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Abstract— In this paper, we introduce a decentralized event-
triggered scheduling scheme for multi-loop Networked Control
Systems (NCSs) in which the individual control loops are cou-
pled through a shared communication channel. The proposed
scheduling design combines deterministic and probabilistic
attributes to efficiently allocate the limited communication
resource among the control loops in an event-based fashion.
Based on local error thresholds, each control loop determines
whether to compete for the channel access. As a result, control
loops with higher transmission priorities are more likely to
utilize the channel, which in turn leads to more efficient usage
of the limited resource. Each eligible subsystem then attempts
to transmit at times specified by local waiting times, which
are randomly distributed and local-error dependent. In this
manner, the probability of data collisions in the communication
channel is reduced. If the channel capacity is reached at
some time instants, data packets are dropped. We demonstrate
stochastic stability of such NCSs in terms of Lyapunov Sta-
bility in Probability (LSP). The numerical results show that
our approach improves resource utilization and reduces the
networked-induced error variance in comparison with time-
triggered, random access, and centralized scheduling policies.

I. INTRODUCTION

Traditional digital control systems are characterized by

collocated sensors, actuators and controllers as well as by

time-triggered control schemes with periodic sampling. With

the advent of new technologies, the parts of control systems

are becoming evermore spatially distributed and their inter-

action is being increasingly supported by shared communi-

cation networks, which usually impose energy and capacity

limitations [1]. In order to utilize the limited communication

and energy resources more efficiently, event-triggered control

and scheduling schemes have been proposed recently [2]–[7].

These references suggest that it is often more beneficial

to transmit the sampled data upon the occurrence of certain

events rather than at periodic time instants. This is even more

so in case of large-scale systems due to the sheer amount of

exchanged data. While time-triggered access schemes usually

offer lower complexity as they are offline, event-based rules

excel in efficient allocation and robustness.

In the event-based paradigm, events are typically triggered

by either deterministic [8], [9], or stochastic policies [10]–

[13]. Deterministic policies usually have better performance
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as they award the channel to the entity with the highest

priority. As a basic deterministic protocol the Try-Once-

Discard (TOD) awards the medium access to the system

with the largest estimation error [9]. However, TOD is prone

to noise and can cope with collisions only with a given

predefined priority order, and hence is not convenient for

practical realizations, e.g. wireless multihop networks [14].

The Maximal Allowable Transfer Interval (MATI) plays

a crucial role while analyzing stability of systems with

deterministic schedules by deriving the upper bound on the

time interval between two successive transmissions [8], [9].

On the contrary, MATI does not apply to stochastic schemes

as the intervals between consecutive transmissions usually

cannot be upper bounded uniformly with probability one.

This calls for new stability approaches for stochastic NCSs

[10]–[13]. Probabilistic policies are more suitable to deal

with stochastic systems with model uncertainties and channel

imperfections [10], [12], [13], [15]. While stability analysis

for single-loop NCSs are well addressed, see e.g., [11], [12],

less investigations are carried out for multi-loop NCSs, with

[10], [13] being notable exceptions. Altogether, applicable

event-based scheduling designs for multi-loop NCSs that

efficiently utilize the limited resource are certainly of interest.

In this paper, we introduce a decentralized bi-character

scheduling policy for a multiple-loop NCS sharing a com-

munication network with limited capacity. We show that our

approach preserves stability of the overall NCS while uti-

lizing the limited resources more efficiently. In our scheme,

the order of transmissions is determined locally. First, the

subsystems with local errors not exceeding pre-specified

local thresholds do not compete for channel access in favor

of those with larger errors. The larger the error threshold of

a subsystem is, the larger the error it can tolerate between

two sampling periods becomes. The subsystems with errors

larger than their corresponding thresholds compete for the

channel access in a probabilistic fashion. The bigger the local

error of a subsystem is, the higher its chance of transmission

becomes. The probabilistic feature of our protocol facilitates

the consideration of unbounded disturbances and collisions

without a predefined prioritization. Adopting an emulative

control design, we show stability of the resulting multi-loop

NCS in terms of Lyapunov stability in probability (LSP).

In the remainder of this paper, Section II states the problem

formulation and introduces our decentralized scheduling law.

In Section III, we analyze stability of the overall NCS.

Simulation results are illustrated in Section IV.

Notation In this paper, the conditional expectation is denoted

E[·|·]. The Gaussian distribution with mean µ and covariance
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Fig. 1. A multi-loop NCS with a shared communication channel and local
scheduling mechanism.

matrix X is represented by N (µ,X), while P[A] denotes the

probability that event A occurs. A vector with superscript i
belongs to control loop i, while the subscript k denotes the

time step. For matrices, subscript i indicates the belonging

subsystem while superscript n denotes the matrix power.

II. PROBLEM STATEMENT

Consider an NCS composed of N heterogeneous LTI con-

trol loops coupled through a shared communication medium,

as schematically depicted in Fig. 1. Each control loop con-

sists of a stochastic plant Pi, and a feedback controller Ci.
The plant Pi is modeled by the stochastic difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where the disturbance process wi
k∈R

ni is i.i.d. with N (0, I)
at each time k, and Ai ∈ R

ni×ni , Bi ∈ R
ni×mi describe

system and input matrices, respectively. Considering unity

covariance Gaussian distribution for disturbance process is

merely for notational convenience. Since our results are

independent of initial state, xi0 is allowed to be any random

variable with arbitrary finite variance distributions. At each

time-step k, the binary scheduling variable δik ∈ {0, 1}
denotes if a subsystem i is awarded the channel access, i.e.

δik =

{

1, xik is sent for transmission

0, xik is blocked.

Each loop is assumed to be driven by a local state feedback

controller updated at every time step k either by the true

state xik (in case δik=1) or by the estimated state x̂ik (in case

δik=0). Essentially, we consider control laws γi’s given by

uik = γi(Zi
k) = −LiE

[

xik|Z
i
k

]

, (2)

where Zi
k={xi0, δ

i
0 . . . , x

i
k, δ

i
k} is the update history and Li

is any stabilizing feedback gain. Notice that, in accordance

with the emulation-based frameworks, the synthesis of Li’s

is not explicitly addressed here. Knowing that the plants are

stabilized in the absence of a communication network, we

focus on the scheduling process. In case δik =0, a Kalman-

like estimator with local knowledge Zi
k−1 computes x̂ik as

E
[

xik|Z
i
k

]

= (Ai −BiLi)E
[

xik−1|Z
i
k−1

]

, (3)

with initial distribution E
[

xi0|Z
i
0

]

= 0. The estimate in (3)

is well behaved since a stabilizing gain Li ensures that

the closed-loop matrix (Ai −BiLi) is Hurwitz. The local

network-induced error is defined as eik=x
i
k−E

[

xik|Z
i
k

]

for

each subsystem i ∈ {1. . . . , N}, and evolves as

eik+1 =
(

1− δik+1

)

Aie
i
k + wi

k, (4)

where the sequence of decisions within one time period is

· · · → ek → δk+1 → zk+1 → uk+1 → ek+1 → · · ·

Having (1)-(4), the aggregate networked state (xik, e
i
k) has

triangular dynamics within each local control loop as
[

xik+1

eik+1

]

=

[

Ai −BiLi

(

1− δik+1

)

BiLi

0
(

1− δik+1

)

Ai

][

xik
eik

]

+

[

wi
k

wi
k

]

.

This implies that the evolution of the error sate eik is

independent of the system state xik.

A. Decentralized Scheduling Mechanism

We assume that the operational time scale of the commu-

nication channel is much finer than that of the local control

systems, i.e. between each two time steps k → k+1, the

communication time slots are {kh, kh+ τ, . . . , kh+ (h−
1)τ, (k+1)h}, with τ a fixed time duration and the integer h
denoting the number of samples within one control period.

Assume h ≫ 1. We aim for a decentralized approach, i.e.

the ith subsystem is provided with only local information

Ai, Bi, Wi, λi, Z
i
k and the distribution of xi0, where λi

is the local error threshold. Thus, every subsystem i knows

its latest local error eik′ as well as λi to decide whether to

compete for channel access at time k′+1. If the weighted

squared norm of its latest error is smaller or equal to the

given local threshold, subsystem i will be excluded from

the channel access competition. This process represents the

deterministic feature of the scheduling design. Thus, we have

P[δik′+1 = 1
∣

∣eik′ ] = 0 if ‖eik′‖2Qi
≤ λi, (5)

where ‖eik‖
2
Qi
:=ei

T

k Qie
i
k and Qi is a positive definite matrix.

Each subsystem i, eligible to compete for the channel

access at time step k′+1, satisfies the following condition

‖eik′‖2Qi
> λi. (6)

A decentralized probabilistic mechanism allocates the chan-

nel among the qualified subsystems such that the ones

with larger errors have higher chances of channel access.

In the absence of centralized information, our probabilistic

mechanism determines the transmission order locally within

each subsystem. For simplicity, we assume that only one

subsystem can transmit at multiples of τ at each time-step k
∑N

i=1
δik = 1. (7)

The provided results can be extended for
∑N

i=1 δ
i
k = c < N .

We introduce integer random variables νik′ ∈
{τ, 2τ, . . . , (h− 1)τ}, called waiting times, which denote

the time a transmission-eligible subsystem i waits before

listening to the channel, i.e. at time k′h + νik′ . If the



channel is free, subsystem i transmits. Otherwise,

it backs off and does not attempt to transmit over

{k′h, k′h+τ, . . . , k′h+(h−1)τ, (k′+1)h} again. We propose,

for a subsystem i which satisfies (6), that the waiting time

νik′ is chosen randomly from a finite-variance concave

probability mass function with the error-dependent mean

E[νik′ ] =
1

‖eik′‖2Qi

. (8)

Assumption (6) ensures E[νik′ ] ∈ (0, λ−1
i ). The random

variables νik′ are chosen according to their corresponding

local probability mass functions. The concavity of the local

distribution emphasizes the prioritized character as it ensures

the random waiting times are chosen with higher probabil-

ities around the mean (8). As our policy is decentralized,

the possibility of collisions should also be accounted for. A

collision occurs if at least two subsystems choose exactly

identical waiting times. Each subsystem is informed by the

collision detection unit, in case a collision occurs. At every

time step k, a successful transmission is reported via γk as

γik =

{

1, xik successfully received

0, xik dropped.

Therefore, the dynamics of the error state eik becomes

eik+1 =
(

1− θik+1

)

Aie
i
k + wi

k, (9)

where θik=δ
i
kγ

i
k. Principally, by choosing the waiting times

randomly the probability of collision is reduced by introduc-

ing the communication sub-frames as a collision avoidance

mechanism, and the transmission chance for subsystems with

high errors is increased via the choice of local distributions.

We can achieve such a design within a TCP-like protocol,

where the acknowledgment of a successful transmission is

sent over an error-free reverse link to each subsystem.

Let Gk′ denote the set of eligible subsystems for transmis-

sion at time-step k′+1. Thus, considering (7), the probability

that subsystem j ∈ Gk′ transmits at time-step k′+1 is

P[δjk′+1 = 1
∣

∣ejk] = P[νjk′ < νlk′ ], ∀l ∈ Gk′ , l 6= j. (10)

Basically, a subsystem j starts listening the channel accord-

ing to its chosen waiting time. If the channel is free, it

transmits which ensures its waiting time has been shorter

than all other eligible subsystems l∈Gk′ , l 6=j, i.e. νjk′<νlk′ .

The subsystems that find the channel occupied, might try to

transmit in future time-steps adhering to similar procedure,

if they are eligible depending on their updated error values.

Fig. 2 depicts our proposed access scheme, schematically.

Remark 1: The dependence of random waiting times,

which is a MAC layer parameter, on error values from the

application (i.e. the control) layer, couples the medium access

to the application. This is in line with recent trends of cross-

layer design - in contrast to the classical separation of OSI

layers in classical communication protocols.

We define the aggregate error state ek ∈ R
n by stacking

the error vectors of different subsystems as follows:

ek = (e1
⊤

k , . . . , eN
⊤

k )⊤, (11)

kh

τ2 =ν1
k

τ1 (k+1)hτ4

τ5 =ν2
k

τ6

P[νi
k]

τ3 τ7 τ10. . .

E[ν1
k
]

E[ν2
k
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time
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Next time-stepPrevious
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Fig. 2. Two subsystems compete for channel access by randomly choosing
their waiting times ν1

k
and ν2

k
, according to their corresponding local

probability mass functions with error-dependent means E[ν1
k
] and E[ν2

k
].

where n=
∑N

i=1 ni. The introduced scheduling policy, is a

randomized policy depending only on the most recent error

values. Since the scheduler restarts at the beginning of each

sample time, regardless of which subsystem has previously

transmitted, the scheduling variable depends only on the

latest error value. Although the error evolution is affected

by the history of error state and scheduling variables, the

randomization in channel allocation renders the scheduling

variables statistically independent from their previous values.

Therefore, (11) possesses the Markov property. Moreover,

as the difference equation in (4) is time-invariant and the

process wi
k is i.i.d. for i∈{1, . . . , N}, the Markov chain (11)

is homogeneous. Moreover, as the disturbance distribution is

absolutely continuous with a positive density function, the

Markov chain is aperiodic and ψ-irreducible.

III. STABILITY ANALYSIS

In this section, we study stability of multi-loop NCSs

with shared communication networks subject to the capacity

constraint (7), and the proposed decentralized scheduling

policy in (5) and (10). Essentially, we show Lyapunov

stability in probability (LSP) for the overall NCS of interest.

Before proceeding, we state some preliminaries about LSP.

A. Preliminaries

Definition 1: (Lyapunov Stability in Probability (LSP),

[16]) A linear system with state vector xk possesses LSP

if given ε,ε′>0, exists ρ(ε, ε′)>0 such that |x0|<ρ implies

lim
k→∞

supP
[

xT
kxk ≥ ε′

]

≤ ε. (12)

The following lemma shows the LSP is achievable by solely

considering the error state ek.

Lemma 1: For an NCS described by (1)-(4), the condition

in (12) is equivalent to

lim
k→∞

supP
[

eT
kek ≥ ξ′

]

≤ ξ, (13)

where ξ′ > 0 and the constant ξ fulfills 0 ≤ ξ ≤ ε.
Proof: The system state xik for each loop i evolves as

xik+1 = (Ai −BiLi)x
i
k + (1 − θik+1)BiLie

i
k + wi

k. (14)

As already discussed, the evolution of the error eik is inde-

pendent of the system state xik within each individual control



loop. Furthermore, by assumption the emulative control law

(2) ensures the closed-loop matrix (Ai−BiLi) is Hurwitz.

Together with the assumption that xi0 has a bounded variance

distribution, it follows that the system state xik is converging.

In addition, the disturbance process wi
k is i.i.d. according

to N (0, I), and is bounded in probability. Thus, showing

limk→∞ supP
[

ei
T

k e
i
k ≥ ξ′i

]

≤ ξi ensures existence of con-

stants εi and ε′i>0 such that limk→∞ supP
[

xi
T

k x
i
k ≥ ε′i

]

≤

εi. As individual loops operate independently, we take the

aggregate NCS state (xk, ek). Then, the existence of ξ and

ξ′>0 such that limk→∞ supP
[

eT
kek ≥ ξ′

]

≤ξ, implies exis-

tence of ε and ε′>0 such that limk→∞ supP
[

xT
kxk ≥ ε′

]

≤
ε, and the proof readily follows.

As expected values are more straightforward in pursu-

ing further analysis than probabilities, it holds from the

Markov’s inequality that for ξ′ > 0

P

[

eT
kek ≥ ξ′

]

≤
E
[

eT
kek

]

ξ′
. (15)

This confirms that showing the error is uniformly bounded in

expectation ensures finding appropriate ξ and ξ′>0 such that

(13) is satisfied for arbitrary ρ(ξ′, ξ). Introducing positive

definite matrices Qi, we focus on deriving an upper bound

for the expectation of weighted quadratic error norm

E

[

eT
kQek

]

=
∑N

i=1
E

[

ei
T

k Qie
i
k

]

=
∑N

i=1
E
[

‖eik‖
2
Qi

]

, (16)

where Q=diag(Qi). This modifies the condition (13) as

lim
k→∞

supP
[

eT
kQek ≥ ξ̄′

]

≤ ξ̄. (17)

Due to the capacity constraint (7), the boundedness of

(16) cannot always be shown over one step transition. This

observation is shown via the following illustrative example:

Illustrative example Let an NCS be composed of two

identical scalar subsystems competing for the sole channel

slot. For simplicity, assume Q1 =Q2 = 1, λ1 = λ2 = λ̄ and

e1k = e2k = ēk. In addition, consider that the condition (6) is

fulfilled, and that both systems have identical distributions

to choose their waiting times ν1k+1 and ν2k+1. According to

(8), the distributions have the same means 1
‖ēk‖2

2
. Thus, the

transmission chance for each system is 1
2 . We have from (4)

∑

i=1,2
E
[

‖eik+1‖
2
I

]

=
∑

i=1,2
E
[

‖
(

1−θik+1

)

Aie
i
k+w

i
k‖

2
I

]

=
1

2

(

E[‖Aēk + w1
k‖

2
I |ek] + E[‖w2

k‖
2
I ]
)

+
1

2

(

E[‖Aēk + w2
k‖

2
I |ek] + E[‖w1

k‖
2
I ]
)

= 2 + ‖Aēk‖
2
I ,

which is not bounded for arbitrary ēk and system matrix A.

Intuitively, between two consecutive transmissions of each

subsystem, they operate in open loop. Hence, in general, the

respective local errors are expected to grow. Thus to obtain

boundedness of error state, all subsystems need to have

transmission chances. Due to the constraint (7), one infers

that an interval of length N provides enough transmission

possibilities. (see [17] for a comprehensive discussion).

B. Stability Analysis – Lyapunov Stability in Probability

To show LSP, let the NCS of interest operate over the

interval [k, k+N ], with arbitrary initial state ek. We assume

that the NCS freely operates from the initial time k until

k+N−1 and we predict the error evolution considering all

the possible scenarios under the introduced scheduling policy

over the interval [k, k+N−1]. Then, looking at time-step

k+N , we show the aggregate error state ek+N fulfills (16).

We divide the subsystems i∈ {1, . . . , N} at each time-step

k′ ∈ [k, k+N−1] into two disjoint sets as

i ∈

{

Gk′ ‖eik′‖2Qi
> λi

Ḡk′ ‖eik′‖2Qi
≤ λi,

(18)

where Gk′∪Ḡk′ =N . According to (5), subsystems belonging

to Gk′ are considered for transmission at time k′+1. Note

that not only a transmission results in error decrement for a

subsystem, but the disturbance process might also decrease

the error. Therefore, the inclusion in either set Gk′ or Ḡk′ de-

pends on both transmission occurrence and disturbance wi
k′ .

To take this into account, we discern three complementary

and mutually exclusive cases, covering the entire state space

the Markov chain ek evolves, at time-step k+N−1 as:

Subsystem i:

c1: has either successfully transmitted or not within the

past N−1 time-steps, and is in set Ḡk+N−1, i.e.

i ∈ Ḡk+N−1 ⇒ ‖eik+N−1‖
2
Qi

≤ λi,

c2: has successfully transmitted at least once within the

past N−1 time-steps, and is in set Gk+N−1, i.e.

∃k′∈ [k, k+N−1] : θik′ = 1 and ‖eik+N−1‖
2
Qi
> λi,

c3: has not successfully transmitted within the past N−1
time-steps, and is in set Gk+N−1, i.e.

∀k′∈ [k, k+N−1] : θik′ = 0 and ‖eik+N−1‖
2
Qi
> λi.

Theorem 1: Consider an NCS with N heterogeneous LTI

control loops, with the plants given by (1), sharing a com-

munication channel subject to the constraint (7). Given the

control law (2) and scheduling laws (5) and (10), the NCS

of interest is Lyapunov stable in probability.

Proof: We study the boundedness of error expectation

over the interval [k, k+N ] for cases c1-c3. Since, the cases

are complementary and mutually exclusive, we can calculate

the probability for each case to happen, and express (16) as
∑N

i=1
E
[

‖eik+N‖iQi

]

=
∑

cl
Pcl E

[

‖eik+N‖iQi
|cl,Pcl

]

, (19)

where
∑3

l=1 Pcl = 1.

Suppose that some subsystems i belong to c1. Since i ∈
Ḡk+N−1, it follows from (18) that ‖eik+N−1‖

2
Qi

≤λi. Thus,

they are not eligible for transmission at time k + N , i.e.

δik+N = 0. Then, it follows from (4) and (19)
∑

i∈c1

E
[

‖eik+N‖2Qi
|ek

]

=
∑

i∈c1

E
[

‖Aie
i
k+N−1+w

i
k+N−1‖

2
Qi
|ek

]

≤
∑

c1
‖Ai‖

2
2E

[

‖eik+N−1‖
2
Qi

∣

∣ ek] + E
[

‖wi
k+N−1‖

2
Qi

]

≤
∑

c1
‖Ai‖

2
2λi + E

[

‖wi
k+N−1‖

2
Qi

]

. (20)



This fulfills the condition (17) with ξ̄′ >
∑

c1
‖Ai‖22λi +

E
[

‖wi
k+N−1‖

2
Qi

]

, and ξ̄ =
∑

c1
E[‖eik+N‖2

Qi
|ek]

ξ̄′
< 1.

For some i∈c2, let a successful transmission is occurred

at time-step k+r′i, where r′i ∈ [1, N−1], i.e. θi
k+r′i

=1. We

express eik+N as a function of the error at time k+r′i−1 as

eik+N =
∏N

j=r′
i

(

1− θik+j

)

A
N−r′i+1
i eik+r′

i
−1

+
∑N

r=r′
i

[

∏N

j=r+1

(

1− θik+j

)

AN−r
i wi

k+r−1

]

, (21)

where we define
∏N

N+1(1 − θik+j) := 1. The first term

of the above equality vanishes as θik+r′
i
= 1. By statistical

independence of wi
k+r−1 and θik+j , it follows from (21)

∑

c2
E
[

‖eik+N‖2Qi
|ek

]

=
∑

c2
E

[

‖
∑N

r=r′
i

∏N

j=r+1

[

1−θik+j

]

AN−r
i wi

k+r−1‖
2
Qi

]

≤
∑

c2

∑N

r=r′i

E
[

‖AN−r
i wi

k+r−1‖
2
Qi

]

. (22)

In fact, we disregard the scheduling process in the last in-

equality. We are allowed to do so since
∏N

j=r+1

[

1−θik+j

]

≤

1. Hence, the condition (17) is satisfied considering ξ̄′ chosen

to be larger than (22), and ξ̄ =
∑

c2
E[‖eik+N‖2

Qi
|ek]

ξ̄′
< 1.

The subsystems in the third case are eligible for channel

access at time k+N . To infer (19), we split the third case c3
into two complementary and disjoint sub-cases as follows:

lc31 system i has not transmitted within the past N−1 time

steps, but has been in Ḡ at least once, the last occurred

at a time k + r′i, with r′i ∈ [0, . . . , N − 2],
lc32 system i has not transmitted within the past N−1 time-

steps, and has been in G for all time [k, k +N − 1].

Recall that the subsystems i ∈ c3 belong to Gk+N−1. For

sub-case lc31 , k + r′i is the last time for which i ∈ Ḡk+r′
i
,

which in turn implies ‖eik+r′
i
‖2Qi

≤λi. Knowing that θik′ = 0
for i ∈ c3 until time-step k +N , we reach
∑

l
c3
1

E
[

‖eik+N‖2Qi
|ek

]

≤

∑

l
c3
1

[

‖A
N−r′i
i ‖22λi+

∑N−1

r=r′
i

E
[

‖AN−r−1
i wi

k+r‖
2
Qi

]

]

. (23)

The condition (17) is met by choosing ξ̄′ larger than the

uniform upper bound (23), and ξ̄ =

∑

l
c3
1

E[‖eik+N‖2
Qi

|ek]
ξ̄′

< 1.

The subsystems j ∈ lc32 have always been candidates for

channel access, i.e. j∈G[k,k+N−1]. Hence, ‖ejk′‖2Qj
>λj for

all k′∈ [k, k+N−1]. From (4), we conclude

∑

l
c3
2

E

[

‖ejk+N‖2Qj
|ek

]

≤
∑

l
c3
2

E

[

‖Aje
j
k+N−1‖

2
Qj

|ek
]

+E

[

‖wj
k+N−1‖

2
Qj

]

. (24)

Expression (24) is not uniformly bounded since the term

ejk+N−1 in (24) is not bounded according to (18). However,

as the considered cases cannot happen all together, we

calculate the probability for sub-case lc32 to happen according

to the scheduling policy (10). Note that in deriving (20), (22)

and (23) it was not necessary to consider the probability

of happening the corresponding cases. To calculate the

probability of happening we need to consider the possibility

of collisions. As collisions may happen at all time steps,

there is a non-zero probability that all the scheduled packets

collide. This means all subsystems operate in open-loop at all

time steps. We investigate two collision scenarios; 1) there

has been at least one successful transmission over the interval

[k, k+N−1], and 2) there has been no successful transmission

over the entire interval. We assume if a collision is reported,

then the channel is not awarded to any subsystem.

Investigating the first scenario, we assume that whenever

a collision is detected and consequently all the subsystems

have to operate open loop, a virtual control loop has success-

fully transmitted instead of a real subsystem. This means at

the time the collision occurs, N real subsystems and one

virtual one share the communication channel and channel

is awarded to the virtual subsystem. The virtual loops have

the same discrete LTI dynamics as in (1). As the worst case

situation, let the channel experiences m<N−1 collisions in

the interval [k, k+N−1]. Thus, at time k+N we have N
real and m virtual subsystems, where all virtual ones have

transmitted. Since, we have N +m subsystems, we need

to extend our interval to [k, km], where km = k+N+m.

Consideration of virtual loops is merely to justify the longer

interval and plays no more role in the analysis. If a subsystem

j ∈ lc32 transmits at km, then its error becomes bounded in

expectation. Otherwise, if j has never transmitted, then there

exists another subsystem, say i, which has transmitted more

than once. Let k+ r̄ denote the most recent step in which

θik+r̄=1 for r̄ ≤N+m−1. The probability that subsystem i
re-transmits at the final time step km, in the presence of the

subsystem j∈ lc32 can be expressed as

P[θikm
=1|θik+r̄ = 1, θjk′ = 0 ∀k′∈ [k, km]]

= P[νjkm−1> νikm−1|θ
i
k+r̄=1, θjk′ = 0 ∀k′∈ [k, km]]

≤
E[νjkm−1|θ

j
k′ = 0 ∀k′∈ [k, km]]

sikm−1τ
,

where, the last expression follows from Markov’s inequality

considering the positive constant waiting time νikm−1 =
sikm−1τ corresponds to subsystem i is given, and sikm−1 ∈
{1, . . . , h− 1}. The latest error value of subsystem j at

time km − 1 is required to be given in order to have an

expectation of the waiting times νjkm−1. Therefore, having

the last expression conditioned on ejkm−1, we have from the

law of iterated expectation that

E[νjkm−1|θ
j
k′ = 0 ∀k′∈ [k, km]]

sikm−1τ

=
E[E[νjkm−1|e

j
km−1]|θ

j
k′ = 0 ∀k′∈ [k, km]]

sikm−1τ

=
1

sikm−1τ‖e
j
km−1‖

j
Qj

, (25)



where the last equality follows from (8). The expression

(25) confirms that having large error values correspond to

subsystems j ∈ lc32 with no prior transmission reduces the

probability of re-transmission of a subsystem i /∈ lc32 .

Having (19) extended for the interval [k, km] and consid-

ering the expression (24) for the expectation of error for a

subsystem j∈ lc32 , we employ (25) as follows

∑

l
c3
2

Pl
c3
2
E

[

‖ejkm
‖2Qj

|ek
]

=
∑

l
c3
2

P[νjkm−1>ν
i
km−1]E

[

‖ejkm
‖2Qj

|ek
]

≤
∑

l
c3
2

‖Aj‖22‖e
j
km−1‖

2
Qj

sikm−1τ‖e
j
km−1‖

2
Qj

+
E

[

‖wj
km−1‖

2
Qj

]

sikm−1τ‖e
j
km−1‖

2
Qj

≤
∑

l
c3
2

‖Aj‖22
sikm−1τ

+
E

[

‖wj
km−1‖

2
Qj

]

λjsikm−1τ
, (26)

where the last inequality follows from knowing that

‖ejkm−1‖
2
Qj

> λj for every subsystem j ∈ lc32 . Since

(26) is uniformly bounded, (17) holds by selecting ξ̄ =
∑

l
c3
2

E

[

‖ej
km

‖2
Qj

|ek

]

ξ̄′
< 1 and ξ̄′ larger than (26), over the

interval [k, km]. Expression (26) can be made small by

tuning λj’s and Qj’s but not arbitrarily, due to its first

term. It confirms, despite having unstable plants and sparse

capacity which might cause a subsystem with large error

wait for transmission, the expected error remains bounded.

Moreover, (26) is derived considering the couplings between

the subsystems which occurs in the communication channel.

It is shown earlier that condition (16) holds at time k+N
within each case c1-c2 and lc31 , which implies that they stay

bounded in expectation over longer finite horizons. Thus,

rewriting (19) over the extended interval [k, km] yields

∑N+m

i=1
E
[

‖eikm
‖2Qi

]

=
∑

cl
Pcl E

[

‖eikm
‖2Qi

|cl,Pcl

]

≤
∑

c1
E
[

‖eikm
‖2Qi

|c1
]

+
∑

c2
E
[

‖eikm
‖2Qi

|c2
]

+
∑

l
c3
1

E
[

‖eikm
‖2Qi

|lc31
]

+
∑

l
c3
2

Pl
c3
2
E

[

‖eikm
‖2Qi

|lc32 ,Pl
c3
2

]

<ς̄,

where ς̄ sums up the finite uniform upper bounds for cases

c1-c3, assuming at least one successful transmission over

[k, km]. This ensures the error Markov chain ek satisfies (16),

which in turn affirms the overall NCS possesses LSP.

The second collision scenario prevents employing the

probability Pl
c3
2

to show (16) holds for sub-case lc32 , since

no transmission happens over [k, k+N ]. To infer (17), we

calculate the probability that at least two subsystems select

identical waiting times at every time step, leading to an all-

time-step collision scenario. As all subsystems operate in

open-loop, we calculate (17) for all i∈{1, . . . , N}. Assume

a subsystem i has selected νik′ = sik′τ at some time k′, for

sik′ ∈{1, . . . , h−1}. The probability that a subsystem j has

identical waiting time νjk′ =sik′τ can be calculated. We know

E[νjk′ ] =
∑h−1

m=1
mτ.P(νjk′ = mτ).

Therefore, we conclude

P(νjk′ =s
i
k′τ)=

1

sik′τ

[

E[νjk′ ]−
∑h−1

m=1,m 6=si
k′

mτ.P(νjk′ =mτ)

]

<
1

sik′τ

[

1

λj
−
∑h−1

m=1,m 6=si
k′

mτ.P(νjk′ =mτ)

]

≤
1

sik′τλj
.

Extending this for every pair of subsystems i and j which

collides at every time step k′∈ [k, k+N ], we find the upper

bound for the probability of having successive collisions as

P

[

N
∑

i=1

θik′ =0, ∀k′∈ [k, k+N ]

]

≤
k+N
∏

k′=k

N
∑

i=1

N
∑

j=1,j 6=i

1

sik′τλj
.

From (21), if no subsystem transmits we can choose ξ̄′ =
∑N

i=1 ‖A
N
i e

i
k+

∑N

r=1A
N−r
i wi

k+r−1‖
2
Qi
>0. Then, we have

sup
ek

P

[

N
∑

i=1

‖eik+N‖2Qi
≥ ξ̄′

]

<

k+N
∏

k′=k

N
∑

i=1

N
∑

j=1,j 6=i

1

sik′τλj
,

(27)

for an arbitrary ρ(ξ̄′, ξ̄) such that
∑N

i=1 ‖e
i
k‖

2
Qi
<ρ and LSP

of the overall NCS is readily obtained according to (17).

Remark 2: One can infer from (27) that, by having ex-

tremely large thresholds λi or infinite number of commu-

nication samples h, the probability of having consecutive

collisions converges to zero. This is expected as by enlarging

the error thresholds, we are keeping more subsystems out of

the access competition. In addition, as h→∞, the chance of

collisions converges to zero. Note that, excluding the second

scenario, the stronger stability notion, in terms of Lyapunov

mean square stability (LMSS), will be obtained [16].

Remark 3: As the number of subsystems occupying the

communication channel increases, the probability of colli-

sions grows. Nevertheless, we still can show LSP as long

as the ratio h/N is larger than zero, i.e. N is finite. It

is to be expected , however, that the performance of the

overall system decreases as the ratio h/N decreases. A More

detailed performance analysis is subject to future work.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed decen-

tralized scheduler is compared with TDMA and idealized

CSMA protocols. Furthermore, we compare our results with

those obtained from the centralized and pure probabilistic

scheduling policies introduced in [13] and [18], respectively.

Consider an NCS comprised of two heterogeneous classes

of subsystems, one includes homogeneous control loops with

unstable plants while the other contains homogeneous loops

with stable processes. The system parameters are A1=1.25,

B1 = 1 for the stable class, and A2 = 0.75, B2 = 1 for

the unstable class. The initial state is x10 = x20 = 0, and

the disturbance is given by wi
k ∼ N (0, 1). We consider N

individual loops with equal number of loops belonging to

each class. To stabilize the subsystems, we choose a deadbeat

control law Li=Ai, and we select Qi=I for both classes.

Fig. 3 provides a comparison of aggregate error vari-

ance between our proposed policy and the related proto-

cols for NCSs with different number of subsystems N ∈



Number of plants (N ) 2 4 6 8 10

Error threshold (λ) 0.25 1.45 2.80 4.30 6.00

Collisions in 2×105samples 252 972 2094 3535 5009

Collisions (%) 0.126 0.486 1.047 1.767 2.504

TABLE I

SELECTED ERROR THRESHOLDS AND THE NUMBER OF COLLISIONS.

{2, 4, 6, 8, 10} subject to the constraint (7). Note that for

N > 2, we have more unstable systems than the available

transmission slots, which ensures at least one unstable system

operates in open-loop at each time step. TDMA is a time-

triggered access scheme, where subsystems transmit periodi-

cally. As for TDMA simulation results, we consider periodic

transmissions for each loop with periods of exactly N time

steps. ICSMA operates statically such that the chance of

transmission is 1
N

for each subsystem at each time step. The

averages are calculated via Monte Carlo simulations over a

horizon of 2×105 samples. For comparison we also consider

the case where all subsystems transmit in every time step by

relaxing the capacity constraint to c=N , i.e. every subsystem

transmits at every time step. This is the lower bound for error

variance. For simplicity, we calculate the error variances by

considering equal local error thresholds λ for all subsystems

in an NCS, according to Table I. The sampling rate of the

communication channel is h=150. The number of detected

collisions is shown in Table I. The waiting times are chosen

randomly from the Poisson distributions for each subsystem

at every time-step.

The ICSMA protocol results in an acceptable performance

only for N=2, while the bi-character approach outperforms

TDMA. The deterministic feature of our policy can be

removed by setting the error thresholds to zero to obtain

a pure probabilistic scheduler which considers chances for

all subsystems for transmission at every time-step [18]. As

expected, the error variance increases compared to the bi-

character scheduler, since those subsystems with small errors

now have non-zero chances to utilize the channel.
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Fig. 3. Comparison of the average error variance vs. the number of control
loops for different scheduling policies.

V. CONCLUSIONS

We propose a decentralized scheduling mechanism for

NCSs over shared communication mediums. Given stabiliz-

ing control laws, stability of the overall multi-loop NCS in

terms of Lyapunov stability in probability is studied. Our

scheme is locally implemented and combines features of

both deterministic and probabilistic designs. The determin-

istic feature helps to efficiently allocate the channel to the

subsystems with large errors, and the probabilistic character

facilitates prioritization and accounts for collisions.
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