures
in the porous material during transient flow.

This approach was also adopted by many authors. In the cylinder analogy of Burcharth and
Andersen (1995), they theoretically derived the coefficients a, b and c in equation (2.22),
using associated virtual mass coefficients. Right after it, they then presented some existing
experimental data (Hannoura and McCorquodale, 1978; Smith, 1991; Andersen et al., 1993)
to support their derivations. Gu and Wang (1991) directly applied the virtual mass concept
in their model for flows inside porous media, when investigating water wave interactions with
porous sea beds. They stated that a, b and c are all constants; a is related to Darcy’s law; b
is frequency-dependent for oscillatory flow; and c is only dependent on KD, ν, ε and a virtual
mass coefficient which should be determined from experiments for different medium. (Lowe
et al., 2005) presented a theoretical model to estimate oscillatory flow inside benthic organ-
isms which are described as submerged canopies. In their model, they applied the virtual
mass approach, and replaced the pressure gradient by a time derivative of the free stream
velocity above the porous media - free flow interaction face. Their model essentially has the
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same form as equation (2.22), with m = 2 and c determined by the virtual mass approach.
Note that this approach results in a larger time scale in unsteady porous media flow, com-
pared to the VANS approach with the steady-state closure.

To the author’s best knowledge, a systematic comparison and assessment of the different for-
mulations of the unsteady Darcy equation has not been done so far.
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3 Problem Statement

The rest of this PhD thesis mainly consists of three parts, and each part answers sev-
eral questions concerning unsteady, linear and non-linear flows. In each part, theoret-
ical derivations and results of Direct Numerical Simulations for verification will be pre-
sented.

The first part mainly answers the following questions:

• For unsteady and linear flows, is the unsteady Darcy equation (1.3) together with con-
stant coefficients accurate, and can it be used to describe these flows on the macroscopic
scale?

• Is there a general mathematical expression for the coefficient c in unsteady Darcy
equation (1.3)? If yes, what is it?

In this part, the time scale τ = c
a

in the unsteady Darcy equation (1.3) is investigated.
First, the unsteady Darcy equation in the form of equation (1.3) will be derived using the
VANS and the virtual mass approaches, respectively. Then an alternative derivation of the
unsteady Darcy equation (1.3) by volume-averaging the equation of the kinetic energy will
be proposed. The mathematical expressions of the time scales τ = c

a
resulting from these

three methods are completely different. The time scales from the virtual mass and the energy
approaches is larger than the time scale from the VANS approach. Finally, fully resolved
direct numerical simulation (DNS) of the flow in the pore space will be used to verify the
expressions of these time scales. By keeping the Reynolds number small, the flow remains
linear, and the non-linear Forchheimer term can be neglected. The time scales obtained
from the simulation results are compared to those obtained by the VANS, the virtual mass
and our new kinetic energy approaches. The investigation of the time scales also verifies the
applicability of the unsteady Darcy equation (1.3).

The second part mainly answers the following questions:

• For oscillatory and linear flows, is the unsteady Darcy equation (1.3) together with
constant coefficients applicable and accurate, in all frequency ranges?

• Are the time scales derived from the aforementioned methods accurate in all frequency
ranges?

In this part, first, an analytical solution of the unsteady Darcy equation (1.3) is derived.
Then the analytical solutions of (Womersley, 1955) and (Loudon and Tordesillas, 1998) for
oscillatory pipe and channel flows are analyzed to compare with the analytical solutions of
the unsteady Darcy equation (1.3) with different time scales derived from the aforementioned
methods. Finally, fully resolved direct numerical simulation (DNS) of the flow in the pore
space will be used to verify the applicability of the unsteady Darcy equation (1.3) with these
time scales. The pressure gradient is prescribed by sinusoidal functions with respect to time
in order to get oscillatory flow.
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The third part mainly answers the following questions:

• For unsteady flows, which physical variable determines the onset of the non-linear
effects?

• For unsteady and non-linear flows, is the unsteady Forchheimer equation (1.4) together
with constant coefficients accurate, and can it be used to describe these flows on the
macroscopic scale?

In this part, we set up a series of direct numerical simulations in different simulation
cases with different geometries. We look for which physical variable determines the on-
set of the non-linear effects. Moreover, equation (1.4) is solved in Matlab numerically
with different options of the time scale τ = c

a
. The numerical solutions from Matlab are

compared with DNS results to investigate the applicability of the unsteady Forchheimer
equation (1.4) and the suitability of the time scale for unsteady flow in the non-linear
regime.



4 Part1: Unsteady Darcy Equation for
Unsteady and Linear Flows

Note: most of this part is taken from Zhu et al. (2014).

In this part, we focus on unsteady and linear porous-media flows. We investigate whether
the unsteady Darcy equation (1.3) with constant coefficients a and c is accurate in describing
unsteady and linear flows. We assume the value of the coefficient a remains the same as that
in the Darcy’s law (1.1), and later verify it via Direct Numerical Simulations (DNS). For
the coefficient c (or the time scale τ = c/a), we derive it with different methods. First, we
summarize the resulting forms of the unsteady Darcy equation from the VANS and the virtual
mass approaches (section 4.1). Then, we propose an alternative expression for the time
scale in unsteady porous media flow by volume-averaging the equation of the kinetic energy
(section 4.1.4). Finally, we use fully resolved direct numerical simulation (DNS) of the flow in
the pore space to verify this expression (section 4.2). By keeping the Reynolds number small,
the flow remains linear, and the non-linear Forchheimer term can be neglected. The time
scales obtained from the simulation results are compared to those obtained by the VANS,
the virtual mass and our new kinetic energy approaches.

4.1 Theory

4.1.1 Steady and unsteady form of the Darcy
equation

Using the notations from volume-averaging (Whitaker, 1996), we recall the Darcy’s law here,
writting it as the proportional relation between the superficial velocity 〈u〉s and the applied
intrinsic pressure gradient ∇〈p〉i. In vectorial form, this relation reads as

〈u〉s = −KD

µ
∇〈p〉i, (4.1)

whereKD denotes Darcy’s permeability, which can be experimentally determined by applying
a constant pressure gradient and measuring the flow rate Q = AQ · 〈u〉s through a given cross-
sectional area AQ. Therefore, KD is commonly identified as the permeability obtained under
steady flow conditions. KD needs to be formulated as a tensor in the general case. However,
we restrict ourselves here to uniform flow in a homogeneous, isotropic material and, hence,
use a scalar permeability KD.

When investigating unsteady porous-media flow at low Reynolds numbers, the situation
is less clear. In the general unsteady case, the permeability, if defined as above, is not
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necessarily constant over time. A common model for this type of flow is given in the form
of the unsteady Darcy equation

τ∂t〈u〉s + 〈u〉s = −K
µ
∇〈p〉i, (4.2)

where τ represents a time-scale and K a permeability (e.g. Burcharth and Andersen, 1995;
Kuznetsov and Nield, 2006; Rajagopal, 2007; Sollitt and Cross, 1972).

The aim of this part is to assess the validity of the unsteady Darcy equation (4.2) with
constant coefficients. This can be transformed into the question of whether the permeability
and the time constant can be treated as time-independent in the general unsteady case. Fur-
thermore, we address the question of how these values can be determined. To achieve this
aim, we first discuss two well-known approaches for deriving the unsteady Darcy equation,
which are based on the volume-averaging of the Navier-Stokes equations (2.1). In section
4.1.4, we shall derive and discuss an alternative way based on the volume-averaging of the
kinetic energy equation. In our discussion, we consider that we have a control volume V with
periodic boundary conditions on ∂V . This assumption is reasonable for homogeneous porous
media in regions far from the boundaries, where the control volume V ideally repeats itself.
Furthermore, we restrict ourselves to unidirectional flow through this representative elemen-
tary volume (REV). Finally, we assume a small Reynolds number and uniform macroscopic
flow.

4.1.2 Volume-averaging of the momentum
equation

Whitaker (1996) developed the following formulation by volume-averaging the Navier-Stokes
equation (2.1):

ρ∂t〈u〉i + ρ〈u〉i div 〈u〉i + ρε−1 div 〈ũũ〉s︸ ︷︷ ︸
volume filter

= −∇〈p〉i + µ∇2〈u〉i︸ ︷︷ ︸
Brinkman correction

+
1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA︸ ︷︷ ︸
surface filter

.
(4.3)

The surface filter represents the drag due to surface forces at the fluid-solid interface. It is
identical to what Rajagopal (2007) referred to as an interaction term.

For a homogeneous and periodic REV, the second and third terms on the left-hand side van-
ish, as does the Brinkman correction. The equation then reduces to

ρ∂t〈u〉i = −∇〈p〉i +
1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA︸ ︷︷ ︸
surface filter

.
(4.4)

In the steady state, the surface filter can be replaced by the Forchheimer approximation
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1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA = − µ

KD

(1 + F |〈u〉i|)〈u〉s, (4.5)

cf. Whitaker (1996). Additionally, if the Reynolds number is sufficiently small, the term
F |〈u〉i| vanishes and the steady Darcy equation (4.1) is obtained.

For unsteady flow it has been proposed by several authors to use closure (4.5) with con-
stant coefficients for the interaction term although its possible time dependence has been
discussed (Rajagopal, 2007). Inserted in equation (4.4) we arrive at the following expression:

KD

νε
∂t〈u〉s + 〈u〉s = −KD

µ
∇〈p〉i, (4.6)

where µ = ρν. By comparing it with the unsteady Darcy equation (4.2), we can identify the
time constant obtained by this approach as

τvans =
KD

νε
. (4.7)

The above form of the unsteady Darcy equation relies on the assumption that the steady-
state approximation (4.5) can be used in the unsteady case (here denoted as VANS with
steady-state closure). The time dependence of the interaction term and its closure (4.5) is
being examined in the following sections of this part. The next section describes a method
that is intended to take this time dependence into account, the virtual mass approach. In
addition, we shall demonstrate by DNS in section 4.2.5, that the steady-state closure can
not be used in the considered unsteady flow situations.

4.1.3 Virtual mass approach

It has been emphasized in the literature (e.g., Laushey and Popat, 1968; Burcharth and
Andersen, 1995; Hall et al., 1995; Gu and Wang, 1991) that, due to inertial effects, the
time constant in equation (4.2) needs special attention. Using the analogy to unsteady flow
around a single obstacle, a virtual mass coefficient was introduced by, e.g., Sollitt and Cross
(1972) to compensate for the volume of fluid to be accelerated in the vicinity of the obstacle.
To take these effects into account, a virtual mass force per unit volume can be added to the
closure of the interaction term in equation (4.5). For small Reynolds numbers – neglecting
the Forchheimer term – this results in

1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA = − µ

KD

〈u〉s − ρCvm
1− ε
ε

∂t〈u〉i. (4.8)

Here, Cvm is the virtual mass coefficient, yet to be determined. In this way, we obtain

KD

νε

[
1 + Cvm

1− ε
ε

]
∂t〈u〉s + 〈u〉s = −KD

µ
∇〈p〉i. (4.9)
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Thus, the time constant derived by this approach is given by:

τvm =
KD

νε

[
1 + Cvm

1− ε
ε

]
, (4.10)

where Cvm is an empirical coefficient. Lowe et al. (2008) determined Cvm by fitting measured
data for the phase and amplitude of the flow in a canopy (porous media) with the model
equation. They also compared estimates for Cvm from the literature, which are in the range
of 0.5 ≤ Cvm ≤ 2.0.

One interpretation of the constant Cvm is that it models flow inhomogeneities on the pore
scale. Hence, the success of the virtual mass approach relies on the knowledge of Cvm for
a certain flow situation, which needs to be determined in experiments. In section 4.2.8,
we numerically investigate the influence of the choice of Cvm and compare the results for
different values of Cvm with DNS.

4.1.4 A new approach to determine the time constant in unsteady
porous-media flow

To understand the nature of the virtual mass term, we now derive an alternative possibility to
define a time constant for the unsteady Darcy model (4.2), which is based on the conservation
of kinetic energy. The resulting form of the unsteady Darcy equation is in agreement with the
virtual mass approach in the sense that we correct the time constant by a factor greater than
one, which depends only on the pore-structure and the microscale-velocity. In our derivation,
we need to make a number of assumptions and approximations, which we support by our
DNS from section 4.2.

Volume-averaging of the energy equation

We start deriving an equation of the form of equation (4.2) by the use of the kinetic energy
equation. Keeping in mind that ∂t(u ·u) = 2u · ∂tu, we can multiply the momentum part
of the incompressible Navier-Stokes equations (2.1) by the velocity u to obtain an equation
for the kinetic energy of the flow (without a gravity term):

ρ

2
∂t(u ·u) + ρu · (u ·∇u)− µu ·∇2u = −u ·∇p. (4.11)

Volume-averaging the equation now yields

ρ

2
∂t〈u ·u〉s + ρ〈u · (u ·∇u)〉s − µ

〈
u ·∇2u

〉
s

= −〈u ·∇p〉s, (4.12)

which can be regarded as the energy equation analogon to equation (4.3). Let us again
consider an REV with periodic boundary conditions on ∂V in uniform flow conditions. We
will first demonstrate that the second term on the left-hand side (advective term) vanishes
and then reformulate the other terms. After applying the Gauß theorem to the advective
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term, we find that

〈u · (u ·∇u)〉s =
1

2|V |

∫
∂V

u ·n|u|2 ds− 1

2

〈
div(u)|u|2

〉
s
. (4.13)

The surface integral vanishes under periodic boundary conditions, and, due to incompress-
ibility, we have div(u) = 0. Hence, the advective term does not contribute to the kinetic
energy balance.

Let us proceed by considering the term 〈u ·∇p〉s. We can decompose p = 〈p〉i + p̃ into
a mean part 〈p〉i and a fluctuation p̃. Here, 〈p〉i is the averaged pressure over the fluid
phase of the averaging volume, and ∇〈p〉i is the pressure gradient driving the flow. In our
case, the pressure gradient is taken as constant over the whole averaging volume, so we
get

〈u ·∇p〉s = 〈u ·∇〈p〉i〉s + 〈u ·∇p̃〉s (4.14)

= 〈u〉s ·∇〈p〉i +
1

|V |

∫
∂V

u ·n p̃ ds− 〈div(u) ·∇p̃〉s. (4.15)

The last term is zero due to incompressibility. Since we assume periodicity, the surface
integral also vanishes.

Let us now consider the viscous term in (4.12). Via integration by parts, it can be decom-
posed into two contributions, representing the diffusion and the pseudo-dissipation of the
kinetic energy, respectively (e.g., Pope, 2000):

µ
〈
u ·∇2u

〉
s

=
µ

2

〈
∇2(u ·u)

〉
s
− µ〈∇u : ∇u〉s, (4.16)

where A : B :=
∑

i,j AijBij denotes the Frobenius inner product. The volume integral of

the diffusion of kinetic energy µ
2

〈
∇2(u ·u)

〉
s

vanishes in the case of a periodic domain.
Moreover, it can be shown that for incompressible flow in periodic domains, the pseudo-
dissipation µ〈∇u : ∇u〉s equals the dissipation of kinetic energy 2µ〈s : s〉s, where s :=
1
2
(∇u + (∇u)T ) is the symmetric part of the velocity gradient. Altogether, we can write

(4.12) as

ρ

2
∂t〈u ·u〉s + 2µ〈s : s〉s = −〈u〉s ·∇〈p〉i. (4.17)

This is the balance of the pore scale kinetic energy for a homogeneous and periodic REV
under uniform macroscopic flow conditions. The rate of change of kinetic energy on the
pore scale (first term) is obtained by the balance of its dissipation (second term) and the
power input by the pressure gradient (right hand side). If the unsteady Darcy equation with
constant coefficients (4.2) was a good model for unsteady flow in porous media, it should be
possible to bring both into a comparable form. In order to do so, we need to introduce some
approximations.

First, we show that, for the steady state, the volume-integrated dissipation of kinetic energy
is related to the permeability and viscosity. This is done by rewriting the unsteady Darcy
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equation (4.2) in the energy form by multiplying it by 〈u〉s:

τ

2
∂t(〈u〉s · 〈u〉s) + 〈u〉s · 〈u〉s = −K

µ
〈u〉s ·∇〈p〉i. (4.18)

Note that τ and K do not necessarily have to be constant in the unsteady case. However,
for the steady state, i.e., ∂t( · ) = 0, we find by comparing equation (4.17) with equation
(4.18) that

2µ〈s : s〉s = µ〈∇u : ∇u〉s =
µ

K
〈u〉s · 〈u〉s. (4.19)

This shows that the steady-state dissipation of the kinetic energy on the pore scale can be
expressed by the viscosity, the classical Darcy permeability (K = KD) and the square of the
superficial velocity. In order to use equation (4.19) as a closure for the unsteady case, we have
to assume that K = (〈u〉s · 〈u〉s)/2〈s : s〉s does not depart much from its steady-state value.
We investigate this question using DNS in section 4.2.5.

Second, to determine whether equation (4.18) can be taken as a good approximation of equa-
tion (4.17), we approximate the unsteady term of the latter by

ρ

2
∂t〈u ·u〉s =

ρ

2
∂t

(
〈u ·u〉s
〈u〉s · 〈u〉s

〈u〉s · 〈u〉s
)
≈ ρ

2

〈u ·u〉s
〈u〉s · 〈u〉s

∂t (〈u〉s · 〈u〉s) . (4.20)

Here, we point out that we neglect the fact that
〈u ·u〉s
〈u〉s · 〈u〉s is, in general, time-dependent.

However, as we see from our DNS results in section 4.2.7, this assumption is reasonable,
since it does not substantially depart from its steady state, even if sudden changes in the
flow occur. The following form of the energy equation is now obtained by substituting
equations (4.19) and (4.20) in equation (4.17):

ρ

2

〈u ·u〉s
〈u〉s · 〈u〉s

∂t (〈u〉s · 〈u〉s) +
µ

KD

〈u〉s · 〈u〉s = −〈u〉s ·∇〈p〉i. (4.21)

In the case of a homogeneous and isotropic medium, 〈u〉s and ∇〈p〉i are parallel, which
implies that equation (4.21) can be divided by |〈u〉s| and brought into a form corresponding
to equation (4.2):

τen∂t〈u〉s + 〈u〉s = −KD

µ
∇〈p〉i, (4.22)

with the coefficient τen being proportional to the ratio of the intrinsic averaged kinetic energy
in the pore space versus the kinetic energy of the intrinsic velocity. This leads us to our
main result, which is an explicit representation of the time-scale in unsteady porous-media
flow:

τen =
KD

ν

〈u ·u〉s
〈u〉s · 〈u〉s

=
KD

ε ν

〈u ·u〉i
〈u〉i · 〈u〉i

. (4.23)

Note that equation (4.22) with (4.23) can be used only if both approximations (4.19) and
(4.20) are accurate enough and do not depart too much from their limits in steady flow. We
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will address this question by DNS in section 4.2.

The time-coefficient τen given by equation (4.23) has an interesting property, which we
would like to comment on: as a consequence of the Cauchy-Schwarz inequality, it holds
that 〈u ·u〉i ≥ 〈u〉i · 〈u〉i, which readily implies that

τen ≥ τvans. (4.24)

Hence, the VANS approach with steady-state closure is the lower limit for our time-coefficient,
which is in line with the observations that led to the virtual mass approach. In particular, if
the intrinsic averaged kinetic energy in the pore space is in balance with the kinetic energy
of the intrinsic velocity, then the pore-scale effects are negligible, and the VANS approach
with steady-state closure leads to a reasonable approximation for unsteady porous-media
flow.

Note that in the work of Hill et al. (2001), a very similar formulation to the time scale in
equation (4.23) was derived. However, there are many differences between their approach
and our approach. First, the studying object is different. They mainly focused on flow
through sphere packs, and in their model the permeability is replaced by the drag force
of the fluid acting on the spheres. Thus this model is not applicable for a general porous
medium. While in our approach, we derived a general mathematical expression for all
homogeneous and isotropic porous mediums, and applied the permeability explicitly. Thus
our model can describe not only spheres, but also cylinders, cubics, etc. More importantly,
the way of deriving the time scale is different. Hill et al. (2001) started from the expression
of the time-dependent force on each sphere in terms of the virtual mass coefficient, derived
by (Sangani et al., 1991), and expressed the time scale in terms of a virtual mass term. They
then considered a frame of reference moving with the average velocity, and argued that the
rate of change of the kinetic energy is balanced by the dissipation of the kinetic energy and
the work done by the drag force. Based on that, they explicitly wrote the energy balance in
terms of the spatial deviation of the velocity, which would lead to a similar formulation as
the time scale in equation (4.23). However, in our approach, we directly applied the volume-
average operator to the energy form of the Navier-Stokes equations, and neglected several
terms based on the properties of the fluid and the medium. We also made assumptions which
are supported by our DNS results. Our way of deriving the time scale in equation (4.23) is
different from that of Hill et al. (2001).

4.1.5 Summary of the different approaches

The coefficients derived by the kinetic energy approach differ from those derived by the
VANS approach with steady-state closure or the virtual mass correction. In each deriva-
tion, several assumptions have to be made to obtain the unsteady form of Darcy’s equa-
tion. All approaches are exact in the steady-state limit and K = KD is the permeabil-
ity.

In the VANS approach, the interaction term is replaced by the steady-state approximation
µ
KD
〈u〉s, and a constant permeability is being assumed. In the virtual mass approach, an

additional virtual mass force is added rendering the interaction term time depending. This
virtual mass force can be absorbed into the coefficient in front of the time derivative giving
a modified time constant.
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In contrast, our approach incorporates permeability by approximating the interaction term
2µ〈s : s〉s with µ

K
〈u〉s · 〈u〉s. In the steady limit we then find, by comparison with the Darcy

equation, that the expression

K =
〈u〉s · 〈u〉s
2〈s : s〉s

=
〈u〉s · 〈u〉s
〈∇u : ∇u〉s

, (4.25)

which relates the superficial velocity to the volume averaged dissipation of kinetic energy,
can indeed be identified with the classical Darcy permeability KD. In order to arrive at the
unsteady Darcy equation we have to assume that K as defined by equation (4.25) does not
depart much from its steady state.

We summarize in table 4.1 the time-scales resulting from the different approaches.

The time scales obtained from the different derivations represent different physical quan-
tities. All time scales have been derived under the assumptions described in the previ-
ous sections. The main assumption, which is common to all approaches, is the one that
the coefficients in the unsteady Darcy equation remain constant w.r.t. time in unsteady
flow. This is equivalent with assuming self-similar velocity profiles during flow accelera-
tion.

We present here a simple argument that self-similar velocity profiles cannot be expected
during flow acceleration. The argument results from the fact that it takes a certain time for
the effect of the viscosity to propagate from the solid surface to the core of the flow. This time
can be estimated by the viscous time scale in the pore space τvisc = D2/ν, D being a grain
diameter. If this time is much smaller than the time scale of the flow acceleration, e.g. τvans,
then self-similar profiles can be expected during flow acceleration. However, if the viscous
time scale is much larger than τvans, then self-similar velocity profiles can not be expected.
The flow acceleration is effectuated by the pressure gradient which is irrotational. The
unsteady velocity profile shapes therefore depart from the steady-state ones by the viscous
effect. To compare τvans with τvisc, we use the Kozeny-Carman equation (Kozeny, 1927) to
estimate the permeability K = D2ε3/(180(1 − ε)2). For ε < 0.5, we have K < D2/180
and find τvans � τvisc. This renders self-similar velocity profiles very unlikely during flow
acceleration.

Concluding, the accuracy of equation (4.2) and its applicability to unsteady flow in porous
media depends on how far the individual terms deviate from their steady-state approxima-
tions during flow acceleration. We will investigate this issue in the next section using highly
resolved numerical simulations of unsteady low-Reynolds number flow in various porous
media.

Table 4.1: Different choices for the time-scale in equation (4.2). For practical computations, we
propose using the steady-state value τen of the time-scale of the energy-approach.

VANS Virtual mass Volume-averaged
energy equation

KD
νε

KD
νε

[
1 + Cvm

1−ε
ε

]
KD

νε

〈u ·u〉i
〈u〉i · 〈u〉i
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4.2 Numerical Results

In the following, we present numerical studies to support the assumptions we made in the
derivation of the unsteady Darcy equation (4.22) and its coefficients. Therefore, we compute
highly resolved solutions of the full Navier-Stokes equations (2.1) through different configura-
tions of porous media with increasing complexity. In all simulations, the Reynolds numbers,
based on pore velocity and pore length scale, are kept on the order of 10−3, which is small
enough to ensure that the Forchheimer terms can be neglected.

Before we describe the setup of the simulations, and discuss their results, let us first describe
the benchmark problem used throughout this section.

4.2.1 Benchmark problem

For all three test cases, heavy side functions are applied to the x-component of the pressure
gradient to drive the flow:

∇〈p(t)〉i = pxex ·


0 t < 0,

1 0 ≤ t ≤ t1,

2 t > t1,

(4.26)

Here, ex denotes the unit vector in x-direction, px is the constant pressure gradient and t1
is chosen in such a way that the flow first reaches its steady state and then develops again
once px is doubled.

The analytical solution of the unsteady Darcy equation (4.2) is given by

〈u(t)〉s = pxex ·
K

µ
·


0 t < 0,

exp(−t/τ)− 1 0 ≤ t < t1,

exp(−(t− t1)/τ)− 2 t > t1.

(4.27)

In this equation, the permeability K is measured from the steady state of the DNS results,
which is reached after a sufficient time. The only unknown in this solution is now the time
constant τ , which gives us a quality measure to determine the accuracy of the different
approaches for this benchmark problem. Let us point out that, in the case of the energy
approach, we take τ as the steady-state value τen.

4.2.2 Simulation setup

The full Navier-Stokes equations (2.1) for an incompressible Newtonian fluid are solved by
a finite volume method on a Cartesian grid (Manhart, 2004), where the pore space is repre-
sented by an immersed boundary method (Peller et al., 2006; Peller, 2010). For the spatial
discretization we use a second-order central scheme, and we advance in time by a low-storage
third-order Runge-Kutta method (Williamson, 1980). The solver code is well-validated in
various flow configurations, including laminar and turbulent flows; cf., e.g. Breuer et al.
(2009); Hokpunna and Manhart (2010); Peller (2010). To ensure accurate and reliable re-
sults, we conduct a refinement study for each simulation.
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In the following, we denote by D the cylinder diameter and sphere diameter in the two-
and three-dimensional cases, respectively, and the channel height in the one-dimensional
case. The Reynolds number is then, in all cases, computed by Re = 〈u〉s · exD/ν. We
furthermore introduce the pore spacing as H, and we define the blockage ratio as B =
D/H.

A channel flow at a low Reynolds number can be understood as a prototype for a porous-
media flow, with ε = 1. Thus, we start with a straight one-dimensional channel with solid
walls. In our DNS of the channel flow, we consider a Reynolds number of Re = 3.35× 10−3.
Periodic boundary conditions are applied in stream- and span-wise directions, such that the
flow repeats itself periodically.

To increase flow complexity, we consider a two-dimensional flow through an array of regularly
placed cylinders. Although, we use this as an idealized configuration to assess our theoretical
findings, one could imagine real configurations in which such a geometry could serve as a good
model, e.g. a tube bundle in a heat exchanger or an array of plants or a forest. We simulate a
box containing one cylinder as indicated in figure 4.1. By using periodic boundary conditions
in the directions perpendicular to the cylinder axes, we actually simulate an infinite array
of cylinders.

The Reynolds number in the two-dimensional case has been adjusted to Re = 1.55 × 10−4.
The grid has a resolution of 480 cells per cylinder diameter D. The blockage ratio is
B = 0.75, and the porosity can be computed as ε = 0.5582. In figure 4.1 (b), stream-
lines of the steady-state flow are plotted. In the lateral gaps between the cylinders, high
steady-state velocities can be observed. Upstream and downstream of the cylinder, the
flow reverses and forms a backflow region. The flow field is symmetrical about the two
symmetry planes of the cylinder, which is a result of the geometry and the low Reynolds
number.

Our three-dimensional simulations are performed on two different configurations.

The first one is a sphere-pack in which the spheres are arranged on a uniform grid with
a porosity of ε = 0.73, and the blockage ratio is given by B = 0.8. The simulation do-
main is the three-dimensional extension of the one shown in figure 4.1 (a). The Reynolds
number is set to Re = 8.45 × 10−5, and we resolve one sphere diameter with 192 grid
cells.

The second configuration is the flow through a dense sphere-pack in hexagonal close packing
(cf. figure 4.2, a), which results in a porosity of ε = 0.26. Periodic boundary conditions are
applied in all directions, such that the flow and geometry repeat themselves in space. The
Reynolds number is 1.25 × 10−6, where we resolve one sphere diameter with 400 grid cells.
These resolutions are required to compute the dissipation rate with reasonable accuracy
during postprocessing since no effort has been made to specially treat the cells cut by the
sphere surface, where the maximum dissipation occurs. In Figure 4.2 we plot streamlines for
the steady flow field. Unlike in the two-dimensional case, in which the cylinders are arranged
on a regular lattice, we can not see any backflow regions.

We assessed the proper grid resolution by a systematic grid study. For the different cases, we
simulated the flows with different resolutions. We measured the values of superficial velocity

〈u〉s, dissipation 2µ〈s : s〉s and the factor
〈u ·u〉s
〈u〉s · 〈u〉s at fixed times in steady-state, and we took

the results from the finest resolutions as references to calculate the relative errors. Figure
4.3 illustrates the changes of the relative errors with respect to the number of grid points
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per D (in channel case 2H) in log-log plots. We can see that the superficial velocity 〈u〉s
and the factor

〈u ·u〉s
〈u〉s · 〈u〉s have a second order convergence with respect to grid spacing. The

dissipation has only first order convergence. This can be explained by the post-processing
from which we computed the dissipation. We did not pay special attention to treating the
velocity gradients at the surface of the spheres/cylinders in the calculation of the dissipation.
In the channel flow, not using the Immersed Boundary Method, the dissipation converges
with second order as well. In the reference solutions, we used 800 grid cells along the channel
hight for the channel case, 480 grid cells per diameter for the cylinder case and 192 grid cells
per diameter for the sphere array case. Note that the difference between the second finest
grids and reference solutions in the superficial velocity is less than 0.1% in all cases and
that the one in the dissipation is around 1%, which essentially implies that the errors in the
reference solutions are even smaller.

4.2.3 Velocity profiles during flow acceleration

In this section, we examine velocity profiles during flow acceleration. In figure 4.4 we show
velocity profiles at different instances in time for the channel flow (a) and for the flow in
the cylinder array (b). The latter is positioned in the smallest gap between two cylinders
where the velocity is largest. Note that the profiles are normalized by their instantaneous
maximum values. The plots clearly show the deformation of the profile shapes w.r.t. time.
In the channel flow, a parabolic profile is obtained at late times. However, at very short
times, the flow is essentially a constant profile from which a parabolic profile slowly de-
velops. The change in the profile shape can be interpreted as the interaction of pressure
gradient and viscosity. While pressure gradient accelerates the flow uniformly over the chan-
nel width, the viscosity slows down the flow from the wall. As both processes act with
different time scales, a deformation of the profile is being obtained during the flow accelera-
tion.

The deformation of the velocity profile in the flow through the cylinder array is even more
pronounced. Two peaks at the cylinders’ walls develop at short times that disappear at late
times. At short times the flow is accelerated by the pressure field while the viscosity acts
more slowly. Therefore, the flow field tends to be irrotational at very short times1 which
explains the two peaks. At late times the profiles tend towards a profile similar to a parabola
due to the influence of the viscosity.

The change in the shape of the velocity profiles let us speculate that flow quantities such
as interaction term or dissipation might hardly be linearly dependent on superficial ve-
locity during flow acceleration. We will have a closer look on the relation between su-
perficial velocity and interaction term or dissipation, respectively, in sections 4.2.5 and
4.2.6.

4.2.4 Superficial velocity

In this numerical experiment, we study the development of the superficial velocity in the
x-direction, 〈u(t)〉s := 〈u(t)〉s · ex, after applying the pressure gradient jumps. In particular,
we compare the exact solutions obtained for the time constants from the VANS and energy

1(The gradient of the pressure field is irrotational.)
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a: illustration b: streamlines

Figure 4.1: Two-dimensional simulation. Arrangement of cylinders (2D) and computational box
containing one cylinder (a) and streamline plot of flow at low Reynolds number (b).

a: illustration b: streamlines

Figure 4.2: Three-dimensional simulation of a dense sphere pack. Arrangement of spheres (3D)
(a) and streamlines (b).
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Figure 4.3: Relative error of superficial velocity, dissipation and ratio between integrated kinetic
energy in the pore space and that of the superficial velocity.
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Figure 4.4: Velocity profiles at different times during flow acceleration. Channel flow (a) and flow
in a cylinder array between two cylinders (b).
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approaches with the DNS results. We do not include the virtual mass approach here since, in
the two- and three-dimensional cases, it would yield the same results as the energy approach
for a properly tuned constant Cvm.

For the different configurations, we measure the permeability K from the steady-state DNS
results. We compute τvans by equation (4.7) and τen as defined in equation (4.23), and
compare the analytic solutions obtained with the respective time constants to the DNS
results.

In figure 4.5, we plot the solutions 〈u(t)〉s obtained by the different approaches as a func-
tion of time. The time constant τvans is, in all cases, smaller than τen, and does not
represent the unsteadiness correctly for this particular example. For the two- and three-
dimensional arrangements, the discrepancy is even larger. In the case of a hexagonal sphere-
pack with lower porosity ε = 0.26, we observe the most significant deviation of the VANS
approach with steady-state closure from the DNS results. However, in all experiments,
we see that the analytical solution (4.27) of the unsteady Darcy equation closely follows
the DNS solution, if the time constant is determined by the energy approach, equation
(4.23).

4.2.5 Interaction term

If we neglect the Forchheimer terms in equation (4.5), we obtain the approximation

1

|Vβ|

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA = − µ

KD

〈u〉s,

which is used in the derivation of the VANS model of unsteady porous-media flow. While
this is undisputed in the steady state, the velocity profiles in section 4.2.3 pose a question
regarding the validity of this assumption for unsteady porous-media flow. Hence, we compare
the surface filter (interaction term) obtained by DNS with its steady-state approximation,
equation (4.5). In all simulations, we observe that, in the steady state, the ratio between
interaction term and closure approaches unity, which is consistent with the theory for steady
Darcy flow. However, in the unsteady regime, we observe a large discrepancy between the
actual interaction term and its closure.

For the different cases, we inspect the approximation of the interaction term by plotting it as
a function of its closure (figure 4.6). Here, the diagonal represents the steady-state solution.
During the transient phase, large deviations can be observed in which the interaction term
is consistently larger than its approximation, thus slowing down the acceleration of the flow
compared to the VANS approach with closure (4.5).

From the observations made in our experiments, we conclude that the steady-state approx-
imation of the interaction term leads to an insufficient representation of the physics in the
cases under investigation. This is in line with observations from section 4.2.3
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Figure 4.5: Comparison of DNS results with analytical solutions using τvans and τen.
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Figure 4.6: Variation of the surface filter | 1
|Vβ |

∫
Aβσ

nβσ · (−p̃I + µ∇ũ) dA| with µ
KD
|〈u〉s|.

4.2.6 Dissipation of the kinetic energy

In our derivation using the volume-averaged kinetic energy equation, we introduced the
approximation

2µ〈s : s〉s =
µ

K
〈u〉s · 〈u〉s, (4.28)

which is accurate in the steady state. We inspect the quality of the approximation during
the transient simulations. In figure 4.7 we observe that the dissipation correlates well with
its approximation during flow acceleration. Obviously, the dissipation is less sensitive to
the deformations of the velocity profile shapes than the interaction term (mainly wall shear
stress). There is a small underprediction of the dissipation, visible as a systematic deviation
of the dissipation from its approximation, which is also present for large values, i.e. for large
times in the steady state. It is a result of an inconsistency in determining the dissipation by
post-processing, which converges by first order, see section 4.2.2. Thus, the approximation
of the dissipation of kinetic energy seems to be more reasonable than that of the surface
filter by their respective steady-state counterparts.
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Figure 4.7: Variation of the dissipation 2µ〈s : s〉s with µ
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〈u〉s · 〈u〉s.

4.2.7 Time-scale

In the derivation of the unsteady Darcy equation, we made a second approximation by
assuming in equation (4.20) that

∂t
〈u ·u〉i
〈u〉i · 〈u〉i

≈ 0. (4.29)

The purpose of this section is to assess whether this assumption is justified or not.

In figure 4.8, we plot the time dependence of the factor
〈u ·u〉i
〈u〉i · 〈u〉i . When the flow starts from

rest, we assume the lower limit τ = τvans. However, as the flow develops, our time scale
quickly relaxes towards its steady-state value τ → τen.

At the second step change in pressure, the departure from its steady-state value remains,
in all cases, below 10% and then rapidly readjusts to its steady-state value. Hence, in the
case of developed flow through porous media, our examples support the assumption that the
time scale can be taken as a constant value.

As we can see in figure 4.8, the steady state obtained in the DNS results for the channel
flow is at around τen = 1.2 τvans. The analytical solution for steady flow in a channel is a
parabolic velocity profile (Batchelor, 1967). From this, we obtain τen = 1.2 τvans. This value
is in perfect agreement with our numerical results.

For the two-dimensional cylinder array, the steady state is at about τen = 1.787 τvans which
is even larger than for the channel flow. The largest time scale ratio of our experiments is
reached for the hexagonal sphere-pack at a value of 2.747. As shown in section 4.2.4, the
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VANS approach with steady-state closure leads to a significant deviation from the actual flow
dynamics in this case, whereas the energy approach can accurately represent the unsteadiness
of the flow.

4.2.8 Comparison with the virtual mass
approach

To assess the dependency of the time constant on the porosity, we conducted several runs
with different porosities for the two-dimensional configuration. Here, the size of the cylinder
is kept the same, and the domain size (i.e., the distance between the cylinders) is adjusted
such that different porosities are obtained. A resolution of 120 grid cells per diameter is
maintained by this procedure.

For each porosity, we determined an empirical time constant τdns by fitting the analytical
solution of the unsteady Darcy equation (4.27) to the DNS data of 〈u(t)〉s. Those values
compare well with those obtained by the energy approach τen. Both are, however, larger
than the time scales obtained by the VANS approach with steady-state closure τvans. The
form of the virtual mass time constant (4.10) implies that

τvm

τvans

= 1 +
Cvm(1− ε)

ε
≥ 1. (4.30)

We compare the obtained DNS values with τvm/τvans in figure 4.9 for different coefficients
Cvm. The tendency of the virtual mass term is correct in the sense that it increases with
decreasing porosity. However, its slope differs from the slope of the values obtained by DNS.
It is not possible to match all the DNS values with one single virtual mass coefficient. From
equation (4.30), it can be inferred that the limiting behavior toward ε→ 1 is not accurately
captured if Cvm is taken independently of the porosity ε. We included τen in figure 4.9 for
completeness, as it shows good agreement with τdns.

4.3 Conlusions

To investigate unsteady and linear flow in porous media, we focused on the applicabil-
ity of the unsteady form of Darcy’s equation and its time scale. Our direct numerical
simulations of transient flow in the pore space support the use of the unsteady form of
Darcy’s equation with constant coefficients, although velocity profile shapes have been found
not to be self-similar during flow acceleration. The simulations, however, show that the
volume-averaged Navier-Stokes system with a steady-state closure for the interaction term
underpredicts the time scale in the unsteady Darcy equation. Motivated by these observa-
tions, we reviewed existing approaches and presented an alternative way to define a time
scale.

We derived the unsteady form of Darcy’s equation by starting with the equation of the
kinetic energy of the flow in the pore space. The interaction term here represents the
dissipation of kinetic energy, which was approximated by its steady-state value using the
classical permeability. We demonstrated that this assumption is well-suited in all of our
simulations of various configurations, as the dissipation remains very closely proportional to
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Figure 4.8: Temporal variation of
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〈u〉s · 〈u〉s from DNS.
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the square of the superficial velocity during the transient phase. The energy approach leads
to a different time scale that is proportional to the ratio of the integrated kinetic energy in
the pore space to that of the intrinsic velocity. This ratio can be rather large ranging from
a value of 1.2 for plain channel flow to 2.75 for a dense sphere pack with hexagonal packing.
Our time scale is well in accordance with those evaluated by direct numerical simulation of
transient flow in the respective configurations.

The virtual mass approach is qualitatively in line with the findings of this study in that
it increases the time scale in the unsteady Darcy equation. However, the dependence of
the virtual mass term with porosity cannot be obtained with a constant virtual mass coef-
ficient. We suggest using the time scale obtained by the energy equation approach because
it establishes a well-defined quantity. The use of model reduction techniques that allow to
determine this quantity without the need for direct numerical simulations is a subject of
future research.



5 Part2: Unsteady Darcy Equation for
Oscillatory and Linear Flows

Note: most of this part is taken from Zhu and Manhart (2015).

We recall the different time scales derived in section 4.1. The time constant obtained by the
VANS approach is

τvans =
KD

νε
; (5.1)

the time constant obtained by the virtual mass approach is

τvm =
KD

νε

[
1 + Cvm

1− ε
ε

]
; (5.2)

the time constant obtained by the energy approach is

τen =
KD

ε ν

〈u ·u〉i
〈u〉i · 〈u〉i

. (5.3)

We introduce the time-scale ratio between the τvans and τen as

τen

τvans

=
〈u ·u〉i
〈u〉i · 〈u〉i

. (5.4)

In this part, we extend the aforementioned unsteady and linear porous-media flows to oscil-
latory flow in the linear regime, by assuming an oscillatory pressure gradient driving the fluid
and a very low Reynolds number. We will concentrate on the following questions: (i) how
accurate is an analytical solution of the unsteady Darcy equation with constant time scale
and permeability in the case of an oscillatory pressure gradient; (ii) how do velocity fields
change within the oscillatory cycle; and (iii) how do coefficients in the unsteady Darcy equa-
tion vary within the oscillatory cycle. We use direct numerical simulations of generic porous
media geometries and compare coefficients derived by the standard VANS approach to the
ones derived by the kinetic energy approach in section 4.1.4.

The part is organized so that, in the next section, the analytical solution of the unsteady
Darcy equation is discussed. By comparison with direct numerical simulations of oscillatory
flow through generic porous media, we assess the unsteady behaviour of the flow fields, time
scale, interaction term and dissipation of kinetic energy, which constitute the coefficients of
the unsteady form of the Darcy equation (section 5.2).

45
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5.1 Theory

In this section, we discuss the analytical solution of the unsteady Darcy equation (4.2)
for oscillatory flow in porous media. We compare this solution to the analytical solutions
for oscillatory flows in pipes (Womersley, 1955) and between parallel plates (Loudon and
Tordesillas, 1998), both of which can be regarded as highly simplified models for porous-
media capillaries.

If we impose an oscillatory flow by prescribing an oscillatory pressure gradient

∇〈p〉i(t) = <(Θ + Ψeiωt) (5.5)

where Φ and Ψ are real constants, ω is the real circular frequency, and t is the time, the
analytical solution of the unsteady Darcy equation (4.2) is

〈u〉s(t) =
KΘ

µ
(e

−t
τ − 1)︸ ︷︷ ︸

transient part

+
KΨ

µ

1√
τ 2ω2 + 1︸ ︷︷ ︸

amplitude=Am(ω)

cos(ωt+ π − φ︸ ︷︷ ︸
phase lag=π−φ(ω)

) (5.6)

with the amplitude

Am =
KΨ

µ

1√
τ 2ω2 + 1

(5.7)

and the phase lag

φ = arccos(
1√

τ 2ω2 + 1
). (5.8)

Here, τ is the time scale, which is dependent on the method used for approximation (ei-
ther τvans, τvm or τen), and K is the permeability in the unsteady Darcy equation. K
does not have to be a constant. However, if we implement either τvans from the VANS
approach or τen from the energy approach, K = KD in both methods. The product of
the time scale with the circular frequency, τω, can be interpreted as dimensionless fre-
quency.

We can see that the amplitude of the flow rate induced by an oscillating pressure gra-
dient scales like Am ∝ ω−1 for large dimensionless frequencies. For low frequencies, it
behaves in a quasi-steady manner, i.e., the instantaneous flow rate is determined by the
instantaneous pressure gradient. This can be seen from the amplification factor, i.e., the
ratio of the amplitude Am to the steady-state flow rate Am,ss, which can be determined as

Am
Am,ss

=
1√

τ 2ω2 + 1
. (5.9)

This solution can be compared to the ones for oscillating flow in a circular pipe at radius
R (Womersley, 1955) and for oscillating flow in a channel between two parallel plates at a
channel half width h (Loudon and Tordesillas, 1998). Womersley introduced a dimensionless
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frequency, nowadays referred to as the Womersley number, α.

α2 = ω
R2

ν
(5.10)

According to Womersley (1955), the local velocity and volume flow rate in a pipe flow, which
is driven by an oscillatory pressure gradient, ∇〈p〉i = <(p0e

iωt) are

u(r, t) = <

(
p0

ρ

1

iω

[
1−

J0( r
R
αi

3
2 )

J0(αi
3
2 )

]
eiωt

)
, (5.11)

Q(t) = <

(
πR2

ρ

p0

iω

[
1− 2αi

3
2

i3α2

J1(αi
3
2 )

J0(αi
3
2 )

]
eiωt

)
, (5.12)

where r is the distance of the local position from the axis of the pipe. J0 and J1 are Bessel
functions of order zero and one, and with complex argument αi

3
2 . Womersley (1955) further

derived this solution into decomposed terms of the Bessel functions, and gave a table which
provides discrete values of these terms. Our following discussions concerning Womersley’s
solution of the pipe flow are based on our Matlab solutions of equation (5.11), which match
Womersley’s tabulated values well.

According to Loudon and Tordesillas (1998), the solution of the local velocity in a channel
flow under the same oscillatory pressure gradient is

u(y, t) =
p0

ωργ
[sinh Φ1(y) sin Φ2(y) + sinh Φ2(y) sin Φ1(y)] cos(ωt)

+
p0

ωργ
[γ − cosh Φ1(y) cos Φ2(y)− cosh Φ2(y) cos Φ1(y)] sin(ωt),

(5.13)

where y is the distance of the local position from the channel center plane, α = h
√
ω/ν is

the Womersley number, and

Φ1(y) =
α√
2

(
1 +

y

a

)
,Φ2(y) =

α√
2

(
1− y

a

)
,

γ = cosh(
√

2α) + cos(
√

2α).

(5.14)

The amplitude of the flow rate in a channel flow under the same oscillatory pressure gradient
is

Qmax =
2p0h

3

µα3
k,

k2 =

(
sinh(

√
2α)

γ

)2

+

(
sin(
√

2α)

γ

)2

−
√

2α
[
sinh(

√
2α) + sin(

√
2α)
]

γ
+ α2.

(5.15)

Note that the flow rate per unit width, Qmax, represents the integration of the local velocity
along the channel height whose unit is [m

2

s
].



48 5.1 Theory

As both steady-state solutions, for pipe and for channel, can be derived analytically, the per-
meability and time-scale ratio factors determined in steady states can be computed directly,
as given in Table 5.1. Inserting both values into equation (5.1) and (5.3), respectively, gives
the expressions of the dimensionless frequencies τvans,ssω and τen,ssω in terms of Womersley
number, where τvans,ss and τen,ss are values of τvans and τen determined in steady-state flow
driven by a constant pressure gradient.

Table 5.1: Permeability and time-scale ratio factors for pipe flow (Womersley, 1955) and channel
flow (Loudon and Tordesillas, 1998).

permeabiliy

steady-
state
time-scale
ratio

Womersley
number

dimensionless frequencies

K =
µ〈u〉s
−∇〈p〉i

τen,ss
τvans,ss

=
〈u ·u〉i
〈u〉i · 〈u〉i τvans,ssω τen,ssω

pipe flow R2/8 4
3

α = R
√

ω
ν

1
8
α2 1

6
α2

channel flow h2/3 6
5

α = h
√

ω
ν

1
3
α2 2

5
α2

We now compare the amplification factors A/Ass, equation (5.9), with those for channel and
pipe flow obtained by equations (5.12) and (5.15). In Figure 5.1 low Womersley numbers
and in Figure 5.2 high Womersley numbers are plotted.

One can see that at low frequencies, the amplitude ratios are 1.0, which means a quasi steady-
state behaviour for all solutions. We also conclude that all solutions follow the asymptotic
behaviour Am ∝ α−2 ∝ ω−1.

For small Womersley numbers (or lower frequencies) up to α . 5, the analytical solutions by
Womersley (1955) and Loudon and Tordesillas (1998) for pipe and channel plotted in Figure
5.1 can be represented by the analytical solutions of the unsteady Darcy equation (4.2),
which are obtained using the steady-state time scales, τen,ss. While for larger Womersley
numbers (or higher frequencies), the analytical solutions by Womersley (1955) and Loudon
and Tordesillas (1998) plotted in Figure 5.2 deviate from the analytical solutions of the
unsteady Darcy equation (4.2) using τen,ss and approach to the ones using τvans,ss. To explain
this effect, we discuss the change of the velocity fields with increasing frequency (Womersley,
1955; Loudon and Tordesillas, 1998).

At low frequencies, or quasi-steady states, the profiles form similar shapes as the profiles in
the steady-states, which are, for instance, parabolic functions in a channel flow. As frequency
increases, the profiles asymptotically approach to a uniform profile due to a decreasing
viscous layer depth δν ∝

√
ν/ω. For channel and pipe flow, the viscous layer depth is given

by

δν

R
=

√
2

τω
. (5.16)

We now recall that τen = KD

ε ν

〈u ·u〉i
〈u〉i · 〈u〉i . The term KD

ε ν
obviously remains constant over the

whole frequency range, while the time-scale ratio
〈u ·u〉i
〈u〉i · 〈u〉i varies with varying profile shapes,
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Figure 5.1: Amplification factors of oscillatory superficial velocities for channel and pipe flow.
Compared are analytical solutions by Womersley (1955) and Loudon and Tordesillas
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as frequency changes. At low frequencies, or quasi-steady states, because the profile shapes

remain similar to those in steady-state flows, the values of
〈u ·u〉i
〈u〉i · 〈u〉i remain the same as those

in steady-state flows. Thus the value of τen at low frequencies, which we call τen,lf, equals the
steady-state time scale, τen,ss. At high frequencies, however, as profiles approach uniform

profiles, the time scale ratio
〈u ·u〉i
〈u〉i · 〈u〉i approaches 1.0. Thus the value of τen at high frequencies,

τen,hf = τvans,ss. This means that the amplitudes at high frequencies are underestimated when
using the τen,ss, as τen,hf is obviously smaller than τen,ss (Zhu et al., 2014), and the amplitude
of asymptotic solution of the unsteady Darcy equation (4.2) at high frequencies is given as

Am/Am,ss = (τω)−1. (5.17)

Using τen,ss to estimate the amplitude at high frequencies, the amplitude of oscillating pipe
flow is underestimated by a factor of 3/4, and the amplitude of oscillating channel flow is
underestimated by a factor of 5/6.

The conclusion from this analysis is that the unsteady Darcy equation, together with the
constant steady-state time scale, τen,ss, cannot be used over the complete range of frequencies
for oscillatory flow in pipes and channels. For low frequencies, it represents a good model,
provided the time scale is adjusted to τen,ss for quasi-steady flow. For high frequencies, the
values of τen change due to the change of the velocity profiles and asymptotically reaches
τvans,ss as the time-scale ratio reaches unity. The amplitude error is given by the ratio of
the respective time scales. Displayed in Figure 5.1 and 5.2, τen,ss gives the most accurate
solutions at low frequencies and so do τvans,ss at high frequencies. However, the essential point
is that at both low and high frequencies, only the frequency-dependent values of τen, which
are τen,lf (and it equals to τen,ss) and τen,hf (and it equals to τvans,ss), respectively, give accurate
analytical solutions to the unsteady Darcy equation (4.2).

The question arises: How does the unsteady Darcy equation predict the amplitude ratios for
oscillating flow in more complex porous media, and how can time scales and permeabilities be
described as function of dimensionless frequency? This question will be addressed in the next
section, using numerical simulations of oscillating flow through various porous configurations
as a reference.

5.2 Numerical Results

We examine the questions raised in the previous section with Direct Numerical Simulations
(DNS). For various geometries, which will be introduced in the following sections, we com-
puted highly resolved solutions of the full Navier-Stokes equations. We ran a series of DNS
with different frequencies, ω, prescribing Θ and Ψ in the oscillatory pressure gradient. In all
simulations, the Reynolds numbers, based on pore velocity and pore length scale, were kept
on the order of 10−3, which is small enough to ensure that non-linear effects can be neglected.
We measured the amplitude Am and phase lag α of the oscillating superficial velocity as a
function of frequency, and compared those with solutions of the unsteady Darcy equation.
We examined flow fields, interaction terms and dissipation of kinetic energy for various cases,
which allowed us to explain the effects observed.
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5.2.1 Simulation setup

The full Navier-Stokes equations for an incompressible Newtonian fluid were solved by a finite
volume method on a Cartesian grid (Manhart, 2004), where the pore space was represented
by an immersed boundary method (Peller et al., 2006; Peller, 2010). For the spatial approx-
imations, we used second-order central schemes, and we advanced time by a low-storage,
third-order Runge-Kutta method (Williamson, 1980). The solver code is well-validated in
various flow configurations, including laminar and turbulent flows (e.g., Breuer et al., 2009;
Hokpunna and Manhart, 2010; Peller, 2010), and for flow in porous media (Zhu et al., 2014).
In all cases, the flow was driven by a pressure gradient that has been implemented as a vol-
ume force in the momentum equation. This enables one to use periodic boundary conditions
for the pressure field which essentially represents the pressure deviation from the spatially
averaged pressure including the driving pressure gradient.

In the following section, we denote D as the cylinder and sphere diameters in the two- and
three-dimensional cases, respectively. The Reynolds number is then, in all cases, computed
by Re = |〈u〉s|D/ν. Furthermore, we introduce a pore spacing as the distance between
spheres or cylinders, H, and we define the blockage ratio as B = D/H. Unless stated
otherwise, we use the ’natural’ time scale τ = KD/(νε) to make time or frequency dimen-
sionless.

We started with a two-dimensional flow through an array of regularly placed cylinders.
Although we used this as an idealized configuration to assess our theoretical findings, one
could imagine real configurations in which such a geometry could serve as a good model,
e.g., a tube bundle in a heat exchanger or an array of plants or a forest. We simulated a box
containing one cylinder, as indicated in Fig. 5.3 (a). By using periodic boundary conditions
in pressure and velocity fields in the directions perpendicular to the cylinder axes, we actually
simulated an infinite array of cylinders.

The Reynolds number in the two-dimensional case was adjusted to be below Re = 3.40×10−4.
The grid had a resolution of 240 cells per cylinder diameter D. According to Eq. (5.16),
a dimensionless frequency of τω = 103 would still give about ten computational points in
the viscous layer δν . The blockage ratio is B = 0.75, and the porosity can be computed as
ε = 0.5582. The time-scale ratios according to equation (5.4), as they have been computed
for low and high frequencies are given in table 5.2.

Our three-dimensional configuration consisted of flow through a dense sphere-pack in hexag-
onal close packing (see Fig. 5.3, b), which resulted in a porosity of ε = 0.26. Periodic
boundary conditions in pressure and velocity fields were applied in all directions, such that
the flow and geometry repeated themselves in space. The Reynolds number was set to be
below Re = 1.23 × 10−6, where we resolved one sphere diameter with 160 grid cells. The
time-scale ratios obtained at low and high frequencies according to equation (5.4) are given
in table 5.2.

We assessed the proper grid resolution by a systematic grid study. For the different cases,
we simulated the flows with different resolutions. We measured the values of the amplitude,
Am, and the phase lag, φ, at highest frequencies for both cylinder array and sphere pack,
and we took the results from the finest resolutions as references to calculate the relative
errors. Figure 5.4 illustrates the changes of the relative errors with respect to the number
of grid points per D in log-log plots. We can see that the amplitude, Am, has a second
order convergence with respect to grid spacing, while the phase lag, φ, generally converges
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Table 5.2: Time-scale ratios for the 2D flow through an array of cylinders and the 3D flow through
a dense sphere pack at low and high frequencies.

cylinder sphere pack
low frequency 1.787 2.657
high frequency 1.499 1.837

a b

Figure 5.3: Geometries of the simulations performed. Arrangement of cylinders (2D) and compu-
tational box containing one cylinder (a), and arrangement of spheres in a dense sphere
pack (b).
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by a first order. In the reference solutions, we used 240 grid cells per cylinder diameter, and
160 grid cells per sphere diameter. In the cylinder array, the differences between the second
finest grids and reference solutions in both the amplitude and phase lag are less than 0.072%.
In the sphere pack, these numbers are 2.68% in amplitude and 0.61% in phase lag. Note
that the errors in the reference solutions are even smaller. Moreover, these grid studies are
conducted at the highest frequencies, where the viscous layer depth, equation (5.16), obtains
the smallest values. At lower frequencies, as the viscous layer depth increases significantly,
the same resolutions obtain much more accuracy.

5.2.2 Superficial velocity

The superficial velocities were measured in each case. In the cylinder array, the time develop-
ment of the superficial velocities during flow acceleration, with frequencies ωKD/(νε) = 0.462
and ωKD/(νε) = 4.62, are represented in Fig. 5.5 as an example.

We observed a superposition of a transient and an oscillatory motion, as expected. For flows
in the same geometry configuration but with higher frequencies, it was observed clearly that
the amplitude of the oscillation was much smaller than for those with lower frequencies. This
is in line with Eq. (5.7).

We measured the amplitudes, Am, of the superficial velocity as a function of the frequency,
ω, of the oscillatory pressure gradient (Eq. (5.5)) at late times after the transient, in which
we observed purely oscillatory behaviour.

For both cylinder array and dense sphere pack, the values for oscillatory amplification factors,
Am/Am,ss, from DNS are represented with symbols in Fig. 5.6. The analytical solutions of
Eq. (5.7), 1√

τ2ω2+1
, using τ = τvans,ss and τ = τen,ss, are plotted in dashed and solid lines,

respectively. We observe that, for both cases, the analytical solutions with τ = τen,ss compare
well with the DNS results at small and medium frequencies (ωKD/(νε) . 2.5), while the ones
with τ = τvans,ss considerably depart from the DNS solution.

For large frequencies, such as ωKD/(νε) & 5, the amplification factors measured in the DNS
are slightly larger than the ones predicted by Eq. (5.7) using τen,ss. This effect resembles the
one observed for pipe and channel flow. In the latter cases, the velocity profiles are dependent
on the dimensionless frequency. At high frequencies, the time-scale ratio (5.4) tends towards
unity. Regarding the change in the time-scale ratio leads to better predictions of the flow
amplitudes at high dimensionless frequencies. In real porous domains, the time-scale ratio
will always be larger than 1.0 due to the tortuous flow paths in the pore space. We computed
the respective frequency dependent time-scale ratio, Eq. (5.4), at the lowest frequencies, τen,lf,
and at the highest frequencies, τen,hf. Because at low frequencies, the velocity profiles are
similar to the ones in steady states, the time-scale ratios (5.4) remain the same as the ones in
steady states. Thus τen,lf = τen,ss, and we did not show τen,lf specifically in the plots. While at
high frequencies, as aforementioned, the time-scale ratios (5.4) decrease, thus τen,hf < τen,ss,
and the solutions of the Darcy equation using τen,hf are added in Fig. 5.7, which renders
high-frequency flow amplitudes in a cylinder array and a sphere pack. It may be seen that the
solutions using τen,hf fit better to the DNS results at high dimensionless frequencies. Using the
steady-state time-scale ratio results in an underestimation of the flow amplitudes by factors
of 1.192 in the cylinder array and 1.447 in the sphere pack.

Note that at high frequencies, the flow amplitudes remain below 1% of those of the steady-
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state flows, and for the analytical solutions with τ = τvans,ss, there is a much larger gap with
respect to the DNS results at any frequency.

5.2.3 Phase lag

In analogy to the oscillatory amplitude, the phase lag, φ, between the superficial velocity and
the prescribed pressure gradient was measured, and can be seen in Fig. 5.8 as a function of
the frequency, ω. For both cases of the cylinder array and dense sphere pack, the analytical
solutions with τ = τen,ss compare well with the DNS results, while the solutions with τ =
τvans,ss show a much larger gap. Moreover, according to Eq. (5.8), when ω approaches
infinity, the phase lag, φ, approaches π/2. This is consistent with the results shown in Fig.
5.8. As all solutions converge to the same value, there is no difference between the different
time scales at large frequencies.

5.2.4 Velocity profiles

We have demonstrated that the time scale in the unsteady Darcy Eq. (4.2) changes at large
dimensionless frequencies as a consequence of a change in the time-scale ratio, as given by
Eq. (5.4). For oscillatory pipe and channel flows, this is due to the shrinking of the viscous
layer depth, δν , with increasing dimensionless frequency. This leads to a flattening of the
profiles for pipe or channel flows. We inspected instantaneous velocity profiles at low and
high frequencies together with their real and imaginary parts, to explore their change with
frequency. Note that the instantaneous velocity profiles might have influence on heat and
mass transfer in oscillatory porous-media flow.

Fig. 5.9 demonstrates the change of the velocity fields with oscillation frequency. It ren-
ders streamlines around a 2D cylinder at low (a) and high (b) frequencies, both at the
instance of maximum superficial velocity. At low frequencies, the streamlines are identical
to the ones in steady-state flow. Although the Reynolds number is small and the flow is
in the linear regime, backflow occurs in the streamwise gap between two cylinders. This
is a viscous effect. In inviscid flow as well as at large frequencies (b), the backflow dis-
appears as the flow field follows a potential flow solution with the pressure gradient as
potential.

The velocity profiles between two cylinders at different instances in the oscillatory cycle are
plotted in Fig. 5.10. The instances“mid1, max, mid2, 0”, marked in Fig. 5.10, are illustrated
in Fig. 5.5 (a). At medium frequencies (Fig. 5.10, a) we observed that at the instances when
the superficial velocity reaches its positive oscillation peak (max) and positive mid values
(mid1 and mid2), the profiles resemble a parabolic shape within the gap between the two
cylinder walls. But at zero superficial velocity (0), there is forward and backward flow that
cancels out the superficial velocity.

At large dimensionless frequencies, the profiles are substantially different (see Fig. 5.10, b).
In the center part of the gap, the profiles remain flat throughout the whole cycle. Between
the flat center part and the wall of the cylinder, a local maximum has developed. This can be
taken as indication that the profiles at large frequencies resemble a potential flow solution,
except in a thin layer at the wall that is affected by viscosity. As in the low-frequency case,
we see positive and negative velocities in the profile at zero superficial velocity, giving rise to



56 5.2 Numerical Results

 0.001

 0.01

 0.1

 1

 0.1  1  10  100

A
m

pl
if

ic
at

io
n 

fa
ct

or
 [

-]

frequency * K/(νε) [-]

solution with τen,ss
solution with τvans,ss

DNS

a: cylinder array

 0.01

 0.1

 1

 0.01  0.1  1  10

A
m

pl
if

ic
at

io
n 

fa
ct

or
 [

-]

frequency * K/(νε) [-]

solution with τen,ss
solution with τvans,ss

DNS

b: sphere pack

Figure 5.6: Amplification factors of the oscillatory superficial velocity with respect to frequency
normalized by KD/(νε). In a two-dimensional cylinder array (a), and a three-
dimensional dense sphere pack (b).
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Figure 5.8: Oscillation phase lag with respect to frequency, in a cylinder array (a), and in a dense
sphere pack (b).

the conclusion that the flow will never be completely at rest.

majority of the profile shape change accurs in a very small time interval close to the zero
point.

In addition to the velocity profiles taken at times adjusted to the velocity cycle, we inspected
the real and imaginary parts of the velocity profiles, which were taken at the times when
the pressure gradient was at its maximum (real part of the velocity) and when the pressure
gradient was zero (imaginary part of the velocity profile), as shown in Fig. 5.11. All pro-
files are normalized by their individual maximum value. At a low dimensionless frequency,
ωKD/(νε) = 0.5, real and imaginary profiles are close to a parabolic shape. At a medium
frequency, ωKD/(νε) = 5.0, the real part develops a complicated shape with two inflec-
tion points, two local maxima and a local minimum. The imaginary part is still close to a
parabolic shape. At the largest frequency, ωKD/(νε) = 50, real and imaginary parts have
two inflection points and two local maxima. While the real part has positive and negative
velocities, the imaginary part does not show a zero crossing.

5.2.5 Interaction term and dissipation of the kinetic
energy

We have demonstrated that in all cases considered, the time scale obtained by the energy
approach, τen,ss, gives good agreement between solutions of the unsteady Darcy equation and
analytical or DNS results. On the other hand, the steady-state closure for the interaction
term does not comply to analytical or DNS results. While the latter relies on the steady-
state closure for the interaction term for the volume-averaged momentum equation (VANS
approach), the former relies on the volume-averaged equation for the kinetic energy in the
flow. The time scale obtained by the energy approach is larger than the one obtained by the
momentum equation, which explains the different solutions. Both approaches differ only in
the time scale, which has different meanings. In the volume-averaged momentum equation,
the instantaneous pressure force balances the instantaneous interaction force and the rate
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a b

Figure 5.9: Two-dimensional simulation. Streamlines at maximum velocity amplitude for low fre-
quencies (a), and streamlines at maximum velocity amplitude at high frequencies (b).
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Figure 5.11: Streamwise velocity profiles between two cylinders. All are normalized by their peak
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quencies, ω∗ = ωKD/(νε).

of change of momentum of the flow. In the volume-averaged kinetic energy equation, the
instantaneous energy input by the pressure gradient balances the instantaneous dissipation
of kinetic energy and rate of change of kinetic energy. In the momentum equation, the
interaction term needs to be closed, which has been done by using the steady-state closure. In
the kinetic energy approach, the ratio of kinetic energy in the pore space to the kinetic energy
of the superficial velocity, i.e., the time-scale ratio given in Eq. (5.4), and the instantaneous
dissipation of kinetic energy need to be modelled. We have demonstrated in the previous
sections that the time-scale ratio is dependent on the oscillation frequency due to a change
in the velocity fields. In what follows, we investigate the interaction term and the dissipation
of kinetic energy obtained from our DNS data base.

Fig. 5.12 plots the interaction term against its steady-state closure in oscillatory flow in a
cylinder array. The interaction term computed by DNS shows hysteretic behaviour for low
and high dimensionless frequencies. Modeling this term by the steady-state closure leads
to errors of more than 30% of the maximum at the low frequency and of more than 80%
of the maximum at the high frequency. The maximum value of the closure remains below
15% of the maximum of the DNS at the high frequency. Modeling the interaction term by
the steady-state closure seems inappropriate in oscillatory flow. The hysteretic behaviour is
present at low frequencies and explains the observed phase differences between DNS and the
unsteady Darcy equation using τvans (compare to Fig. 5.8).

The dissipation of kinetic energy behaves differently (see Fig. 5.13). At low frequencies,
there is a nearly perfect match between the instantaneous dissipation and its closure, with-
out a hysteretic behaviour. At high frequencies, the dissipation shows a hysteresis as well.
The instantaneous errors made by the closure remain below 40%, which doesn’t seem to
be negligible, but is smaller than the errors observed in the steady-state closure of the
interaction term. Moreover, the largest modelled dissipation is at about 85% of the one
from DNS. These observations make modelling the dissipation of kinetic energy much eas-
ier than modelling the interaction term. This supports the better amplitude and phase-
lag predictions from the kinetic energy approach and the suitability of the time-scale ra-
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tio.

5.3 Conlusions

We have investigated oscillatory flow through various porous media configurations. We con-
sidered two formulations of the unsteady form of Darcy’s equation, one derived by volume-
averaging the momentum equation and one by volume-averaging the equation for the kinetic
energy. In both formulations, steady-state closures for the interaction term and the dissi-
pation of the kinetic energy, respectively, were used. With these closures, both approaches
differed in the time scale. The time-scale ratio is given by the ratio of the kinetic energy in
the pore space to the kinetic energy of the superficial velocity.

The analytic solution of the unsteady Darcy equation complies well with analytic solu-
tions of laminar oscillatory pipe and channel flows if the proper time scale is chosen. For
low frequencies up to ωKD/(νε) ≈ 2.5, the steady-state time-scale ratio fits well, as in-
stantaneous velocity profiles tend to assume a parabolic shape. For larger frequencies, the
time-scale ratio goes towards unity as the viscous layer tends towards zero and the ve-
locity profiles flatten. This would infer different time scales for small and large frequen-
cies.

Direct numerical simulations of oscillatory flow through cylinder arrays and sphere packs
reveal similar findings as for oscillatory channel and pipe flow. The unsteady Darcy equation
is able to predict the amplitude damping and phase lag accurately if the proper time scale
is chosen. At low to medium dimensionless frequencies, the time scale, τen,ss, computed
from steady-state velocity, represents the flow dynamics considerably better than the time
scale derived by volume-averaging the momentum equation together with the steady-state
closure of the interaction term. At high frequencies, the time-scale ratio computed from
high-frequency pore-scale velocity fields is more accurate than the one computed from the
steady state. This can be explained by the transition of the pore-scale velocity fields from
viscous ones to inviscid ones with diminishing viscous layer thicknesses. The amplitude
and phase lag errors, however, remain small, irrespective of whether low or high frequency
velocity fields are used for computing the time-scale ratio.
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6 Part3: Non-linear Effects in Unsteady
Flows, and the Unsteady Forchheimer
Equation

In this part, we focus on unsteady and non-linear flows. We mainly investigate two problems:
(I) which physical variable determines the onset of the non-linear effects in unsteady flows;
(II) whether the unsteady Forchheimer equation (1.4) with constant coefficients a, b and c is
accurate in describing unsteady and non-linear flows. We use fully resolved direct numerical
simulation (DNS) of the flow in the pore space to assess these questions. We analyze the
DNS results to identify the determining variable. We then compare the DNS results to the
Matlab solutions of the unsteady Forchheimer equation (1.4) to assess its applicability. Let
us first start with the onset of the non-linear effects.

6.1 Onset of the Non-linear Effects in Unsteady
Porous-media Flows

There exist different theories concerning the reason that causes the onset of the non-linear
effects in unsteady porous-media flows. It has been attributed to different concepts such as
turbulence (e.g. Tek et al., 1962), the microscopic inertial forces (e.g. Bear, 1972; MacDonald
et al., 1979; Cvetkovic, 1986), or the increased microscopic drag forces on the porous walls
(e.g. Hassanizadeh and Gray, 1987). Despite these different theories, it is widely accepted
that the steady-state pore Reynolds number is the dominant variable that determines the
onset of the non-linear effects in steady flows (e.g. Dullien and Azzam, 1973; Whitaker, 1996;
Blick, 1966; Hassanizadeh and Gray, 1987; Coulaud et al., 1988; Papathanasiou et al., 2001;
Fourar et al., 2004; Mazaheri et al., 2005; Mei and Auriault, 1991; Firdaouss et al., 1997;
Koch and Ladd, 1997; Souto and Moyne, 1997; Rojas and Koplik, 1998; Jacono et al., 2005;
Lasseux et al., 2011), i.e., when the pore Reynolds number, Repore, is comparable to unity,
the non-linear effects set in. In unsteady flows, however, to the author’s best knowledge, no
similar agreements have been made so far.

To answer this question, we conducted fully resolved direct numerical simulation (DNS)
inside the fluid. For various geometries, which will be introduced in the following sections,
we computed highly resolved solutions of the full Navier-Stokes equations. We ran a series
of DNS with different constant prescribing pressure gradients, ∇〈p〉i, to drive the flows
from still, until the fluids have reached steady state. The values of the constant prescribing
pressure gradients, ∇〈p〉i, were assigned with values in different orders of magnitude in such a
way that the steady-state pore Reynolds numbers, Repore,ss, range from 0 to around 200, such
that we were able to compare both linear and non-linear flows.
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Note that we define the steady-state pore Reynolds number as

Repore,ss =
|〈u,ss〉s|d

ν
(6.1)

where |〈u,ss〉s| is the magnitude of the steady-state superficial velocity, d is the pore/grain
size and ν is the kinematic viscosity.

Before we describe the setup of the simulations, and discuss their results, let us first describe
the benchmark problem used throughout this section.

6.1.1 Benchmark problem

For all test cases, heavy-side functions are applied to the x-component of the pressure gra-
dient to drive the flow:

∇〈p(t)〉i = pxex ·

{
0 t < 0,

1 0 ≤ t ≤ t1
(6.2)

Here, ex denotes the unit vector in x-direction, px is the constant pressure gradient and the
flow reaches its steady state already before t1.

If the pressure gradient px is prescribed in such a way (with very small values) that the
flow is always in the linear region, the unsteady Darcy equation would apply, as discussed
in section 4.2.1. The analytical solution of the unsteady Darcy equation (4.2) is given by

〈u(t)〉s = pxex ·
K

µ
·

{
0 t < 0,

exp(−t/τ)− 1 0 ≤ t < t1.
(6.3)

We normalize the superficial velocity 〈u(t)〉s by px · Kµ , and reformulate equation (6.3) to
get

〈u(t)〉s/
(
px ·

K

µ

)
= ex ·

{
0 t < 0,

exp(−t/τ)− 1 0 ≤ t < t1.
(6.4)

From the previous studies in Chapter 4, we already know that the time scale τ = τen =
KD

ε ν

〈u ·u〉i
〈u〉i · 〈u〉i is accurate for all unsteady and linear flows, and this time scale is independent

of the variation of the pressure gradient, px. This means that, as long as the flow is in
the linear regime, the normalized superficial velocity always has the identical mathemat-
ical expression. In other words, as long as the flow is linear, all normalized plots of the

superficial velocities 〈u(t)〉s/
(
px · Kµ

)
against the time t will be an identical linear curve,

despite the variation of the pressure gradient px. Moreover, if a deviation from this linear
curve is observed, this deviation marks the instant at which the non-linear effects set in.
We expect the observation of such a deviation in flows with much larger pressure gradients,
px.
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Note that, when the geometry of the porous medium and the fluid properties are certain,
τ = τen is certain, and equation (6.4) is sufficient to describe the linear curve, without the
time, t, being normalized by any physical quantity. However, in our numerical simulations
in the next sections, it makes no harm to normalize the time, t, by the time scale, τen, to
make it dimensionless.

We further investigate which physical variable determines the onset of the non-linear effects
in unsteady porous-media flows. To do so, we must first find a quantity from which we
can deduce the onset of the non-linear effects. In this case, the relative deviation of the
aforementioned non-linear curves from the linear curve is a good choice, and we denote
this deviation σu(t). To calculate σu(t), we denote a very low pressure gradient, px0 , which
produces a very low superficial velocity, 〈u0(t)〉s, and thus a linear flow. We then denote a
high pressure gradient, pxh , which produces a high superficial velocity, 〈uh(t)〉s, and thus a
non-linear flow. The relative deviation, σu(t), of the aforementioned non-linear curve from
the linear curve is then

σu(t) = 1−

〈uh(t)〉s · ex/
(
pxh ·

K

µ

)
︸ ︷︷ ︸

non-linear curve

〈u0(t)〉s · ex/
(
px0 ·

K

µ

)
︸ ︷︷ ︸

linear curve, equation (6.4)

, (6.5)

where 〈u0(t)〉s and 〈uh(t)〉s can both be obtained from the DNS results, and we expect that
〈u0(t)〉s to be close to the analytical solution in equation (6.4).

It is obvious that only when σu is large enough, we can observe the onset of the non-linear
effects. Plotting σu against any variable (e.g., the instantaneous pore Reynolds number
Repore(t)), and identifying the correlation between σu and that variable (e.g., Repore(t)),
would enable us to identify which variable determines the onset of the non-linear effects in
unsteady porous-media flows.

In the next sections, we will use fully resolved DNS results in the pore space with various
complexities to assess these derivations.

6.1.2 Simulation setup

The full Navier-Stokes Eqs. (2.1) for an incompressible Newtonian fluid were solved by
a finite volume method on a Cartesian grid (Manhart, 2004), where the pore space was
represented by an immersed boundary method (Peller et al., 2006; Peller, 2010). For the
spatial approximations, we used second-order central schemes, and we advanced the time
by a low-storage, third-order Runge-Kutta method (Williamson, 1980). The solver code is
well-validated in various flow configurations, including laminar and turbulent flows (e.g.,
Breuer et al., 2009; Hokpunna and Manhart, 2010; Peller, 2010), and for flow in porous
media (Zhu et al., 2014). In all cases, the flow was driven by a pressure gradient that
has been implemented as a volume force in the momentum equation. This enables one
to use periodic boundary conditions for the pressure field which essentially represents the
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pressure deviation from the spatially averaged pressure including the driving pressure gra-
dient.

In the following sections, we denote D as the cylinder and sphere diameters in the two-
and three-dimensional cases, respectively. The pore Reynolds number is then, in all cases,
computed by Repore = |〈u〉s|D/ν. Furthermore, we introduce a pore spacing as the distance
between spheres or cylinders, H, and we define the blockage ratio as B = D/H. Unless stated
otherwise, we use the time scale τen to make time dimensionless.

We started with a two-dimensional flow through an array of staggered cylinders. We sim-
ulated a box containing one cylinder at the center and four quarter cylinders at the cor-
ners, as indicated in Fig. 6.1 (a). By using periodic boundary conditions in pressure and
velocity fields in the directions perpendicular to the cylinder axes, we actually simulated
an infinite array of staggered cylinders. The grid had a resolution of 96 cells per cylin-
der diameter D. The blockage ratio is B = 0.6, and the porosity can be computed as
ε = 0.4345.

Our three-dimensional simulations are performed on two different configurations.

The first one is a sphere-pack in which the spheres are arranged on a uniform grid with a
porosity of ε = 0.7319, and the blockage ratio is given by B = 0.8. The simulation domain is
the three-dimensional extension of the one shown in figure 6.1 (b). We resolve each sphere
diameter with 48 grid cells.

The second configuration is the flow through a dense sphere-pack in hexagonal close packing
(cf. figure 6.2, a), which results in a porosity of ε = 0.26. Periodic boundary conditions are
applied in all directions, such that the flow and geometry repeat themselves in space. We
resolve each sphere diameter with 40 grid cells. In Figure 6.2 we plot streamlines for the
steady-state flow field.

6.1.3 Normalized superficial velocity

In this numerical experiment, we study the development of the superficial velocity in the
x-direction, 〈u(t)〉s := 〈u(t)〉s · ex, after applying the heavy-side pressure gradient. We plot

the normalized superficial velocities, 〈u(t)〉s/
(
px · Kµ

)
, as discussed in equation (6.4), in

figure 6.3 for all three cases. To obtain the aforementioned linear curves, the pressure
gradients were selected in such a way that the steady-state pore Reynolds numbers are
Repore = 1.72 × 10−5 for 2D cylinder array, Repore = 8.47 × 10−5 for 3D sphere array and
Repore = 1.23 × 10−6 for 3D dense sphere pack. The steady-state values of the normalized

superficial velocities, 〈u(t)〉s/
(
px · Kµ

)
, for all linear flows, will approach 1, because of the

Darcy’s law. Although not displayed in the figures, our simulations have shown that when
Repore � 1, all plots for linear flows in each case lie on top of each other and become a
linear curve, because the flows are in the linear regime and equation (6.4) simply applies. As
we increase the orders of magnitude of the prescribed pressure gradients used to drive the
flows, the pore Reynolds numbers Repore increase, and the non-linear effects do take place,
which can be observed in figure 6.3. The steady-state values of the normalized superficial

velocities, 〈u(t)〉s/
(
px · Kµ

)
, for all non-linear flows, will be smaller than 1, because of the

non-linear effects which are usually modelled by the Forchheimer correction term. And we
can see that the larger the steady-state pore Reynolds numbers, Repore, are, the smaller the
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a b

Figure 6.1: Geometries of the simulations performed. Arrangement of two-dimensional staggered
cylinders and the computational box containing the cylinders (a), and arrangement of
three-dimensional spheres arranged on a uniform grid (b).

a b

Figure 6.2: Three-dimensional simulation of a dense sphere pack. Arrangement of spheres (3D)
(a) and streamlines (b).
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values of the steady-state normalized superficial velocities become. In the case of 3D dense
sphere pack, e.g., the steady-state normalized superficial velocity is less than 0.6, when the
steady-state pore Reynolds number is larger than 60.

We further plot the gaps between the non-linear curves and the linear curves, i.e., the devi-
ations, σu(t), for each case in figure 6.4. Note that in figure 6.4 σu(t) is normalized by their
steady-state values, σu,ss. At some instants, σu(t) increases to a certain value which can no
longer be ignored, and these instants can be regarded as those at which the non-linear effects
set in. We further investigate this issue in the next sections.

6.1.4 The onset against the instantaneous pore Reynolds
number

We first recall the expression of the pore Reynolds number in this section. We define an
instantaneous pore Reynolds number

Repore(t) =
|〈u(t)〉s|d

ν
(6.6)

where |〈u(t)〉s| is the magnitude of the instantaneous superficial velocity, d is the pore/grain
size and ν is the kinematic viscosity. Note that we have different purposes of defining the
instantaneous Reynolds number and the steady-state Reynolds number. We assess the influ-
ence of the instantaneous pore Reynolds number, Repore(t), on the onset of the non-linear ef-
fects, and we defined the steady-state pore Reynolds number, Repore,ss, in equation (6.1) to re-
flect the order of magnitude of the prescribed pressure gradient.

For steady porous-media flows, the steady-state pore Reynolds number, Repore,ss, is taken
as the dominating variable that determines the onset of the non-linear effects, i.e., when
Repore,ss > 1, the non-linear effects set in. In this section, we investigate if this is still
the case in unsteady porous-media flows, with the instantaneous pore Reynolds number,
Repore(t).

As discussed in section 6.1.3, in figure 6.3, the instants at which the non-linear curves deviate
from the linear curves define the onset of the non-linear effects in unsteady porous-media
flows. Such a deviation, which can also be understood as the gap between the non-linear
curves and the linear curves in figure 6.3, can also be mathematically expressed by σu in
equation (6.5). We plot σu(t) with respect to the instantaneous pore Reynolds number
Repore(t), for different steady-state pore Reynolds numbers, Repore,ss, in figure 6.5 (a), (b)
and (c).

From figure 6.5 (a), (b) and (c), we can clearly observe that, in all the three cases, for a
certain value of σu, the corresponding values of Repore(t) fall in very wide ranges. To further
specify this, we plotted figure 6.5 (d), in which the values of the instantaneous pore Reynolds
number, Repore(t), which are measured in figure 6.5, (a), (b) and (c) at σu = 5%, are plotted
against different steady-state pore Reynolds numbers, Repore,ss. For the 2D cylinder array
and 3D dense sphere pack, one can clearly identify that Repore(t) at σu = 5% is almost linear
to Repore,ss. For the 3D sphere array, it is linear at small steady-state pore Reynolds numbers,
and become non-linear at larger Reynolds numbers. The slopes are relatively high (0.61 for
cylinder array, 0.43 for sphere array and 0.758 for dense sphere pack). This means that,
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Figure 6.3: Development of the normalized superficial velocity with respect to time in a two-
dimensional cylinder array (a), in a three-dimensional sphere array (b), and in a three-
dimensional dense sphere pack (c).
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Figure 6.5: Relative deviation of the non-linear curves from the linear curves, σu, with respect
to the instantaneous pore Reynolds number, Repore(t), in a two-dimensional cylinder
array (a), in a three-dimensional sphere array (b), and in a three-dimensional dense
sphere pack (c); and the values of the instantaneous pore Reynolds number, Repore(t),
when the relative deviation is σu = 5%, against different steady-state pore Reynolds
numbers, Repore,ss, for different flow cases (d).
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when the prescribed pressure gradient, ∇〈p〉i, (or the resulting steady-state pore Reynolds
number, Repore,ss) varies dramatically, the value of the instantaneous pore Reynolds number,
Repore(t), at σu = 5% also varies dramatically. This essentially means that the instantaneous
pore Reynolds number, Repore(t), cannot be used to benchmark the onset of the non-linear
effects in the same way as the steady-state pore Reynolds number in steady porous-media
flows.

6.1.5 The onset against the instantaneous Stokes Reynolds
number

The instantaneous Stokes Reynolds number is defined as

ReStokes(t) =
|〈u〉s(t)|

√
2νt

ν
, (6.7)

where |〈u〉s(t)| is the magnitude of the instantaneous superficial velocity, ν is the kine-
matic viscosity, t is the time since the development of the fluid and

√
2νt is the so-called

Stokes boundary layer thickness. Note that in oscillatory channel and boundary layer flows,
flow states have been found to depend on the Stokes Reynolds number. Different regimes
have been identified (e.g. Hino et al., 1976; Akhavan et al., 1991), depending on the value
of ReStokes(t). Laminar flow has been observed for ReStokes(t) < 100. In the regime of
100 < ReStokes(t) < 550, denoted as disturbed laminar flow, the flow deviates from the
laminar one in the acceleration phase. In our context, this would be denoted as non-
linear flow. In this section, we assess this Reynolds number in unsteady porous-media
flows.

Analogy to section 6.1.4, we plot the relative deviation of the non-linear curves from the
linear curves, σu(t), against the Stokes Reynolds number, ReStokes(t), in figure 6.6 (a), (b)
and (c).

We observe that in figure 6.6 (a), (b) and (c), in all cases, for a certain value of σu, the
variations in ReStokes(t) for different curves fall in much smaller ranges, compared to those
in figure 6.5. We further plot figure 6.6, (d), in which the values of the instantaneous Stokes
Reynolds number, ReStokes(t), which are measured in figure 6.6, (a), (b) and (c), at σu = 5%,
are plotted against different steady-state pore Reynolds numbers, Repore,ss. For the 2D
cylinder array and 3D dense sphere pack, ReStokes(t) at σu = 5% is almost linear to Repore,ss;
for the 3D sphere array, it is linear at smaller steady-state pore Reynolds numbers, and is
non-linear at larger Reynolds numbers. The slopes are much smaller than those in figure 6.5,
(d) (0.023 for cylinder array, 0.053 for sphere array and 0.018 for dense sphere pack). This
means that, when the prescribed pressure gradient, ∇〈p〉i, (or the resulting steady-state
pore Reynolds number, Repore,ss) varies dramatically, the value of the instantaneous Stokes
Reynolds number, ReStokes(t), at σu = 5% does not vary much. This essentially means that
the instantaneous pore Reynolds number, Repore(t), can be used to benchmark the onset of
the non-linear effects in the same way as the steady-state pore Reynolds number in steady
porous-media flows.

This numerical experiment clearly indicates that, compared to the pore Reynolds number,
Repore, the Stokes Reynolds number, ReStokes, can be used to determine the onset of the non-
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Figure 6.6: Relative deviation of the non-linear curves from the linear curves, σu, with respect to
the instantaneous Stokes Reynolds number, in a two-dimensional cylinder array (a),
in a three-dimensional sphere array (b), and in a three-dimensional dense sphere pack
(c); and the values of the instantaneous Stokes Reynolds number, ReStokes(t), when the
deviation is σu = 5%, against different steady-state pore Reynolds numbers, Repore,ss,
for different flow cases (d).
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linear effects in unsteady porous-media flows more accurately.

6.2 The Unsteady Forchheimer
Equation

We recall the unsteady Forchheimer equation:

∇〈p〉i = a〈u〉s + b〈u〉2s + c
∂〈u〉s
∂t

, (6.8)

As already discussed in section 2.3.1, the applicability of the unsteady Forchheimer equation
(6.8) with constant coefficients, a, b and c, has not yet been assessed. This means that, we
do not know if the unsteady Forchheimer equation (6.8) with constant coefficients can be
used to describe unsteady and non-linear porous-media flows on a macroscopic level. In this
section, we aim to answer this question.

Solving equation (6.8) analytically by hand is obviously difficult, as it contains both the time
derivative and a quadratic term of the superficial velocity, 〈u〉s. However, when we assume
constant coefficients, a, b and c, we might be able to use mathematical software tools such
as Matlab to solve this equation. By comparing the Matlab solutions to the DNS results, we
can easily assess the applicability of the unsteady Forchheimer equation (6.8) with constant
coefficients. In this section, we consider the Direct Numerical Simulations already conducted
in section 6.1, thus we only have to obtain the Matlab solutions of equation (6.8) for the
benchmark problem in section 6.1.1.

In order to obtain the Matlab solutions, we must first fix the values of the parameters a, b
and c, for the 2D cylinder array, the 3D sphere array and the 3D dense sphere pack. From

chapters 4 and 5, we already know that, a = −µ/KD and c = aτ , where τ = KD

ν

〈u ·u〉s
〈u〉s · 〈u〉s ,

are accurate for unsteady and linear flows. It is reasonable to assume here that a and c
have the same value in non-linear regimes as well, because of two reasons: (I) in figure 6.3,
at the beginning of the flow development, all the non-linear curves lie on top of the linear
curves, which means that at the beginning of the flow development, all flows are in the linear

regime, and this simply means that a = −µ/KD and c = aτ = ρ
〈u ·u〉s
〈u〉s · 〈u〉s applies at those

instants. (II) we assume that a and c in equation (6.8) remain constant during the whole
flow development process.

Now we only have to determine the parameter b. As we assume that b in equation (6.8)
remains constant during the whole flow development process, the value of b can be easily
obtained from equation (6.8) for the steady-state, where the time derivative term is zero, and
the values of ∇〈p〉i, a and 〈u〉s in the steady-state are all known from the numerical experi-
ments. Another interesting point is whether b is dependent on the prescribed pressure gradi-
ent for a certain medium. Theoretically, b shall be a constant only depending on the density
of the fluid and the geometry of the medium (e.g. Lasseux et al., 2011), and thus it is indepen-
dent of the pressure gradient. We give an example here in the literature, which is the experi-
ment conducted by Baǧci et al. (2014), investigating flow through small sphere packs. Their
results suggested that for steady flows, b is independent of the pressure gradient. We simply
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give the values of b from the DNS simulations in table 6.1.

Table 6.1: Values of b under various Repore,ss, in 2D cylinder array and 3D dense sphere pack.

2D cylinder array 3D dense sphere pack
9.51 (Repore,ss = 56.3) 31.01 (Repore,ss = 19.0)
10.77 (Repore,ss = 96.2) 37.41 (Repore,ss = 31.1)
10.88 (Repore,ss = 113.6) 38.74 (Repore,ss = 36.2)

The values in table 6.1 for different cases do not vary a lot with respect to the steady-
state pore Reynolds number, Repore,ss (or the prescribed pressure gradient, ∇〈p〉i), which is
basically consistent with theory.

With the parameters a, b and c all determined, it is easy to program in Matlab and solve
equation (6.8) directly. We discuss the solutions and the comparison of such solutions to the
DNS results in section 6.2.1.

6.2.1 Numerical Results

In the Matlab code, a Runger-Kutta third order time integration scheme has been applied,
and equation (6.8) has been solved with very fine time steps, which were kept the same as
in the DNS.

We plot the development of the normalized superficial velocity with respect to time in a
two-dimensional cylinder array, and compare the DNS results (symbols) with the Matlab
solutions (lines), in figure 6.7 (a). The linear curves solved by Matlab match the DNS
results very well, and this is in line with our research results in Chapters 4 and 5, i.e.,
the unsteady Darcy equation with constant coefficients can describe unsteady porous-media
flows accurately, within low and medium frequencies. While for the non-linear curves, the
first parts of the curves (when the flows are still in the linear regime) and the steady-state
parts match the DNS results. In the middle, at the instants right before the non-linear
effects set in (1 < t/τen < 2), the DNS results have a small amount of overshoots, and this
cannot be presented by the Matlab solutions of the unsteady Forchheimer equation (6.8)
with constant coefficients.

The relative error (difference) between the DNS result and Matlab solutions, which is

1 − 〈u(t)〉s/(px · Kµ )|Matlab

〈u(t)〉s/(px · Kµ )|DNS
, for the cylinder array, is then plotted in figure 6.7 (b). It is not

surprising that the errors obtain the maximum values right after the flows started to de-
velop, as all the numerical values are very small at those moments. The errors representing
the aforementioned overshoots, are all less than 5%. At steady states, the errors simply
vanish.

We now plot the development of the normalized superficial velocity with respect to time
in a three-dimensional dense sphere pack, and compare the DNS results (symbols) with
the Matlab solutions (lines), in figure 6.8 (a). The overshoots also mostly take place at
(1 < t/τen < 2), and in this case they are even larger.

The relative error (difference) between the DNS result and Matlab solutions for the dense
sphere pack is then plotted in figure 6.8 (b). The errors representing the aforementioned
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Figure 6.7: (a): development of the normalized superficial velocity with respect to time in a two-
dimensional cylinder array, DNS results (symbols) in comparison with Matlab solutions
(lines). (b): the relative error between Matlab solutions and DNS results, for the two-
dimensional cylinder array.

Figure 6.8: (a): development of the normalized superficial velocity with respect to time in a three-
dimensional dense sphere pack, DNS results (symbols) in comparison with Matlab
solutions (lines). (b): the relative error between Matlab solutions and DNS results, for
the three-dimensional dense sphere pack.
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overshoots, are slightly larger, but they are all less than 7% (when 1 < t/τen < 2). At steady
states, the errors also vanish.

6.3 Conlusions

In this part, we focus on unsteady and non-linear porous-media flows. We aim to investigate
the physical variable that determines the onset of the non-linear effects, and assess whether
the unsteady Forchheimer equation with constant coefficients can be used to describe the flow
on the macro scale. We set up a benchmark problem, in which a prescribed constant pressure
gradient is defined to drive the flow. We calculate the deviation of the normalized superficial
velocity for non-linear flows from those for the linear flows to describe the onset. We use
fully resolved direct numerical simulation (DNS) of the flow in the pore space to assess the
aforementioned two questions. Our DNS results have shown that the Stoke Reynolds number,
instead of the pore Reynolds number, can be used to determine the onset of the non-linear
effects in unsteady porous-media flows more accurately.

At the instants right before the steady state, the superficial velocities obtained from DNS
show certain overshooting behaviours, which is not represented by simple solutions of the
unsteady Forchheimer equation. However, the relative errors between this solution and
the DNS results are within 5% for the 2D cylinder array and 7% for the 3D dense sphere
pack.
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7 Conclusions and outlook

This PhD thesis mainly focuses on unsteady porous-media flows, which can be further clas-
sified into linear an non-linear flows.

For unsteady and linear porous-media flows, the behavior of the unsteady Darcy equation
with constant coefficients was studied. Homogeneous and isotropic medium was assumed,
and the time scale was derived in different ways: by consistent volume-averaging of the
Navier-Stokes (VANS) equations together with a steady-state closure, or a virtual mass
closure, for the interaction term; or by volume-averaging the equation for the kinetic energy,
together with a closure for the kinetic energy dissipation, which was approximated by its
steady-state value using the classical permeability. The time scale obtained from the energy
approach is different from the one obtained from the VANS approach together with a steady-
state closure, and there is a factor between them. This factor is proportional to the ratio of
the integrated kinetic energy in the pore space to that of the intrinsic velocity. The direct
numerical simulations have shown that the time scale obtained from the volume-averaged
Navier-Stokes system with a steady-state closure for the interaction term underestimates the
true value, and this is because the steady-state closure is not accurate in unsteady flows.
However, the closure for the kinetic energy dissipation in the energy approach is well-suited
in all of the numerical simulations, and the time scale obtained from the energy approach
matches the direct numerical simulation results very well. Note that the ratio between
these time scales can be very large, it is 1.2 for plain channel flow and 2.75 for a dense
sphere pack. In general, our direct numerical simulations supported the use of the unsteady
form of Darcy’s equation with constant coefficients to describe the flows on the macroscopic
scale.

This research was then extended into unsteady and linear porous-media flows driven by an
oscillatory (sinusoidal) pressure gradient, and the analytical solutions of the unsteady Darcy
equation were assessed, which consist of the aforementioned two different time scales. These
analytical solutions were compared with the analytical solutions of laminar oscillatory pipe
and channel flows, and they comply well with each other, if the proper time scale is chosen.
In this analysis it was also found that, the ratio of the kinetic energy in the pore space to the
kinetic energy of the superficial velocity plays a significant role when considering a large range
of frequencies. At low frequencies up to ωKD/(νε) ≈ 2.5, instantaneous velocity profiles tend
to assume a parabolic shape, and the time-scale ratio remains a constant equal to that in the
steady state. At larger frequencies, the time-scale ratio goes towards unity as the viscous
layer tends towards zero and the velocity profiles flatten. This would infer different time
scales for small and large frequencies. Direct numerical simulations of oscillatory flow through
a 2D cylinder array and a 3D dense sphere pack were then conducted to assess our theory,
and they revealed very similar results. In general, this study supported that the unsteady
Darcy equation is able to predict the amplitude damping and phase lag accurately on the
macroscopic scale, provided, the proper time scale is chosen.
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For unsteady and non-linear porous-media flows, the physical variable that determines the
instants at which the non-linear effects set in was looked for, and the applicability of the
unsteady Forchheimer equation with constant coefficients was investigated. A benchmark
problem was considered, in which a prescribed constant pressure gradient is defined to drive
the flow. A mathematical expression to describe the onset of the non-linear effects was then
derived, and direct numerical simulations with various complexities were conducted to assess
it. The simulation results show that at the instants at which the non-linear effects set in,
the values of the instantaneous pore Reynolds number based on the pore scale are in a very
wide range, when the prescribed pressure gradients are with various orders of magnitude.
However, for the instantaneous Stokes Reynolds number based on the Stokes boundary layer
thickness, this range is much smaller, concluding, the instantaneous Stokes Reynolds number
can be used to determine the onset of the non-linear effects in unsteady porous-media flows
more accurately than the instantaneous pore Reynolds number. As for the solution of the
unsteady Forchheimer equation, it cannot represent the overshoot of the superficial velocity,
which is obtained in DNS for a 2D cylinder array and a 3D dense sphere pack when the
steady-state pore Reynolds number is big enough. However, the relative errors between this
solution and the DNS results are within 5% for the cylinder array and 7% for the dense
sphere pack.

Note that most of the theoretical derivations in this PhD thesis, as well as all the numerical
simulations, consider only homogeneous and isotropic mediums. For inhomogeneous and
anisotropic, more work still needs to be done. Moreover, the main reason of the overshoot of
the superficial velocity in Chapter 6 still remains a question, and a mathematical function
which can model this overshoot accurately is required. A further research can be carried
out to investigate the onset of the non-linear effects in oscillatory flows, and one can try to
model the oscillatory and non-linear flows. With one step further, one can also investigate
the onset of turbulent effects and describe REV-based flow quantities such as interaction
term, dissipation and production of turbulent kinetic energy in transient and oscillatory flow
through porous media.
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