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Abstract—The problem of signal parameter estimation and
tracking with measurement data of low resolution is considered.
In comparison to an ideal receiver with infinite receive resolution,
the performance loss of a simplistic receiver with 1-bit resolution
is investigated. For the case where the measurement data is pre-
processed by a symmetric hard-limiting device with 1-bit output,
it is well-understood that the performance for low SNR channel
parameter estimation degrades moderately by 2/7(—1.96 dB).
Here, we show that the 1-bit quantization loss can be significantly
smaller if information about the temporal evolution of the channel
parameters is taken into account in the form of a state-space
model. By the analysis of a Bayesian bound for the achievable
tracking performance, we attain the result that the quantization
loss in dB is in general smaller by a factor of two if the channel
evolution is slow. For the low SNR regime, this is equivalent to
a reduced loss of \/2/7(—0.98 dB). By simulating non-linear
filtering algorithms for a satellite-based ranging application and a
UWB channel estimation problem, both with low-complexity 1-bit
analog-to-digital converter (ADC) at the receiver, we verify that
the analytical characterization of the tracking error is accurate.
This shows that the performance loss due to observations with low
amplitude resolution can, in practice, be much less pronounced
than indicated by classical results. Finally, we discuss the impli-
cation of the result for medium SNR applications like channel
estimation in the context of mobile wireless communications.

Index Terms—1-bit ADC, channel estimation, hard-limiter, pa-
rameter estimation, ranging, tracking.

I. INTRODUCTION

HEN analyzing parameter estimation methods and al-

gorithms in the context of statistical signal processing,
it is often assumed that the digital measurement data is avail-
able with high resolution. Therefore, quantization effects can
be neglected in the underlying model and an ideal system with
infinite amplitude resolution is usually assumed for the analyt-
ical characterization of the receiver. However, in practice, the
hardware complexity and the power dissipation of the required
ADC scales exponentially ©O(2%) with the number of resolution
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bits &. Consequently, high resolution ADCs are expensive to
build and are power consuming during system operation. Fur-
ther, the speed of the temporal sampling process is limited when
operating at high resolution [1]. A work-around to this unattrac-
tive property of high resolution signal processing systems is
to adapt the estimation and tracking algorithms intentionally to
measurements of low resolution. This allows us to use an ADC
of low complexity, have a small production cost and moderate
power consumption, or to perform sampling at high rates. In the
extreme case, the conversion from the analog to the digital do-
main is performed by a symmetric hard-limiter, providing a dig-
ital measurement output with 1-bit resolution. For such an ADC
device, the circuit design becomes trivial. It can be realized by a
single comparator element with zero threshold voltage. Further,
this extreme approach has the advantage that low-level digital
signal processing operations, which involve the binary receive
data, can be carried out hardware-efficiently by using 1-bit arith-
metics. Nevertheless, due to the strong non-linearity, the con-
ceptual simplicity of low-resolution analog-to-digital conver-
sion comes with a significant performance loss. The focus of
this work is to characterize the performance gap between a sim-
plistic signal processing system with 1-bit measurement data
and an ideal receiver with infinite resolution in the context of
signal parameter estimation and tracking.

A. Related Work

An interesting and long-standing result in statistical signal
processing with quantized receive data [2] is, that for low SNR
applications, the performance loss associated with 1-bit hard-
limiting is moderate with 2/7(—1.96 dB) [3]. Due to the attrac-
tive simplicity of ADCs with 1-bit amplitude resolution, a va-
riety of works [4]-[7] have analyzed the loss associated with this
non-linear operation in the context of signal parameter estima-
tion. Focusing on the problem of reliable communication over
a noisy channel, the work [8] establishes the theoretical limit of
the transmission rate with a 1-bit ADC at the receiver. Another
line of works studies different methods aiming at the reduction
of the 1-bit quantization loss. In [9]-[12], the possibility to in-
crease the temporal sampling rate with 1-bit ADC is discussed
in the context of communication theory, while [13] takes into
account the optimization of the hard-limiting threshold. In [14],
the quantization threshold is adaptively adjusted, whereas [15]
and [16] consider the method of dithering for signal parameter
estimation from quantized data. In contrast, [17] analyzes the
benefit of dithering strategies with feedback. Adding noise prior
to the quantization operation and exploiting the effect of sto-
chastic resonance is studied in [18]. [19] proves that a constant
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quantization threshold maximizes the Fisher information mea-
sure and its Bayesian version. The work [20] reveals that noise
correlation can be beneficial for the information flow (Shannon
information measure) through highly non-linear ADC devices,
while by means of an estimation theoretic approach (Fisher in-
formation measure), the discussions [21], [22] and [23] show
how to exploit this effect for statistical signal processing tasks
by an adjusted design of the analog radio front-end. In the con-
text of non-linear filtering, [24] and [25] study the effect of
coarse receive signal quantization, while [26], [27] and [28] pro-
pose algorithms for state estimation and tracking with quantized
measurement data and analyze their performance.

B. Contribution

Here we follow the idea of including additional side infor-
mation about the evolution of the channel into the digital signal
processing of measurement data with low amplitude resolution.
Different technical applications like wireless communication,
radar, sonar or satellite-based positioning require the contin-
uous inference of channel parameters at the receiver. As this
process is performed subsequently on measurement blocks of
short duration and the channel in general follows basic physical
principles, a stochastic model which describes the short-time
temporal evolution of the channel parameters can be derived
in many situations. Such a model forms an additional source
of information which can be exploited within the digital part
of the receiver at high internal resolution. We show that for
signal processing systems, where the measurement data is ac-
quired from a sampling device with low amplitude resolution,
the embedding of available side information into the formula-
tion of the estimation problem plays an important role. By an
asymptotic performance analysis based on Bayesian bounds for
signal parameter tracking [29]-[32], we show that significant
performance gains can be achieved for quantized receivers if a
state-space model is incorporated into the estimation algorithm
and tracking over subsequent blocks is performed. In contrast to
preliminary works [24] and [25], on the subject of state estima-
tion with quantized measurements, we carry out an asymptotic
performance analysis under slow channel parameter evolution
and obtain an explicit relative loss of 1/2/7(—0.98 dB) in the
low SNR regime. The analysis shows that in general, the per-
formance gap x between two signal processing systems estab-
lished under a Fisher or Bayesian estimation perspective dimin-
ishes to /% when analyzed in conjunction with a slow evolving
state-space model. This corresponds to a reduction of the per-
formance loss in dB by a factor of two, making the result par-
ticularly interesting for situations where the performance loss
is pronounced (e.g., 1-bit signal processing in the medium to
high SNR regime). Analyzing the rate of convergence of the es-
timation error under slow evolution reveals that the duration of
the transient phase of the tracking process increases accordingly
by 1/ x~!. With Monte-Carlo simulations using particle filters
for channel estimation tasks in the context of low SNR satel-
lite-based ranging and UWB communication, we verify that the
established results can be translated into signal processing ap-
plications. In the beginning, we briefly review the Fisher and the
Bayesian approach onto estimation without a state-space model
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and discuss the performance loss attained within these frame-
works when operating with 1-bit measurement data.

II. OBSERVATION MODEL

For the discussion, an amplified sensor signal

y(t) = vs(t: 6(2)) + n(t), (1
y(t) € R, is assumed. The analog signal y(¢) consists of a deter-
ministic transmit signal s(¢; 8(t)) € R, attenuated by factor -y €
R. The signal s(¢; 8(t)) is modulated by a parameter 8(t) € R,
which evolves over time ¢ € R. White random noise #7(t) € R,
due to an analog low-noise amplifier behind the receive sensor,
distorts the receive signal in an additive way. The receive signal
y(t) is low-pass filtered to a one-sided bandwidth of B and sam-
pled with a rate of f;, = 2B = Tis In the k-th processing block
of duration NT; we combine N subsequent samples to an ob-
servation vector

Y = v5(6k) + My 2
Yr» 8(0k),m, € RY, with the individual vector entries
[yk]n :y((k - 1)NT5 + (TZ - 1)Ts)
[8(6K)]n =s((k — 1)NTs + (n — 1)Ts; 61)
O =6((k —1)NTy)
[1]n =n((k = 1)NT; + (n — 1)T}), ©)
where n = 1,..., N. By following this model we assume that

the temporal evolution of the channel parameter (t) is slow
compared to the sampling process, so that we approximate the
parameter 8, to be constant within the k-th block. Note that this
imposes no general restriction. In practice, the sampling rate f,
or the block length N can be chosen such that the assumption
of a constant block parameter is fulfilled with sufficiently high
accuracy. The temporal evolution of the parameter over subse-
quent blocks can then be described in the form of a transition
probability function p(f|0%_1) with an initial prior p(6) mod-
eling the uncertainty about the channel parameter at the begin-
ning of the receive process. The noise samples #;, form a mul-
tivariate Gaussian random variable with the properties

E, [ns] =0, vk,

E, [mni| =1, vk, (4)

such that the conditional probability of the receive signal y,, in
the k-th block can be written

1 e,%(yk—ys(ak))T(yk*'Y"(ek))
(2n)
N

L7 o 2w Ason)”
(2m) =1

P(Yk[6k) =

w2z

(6))

0|z

n

In the following, in order to take into account a 1-bit ADC at
the receiver, the receive signal is considered to be exclusively
available in the form

Q)

), = sign(yy),
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where sign(z) is the element-wise signum function with the def-

inition
sign(z) = {j}

After this hard-limiting operation, the conditional probability of
each binary receive sample [rg],, is

ifz >0

ifa <O0. ™

= 4100 = [ pu(ndu)din

= Q(—v[s(6)]n)
=1- Q(’Y[S(Ok)]n) (8)
and
—7[8(0k)]n
s = ~1160) = | ()]
1= Q(—(s(0k)]n)
=Q (v[s(0k)ln) ©)
such that
N
p(rilok) = ] (1 — Q(vIrelals(0x)]a))
n=1
= [ Q- lrulals@r)]n), (10)
with Q(2) being the Q-function
Z2
Q(x) \/ﬂ/ exp )dz. (11)

The final task of the receiver is to calculate a block-wise esti-
mate Q(rk) from the receive signal 7. The quality of the esti-
mate #(ry) is judged on the basis of a quadratic error

ex = (O(rx) — 1) (12)

III. HARD-LIMITING LOSS—FISHER ESTIMATION

First we discuss the problem under a Fisher theoretic per-
spective [33]. The parameter 8y is considered to be determin-
istic but unknown. Further, each block is processed indepen-
dently without taking into account the temporal evolution of the
channel parameter 8. In this case, the optimum block-wise in-
ference procedure is the maximum likelihood estimator (MLE)

O (ri) = arg max p(ry |0%). (13)
0,€0
As the estimator is unbiased and asymptotically efficient, the
mean square error (MSE) of the estimator

Er 0, [(éML("‘k) - 9k)2]

reaches the theoretical limit, the so-called Cramér-Rao lower
bound (CRLB)

MSE(6)) = (14)

MSE(8;) > (15)

F(6k)
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The Fisher information measure F'(f) is defined

ro0 ko (22552

S B l(f?lnpqm]nlek))g]
n=1 (0 aak
N (ap({rk]i%:—uem)Z
k
+ :
ng rk]n:fllek)
(16)

With the derivatives of the conditional probability function

<0p([rk1 +1|6’k))

N
n=1

([ri]n = +1/6k)

ap([reln = +110x) v [83(%)] R

A0y, CV2r | 06
Op([riln = =110x) v [0s(fk)] _2P=enii
00y, N 27| 00 ,ne ) > a7

the information measure is found to be given by

[aggm} e 7V [s(00)];
22 gk e O

As a performance reference for the non-linear 1-bit receiver (6),
we consider an ideal receiver which has access to the high res-
olution signal y;,. For this kind of receive system, the Fisher
information measure in the k-th block is found to be

Fo(6) =By 0, [(%ﬁfl%)y]
(%
7y )

In order to compare both receivers, we define the relative per-
formance loss by the block-wise information ratio

(19)

F(6)
(Or) = ———. 20
xr(0r) Fo(0) (20)
As Q(0) = 1, we obtain
_52
lim ——— =4 21
+ Q) b
and the loss for asymptotically small SNR is
2
lim x(6x) = — k. 22
#_{%XA( k) m v (22)

IV. HARD-LIMITING LOSS—BAYESIAN ESTIMATION

The Bayesian perspective is slightly different [32]. Here the
parameter 8y, is treated as a random variable which is distributed
according to a block-wise prior p(fy). Still, each block is pro-
cessed independently, but the prior knowledge p(6y) is incor-
porated into the estimation process. In such a situation, the op-
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timum algorithm for the inference of the parameter 85 is the
conditional mean estimator (CME)

Ocn(re) = Eo,ir, [0). (23)

The MSE of any estimator for the Bayesian parameter estima-
tion problem

MSE = By, 0, | (8(ri) — 64)%] (24)
can be bounded by a Bayesian version of the CRLB

1
MSE, > —
k Z Jk7

(25)

where the block-wise Bayesian information measure is

2
e [P0
B aln p(re|d)\
s AT
2 p(6i) |
a6y,

=Eo, [F(0k)] + Jpk
:Fk + Jp,k'

= Eek =+

Eg

k

(26)

Equivalently, for the ideal reference receiver we have

<8ln129(g:76k)>2]

=Eg, [Foo(0k)] + Jp.k
=Foo i + Jp k-

Joo,b = By, 6,

@7

Defining the relative performance gap between both systems
Jk
Joo ks
. Fr + Ip ks
P+ ok

Y =

(28)

allows us to compare both systems in the Bayesian setting. The
case of technical interest is

T < F, VE,
Jp,k < Foo.k7 \V/kv (29)
for which the asymptotic analysis in the low SNR regime
F
lim ¥y, =~ lim —k
¥—0 y—0 Foo,k:
2
==, vk, (30)
T

produces approximately the same result as in the Fisher estima-
tion framework.

V. HARD-LIMITING LOSS—TRACKING

Finally, we assume that the available stochastic model
p(0k|61—1), describing the temporal evolution of the channel
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parameter from one block to another, is taken into account in an
optimum way. This allows us to perform parameter estimation
with tracking over subsequent blocks and to calculate the cur-
rent block estimate ék based on the observations of the current
block and all preceding blocks. We assume that the channel
parameter 6y evolves according to a stochastic model of first
order (autoregressive model of order one)

(€2))

where o« € R and the innovation z; € R is a Gaussian random
variable with the properties

O = a1 + zp,

E.,[zx] =0, vk,
E. [s2] =0, V&, (32)
such that the transition probability function is given by
1 (0 b _1)?
p(0x|0; 1) = mge 2o (33)
For the first block we assume an initial prior
1 et
p(bo) = oo e o 34)

Note that for such a state-space model, the mean and the vari-
ance of the parameter evolve according to

Egk [Qk] :ak,uo (35)

k
Egk [(Hk - Egk [9;»})2] = O;zka'(z] + (Z a2(ki)>02. (36)
i=1

In order to avoid divergence of the state-space variance, we re-
strict  to the range 0 < o < 1, such that

lim By, [6x] =0 (37
k—o0
lim By, [(8x — Fo, [0x])%] = 1 e (38)
k—o0 O k Ou L7k 1—a2 ’

The optimum estimator in such a setup is the CME with all past
observation blocks

bcm(Ri) =Eg, R, [0k] = 0xp(Ok | Ri)dOr,  (39)
O
where the observation matrix
Rk = [Tk Tr-1 1‘1} (40)

contains the receive signals of all past blocks up to the k-th
block. The MSE of this estimator

MSEx = Er, 0, | (Bom(Ri) — 04)°] 1
can be lower bounded by
1
MSE; > —, 42
LA (42)
where the tracking information measure [29] in block &
Uy = Di? — DY (U 1+ D}') ' D}? (43)
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is calculated recursively with

Ol p(6x |65 1) \*
Dil :E9k71,9k l(W) ]

[ [ alnp(ekwk,l) 2

=Eg,_, Egk‘ek—l (T (44)
pl2_E OIn p(0k|0k—1) O p(8i|0k—1)
S T 20,

_E _E [01np(0k|0k-1) Olnp(O|0k-1)

—_= 9};—1 | kak,l I agk—l 89k

=Dj! (45)

Al p(0|0-1)\*

D? =F TPk TE-1)
: Or 1,0k l( 90, +

E dInp(re|0z) 2

O, T aek
Olnp(0k|0s-_1)\* _
=Eq, , Eek‘ek—l [(%) + Fy. (46)

With the state-space model (31), the required derivatives are

31np(0k|9k,1) _ (Gk — 04(9]6,1)(1’
89k,1 0’2
Ol p(B |0k 1) (0 — abi—1)
S 4
004, o2 k “7)
such that
[ [ OInp(0x|0s_1) A1 a2
) ) N (48)
[ [/ 9 p(0xl0s 1)\ 2]
] ) N (49)
B B [0Inp(0k|0k-1) Olnp(0k|0k-1)]]  «
Ok OrlOx -1 L 0,1 a0, - p
(50)

Consequently, the recursive rule for the computation of the
tracking information measure Uy, is given by

1 o? a2\
Uk_F_F<Uk1+F> + Fy
a2 \ 7!
9 _
=loc"+ + Fi, 51
( Uk—l) k (51)
and accordingly for the ideal receiver (infinite resolution)
2 N\t
Voo = (02 i ) CFep (52)
Uoo,k:fl
where the initial value is
1
Up=Usxp = —3- (53)
T

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 22, NOVEMBER 15, 2015

A. Steady-State Tracking Performance

After an initial transient phase, the tracking algorithm reaches
a steady-state such that the estimation error saturates and

Up ~ Up_1, vk > K, (54)
where K, defines the end of the transient phase. Therefore

U= lim Uk
k—oo

_17042+F‘Jr lfaerF’ 2+a2F‘ (55)
202 2 202 2 o2’
where the expected steady-state Fisher information is

The situation that the last term O‘;ZF in (55) dominates the

tracking information measure I/ arises if the two conditions

1—a2\? < a’F (57)
202 o2
F\? < a’F (58)
2 o2
are fulfilled. The first condition (57) can be reformulated
(1-a*)? < a?d*F (59)
and the second condition (58) can be stated as
2
_ o
F<—. (60)
a
Substituting (60) into (59), we get
1-a* < a?, (61)

which is satisfied if we set « close to one. Hence, if « is close
to one (see (61)) and th)e informative quality of the state-space
model indicated by g—; (see (48)) is much higher than the
expected steady-state Fisher information F' of the observation
model (60), the steady-state tracking information measure U
can be approximated by
o?F

U - (62)
For the comparison between the quantized receiver and the ideal
system, we define the 1-bit quantization loss for parameter esti-
mation and tracking in the k-th block as

o= g (©3)
such that asymptotically
p= lim p
U
=Us (64)
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where the steady-state tracking information measure U, for the
ideal reference receiver is

1—a? Fo 1—a?2 Fu 2 a?F
%3§*3*¢C§T*7>+7T*@

with the expected steady-state Fisher information

k—oo

(66)

Under the assumption that the state-space model has much
higher informative value than the observation model indepen-
dent of the form of the receiver, i.e.,

2
Fe (67)
a
2
Fo<Z, (68)
a

it is possible to evaluate the loss for a slow temporal evolution
of the channel parameter according to

i F
lim p~ 4| =—.
a—1

(69)
Note that as long as (67) and (68) are fulfilled, the result (69)
holds in general, independent of the considered SNR regime.
This implies that compared to the Fisher or the Bayesian ap-
proach, tracking the parameter with the use of a slow evolving
state-space model leads to a 1-bit quantization loss in dB which
is smaller by a factor of two. With the result (69), we can make
the explicit statement that for signal parameter estimation and
tracking in the low SNR regime, the relative 1-bit quantization
loss is
2

lim lim p a4/ —.
y—=0a—1 s

(70)

B. Convergence and Transient Phase Analysis

In order to further analyze the behavior of the 1-bit quantized
system, we consider the convergence of the recursive informa-
tion measure (51). The goal is to determine the number of mea-
surement blocks which are required to fulfill the steady-state
condition (54). To this end, we define a transient phase of quality
A > 1 with duration

Ky = inf{k > 1‘|Uk U< 107N, — U|}. 71)

The measure K characterizes the delay from the start of the
tracking procedure to the steady-state entry point. The rate of
convergence v € R of recursion (51) is found by solving
. Uy — U]
lim —— = 72
kl{{olo lkal — Uly 5 ( )
for v with constant £ € R, £ < oo. As the derivative
AUy,

2/ 2 2y-2
=a*(cU+a”) " #0,
i1y, —v

(73)

we have v = 1, i.e., the order of convergence is linear and

£ =0 (c’U + a2 (74)
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With |Uy, — U| = £%|Uy — U], the duration K is found to be
approximately

A
Clogé”
Assuming that the conditions (67) and (68) are satisfied and
VolF +a > 1, it is possible to use the approximation

K)\%

(75)

_ —2
gz( 02F—|—a) . (76)
In this case,
A
Ky~ _ . (77)
2log (V o?F + a>

Specifying the additional relative delay A which is introduced
with 1-bit quantization by
K\

e ?

o, A

A:

(78)

where K, » is the duration of the transient phase for the ideal
receive system, we find

log ( o2F + a)

A log (\/ﬁJr a)
=3 % (79)

for @ — 1, independent of the choice of the steady-state accu-

racy A. Further, with
[
=4/= =125
2

[P
F
y—0

it can be concluded that with slow parameter evolution (¢ — 1)
and low SNR, the transient phase with the 1-bit receiver takes
approximately 25% more time than with the ideal system.

(80)

VI. APPLICATION EXAMPLES

A. Satellite-Based Positioning at Low SNR

As an application, we consider a satellite-based ranging
problem where a transmitter sends a known periodic signal of
the form

o

Z [b](1+mod(c,c))g(t — cTe).

C=—00

x(t) = (81)

The vector b is a binary sequence with C' symbols. Each symbol
has a duration 7, and g(¢) is the corresponding band-limited

rectangular transmit pulse. A Doppler-compensated receiver
observes an attenuated and delayed copy of the transmit signal

y(t) =s(t;:0()) +n(t)
=7a(t — 0(t)) + n(t)
with additive white noise n(#). By band-limiting and sampling

the analog signal (82), the ideal receiver attains the digital re-
ceive signal

(82)

Y = v8(0) +my, (83)
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while a low-cost 1-bit version of the receiver operates exclu-
sively on the basis of the signal sign

), =sign(y;)

=sign(ys(0r) + ;). (84)

The temporal evolution of the time-delay parameter 8 can be
approximated by

0, = aby_1 + zp. (85)

Note, that in this radio-based ranging example, « is related to
the movement of transmitter and receiver. For simplicity, we
assume that the state-space parameter « is constant over the
considered amount of blocks and is known at the receiver. The
receiver’s task is to estimate the distance to the transmitter in
each block k& by measuring the time-delay parameter by

1) Tracking With a Non-Linear Filter: Because the optimum
estimator (39) is difficult to calculate in this situation we use a
suboptimal non-linear filter [31] for simulations. The particle
filter is based on approximating the posterior

9k|Rk Zwké = p(ﬁkle) (86)
by L particles #%. The particle weights w} > 0 satisfy
L
> uwk=1, (87)
=1
such that a block-wise estimate 8, can be calculated by
A L
Op =) who. (88)
1=1

Using the transitional probability function p(|6x_1) as the im-
portance density, the particle weights are updated recursively

Wy, = w1 p(ry|6}) (89)
and normalized
~1
wh = Yk - (90)
21:1
If the effective number of particles
L L 91
eff = 5L, ;.o
Zl,:r (wfc)Q
falls below a certain threshold &, i.e.,
Leff S KJL7 (92)

a resampling step is performed by replacing the particles with
sampling L times from $(6|Ry).

2) Results: For simulations, we use the signal of the 5-th
GPS satellite with C = 1023, T, = m and a rectan-
gular transmit pulse g(¢) [34]. According to the chip rate, the
one-sided band-width of the receiver is set to B = 1.023 MHz.
The sampling rate is set to f; = 2B and each block has the
duration N7, = 1 ms, i.e., a block contains N = 2046 sam-
ples. The signal-to-noise ratio is set to SNRyg = —15.0 dB.
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Fig. 1. Tracking Error—Ranging.
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©

Fig. 2. 1-bit Tracking Loss—Ranging.

For the state-space model, we choose & = 1 — 1072 and o
= 103 and the initialization setup is pg = 398.7342 - T, and

= 0.1 -T,. For K = 250 blocks, we generate 100 delay
processes and run the non-linear filters with L = 100 particles
for each delay process 1000 times with independent noise re-
alizations, while the resampling threshold is set to £ = 0.66.
The results depicted in Fig. 1 show that the block-wise ana-
lytic range tracking errors U, and U_ k in meter approach the
asymptotic steady-state errors U — and U_.!. Further, it can be
observed that both non-linear filters are efficient, such that the
errors MSEj, and MSE, ;, reach the theoretic tracking bounds
Uk and U_ lk Therefore, in Fig. 2, the quantization loss py de-
fined in (63) is visualized. It is observed that at the beginning of
the range tracking process, the performance gap between both
receivers is moderate (—1.38 dB at £ = 1), due to the same ini-
tial knowledge with o2. In the transient phase, the quantization
loss becomes quite pronounced (—1.90 dB at & = 15). While
reaching the steady-state phase (k > 250), the loss converges
to —0.93 dB.

B. UWB Channel Estimation at Low SNR

For a second application we consider the estimation of the
channel quality in the context of UWB communication. Similar
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to the ranging application, the receive signal of a synchronized
receiver during a pilot phase can be modelled

Yi. = 5k(6k) + M

= Oz, + 1y, (93)
where z, is the time-discrete form of a known unit power pilot
signal with analog structure as in (81), and 8}, is the channel
coefficient. Note, that in contrast to the ranging problem, the
parameter 8y, in the ideal receive model (93) shows up in a linear
form. The task of a low-cost 1-bit UWB receiver

i =sign(yy)
=sign(brzr + Ny,) 94)
is to estimate the signal attenuation g), for each pilot block,
while the channel coefficient follows the temporal evolution
model (31). In contrast to the ranging application, we assume
B = 528 MHz, a Nyquist transmit pulse g{¢) of bandwidth B
and C = 10 with SNR4g = —15.0 dB. The state-space model
parameters are « = 1 —10"%*and o = /(1 — a2) SNR, where

SNR = 1071 . The initialization setup is pg = v'SNR and
oo = 0.05. In Fig. 3 it can be seen, like in the ranging appli-
cation, that the non-linear filters, simulated with 1000 channel
coefficient processes and 100 independent noise realizations,
perform efficiently and therefore closely to the tracking bounds
U, LorU ;?k. These bounds asymptotically equal the analytic
steady-state errors U 1 and U_!.InFig. 4, the performance loss
pr 1s depicted in dB. As in the ranging problem, it is observed
that the loss after the initial transient phase recovers and ap-
proaches —1.02 dB. Note that for both of the considered appli-
cations, the asymptotic loss is slightly different from —0.98 dB,
as the low SNR or the slow channel evolution assumptions are
not fully valid for the chosen simulation setups.

C. Enabling 1-bit Estimation at Medium SNR

Because a low-cost radio front-end design might be particu-
larly interesting for mobile communication receivers, we finally
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investigate the potential tracking performance for signal param-
eter estimation in the medium SNR regime. As here the 1-bit
quantization loss is much more pronounced, using a low-cost
1-bit ADC might make it impossible to meet the specified tech-
nical requirements. However, the use of a state-space model
bears the potential to reduce the quantization loss, such that
low-cost ADCs might become a possible system design op-
tion. For the considered scenario we assume a mobile commu-
nication channel as in (94) with B = 2.5 MHz, a pilot se-
quence of ¢ = 10 symbols and a medium channel quality
of SNRgg = 6.0 dB. The task of the receiver is to estimate
the channel coefficient @k in each pilot block, while the initial
knowledge is assumed to be i = +/SNR under the uncertainty

-1
o0 = (VEa, [P (B0)]) -
The process noise is set to ¢ = 4/(1 — a?)SNR. In Fig. 5,

the steady-state tracking loss p is depicted for 3 = 1 — a. In
comparison to the quantization loss ¢ without tracking, it can
be seen that the quantization loss becomes smaller when « ap-
proaches one. However, note that the amount of blocks K that
are required in order to reach the steady-state and achieve the
small loss indicated by p can become large. In Fig. 6 the quan-
tization loss py for a finite amount of blocks and different g is

95)
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visualized. It becomes clear that in the considered scenario the
reduction of the quantization error to a level above —3.4 dB(8

< 10~?) might take a high number of blocks and therefore can
only be realized with significant delay.

VII. CONCLUSION

We have analyzed the performance gap between two ex-
treme receive systems with respect to parameter estimation
and tracking. The reference receiver performs analog-to-dig-
ital conversion with infinite amplitude resolution, while the
low-cost receive system has a simple symmetric hard-limiting
ADC with 1-bit output resolution. If consecutive blocks are
processed independently, we attain the well-established loss
of 2/7 (—1.96 dB) for low SNR applications. If, in contrast,
additional side information about the temporal evolution of the
channel in form of a state-space model is taken into account
and the parameter is tracked over subsequent blocks, the loss
can be significantly lower. For slow channel evolution (o
— 1), we attain 4/2/7 (—0.98 dB) in the low SNR regime,
while for medium to high SNR, the loss in dB is, in general,
smaller by a factor of two, compared to the case where the side
information is not taken into account. Through simulation of a
non-linear filtering algorithm we have verified that the result
can be translated into practical applications. In particular, for
situations with medium SNR, the result is interesting as here the
quantization loss is pronounced. The embedding of additional
information into the estimation and tracking process allows
us to suppress the loss due to a non-linear radio front-end and
therefore might enable new low-cost design options.
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