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Abstract

Bacteria are part of almost any biological process on earth, often exhibiting symbiotic or
pathogenic life-styles. Both pathogens and symbionts had to develop molecular strate-
gies to manipulate host functions, cope with the hosts immune response and show parallel
trends in genome evolution. Despite intense research, pathogenic infections are worldwide
still one of the major health issues. For a molecular understanding of bacterial virulence
and the development of e�ective diagnostics and therapy, e.g. based on novel drug tar-
gets, it is necessary to identify the key players in microbe-host interactions. Essential to
the molecular cross talk between bacterium and host thereby is the transport of bacterial
proteins, so called e�ectors, into the eukaryotic host cell. Within the host cytosol, e�ector
proteins are capable of directly altering host cellular functions to the pathogens/symbionts
advantage. Experimental identi�cation of e�ector proteins remains a challenge and the
number of characterized e�ectors is limited. Existing in silico prediction methods rely on
the modeling of secretion signals in the amino acid sequence of e�ector proteins. It has
been shown for several organisms that e�ector proteins not only have functions similar
to eukaryotic proteins but that they possess similarity to eukaryotic proteins also on the
sequence and structural level. Nevertheless, current e�ector prediction methods are still
limited and unspeci�c. The aim of this work was to advance bioinformatics approaches
for the investigation of pathogen-host protein interactions.
In this work, I present a taxonomically universal, signal independent e�ector prediction
approach. By collaboration partners it was shown in an experimentally study that this
method predicts the e�ectome of the intra-cellular human pathogen Chlamydia trachoma-
tis with high quality. To make predicted e�ectomes easily accessible even to scientists
without particular bioinformatic skills, I devised a web resource for the prediction of se-
creted bacterial proteins. The E�ective web portal provides precalculations for all fully
sequenced genomes of bacterial pathogens and symbionts. Users also have the possibility
to predict e�ector candidates on their own in user de�ned sequence data by a state-of-
the-art set of prediction methods. In this thesis I have been also working on the mainly
unknown host sided part of pathogen-host interactions and thereby explored the potential
of domain domain prediction methods to predict pathogen-host protein interactomes. By
integrating gene expression data as well as information on the host protein interaction
network, I was able to reduce the number of predicted interactors to an experimentally
traceable set of candidates. Motivated by the ever increasing availability of completely
sequenced bacterial genomes, I applied the newly developed methods beyond the predic-
tion of pathogen-host interactomes and explored their potential to speed up recognition
of potential bacterial threats, an important challenge in microbial diagnostics. I could
show that to some extent the repertoire of e�ector candidates in the genome of a bacterial
organism enables prediction of a host-interacting phenotype.
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Zusammenfassung

Bakterien spielen eine Rolle in fast jedem biologischen Prozess auf der Erde. Dabei gehen
sie oft symbiotische als auch pathogene Wechselbeziehungen zu ihrer Umwelt ein. Sowohl
Krankheitserreger als auch Symbionten mussten molekulare Strategien entwickeln um die
Immunantwort und Sto�wechselfunktionen der Wirtszelle zu manipulieren und zeigen par-
allele Trends in der Genomevolution. Trotz intensiver Forschung sind pathogenen Infek-
tionen immer noch eines der wichtigsten gesundheitlichen Probleme weltweit. Für ein tief-
eres Verständnis der bakteriellen Virulenz und für die Entwicklung von wirksamen Thera-
piemethoden, zum Beispiel basierend auf neuartigen Wirksto�zielen, ist es notwendig, die
wichtigsten molekularen Akteure in der Interaktion zwischen Bakterium und Wirtszelle
zu identi�zieren. Wesentlich für diese molekulare Wechselwirkung ist der Transport von
bakteriellen Proteinen, sogenannten E�ektoren, in die eukaryontische Wirtszelle. Inner-
halb der Wirtszelle sind E�ektorproteine in der Lage, die Funktionen der Wirtszelle direkt
zugunsten des Krankheitserregers bzw Symbionts zu verändern. Die experimentelle Iden-
ti�zierung von E�ektorproteinen ist nach wie vor eine Herausforderung und die Anzahl
der bekannten E�ektoren begrenzt. Existierende computergestützte Vorhersageverfahren
beruhen auf der Modellierung von Sekretionssignalen in der Aminosäuresequenz der E�ek-
torproteine. Für mehrere Organismen wurde gezeigt, dass E�ektorproteine nicht nur ähn-
liche Funktionen wie eukaryontische Proteine übernehmen, sondern dass sie auch auf der
Sequenz- und Strukturebene Ähnlichkeit zu eukaryotischen Proteinen besitzen. Dennoch
sind die aktuellen E�ektor-Vorhersageverfahren noch zu begrenzt und unspezi�sch. Ziel
dieser Doktorarbeit war es, die Entwicklung bioinformatischer Ansätze zur Untersuchung
der Protein-Wechselwirkungen zwischen Bakterium und Wirtszelle voranzutreiben.
In dieser Arbeit stelle ich einen taxonomisch universellen, von Sekretionssignalen unab-
hängigen Ansatz zur E�ektor-Vorhersage vor. Durch die experimentelle Arbeit unserer
Kooperationspartner konnte gezeigt werden, dass diese Methode das E�ektom des in-
trazellulären Humanpathogens Chlamydia trachomatis mit hoher Qualität vorhersagt.
Um die vorhergesagten E�ektome auch für Wissenschaftler ohne bioinformatische Ken-
ntnisse zugänglich zu machen, entwickelte ich eine Web-Ressource für die Vorhersage
von sekretierten bakteriellen Proteinen. Das Ë�ective �Web-Portal bietet vorberechnete
E�ektomanalysen für alle vollständig sequenzierten Genome bakterieller Pathogene und
Symbionten. Benutzer der Webseite haben ausserdem selbst die Möglichkeit, E�ektor-
Kandidaten in eigenen bereitgestellten Proteinsequenzen mit einem umfassenden Auswahl
aktueller Verfahren vorherzusagen. Ich habe mich in dieser Doktorarbeit bei der Un-
tersuchung der Wechselwirkung zwischen Bakterium und Wirt auch dem gröÿtenteils
unbekannten Bereich auf Seiten der Wirtszelle gewidmet. Dabei untersuchte ich das
Potenzial von Verfahren zur Vorhersage von Interaktionen zwischen Proteindomänen zur
Erforschung des Proteininteraktionsnetzwerks von Bakterium und Wirtszelle. Durch die
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Integration von Genexpressionsdaten sowie struktureller Informationen über die Topolo-
gie des Host-Protein-Interaktionsnetzwerks war ich in der Lage, die Anzahl der vorherge-
sagten Interaktoren zu einem experimentell überprüfbaren Set von Kandidaten zu re-
duzieren. Durch die zunehmende Verfügbarkeit von vollständig sequenziert bakteriellen
Genome motiviert, wandte ich die neu entwickelten Methoden über die Grenzen der
Vorhersage von Host-Pathogen Interaktomen an und untersuchte ihr Potenzial zur Erken-
nung potenzieller bakterieller Krankheitserreger, einer wichtigen Herausforderung in der
mikrobiellen Diagnostik. Ich konnten zeigen, dass in einem gewissen Ausmaÿ das Reper-
toire von E�ektor-Kandidaten im Genom eines Bakteriums die Vorhersage eines Host-
interagierenden Phänotyps ermöglicht.
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1 Introduction

Pathogenic infections are worldwide one of the major health issues [306]. Despite intense

research and development of new anti-microbial treatments, the number of pathogenic

infections is still severe and remains unchanged over recent years, compare graph 1.1.

Figure 1.1: Estimated change of incidences of pathogenic infections in the United
States for 2012. Shown is the estimated change in incidence of laboratory-
con�rmed pathogenic infections in the United States in 2012, compared with av-
erage annual incidence during 2006-2008 as reported by the Centers for Disease
Control and Prevention (CDC) [51].

For example, chronic lower respiratory disease surpassed stroke as third leading cause of

death in the United States, according to reports of the American Lung Association. Beside

persistent problems, public health faces various new threats. Acquisition of antibiotic

resistance is observed for some strains of the most notorious agents [128, 206]. High

rates in the spread of resistance genes throughout the genomes of diverse pathogens make

experts rise the alarm of an upcoming post-antibiotic area [150]. Further challenges are

the revival of supposedly contained pathogens [192, 270], observed in the emergence of

Mycobacterium tuberculosis in eastern Europe and other parts of the developing world
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CHAPTER 1. INTRODUCTION

[30]. Novel agents put public health at risk in situations like the epidemic spread of

Enterohaemorrhagic Escherichia coli (EHEC) in northern parts of Germany in 2011 [242].

In �gure 1.2, the diversity of infecting agents is illustrated in an overview of bacterial

threats to human health.

Figure 1.2: Overview of bacterial infections in human. Shown are known bacterial agents
and tissue tropism upon infection in human [129].

Increasing e�orts on the development of pathogen speci�c vaccines are necessary to be

able to keep up with the challenges of a future, in which current antibiotic treatments will

have lost much of their power [150]. For the design of novel e�cient methods, detailed

knowledge about bacterial virulence is essential. Pathogens are able to initiate and main-

tain infection by circumventing the hosts immune system while at the same time limiting

the impact on the host cell. Essential for triggering these molecular processes is the secre-

tion of bacterial proteins. Bacteria secrete proteins into the host cell, so called e�ectors,

to alter host pathways in their favor [108]. Once secreted into the host cell, these e�ector

proteins can in�uence a broad range of functions. E�ectors enable disruption of the host

immune defense e.g. by hijacking apoptotic pathways [110]. The e�ector NleB inhibits

NF-kappaB-dependent host innate immune responses upon infection by several attaching/
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e�acing (A/E) human pathogens [113]. E�ector SipA of Salmonella typhimurium permits

membrane ru�ing and rearrangement of the actin cytoskeleton [323]. Transcription acti-

vator�like (TAL) e�ectors of plant pathogenic bacteria contain a modular DNA binding

domain to manipulate transcription of host proteins [37]. Also symbionts interact with the

protein network of the host cell by secreting e�ector proteins. Pathogenic and symbiotic

bacteria therefore depend on similar genomic features to implement their host-interacting

lifestyle [275]. Many mechanisms that shape host interactions of symbionts are factors

that also contribute to the processes involved in pathogenic infections [217]. Altering

host functions is a major virulence strategy determining bacteria-host interactions in a

variety of pathogens and symbionts [184]. Studies of multihost bacterial pathogens like

Pseudomonas spp suggest the existence of universal bacterial virulence mechanisms that

are highly conserved across phylogeny [234]. Functional similarity to host proteins is a

commonly observed theme in e�ector proteins [97]. Mimicking of host cell proteins is ob-

served by e�ector proteins of several host-associated bacteria. E.g. the human pathogen

Legionella pneumophila is able to modulate host functions by the secretion of eukaryotic-

like proteins. It has been shown for several organisms that e�ector proteins not only

have functions similar to eukaryotic proteins but that they possess similarity to eukary-

otic proteins also on the sequence and structural level [118, 7, 4]. These e�ectors contain

domain signatures that are characteristic for and mainly observed in eukaryotic proteins.

The domains/proteins are called eukaryotic-like domains (ELDs)/proteins (ELPs). Re-

vealing the arsenal of bacterial e�ector proteins is key to the understanding of bacterial

virulence and bacterial interaction with the host [309]. Experimental identi�cation and

characterization of e�ector proteins remains a challenge and the number of characterized

e�ectors still limited. In silico prediction of e�ector proteins o�ers the possibility to se-

lect for high-quality experimental candidates. Existing methods rely on the prediction

of secretion signals in the amino acid sequence of e�ector proteins. Momentarily, out of

seven bacterial secretion systems, only for the Type III secretion system a signal-peptide

can be predicted with good accuracy. For a comprehensive prediction of bacterial e�ector

proteins, alternative approaches are needed. In this work, a function-based prediction

approach based on the identi�cation of eukaryotic-like protein domains is developed. Fur-

thermore, it is evaluated, to which extent this extended repertoire of e�ector candidates in

the genome of a bacterial organism enables recognition of its host-associated phenotype.
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CHAPTER 1. INTRODUCTION

1.1 Bacterial pathogens and host-associated bacteria

Bacterial organisms are part of almost every important biological process and shape the

ecological systems on earth. Many bacteria have developed symbiotic or parasitic lifestyles

and live in close relationship with diverse hosts. For example, several bacterial species

can be found as endosymbionts in amoeba, including Chlamydiae and Bacteroidetes [253].

Some bacteria are important agents of human and animal infections causing a wide range

of diseases as Yersinia [310], Salmonella [125], Pseudomonas [83], Listeria [91] and He-

licobacter [66]. Many of these pathogenic and symbiotic bacteria exhibit a facultative

or obligate intra-cellular life-style. The compositions of bacterial genomes can change

rapidly through a variety of processes including genome rearrangements and horizontal

gene transfer [127].

The lifestyles of both pathogens and symbionts are similar as they both rely on interac-

tion with a host system. Strong similarities can also be observed on the genomic level

[217]. Pathogens and symbionts had to develop molecular strategies to alter host func-

tions, cope with the hosts immune response and show parallel trends in genome evolution

[275]. Pathogens and symbionts are described as host-associated or of host-interacting

phenotype, in contrast to the non-pathogenic phenotype that includes all non-pathogenic

bacterial organisms without any observed host-interaction in nature.

Evolutionary and ecological principles shaping pathogenic as well as mutualistic microbe-

host relationships are important to the understanding of disease [77]. Two human pathogens

are presented in detail as they serve as model organism in this study.

1.1.1 Chlamydiae

Chlamydiae are Gram-negative obligate intracellular bacteria. The phylum of Chlamydiae

is very old and comprises several di�erent species [63, 203]. Its evolutionary history makes

it a model for the development of bacterial pathogenicity. While individual species and

strains usually are infecting a limited set of hosts, the overall host coverage of Chamydiae

is wide, ranging from amoebae [133] to human [106].
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Figure 1.3: Illustration of biphasic developmental lifecycle of Chlamydia trachoma-
tis. Uptake of infectious, metabolically inactive elementary body (EB) by mucosal
epithelial cells. An endosomal membrane is created to form an inclusion vacuole
in which the EB transforms into a metabolically active reticulate body (RB). After
replication, the RBs transform back into EBs and are released from the vacuole to
infect surrounding host cells [43].

Clinical and economic relevance of chlamydia infections are high, several diseases are

caused by chlamydial agents in human, e.g. pelvic in�ammatory disease [243], infection

of the urinary tract [211], the respiratory tract [123] and the eye [245]. Chlamydia infection

is the most frequent sexually transmitted diseases in developed countries [13]. Chlamydiae

have a complex bi-phasic developmental cycle and form separate inclusions in the host

cells, compare �gure 1.3. Due to the intra-cellular lifestyle, Chlamydia rely on the host

to survive and lack several biosynthetic pathways leading to genome reduction [22]. The

obligate intracellular lifestyle of Chlamydiae makes a cultivation in the lab challenging

and hinders experimental identi�cation and characterization of novel e�ector proteins.

This strengthens the role of computational biology for chlamydia research.
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1.1.2 Legionella spp

Legionella spp. are aerobic, Gram-negative bacteria infecting environmental protozoa

and also causing severe infections in human. Inhaled Legionella pneumophila replicates

in macrophages of the innate immune system, leading to potentially fatal pneumonia

(Legionnaires disease). L. pneumophila replicates in a privileged, membrane-bound com-

partment, the 'Legionella-containing vacuole' (LCV). LCVs acquire secretory (Arf1, Rab1

and Rab8) as well as endosomal (Rab7 and Rab14) small GTPases, which allow the

pathogen vacuole to communicate with the secretory and endocytic vesicle tra�cking

pathway [294]. Key virulence factor of L. pneumophila are multiple copies and classes

of Type IV secretion systems (T4SS) that secrete more than 250 e�ector proteins into

the eukaryotic host cell [137], compare genome map 1.4. This allows for a robust and

redundant modulation of host pathways. When lacking single e�ector proteins, most L.

pneumophila mutant strains grow at wild-type rate in host cells [174]. Adaptation to the

host environment and exploitation of host cell functions are enabled by an extended set

of eukaryotic like proteins (ELP). Many of these ELP were shown to modulate host cell

functions to the pathogen's advantage. For example, the eukaryotic-like methyltransferase

RomA is secreted by Legionella pneumophila to target the host cell nucleus and methy-

late histone H3 to alter gene expression [241]. The motifs in these proteins that were

found predominantly in eukaryotes are ankyrin repeats, SEL1 (TPR), Set domain, Sec7,

serine threonine kinase domains (STPK), U-box, and F-box protein domains. Legionella

pneumophila was extensively analyzed for eukaryotic-like proteins and serves as a model

organism for this pathogenic strategy [119].

1.2 Identi�cation of bacterial pathogens

Undiscovered pathogens are supposed to be the causitive agents of many human diseases

[237, 173]. Recognition of the causative agents of pathogenic threads is crucial to an e�-

cient medical response. Rapid methods to classify novel bacteria into harmful pathogens,

potentially harmful symbionts and harmless non-pathogens could improve medical treat-

ment as well as containment of infections [238].
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Figure 1.4: Circular map of the L. pneumophila 130b draft genome. From the out-
side in, the �rst circle shows the positions of T4SSs and a hypervariable region.
The second circle is the scale (in Mbp). The third and fourth circles show the
predicted CDSs transcribed clockwise and anti clockwise, respectively. The �fth cir-
cle shows known Legionella T4SS e�ector genes and their paralogues (colored red)
and putative e�ectors (dark blue). The sixth circle shows the 159 contigs of the
draft genome, circle 7 shows the 4 sca�olds that link 145 of these contigs. Circle
8 shows the GC content (percent), the innermost circle is a plot of GC deviation
((G− C)/(G+ C)) [254].

1.2.1 Experimental methods to identify bacterial pathogens

Currently several experimental procedures for the detection of pathogens exist: Isolation

and bacteriological culturing of a pathogenic agent is the traditional, rather insensitive

approach to determining the cause of an infection [215]. The enzyme-linked immunosor-

bent assay (ELISA) is a method which relies on the recognition of antibodies generated

in a pathogen speci�c host response to infection [169]. Furthermore, biosensors involving

bacterial phages or the respective bacteriophage receptor binding proteins as recognition

elements allow for very speci�c detection of a growing number of well-known pathogens

[264]. Polymerase chain reaction (PCR) techniques provide the possibility to detect bac-
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terial agents based on their DNA sequence upon generating pathogen speci�c primers

[172, 167].

Despite great progress and ongoing development of new experimental strategies in the

�eld, the established methods in practice are still expensive, time consuming and require

trained laboratory personnel to successfully execute these tests. Costs increase rapidly

in the e�ort to adjust these techniques to the identi�cation of novel bacterial agents.

In practice, speci�c PCR based tests are often missing and the development of suitable

primers is laborious [40, 182].

1.2.2 Computational methods for the predicition of bacterial

phenotypes

In the face of these challenges, the advances in next-generation sequencing (NGS) have

a huge impact on microbial diagnostics [78]. The sequencing time for complete bacte-

rial genomes declines rapidly to be soon in the range of hours [59]. This almost instant

availability of genomic information about a pathogenic threat is expected to transform

current approaches in clinical microbiology [101]. Pathogen detection strategies which

include sequence data of bacterial genomes and in silico analysis have many advantages

compared to the traditional solely experimental methods. Sequence-based bioinformatics

approaches in microbial research have the potential to enhance or replace many complex

experimental methods. Beside others, essential tasks like the identi�cation of bacterial

species in an isolate as well as testing of the properties of a novel agent, such as antibiotic

resistance and virulence, pro�t the most [79].

Existing computational approaches to pathogen detection, e.g. from metagenomic data

samples, focus on e�ective methods to identify known pathogens: taxonomic mapping,

whole genome assembly, sequence composition analysis and statistical frameworks. The

assignment of sequence reads to known microorganisms via taxonomic mapping was �rst

used in the work of Huson et al. [139]. These approaches try to determine the last

common ancestor or taxonomic group for each sequence read. Bhaduri et al. identi�es

the origin of microbial sequences in sequence samples by whole genome assembly [32].

Compositional analysis searches for patterns in the sequence data, taking into account

GC-content, k-mer frequency and taxonomic markers to assign input sequences to known

populations or clades [216]. In their Pathoscope approach, Francis et al. identify the

source genome by using a Bayesian statistics to map sequence reads against a database

of known agents [102].
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These approaches work on genomes or metagenomic read sequences. In medical applica-

tions, patient samples are commonly metagenomic samples, containing sequence reads of

di�erent sources. Identi�cation of bacterial organisms in the probe is performed by iden-

tifying a low number of species speci�c reads and mapping them to a database of known

agents. Closely related species/strains are hard to distinguish. E.g. the pathogenic E.coli

EHEC is nearly identical to several non-pathogenic E.coli. While, in the recognition

of characterized pathogens, these methods achieve good performance, they are not able

to classify novel genotypes. Due to the implicit limitations of the reference database

mapping, novel agents with weak or no similarities to genotypes part of the reference

databases stay undetected. The large majority of bacterial microorganisms have not been

characterized yet [75]. To develop a methods that overcome the boundaries of mapping-

based approaches is critical. One if not the major issue is to clarify whether a particular

sample contains harmless non-pathogenic bacteria or comprises harmful novel pathogens

and symbionts putting a potential host at risk. With the current approaches, this basic

question stays mostly unsolved. Complementary methods using genomic data for a direct

classi�cation of bacterial phenotypes are needed.

De novo assembly of prokaryotic genomes is limited and usually results in tens of contigs

which can not be joined further for a completely closed genome sequence [153]. Espe-

cially in the case of unknown bacterial agents, approaches that rely on the identi�cation

of genomic phenotype speci�c features have an important advantage. They work for com-

pletely assembled genomes and contigs as well.

Pathogens encode a large repertoire of virulence-associated genomic features that enable

infection. They possess an arsenal of secreted e�ector proteins to alter host functions

in the cell, as well as other virulence factors, e.g. encoding means of transportation to

transfer e�ectors into the host cytoplasm.

1.2.3 Public resources collecting information on bacterial phenotypes

Reliable evidence for the phenotype of bacterial organisms comes from experiments. Sev-

eral public resources collecting genome projects also collect speci�c metadata regarding

observed characteristics of the organism at hand. Resources providing information on

phenotypic annotations of bacterial organisms are BacMap [68], GOLD [212] and NCBI

phenotypes list [303].
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1.3 Bacterial protein secretion

Bacteria manipulate their environment and interact with host cells by the secretion of

proteins, so called �e�ectors�. E�ectors ful�ll their function outside the prokaryotic cell

and interact with proteins within the host cell cytoplasm, serving manifold functions.

Transport of e�ector proteins from the bacterial cell into the host cytoplasm is regulated

by secretion systems [52].

Besides the Sec/Tat general secretion pathway, seven di�erent secretion systems are known

in bacteria, compare �gure 1.5. These systems have only little homology between each

other. They show considerable di�erences and are associated with diverse functions. Six

secretion pathways were identi�ed in Gram-negative bacteria, named Type I to Type VI

secretion systems (T1SS to T6SS). Gram-negative bacteria contain an inner and outer

membrane with a periplasmic space in between. Secretion systems III, IV and VI are

able to transport proteins through both membranes. Furthermore they establish direct

transport of e�ector proteins into the host cell and are especially associated with bacterial

virulence. In Gram-positive bacteria that contain one single membrane, protein secretion

by the two-arginine (Tat) or Sec pathway leads by default to release into the extra-cellular

medium. Direct secretion into eukaryotic cells is enabled by the Type VII secretion system

which is exclusive to Gram-positive bacteria and speci�c for virulence [2]. Many bacteria

do not secrete e�ectors by one system alone but have multiple secretion systems encoded in

their genome [36]. Even for some of the few characterized e�ector proteins, details about

the secretion mechanism remain unknown, compare [202].There is still limited knowledge

for most secretion systems about the respective core set of molecular components that

are necessary for a fully functional secretion machinery.
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Figure 1.5: Overview of the 7 secretion systems identi�ed in bacteria. Shown are the
basic outlines of the macro-molecular secretion apparatus in bacteria. HM: Host
membrane; OM: outer membrane, IM: inner membrane; MM: mycomembrane;
OMP: outer membrane protein; MFP: membrane fusion protein. ATPases and
chaperones are shown in yellow [292].

1.3.1 General secretion (Sec) pathway and twin-arginine (Tat)

pathway

The general secretion pathway (Sec) and the two-arginine (Tat) translocation pathway

are present in all domains of life. In bacteria, the Sec pathway is involved in both the

secretion of unfolded proteins across the cytoplasmic inner membrane and the insertion of

membrane proteins into the cytoplasmic membrane. The Tat pathway is able to transfer

folded proteins. The majority of inner membrane proteins use the co-translational, the

majority of secreted proteins the post-translational pathway. Although the mechanisms of

transport are fundamentally di�erent, both pathways also share common elements [201],

compare �gure 1.6. Substrates of the Sec pathway are recognized by a hydrophobic N-

terminal sequence. The signal for Tat secretion is also located in N-terminal region of

large co-factor containing proteins, recognized as a motif rich in basic amino acid residues

(S-R-R-x-F-L-K) [292]. The secretion signals can be predicted by computational methods

with high accuracy [224].

1.3.2 Type I secretion system (T1SS)

The T1SS is widespread in Gram-negative bacteria. Three membrane proteins are re-

quired for transport: A speci�c outer membrane protein (OMP), an ATP-binding cassette

(ABC) and the so-called membrane fusion or adaptor protein (MFP). Assembled, they

span the cell envelope and allow for a single-step secretion independent of the Sec pathway.

The ABC component guaranties speci�c recognition of substrates. Necessary for secretion
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Figure 1.6: Schematic overview of Sec/Tat translocase secretion pathways in Es-
cherichia coli. (a) Co-translational and (b) post-translational secretion of un-
folded proteins by the general secretion pathway. (c) Secretion of folded precursor
proteins by the Twin arginine pathway [201].

of a substrate is an uncleaved secretion signal in the C-terminal amino acid sequence. It

it recognized by the speci�c ABC transporter protein, initial to the sequential assembly of

the membrane spanning complex. Secreted proteins usually contain glycine rich repeats

(GGXGXDXXX) in various numbers (up to 50) that form distinctive beta-sandwiches/

beta-roll structures. There are also substrates that contain no repeats or other repeats

with other patterns, e.g. being homologous to regions in adhesion molecules. [74].

1.3.3 Type II secretion system (T2SS)

Pathogenic as well as non-pathogenic Gram-negative bacteria use the type II secretion

system (T2SS) to translocate folded proteins from the periplasm through the outer mem-

brane and into the extracellular milieu. In an initial step, Type II secretion therefore

depends on the Sec/Tat pathway for prior transport over the inner membrane into the

periplasmic space and is the main terminal branch of the general secretory pathway. An

example for an e�ector that contains a signal peptide for translocation by the Sec pathway

and has evidence to be further secreted by T2SS is the chlamydial protease Cpaf [267].

Several plant pathogens use the system predominantly for the secretion of extracellular

toxins, surface-associated virulence factors and hydrolytic enzymes. The multi-protein

secretion machinery consists of 12�15 di�erent proteins that are generally encoded in a

12



1.3. BACTERIAL PROTEIN SECRETION

single operon. There are still major gaps in the understanding of the mechanism and

architecture of the T2SS system [158].

1.3.4 Type III secretion system (T3SS)

The T3SS - also called injectisome - allows to secrete e�ectors directly into the cytoplasm

of eukaryotic host cells, compare schematic view 1.7. This feature makes it a key factor

of virulence regarding some of the most severe human and animal pathogens. Species

of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia

and Yersinia all possess the ability to translocate e�ectors via the Type 3 system. Besides

pathogenic bacteria, the T3SS is also used by several symbionts to interact with the host

protein network [25]. The T3SS machinery is composed of approximately 25 di�erent

Figure 1.7: Schematic �gures and electrone microscope image of the T3SS injec-
tisome. (A): a resting T3 injectisome spanning both bacterial membranes and
the needle protruding (B): an active T3 injectisome with translocators forming a
pore in the membrane of the eukaryotic target cell (C): electron micrograph of the
surface of Yersinia enterocolitica with protruding needles [290].

protein subunits. It resembles the overall shape of a molecular syringe and incorporates
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one to more than hundred copies into one of the most complex known bacterial nanoma-

chines. The structural core of the system is the so-called needle complex that spans the

bacterial cell envelope as a tripartite ring system and culminates in a needle protruding

from the bacterial cell surface. Substrate targeting and translocation are accomplished

by an export machinery consisting of various inner membrane embedded and cytoplasmic

components. Formation of this multimembrane-spanning machinery is possible by precise

orchestration in the assembly of all components [81]. The T3SS has a common evolution-

ary origin with the bacterial �agellum. Structures of the basal body are similar and many

proteins share signi�cant homology in both macro-molecular systems [290].

Regarding the nature of the T3 secretion signal, two di�erent theories exist, both sup-

ported by experimental evidence. Either an N-terminal signal peptide [268] or a signal

hidden in the mRNA sequence [16] could be responsible for substrate recognition, com-

pare �gure 1.8. It has become very probable by increasing evidence that a N-terminal

signal in the e�ector sequence carries su�cient information to initiate translocation. This

is further supported by experiments of Subtil et al. that showed positive secretion of

chimeric proteins including the N-terminal part of chlamydial e�ectors by a heterologous

T3SS in Shigella [279]. Findings are expected to be general due to the strong conservation

of the T3SS and additional experiments by Anderson et al. [15]. Chaperone seem to have

Figure 1.8: Schema illustrating the two hypotheses regarding T3 secretion signal lo-
cation: (A) mRNA based and (B) peptide based. (A) The e�ector mRNA contains
the signal and the e�ector protein is synthesized during T3SS transport. (B) An
N-terminal signal peptide is recognized by T3SS in the translated e�ector protein.
Depending on the mechanism, chaperones either enhance signals or hold the protein
in an unfolded, transportable state [21].
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multiple roles and play an important part in the translocation process. Yet no general

mechanism based on the interaction of e�ectors with chaperones can be observed.

Experimental methods to verify protein secretion by T3SS Subtil et al. developed an

in vivo assay to investigate the secretion of chlamydial e�ector proteins by a heterologous

Type III secretion system. The N-terminal part of e�ector protein candidates that con-

tains the signal peptide is fused to the Cya protein of Bordetella pertussis which serves as a

reporter. After expression in various strains of Shigella �exneri, it was demonstrated that

these hybrid proteins are secreted by the Type III secretion system of Shigella �exneri.

The recognition of chlamydial secretion signals by the secretion machinery of another

pathogen opens new possibilities for the study of chlamydial e�ector proteins [279].

1.3.5 Type IV secretion system (T4SS)

T4SS complexes are observed in Gram-positive as well as in Gram-negative bacteria.

Pathogens with T4SS are Agrobacterium tumefaciens C58 (VirB), Helicobacter pylori

(CAG,ComB), Pseudomonas aeruginosa (TraS/TraB), Bordetella pertussis (Ptl), E. coli

(Tra), Legionella pneumophila (Dot) and the nitrogen-�xing plant mutualist Mesorhizo-

bium loti [292]. Identi�cation of the key components of eight di�erent classes of type IV

secretion systems were reported up to now [126]. In addition to e�ector proteins, the

T4SS can transport nucleic acids into eukaryotic host cells, as well as into yeast and other

bacteria. The T4SSs can be separated into three subtypes on the basis of their primary

functions: DNA conjugation, DNA uptake/release, and cargo translocation, compare �g-

ure 1.9. Conjugative transfer of plasmid DNA or transposons is mediated into a wide

range of bacterial species and eukaryotic host cells. The exchange of genetic material pro-

motes genomic plasticity and adaptive responses of bacteria to changes of environmental

conditions. The second subgroup mediates DNA uptake from and release into the extra-

cellular milieu observed for some Gram-negative bacteria, including Helicobacter pylori

and Neisseria gonorrhoeae. The third group delivers virulence proteins into eukaryotic

(and mammalian) host cells. Gram-negative pathogens like H.pylori, Brucella suis and

Legionella pneumophila make use of this Type IV secretion system to modulate the host

system [104].
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Figure 1.9: Schematic illustration of secretion mechanisms of Type IV secretion
system subgroups. (A): Conjugative T4SS - transport of plasmids and trans-
posons (B): Transformative T4SS - mediated DNA uptake and release (C): E�ector
translocation - secretion of proteins (and/or) DNA into recipient cells [104].
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1.3.6 Type V secretion system (T5SS)

The T5SS is the simplest protein secretion system, consisting of several subtypes: the

classic autotransporter system (type Va or AT-1), the two-partner secretion system (Vb),

and the Vc system (AT-2), compare overview 1.10. Autotransporter proteins (AT) are

present in all pathogenic Gram-negative bacteria. They constitute the largest number

of secreted virulence factors of all seven secretion systems [143]. Secretion by T5SS is

dependent on the Sec machinery for transport into the periplasm. Once in the periplasm,

the autotransporter domain of the substrate inserts into the outer membrane to form a

pore. The folded passenger domain is passed through the center of the autotransporter

domain to be presented on the outside of the cell. In some cases, the protein is anchored

to the outer membrane (like for adhesins). When the passenger domain is cleaved o�, it

forms a soluble enzyme or toxin [29]. Secreted proteins share several characteristics: a

N-terminal signal sequence for Sec secretion into the periplasm, a functional passenger

domain, a linker region necessary for translocation and a C-terminal region associated

with the formation of the transmembrane pore [25].
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Figure 1.10: Schematic overview of Type V secretion system subtypes. The secretion
pathway of the autotransporter proteins (type Va) at the bottom left of the diagram,
the two-partner system (type Vb) in the center and the type Vc or AT-2 family on
the right. The signal sequence, the passenger domain, the linker region and the
β-domain comprise the four functional parts. Once through the inner membrane,
the signal sequence is cleaved and the β-domain inserts into the outer membrane
and forms a pore. The passenger domain inserts into the pore and is translocated
to the bacterial cell surface, where it may or may not undergo further processing
[130].
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1.3.7 Type VI secretion system (T6SS)

The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and trans-

ports e�ectors across the cell envelope. Secretion is Sec independent and happens in

one single step [49]. The T6SS is typically encoded within a single gene cluster con-

sisting of 13 conserved core components and a number of accessory ones. Conserved

among all T6SSs include the T4SS IcmF- and IcmH-like proteins, a putative lipopro-

teins, the ClvP AAA+ ATPase (a potential energy source) and the Hcp (Haemolysing

co-regulated protein) and VgrG (valine-glycine repeats) proteins. Together, those proteins

form a membrane-embedded, syringe-like system. The T6SS components VipA/VipB

(TssB/TssC) form a contractile sheath around a hollow, inner tube composed of Hcp

(hemolysin-coregulated protein). Attached on top of the Hcp tube is a trimeric, spike-like

cap consisting of VgrG (valine-glycine repeat protein G), similar to the tail spike complex

of bacteriophages. Upon contraction of the VipA/VipB (TssB/TssC) sheath, the Hcp

tube together with VgrG is pushed outward and penetrates the target cell. The pene-

tration of target cells is accompanied by the delivery of speci�c toxins. E�ectors can be

attached to the VgrG spike or might be delivered directly through the hollow channel of

the Hcp tube [147]. T6SS e�ectors can play important roles in virulence. They modify

the eukaryotic host cytoskeleton through actin crosslinking, promoting host cell toxicity.

Other T6SS e�ector molecules include the VasX protein secreted by V. cholerae that binds

membrane lipids [190]. These toxic proteins target speci�cally prokaryotes to provide a

competitive advantage against other microorganisms occupying the same niche. They

are e�cient weapons in interbacterial warfare and secretion of these e�ectors provides a

�tness advantage by hydrolyzing cell walls of opponent bacteria. Up to now, no signal

peptide could be identi�ed that enables transport of e�ector proteins by the T6SS ma-

chinery. Bioinformatics analyses revealed a N-terminal motif, named MIX (marker for

type six e�ectors) that is found in the sequence of T6SS e�ector proteins [247].

1.3.8 Type VII secretion system (T7SS)

The type VII secretion system is exclusive to Gram-positive bacteria. It was studied

in Mycobacterium tuberculosis and found to transport immunogenic proteins that are

characterized by a Trp-Xaa-Gly (WXG) motif and a size of about 100 amino acids (WXG-

100 proteins) [262].
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1.4 Bacterial e�ector proteins

A single bacterium may deliver up to 100 di�erent, often multifunctional e�ector pro-

teins into individual host cells to produce speci�c responses in the host [72]. The host-

interacting lifestyle of pathogenic and symbiotic bacteria results in a host�pathogen co-

evolutionary arms race that imposes intense selective pressures on these bacterial virulence

factors [273]. Due to this pressure, di�erent hosts and di�erent survival strategies, known

e�ectors can vary widely between di�erent species and even between di�erent strains of

the same bacterial organism [250]. They do not show a typical folds or uniform domain

composition, which could be used to identify them with certainty. Among e�ector pro-

teins are e.g. Phosphatases, PiPases, Kinases, Lipases, Proteases, Cyclases and Lyases.

Characterization of e�ector proteins provides insights into the strategies bacteria use to

manipulate host cells. The YopJ e�ector which is secreted by Yersinia is a well-studied

example of a protease that binds the mitogen-activated protein kinase (MAPK), prevent-

ing its phosphorylation and inhibiting in�ammation [210].

Public resources for characterized bacterial e�ector proteins are VFDB [54] and MvirDB.

The MvirDB database integrates DNA and protein sequence information on virulence

factors from a comprehensive selection of public resources: Tox-Prot, SCORPION, the

PRINTS database of virulence factors, TVFac, Islander, ARGO, CONUS, KNOTTIN,

a subset of VIDA, the complete VFDB database and sequences derived by literature

search [322]. Depending on the applied exact de�nition, virulence factors include also

non-secreted endotoxins and components of the secretion system apparatus [163]. Ef-

fector proteins are a subset of bacterial virulence factors. Up to now, no completely

characterized bacterial e�ectome was reported.

1.4.1 E�ector similarity to eukaryotic proteins

Many e�ector proteins contain similar distinct functional and structural features, for

example secretion signal peptides and speci�c domains that enable interaction with the

host system. A common pathogen strategy is to mimic domains and binding motifs of

eukaryotic proteins to alter parts of the host protein interaction network [88]. Besides

analogous, merely structural mimicry [9], molecular mimicries are often the result of

horizontal gene transfer (HGT) combined with high pathogenic genome �exibility due to

host-pathogen co-evolution [180, 38]. E.g. Al-Khodor et al. suggest a common ancient

origin for a common eukaryotic-like domain signature in bacterial e�ectors, the eukaryotic-
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like Ankyrin repeats [7]. A well characterized example of a protein protein interaction

between the host and bacterial e�ectors is the Yersinia YopJ e�ector. Its eukaryotic-

like SH2 domain inhibits NF-kappaB activation [252]. To mimic parts of the ubiquitin

proteasome by e�ector proteins is a typical pathogenic attack used by plant and animal

pathogens [17].

1.4.2 Eukaryotic-like domains in e�ector proteins of Legionella

pneumophila

When analyzing e�ector proteins in Legionella pneumophila, Buchrieser et al. discovered

signatures of protein domains otherwise only found in eukaryots [50]. Upon translocation,

these proteins are able to directly modulate host response [175] and alter complex host-

speci�c processes, e.g. mediate post-transcriptional modi�cation of host proteins [241].

Phylogenetic analysis reveals that these proteins originate often in lateral gene transfer

from the eukaryotic hosts and from other bacterial genes [179]. The phylogenetic patterns

of selected eukaryotic-like signaling domains was described by Ponting et al., compare the

representation of phylogenetic tree 1.11. Molecular mimicry of eukaryotic proteins was

found to be an e�cient strategy in the pathogenicity of Legionella species [205] and the

dominant way to alter host cell functions [118].

Besides from e�ector proteins characterized in Legionella sp, eukaryotic-like domains are

observed in e�ector proteins of taxonomically diverse pathogens [88], [258]. Pathogens

comprising proteins with detectable eukaryotic-like domains, are for example the amoeba

symbiont Candidatus Amoebophilus asiaticus or intra-cellular and environmental Chlamy-

dia [220, 276].

1.5 Computational prediction of e�ector proteins

Identi�cation and characterization of secreted bacterial e�ector proteins is laborious and

not free of caveats, increasing the need for in silico prediction methods [124]. Computa-

tional prediction of e�ector proteins can be speci�c for the transport system identi�ed in

a particular pathogen. These secretion system dependent methods still have to overcome

several challenges to enhance accuracy of the prediction. Alternative approaches that de-

tect e�ector proteins independent of the secretion pathway are needed since not all ways

of e�ector transport are known. Beside homology and signal-based approaches, prediction

methods rely on the genomic and functional properties such as speci�c domain signatures
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Figure 1.11: Schematic phylogenetic tree of selected eukaryotic-like domains. Blue
arrows indicate proposed horizontal gene transfer events. Red arrow show gene
acquisition from mitochondrial endosymbiosis. Domains represented within the
green oval are suggested to have been present in the last common ancestor of
archaea, eukaryota and bacteria. The directions of HGTs regarding lysozyme,
LysM, LRR and cyclase domains could not be stated [227].

to identify e�ector proteins, compare the overview in �gure 1.12. In the following, general

e�ector prediction approaches are discussed into more detail.

1.5.1 Signal based methods

Existing methods for the in silico prediction of e�ectors focus on the recognition of secre-

tion signal sequences within the proteins amino acid sequence. These signal peptides guide

e�ectors through the speci�c secretion machinery. These methods can only be applied

to bacteria for which the speci�ed secretion system was identi�ed. Up to now, modeling

of the secretion signal is feasible for the Sec/Tat pathway and T3SS [186]. For all other

secretion systems, signal peptides are not well de�ned [19].

The Type IV secretion signal is very hard to detect. Several bioinformatics screening

approaches attempt to identify a secretion signal that is assumed in the C-terminus of

T4 e�ectors, but the approaches are not applicable in general [171, 298]. A SVM based

approach was able to discriminate T4 e�ectors and non-e�ector proteins of eight di�erent
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Figure 1.12: Overview of features used for prediction of e�ector proteins. Features
used by genomic and function based e�ector prediction approaches [45].

pathogens with an accuracy of > 95%, calculating distinctive features from the complete

primary sequence, such as amino acid composition and position speci�c scoring matrix

pro�les [325].

Type III secretion signal For the T3SS of gram-negative bacteria exist several in silico

methods to predict secreted e�ectors [20, 249, 176, 299, 64]. These approaches are based on

modeling a signal in the N-terminal amino acid sequence of the e�ector proteins, the part

that is responsible for guiding the e�ector protein through the T3 secretion machinery.

The exact signal peptide is not known and T3 e�ectors show very low sequence similarity

in these 100 amino acids of the N-terminal region. Classi�cation algorithms using k-mere

frequencies are able to extract a signal and E�ectiveT3 is able to predict T3 e�ector

candidates with a sensitivity and selectivity of up to 85% and provides explicit evidence

for the taxonomic universality of the predicted signal.

Despite the successful modeling of a T3 signal, with more T3 e�ector sequences becoming

available, limitations of these approaches become visible. Dehoux et al. found that only

64% of secreted Inc proteins in C. trachomatis were predicted to possess a T3 secretion

signal by at least one of three di�erent T3 e�ector prediction softwares, [73] These results

for the family of chlamydial Inc proteins could hint to di�erent, yet unidenti�ed families

within T3 signal peptides.
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Sec/Tat secretion pathway Contrary to e.g. T3SS mediated secretion, for Sec and Tat

transportation there is no direct association with secretion of e�ector proteins. The vast

number of proteins transported by these pathways in Gram-negative bacteria end up in

the periplasmic space within the bacterium. To distinguish these proteins from e�ectors

that are further secreted by Sec-dependent secretion systems T2SS and T5SS, detection of

an additional signal is be necessary. E.g. the chlamydial proteases Cpaf (CT858) and Tsp

(CT441) with evidence for secretion into the host cytosol both contain a signal peptide

for Sec transport and are therefore assumed to be further secreted via T2SS [31]. As the

identi�cation of Type II and Type IV signal peptides is not yet feasible, Sec/Tat secretion

is of minor importance to the prediction of e�ector proteins.

The signals for the general secretion (Sec) pathway and Twin-arginine (Tat) pathway

can be modeled with high accuracy. Several prediction programs predict a N-terminal

cleavage site within the proteins amino acid sequence, compare �gure 1.13.

Figure 1.13: Schematic comparison of typical Tat and Sec pathway substrates. The
polar n-regions have a positive net charge, the hydrophobic h-regions are un-
charged. Short polar c-regions contain a Type I signal peptidase cleavage site
(AxA) [201].

SignalP is based on a neural network to detect both N- and C-terminal cleavage sites.

Thereby it successfully distinguishes between signal peptides and N-terminal transmem-

brane helices that share similar N-terminal features, a pitfall of other programs [224].

E�ectors secreted by Sec-dependent secretion systems contain this de�ned cleavage sites.

The Sec signal therefore could become informative for e�ector prediction with future

progress in modeling of the speci�c signals of secretion systems Type II and V.

Chaperone binding sites Chaperones play a vital role for protein folding during T3SS

secretion [6]. There is evidence that chaperones also mediate secretion by other bacterial

secretion systems, e.g. T4SS [261]. A chaperone binding motif of weak sequence similarity

was identi�ed in e�ector proteins of seven bacterial pathogens which could make T3

chaperones important for the prediction of new T3SS e�ectors [64].
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1.5.2 Homology based approaches

The results of experimental e�ector protein characterization makes it possible to apply

homology searches to identify additional e�ector candidates in closely related genomes.

This approach is applicable within the typical limits of homology based methods. Can-

didates are solely identi�ed belonging to the few known e�ector protein families. Tobe

et al. identi�ed 65 e�ector candidates clustering into more than 20 protein families in

enterohemorrhagic E.coli (EHEC), many of them shown to be secreted [288]. Not antici-

pated are also functional changes and cases of evolutionary e�ector invention by genome

rearrangements, e.g. observed for 32% T3SS secreted e�ectors in analyzed Gram negative

bacteria by Stavinides et al. [272].

1.5.3 Genomic and function based approaches

These approaches use more general features of e�ector proteins to detect substrates that

do not contain any detectable secretion signal and the route of transport is unknown.

Genomic arrangement, organization into pathogenicity islands or GC content as well as

phylogenetic patterns and similarity to host proteins are features that can enable e�ector

detection. Especially the identi�cation of eukaryotic-like domains to predict e�ector can-

didates, additionally points to possible functions inside the host cell [19]. Eukaryotic-like

protein domains were identi�ed for single bacteria in several studies but these methods

are not applicable on a large scale basis.

1.6 Prediction of pathogen host protein-protein

interactions

While the prediction of intra-species protein�protein interactions is a well-investigated

problem addressed by several computational methods, most of these methods cannot

directly be applied to the prediction of pathogen-host protein-protein interactions (PH-

PPIs). Besides, the data on experimentally derived PH-PPIs is much more limited than for

single-organism PPIs due to the higher costs and e�ort necessary. Few public resources on

experimental protein interactions include bacterial PH-PPIs, mainly the Pathogen Inter-

action Gateway (PIG) [84], Phidias [313] and the database for Pathogen-Host Interactions

(PHI-base) [308]. In this section, important methods for the prediction of PH-PPIs are

discussed.
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1.6.1 Interolog based methods

An interolog is the conserved PPI between two proteins that have interacting homologs or

orthologs in another organism. The interolog method for PH-PPI prediction is based on

the assumption that an interaction observed between a pair of proteins will be conserved

among similar sequences of di�erent organisms while keeping its function. Thereby known

interactions can be mapped onto homologous or orthologous proteins in di�erent species.

Krishnadev et al. applied a homology based approach to predict PH-PPIs between human

and three pathogens E. coli, Salmonella enterica typhimurium and Yersinia pestis [160].

A similar approach was applied to predict the host-pathogen interactome of human and

Helicobacter pylori [293]. With increasing evolutionary distance genes share less sequence

similarity and are more likely to undergo neo-functionalization. This could lead to erro-

neous orthologous assignments, weakening the interolog based method. Interactions that

were acquired through horizontal gene transfer (HGT) are easily spotted by the method.

On the other hand, several PH-PPIs might be unique for particular pathogens and have

evolved during the co-evolutionary arms race between pathogen and host. Since a reli-

able mapping of interactions depends on high sequence similarity (usually above 30%)

[12, 317], homologs of many fast evolving e�ectors might not be detected in the original

approach. Additional properties such as molecular characteristics and gene expression

data are therefore considered to diminish the rate of false positive predictions [312].

1.6.2 Sequence based approaches

General properties of the amino-acid sequences of e�ectors and host proteins could be

used in training classi�cation approaches to detect pathogen-host interactions. A machine

learning approach based on the chemico�physical properties of short amino-acid segments

was applied by Dyer et al. to predict the HIV-human protein interaction network [85]. In

a subsequent study, the authors extended the approach to include domain information,

sequence k-mer and host network properties to achieve 70% precision in the prediction

of the host-viral interactome [86]. The considerable performance in both studies depends

fundamentally on a reliable training and test set. Composition of these sets was possible

due to the high number of experimentally validated host-pathogen/pathogen host protein

interactions (PH-PPIs) that are available for HIV. In the case of bacterial pathogens

limited experimental data puts major constraints on learning approaches for PH-PPI

interactome prediction.
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1.6.3 Domain-based prediction

In the study by Dyer et al., the information derived from domain pro�les proved as an

important feature for the successful prediction of PH-PPIs in HIV [86]. Several domain

based methods to predict protein protein interactions are described for the intra-species

case. These methods are based on the observation that similar domains in otherwise

di�ering proteins can mediate the interaction with the same substrates. In Psibase, do-

main�domain interactions (DDIs) are predicted by the Protein Structural Interactome

map (PSIMAP) algorithm from known Protein Data Bank (PDB) structures [121]. For

assignment of structural domains, PSIMAP uses domain models generated by PSI-BLAST

and protein folds as classi�ed in the SCOP database [197]. A comprehensive web resource

on domain�domain interactions using Pfam domain signatures is the Domain Interaction

Map (DIMA) [178]. DIMA 3.0 integrates four di�erent computational methods to pre-

dict domain domain interactions (DDIs): CMM (correlated mutations), DIPD (domain

interaction prediction in a discriminative way), DPEA (domain pair exclusion algorithm)

and DPROF (domain phylogenetic pro�ling), compare �gure 1.14. The DIPD machine

learning approach �rst constructs domain combinations from both PPI as well as non-

PPI data. All possible domain pairs are treated as features. A feature selection algorithm

subsequently discriminates between informative and uninformative domain pairs for any

given PPI to derive a minimum representative set of interacting domains [320]. The Do-

main Pair Exclusion Method (DPEA) analyzes the frequency of co-occurring domain pairs

in known protein protein interactions [239]. The correlated mutations (CMM) approach

uses the idea that evidence for co-evolution between interacting proteins can be observed

as functional constraints on the domain level. Correlated mutations are identi�ed and

scored based on three di�erent algorithms. The Domain Pro�le method (DPROF) also

makes use of the idea that interacting domains undergo evolutionary constraints [213].

Two domains that depend on each other for an important cellular function generally need

to be present together or not at all in a given genome. Interacting domains are recognized

by analyzing the phylogenetic distribution of domain pairs. Two domains are reported as

interacting domains if they show similar phylogenetic pro�les.

PPI and non-PPI datasets required for the DIPD approach are based on protein inter-

actions in the IntAct database [148]. Input data for CMM and DPEA are PPIs from

IntAct as well as functionally linked orthologous groups of proteins (COGs) extracted

from the STRING database [280]. DPROF uses complete genomes and functional protein

annotations from PEDANT [297] and SIMAP [235]. Results of the four computational

methods are compared against a reference set for non-interacting protein pairs listed in
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Figure 1.14: Overview of the DIMA database. DIMA 3.0 integrates four di�erent com-
putational methods to predict domain domain interactions: CMM (correlated mu-
tations), DIPD (domain interaction prediction in a discriminative way), DPEA
(domain pair exclusion algorithm) and DPROF (domain phylogenetic pro�ling)
[178].

the Negatome database [266]. In this additional step highly unlikely physical interactions

are �ltered out. Domain-domain interactions that could be derived from protein com-

plexes based on close contact of domains in these structures are directly imported from

the iPfam [99] and 3did [274] databases.

Predictions by iPfam were also used in the study by Tyagi et al. modeling the pathogen-

host interactome of Helicobacter and human [293]. By integrating data from iPfam,

PSIMAP with interolog-based predictions, Kim et al. predicted a set of 3400 pathogen-

host PPIs for the rice pathogen Xanthomonas oryzae [152]. Among the predicted in-

teractors, over-represented GO annotations describe functions known to be relevant for

pathogenicity and immune response of the host system, for example regulation of actin

cytoskeleton, NF-κB signaling or cytokine production [85].
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The presented methods in general are accepted to allow for meaningful predictions. To

predict interactions of a speci�c pathogen, domain-based methods might o�er a more

sensitive approach than the interologs based method to predict interactions over long

evolutionary distances. On the other hand, the modeling of pathogen-host interactomes

by domain-based approaches like DIMA could also lead to over-sensitive predictions. The

prediction of numerous interaction candidates on the host side could make additional

�ltering steps necessary. The performance of these methods is still di�cult to measure

due to the incompleteness of domain and structural databases and a lack of data on

experimentally validated interactions.

1.7 Concepts used in this work

General concepts and methods applied in this work are introduced here. Supervised ma-

chine learning approaches can be successfully applied to handle complex classi�cation

problems. A naive Bayes classi�cation approach allows for a simple and powerful sep-

aration of classes on the basis of the a-priori probabilities of input data. Classi�cation

performance can be evaluated by several performance measures based on results from

validation procedures like 10-fold cross-validation.

1.7.1 Machine learning

In machine learning, statistical and and algorithmic concepts are used to construct systems

that are able to extract non-trivial knowledge from data. Machine learning techniques

�nd applications in any �eld were evaluating large amounts of empirical data is essential.

Domains dependent on these algorithms are as ample as stock market analysis, search

engine performance, analysis of satellite images or credit card fraud detection. In genome

oriented bioinformatics, machine learning approaches are applied in gene prediction, func-

tional annotation, clustering of protein families, classi�cation and many more, compare

overview 1.15. Machine learning methods can be categorized into supervised and unsuper-

vised methods. Unsupervised methods, e.g. clustering algorithms �nd structural features

within the data without any prior information. Supervised methods �rst generalize rules

on a set of training instances to be able to make statements on unseen data. Classi�cation

approaches are an example of supervised machine learning techniques.
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Figure 1.15: Scheme of areas in computational biology where machine learning
methods are applied. Domains in bioinformatics where machine learning
techniques are used for knowledge extraction from large data sets e.g. include
genomics, proteomics, microarrays, systems biology, evolution and text mining
[164].

Classi�cation approaches Classi�cation approaches learn abstract rules on a set of train-

ing instances in order to predict the correct class of other, unseen instances. Binary classi-

�cation algorithms abstract features from training instances that are positive and negative

regarding a certain class of interest. Several classi�cation algorithms or classi�ers were de-

veloped, based on di�erent mathematically principles. An example for a non-probabilistic

binary classi�er are support vector machines (SVM). A SVM model represents training

data instances as points in space. The aim thereby is to maximize the gap that separates

examples of di�erent classes. The particular class of unseen data points is then predicted

by mapping these instances into the space and to check on which side of the gap they

end up [44]. Naive Bayes is an example of a probabilistic classi�er. The naive Bayes clas-

si�cation approach allows for a simple and powerful separation of classes on the basis of

a-priori probabilities of the input data. It uses the odds ratio of conditional probabilities

for seeing a certain feature in the positive and in the negative class to predict an instances
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class label. It is based on the Bayesian theorem and its probabilistic model and combines

this model with a decision rule. E.g. the maximum a posteriori decision rule is to chose

the most probable hypothesis. The classi�er is called �naive� because it assumes general

independence of input features. Despite of this simpli�cation, the classi�cation proves

nearly optimal for certain applications, especially if conditional independence of features

is given [318].

1.7.2 Statistical measures

Beside a Z-score based measure for statistical signi�cance, typical evaluation measures

and procedures that are relevant for this work are subsumed in the following.

Z-score The Z-score is a projection of an instance into a normal distribution to decide

whether or not the instance is a member of the normal distribution (the null hypothesis).

It thereby measures the relationship of a score to the mean in a group of scores in terms of

standard deviations. It generally assumes parametric data and can be positive or negative,

indicating whether it is above or below the mean and by how many standard deviations

1.16. Scores can be considered signi�cant for values of 3 - 5 [269].

Typical performance measures Several measures are used to capture and compare clas-

si�er performance based on the counts regarding the classi�cation of instances in the test

data. The number of true positive (TP), false positive (FP), false negative (FN) and true

negative (TN) predictions allows for calculation of typical measures:

Accuracy, the percentage of correct predictions

Accuracy = (TP + TN)/(TP + FP + TN + FN)

precision, the percentage of positive predictions that are correct

Precision = TP/(TP + FP )

sensitivity, the percentage of positive labeled instances that were predicted as positive

Sensitivity = TP/(TP + FN)
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Figure 1.16: Statistics on normal distributed data. A graph of a normal bell curve show-
ing statistics used in standardized testing. Among others, the scales include stan-
dard deviations, cumulative percentages and Z-scores.

and selectivity, the percentage of negative labeled instances that were predicted as negative

Selectivity = TN/(TN + FP )

.

Receiver operating statistics (ROC) Receiver operating statistics (ROC) are a common

method to evaluate classi�er performance. ROC analysis has originally been invented to

estimate the error rate in broadcasting performance of radar systems. In a ROC curve,

the true positive rate is plotted against false positive rate for varying a threshold above

test instances that are classi�ed as positive. The area under the ROC curve (AUC) is an

established single-number performance measure [136]. It can be used to compare di�erent

approaches on the same data.
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Cross-validation Cross-validation is a powerful method to asses the performance of bi-

nary classi�cation approaches [157]. E.g. for a 10-fold cross-validation, the initial data

is split into 10 sets of equal size. Each of these sets is used as test data once in 10 inde-

pendent runs. For each run, all other 9 sets are combined to constitute the instances for

training the classi�er. Performance measures are calculated on combined predictions of

all runs. Cross-validation allows for testing classi�ers on a small population of samples

simultaneously guaranteeing independence of test and training instances [18].

1.7.3 Web portal/resource development

Basic guidelines and concepts for the development of web portals and resources are ad-

dressed in the following.

Basic requirements General basic requirements of a functional web resource include:

� fast download time of web pages

� clean page and content layout

� easy to use and navigate

� comfortable access to all relevant information

� regular updates of page content

� versioning of archived data

� easy maintainability

Use cases A use case is the generalization of di�erent scenarios in a list of steps that

occur during the interaction between a system and a user to achieve a speci�c goal. In

software engineering, these steps are typically depicted in Uni�ed Modeling Language

(UML), a modeling language designed to provide a standard way to visualize the design

of a system [39]. Thereby, use cases are a way to de�ne and document the requirements

that need to be implemented during systems development.

Portal architecture An optimal software pattern for web resources is a 3-tier architecture

model. It implements independent levels for data storage, processing and presentation

[87].

In the 3-tier architecture, presentation tier, application tier and data tier are separate

33



CHAPTER 1. INTRODUCTION

from each other. The presentation tier handles the interaction with the user. The appli-

cation tier contains the application logic and is responsible for the integration of di�erent

methods, while the data tier is responsible for data storage and retrieval. All three tiers

communicate with each other using speci�ed interfaces for data query and retrieval. The

e�ect of changes in one of the layers is limited to this layer and does not a�ect other

layers, as long as the interfaces between them stay unchanged. The result is a highly

�exible solution that is easy to extend and maintain.

The three-tier architecture has the following three tiers:

� Presentation Tier: Interaction with the user and display of data is organized by this

layer, e.g. in a web browser. Data is retrieved by communication with the lower

tiers.

� Application Tier: This tier contains the business logic and is responsible for data

processing and functionality of the application. This also includes conversion of

data into speci�c formats that are accepted by the presentation tier for displaying

information.

� Data Tier: In this tier, storage and basic retrieval of information is organized, e.g.

in a relational database.

Data storage and database design Data storage is possible in the form of �les on a

�lesystem or in a database. Database management systems (DBMS) are optimized for

processing complex queries and information retrieval. It consists of the database and a

software providing e�cient solutions for data access, security, backup and other features.

While several types of DBMS exist, the most common type is the relational database

model. A relational database usually consists of normalized tables that are connected

by relations. Information thereby is not stored in one big table but spread over several

tables each addressing di�erent properties to avoid redundancies. To retrieve the complete

information spread over several tables, these tables are joined for a particular query. Join

processes are optimized for performance by the database management system. Several

normalization procedures were developed, dealing with the generation of non-redundant

tables in databases [166].
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2 A secretion system independent

approach to predict bacterial e�ector

proteins

2.1 Motivation

Bacterial secreted proteins, so called e�ectors, are key to an understanding of the interac-

tions between a pathogen and its host. The analysis of e�ector proteins o�ers insights into

the biological processes involved in initiating and maintaining infection. While data on

experimentally characterized e�ector proteins is limited, in silico prediction approaches

are an e�ective way to select for experimental candidates for further analysis to increase

our knowledge on the mechanisms behind bacterial pathogenicity. Signal-based prediction

approaches are modeling the secretion system speci�c signal peptide that is necessary for

guiding the e�ector to the secretion machinery. Still many challenges are to be addressed

in this area of research. Up to now, successful modeling of the signal sequence is limited

only to a subset of characterized secretion systems. Furthermore, even for the best mod-

eled signal, the Type III secretion signal, experimental results suggest the existence of

strong signal diversity and still unknown classes of the T3SS signal [73]. Experimentally

validated secretion of eukaryotic-like proteins in Legionella strains has shown that the sig-

nal based prediction criteria are currently not provide a comprehensive identi�cation of

e�ector proteins and complementary approaches are needed [241]. We developed a func-

tion based, secretion signal independent method for the prediction of secreted bacterial

proteins. Aim of the approach is an automatic, large-scale detection of e�ector candi-

dates based on function-speci�c criteria derived from sequence analysis. The discovery of

eukaryotic-like domains in the e�ector proteins of several pathogenic bacteria is starting

point for the development of this method. The concept of eukaryotic-like protein domains

(ELDs) is thereby generalized to identify bacterial e�ector proteins independently of any

secretion system mechanism in a large-scale, function-based approach. A methodology is
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derived from the analysis of representative examples of eukaryotic-like e�ector domains

in the human pathogen Legionella pneumophila.

2.2 Exemplary analysis of the eukaryotic F-Box protein

domain in bacteria

Buchrieser et al analyzed individual cases of eukaryotic-like domain containing proteins

in Legionella pneumophila. These proteins were found to directly and e�ectively alter

host functions to the pathogens advantage [50]. In non-hostassociated bacteria, this func-

tionality is not given and eukaryotic-like domain signatures might be acquired e.g. by

horizontal gene transfer but are less evolutionary conserved. Eukaryotic-like domains are

therefore expected to be a phenomenon primarily observed in pathogenic and symbiotic

bacteria. A uneven distribution of these protein domains among bacterial genomes of dif-

ferent lifestyle could provide a basic concept for the large-scale identi�cation of proteins

involved in bacteria-host interactions.

Material and methods

For exemplary testing of this assumption, the eukaryotic F-box domain discovered in Le-

gionella e�ectors by Buchrieser et al was selected. The protein domain is characterized

for its functional mimicry in divers pathogens [4]. The taxonomic distribution of the F-

box domain signature (PF00646) as described by the PFAM domain database [230] was

investigated manually. Bacterial genomes with annotated F-box domains where identi�ed

using the information provided on the webportal of the Pfam protein domain database.

Phenotypes of the bacterial organisms with F-box domain containing proteins where de-

termined by literature search.

Results

While the domain is frequent in eukaryotic organisms, it is only observed in proteins of 17

bacteria. Furthermore, a closer look at the phenotypes of these bacteria reveals that they

are all pathogenic. Besides a conservation in most Legionella species, the domain is present

in strains of Pseudomonas, Xanthomonas and Ralstonia, compare table 2.1. No occurence

of the domain was detected in any non-pathogenic, non-host-interacting bacteria. The

eukaryotic F-Box protein domain is found exclusively in pathogenic/symbiotic bacteria.
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Discussion

The comparative genomics analysis of the F-box domain of Legionella pneumophila e�ec-

tors reveals a special feature of this eukaryotic-like domain. The F-box domain is con-

served exclusively in eukaryots and pathogenic bacteria. The observed over-representation

in pathogenic/symbiotic compared to non-hostassociated, non-pathogenic bacteria is likely

to be an evolutionary consequence of the vital function of the F-Box containing e�ector

proteins for virulence of the speci�c pathogens. The protein domain distribution in bacte-

ria observed for the eukaryotic-like F-box domain captures a pattern which is likely to be

common to e�ector proteins of diverse pathogens. The following large-scale approach uses

this uneven distribution to predict and evaluate bacterial e�ector proteins based on the

occurrence of eukaryotic-like domain signatures. A non-signal based, complementary pre-

diction approach might help to realize a comprehensive in silico identi�cation of e�ector

candidates to increase time and cost-e�ciency of experiments in the wet lab.

2.3 Setup of a genome repository for comparative

analysis

The large scale in silico identi�cation of eukaryotic-like protein domains depends on a

comprehensive computational resource. A genome repository is implemented to preprocess

all necessary information and to make data easily accessible for further analysis.

Included information and data sources are discussed in detail, an overview is given in

�gure 2.1. Information in the genome repository comprehends

� protein sequences of completely sequenced genomes

� protein domain signatures

� phenotype annotations of bacterial organisms

� gram status of bacterial organisms

� genomic annotation of bacterial secretion systems
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GENOME
REPOSITORY

RefSeq
BacMap

GOLD

KEGG

PFAM

Protein domain
signatures

Protein sequences

Phenotypic information
on bacterial pathogenicity

T3SS related 
orthologous
groups

Ncbi

Figure 2.1: Data sources and information processed in the genome repository.The
genome repository combines data from several public databases. Protein sequences
of all completely sequenced bacterial and eukaryotic genomes are downloaded from
the RefSeq database. PFAM domain signatures for all genomes listed by Interpro
are retrieved from the SIMAP resource of protein similarities.

Protein sequence data of completely sequenced bacterial/eukaryotic

genomes

The NCBI Reference Sequence Database (RefSeq) is chosen as a comprehensive resource

for completely sequenced genomes [229]. All completely sequenced bacterial and eukary-

otic genomes have been retrieved from RefSeq release 55. Bacterial genomes were selected

by taxonomic lineage according to the NCBI taxonomy [93]. Within the genome reposi-

tory, the bioprojectid provided by RefSeq serves as unique genome identi�er.

A comprehensive collection of protein domain signatures

Protein domain signatures are compared instead of considering overall similarity of com-

plete proteins. This allows for increased sensitivity and accommodates the high evolution-
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ary divergence of bacteria included in the analysis. The PFAM database is a large and

comprehensive collection of taxonomically universal protein families [230]. As the basis

for analysis, PFAM protein domain signatures have been chosen. PFAM annotations have

been taken from the Interpro version 40.0 [138], provided by the SIMAP database [235]

(release november 2012).

2.3.1 Phenotype annotations of completely sequenced bacterial

genomes

Information about the phenotype and lifestyle of bacteria is available for a large fraction

of completely sequenced bacterial organisms. Thereby, phenotype annotations rely on

manual revision of experimental results, collected in environmental and host meta-data

by scientists of the particular sequencing projects.

Material and methods Phenotype annotations are available for a large number of bacte-

rial organisms. In this work, annotations were collected and combined from three public

resources:

� BacMap [68] (actual release on september 2012)

� GOLD [212] (version 4.0 on september 2012)

� NCBI microbial genomes list [303] (actualized in 2011, ftp://ftp.ncbi.nlm.nih.gov/

genomes/Bacteria/lproks_0.txt).

Retrieval and processing of phenotype information is implemented and adjusted to each

resource individually:

BACMAP: BacMap is not o�ering options for direct download, so the data was retrieved

via scripts directly from HTML web-pages. Retrieved features include the organism name

and taxonomy id as well as information regarding pathogenicity, host-association and gram

staining. Entries were mapped to completely sequenced bacterial genomes via taxonomy

id.

For consistent phenotype annotation of the bacterial organisms, a pathogenicity rule was

implemented as follows: According to the respective terms, a bacterium is labeled

non-pathogenic,

if (pathogenicity="No" & habitat!="Multiple")
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symbiontic,

if (habitat="Host-associated")

pathogenic,

if (pathogenicity="Yes" | pathogenicity="Probable" | pathogenicity="Rarely")

and NA,

otherwise.

Manual inspection of the term combination pathogenicity="No" and habitat="Multiple"

suggests a symbiotic phenotype in most cases. Nevertheless, this assumption cannot be

distinctly determined automatically without a manual literature search and is not suitable

for an automated update process. Because it is not possible for these cases to distinguish

between non-pathogenic/non-host-associated and symbiotic organisms in an automated

manner, combination of these terms is classi�ed as "no phenotype information available"

("NA").

GOLD database: From the GOLD database, phenotype information is retrieved by

manual download of all GOLD-stamp tables. Categories are organism name, taxonomy

id, habitat, disease, host name, phenotype and gram staining.

The GOLD pathogenicity rule annotates a bacterial phenotype as

non-pathogenic,

if (phenotype="Non-Pathogen" &

(hostname="" | habitat!="Host" | habitat!="symbiont"))

symbiotic,

if (phenotype="Non-Pathogen" &

(hostname!="" | habitat="Host" | habitat="symbiont")) |

(phenotype="Pathogen" & habitat="Host" & disease="") |

(habitat="Host" & disease="" ) |

(hostname!="" | disease="")

pathogenic,

if (phenotype="Pathogen" & (disease!="None" | disease!="")) |

(habitat="Host" & disease!="") |

(hostname!="" & disease!="")

and NA,

otherwise.
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NCBI phenotypes list: The NCBI phenotypes list was downloaded from the NCBI

FTP-server. Mapping of phenotype information to RefSeq genomes is implemented via

NCBI taxonomy id. The pathogenicity rule for the NCBI phenotypes list annotates a

bacterial phenotype as

pathogenic,

if !(host="None" or host="No" or host="") |

!(disease="None" or disease="No" or disease="")

non-pathogenic,

if (host="None" or host="No") |

(disease="None" or disease="No") |

(associated="Multiple" &

(host="No" or host="None") &

(disease="None" or disease="" or disease="No"))

symbiotic,

if (associated="Host-associated" &

(disease="None" or disease="No" or disease=""))

and NA,

if (associated="Multiple" &

host="" &

(disease="None" or disease="" or disease="No")) |

otherwise

Combination of phenotypic data from di�erent resources Inconsistencies of the phe-

notype information from the three public resources are solved by the pathogenicity rule:

pathogenic > symbiotic > non− pathogenic > NA (2.1)

The underlying assumption is that a pathogenic/symbiotic phenotype is very likely to

be annotated by any researcher due to direct evidence, e.g. an observed interaction or

based on experiment. Simultaneous assignment of a non-pathogenic annotation of the

particular organism in an other resource was found to be more likely the result of missing

information about a pathogenic/symbiotic context.

Results The majority of completely sequenced bacterial genomes in RefSeq are repre-

sented in the microbial databases. For 1706 of 1920 genomes phenotypic information is
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available. The according 214 genomes without information on pathogenicity are excluded

from the genome repository. Of the three public resources, the GOLD database o�ers the

most comprehensive phenotypic annotation, see 2.2. In 414 cases, GOLD o�ers the only

available information. BacMap and NCBI phenotypes include phenotypes of 58 genomes

not listed in GOLD and contribute annotations for 1234 genomes.

Figure 2.2: Publicly available phenotype information on the pathogenicity of com-
pletely sequenced bacterial organisms. Shown is the number of sequenced
bacterial organisms for which information on pathogenicity is available in any of
the public databases GOLD, BacMap and NCBI phenotypes. For 214 bacterial
genomes in the RefSeq database, there is no pathogenicity annotation available.
The genomes are excluded from the genome repository.

For 586 genomes, there is consistent information in all three databases. 858 genomes are

consistently annotated in any two databases or have information on pathogenicity of the

organism in at least one resource. GOLD and NCBI phenotypes show a general high agree-

ment on individual phenotypes. All three resources contribute information to the compre-

hensiveness of the phenotype annotation. For 251 bacterial genomes in RefSeq, there are
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inconsistencies between phenotype information for identical strains 2.4. Extensive manual

inspection of these cases shows that application of the combined pathogenicity rule 2.1

provides assignment of the correct pathogenic phenotype. The combined pathogenicity

rule corrects inconsistent phenotypes in all of the inspected cases. For example for the

opportunistic pathogen Novosphingobium aromaticivorans DSM 12444 [282]. Bacmap

has no information on Novosphingobium, the NCBI phenotypes list o�ers the misleading

non-pathogenic annotation while the GOLD database provides a comprehensive charac-

terization (Habitat="Fresh water,Host", Host="Homo sapiens") leading to the correct

pathogenic annotation.

It was further investigated if certain habitats (e.g. as "Freshwater" or "Sediment") are

prone to harbor exclusively non-pathogenic bacteria. For habitats with a representative

high number of bacteria annotated (cuto� >= 20), the results indicate that there is no

habitat completely free from pathogenic bacteria.

The taxonomic distribution of genomes in the genome repository for di�erent taxonomic

levels is shown in appendix table 8.1. Regarding the phenotype annotation of bacte-

rial genomes, the genome repository is biased towards pathogenic/symbiotic bacteria, see

appendix table 8.2. The �nal genome repository holds phenotype annotation of 1706 bac-

terial genomes. 796 are of pathogenic phenotype, 335 symbiotic and 575 non-pathogenic

(2.3).

Discussion What makes a bacterial organism pathogenic is still an issue discussed exten-

sively by microbiologists [221]. Pathogens and symbionts depend on similar mechanisms

for interacting with hosts and show parallel trends in genome evolution [208]. Further-

more, by the ongoing discovery of novel pathogenic relationships, it can be assumed that

the current data does not allow for a comprehensive classi�cation. Even for many known

bacterial organisms a mutualistic or pathogenic relationship to a speci�c eukaryotic host

might exist but has not yet been discovered experimentally [60]. Up to now, there is

no gold standard for separating bacterial organisms into pathogenic, symbiotic and non-

pathogenic phenotypes that would enable automated classi�cation. The integration of the

di�erent microbal databases o�ers a comprehensive annotation of bacterial phenotypes

for the majority of completely sequenced bacterial genomes. In a considerable number

of instances, pathogenic and symbiotic annotations are ambiguous. These inconsistencies

re�ect the general issue in the annotation of bacterial phenotypes [48]. Considering these

challenges and the currently available data, pathogenic and symbiotic annotations are

consequently combined for further analysis regarding the identi�cation of eukaryotic-like

protein domains. The quality of the phenotypic data is thereby adequate for the intended
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Figure 2.3: Distribution of pathogenicity phenotype annotations of completely se-
quenced bacterial organisms in the genome repository. Shown are the
fractions of pathogenic, symbiotic and non-pathogenic phenotypes in all completely
sequenced bacterial genomes in the genome repository.

analysis. Pathogenic and symbiotic bacteria are de�ned as host-interacting bacteria, while

the class of non-pathogenic organisms comprises those bacteria that are non-host associ-

ated and not known to cause infectious symptoms in any host. This allows to distinguish

non-host associated bacteria from mutualistic symbionts that interact but do not trigger

an immune response in the host.
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Figure 2.4: Consistency of phenotype information on pathogenicity in the public
databases GOLD, BacMap and NCBI phenotypes for all completely se-
quenced bacterial genomes in RefSeq. Green and yellow bars indicate the
number and consistency of genomes with phenotype information from di�erent re-
sources, were p is for pathogen, s for symbiont and n for non-pathogen phenotype
annotation. Con�icting annotations are solved according to rule 2.1. For 214 or-
ganisms there are no terms annotated or annotation terms do provide no relevant
information on pathogenicity.
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2.3.2 Bacterial contamination of eukaryotic genome sequences

Contamination of sequencing projects by bacterial sequences is a serious challenge to the

correct annotation of genomes [304, 257, 188]. This contamination is di�erent from con-

tamination by bacterial vector sequences and is commonly due to laboratory conditions

or the ampli�cation of bacteria that life in association with the sequenced eukaryotic

organism. Bacterial vector sequences ampli�ed during the sequencing process are com-

monly compared against a prede�ned vector libraries and �ltered out with high accuracy.

That approach is not feasible regarding bacterial contamination due to environmental fac-

tors. Contaminated genomes are expected to include protein sequences of bacterial origin

which are otherwise not found in eukaryotic genomes. Protein domain signatures that

are found only in a very low number of eukaryotic genomes are likely to account for that

phenomenon, due to the evolutionary stability of eukaryotic genomes. The occurrence

of domain singletons among eukaryotic genomes is therefore expected to re�ect bacterial

contamination. In the planned identi�cation of eukaryotic-like protein domains this could

be a critical source for false positive predictions and is addressed in the following.

Material and methods For 121 eukaryotic genomes in the genome repository, PFAM

protein domain annotations are downloaded as listed by Interpro (version 40.0). 7411

di�erent PFAM domain signatures are detected among the 121 eukaryotic genomes. To

analyze bacterial contamination, the occurrence of domain signatures among eukaryotic

genomes is evaluated with a regard to protein domain singletons. Domain singletons

are therefore de�ned as protein domains that are detected only in one single eukaryotic

genome and bacterial genomes otherwise. Especially a high accumulation of domain

singletons in very few eukaryotic genomes could be expected not to be due to genomic

properties. It could be a strong indicator of contamination by sequences of bacterial

origin. Available literature on identi�ed candidate genomes is examined further to con�rm

bacterial contamination.

Results The 7411 protein domain signatures show a wide range of frequencies among

eukaryotic genomes (see �gure 2.5). Noticeable is the high number of domain singletons.

These domains are found only in proteins of one or two eukaryotic genomes. The dis-

tribution of domain singletons among eukaryotic genomes shows that domain singletons

accumulate in 5 eukaryotic genomes in particular (see table 2.2). This is a strong indica-

tion for contamination. These genomes are therefore excluded. In Figure 2.5 A) and B),

the distribution of domains in eukaryotic genomes is shown before and after the exclusion
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of the 5 contaminated eukaryotic genomes. A reduction of domain singletons is clearly

visible, while domain singletons still remain the largest fraction.

Eukaryotic genome domains (frequency 1) domains (frequency 2)
Caenorhabditis japonica 181 104

Populus trichocarpa 168 103

Physcomitrella patens 55 26

Nematostella vectensis 48 32

Caenorhabditis remanei 32 27

Trichomonas vaginalis 23 8
Dictyostelium discoideum 20 10
Tetrahymena thermophila 16 6
Plasmodium yoelii 15 7
Trypanosoma brucei 13 14
Trichoplax adhaerens 13 14
Oryza sativa Indica 12 10
Gibberella zeae 12 5
... ... ...
Lachancea thermotolerans 1 1
Homo sapiens 1 0
Gasterosteus aculeatus 1 3
Gallus gallus 1 4
Cryptosporidium hominis 1 1
Canis lupus familiaris 1 1

Table 2.2: Eukaryotic genomes and the number of domain singletons (exclusively
found in that particular genome /in two genomes). Shown are eukaryotic
genomes and the number of domains which are annotated in the speci�c genome
but in no other eukaryotic genome (domain frequency of 1 over all 121 analyzed
eukaryotic genomes), as well as the number of domains which are annotated in only
two eukaryotic genomes (domain frequency of 2).

Contrary to the analysis of domains singletons in eukaryotic organisms, singletons ob-

served in bacterial genomes show a di�erent distribution and are not due to a small

number of genomes. As shown in table 2.3, domain singletons in bacteria are uniformly

distributed over all genomes.

To further reduce the in�uence of bacterial contamination, an additional frequency cuto�

for eukaryotic domains is applied : A domain is only considered for further analysis if it

is annotated in at least 3 of the remaining 116 eukaryotic genomes.

Altogether, these pre-processing steps exclude 9.3% of domain signatures in eukaryotic

genomes.
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Bacterial genome domains (frequency 1) domains (freq 2)
Legionella longbeachae NSW150 6 0
Stigmatella aurantiaca DW4/3-1 6 2
Sorangium cellulosum 'So ce 56' 5 3
Planctomyces brasiliensis DSM 5305 4 0
Marinitoga piezophila KA3 4 0
Carboxydothermus hydr. Z-2901 4 0
Bacteriovorax marinus SJ 3 0
Haliangium ochraceum DSM 14365 3 1
Arcobacter sp. L 2 0
Terriglobus roseus DSM 18391 2 0
... ... ...

Table 2.3: Bacterial genomes and the number of domains which are exclusively
found in that particular genome / in two genomes.

Figure 2.5: Frequencies of protein domain signatures in eukaryotic genomes. Do-
main frequencies and their occurence before (in light blue) and after (in dark blue)
removal of 5 vector-contaminated eukaryotic genomes.
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Discussion Domain singletons indicate bacterial contamination of several eukaryotic

genomes. Assuming bacterial contamination of sequencing projects to be a rare event,

contamination is expected to a�ect a small number of eukaryotic genomes. As expected,

domain singletons were found to accumulate in �ve eukaryotic genomes which are subse-

quently removed from the data. Additionally, genomes were �ltered for rare domains that

could also be a result of contamination as well as lateral gene transfer between bacteria

and eukaryots. The remaining protein domain signatures form the basis for a comparative

analysis in eukaryotic genomes. With these quality �ltering steps applied, 6869 di�erent

protein domains in 116 eukaryotic genomes are considered for further analysis.

2.3.3 Criteria for the prediction of a functional T3SS machinery

Published secretion system based e�ector prediction methods can model the T3 secretion

signal quite accurately. On the other hand, these approaches were shown to predict T3

secreted proteins in any bacterial genome, independent of the organisms ability to secrete

e�ectors via a Type III secretion system (T3SS) [20]. A comparison of existing e�ector

prediction approaches with results of the subsequent analysis is only feasible for bacteria

with a T3 secreting phenotype. Part of the annotation of genomes in the genome reposi-

tory therefore is to identify bacteria with a functional Type III secretion system (T3SS).

Even while being the best studied secretion system, the T3SS machinery is far from being

fully understood [233]. Up to now, there are no comprehensive experimental studies on

the exact assembly of the system. But there is evidence that not all characterized molecu-

lar T3SS components are required for successful transport of substrates [80]. The minimal

set of key components necessary for a fully functional system were not yet determined

experimentally.

In general, bacterial gene�phenotype predictions can be addressed using cross-species dis-

tributions of genes and phenotypes/traits [265]. Applications like CPAR are successful

in predicting microbial traits (e.g. aerobe, anaerobe, thermophile or gram status) from

genome data [181]. Thereby, genotype-phenotype association rules are learned from a

matrix of clusters of orthologous groups (COGs). Necessary for unsupervised learning

techniques is a high number of characterized training instances. A bacterial T3 secreting

phenotype is experimentally characterized for few microorganisms in single case studies

[81]. Extensive literature search as well as experimental studies might be needed to es-

tablish a su�ciently large training set of fully sequenced T3 secreting bacteria. This is

not within the scope of the analysis at hand. With the current lack of experimental ev-

idence on T3 secreting bacteria, functional genomics could o�er another way to predict
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the correct microbial trait. On the basis of a small number of genomes, empirical criteria

to predict a functional T3SS could be deduced from genes encoding speci�c T3SS com-

ponents. In the following, a small collection of reference genomes that are assumed to

harbor a functional T3SS are analyzed to predict empirical criteria for bacterial Type 3

secretion.

Material and methods A functional Type III secretion system (T3SS) is investigated for

all genomes of Gram-negative bacteria with annotated phenotypes in the genome repos-

itory. Information on the Gram status of bacterial organisms is derived from meta-data

of the GOLD database [212].

To chose the most suitable resource regarding completeness and sensitivity on T3SS re-

lated orthologous groups, di�erent public databases are compared. The KEGG database

holds comprehensive information about orthologous proteins involved in bacterial secre-

tion systems [146]. The T3SS reference pathway KO03070 lists 15 di�erent protein sub-

units which take part in the assembly of this macro-molecular machinery. The automati-

cally generated clusters of orthologous groups in the eggNOG database [196] are considered

as well and compared to the semi-automatically generated KOs in KEGG. Relevant KOs

in KEGG (current version of august 2013) as well as according TTSS related orthologous

groups in eggNOG (Version 3.0) are downloaded. Based on these 15 orthologous groups,

a comparison of KEGG and eggNOG data is conducted to determine a suitable and com-

prehensive data source. Mapping between groups in KEGG and eggNOG considers the

assignment of identical sequences to groups in both databases. To evaluate the empirical

criteria to determine T3SS harbouring bacteria, the reference list for organisms with func-

tional T3SS system published by Arnold et al [20] is used to construct a set of reference

genomes encoding a functional T3SS machinery. Phenotype annotations are retrieved for

all genomes. Non-pathogenic phenotype annotations are additionally veri�ed by manual

literature search.

Results KEGG KOs as well as eggNOG orthologous groups cover all Gram-negative bac-

teria with pathogenic/symbiotic phenotype in the genome repository. Comparing KEGG

KOs and eggNOG orthologous groups, the representation of T3SS component in KEGG

KOs and orthologous groups of eggNOG reveals di�erences important for further analysis.

For several T3SS components, eggNOG COGs and KEGG KOs are in good accordance

and comprise respective proteins well. Clusters of the T3SS components yscW, yscL and

yscQ reveal di�erences. Proteins are split onto several clusters and the major eggNOG
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cluster in each case contains only a small number of the respective KEGG orthologs.

For yscF, yscO and yscX there are no COGs constructed in Eggnog, the proteins are

split on diverse non-supervised orthologous groups (NOGs) in eggNOG. Besides pro-

teins of the respective T3SS components, the eggNOG COGs COG1886, COG1317 and

COG1157 include many more proteins that are part of the �agellar apparatus. The

KEGG KOs on the other hand do distinguish between T3SS components and homologs

of the evolutionary related �agellum. Eggnog also does not resolve the relationship of

T3SS component yscC with other bacterial transport systems. COG1450 combines ho-

mologous proteins of yscC and a component of the Type II secretion system, PulD as

well as the general secretion pathway protein D. For an overview of the mapping between

clusters of orthologous groups in KEGG and eggNOG, see table 2.4. The reference set

contains genomes encoding a functional T3SS machinery. T3SS component KO coverage

by proteins of 87 reference genomes are shown in �gure 2.6. Several KOs are represented

in a low number of genomes. Only 8 of the 15 KOs are represented in the majority

of genomes: yscC(K03219), yscJ(K03222), yscN(K03224), yscR(K03226), yscS(K03227),

yscT(K03228), yscU(K03229) and yscV(K03230).

The minimal set of KOs that comprise all reference genomes while being maximally spe-

ci�c is an arbitrary selection of 7 out of these 8 KOs.

Applying this empirical criteria for a functional T3SS to all genomes in the genome repos-

itory, 165 Gram-negative bacteria of pathogenic and 23 of symbiotic phenotype are iden-

ti�ed to encode a functional T3SS. All pathogenic/symbiotic bacteria of the reference set

are included. Furthermore, also 14 non-pathogenic bacteria were identi�ed to encode a

functional T3SS.

Of the 1706 genomes in the genome repository, according to KEGG Orthologous Groups,

202 are predicted to encode a functional T3SS. The vast majority are of pathogenic phe-

notype (73), 9 organisms are symbionts. 14 organisms are annotated with non-pathogenic

phenotypes, but manual literature search reveals a symbiotic relationship for 7 of them.

Among the bacteria with functional T3SS and a manually veri�ed non-host interacting

phenotype annotation extracted from literature are Anaeromyxobacter sp, Myxococcus

Xanthus DK 1622, Shewanella violacea strain DSS12, see table 2.5. The marine bacterium

Hahella chejuensis is an algicidal pathogen [142].
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Figure 2.6: Coverage of Type III Secretion System (T3SS) components in or-
ganisms. Groups of orthologous proteins are named by the according KEGG
KO identi�er.

Organism Essential T3SS components
Anaeromyxobacter dehalogenans 2CP-1 7
Anaeromyxobacter dehalogenans 2CP-C 7
Anaeromyxobacter sp. Fw109-5 7
Anaeromyxobacter sp. K 7
Myxococcus xanthus DK 1622 7
Burkholderia thailandensis E264 8
Collimonas fungivorans Ter331 8
Hahella chejuensis KCTC 2396 8
Marinomonas mediterranea MMB-1 8
Shewanella baltica OS155 8
Shewanella baltica OS195 8
Shewanella violacea DSS12 8
Variovorax paradoxus EPS 8
Vibrio sp. Ex25 8

Table 2.5: Bacteria without evidence for a host-dependent lifestyle in public
databases that encode a majority of essential T3SS components. Shown
are bacteria that are annotated as non-pathogenic and encode all essential compo-
nents of a Type III secretion system. Literature suggests a possible host interaction
for some organisms.
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Discussion Limited experimental knowledge on details of the T3SS secretion mechanism

makes the prediction of empirical criteria for the assignment of a functional Type III

secretion system necessary.

For addressing the gene-phenotype association problem, the use of clusters in the KEGG

Orthology (KOs) revealed an advantage over orthologous groups in eggNOG regarding

the analysis at hand. The resolution of the approach used to generate KEGG KOs was

found to be more optimal, due to the broad evolutionary scale applied in the construc-

tion of orthologous groups in eggNOG. EggNOG reconstructs the last universal common

ancestor (LUCA) of the kingdom of bacteria for COG construction. At this evolutionary

stage, the T3SS did not yet evolve from the closely related �agellum and components

of both systems are combined in single common clusters. KEGG KOs are an accepted

resource for molecular systems and subsystems. The coverage of T3SS component KOs

identi�ed by KEGG provided the possibility of an automatic classi�cation of bacterial

genomes regarding T3SS secretion. Based on empirical criteria, a functional T3SS is as-

signed to Gram-negative bacteria. An arbitrary selection of 7 out of 8 speci�c components

of the T3SS are predicted to be essential for a functional Type III secretion system. On

a structural level, this could imply that the T3SS machinery is robust towards missing

protein subunits. Functionality seems still granted in the absence of several peripheral

components.

An interesting observation can be discussed regarding the phenotype of microorganisms

with T3SS encoding genomes. Certainly, not all Gram-negative host-associated bacteria

can be expected to encode a functional Type III secretion system. To establish host con-

tact, several pathogens/symbionts for example use the twin-arginine translocation (Tat)

pathway [71], a prokaryotic transport system found among all bacterial phenotypes [82].

Several host-interacting bacteria also encode other secretion systems that are commonly

associated with virulence (T4SS, T6SS, T7SS). On the other hand, the T3SS can be

assumed to be very costly for a microorganism. According to current knowledge, the evo-

lutionary pressure to conserve this complex machinery within a bacterial genome is the

result of close interaction with eukaryotic host cells. A functional T3SS could therefore

be assumed to be an indicator of a microbial pathogenic/symbiotic lifestyle. Regarding

T3SS based prediction in Gram-negative bacteria, several organisms were found to be

non-pathogens without evidence for any host-interaction while encoding a functional T3

secretion system. It is not likely to �nd a functional T3SS in non-host-interacting mi-

croorganisms but cannot be excluded and is tolerable for a small number of genomes.

While this phenomena to some extend also might be the result of missing information

about the bacterial lifestyle, it also implies that even the best studied bacterial secretion
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system is not yet a genetic basis for the accurate assignment of a host-interacting bacte-

rial phenotype. The assignment of a pathogenic/symbiotic bacterial phenotype based on

genomic features is addressed further in chapter 5.

2.4 Phenotype speci�city of eukaryotic-like protein

domains in bacteria

The eukaryotic-like subset of protein domains in bacteria can only be de�ned with strong

respect to the biological background. A number of domain signatures are exclusive

to pathogenic/symbiotic bacteria and do not appear any bacteria annotated as non-

pathogenic. Eukaryotic-like domains like the F-Box motif which are exclusive to pathogenic/

symbiotic bacteria are the most promising candidates for a general role in e�ector proteins

and widespread infection strategies. In general, the boundaries might be less clear. Hor-

izontal gene transfer (HGT) is considered one of the sources of eukaryotic-like domains

[179]. Besides between bacteria and eukaryots, HGT events are observed between bacte-

ria of divers phenotypes. Considering the genomic �exibility of bacteria, it is likely that

domains are frequently transferred between organisms of di�erent phenotypes [321]. The

observed signal of protein domains in bacteria that are exclusive to a particular pheno-

type therefore is expected to be only an episodic. Because of bacterial genome �exibility,

the phenomenon of phenotype exclusive protein domains might be largely due to the lim-

ited number of sequenced genomes. The more genomes are considered, the less domains

are exclusive to any given phenotype. If the signal is episodically, an increase of fully

sequenced bacterial genomes would lead to a decrease of protein domains exclusive to

pathogens/symbionts.

Methods To investigate the nature of this phenomenon, domain signatures and their

frequencies among proteins in bacteria of di�erent phenotype are inspected. Protein

domain signatures are determined in genomes for all bacteria with given information

about a annotated phenotype. Domains in pathogenic/symbiotic bacteria are compared to

domain signatures in non-pathogenic/non-host-interacting bacteria. During comparison,

the number of considered non-pathogenic bacteria is continuously increased, simulating

the expected increase in available fully sequenced genomes. In each iteration, 50 genomes

of non-host-interacting bacteria are randomly selected and used for comparison. The

number of protein domains/eukaryotic-like domains which are exclusive to host-interacting
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bacteria is determined in each iteration. In each iteration, domains which appear only

in genomes of pathogenic/symbiotic phenotype are separated into domains that are only

found in bacteria and domains that are also detected in several eukaryotic genomes. The

development of both trends is analyzed over all iterations.

Results Considering all bacterial genomes with annotated phenotype, of the protein

domain signatures found to be frequent in eukaryots, 176 do occur only in pathogens/

symbionts and not in non-pathogens. In �gure 2.7, the development of these pathogen/

symbiont speci�c domains is visualized for increasing the number of considered bacte-

rial genomes gradually. For an increase of considered bacterial genomes, the number of

phenotype speci�c protein domains shows a steady decline. This trend is strong in the

beginning and still visible when including all bacterial genomes with annotated phenotype

to date.

Investigation of speci�c e�ector domains does provide further insights to de�ne appro-

priate criteria for the identi�cation of eukaryotic-like protein domains. For example, the

Sec7 domain (PF01369) is a guanine-nucleotide-exchange-factor (e.g. of ADP ribosyla-

tion factor) [140], present in proteins of 54 eukaryots. In the kingdom of bacteria it is

well conserved in characterized e�ectors of Legionella and Rickettsia species [204]. Cox

et al proposed that bacterial Sec7 domain-containing proteins result from two horizontal

transfer events: the �rst one from eukaryotes to bacteria, and the second between Le-

gionella and Rickettsia [67]. In the case of Sec7, the eukaryotic-like domain is observed

exclusively in proteins of pathogenic and symbiotic bacteria. For many other domains

in bacterial virulence factors with a suggested eukaryotic background suggested by lit-

erature, the observed frequencies between phenotypes are less explicit. Several of these

domain signatures are present in a high number of pathogenic/symbiotic bacteria with

occurrences also in non-pathogenic/non-host-interacting bacteria.

Ankyrin repeat domain, PF00023: The Ankyrin repeat binding domain is well char-

acterized in eukaryotic-like e�ector proteins of divers pathogens [214]. It can interact with

the host cytoskeleton and enables a variety of functions other in the host cell [223, 301].

But also in non-pathogenic, free-living bacteria Ank-containing proteins are widespread

and serve as an unspeci�c protein binding motif [7]. The ankyrin signature PF00023 is

recognized in 186 pathogens/symbionts as well as in 132 non-pathogenic bacteria.

Ribosome inactivating protein domain, PF00161: Ribosome inactivating proteins

with domain signature PF00161 act as toxins in eukaryotic cells by inhibiting protein

synthesis and subsequent apoptosis [277]. They are found in bacteria and plant [183].

The shiga toxin protein released by several E.coli strains contains this domain signa-
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Figure 2.7: Trend of the number of pathogen/symbiont speci�c protein domains for
an increasing number of considered non-pathogenic genomes. Shown is
the number of domains which occur only in pathogenic and symbiotic bacteria while
considering protein domains from a gradually increasing number of non-pathogenic
bacteria. The blue line re�ects all pathogen/symbiont speci�c protein domains,
the red line visualizes the development of the subset which is found in eukaryotic
genomes as well.

ture [289]. The domain is annotated in the genomes of 24 pathogens/symbionts and

one non-pathogen: The Streptomyces coelicolor A3(2) strain, taxonomically a member of

the Streptomyces violaceoruber genus, is a non-pathogenic �lamentous soil bacterium [28].

Ubiquitin carboxyl-terminal hydrolase domain, PF00443: The Ubiquitin carboxyl-

terminal hydrolase domain (UCH) is well conserved among Burkholderia species as well

as several other pathogenic and symbiotic bacteria. Memisevic et al analyzed UCH-

containing virulence factors in Burkholderia Mallei and linked it to speci�c host-pathogen

protein interactions [187]. A protein containing the UCH domain signature is also anno-

tated in the free-living, nonpathogenic bacterium Chitinophaga pinensis DSM 2588 [116].

Pentatricopeptides, PF01535 Eukaryotic-like pentatricopeptides (PPR, PF01535) are
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involved in virulence of 59 pathogens, well characterized for example in TTSS secreted

e�ectors of the soil-borne plant pathogen Ralstonia solanacearum [194]. Furthermore,

PPRs are conserved in proteins of 5 non-pathogenic bacteria, e.g. in strains of the ther-

mophilic bacterium Rhodothermus marinus, isolated from submarine hot springs [10].

Exclusive phenotype speci�city of eukaryotic-like domains in bacteria is an episodic phe-

nomenon. Several protein domains of characterized bacterial virulence factors that are

frequent in genomes of eukaryotic organisms are not exclusive to the genomes of bacterial

pathogens and symbionts. These domains are also found in non-pathogenic bacteria.

2.4.1 Discussion

Most eukaryotic-like protein domains of characterized bacterial virulence factors are not

exclusive to the genomes of pathogens and symbionts. These domains are also found in

non-pathogenic bacteria. Possible reasons for the non-exclusivity of many characterized

eukaryotic-like e�ector domains are supposed to be bacterial genomic �exibility combined

with the limited access to genomic data. To address the in�uence of these observed

characteristics in an automated large scale approach to identify eukaryotic-like protein

domains, such a method has to measure not only exclusivity but phenotypic enrichment

of protein domains. Also the in�uence of mistakes in the bacterial phenotype annotations

that cannot be excluded as a possible error source completely, are handled by the enrich-

ment approach. It is therefore proposed to consider not only protein domains exclusive

to pathogenic/symbiotic bacteria but the enrichment of eukaryotic-like domains in these

host-interacting bacteria.

2.5 Identi�cation of eukaryotic-like domains enriched in

pathogenic/symbiotic bacteria

2.5.1 Methods

Eukaryotic-like domain score calculation The background model for each domain is

estimated by calculating the average and standard deviation of its frequencies in all non-

pathogenic genomes. For each genome, the eukaryotic-like domain (ELD) score S of

a domain is calculated as the number of standard deviations σ in which the domain

frequency n in that particular genome di�ers from the average background frequency µ
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in non-pathogen genomes:

S = (n− µ)/σ (2.2)

where µ is the mean and σ is the standard deviation of n. S represents the distance

between the actual domain frequency and the mean in units of the standard deviation

[159]. It is positive when above the mean. Thereby the ELD score directly re�ects the

enrichment of a particular eukaryotic-like domain in proteins of a particular genome. Al-

though the distribution of domain occurrences across genomes has varying shapes, manual

inspection of ELD scores shows that the ELD scores typically show the characteristics of

Z-scores. Scores can be considered signi�cant for values greater or equal to 4 [269].

The score of an e�ector protein candidate is equivalent to the ELD score of the contained

eukaryotic-like domain. Regarding multi-domain proteins, the score of an e�ector protein

candidate is equal to the ELD score of the highest scoring domain.

Additionally, a similar analysis was conducted considering domain distributions in orthol-

ogous groups of proteins. These reduced proteomes, only containing evolutionary con-

served protein sequences have been analyzed by the same approach. Frequencies where

determined accordingly and scores calculated for all genomes included in the eggNOG

Clusters of Orthologous Groups [196].

2.5.2 Results

Eukaryotic-like domains in proteins of pathogenic/symbiotic genomes In 1103 genomes

of pathogenic/symbiotic bacteria, 2504 di�erent eukaryotic-like domains achieve an ELD

score equal or above 4 in at least one genome. Many domains occur in proteins widespread

among distantly related organisms, indicating long evolutionary history and broad func-

tionality. Others are speci�c to and well conserved only among strains of particular

pathogenic/symbiotic species, compare 2.6. Predictions result in 142934 e�ector proteins

that have been predicted by the eukaryotic-like domain approach, containing one or more

eukaryotic-like protein domains. The median average of e�ector candidates per genome is

37. In pathogenic and symbiotic bacteria, on average in 1.7% of the proteome eukaryotic-

like domains are identi�ed. In non-pathogenic bacteria, on average 1.5% of annotated

proteins per genome do contain eukaryotic-like domain signatures. The surprisingly high

number of positive predictions in these genomes could be due to several reasons. Besides

false positive predictions, lateral gene transfer between bacteria of di�erent phenotypes

as well as undiscovered host-associations of symbiotic organisms annotated with a non-

pathogenic phenotype cannot be completely excluded.
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General features of the predicted ELDs and resulting e�ector protein candidates are dis-

cussed in the following regarding the eukaryotic-like protein domain content in strains of

the model pathogen Chlamydia trachomatis.

Complementary results of signal and function-based prediction approaches For a

comprehensive e�ector prediction analysis, results of the signal-based approaches E�ec-

tiveT3 (for predicting e�ectors secreted by the TTSS mechanism) and SignalP (capturing

the signal for the Sec-pathway) are considered besides the eukaryotic-like domain method.

TTSS signal peptides are predicted only for all 188 genomes of Gram-negative bacteria

that encode a probably functional type III secretion system. For all 1103 pathogenic/

symbiotic genomes, 641225 e�ector candidates in total are predicted by at least one of the

methods. As to be expected from the limited coverage of any of the prediction methods,

many predictions are only supported by one or two methods, compare �gure 2.8.

Euk. domains

EffectiveT3 SignalP

115962

68376 422907

4090

7008

22417

465

Figure 2.8: Numbers of predicted e�ectors in 1103 pathogenic and symbiotic
genomes, indicated by supporting method. E�ectiveT3 has been applied to
188 genomes of Gram-negative bacteria encoding a Type III secretion system.
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For many proteins containing eukaryotic-like domains no secretion signal for the Sec and

TTSS pathways is detectable. On the other hand, many proteins containing a secretion

signal do not contain any well conserved protein domains, preventing the detection of

eukaryotic-like function. This limitation is an intrinsic consequence of signature-based

approaches.

The high overlap between the two signal-based approaches is unexpected, as signal pep-

tides of the TTSS and Sec pathways should be incompatible to each other. Both signals

are located in the N-terminus of the amino acid protein sequence and show no similar-

ity. But since our understanding of the molecular recognition of e�ector proteins by the

secretion systems is still limited, we are not yet capable of discarding one signal due to

higher con�dence of the other.

A surprisingly high number of predictions is only supported by SignalP (422 907) or Ef-

fectiveT3 (68 376). As the real number of secreted proteins is unknown for all genomes

of pathogens and symbionts, the amount of false positives contributing to these predic-

tions, cannot be reliably determined. Considering the limited accuracy of both programs,

subsequent �ltering (e.g. discarding functionally well-annotated, probably not-secreted

proteins) could dramatically improve predictions. The ongoing improvement of bioinfor-

matic tools for the identi�cation of signal peptides will probably improve the situation

within the next years.

2.5.3 Reported experimental validation of e�ector candidates

predicted in the genomes of Chlamydiae sp.

In strains of the obligate intracellular human pathogen Chlamydia trachomatis, several

eukaryotic-like domains (ELDs) where identi�ed by the presented approach, results listed

in table 2.6. These ELDs are found widespread among eukaryotic organisms and are

enriched in divers other pathogenic/symbiotic bacteria outside of the genus Chlamydia. In

an experimental study, Gehre et al. evaluated e�ector candidates predicted by E�ective for

the genomes of C. trachomatis, C. caviae and C. pneumoniae. In the lab of Agathe Subtil

at the Institut Pasteur, eukaryotic-like domain containing e�ector candidates conserved in

the Chlamyida species were tested for secretion by the Type III secretion system (TTSS),

the predominant system for virulence in Chlamyidales [193]. The screening was performed

in a heterologous TTSS of Shigella �exneri that had been shown to be functional for

chlamydial e�ectors [278].

Gehre et al. reported the following observations [114]:

62



2.5. IDENTIFICATION OF EUKARYOTIC-LIKE DOMAINS ENRICHED IN
PATHOGENIC/SYMBIOTIC BACTERIA

� 17/25 candidates are secreted by a TTSS, 8/25 were not secreted

� 8/25 tested proteins had additionally a predicted TTS signal, under which 6/8

proteins were indeed positive for secretion

� 4/6 proteins with an ELD score of 4 were secreted

� all 7 candidates that reached the maximum ELD score of 10 000 were secreted

� when homologs of di�erent chlamydial species were tested, they always showed con-

sistent results

� 70% (17/25) of the chlamydial proteins that had an enrichment of a eukaryotic-like

domains were secreted by a TTSS. We cannot exclude the secretion of the remaining

30% of candidates by another secretion pathway.

Candidate proteins for the experimental validation of the eukaryotic-like domain based

prediction of e�ector proteins were selected independently of Type III secretion. Candi-

dates were chosen based only on results of the large scale eukaryotic-like domain identi-

�cation (ELD) approach for Chlamydia species. This provides further evidence, that a

secretion system independent prediction approach can be used to predict bacterial e�ector

proteins.

2.5.4 Discussion

Experimental evaluation of e�ector candidates predicted by the eukaryotic-like domain

(ELD) based approach shows that the prediction of secreted e�ector proteins works. Bac-

terial e�ectors from several organisms of the phylum Chlamyidales were predicted cor-

rectly by the unspeci�c, large-scale prediction approach based on eukaryotic-like protein

domains. Wieder et al. investigated the evolutionary origin and phylogenetic relationship

of eukaryotic-like protein domains in 70 randomly chosen bacterial pathogens/symbionts

[307]. Especially the role of horizontal gene transfer (HGT) events for the emergence

of eukaryotic-like protein domains was investigated, eukaryots functioning as donor and

pathogens as acceptor organisms. A signi�cant connection between horizontal gene trans-

fer events and eukaryotic-like domains was stated for several pathogenic/symbiotic bacte-

ria. On the level of domain similarities, evidence for HGTs being involved in the evolution

of eukaryotic-like domains was detected for the majority of pathogens/symbionts. Also

revealed was the fact that often the HGT donor of the domain sequence is not necessarily

the direct eukaryotic host organism. The phylogenetic analysis provides additional reason

to assume a general applicability of the ELD based e�ector prediction approach regarding
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2.5. IDENTIFICATION OF EUKARYOTIC-LIKE DOMAINS ENRICHED IN
PATHOGENIC/SYMBIOTIC BACTERIA

bacterial pathogens/symbionts of diverse clades.

As an intrinsic consequence of the domain identi�cation step, the predictive power of

the method is limited to the subset of e�ectors that shows conserved domain sequence

similarity. The ELD based e�ector prediction approach therefore is a powerful tool that

is preferentially applied in combination with other, e.g. signal-based prediction methods.
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3 The E�ective web portal -

Development of a comprehensive

resource for the prediction of

secreted bacterial proteins

3.1 Motivation

Recognition and characterization of e�ector proteins is key to the understanding of bac-

terial virulence and symbiosis. To select candidates for experimental analysis, in silico

e�ector prediction approaches were shown to be an e�cient way. Simultaneous application

of complementary approaches additionally narrows down the range of e�ector candidates

to be considered. Molecular biologists in this �eld of research could pro�t immensely from

a comprehensive public resource for the prediction of bacterial e�ector proteins.

Several resources momentarily implement signal-based prediction methods for T3 secreted

proteins [20, 248, 299] and the Sec pathway [225]. Up to now, there exists no public

resource that provides a taxonomically universal, function-based e�ector prediction ap-

proach.

Such a resource should on the one hand side enable analysis of all currently characterized

bacterial pathogens/symbionts by providing precalculated e�ectome data. On the other

hand, it should provide tools to predict e�ector proteins in private, unpublished sequence

data, based on a comprehensive set of prediction methods.

The E�ective web portal represents a resource that combines both complementary function-

and signal-based prediction approaches in one framework, to allow users a state-of-the-art

comprehensive prediction of bacterial e�ectomes (http://e�ectors.org).
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3.2 Functionality and requirements

To be of maximal value to the research community, a comprehensive resource for the

prediction of bacterial e�ectomes needs to meet the following requirements:

� Complementary e�ector prediction approaches are combined in a state-of-

the-art comprehensive set of methods.

� Precalculated e�ector candidates accessible for all completely sequenced bac-

teria with pathogenic and symbiotic phenotype.

� Interface to predict e�ectors on-the-�y in sequence data provided by the user.

� Userfriendliness - the web site is easy to use and navigate, while comfortably

providing all relevant information.

� Up to date - regular automated updates while keeping outdated versions accessible

in an archived format.

� Basic technical requirements and standard procedures necessary for a com-

prehensive functional web resource, e.g. maintainability, extensibility and version-

ing.

In the following, the realization of these requirements in the implementation of the E�ec-

tive web portal is described.

3.3 Concepts and implementation

E�ective (http://e�ectors.org) represents a comprehensive resource of predicted bacterial

secreted proteins. It provides information as well as interactive tools, e. g. for the selec-

tion of e�ector candidates for experimental analysis. The identi�cation of eukaryotic-like

protein domains (ELDs), based on the ELD score that results from the taxonomic oc-

currence of each domain, is a unique feature of the E�ective web portal. Precomputed

information within E�ective is easily accessible for all publicly available completely se-

quenced genomes of bacterial pathogens/symbionts.

All descriptions of the web portal, the data content and integrated methods provided in

this chapter refer to version 1.0 of the E�ective database.
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Figure 3.1: Screenshot of the E�ective web portal. The News section provides infor-
mation about the current status and version of the E�ective database. The cur-
rent mainframe shows the interface for displaying genome speci�c information on
eukaryotic-like domains.

3.3.1 Software model of the E�ective web portal

The software pattern realized in the E�ective portal is a 3-tier architecture model. Real-

ization of the 3 tier model in the E�ective web portal is illustrated in �gure 3.2.

To implement each of the individual layers, di�erent technical concepts are applied:

Presentation tier: Java Server Pages (JSP) are responsible for creating HTML user in-

terface pages with enhanced functionality by Javascript elements.

Business tier: The business logic is implemented in the Java programming language.

Java classes are responsible for data access. These objects use Java Database Connectiv-

ity (JDBC) to query the underlying database.

Data tier: Data is stored in a relational database implemented in the MySQL database

query language (http://www.mysql.org).
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Figure 3.2: 3-tier-architecture of the E�ective web portal. For each layer, required func-
tionality and the concepts used for implementation are indicated. The model enables
data querying from top to bottom, while data delivery between layers is possible in
the reverse direction.

Structure of the E�ective relational database

A relational database stores all precalculated information about predicted bacterial e�ec-

tor proteins. The database uses a normalized table structure to minimize redundancies

[62]. All tables of the E�ective database and their relationships are visualized in the entity

relationship model of �gure 3.3.
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Figure 3.3: Entity relationship model of the E�ective database. The E�ective database
for data storage and retrieval by queries through the web portal. The euk_domain
and allpfamdomains tables are not accessible by the portal and used for calculation
of eukaryotic-like domain scores and for the automatic update process.

3.3.2 Combination of complementary e�ector prediction approaches

The portal provides easy to use tools for the analysis of characterized bacterial genomes

and user speci�c protein sequences, e. g. proteins annotated in the genome sequence

of a novel sequenced bacterial organism. Implemented are two complementary predic-

tion strategies for protein secretion: the identi�cation of eukaryotic-like protein domains

(ELDs) and the recognition of signal peptides for TTSS and Sec-pathway in amino acid

sequences.
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Type 3 secretion signal - E�ectiveT3: Type 3 secreted e�ector proteins are predicted

via the E�ectiveT3 method. From the numerous published T3 prediction softwares, this is

the only one for which taxonomic universality of the predicted signal peptide is explicitly

shown [20]. The software was implemented as a Java based stand-alone tool by Tanja

Bieber and integrated into the E�ective portal in a common e�ort together with Roland

Arnold.

Signal for Sec secretion pathway - SignalP: The Sec-secretion pathway transfers pro-

teins into the periplasm of gram-negative bacteria and is generally not considered as a

mechanism important for bacterial virulence [24]. In the E�ective portal, it is mainly used

as a negative control in combination with the T3SS prediction approach. It facilitates

the recognition of unspeci�c e�ects in the prediction by E�ectiveT3. The secretion mech-

anisms of the Sec-pathway and T3SS serve di�erent purposes in the bacterial cell. The

Sec-pathway secrets into the periplasm, while T3SS targets explicitly the eukaryotic host

cytoplasm. Furthermore, both signals are located in the N-terminal part of the proteins

amino acid sequence and should be exclusive. Proteins secreted by both pathways are not

observed in any bacteria and regarded as highly unlikely. The signal for Sec secretion is

modeled with high accuracy and therefore serves as a fast and simple method to enhance

prediction accuracy of T3SS predicted e�ector proteins and can be also used to restrict

selection of e�ector candidates potentially secreted by other membrane spanning secretion

systems like T4SS and T6SS. As our understanding of the secretion mechanisms is still

limited, the Sec-pathway signal is not used as a strict �ltering criteria but o�ered to the

user as additional information to rate the con�dence of individual predictions.

The most established software for prediction of Sec-pathway proteins is SignalP, provided

by Nielsen et al [225]. The SignalP stand-alone software package (version 4.1) was down-

loaded from the SignalP webpage and integrated via shell scripting into the E�ective

prediction interface.

Function based approach - Identi�cation of eukaryotic-like protein domains: Identi�-

cation of eukaryotic-like domains (ELDs) is based on all PFAM-A protein domain hidden

markov models (HMM) provided by Pfam [230]. To search for eukaryotic-like domain

signatures in user provided protein sequences, the website uses the program Hmmsearch,

as implemented in the Hmmer 3.1b1 software package [98].

For on-the-�y identi�cation of ELDs in user provided protein sequences, no individual

scores are calculated. The output indicates each recognized eukaryotic-like domain signa-

ture that achieves a signi�cant enrichment score in at least one precalculated pathogenic/

symbiotic genome. Calculation of an individual enrichment score requires a complete

genome with all protein sequences given, which is not necessarily the case for user pro-
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vided protein sets. Eukaryotic-like domains with a signi�cant ELD score in at least one

precalculated genome provide a sensitive result for further manual inspection by the user.

The prediction of protein secretion by E�ective does not require any consensus between

the complementary prediction approaches but considers any single positive prediction to

be of biological relevance.

3.3.3 Automatic updates of the E�ective database

To keep the E�ective web portal up to date, a semi automatic update process is imple-

mented.

Updates of the genome repository and all precalculated prediction results in the E�ective

database can be executed with little manual intervention. Update scripts in Unix shell

and python programming language implement data retrieval and processing. This facil-

itates the performance of regular, e.g. yearly update cycles. Furthermore, the E�ective

web portal can anticipate sudden changes in the processed information and can quickly

respond to major updates in the public resources it depends upon.

3.3.4 Implementation of basic technical aspects

Several technical aspects are addressed in the implementation of the portal:

� Usability/Userfriendliness The portal is accessible from any operating systems

and is tested with all common web browsers. Overall design of the web portal as

well as presentation of content is optimized for fast visual processing by the user.

A large help section provides the user with all necessary information to make use of

the portal.

� Easy extensibility The resource is designed in a �exible way to allow easy main-

tainability and extensibility regarding data types and methods. The portal ar-

chitecture especially facilitates integration of new prediction methods for secreted

proteins that might become available in short future, e.g. for the identi�cation of

signal sequences in type-IV secreted proteins.

� Versioning Chronological tracking of outdated versions is implemented. Informa-

tion about the current version is given in the �News� section of the portal. Old

versions are accessible in an �Archive� section. Updates of the E�ective database

are also announced to users via the �News� box and the E�ective mailing list.
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3.3.5 The E�ective web portal provides precalculated e�ector

candidates for all sequenced pathogens and symbionts

The E�ective web portal provides user-friendly tools for browsing and retrieving com-

prehensive precalculated predictions for completely sequenced bacterial genomes. The

general outline of steps involved in the use case regarding a basic analysis of a predicted

e�ectome is visualized in 3.4. Eukaryotic-like domains and signal peptides of the Sec

pathway can be retrieved from the E�ective database for each of the 1160 genomes of

pathogenic and symbiotic bacteria. In order to provide consistent scores across genomes,

domain enrichment scores based on the total number of annotated proteins are always

provided.

The applicability of the prediction approaches implemented in E�ective is di�erent: whereas

Sec dependent secretion is a widespread feature of pathogens and symbionts and eukaryotic-

like domains can be encoded in any of their genomes, type-III secreted proteins can only be

expected in genomes of Gram-negative bacteria encoding a type-III secretion system that

is likely to be functional. Therefore, precalculations by the di�erent methods are made

accessible for the appropriate genome subsets. For all 188 genomes of Gram-negative

bacteria that encode a probably functional type III secretion system, the results of Ef-

fectiveT3 predicting type-III e�ectors are included in the precalculated �les available for

download. These results contain the accessions and descriptions of all annotated proteins

in the respective genomes, the E�ectiveT3 scores and the secretion prediction for each

protein according to the selective default threshold and standard prediction model. By

selecting the organism of interest, e�ector candidates identi�ed in any pathogen/symbiont

by all applied prediction methods can be comfortably downloaded as tab-delimited �les.

To facilitate further exploration and biological interpretation of eukaryotic-like protein

domains, additional features are provided regarding the eukaryotic-like domain based

prediction approach. Precalculated results are provided online through interactive web

pages that link any predicted domain to a status report page. Thereby, the user has the

possibility to

� browse eukaryotic-like domains per sequenced pathogen/symbiont: Each

completely sequenced genome can be selected from a drop down list to access its

genome report page, also compare 3.1. On this page, all eukaryotic-like domains

in proteins of the speci�c genome are listed with the according enrichment scores

and additional information. If a pathogenic/symbiotic genome is contained in the
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eggNOG database of Clusters of Orthologous Groups, additional domain enrichment

scores according to the conserved proteome are given.

� browse comprehensive information on eukaryotic like domains:

Speci�c domain report pages are provided for each protein domain that has been

detected in at least one pathogenic genome with a signi�cant domain enrichment

score of 4 or higher. For any domain, the numbers and lists of pathogenic, non-

pathogenic and eukaryotic genomes encoding at least one protein containing this

domain are indicated. As the frequencies of the domain in these organisms determine

the domain enrichment score, this information also allows the user to understand

why E�ective has identi�ed the particular domain as eukaryotic-like. A link to

descriptions of the particular domain in the Pfam domain database o�ers additional

information to the user.

� browse sequence information on e�ector candidates:

All e�ector candidates containing a particular eukaryotic-like domain with a sig-

ni�cant enrichment score are provided on protein report pages. Besides protein

descriptions and accession numbers, the protein report pages provide links to the

according protein entry in the SIMAP database of protein similarities, providing

information on e.g. sequence similarity and Gene Ontology functional annotation.

3.3.6 Use case: Selection of e�ector candidates for pulldown analysis

to investigate virulence strategies of Legionella pneumophila

The human/animal pathogen Legionella pneumophila uses functional processes estab-

lished by the host cell to maintain infection [50]. It serves as a model organism for the

identi�cation of eukaryotic-like protein domains (ELDs) and is exemplarily analyzed in

this use case. A diverse set of Type IV secreted e�ector proteins are suggested to orches-

trate the complex pathogen-host interactions of Legionella [103]. To closer investigate the

molecular interactions of Legionella pneumophila with its host, cost and labor intensive ex-

perimental analyses are performed [302]. E.g. in pulldown assays identify protein-protein

interactions by probing an interaction between a protein of interest that is expressed as a

fusion protein (bait) and the potential interacting partners (prey) [1]. These experiments

reveal possible functions which could be displayed by these proteins once they reach the

host cell. Reliable pre-selection of high-quality e�ector candidates is crucial.

In the following, the possible work�ow of an e�ector candidate selection via the E�ective

web portal is illustrated. We retrieve comprehensive information about the predicted
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Figure 3.4: UML description for retrieving precalculated information for all se-
quenced pathogens and symbionts. .

e�ectome of the completely sequenced pathogen Legionella pneumophila str. Paris, re-

sulting in a clearly laid out list of probable e�ector candidates.

On the E�ective start page, under the menu entry �Precalculated�, for each organism a

link leads to a tab-separated �le containing comprehensive e�ector prediction results for

all annotated proteins of Legionella pneumophila str. Paris. From that �le, candidate

e�ectors based on all applied e�ector prediction methods can be selected for further ex-

perimental analysis. For Legionella, e�ectors are predicted by the eukaryotic-like domain

approach and the signal for the Sec-pathway. E�ectiveT3 was not applied as the Legionella

genome does not encode a functional Type 3 secretion system. For investigation of the

e�ector candidates based on the identi�cation of eukaryotic-like domains, the �Browse�

section of the portal is used which allows to comfortably browse detailed information on

ELDs and ELD containing proteins.

48 protein domains in Legionella pneumophila str. Paris were identi�ed as eukaryotic-like

domains (ELDs) in 108 protein sequences. Seven ELDs in 8 proteins achieved the maxi-

mum ELD score of 10 000 3.5. The score indicates that these ELDs are exclusively found
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in eukaryots and pathogenic/symbiotic bacteria. Starting from these highly probable hits,

domain report pages are questioned for additional information, e.g. for the F-Box domain

shown in �gure 3.6. Experimental candidates are chosen on the basis of ELD scores. Man-

ual inspection of literature for the �nal set of selected proteins completes the candidate

selection work�ow. The literature search reveals that all of the high-scoring candidates

were previously identi�ed in Legionella-speci�c studies as eukaryotic proteins [118, 314].

The majority of predicted candidates are well characterized Legionella e�ector proteins,

showing again the high value of the unspeci�c eukaryotic-like domain approach for the

prediction of e�ector proteins. The proposed functional contexts of these characterized

e�ectors within the host cell are listed below: The predicted Legionella protein lpp2082

that contains domain PF12937 (F-box-like) is the characterized e�ector AnkB, shown to

modulate ubiquitination of the host protein parvin B [175]. It functions as a general plat-

form for the docking of polyubiquitinated proteins to the Legionella-containing vacuole

(LCV) to enable intravacuolar proliferation [228]. The high-scoring eukaryotic-like U-

box domain (PF04564) is identi�ed in the Legionella e�ector LubX (lpg2830) [199]. The

LegG2 e�ector (lpg0276) contains a RasGEF domain signature (PF00617) that allows

the pathogen to interfere with GDP-to-GTP exchange in GTP-binding host Ras proteins

[254]. Lpp1761 is a RhoGAP domain containing homolog to MavU, substrate of the Type

IV secretion system and involved in GTP-protein interactions inside the host cell [14]. A

high-scoring domain of unknown function (DUF3421, PF11901) is conserved in proteins

of all Legionella and Coxiella strains. Additionally candidates can be selected based on

the ELD score ranking. E.g. manual inspection of the two homologs containing the high

scoring domain signature of PF01150 of the GDA1/CD39 (nucleoside phosphatase) family

(ELD score of 48) were shown to be critical for Legionella infection and virulence [155].

All proteins with ELDs of maximum score make ideal candidates for experimental analy-

sis and are probably secreted by the Type IV secretion system [137]. Contrary to former

Legionella-speci�c studies, the presented candidate selection was conducted without the

integration of prior knowledge about Legionella pneumophila and calculated based on the

general criteria described in chapter 2. The presented use case regarding the identi�ca-

tion of ELDs Legionella also shows that the eukaryotic-like domain method can reproduce

earlier �ndings [309].
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Figure 3.5: Screenshot of the E�ective domain list output, presenting the list of
high-scoring ELDs in Legionella pneumophila str. Paris. For each
genome, speci�c pages list all eukaryotic-like domains with according enrichment
scores and links for further analysis. Here, the ranked list of high-scoring ELDs
identi�ed in Legionella pneumophila str. Paris are shown that were analyzed in
detail.
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Figure 3.6: Screenshot of the E�ective report page for F-Box domain (PF00646).
For each protein domain found to be enriched in any bacterial pathogen/symbiont,
an individual domain report page provides detailed information, e.g. about the
taxonomic distribution in all organisms.
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3.3.7 The E�ective web portal allows on-the-�y prediction of

e�ector proteins in user provided sequence data

The E�ective web portal provides a user-friendly interface for on-the-�y prediction of

e�ectors in user-provided protein sequences. Sets of sequences from single proteins to the

size of complete genomes can be uploaded in multi-FASTA format.

For the analysis of input sequence data, the user can choose from any combination of the

three di�erent prediction methods: prediction of Sec pathway secreted proteins, prediction

of TTSS secreted proteins and identi�cation of eukaryotic-like protein domains (ELDs).

Typical steps of an interactive e�ector prediction are visualized in 3.7.

The user can provide his own protein sequences in multi-sequence FASTA format. The

interface allows for a prediction of both function- and signal-based e�ector prediction

methods with adjustable parameter settings. Three di�erent methods can be chosen in

any combination: Eukaryotic-like domains, E�ectiveT3 and SignalP. During the on-the-�y

identi�cation, the E�ective method assigns a eukaryotic-like domain enrichment (ELD)

score to each protein domain, re�ecting the maximal enrichment of that domain in any

pathogen or symbiot, compared to the background frequency of the protein domain in non-

pathogenic bacteria. A high ELD score equals strong enrichment of the protein domain

in pathogenic/symbiotic bacteria. Parameter settings for all prediction methods can be

adjusted to individual needs. The size of the sequence dataset can be up to the typical size

that can be found in complete bacterial genomes. Comparable to the precalculated data,

this tool allows the user to control all prediction settings and to integrate the results from

the di�erent methods into one sorted table. The con�gurable parameters of these methods

are explained in a detailed �Help� section on the website. Calculation time for predicting

e�ectors in a bacterial genome of about 1000 protein sequences by all three methods is

about 4 minutes. In this typical example, time is distributed on the di�erent methods as

follows: E�ectiveT3 (20 sec), SignalP (40 sec) and Eukaryotic-like domains (180 sec). For

user-provided data, sequences are scanned for Pfam domain signatures using HmmSearch

[98]. Detected domains are evaluated based on the precalculated domain enrichment scores

in the E�ective database, considering the maximum score that is achieved by the particular

domain in all pathogen genomes. Proteins that have received positive predictions from

at least one selected method are provided in tabular form for further visual inspection on

the website and for download in Excel format (�gure 3.8).

A standard use case for this functionality of the E�ective portal is the prediction of

e�ector candidates in user provided protein sequence data of a novel sequenced pathogen

or symbiont.
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Figure 3.7: UML description for the prediction of e�ector candidates in user pro-
vided data. .

3.3.8 Use case: Comparative genomics analysis of three Pantoea

ananatis strains causing diverse host phenotypes

In a recent study, the prediction interface of the E�ective web portal was used in a com-

prehensive investigation of genomic features in the plant pathogen Pantoea ananatis (P.

ananantis). The methodology of the analysis constitutes a representative use case of this

part of the E�ective web-portal and is described in the following.

P. ananatis is an emerging plant pathogen and can be found all over the world in dif-

ferent agricultural plant species, such as rice, onion, maize and many more. Depending

on the host, it can cause di�erent diseases and symptoms [115]. Certain strains are not

only reported to be non-pathogenic but even plant growth promoting [222]. This makes

P. ananatis an interesting candidate to investigate, especially as a means of biological

control [65]. Genome analysis of a plant growth promoting strain of P. ananatis indicate

that these strains lack traits related to pathogenicity whereas they harbor genes that are

involved in plant growth stimulation [151]. Molecular interaction with the host plant is
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Figure 3.8: Screenshot of the E�ective result page for an interactive exemplary ef-
fector prediction. A descriptive visual output allows the user to easily capture
important results about the input data. Links provide additional information, e.g.
on enriched eukaryotic-like protein domains. All results can be comfortably down-
loaded in excel-format.

established via a Type 6 Secretion System (T6SS) that enables Pantoea to secrete proteins

into the host cytoplasm [260].

In the selected study, Sheibani et al. compared genotypic di�erences in three novel strains

of P. ananatis regarding the impact on the host plant. Before the in silico analysis, these

strains were shown to cause di�erent phenotypes in the infected host: Strain X1 led

to death of the host plant, being pathogenic; X2 showed no recognizable e�ect, while X3

stimulated plant growth and therefore is considered bene�cial to the plant. Sheibani et al.

identi�ed eukaryotic-like protein domains (ELDs) in all three P. ananatis strains (X1, X2

and X3) by applying the prediction framework provided by the E�ective web-portal. For

each genome, on-the-�y predictions were caculated using the web-interface with adjusted

parameter settings. As there is no functional Type 3 Secretion System (TTSS) detected

in any of the P. ananatis strains, the option to predict TTSS e�ectors was disabled. All
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eukaryotic-like domains with a highly signi�cant ELD score greater or equal to 10 were

selected for output. Results were downloaded and compared regarding eukaryotic-like

protein domains and ELD containing candidates to investigate the genomic variance of

P. annatis strains that cause di�erent phenotypes in the host. For all candidate ELDs,

frequencies in other bacterial pathogens/symbionts as well as occurrences in the eukary-

otic host genomes were inspected using the domain speci�c report pages of the E�ective

portal.

A high overall overlap of predicted ELDs in all 3 three Pantoea strains supports the as-

sumption of high average functional similarity of e�ector proteins. Despite this vast degree

of similarity, a close comparison of eukaryotic-like domains for P. ananatis strains reveals

crucial di�erences. A literature search for the selected candidate ELDs shows them to be

highly relevant regarding the pathogenic context of several bacterial pathogens/symbionts

or play major roles in the defense mechanisms of plant. The eukaryotic-like domain con-

tent of all genomes reveals a varying molecular repertoire of the P. ananatis strains that

are suggested to be responsible for the observed di�erences in phenotypes of infected host

plant (manuscript in preparation). Experimental evaluation of all predicted candidates is

the next step in an analysis that could lead to profound insights into host-interactions of

P.ananatis.

3.4 Discussion and outlook

The E�ective database is the �rst bioinformatics resource that combines two complemen-

tary approaches for the prediction of bacterial secreted proteins:

the function-based prediction by identi�cation of eukaryotic-like domains and the predic-

tion based on signal peptides necessary for transport by protein secretion systems. By

principle, none of these two strategies can achieve complete coverage. Therefore, their

integration in a single resource is bene�cial for the comprehensive annotation of putative

e�ectors in genomes and proteomes.

Further advancements of the E�ective portal could further enhance user friendliness and

automation. Aspects that are predestined to be addressed in the upcoming versions of the

portal are improvements regarding the on-the-�y prediction user interface and work�ow:

In the case of e�ector prediction in user provided sequence data, currently the eukaryotic-

like domain based prediction approach provides ELD scores regarding on all precalculated

pathogenic/symbiotic genomes, compare 3.3.2. An enhancement would include an option

that indicates that a user provided set of protein sequences comprehends all sequences
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from a complete bacterial genome. By selecting a checkbox, the user can indicate com-

pleteness of the genome and thereby activate individual ELD enrichment score calculation

for the provided set of protein sequences. Another advancement in the methodology to

analyze user de�ned complete input genomes could become feasible in the near future. In

the current implementation, the E�ective portal does not provide any help in the decision

which prediction methods are to be applied correctly. E.g. in the case of Legionella, the

pathogen is well known not to encode a Type III secretion system. To prevent misleading

results, e�ector candidates are therefore are not predicted by the E�ectiveT3 method,

in the precalculated genomes of all Legionella strains. If an inexperienced user checks

the button to include the prediction of T3 e�ector candidates in a user provided set of

Legionella proteins, results are likely to include positive hits. These positive predictions

are expected and in accordance to former �ndings by Arnold et al. The signal peptide

can well occur as it does not damage other protein functions. As there is no evolution-

ary pressure on the N-termini of Legionella proteins, a secretion signal could be formed

by chance [20]. Functional secretion systems are recognized in many well characterized

pathogens, as for example in Legionella. For many other bacteria of interest, this informa-

tion is not experimentally veri�ed. Limiting factors are typically the con�ned knowledge

about details of the secretion systems, especially regarding completeness and functional-

ity. E.g., even for the well studied T3SS, the experimental data on the T3SS apparatus is

not su�cient enough to enable prediction of its functionality. In consequence, this would

need an experimental functional validation for any given organism at hand, a claim that

is unworkable in practice. Identi�cation of TxSS components in any pathogen of interest

is feasible as demonstrated for the components of the Type III secretion machinery in

section 2.3.3. For several systems, the speci�c mechanisms of transport are still unknown.

Identi�cation of all components necessary for successful transport of e�ector proteins de-

pends on experimental validation. It needs to be evaluated, if empirical criteria can lead

to a reliable recognition of functional secretion systems. The integration of such secretion

system recognition in user provided sequence data could accommodate the user with a

completely automatic preselection of applicable e�ector prediction methods. The user-

friendly web portal of the E�ective database o�ers a versatile toolbox for generating new

e�ector candidates and for target selection toward experimental investigation of putative

secreted proteins. As the development and improvement of computational methods for

e�ector prediction is a vital area of research, new methods can be expected to become

available within the next years. The E�ective database provides a powerful framework

for their easy integration and will therefore make relevant new methods accessible to the

users of the database.
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4 Application of a domain-based

approach to predict pathogen-host

interactomes

4.1 Motivation

Upon infection, bacterial pathogens secrete e�ector proteins into the host cytosol to alter

functional pathways of the host cell. Comprehensive prediction of a pathogens e�ectome is

a crucial �rst step towards the understanding of bacterial virulence. For an understanding

of the direct pathogen-host interplay, investigation of the molecular interactions taking

place between bacterial e�ectors and targeted host proteins is required. In the EraNet

Pathomics project that funded the current study, collaboration partners experimentally

investigated pathogen-host protein interactions (HP-PPIs) for proteins of three pathogens:

Pseudomonas aeruginosa, Chlamydia pneumoniae and Chlamydia trachomatis. Simulta-

neously, I investigated computational methods to predict PH-PPI networks. Main aim of

this approach was to support the selection of speci�c candidates for further experimental

studies of collaboration partners, e.g. in interaction proteomics. In silico prediction of

pathogen-host PPIs faces the challenge of sparse experimental data. The experimental

data on inter-species protein-protein interactions in general and bacterial pathogen-host/

host-pathogen interactions in particular is very limited. Contrary to intra-species protein

complexes, pathogen host protein interactions cannot be directly measured under labo-

ratory conditions in a cultivated cell culture and are much more di�cult to investigate

experimentally [259]. For example, one of the few characterized interactions, the interac-

tion between chlamydial inclusion membrane protein IncG and host protein 14-3-3β was

experimentally discovered by a yeast two-hybrid screen of IncG against human proteins

and subsequent con�rmation by �uorescence microscopy in infected HeLa cells [255].

The major public resources on experimental PPIs hold only sparse information on a few

bacterial pathogens with a strong bias towards viral organisms. Regarding the pathogens
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of interest, Phidias [313], PHI-base [308] and the Pathogen Interaction Gateway (PIG)

[84] list no experimentally con�rmed pathogen-host interactions for Chlamydia pneumo-

nia and Pseudomonas aeruginosa, and one experimentally veri�ed PH-PPI for Chlamydia

trachomatis.

Given the sparse experimental data on pathogen-host interactions, cost and time e�cient

additional methods that could lead towards a better understanding of the pathogen-host

interactome are crucial. Up to now, no organism speci�c PPI prediction approach for

the pathogens of interest exists or was implemented. Taxon independent PH-PPI pre-

diction methods are not yet established and di�cult to evaluate due to the lack of data

on pathogen-host PPIs supported by experimental evidence. Large scale bioinformatics

approaches typically rely on training sets containing a su�ciently large number of ex-

perimentally validated candidates from diverse organisms to evaluate prediction results.

Such comprehensive data is not available in the case of bacterial pathogen-host PPIs. In

silico approaches to predict pathogen-host interactions typically assess the plausibility of

predicted PPIs by di�erent methods. Evaluation of the approach by a comprehensive

comparison of predicted PH-PPIs to known interactions is not feasible in most cases, due

to the lack of experimental data. The plausibility of the predictions is assessed by anal-

ysis of gene expression data and enrichment of general functional properties found to be

relevant for pathogen-host interactions [70].

The potential as well as current limitations in the prediction of pathogen-host interactomes

are evaluated exemplarily for the obligate intra-cellular pathogen Chlamyida trachomatis.

The Domain Interaction MAp (DIMA) is chosen as a representative collection of pre-

dicted protein domain-domain interactions (DDIs) derived from molecular intra-species

interactions. Mapped onto the chlamydial e�ectome and human proteome, the predicted

DDIs are expected to reveal possible interactions between e�ectors and their targets in

the human PPI network. Generally, the number of proteins annotated in the human

genome that share the same domain signatures can be very high [170]. The domain based

approach can therefore be expected to provide very general results with a large number

of interaction partner candidates. Human proteome data on tissue speci�c protein ex-

pression is integrated as additional support and discussed as a possible means to con�ne

interaction candidates. Biological plausibility of all predictions is tested considering the

over-representation of functions related to pathogenicity. Host pathways/processes and

molecular functions that are primarily a�ected by the chlamydial e�ectome are identi�ed

by Gene Ontology (GO) term and pathway enrichment analysis. Host proteins that are

linked to known strategies applied by C. trachomatis to initiate and maintain infection

are expected to be over-represented. Novel functions that also might be enriched could
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reveal host processes yet unknown to be altered during pathogenic infection.

In this work, the domain based prediction of protein interactions between the secreted

e�ectome of a pathogen and the protein network of the host cell is investigated. It re-

veals current limitations and chances to the in silico prediction of pathogen-host protein

interactions. All predicted PH-PPI networks between human and Chlamydia pneumonia,

Pseudomonas aeruginosa as well as Chlamydia trachomatis were made available online to

provide information on the biological context of experimental protein interaction candi-

dates to all collaboration partners of the EraNet Pathomics project.

4.2 Domain-domain interaction candidates of the C.

trachomatis e�ectome

4.2.1 Introduction

Experimental data on protein complexes and functional intra-species protein interactions

are basis to several methods that predict domain-domain interactions (DDIs) from these

protein interactions. The Domain Interaction MAp (DIMA) combines di�erent methods

to predict interactions between protein domains from known and predicted protein pro-

tein interactions. The potential of domain interactions identi�ed in intra-species data to

predict the protein interaction network between pathogenic e�ectors and host proteins

is investigated. The approach explored in this chapter assumes that characteristics of

inter-species interactions can be deduced from intra-species interactions because the un-

derlying molecular chemistry is not changed by the host-pathogen context. With this

assumption being valid, DIMA should provide domain interactions for bacterial e�ectors

that link these proteins to host proteins containing the interacting target domain. The

domain-based prediction approach is not expected to o�er a comprehensive characteri-

zation of e�ector interaction candidates. Major constraints could lie in the intrinsic de-

pendence on recognized protein domain signatures. The obligate intra-cellular pathogen

Chlamyida trachomatis is chosen as a model organism for its relevance to the EraNet

Pathomics project. Furthermore, C. trachomatis is a representative of the chlamydial

phylum, which has evolved separate from other bacterial divisions invariably containing

pathogenic organims. It can be considered a model for the study of bacterial infection

strategies and pathogenicity [144]. The predicted DDIs are expected to re�ect features

of protein interaction networks independent of organism boundaries. This could o�er a
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novel approach to the prediction of pathogen-host protein interactions (PH-PPIs). Fur-

thermore, it was analyzed to which extent targeted interacting domains are enriched for

the set of chlamydial e�ectors. Over-represented domains related to key functions tar-

geted during pathogenic infection serve as an additional indicator that prediction results

are biologically plausible.

4.2.2 Material and methods

The candidate e�ectome of Chlamydia trachomatis was identi�ed by collecting data from

experimental studies as well as e�ector prediction approaches. Considered are experi-

mentally validated e�ectors from manual literature search and e�ector proteins predicted

by E�ectiveT3 and the eukaryotic-like domain (ELD) based approach. Furthermore, the

results of several T3 secretion assays report a high number of C. trachomatis proteins that

are shown to be transported by a heterologous Type III secretion system [278, 73, 11].

These proteins can be expected to be secreted and to interact with the host cytosol during

infection. They are included in the predicted e�ectome.

In a post-processing step, candidates were screened for chlamydia speci�c virulence factors

with known non-host speci�c functions [218, 287]. Eight e�ector candidates containing

the domain signatures for Chlamydia polymorphic membrane protein repeat (PF02415)

and two TLC ATP/ADP transporter (PF03219) were removed. Pfam domain signatures

for chlamydial protein sequences are retrieved from Simap [235]. All domain-domain in-

teraction (DDI) pairs with calibrated DIMA score >= 0.7 were retrieved from the DIMA

3.0 database [178]. Thereby, the majority of DDIs are supported by structural evidence

derived from the public databases 3did [274] and ipfam [99] and can be considered of

very high quality. All DDIs are mapped onto the chlamydial e�ectome. Furthermore,

the speci�city of predicted pathogen-host domain interactions (PH-DDIs) of the chlamy-

dial e�ectors is investigated. The enrichment of domain interactions for the chlamydial

e�ectome was analyzed in comparison to interactions of the complete proteome of C.

trachomatis. P-values for all predicted HP-DDIs are obtained by comparing the number

of e�ectors targeting a particular domain with the distribution of that domain sampled

from random shu�ing. In the shu�ing process, PH-DDIs are subsequently exchanged for

randomly drawn interactions from the set of all chlamydial DDIs. The number of proteins

with DDIs and the number of diverse DDI targets for each of these proteins are kept con-

stant, preserving characteristics of the original set of predicted PH-DDIs. Permutations

of this process (n = 1000) simulate a normal distribution of the numbers of e�ectors tar-

geting each domain that is hypothetically interacting with proteins from the pathogenic
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e�ectome. P-values are calculated for each domain of the host-sided interactome based on

mean and standard deviation of the given normal distribution and the number of e�ectors

targeting the particular domain using the R Software for Statistical Computing [232].

4.2.3 Results

The predicted e�ectome of C. trachomatis consists of 156 proteins and has been deter-

mined by combining experimentally veri�ed as well as predicted e�ectors, compare table

8.3. A TTSS signal peptide has been predicted in 102 candidates, while 10 proteins contain

eukaryotic-like protein domains. With 33 of 89 proteins, are large fraction of experimental

candidates is part of the family of chlamydial inclusion membrane (Inc) proteins. The Inc

proteins are included into the analysis, as several proteins were found to be secreted from

the inclusion and directly interact with host proteins [246, 271, 255, 76].

Domain signatures were detected in 81 e�ector proteins (91 di�erent domains in total).

For 53 of these e�ectors, domain domain interactions were predicted, targeting 207 di�er-

ent domains. While the chlamydial e�ectors have an average of four DDIs and a median

of two predicted interacting domains, three predicted e�ectors have a very high number

of predicted domain interactions: CT267 (ihfA, 15 DDIs), CT344 (lon, 21 DDIs) and

CT755 (groEL_3, 46 DDIs). These proteins are described in literature to interact with

a multitude of bacterial proteins [295]. Compared to the complete chlamydial proteome,

speci�c domain targets are found to be enriched regarding the set of e�ector proteins.

Interacting domains that are enriched and achieve a p-value of less than 0.05 are listed

in table 4.1. Several interacting domains that are over-represented re�ect functions in-

volved in general bacterial pathogenicity strategies as well as in host response towards

infection. The characterized e�ector protein ChlaDub1(CT867) of Chlamydia trachomatis

alters host cell physiology and promote bacterial survival in host tissues. The cysteine

protease was shown to possess deubiquitinating and deneddylating activity and is involved

in inhibition of NFκB degradation [165]. Homologous to ChlaDub1 is the e�ector pro-

tein CT868, also a predicted cysteine protease [189]. Both proteins contain the domain

signature of Ulp1 protease family, C-terminal catalytic domain/PeptidaseC48 (PF02902).

Two domain-domain interactions are predicted in each of these e�ectors: One interaction

with the Ubiquitin domain (PF00240) and a self hit to the Ulp1 protease domain. Both

of these interactions were found to be enriched in the set of e�ector proteins. Further-

more, domains of the Hsp60 (PF00118), Hsp70 (PF00012) as well as Hsp90 (PF02518)

families of heat shock proteins are over-represented in the e�ector interaction partners.

Many of the host proteins containing this domains are ubiquitously expressed and play
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key roles in the stress response of cells during pathogenic infection [26, 296, 326, 185].

Several chlamydial e�ectors were predicted to interact with the conserved region of 14-3-3

proteins (PF00244). Human 14-3-3 proteins regulate the NFκB signaling pathway by con-

trolling the nuclear export of p65-IκBα [5]. During Chlamydia trachomatis infection, the

host protein 14-3-3β was shown to localize to the surface of the inclusion vacuole where it

interacts with the chlamydial inclusion membrane protein IncG [255]. No conserved Pfam

domain signatures are recognized in IncG, therefore this interaction could not be repro-

duced. Interestingly, four other chlamydial e�ectors (CT205, CT441, CT755 and CT823)

are predicted to interact with 14-3-3 proteins. The predicted interactions could yield light

on the important role of 14-3-3 proteins for chlamydial pathogenicity that is proposed in

literature [240]. The large family of ABC transporters (PF00005) includes members of

many di�erent functions. They share an exposed location in the host cell membrane and

some members are involved in the transport of defense peptides for antigen presentation

[131]. E�ects on the host response towards pathogenic infection was shown for AtPDR8,

a plasma membrane ABC transporter of Arabidopsis thaliana [156]. Several predicted

domain-domain interactions are related to ribosomal proteins. Interestingly, for several

ribosomal proteins, there is evidence for extra-ribosomal functions such as cell growth and

apoptosis [200, 300]). A pathogenic targeting of human ribosomal protein S3 by a bacte-

rial e�ector during E.coli infection was proven experimentally [112, 111]. Yet, no �ndings

are reported on manipulation of ribosomal proteins during infection by C. trachomatis.

Further investigation could clarify if the domain interaction partners predicted for ribo-

somal proteins are an artifact of the applied domain interaction prediction approach or

have a biological background.

4.2.4 Discussion

Several domain domain interactions (DDIs) over-represented in chlamydial e�ectors re�ect

molecular functions that are related to host processes altered by pathogenic infections or

that are related to the host immune response. While these interactions are in accordance

with possible functions of e�ector proteins inside the host cell, several annotated func-

tions of targeted host domains could identify novel processes important to pathogenicity.

The domain based prediction could serve as a valuable approach to narrow down func-

tional interactions within the host cell. While enrichment of certain functions might be

a strong indicator for a relevance in pathogenicity, predicted interactions that are rare in

the set of e�ector proteins could be of equal importance. For further analysis, all pre-

dicted domain-domain interactions are considered. The prediction method is dependent
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on the conservation of domain motifs within e�ector protein and target host protein. This

restriction to conserved domain signatures puts an intrinsic limitation to the prediction

approach. The Pfam protein domain database used in this study resembles a represen-

tative collection of domain models. DDI predictions might pro�t from the integration

of domain signatures from additional methods. The Interpro consortium for functional

classi�cation of protein sequences list several more public resources. Regarding domain

signatures of the complete Interpro database, functional domains are detected in 111 ef-

fector proteins, while Pfam domains are annotated in 91 of 156 e�ectors [235]. To evaluate

the integration of additional domain signatures, further domain based prediction methods

would need to be considered as the domain interaction prediction approach used in this

study is restricted to DDIs between Pfam domain models.
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Interacting Domain # interacting
host domain description e�ectors
PF00012 Hsp70 protein 8
PF00005 ABC transporter 5
PF00118 TCP-1/cpn60 chaperonin family 4
PF02540 NAD synthase 4
PF00244 14-3-3 protein 4
PF00166 Chaperonin 10 Kd subunit 3
PF00573 Ribosomal protein L4/L1 family 3
PF00227 Proteasome subunit 3
PF02518 GHKL domain 3
PF00156 Phosphoribosyl transferase domain 3
PF01751 Toprim domain 3
PF00583 Acetyltransferase (GNAT) family 2
PF01025 GrpE 2
PF01052 Surface presentation of antigens (SPOA) 2
PF01380 SIS domain 2
PF04055 Radical SAM superfamily 2
PF03572 Peptidase family S41 2
PF00400 WD domain, G-beta repeat 2
PF00240 Ubiquitin family 2
PF02201 SWIB/MDM2 domain 2
PF01245 Ribosomal protein L19 2
PF00542 Ribosomal protein L7/L12 C-terminal domain 2
PF01206 SirA-like protein 2
PF05362 Lon protease (S16) C-terminal proteolytic domain 2
PF00534 Glycosyl transferases group 1 2
PF00376 MerR family regulatory protein 2
PF00132 Bacterial transferase hexapeptide (three repeats) 2
PF00439 Bromodomain 2
PF02441 Flavoprotein 2
PF01433 Peptidase family M1 2
PF00501 AMP-binding enzyme 2
PF02902 Ulp1 protease family, C-terminal catalytic domain 2
PF03129 Anticodon binding domain 2
PF00297 Ribosomal protein L3 2
PF00216 Bacterial DNA-binding protein 2
PF00072 Response regulator receiver domain 2
PF00595 PDZ domain (Also known as DHR or GLGF) 2
PF08241 Methyltransferase domain 2

Table 4.1: Over-represented domain interaction targets of the Chlamydia trachoma-
tis e�ectome
Shown are all enriched domain-domain interaction targets of chlamydial e�ector
proteins compared to the complete chlamydial proteome (p-value ≤ 0.05) as well as
the number of e�ector proteins that are predicted to target the respective domain.
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4.3 Prediction of the chlamydial pathogen-host

interactome in human

4.3.1 Introduction

The primary function of bacterial e�ector proteins is to alter molecular processes within

the host cell. The domain interactions predicted for these bacterial proteins are expected

to re�ect the pathogen-host relationship. In this section, the domain interactions (DDIs)

predicted for chlamydial e�ectors are utilized to identify interacting host protein candi-

dates. Generally, the number of proteins annotated in the human genome that share the

same domain signatures can be very high [170]. The domain based approach can therefore

be expected to provide a large number of interaction partner candidates. For the iden-

ti�cation of interaction partners in the human host proteome, additional information is

taken into account. Bacterial pathogens a�ect predominantly speci�c tissues in the host

organism. The host tissue in which the infection is initiated and spreads varies depending

on the pathogen. Chlamydia trachomatis includes serovars comprising lymphogranuloma

venereum (L1�L3), ocular (A�C) and genital (D�K) serovars [3]. Beside physical restric-

tions on the pathogens access to the human body, reasons for tissue tropism were also

found in the molecular pathogen-host interactions [94], were the virulent function of a

bacterial e�ector protein within the host is displayed speci�c in certain host tissues [207].

Regarding tissue tropism of di�erent C. trachomatis serovars, tissue speci�c protein ex-

pression is considered in the prediction of interacting host proteins. The integration of

gene expression data o�ers a possibility to narrow down interaction partner candidates

to those proteins with experimental evidence for expression. Several molecular functions

as well as biological processes and pathways are expected to be enriched in targeted host

proteins that are crucial for pathogenicity, such as regulation of the cell cycle, subversion

of the host's DNA replication and transcription machinery, manipulation of host cellular

programs such as apoptosis, immune response and NF-κB pathways [85]. The majority of

predicted pathways are expected to re�ect typical host functions altered during pathogenic

infection that are supported by literature. Over-represented novel functions might hint

towards additional infection strategies that could prove helpful in candidate selection for

experimental studies. Many of the biological processes occurring in C. trachomatis infec-

tion are orchestrated by a large number of e�ectors [193]. While di�erent e�ectors are

expected to target identical host proteins, host pathways that are crucial for infection are

also likely to be targeted at several di�erent stages [109]. The predicted pathogen-host
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protein interactions could provide a comprehensive inventory of interaction candidates

that allows a sensitive analysis of the interplay between di�erent e�ector proteins during

pathogenic infection.

4.3.2 Material and methods

All human protein sequences as well as Pfam domain signatures of human protein se-

quences as detected by InterproScan were retrieved from the SIMAP database of protein

similarities [235]. A data set on di�erential protein expression in healthy human tis-

sues collected from public resources was downloaded from the Human Protein Reference

Database (HPRD). The HPRD provides a collection of manual curated and high quality

protein expression data from di�erent public resources and experiments [149, 117]. The

general scope of protein expression data for a number of representative human tissue types

is shown in table 4.2. The overall protein sequences integrated in HPRD cover most of

the human proteins in the Refseq database. Genes might only be expressed in partic-

ular tissues under speci�c experimental or cellular conditions, any of these experiments

therefore lack comprehensiveness. Nevertheless, the integrated data from HPRD, in line

with other established approaches, represents a gold standard for tissue speci�c protein

expression in human [226].

The human protein-protein interaction (PPI) network was also retrieved from the Human

Protein Reference Database.

Domain-domain interactions (DDIs) link a bacterial e�ector domain to domains in pro-

teins of the human proteome. Human proteins that include the DDI target domain

are predicted to form a pathogen-host protein interaction with the particular chlamydial

e�ector protein. An e�ector candidate that contains one or more protein domain signa-

tures and may form a DDI with one or more domains from a host protein, then these

two proteins are considered to interact with each other and constitute a pathogen-host

protein-protein interaction (PH-PPI). These PH-PPIs are determined for all annotated

human proteins listed in the HPRD.

Tissues primarily a�ected during infection of the human host by di�erent C.trachomatis

serovars include mucosa [43], cervix/endocervix [154] and vagina [154]. Secondary infec-

tion tissues are for example prostate [89], testis [141], epididymis [251] and lymph nodes

[285]. Proteins that are expressed in infected tissue types are ranked above interaction

candidates without experimental evidence for expression. Furthermore, e�ectors have

been shown to interact preferentially with hubs of the host PPI network [195]. We use

94



4.3. PREDICTION OF THE CHLAMYDIAL PATHOGEN-HOST INTERACTOME IN HUMAN

Tissue #observed expressed proteins
Brain 5881
Kidney 5498
Liver 5431
Heart 5203
Lung 5097
Placenta 4628
Testis 4347
Pancreas 4333
Skeletal muscle 4178
Spleen 3766
Ovary 3268
Leukocyte 2903
Colon 2753
Prostate 2713
Small intestine 2516
... ...∑

12227

Table 4.2: Number of expressed proteins in di�erent human tissues and cell types listed in the
HPRD database (581 in total), as well as the total number of observed proteins in
any of the tissue/cell types.

this tendency to rank the proposed interaction candidates. The degree of human proteins

in the human PPI network is determined and interaction partners are ranked accordingly

in decreasing order. Actual interactors should rank high in the respective lists.

For all protein interaction candidates, a Gene Ontology (GO) enrichment analysis as well

as the enrichment of functional KEGG pathways was conducted using FatiGO with de-

fault parameters [8]. FatiGO takes two lists of proteins and extracts the according Gene

Ontology terms for the list of all human proteins and the list of protein interaction can-

didates. A Fisher's exact test is used to check for signi�cant over-representation of GO

terms in the set of interaction partners.

4.3.3 Results

Regarding all predicted domain interactions (DDIs) for the e�ectome of C. trachomatis,

71 % of all DDIs of chlamydial e�ectors are recovered by domain signatures annotated

in human proteins. This way, interactions to human host proteins were predicted for 43

chlamydial e�ectors. A total of 3602 human proteins are predicted as targets of these

chlamydial e�ector proteins. For 623 interaction candidates, expression in human tissues
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prone to chlamydial infection has been directly observed.

Interaction candidates inside the host cell are involved in several molecular functions

as well as di�erent biological processes. In these two categories, 157 and 131 unique

GO terms were found to be enriched, respectively. Gene ontology (GO) terms over-

represented in the set of interacting human proteins are listed in appendix tables 8.5

and 8.6. Several over-represented terms depict functional themes known to be targeted

by pathogenic e�ector proteins: Among them are ubiquitin-protein transferase activity,

PDZ domain binding and protein serine/threonine kinase activity. Enriched biological

processes that are relevant to pathogenicity include cellular response to stimulus, MAPK

cascade, intracellular transport and ER-nucleus signaling. Regarding GO terms referring

to the cellular component of the host proteins, the enriched locations that are furthermore

targeted by the maximum number of e�ector proteins are the mitochondrial part (29),

insoluble fraction (23), membrane-bounded vesicle (22), cytoplasmic membrane-bounded

vesicle (22) and the membrane fraction (22), compare appendix table 8.8. An analysis

of KEGG pathways reveals 59 pathways that are enriched among the set of interacting

proteins. Many of these pathways are targeted at multiple stages by several di�erent

chlamydial e�ectors, for example the regulation of actin cytoskeleton, ubiquitin mediated

proteolysis and the MAPK signaling pathway. Table 8.7 lists KEGG pathways that are

over-represented among host protein targets of the C. trachomatis e�ectome. For several

of these e�ectors possible functional roles are proposed and described in recent literature.

During the initiation of infection, a crucial step is the disassembly of the host actin cy-

toskeleton to gain entry to the host cell [161, 256]. Attachment and entry of the pathogen

into the host cell is only enabled by remodeling of the host actin network [47]. With-

out a switch shifting the balance of actin dynamics from polymerization to disassembly,

this physical barrier would prevent internalization of the pathogen [46]. Two chlamy-

dial e�ectors, CT456 (Tarp) and CT166 seem to play key roles for this important early

stage of infection. E�ector CT166 is targeting the host GTPase Rac to induce actin

re-organization [284], while Tarp is binding to host guanine nucleotide exchange factors

to activate the host signaling cascade to recruit actin [162]. In this study, eight more

chlamydial e�ector proteins are predicted to target host substrates participating in the

regulation of actin cytoskeleton in the host cell, compare �gure 4.1. Thereby, the two

proteases CT441 (Tsp) and CT823 (htrA) are both predicted to interact with the human

rho guanine nucleotide exchange factor NP_056128. This might indicate that the e�ector

proteins Tarp, Tsp and htrA share similar functions during the early stages of infection,

shutting down the actin pro-assembly signaling by inhibition of Rho GTPases.

In table 8.4, targeted host proteins are ranked by the degree in the PPI network of the
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Figure 4.1: Chlamydial-host PPI targets in the regulation of actin cytoskeleton.
Shown is the KEGG map for pathway `Regulation of actin cytoskeleton' (KEGG
id: 04810). Indicated are all interaction candidates of chlamydial e�ector proteins
targeting this pathway in human.

human cell. All interactions between C. trachomatis e�ectors and the expressed host

protein with the highest degree are listed. If no interaction candidate was found to be

expressed in infected tissues, the annotated protein with the highest degree is considered.

Experimental assays could provide additional candidate PPIs and experimental evidence

of interacting host proteins. Hence, one aim of this work was to facilitate candidate selec-

tion for experimental analysis and to support experimental collaboration partners within

the Pathomics project. The predicted pathogen-host interactomes for Pseudomonas

aeruginosa PAO1, Chlamydia pneumoniae and Chlamydia trachomatis were made avail-

able online to provide easy access to all relevant information for manual inspection and

further analysis.
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4.3.4 Discussion

Molecular functions, biological processes and cellular pathways that are regulated by the

host proteins interacting with chlamydial e�ectors provide information on the biological

context of the chlamydial e�ectome inside the host cell. The domain-based prediction

method represents a possible approach to investigate characteristics and properties of

pathogen-host interactions (PH-PPI) and select candidates for further experimental anal-

ysis. The domain-based approach is independent of experimentally observed pathogen-

host interactions. It is based on the assumption that basic characteristics of inter-species

interactions are similar to intra-species PPIs. Without a gold standard of characterized

PH-PPIs it is di�cult to comprehensively evaluate the prediction results. Due to the

limited data on experimentally validated interactions the prediction approach is tested

regarding the biological plausibility. Gene Ontology (GO) terms and KEGG pathways en-

riched in the set of targeted host proteins depict functional the contexts that were reported

to be altered by chlamydial infection [31]. Beside several known functions, the enriched

terms reveal also novel functional contexts that could be important for C. trachomatis

pathogenicity. E.g. ATPase activity is enriched in host interaction candidates and tar-

geted by 24 putative chlamydial e�ectors. While not being addressed experimentally,

this could indicate that Chlamydia inhibits ATP hydrolysis and proton translocation, a

pathogenic strategy applied by other obligate intra-cellular pathogens, e. g. Legionella

pneumophila [315].

Considering tissue expression data and the degree of interacting proteins within the host

PPI network provide a possibility to rank the numerous possible e�ector targets. Both

criteria include strong assumptions about the biological background. The tendency of

pathogens to target hubs in the host network might depend on speci�c properties of the

particular pathogen related to bacterial lifestyle. It is suggested that persistent intra-

cellular pathogens follow a tendency to reduce their impact on the host cell by targeting

host proteins with di�erent properties than extra-cellular pathogens that cause acute

symptoms in the host [42]. Bacterial pathogens preferentially infect speci�c host tissues.

The function of a pathogenic e�ector protein can be speci�c for a particular host tissue

type. Gene expression in cells of di�erent tissue types in the human body undergo high

variation [305]. Particular genes may not be expressed at all in a particular tissue, while

others are only expressed during certain phases of the cell cycle. On the other hand,

apart from di�erentiation in gene expression, also post-translational regulation and tissue

dependent expression of protein isoforms play major roles in tissue di�erentiation [236].

Experimental evidence shows that tissue speci�city is achieved by the precise regulation
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of protein levels. Besides controlling which protein is expressed, di�erent tissues in the

body might acquire their unique characteristics by controlling how much of a protein is

produced [226]. The current status in research on mechanisms of tissue speci�c regulation

of protein levels suggest that the in�uence of di�erential gene expression in the human

body is far from being fully understood. Data from experiments on protein expression

as well as the degree of interacting proteins in the host network are applied as criteria

to rank pathogen-host PPI candidates. Many biologically reasonable predictions might

not fall into one of these categories. Both integration of gene expression data as well

as including the position of interactors in the host PPI network need further evaluation

based on individual properties of pathogens with di�erent host phenotypes.

Many challenges related to the prediction of pathogen-host PPI networks are still not

addressable. On the one hand, there are only few e�ector proteins functionally charac-

terized. On the other hand, while domain-based approaches are rather unspeci�c, only a

limited very number of pathogen-host PPIs is experimentally veri�ed that could provide

a basis for training pathogen speci�c PPI prediction approaches. The domain-based PH-

PPI prediction approach could hint to possible functional roles of still uncharacterized

e�ector proteins. Prediction methods were explored in the scope of the EraNet project in

addition to experimental studies on interaction proteomics, determining how predictions

could support experimental data. Experimental veri�cation of the predicted interactions

between C. trachomatis e�ectors and proteins of the host PPI network would be necessary

to further valuate predicted interactions. Within these boundaries, we provide pathogen-

host interaction networks that can support candidate generation for further experimental

studies.
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5 Classi�cation of bacterial phenotypes

based on genomic features

5.1 Motivation

In many areas of microbial diagnostics, early recognition of the potentially harmful phe-

notype of novel microbial agents is a critical task. Traditional methods rely on phenotypic

identi�cation by culture and biochemical experiments. Major drawbacks of most tradi-

tional phenotypic procedures is the limitation to organisms that can be cultivated in vitro.

Furthermore, unknown species could exhibit unique biochemical characteristics that do

not �t into known patterns for the detection and characterization of bacterial pheno-

types. Novel experimental screening approaches try to overcome some of these obstacles

and succeed in creating phenotype-genotype maps of genetically manipulatable bacterial

organisms, e.g. the human pathogen Streptococcus pneumoniae [286]. The advances in

next generation sequencing, open the possibility to enhance or even replace traditional

experimental methods by fast and reliable bioinformatics methods. By these approaches,

basic genetic features of complex bacterial traits are revealed, e.g. associations with known

enzymatic pathways, molecular complexes and signaling pathways [265]. Comparative ge-

nomics could also o�er approaches to determine the pathogenic/symbiotic phenotype of

a bacterial microorganism. Starting point of the analyses is the genome sequence of a

novel sequenced bacterium. This chapter explores the possibilities to predict bacterial

phenotypes by comparative genomics methods regarding basic molecular mechanisms im-

portant for pathogenicity and general interaction with the host cell. Possible features for

the prediction of bacterial phenotypes could be the molecular mechanisms to establish an

interaction with the host. E.g. several di�erent secretion systems can be encoded in the

genome of bacterial organisms. Secretion systems in general are associated with a variety

of molecular processes in bacteria of any phenotype while the main function of several

systems in particular is to establish a connection to the eukaryotic host cell [25]. The

Type III Secretion System (T3SS) is the secretion system most directly linked to viru-
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lence and found in many gram-negative pathogenic/symbiontic bacteria [61]. It enables

the pathogen to inject bacterial proteins directly into the host cell. As the implemen-

tation of the macro-molecular machinery is very costly for the organism, it is expected

to be evolutionary conserved only in bacteria whose lifestyle depends on the successful

delivery of e�ector proteins. Considering the necessity of secretion systems to deliver

e�ectors into the host cell, a classi�cation of bacterial phenotypes based on these genomic

features could constitute a promising approach. On the other hand, the recognition of

functional secretion systems in bacteria which is a prerequisite to an accurate classi�ca-

tion is still challenging, compare section 2.3.3. Further limitations of a secretion system

based approach to identify bacterial phenotypes are revealed when considering the cover-

age of these systems. According to results in section 2.3.3, only about 17% (188 of 1131)

of sequenced pathogens/symbionts do encode a functional T3SS. An analysis of ortholo-

gous groups regarding components of the Type IV secretion system (T4SS) suggests that

coverage of the T4SS is in the same range. Apart from the pathogen/symbiont speci�c

secretion systems T3SS and T4SS, many pathogens rely on the Type II secretion system

(T2SS) to secrete virulence factors. T2SS is encoded in non-host-interacting bacteria alike

and could be considered unspeci�c for the bacterial phenotype [158]. Also the Type VI

secretion system (T6SS) is not con�ned solely to pathogenic bacteria, orthologs of several

T6SS components are widespread in the kingdom of bacteria [35].

The research topic addressed in this chapter is to evaluate a classi�cation of bacterial

phenotypes based on another major genomic feature in which pathogens as well as sym-

bionts di�er from non-pathogenic, non-host interacting bacteria. Bacterial organisms

of host-interacting phenotypes depend on the existence of e�ector proteins to modulate

functional processes inside the host cell [33]. It is not yet investigated to which extent

bacterial e�ectors have discriminatory power to classify bacterial genomes regarding their

phenotype. The eukaryotic-like domain (ELD) approach o�ers the possibility to evaluate

an e�ector based classi�cation of bacterial phenotypes independently of a bacterial secre-

tion systems. The ELD based approach could provide a conceptual advantage and extend

a secretion system based classi�cation. Secretion system based classi�cation needs com-

plete genomes, a premise that is not given e.g. in metagenomic samples. A phenotype

classi�cation based on e�ector proteins could also work for contigs/un�nished genome

sequences. In the following, a bacterial phenotype classi�cation based on eukaryotic-like

domain containing e�ector proteins is evaluated. Besides the contribution to existing in

silico methods for the classi�cation of bacterial phenotypes, characteristics of bacterial

eukaryotic-like protein domains and the possibilities they provide to predict the phenotype

of novel bacterial agents are explored.
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5.2 Characteristics of eukaryotic-like protein domains in

bacteria of diverse phenotype

5.2.1 Diversity of eukaryotic-like domain pro�les between closely

related bacterial genomes

Virulence factors are in general associated with the �exible part of the bacterial pan-

genome which is found to vary for strains of the same species [127]. E.g. in Streptococcus

agalactiae, the majority of virulence associated genes are found in this dispensable gene

pool of the pangenome [283]. Because of their implications for virulence within the genome

of pathogenic bacteria, eukaryotic-like domain containing proteins (ELDPs) are expected

to fall mostly into this category. A considerable average di�erences of eukaryotic-like pro-

tein domain (ELD) pro�les between closely related pathogens could be a result of their

functional context. Also ELDs in non-pathogenic bacteria could be exposed to higher

variation than non-ELDs. These domains could have been acquired by lateral gene trans-

fer and serve functions less vital to bacteria of non-pathogenic than of pathogenic or

symbiotic lifestyle. Less evolutionary pressure results in lower detectable conservation of

protein domains. In this section, the diversity of ELD pro�les between bacterial genomes

is analyzed and compared to the similarity of non-ELD pro�les considering di�erent lev-

els of taxonomic divergence. The diversity of eukaryotic-like domains (ELDs) among

bacterial genomes has implications for further classi�cation and testing. High variety of

ELDPs between closely related bacterial organisms could account for a well-suited and

non-redundant data basis to classi�cation.

Material and methods Domain pro�les are analyzed for all genomes with distinct anno-

tated phenotype in the genome repository. Within these 1706 bacterial genomes, strains

of several species are over-represented. E. g. over 50 di�erent strains of E.coli and

Helicobacter pylori are listed, respectively. For details on the genome repository and as-

sorting of genomes into classes of di�erent taxonomic levels, see section 2.3. Similarly

to the calculation of eukaryotic-like domains (ELDs) for individual bacterial genomes of

pathogenic phenotype, identical background frequencies and standard deviations are used

to identify pseudo eukaryotic-like domains in all non-pathogenic bacteria. Domain pro-

�les are compared regardless of the phenotype of the particular bacterial organism. The

pool of non-eukaryotic-like domains (non-ELDs) are de�ned as those domains, which are

not recognized as eukaryotic-like (with an ELD score >= 4) in the given genome. ELD
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score di�erences are not taken into account for further analysis. For each pair of genomes,

we can estimate the fraction of domains likewise identi�ed as ELDs/non-ELDs in both

genomes as well as the number of domains which are identi�ed as ELDs only in any one

of them. To estimate the diversity of domain pro�les for di�erent genomes, the Jaccard

index or Jaccard similarity coe�cient (JSC) is used. The JSC measures the similarity

between two data sets by dividing the number of intersecting samples through the size of

the union of the data sets:

J(A,B) =
| A ∩B |
| A ∪B |

According to equation 5.2.1, a JSC of 1.00 translates to identical sets, while a JSC of 0.00

represents no overlap of sets A and B.

The Jaccard index and the according average standard deviation are calculated for the

di�erent taxonomic classes of species, genus, family, order and phylum. For each level,

an all-against-all comparison of ELD and non-ELD pro�les is performed for all genomes

within that level. The average of these JSCs is a measure for the average similarity of

domain pro�les within the class, considering a particular taxonomic level. E.g. on the

species level, JSCs are calculated for all possible pairs of strains of any one species. The

average Jaccard similarity coe�cient of the ELD pro�les is a measure for the similarity

of eukaryotic-like domain content in bacterial genomes on the particular taxonomic level.

Results Eukaryotic-like domain (ELD) pro�les show considerable divergence on all tax-

onomic levels of comparison. The similarity of ELD pro�les between di�erent strains of

the same species is 0.66 on average. Naturally, similarity decreases for higher taxonomic

divergence, to an average of 0.14 for bacterial genomes of the same phyla. Average pro�le

divergence for di�erent taxonomic levels are compared in table 5.1.

The observed similarity between genomic ELD pro�les on each level is considerably lower

than the according average similarity of non-ELD pro�les. Distributions for average Jac-

card similarity coe�cients (JSC) for ELD and non-ELD similarities over di�erent taxo-

nomic levels are visualized in �gure 5.1.

Discussion Eukaryotic-like domain (ELD) pro�les of closely related bacterial genomes

were shown to have low average similarity. ELD pro�les also show lower average simi-

larity between bacterial organisms of the same taxonomic level than the pro�les of non-

eukaryotic-like domains. These �ndings are in accordance with expectations regarding the

assumed biological background of eukaryotic-like domains. Nevertheless, the underlying
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Figure 5.1: Average similarity of eukaryotic-like domain (ELD) and non-
eukaryotic-like domain pro�les between bacterial genomes on di�erent
levels of taxonomic divergence. Distributions are shown in standard boxplot
format, indicating Jaccard similarity coe�cient (JSC) median values and standard
deviations.

calculation procedure for identifying eukaryotic-like protein domains cannot be excluded

as a possible reason to enforce these e�ects. Due to their considerable variation, ELDs of

closely related genomes are expected to add valuable information to the classi�cation of

bacterial phenotypes. Regarding the high average divergence of ELD pro�les, bacterial

genomes of the complete genome repository are used in the following test layouts.
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Taxonomic divergence non-ELDs ELDs
JSC Stdev JSC Stdev

species 0.90 0.07 0.66 0.21
genus 0.79 0.10 0.39 0.23
family 0.68 0.11 0.21 0.17
order 0.63 0.11 0.18 0.16
phylum 0.56 0.14 0.14 0.17

Table 5.1: Average eukaryotic-like domain (ELD) and non-eukaryotic-like domain
(non-ELD) similarities between bacterial genomes for di�erent levels of
taxonomic divergence. Listed are average Jaccard similarity coe�cient (JSC)
for non-eukaryotic-like domains (non-ELDs) and eukaryotic-like domains (ELDs)
as well as according standard deviations (Stdev).

5.2.2 The pathogenicity probability of a eukaryotic-like protein

domains

Many pathogens are known to share common themes of virulence. Even infection strate-

gies of bacterial families so divers as Chlamydiaceae [23], Mycoplasmataceae [58], Strep-

tococcaceae [100] and Enterobacteriaceae [191] show common virulence themes [96, 324].

Similar implementations of these strategies on the genomic level are often realized by a

limited pool of e�ector proteins with specialized functionality [108]. E.g. for Pseudomonas

aeruginosa, Rahme et al. pointed out a remarkable conservation in virulence mechanisms

used to infect hosts of divergent evolutionary origins [234]. The eukaryotic-like domain

(ELD) score captures the deviation of a protein domain from the non-pathogenic back-

ground in a single pathogenic genome. Based on this calculations, the distribution of an

ELD within di�erent pathogens and symbionts compared to non-pathogens could hold

additional information that could be integrated in a phenotypic classi�cation.

Material and methods For each eukaryotic-like domain with a certain ELD score

(ELDid,score), the number of genomes with proteins containing that ELD is estimated for

di�erent phenotypes. pathogens/symbionts bacteria with proteins containing this ELD

are compared to the number of non-pathogenic bacteria with that ELD and a respective

score. The ELD score of a domain in non-pathogenic bacteria is calculated according to

the formula for eukaryotic-like domain calculation given in chapter 1. Average occurrence

and standard deviation values for score calculation are retrieved according to the distribu-

tions in pathogens/symbionts organisms. The pathogenicity probability Ppatho_ELD of an

ELDid,score re�ects the ratio between the occurrences of this ELD in genomes of di�erent
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phenotype:

Ppatho_ELD(ELDid,score) =
#Gpathogens/symbionts(ELDid,score)

#Gnon−pathogens(ELDid,score)+#Gpathogens/symbionts(ELDid,score)
(5.1)

Where #Gpathogens/symbionts(ELDid,score) is the number of pathogens/symbionts genomes

containing an instance of ELDid,score and Gpathogens/symbionts(all) is the number of all

pathogens/symbionts genomes considered in the analysis (for non-pathogens respectively).

Pseudo counts in case of an ELD being exclusive to one phenotype are set to 1.0 for

probability calculation.

Results Eukaryotic-like domains (ELDs) with a high pathogenicity probability

Ppatho_ELD re�ect common virulence themes of divers pathogens. Table 5.2 shows the

eukaryotic-like domains with the highest pathogenicity probability. All identi�ed ELDs

were considered independent of the particular score, which corresponds to the minimal

ELD score cuto� of 4. Many domains are involved in functions commonly associated with

pathogenic strategies in literature:

Ulp1, ubiquitin-like protein peptidase The ELD with the highest pathogenicity prob-

abiltiy is the ubiquitin-like protein peptidase (Ulp1) domain. Ulp1 is the catalytic domain

of the XopD e�ector (Xanthomonas outer membrane protein D), a TypeIII-secreted pro-

tein in Xanthomonas [134]. The importance for virulence of Ulp1 is also shown for several

other pathogens [189, 291]. Considering the strong similarity to ULP1-like proteins in

yeast and mammals, the origin of this e�ector is suggested to be a eukaryotic ULP1-like

gene [57, 27].

Glycosyltransferase Family 25 of glycosyltransferases are involved in lipopolysaccha-

ride (LPS) biosynthesis. Lipopolysaccharides are among the major virulence factors of

gram-negative bacteria [105] and important for altering host immune response. Glyco-

syltransferase activity is observed for the e�ector protein NleB. NleB inhibits NF-κB

activation in the host of several attaching/e�acing human pathogens [113].

ACT domain The ACT domain is the C-terminal regulatory unit of 3-phosphoglycerate

dehydrogenase and has homologs over a wide range of prokaryotic and eukaryotic organ-

isms [56]. The observed enrichment in pathogens/symbionts could be an indication of its

role in RelA proteins and their involvement in the NF-κB mediated response to stressful

conditions such as pathogenic attack [34, 281].

Fumerase Gaham et al showed that a mutation in the Fumarase gene caused reduced

virulence of the intracellular pathogen Listeria monocytogenes [107].

TCP-1/CPN60 The TCP-1/CPN60 chaperonines include T-complex proteins and the
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HSP60 family of heat shock proteins. While these proteins can be found in any kingdom

of life and they are mainly released by the organism on heat induced stress, they were

found to have important secondary functions in symbiotic bacteria. E.g. the chaperonin

GroEL has versatile roles in the interactions of bacterial endosymbionts and their hosts

[92] and the HSP60 heat shock protein is a virulence factor of Helicobacter Pylori [145].

Pfamid Ppatho_ELD # in p/s # in n domain description
PF02902 .97 29 0 Peptidase C48, Ulp1 protease
PF01755 .95 35 2 Glycosyltransferase family 25
PF13710 .94 33 2 ACT domain
PF05681 .94 15 1 Fumarate hydratase (Fumerase)
PF00118 .93 14 1 TCP-1/cpn60 chaperonin family
PF04991 .93 38 3 LicD family
PF03382 .92 24 2 DUF285
PF00982 .92 12 1 Glycosyltransferase family 20
PF01276 .92 12 1 Orn/Lys/Arg decarboxylase
PF13637 .92 11 1 Ankyrin repeats (many copies)
PF01306 .91 20 2 LacY proton/sugar symporter
PF00854 .91 20 2 POT family
PF02916 .91 10 1 DNA polymerase processivity factor
PF00589 .91 10 1 Phage integrase family
... ... ... ... ...

Table 5.2: Overview of eukaryotic-like protein domains (ELD) with highest
pathogenicity probability (Ppatho_ELD) Besides Ppatho_ELD, the number of
genomes with proteins containing the particular ELD (with ELD-score >= 4) are
given for pathogens/symbionts and non-pathogenic bacteria.

Discussion For many ELDs with high pathogenicity probability there is evidence for

leading roles in the virulence of divers pathogens. The ELD containing proteins are likely

to trigger molecular functions and biological processes which play major roles during

infection. Therefore, speci�c eukaryotic-like e�ectors alone that are detected within a

bacterial genome could allow for a separation of bacterial phenotypes. Besides the ELD

score, the pathogenicity probability of a speci�c ELD could be used as an additional

measure of its contribution to the pathogenicity of a bacterial organism and to increase

prediction accuracy of the ELD based e�ector prediction approach.
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5.2.3 Predictive power of a genomic pathogenicity probability

derived from eukaryotic-like domains

The pathogenicity probability of a speci�c eukaryotic-like domain signatures is an indi-

cator for its importance in the interplay of diverse pathogens/symbionts and their hosts.

Independent of the particular pathogenic strategy it measures the functional relevance

of a domain within a variety of pathogens/symbionts and could be used to measure the

organisms potential for interaction as well. Based on a genomic pathogenicity probabil-

ity, a separation of di�erent bacterial phenotypes could be feasible and is explored in this

section.

Methods

De�nition of the genomic pathogenicity probability Ppatho_GENOME To test the ap-

plicability of the pathogenicity probability to the classi�cation procedure, the Ppatho_ELD

probability is adjusted to whole genomes. The genomic pathogenicity probability

Ppatho_GENOME is de�ned as

Ppatho_GENOME(genomeid) = max
ELD(x) in genome

(Ppatho_ELD(ELD(x))) (5.2)

The pathogenicity probability of a bacterial genome is the maximum probability Ppatho_ELD

derived from the pool of all ELDs identi�ed in the particular genome. It determines the

probability that a given bacterial genome belongs to a pathogens/symbionts organism on

the bases of the eukaryotic-like domains. This allows for a simple classi�cation is based

on the maximum pathogenicity probability of each genome.

Adjustments on the Ppatho_ELD pathogenicity probability In general, ELD scores cal-

culated for identical eukaryotic-like domains in di�erent bacterial organisms do di�er due

to varying genome sizes or their presence in proteins of varying copy-number. With the

Ppatho_ELD calculation described in 5.2.2, ELD score di�erences of the same eukaryotic-

like domain are not considered.

Details in the distribution of several ELDs show that there is more information contained

regarding the di�erentiation of eukaryotic-like domains between pathogens/symbionts and

non-pathogenic bacteria. The example of eukaryotic-like leucine rich repeats (PF00560)

illustrates this point. This domain is widespread over a range of taxa. Besides in the
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genomes of 111 eukaryots and 184 pathogens/symbionts bacteria, it can be found also

in 66 non-pathogenic bacteria. Due to its wide distribution, it is identi�ed as eukary-

otic in only 26 bacteria, in 20 pathogens as well as 6 non-pathogens. This results in a

relatively low Ppatho_ELD(PF00560) = 0.77. Considering di�erent ELD scores, PF00560

has an ELD score above 14 in 5 pathogens/symbionts, while this score is reached in none

of the non-pathogens, resulting in a very high pathogenicity probability in the particu-

lar pathogens. In accordance, e.g. for Leptospira spp., a high copy number of leucine

rich repeats in pathogenic strains against the background of low copy numbers in non-

pathogenic strains was observed by Xue et al [316].

On the other hand, a completely rigid calculation considering each individual ELD score

of each domain completely independent might also not directly re�ect the biological back-

ground. E.g. the eukaryotic-like ankyrin repeat domain (PF00023) has an ELD score of

16 in a strain of the endosymbiont Wolbachia sp. wRi as well as in the genome of one

non-pathogenic bacterium. For this speci�c ELD score, ELDPF00023,16 is calculated to a

low pathogenicity probability of 50%. Simultaneously, 7 other pathogens have ankyrin

repeat domains with high ELD scores above 10, while no other non-pathogenic organism

has highscoring ankyrin repeat domains.

Both examples show that a �exible approach using ELD score cuto�s could better re�ect

the biological relevance of this domain towards pathogenicity of a genome. Therefore, dif-

ferent minimum ELD score cuto�s partitions where tested to allow for a higher �exibility.

Thereby all genomes are considered for probability calculation that contain proteins with

the ELD scoring equal or higher to a particular score cuto�.

Ppatho_ELD is determined for di�erent ELD score intervals to test the in�uence on the

discriminatory power of the subsequently calculated genomic probability Ppatho_GENOME.

In one attempt, the probabilities for each ELD score of a given domain are calculated

separately. In all other settings, di�erent score intervals are considered for calculation.

This is achieved by summarizing the counts for subsequent ELD scores of each cuto�

(from the particular ELD score to 10000 for each interval).

Evaluation of the discriminatory power of eukaryotic-like domain derived genomic

properties The discriminatory power of ELD derived genomic properties is evaluated

using Receiver Operating Characteristic (ROC) statistics [41]. To calculate all ROC

statistics in this work, I applied the implementation provided in the ROCR-package of

the R programming language for statistical data analysis [263]. ROC plots compare the

true positive rate vs. the false positive rate of the prediction results at various threshold

settings. The according area under the ROC-curve (AUC) is a standard measure for
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comparing the discriminatory power of di�erent features in binary classi�cation decisions

[90]. It captures the probability that a randomly chosen positive instance will be ranked

higher than a randomly chosen negative one. The AUC typically ranges between 0.5 and

1, while values around 0.5 indicate random predictions. The higher the AUC value, the

better the discriminatory power.

The evaluation procedure is based on a 10-fold cross-validation. All genomes considered

for the analysis are divided randomly into 10 subsets of equal size, each of these sets

serving as test data in a 10-fold cross-validation. In each of the 10 runs, the remaining

9 subsets are combined and constitute the training data, respectively. All genomes of

the training data are the basis to identify eukaryotic-like domains and calculate the ELD

scores. According to section 2.5.1, protein domains frequent in eukaryota and occurring in

pathogens of the training data are selected. For these domains, average domain frequencies

and standard deviation are calculated based on the genomes of non-pathogens. According

to these values, ELD scores for all eukaryotic-like domains in genomes of the test set are

calculated. The results of all 10 runs are combined to determine the relevant genomic

properties that are used for further evaluation.

Results The genomic probability Ppatho_GENOME re�ects the pathogenicity of the phe-

notype. Medium levels of ELD score partitions show the highest discriminatory power in

the separation of bacterial phenotypes. AUC scores for di�erent ELD score cuto� par-

titions are listed in table 5.3. The ELD score cuto� partitioning of 4.10.20.50.100.10000

was found to have the highest discriminatory power with an AUC of 0.80 and is used for

further analysis.

ELD score cuto�s AUC
4.5... (separate scores) 0.79
4.5.6.7.8.9.10.50.100.500.10000 0.79
4.10.20.50.100.10000 0.80
4.20.30.40.50.100.500.10000 0.78
4-10000 (no partitions) 0.78

Table 5.3: Discriminatory power of Ppatho_GENOME for a selection of di�erent ELD
score cuto� partitions.

Other basic features were derived from the eukaryotic-like domains and evaluated. As

expected, the discriminative power of the number of eukaryotic-like domain containing

proteins in a bacterial genome alone is very low. The according AUC of 0.54 is close to

random. The AUC of a separation of bacterial phenotypes based on the highest genomic
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ELD score of a protein domain is in the same range with an AUC of 0.57. The pathogenic-

ity probability Ppatho_GENOME o�ers a signi�cantly higher discriminatory power.

Discussion The results support initial assumptions on the information content of eukaryotic-

like protein domains regarding the bacterial phenotype. Regarding the biological back-

ground of eukaryotic-like domains in bacteria of pathogenic/symbiotic phenotype, the

information content of individual ELDs could be utilized to o�er even higher phenotype

prediction accuracy.

5.3 Patho�er - a machine learning approach to predict

bacterial phenotypes based on e�ector protein

candidates

The discriminative power of the pathogenicity probability of individual eukaryotic-like

protein domains is combined in a machine learning approach to evaluate the prediction of

bacterial phenotypes from these genomic features. In recent literature, there is no evidence

for distinct inter-dependency and subsequent coevolution of e�ector proteins. Therefore,

eukaryotic-like protein domains in the genomic domain pro�le of a bacterial organism

could be regarded as independent features. The naive bayes approach assumes conditional

independence of features and in these scenarios provides nearly optimal performance [319].

Considering the data characteristics, a naive Bayes classi�er is expected to recognizes

independence and structure of the input features and to constitute a suitable and e�ective

machine learning approach for the challenge at hand.

5.3.1 Material and methods

Implementation of the naive Bayes approach In a �rst step, for each eukaryotic-like

domain (ELD) and each ELD score the according a-priori probabilities

P (domainX, eukscore|isPathogen) are calculated. Numbers are derived from the distri-

bution of eukaryotic-like domains in all genomes.

The pathogen probability model of the naive bayes classi�er is calculated as

P (isPathogen|domainX, eukscore) = P (domainX,eukscore|isPathogen)∗P (isPathogen)
P (domainX,eukscore)

(5.3)
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For non-pathogens accordingly. For those eukaryotic-like domains that are only present

in genomes of known pathogens, a pseudo count of 1.0 occurrence in non-pathogens is

chosen, compare section 5.2.2.

The classi�cation step of the naive bayes approach is realized in

Q =
P (isPathogen|domainX, eukscore)

P (isNonpathogen|domainX, eukscore)
(5.4)

e.g. with Q > 1 : organism is pathogens/symbionts and Q ≤ 1 : organism is non-

pathogenic.

The classi�ers ability to recognize interdependence and structure of the input features is

evaluated. Under certain conditions, classi�er performance can be overrated, especially in

k-fold cross-validation procedures. These conditions include high dimensionality of input

features coupled with low number of data points. The naive Bayes classi�er is tested for

its potential to correctly generalize beyond the training data for the given data structure.

Permutation test on randomized phenotypic annotations An accurate method is to

assess the classi�ers performance on permuted class labels in the training data. The ob-

served performance on real data is compared to the performance on arti�cial data with

randomly assigned phenotypic class labels. If standard performance measures do accu-

rately re�ect the potential of the classi�er to generalize beyond the training data, the

AUC of a classi�cation based on randomized class labels is expected to be close to 0.5

[209].

The general conceptual design of the permutation procedure is taken from Good et

al. [122]. For all bacterial genomes in the genome repository, phenotypic annotations

(pathogenic, symbiotic, non-pathogenic) are randomly permuted. On this randomly la-

beled input data, the eukaryotic-like domain calculation and subsequent patho�er classi-

�cation procedure is carried out. The process is iterated three times to compare di�erent

permutations.

Selection of representative genomes from taxonomically diverse bacteria On the tax-

onomic level of species, families and phyla, representative sets of genomes are generated

to constitute test and training sets for classi�cation. For example, the genome repository

lists several di�erent strains of the same species. When performance is tested on the level

of species, only one genome is randomly chosen from several strains, to represent the

particular bacterial species. Test and training set partitions for 10-fold cross-validation

are constructed from this evaluation set.
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Bacterial species Genomes in the genome repository are taxonomically distributed over

1003 species. For each species, one representative genome of each species is chosen ran-

domly for further calculation. All organisms of the same species were found to have either

all pathogens/symbionts or all non-pathogenic phenotypes. The input data for classi�ca-

tion and 10-fold cross-validation consists of 1003 genomes from diverse bacterial species

(529 of pathogens/symbionts and 474 of non-pathogenic phenotype).

Bacterial families Genomes are taxonomically subdivided into 204 bacterial families.

The average number of members in a family is 5, with a median of 3. For classi�cation,

a maximum of 5 representative genomes of each species per family are selected to avoid

over-representation of one group. Evaluation is based on 611 genomes. Separation into

test- and training data in 10-fold cross-validation is performed on the family level.

Bacterial phyla The bacterial phyla are unevenly represented in the genome data. For

most of the 24 phyla, there are only few genomes, while 447 genomes are listed for the

phylum of Proteobacteria alone. For evaluation, a selection of representative phyla is

chosen. These phyla include Proteobacteria, Bacteriodetes, Chlamydiae, Actinobacteria,

Firmicutes and Cyanobacteria. A maximum of 50 genomes are selected randomly from

each phylum, adding up to a total of 239 genomes. The evaluation procedure is a leave-

one-out procedure on the phylum level. In each of the 6 cross-validation runs, the test set

consists of all genomes of exactly one phylum.

Evaluation and performance measures Basis for measuring classi�cation performance

are the completely sequenced bacterial genomes of the genome repository. The classi�ca-

tion performance is evaluated by 10-fold cross-validation. Of all genomes included in the

analysis, 10 genome subsets are randomly generated. In each iteration, 9 of these sets are

merged and used for training of the classi�er, while the remaining genomes are used as

the test set for evaluation.

In each run, the eukaryotic-like protein domains are determined from genomes of the

training set only. Non-pathogenic organisms in the training set form the statistical back-

ground of the domains. On that basis, the ELD score of each eukaryotic-like domain

is calculated. With average and standard deviations derived from the background of

non-pathogenic genomes, the calculation is performed for all genomes in the training set,

regardless of the phenotype.

Performance measures are calculated on the combined test set classi�cation results of all

10 cross-validation runs to measure the overall performance of the classi�er.

The area under the ROC curve (AUC) is an established single-number measure to eval-

uate the performance of classi�ers [136]. Other measures to capture and compare the
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classi�ers performance are accuracy, the percentage of correct predictions

Accuracy = TP + TN/TP + FP + TN + FN

precision, the percentage of positive predictions that are correct

Precision = TP/TP + FP

sensitivity, the percentage of positive labeled instances that were predicted as positive

Sensitivity = TP/TP + FN

and selectivity, the percentage of negative labeled instances that were predicted as negative

Selectivity = TN/TN + FP

where TP is the number of true positive, FP the false positive, FN the false negative and

TN the true negative predictions.

5.3.2 Results

The classi�er recognizes independence and structure of the input features To eval-

uate the potential of eukaryotic-like e�ector candidates to discriminate between di�erent

bacterial phenotypes, a naive Bayes classi�er is implemented and applied to separate

bacterial phenotypes on the basis of a-priori probabilities of the input data. The naive

Bayes classi�cation based on randomized class labels results in a very low Area Under the

Curve (AUC) of 0.51. This re�ects a classi�cation performance close to random. Results

are consistent with the expectation. The classi�er can be assumed not to comprise any

inherent, unspeci�c structure of the input data.

Exemplary classi�cation of the pathogen Mycoplasma conjunctivae The human pathogen

Mycoplasma conjunctivae HRC/581 has a very small genome. Two di�erent eukaryotic-

like protein domains are recognized. Choline/ethanolamine kinase domain (PF01633,

eukscore: 6), which is suggested to play an important part in mycoplasma pathogenesis

([244]). And BRCT domain (PF12738, eukscore: 9), which is not found to be associated

with virulence in recent literature.
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For both domains, the a-priori probabilities are calculated based on their occurrence in

the training data. For PF01633, an eukscore of 6 has been calculated for 18 pathogens/

symbionts (529 in total) and 3 non-pathogenic genomes (474 in total).

The a-priori probability for pathogenicity is calculated as

P (isPath|PF01633, 6) = P (PF01633,6|isPath)∗P (isPath)
P (PF01633,6)

= 18/529∗529/1003
21/1003

= 0.86

and for non-pathogenicity as 0.14, according to 5.3, respectively. PF12738 with an

eukscore of 9 has been calculated for 2 pathogens/symbionts and 5 non-pathogenic or-

ganisms. The a-priori probability for pathogenicity and non-pathogenicity are calculated

as 0.28 and 0.72, respectively. A naive bayes classi�cation using 5.4 therefore resolves to

Q =
P (isPath|PF01633, 6) ∗ P (isPath|PF12738, 9)

P (isNonpath|PF01633, 6) ∗ P (isNonpath|PF12738, 9)
=

0.86 ∗ 0.28
0.14 ∗ 0.72

= 2.4

Mycoplasma conjunctivae has a score greater than 1 and is correctly classi�ed as bacterial

pathogen.

Performance on completely sequenced bacterial genomes A large fraction of bacterial

phenotypes are predicted correctly. Bacteria of host-interacting and non-host-interacting

phenotypes are classi�ed with an AUC value of 0.84 regarding all completely sequenced

genomes with characterized phenotypes 5.2.

Most true positive predictions of the host-interacting phenotype fall into the phyla of

proteobacteria, actinobacteria, chlamydia, bacteriodetes, spirochaetes and �rmicutes. The

predominant phenotype in these phyla is pathogenic/symbiotic. On average, 64% of non-

pathogens are predicted correctly in these phyla (279 of 444). Other phyla, for example

Chlorobi or Tenericutes are dominated by non-pathogenic phenotypes. The true negative

rate for the non-pathogenic phenotype in this phyla is 0.97. As expected, the performance

of classifying phenotypes of distantly related bacterial organisms decreases (see table 5.4).

Results on the species level have an AUC of 0.8. while predictions for organisms of di�erent

bacterial families reach an AUC of 0.7. Predicting phenotypes for bacteria of di�erent

phyla o�ers no predictive power, the performance measures indicate random results.
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Tax. level AUC Acc. Prec. Selectivity Sensitivity (Random)
all genomes 0.84 0.8 0.85 0.7 0.84 0.51
species 0.8 0.76 0.75 0.71 0.8 0.51
family 0.7 0.67 0.6 0.69 0.64 0.51
phylum 0.49 0.53 0.52 0.69 0.35 0.48

Table 5.4: Performance measures of the patho�er approach for di�erent levels of
taxonomic divergence. Measures of the classi�cation of bacterial genomes into
pathogens/symbionts and non-pathogenic phenotypes for the particular taxonomic
level are given regarding the Area under the ROC-curve (AUC), accuracy (acc),
precision (prec), selectivity and sensitivity. The last column shows the control, in-
dicating the AUC of the classi�cation approach on randomized data.

Figure 5.2: Performance of the patho�er approach for bacterial genomes in the
genome repository. The red ROC curve shows the performance of the classi-
�cation of bacterial genomes into pathogens/symbionts and non-pathogenic pheno-
types for all genomes in the genome repository. The blue curve is the control which
indicates the performance of the classi�cation approach on randomized data.
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5.3.3 Discussion

In this chapter, eukaryotic-like protein domains (ELDs) were explored as a novel genomic

feature for the prediction of bacterial phenotypes. While the concept was generally shown

to work, several issues need to be addressed before a software implementation could be

realized to be used under laboratory conditions.

As could be expected, the prediction accuracy of the ELD approach drops considerably

with increasing evolutionary divergence. An explanation could be that bacteria of dif-

ferent phyla are evolutionary very distantly related and have evolved divers strategies

for initiating and maintaining interaction with host cells. Over these long evolutionary

distances, several factors might shape the phenotypic lifestyle of a bacterial organism.

Horizontal gene transfer (HGT) events occur infrequently and do not seem to provide

considerable genotypic similarity.

Independently of any speci�c secretion system, the eukaryotic-like domain (ELD) based

approach o�ers the possibility of an e�ector based classi�cation of bacterial phenotypes.

On the other hand, very high accuracy is needed to e�ectively address phenotype re-

lated questions in the �eld of molecular diagnostics which clearly cannot be attained by

this approach alone. The current version of the ELD based approach might need further

adjustments to be able to meet these criteria. A possible way could be, to improve classi-

�cation of bacterial phenotypes by a combination of complementary genomic features. A

genomic feature that could be used additionally to predict pathogenic/symbiotic bacteria

is the presence of a functional protein secretion system. The ELD based approach could

be combined with secretion system based predictions to further increase performance.

The Type 3 secretion system (T3SS) is the best studied system and is assumed to be

speci�c for targeting eukaryotic host cells. Many pathogens and symbionts could thereby

be distinguished from non-pathogenic bacteria through the identi�cation of genes encod-

ing a functional T3SS within the bacterial genome, compare section 2.3.3. The T3SS

was chosen as representative for an analysis of the potential to di�erentiate pathogenic

and symbiotic from non-host-interacting bacteria by the genomic presence of secretion

system components. As indicated in section 2.3.3, a classi�cation based on the existence

of a functional T3SS is still challenging and covers only a small number of pathogens/

symbionts.

Eukaryotic-like domains and the presence of a functional protein secretion system are two

complementing genomic properties relevant for the particular phenotype in pathogens/

symbionts bacteria. To extend the secretion system based approach to other systems
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including a functional T3SS and to combine it with the prediction of ELDs could enable

an accurate classi�cation of bacterial phenotypes based on genomic features.
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6 Summary and conclusions

This work focuses on the interaction of bacterial pathogens/symbionts and their eukary-

otic hosts. Di�erent aspects regarding these interactions have been investigated, based

on genomic sequence data. On the bacterial side, I put the focus on a approach to pre-

dict secreted bacterial proteins, the molecular main determinants necessary for bacterial

infection. The taxonomically universal method allows the prediction of these e�ector pro-

teins and was made available to the scienti�c community via the E�ective web portal.

Furthermore, I investigated the possibility to utilize e�ector protein candidates predicted

in bacterial genomes for the identi�cation of a pathogenic/symbiotic bacterial phenotype.

Regarding the analysis of host sided e�ects of bacterial infection, I explored the current

state in the prediction of pathogen-host interactomes and possible means to narrow down

protein interaction candidates for experimental analysis. A summary of the key �ndings

is provided in the following.

A large-scale identi�cation of eukaryotic-like protein domains in bacterial genomes

allows for the prediction of secreted bacterial proteins Bacterial infections are orches-

trated by so called e�ectors which are secreted by the microorganism to alter molecular

functions and disrupt processes within the host cell. The identi�cation of e�ector proteins

is crucial to the understanding of bacterial virulence. Few e�ectors are characterized ex-

perimentally and existing prediction approaches are limited to the recognition of weakly

conserved signal peptides. In this work, I developed a novel, function-based approach

to predict e�ector proteins in genomic data. It was shown in single case studies that

several bacterial e�ector proteins contain protein domains otherwise mainly found in eu-

karyotic proteins, allowing the pathogen to directly alter host cellular pathways. Based on

the characteristic taxonomic distribution of their occurrence, I identi�ed eukaryotic-like

protein domains (ELDs) in a large-scale approach to predict e�ector candidates in the

genomes of pathogenic as well as symbiotic bacteria. The method calculates an ELD score

for each protein domain, re�ecting the enrichment of this domain in pathogenic/symbiotic

bacteria. Predicted e�ector candidates are ranked accordingly which allows to select only
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the most promising candidates for further experimental investigation. The ELD based

method is the �rst to allow for a taxonomically universal, secretion-system independent

prediction of e�ector proteins and was successfully tested experimentally for the obli-

gate intra-cellular pathogen Chlamydia trachomatis by collaboration partners within the

EraNet Pathogenomics project.

The E�ective web portal provides precalculated e�ectomes and implements com-

plementary methods to predict secreted bacterial proteins in user de�ned sequence

data To make a state-of-the-art prediction of secreted bacterial proteins available to the

scienti�c community, we implemented the E�ective web portal. The E�ective web portal

represents a database for predicted secreted bacterial proteins. It is the �rst bioinformatics

resource combining two complementary approaches for the prediction of bacterial secreted

proteins: the function-based prediction by identi�cation of eukaryotic-like domains and

prediction based on signal peptides leading to transport by protein secretion systems.

None of the two strategies can, by principle, achieve complete coverage. Therefore, their

integration in a single resource is bene�cial for the comprehensive annotation of putative

e�ectors in genomes and proteomes. The user interface provides easy access to precalcu-

lated e�ectomes for all completely sequenced pathogens and symbionts. Fully automatic

updates are performed on a regular basis and do include a full recalculation of eukaryotic-

like protein domains on the actual genome repository. Furthermore, E�ective provides a

web interface that allows the user to predict e�ector proteins in their own sequence data,

using a complementary set of prediction methods. Computational prediction of secreted

bacterial proteins is important to many areas of microbial research and rapid progress in

method development can be expected. The framework of the E�ective portal allows for

an easy integration of upcoming e�ector prediction approaches, facilitating access to the

latest relevant methods.

Predicted domain interactions of a bacterial e�ectome target host functions playing

major roles during pathogenic infection For a comprehensive understanding of the

pathogen-host interplay, investigation of the molecular interactions taking place between

bacterial e�ectors and targeted host proteins is required. The experimental investigation

of pathogen-host protein interactions (PH-PPIs) is more challenging than for intra-species

interactions. The limited availability of experimentally validated interactions increases

the importance of in silico prediction methods for PH-PPIs. In this work, I explored the

potential of domain-domain interactions (DDIs) to predict pathogen-host interactions.
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DDIs were deduced mainly from structural and functional data on intra-species protein

complexes. In an exemplary study, this information was transferred to the pathogen host

inter-species context by mapping domain interactions onto e�ector proteins of the human

pathogen Chlamydia trachomatis and the PPI network of the human host. A high number

of domain targets are found to be predicted within the human proteome. This supports

the initial assumption that inter-species interactions of bacterial e�ector domains can

be deduced from intra-species protein interactions. To a large extent, bacterial e�ector

proteins seem to a�ect host cellular functions by evolutionary well conserved mechanisms.

Assessment of the functional context of human proteins targeted by DDIs of bacterial

e�ector protein domains shows a functional enrichment of host processes and pathways

known to be altered during pathogenic infection.

The prediction of pathogen-host interactomes pro�ts from integrating informa-

tion on the biological context and host PPI network Domain-domain interaction

approaches provide numerous protein interaction candidates on the protein level espe-

cially for frequent domain signatures. To generate testable hypothesis from the DDI

prediction results, the speci�city must be increased by taking into account additional in-

formation. The tendency of e�ector proteins to target highly connected proteins of the

host PPI network is used to rank predictions to extract the most likely interaction can-

didates. Bacterial pathogens predominantly infect speci�c host tissues. The host tissue

in which a bacterial infection is initiated and spreads varies depending on the pathogen.

Beside physical restrictions on the pathogens access to the host, reasons for tissue tropism

were found on the molecular level. Filtering predicted host interactors according to tissue

speci�c gene expression narrows down interaction candidates to proteins with experimen-

tal evidence for expression. For several bacterial e�ectors, a tendency to target hubs of the

host PPI network was detected. Considering this observation as a weak signal of PH-PPIs,

the degree of interacting host proteins within the host protein network provides the pos-

sibility to rank e�ector targets in a biologically meaningful way. A protocol that is based

on the application of domain interaction methods in combination with gene expression

and network-level information can reduce the number of PH-PPIs to an experimentally

tractable set of predicted interaction candidates.

The host-associated phenotype of novel bacteria is to a considerable extent predicted

correctly from virulence related genomic features Recognition of potentially harmful

bacteria is a crucial challenge for microbial diagnostics. Bacterial e�ector proteins and the
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presence of a functional secretion system are two complementing genomic properties that

are relevant for the particular phenotype in pathogenic/symbiotic bacteria. An initial

phenotype classi�cation based on the existence of a functional T3SS reveals challenges of

the approach and covers only a small number of pathogens/symbionts. I evaluated the

potential to predict phenotypic characteristics of bacterial organisms based on e�ector

proteins predicted within the genome sequence. Thereby, I focused on eukaryotic-like

protein domains (ELDs) as a particular feature of predicted bacterial e�ectors. By ap-

plying a classi�cation approach based on eukaryotic-like protein domains, a large fraction

of host-interacting bacteria are predicted correctly. To enable an accurate identi�cation

of pathogenic/symbiotic bacteria, the ELD based classi�cation could be integrated into

existing frameworks for genotype-phenotype prediction by multiple genomic features.
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8 Appendix

Taxonomic level Di�erent categories
strains 1703
species 1003
genus 487
family 204
order 96
phylum 27

Table 8.1: Distribution of bacterial genomes in the genome repository on dif-
ferent taxonomic levels. Shown is the distribution of completely sequenced
bacterial genomes with annotated pathogenic/symbiotic/non-pathogenic phe-
notype in the genome repository.
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CHAPTER 8. APPENDIX

Species # pathogenic/symb. # non-pathogenic
strains strains

Escherichia coli 49 0
Helicobacter pylori 38 0
Staphylococcus aureus 28 0
Salmonella enterica 25 0
Streptococcus pneumoniae 18 0
Chlamydia trachomatis 18 0
Streptococcus pyogenes 16 0
Neisseria meningitidis 14 0
Corynebacterium pseudotuberculosis 14 0
Corynebacterium diphtheriae 13 0
Clostridium botulinum 13 0
Prochlorococcus marinus 0 12
Mycobacterium tuberculosis 12 0
Listeria monocytogenes 12 0
Buchnera aphidicola 12 0
Yersinia pestis 11 0
Bacillus cereus 10 1
Acinetobacter baumannii 10 0
Streptococcus suis 9 0
Haemophilus in�uenzae 9 0
Francisella tularensis 9 0
Campylobacter jejuni 9 0
Bi�dobacterium longum 9 0
Mycoplasma gallisepticum 8 0
Acetobacter pasteurianus 0 8
Vibrio cholerae 7 0
Treponema pallidum 7 0
Shewanella baltica 0 7
Rhodopseudomonas palustris 0 7
... ... ...

Table 8.2: Species representation of genomes in the genome repository. Shown are
bacterial species in the genome repository, ranked by the highest number of represen-
tatives. For each species, the number of pathogenic/symbiotic as well as the number
of non-pathogenic strains are given.
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Table 8.3: The putative e�ectome of Chlamydia trachomatis
Shown are all proteins of C. trachomatis that are predicted as e�ectors by E�ectiveT3, contain eukaryotic-like domains
or have experimental evidence for secretion. Chlamydial inclusion proteins are marked Ïncïn the gene name column. For
proteins with experimental evidence for secretion, the according publication is indicated.

locus accession name protein description reference

CT005 NP_219507 Inc hypothetical protein Almeida [11]

CT008 NP_219510 ribonuclease HIII predicted

CT018 NP_219520 hypothetical protein predicted

CT025 NP_219527 signal recognition particle, subunit FFH/SRP54 predicted

CT034 NP_219536 cationic amino acid transporter predicted

CT035 NP_219537 biotin protein ligase predicted

CT036 NP_219538 Inc hypothetical protein Almeida [11]

CT046 NP_219549 histone-like protein 2 predicted

CT047 NP_219550 hypothetical protein predicted

CT049 NP_219552 Pls1 hypothetical protein Betts [31]

CT050 NP_219553 Pls2 hypothetical protein Betts [31]

CT053 NP_219556 hypothetical protein Cunha [69]

CT058 NP_219561 Inc hypothetical protein Dehoux [73]

CT066 NP_219569 hypothetical protein predicted

CT082 NP_219585 hypothetical protein predicted

CT083 NP_219586 hypothetical protein Subtil [278]

CT087 NP_219590 4-alpha-glucanotransferase predicted

CT088 NP_219591 secretion chaperone predicted

CT089 NP_219592 CopN low calcium response E Fields [95]

CT105 NP_219608 hypothetical protein Cunha [69]

CT112 NP_219615 oligoendopeptidase F predicted

CT115 NP_219618 Inc inclusion membrane protein D Subtil [278]

CT116 NP_219619 Inc inclusion membrane protein E Subtil [278]

CT118 NP_219621 Inc inclusion membrane protein G Subtil [278]

CT119 NP_219622 Inc inclusion membrane protein A Subtil [278]
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CT133 NP_219636 rRNA methylase predicted

CT135 NP_219638 Inc hypothetical protein Almeida [11]

CT138 NP_219641 microsomal dipeptidase predicted

CT142 NP_219645 hypothetical protein Cunha [69]

CT143 NP_219646 hypothetical protein Cunha [69]

CT144 NP_219647 hypothetical protein predicted

CT147 NP_219650 hypothetical protein predicted

CT153 NP_219656 MAC/perforin family protein predicted

CT154 NP_219657 phospholipase D endonuclease predicted

CT155 NP_219658 phospholipase D endonuclease predicted

CT156 NP_219659 Lda1 hypothetical protein Betts [31]

CT157 NP_219660 phospholipase D endonuclease predicted

CT161 NP_219664 hypothetical protein Cunha [69]

CT163 NP_219666 Lda2 hypothetical protein Betts [31]

CT164 NP_219667 hypothetical protein predicted

CT165 NP_219668 hypothetical protein predicted

CT166 NP_219669 hypothetical protein Betts [31]

CT192 NP_219696 Inc hypothetical protein Almeida [11]

CT195 NP_219699 Inc hypothetical protein Dehoux [73]

CT196 NP_219700 Inc hypothetical protein Almeida [11]

CT205 NP_219709 diphosphate�fructose-6-phosphate 1-phosphotransferase predicted

CT214 NP_219718 Inc hypothetical protein Almeida [11]

CT222 NP_219727 Inc hypothetical protein Almeida [11]

CT223 NP_219728 hypothetical protein Subtil [278]

CT224 NP_219729 Inc hypothetical protein Almeida [11]

CT226 NP_219731 Inc hypothetical protein Dehoux [73]

CT227 NP_219732 Inc hypothetical protein Almeida [11]

CT228 NP_219733 Inc hypothetical protein Dehoux [73]

CT229 NP_219734 Inc hypothetical protein Subtil [278]

CT232 NP_219737 inclusion membrane protein B predicted
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CT233 NP_219738 inclusion membrane protein C Subtil [278]

CT249 NP_219754 Inc hypothetical protein Dehoux [73]

CT257 NP_219762 Lda4 hypothetical protein Betts [31]

CT260 NP_219765 hypothetical protein predicted

CT267 NP_219772 integration host factor alpha-subunit predicted

CT275 NP_219780 chromosomal replication initiation protein predicted

CT280 NP_219785 Na(+)-translocating NADH-quinone reductase subunit D predicted

CT288 NP_219793 hypothetical protein Subtil [278]

CT292 NP_219797 deoxyuridine 5'-triphosphate nucleotidohydrolase predicted

CT298 NP_219803 DNA repair protein RadA predicted

CT300 NP_219805 Inc hypothetical protein Almeida [11]

CT309 NP_219814 hypothetical protein predicted

CT311 NP_219816 hypothetical protein Lei [168]

CT324 NP_219829 Inc hypothetical protein Dehoux [73]

CT329 NP_219836 exodeoxyribonuclease VII large subunit predicted

CT338 NP_219845 hypothetical protein Cunha [69]

CT344 NP_219851 ATP-dependent protease La predicted

CT345 NP_219852 Inc hypothetical protein Almeida [11]

CT357 NP_219866 Inc hypothetical protein Almeida [11]

CT358 NP_219867 Inc hypothetical protein Dehoux [73]

CT362 NP_219871 aspartate kinase predicted

CT365 NP_219874 Inc hypothetical protein Almeida [11]

CT366 NP_219875 3-phosphoshikimate 1-carboxyvinyltransferase predicted

CT368 NP_219877 chorismate synthase predicted

CT373 NP_219882 hypothetical protein Subtil [278]

CT376 NP_219885 malate dehydrogenase predicted

CT383 NP_219893 Inc hypothetical protein Dehoux [73]

CT384 NP_219894 hypothetical protein predicted

CT386 NP_219896 metal dependent hydrolase predicted

CT387 NP_219897 hypothetical protein predicted
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CT392 NP_219902 hypothetical protein predicted

CT395 NP_219905 HSP-70 cofactor predicted

CT429 NP_219941 hypothetical protein Cunha [69]

CT440 NP_219952 Inc hypothetical protein Dehoux [73]

CT441 NP_219953 tsp tail-speci�c protease Betts [31]

CT442 NP_219954 hypothetical protein Subtil [278]

CT449 NP_219962 Inc hypothetical protein Almeida [11]

CT450 NP_219963 UDP pyrophosphate synthase predicted

CT456 NP_219969 Tarp hypothetical protein Betts [31]

CT460 NP_219973 SWIB (YM74) complex protein predicted

CT463 NP_219976 tRNA pseudouridine synthase A predicted

CT467 NP_219980 2-component regulatory system-sensor histidine kinase predicted

CT469 NP_219982 hypothetical protein predicted

CT472 NP_219985 hypothetical protein predicted

CT473 NP_219986 Lda3 hypothetical protein Betts [31]

CT483 NP_219997 Inc hypothetical protein Almeida [11]

CT497 NP_220012 replicative DNA helicase predicted

CT529 NP_220044 hypothetical protein Subtil [278]

CT531 NP_220046 UDP-N-acetylglucosamine acyltransferase predicted

CT545 NP_220060 DNA polymerase III subunit alpha predicted

CT550 NP_220065 hypothetical protein Subtil [278]

CT554 NP_220069 amino acid ABC transporter substrate-binding protein predicted

CT565 NP_220080 hypothetical protein predicted

CT575 NP_220090 DNA mismatch repair protein predicted

CT576 NP_220091 low calcium response protein H predicted

CT578 NP_220093 hypothetical protein Subtil [278]

CT579 NP_220094 hypothetical protein Subtil [278]

CT606.1 NP_220123 hypothetical protein Subtil [278]

CT610 NP_220127 hypothetical protein Subtil [278]

CT613 NP_220130 dihydropteroate synthase predicted
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CT618 NP_220135 Inc hypothetical protein Almeida [11]

CT620 NP_220137 hypothetical protein Muschiol [198]

CT621 NP_220138 hypothetical protein Hobolt [132]

CT622 NP_220139 hypothetical protein Gong [120]

CT642 NP_220160 hypothetical protein Subtil [278]

CT643 NP_220161 DNA topoisomerase I/SWI predicted

CT652 NP_220170 exodeoxyribonuclease V alpha chain predicted

CT652.1 NP_220171 hypothetical protein Subtil [278]

CT656 NP_220175 hypothetical protein Cunha [69]

CT671 NP_220190 hypothetical protein Subtil [278]

CT686 NP_220205 ABC transporter permease predicted

CT694 NP_220213 hypothetical protein Hower [135]

CT695 NP_220214 hypothetical protein predicted

CT711 NP_220230 hypothetical protein Muschiol [198]

CT712 NP_220231 hypothetical protein Subtil [278]

CT715 NP_220234 UDP-N-acetylglucosamine pyrophosphorylase predicted

CT718 NP_220237 hypothetical protein Subtil [278]

CT721 NP_220240 NifS-related protein predicted

CT737 NP_220256 NUE SET domain containing protein Pennini [219]

CT738 NP_220257 Zn-dependent hydrolase Subtil [278]

CT749 NP_220268 alanyl-tRNA synthetase predicted

CT755 NP_220274 molecular chaperone GroEL predicted

CT766 NP_220285 tRNA delta(2)-isopentenylpyrophosphate transferase predicted

CT772 NP_220291 inorganic pyrophosphatase predicted

CT789 NP_220308 Inc hypothetical protein Almeida [11]

CT795 NP_220315 hypothetical protein Qi [231]

CT796 NP_220316 glycyl-tRNA synthetase predicted

CT798 NP_220318 GlgA glycogen synthase Lu [177]

CT813 NP_220333 Inc hypothetical protein Chen [53]

CT823 NP_220344 cHtrA DO serine protease Wu [311]
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CT847 NP_220368 hypothetical protein Betts [31]

CT848 NP_220369 hypothetical protein Subtil [278]

CT849 NP_220370 hypothetical protein Cunha [69]

CT850 NP_220372 Inc hypothetical protein Dehoux [73]

CT858 NP_220380 CPAF protease Betts [31]

CT860 NP_220382 hypothetical protein Subtil [278]

CT861 NP_220383 hypothetical protein Subtil [278]

CT863 NP_220385 hypothetical protein Subtil [278]

CT867 NP_220389 ChlaDub1 hypothetical protein Betts [31]

CT868 NP_220390 ChlaDub2 hypothetical protein Betts [31]

CT875 NP_219502 TepP hypothetical protein Chen [55]
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Table 8.4: Predicted pathogen-host interactome in the human cell during C. trachomatis infection
Shown are predicted interactions between chlamydial e�ectors and human host proteins. For each interaction, the responsible
domain-domain pair is depicted. Besides a description of the host protein, evidence for gene expression in infected tissues
is indicated.

e�ector e�. dom target dom host protein description expressed

CT008 PF01351 PF09468 NP_078846 ribonuclease H2 subunit B isoform 1 -

CT008 PF01351 PF01351 NP_006388 ribonuclease H2 subunit A -

CT025 PF02978 PF02978 NP_003127 signal recognition particle 54 kDa protein isoform 1 -

CT025 PF02881 PF02881 NP_003127 signal recognition particle 54 kDa protein isoform 1 -

CT025 PF00448 PF00448 NP_003127 signal recognition particle 54 kDa protein isoform 1 -

CT112 PF01432 PF01432 NP_003240 thimet oligopeptidase +

CT133 PF08241 PF00583 NP_002961 diamine acetyltransferase 1 +

CT133 PF08241 PF00118 NP_002147 60 kDa heat shock protein, mitochondrial +

CT133 PF08241 PF00576 NP_000362 transthyretin precursor -

CT133 PF08241 PF08241 NP_059998 Williams Beuren syndrome chromosome region 22 protein isoform 2 +

CT133 PF08241 PF01380 NP_005101 glucosamine�fructose-6-phosphate aminotransferase +

CT138 PF01244 PF01244 NP_004404 dipeptidase 1 precursor +

CT205 PF00365 PF00244 NP_036611 14-3-3 protein gamma -

CT205 PF00365 PF00036 NP_079452 ninein-like protein +

CT205 PF00365 PF00365 NP_002618 6-phosphofructokinase type C isoform 1 +

CT205 PF00365 PF01433 NP_071745 endoplasmic reticulum aminopeptidase 2 +

CT205 PF00365 PF01026 NP_114415 putative deoxyribonuclease TATDN1 isoform a -

CT267 PF00216 PF01423 NP_937859 small nuclear ribonucleoprotein-associated proteins B -

CT267 PF00216 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT267 PF00216 PF01702 NP_112486 queuine tRNA-ribosyltransferase -

CT267 PF00216 PF00580 NP_116196 F-box only protein 18 isoform 1 -

CT267 PF00216 PF00313 NP_001123995 cold shock domain-containing protein E1 isoform 3 +

CT267 PF00216 PF02540 NP_060631 glutamine-dependent NAD(+) synthetase -

CT267 PF00216 PF00343 NP_005600 glycogen phosphorylase, muscle form isoform 1 -

CT267 PF00216 PF04493 NP_775898 endonuclease V isoform 1 -
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CT292 PF00692 PF00692 NP_001939 deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial isoform 2 -

CT298 PF06745 PF06745 NP_068602 twinkle protein, mitochondrial isoform A -

CT298 PF05362 PF05362 NP_113678 lon protease homolog 2, peroxisomal -

CT329 PF01336 PF01336 NP_002936 replication protein A 70 kDa DNA-binding subunit -

CT329 PF01336 PF02540 NP_060631 glutamine-dependent NAD(+) synthetase -

CT344 PF00004 PF00179 NP_003336 SUMO-conjugating enzyme UBC9 +

CT344 PF00004 PF00659 NP_005021 serine/threonine-protein kinase PLK1 +

CT344 PF00004 PF01398 NP_006828 COP9 signalosome complex subunit 5 +

CT344 PF00004 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT344 PF00004 PF09280 NP_005044 UV excision repair protein RAD23 homolog A -

CT344 PF00004 PF00004 NP_004144 origin recognition complex subunit 1 isoform 1 +

CT344 PF00004 PF04683 NP_008933 proteasomal ubiquitin receptor ADRM1 precursor -

CT344 PF00004 PF01851 NP_002799 26S proteasome non-ATPase regulatory subunit 2 -

CT344 PF00004 PF01399 NP_003743 eukaryotic translation initiation factor 3 subunit C +

CT344 PF00004 PF03399 NP_003897 80 kDa MCM3-associated protein +

CT344 PF00004 PF01105 NP_006806 transmembrane emp24 domain-containing protein 2 precursor -

CT344 PF00004 PF01111 NP_001818 cyclin-dependent kinases regulatory subunit 2 -

CT344 PF00004 PF05348 NP_057016 proteasome maturation protein -

CT344 PF00004 PF00227 NP_002791 proteasome subunit beta type-9 proprotein +

CT344 PF00004 PF10508 NP_005038 26S proteasome non-ATPase regulatory subunit 5 -

CT344 PF00004 PF04055 NP_057492 CDK5 regulatory subunit-associated protein 1 isoform a +

CT344 PF00004 PF05160 NP_006295 26S proteasome complex subunit DSS1 -

CT344 PF00004 PF00574 NP_006003 ATP-dependent Clp protease proteolytic subunit, mitochondrial precursor +

CT344 PF02190 PF02190 NP_001027026 LON peptidase N-terminal domain and RING �nger protein 3 isoform 1 -

CT344 PF05362 PF05362 NP_113678 lon protease homolog 2, peroxisomal -

CT344 PF00004 PF02985 NP_115826 HEAT repeat-containing protein 7A isoform 1 +

CT362 PF00696 PF00696 NP_002851 delta-1-pyrroline-5-carboxylate synthase isoform 1 +

CT366 PF00275 PF00166 NP_002148 10 kDa heat shock protein, mitochondrial -

CT366 PF00275 PF00005 NP_005682 ATP-binding cassette sub-family C member 9 isoform SUR2A +

CT366 PF00275 PF02540 NP_060631 glutamine-dependent NAD(+) synthetase -
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CT368 PF01264 PF00005 NP_005682 ATP-binding cassette sub-family C member 9 isoform SUR2A +

CT368 PF01264 PF00009 NP_056988 eukaryotic translation initiation factor 5B +

CT368 PF01264 PF03129 NP_036340 probable histidyl-tRNA synthetase, mitochondrial precursor +

CT376 PF02866 PF02866 NP_005557 L-lactate dehydrogenase A chain isoform 1 +

CT376 PF00056 PF00056 NP_005557 L-lactate dehydrogenase A chain isoform 1 +

CT395 PF01025 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT395 PF01025 PF00282 NP_000808 glutamate decarboxylase 1 isoform GAD67 +

CT395 PF01025 PF07690 NP_114427 protein spinster homolog 1 isoform 1 +

CT395 PF01025 PF00132 NP_037466 mannose-1-phosphate guanyltransferase beta isoform 1 +

CT395 PF01025 PF01025 NP_689620 grpE protein homolog 2, mitochondrial precursor -

CT395 PF01025 PF00293 NP_694853 diphosphoinositol polyphosphate phosphohydrolase 3-alpha +

CT395 PF01025 PF00156 NP_001034180 ribose-phosphate pyrophosphokinase 2 isoform 1 +

CT441 PF00595 PF00244 NP_036611 14-3-3 protein gamma -

CT441 PF00595 PF00595 NP_001356 disks large homolog 4 isoform 1 +

CT441 PF00595 PF00227 NP_002791 proteasome subunit beta type-9 proprotein +

CT441 PF03572 PF03572 NP_002891 retinol-binding protein 3 precursor -

CT450 PF01255 PF00166 NP_002148 10 kDa heat shock protein, mitochondrial -

CT450 PF01255 PF01255 NP_079163 dehydrodolichyl diphosphate synthase isoform 2 +

CT450 PF01255 PF01553 NP_848934 glycerol-3-phosphate acyltransferase 6 precursor +

CT450 PF01255 PF00156 NP_001034180 ribose-phosphate pyrophosphokinase 2 isoform 1 +

CT460 PF02201 PF00439 NP_001122321 transcription activator BRG1 isoform A +

CT460 PF02201 PF02201 NP_002384 protein Mdm4 isoform 1 +

CT463 PF01416 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT463 PF01416 PF01416 NP_699170 tRNA pseudouridine synthase-like 1 -

CT467 PF00989 PF00989 NP_858045 nuclear receptor coactivator 3 isoform a +

CT467 PF02518 PF01751 NP_003926 DNA topoisomerase 3-beta-1 +

CT467 PF02518 PF02518 NP_001135858 pyruvate dehydrogenase kinase, isozyme 3 isoform 1 precursor +

CT467 PF02518 PF00072 NP_003710 cAMP-speci�c and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B isoform 1 +

CT472 PF02582 PF07738 NP_056197 E3 ubiquitin-protein ligase HECTD1 +

CT497 PF03796 PF03796 NP_001157284 twinkle protein, mitochondrial isoform B -
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CT531 PF00132 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT531 PF00132 PF01008 NP_001405 translation initiation factor eIF-2B subunit alpha -

CT531 PF00132 PF01145 NP_004090 erythrocyte band 7 integral membrane protein isoform a +

CT531 PF00132 PF04716 NP_004991 NADH dehydrogenase -

CT531 PF00132 PF00132 NP_037466 mannose-1-phosphate guanyltransferase beta isoform 1 +

CT531 PF00132 PF01025 NP_689620 grpE protein homolog 2, mitochondrial precursor -

CT531 PF00132 PF01380 NP_005101 glucosamine�fructose-6-phosphate aminotransferase +

CT545 PF07733 PF00005 NP_005682 ATP-binding cassette sub-family C member 9 isoform SUR2A +

CT575 PF02518 PF01751 NP_003926 DNA topoisomerase 3-beta-1 +

CT575 PF08676 PF08676 NP_000526 mismatch repair endonuclease PMS2 isoform a +

CT575 PF02518 PF02518 NP_001135858 pyruvate dehydrogenase kinase, isozyme 3 isoform 1 precursor +

CT575 PF01119 PF01119 NP_000526 mismatch repair endonuclease PMS2 isoform a +

CT575 PF02518 PF00072 NP_003710 cAMP-speci�c and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B isoform 1 +

CT613 PF00809 PF00809 NP_000245 methionine synthase -

CT643 PF02201 PF00439 NP_001122321 transcription activator BRG1 isoform A +

CT643 PF02201 PF02201 NP_002384 protein Mdm4 isoform 1 +

CT643 PF01751 PF01751 NP_003926 DNA topoisomerase 3-beta-1 +

CT643 PF01131 PF01131 NP_003926 DNA topoisomerase 3-beta-1 +

CT643 PF01751 PF02518 NP_001135858 pyruvate dehydrogenase kinase, isozyme 3 isoform 1 precursor +

CT643 PF01751 PF03129 NP_036340 probable histidyl-tRNA synthetase, mitochondrial precursor +

CT686 PF01458 PF00005 NP_005682 ATP-binding cassette sub-family C member 9 isoform SUR2A +

CT715 PF01704 PF01704 NP_003106 UDP-N-acetylhexosamine pyrophosphorylase +

CT718 PF02108 PF00118 NP_002147 60 kDa heat shock protein, mitochondrial +

CT721 PF00266 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT721 PF00266 PF00994 NP_065857 gephyrin isoform 1 -

CT721 PF00266 PF01230 NP_002003 bis(5'-adenosyl)-triphosphatase +

CT721 PF00266 PF00501 NP_054750 long-chain fatty acid transport protein 6 +

CT721 PF00266 PF02540 NP_060631 glutamine-dependent NAD(+) synthetase -

CT721 PF00266 PF01842 NP_004170 tryptophan 5-hydroxylase 1 +

CT721 PF00266 PF02441 NP_068595 phosphopantothenoylcysteine decarboxylase -
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CT721 PF00266 PF01592 NP_998760 iron-sulfur cluster assembly enzyme ISCU, mitochondrial ISCU2 precursor -

CT721 PF00266 PF00266 NP_478059 phosphoserine aminotransferase isoform 1 +

CT737 PF00856 PF00400 NP_378663 F-box/WD repeat-containing protein 1A isoform 1 +

CT737 PF00856 PF00856 NP_006700 histone-lysine N-methyltransferase EHMT2 isoform a +

CT738 PF00753 PF00753 NP_056303 probable hydrolase PNKD isoform 1 precursor +

CT749 PF07973 PF07973 NP_065796 alanyl-tRNA synthetase, mitochondrial precursor +

CT749 PF01411 PF01411 NP_065796 alanyl-tRNA synthetase, mitochondrial precursor +

CT755 PF00118 PF00244 NP_036611 14-3-3 protein gamma -

CT755 PF00118 PF00069 NP_002728 protein kinase C alpha type +

CT755 PF00118 PF00022 NP_001092 actin, cytoplasmic 1 +

CT755 PF00118 PF00583 NP_002961 diamine acetyltransferase 1 +

CT755 PF00118 PF00400 NP_378663 F-box/WD repeat-containing protein 1A isoform 1 +

CT755 PF00118 PF07544 NP_060489 mediator of RNA polymerase II transcription subunit 9 +

CT755 PF00118 PF01839 NP_002196 integrin alpha-5 precursor +

CT755 PF00118 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT755 PF00118 PF00118 NP_002147 60 kDa heat shock protein, mitochondrial +

CT755 PF00118 PF00149 NP_006238 serine/threonine-protein phosphatase 5 isoform 1 +

CT755 PF00118 PF06677 NP_006387 Sjoegren syndrome/scleroderma autoantigen 1 -

CT755 PF00118 PF00166 NP_002148 10 kDa heat shock protein, mitochondrial -

CT755 PF00118 PF00085 NP_006532 glutaredoxin-3 +

CT755 PF00118 PF01048 NP_000261 purine nucleoside phosphorylase -

CT755 PF00118 PF00956 NP_005960 nucleosome assembly protein 1-like 4 +

CT755 PF00118 PF00106 NP_057457 WW domain-containing oxidoreductase isoform 1 +

CT755 PF00118 PF00501 NP_054750 long-chain fatty acid transport protein 6 +

CT755 PF00118 PF02525 NP_000894 NAD(P)H dehydrogenase -

CT755 PF00118 PF00248 NP_003730 aldo-keto reductase family 1 member C3 +

CT755 PF00118 PF00005 NP_005682 ATP-binding cassette sub-family C member 9 isoform SUR2A +

CT755 PF00118 PF03095 NP_821068 serine/threonine-protein phosphatase 2A activator isoform a -

CT755 PF00118 PF01494 NP_073602 NEDD9-interacting protein with calponin homology and LIM domains isoform 1 +

CT755 PF00118 PF00464 NP_004160 serine hydroxymethyltransferase, cytosolic isoform 1 -
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CT755 PF00118 PF00153 NP_003347 mitochondrial uncoupling protein 3 isoform UCP3L +

CT755 PF00118 PF00083 NP_003051 solute carrier family 22 member 5 +

CT755 PF00118 PF06293 NP_291028 TP53-regulating kinase +

CT755 PF00118 PF04055 NP_057492 CDK5 regulatory subunit-associated protein 1 isoform a +

CT755 PF00118 PF01507 NP_079483 FAD synthase isoform 1 -

CT755 PF00118 PF02441 NP_068595 phosphopantothenoylcysteine decarboxylase -

CT755 PF00118 PF00483 NP_037466 mannose-1-phosphate guanyltransferase beta isoform 1 +

CT755 PF00118 PF00155 NP_115981 1-aminocyclopropane-1-carboxylate synthase-like protein 1 +

CT755 PF00118 PF00037 NP_002931 ATP-binding cassette sub-family E member 1 -

CT755 PF00118 PF04851 NP_002171 DNA-binding protein SMUBP-2 +

CT755 PF00118 PF04434 NP_872327 E3 ubiquitin-protein ligase ZSWIM2 -

CT755 PF00118 PF02348 NP_061156 N-acylneuraminate cytidylyltransferase -

CT755 PF00118 PF01370 NP_001491 GDP-mannose 4,6 dehydratase +

CT755 PF00118 PF00702 NP_777613 sarcoplasmic/endoplasmic reticulum calcium ATPase 3 isoform e +

CT755 PF00118 PF00561 NP_004181 gastric triacylglycerol lipase isoform 2 precursor -

CT755 PF00118 PF00156 NP_001034180 ribose-phosphate pyrophosphokinase 2 isoform 1 +

CT755 PF00118 PF08241 NP_059998 Williams Beuren syndrome chromosome region 22 protein isoform 2 +

CT755 PF00118 PF04158 NP_056235 DDB1- and CUL4-associated factor 13 -

CT755 PF00118 PF02527 NP_079027 glutathione S-transferase C-terminal domain-containing protein isoform 2 -

CT755 PF00118 PF02114 NP_076970 phosducin-like protein 3 +

CT755 PF00118 PF01433 NP_071745 endoplasmic reticulum aminopeptidase 2 +

CT755 PF00118 PF01266 NP_079160 L-2-hydroxyglutarate dehydrogenase, mitochondrial precursor +

CT755 PF00118 PF00534 NP_001006637 glycosyltransferase-like domain-containing protein 1 isoform a +

CT766 PF01715 PF01715 NP_060116 tRNA dimethylallyltransferase, mitochondrial precursor -

CT772 PF00719 PF00012 NP_002145 heat shock 70 kDa protein 4 +

CT772 PF00719 PF00254 NP_003968 AH receptor-interacting protein +

CT772 PF00719 PF00719 NP_066952 inorganic pyrophosphatase -

CT798 PF00534 PF00118 NP_002147 60 kDa heat shock protein, mitochondrial +

CT798 PF00534 PF00534 NP_001006637 glycosyltransferase-like domain-containing protein 1 isoform a +

CT823 PF00595 PF00244 NP_036611 14-3-3 protein gamma -
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CT823 PF00595 PF00595 NP_001356 disks large homolog 4 isoform 1 +

CT823 PF00089 PF00089 NP_000292 plasminogen isoform 1 precursor +

CT823 PF00089 PF00273 NP_000468 serum albumin preproprotein -

CT823 PF00595 PF00227 NP_002791 proteasome subunit beta type-9 proprotein +

CT858 PF03572 PF03572 NP_002891 retinol-binding protein 3 precursor -

CT867 PF02902 PF00240 NP_004553 E3 ubiquitin-protein ligase parkin isoform 1 +

CT867 PF02902 PF02902 NP_056386 sentrin-speci�c protease 6 isoform 1 +

CT868 PF02902 PF00240 NP_004553 E3 ubiquitin-protein ligase parkin isoform 1 +

CT868 PF02902 PF02902 NP_056386 sentrin-speci�c protease 6 isoform 1 +
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Table 8.5: Enriched molecular functions in predicted protein interaction partners of chlamydial e�ectors in the human
cell
Shown are all enriched Gene Ontology terms describing molecular functions of interacting host protein candidates (p-value
<= 0.05) and targeted by 10 or more chlamydial e�ectors. Beside the description of each GO term, the number of host
interaction candidates annotated with this GO term as well as the number of chlamydial e�ectors targeting these host proteins
are given.

GO term description # interaction candidates # interacting e�ectors

GO:0042623 ATPase activity, coupled 133 24

GO:0016887 ATPase activity 176 24

GO:0019899 enzyme binding 111 21

GO:0051082 unfolded protein binding 42 19

GO:0016874 ligase activity 172 19

GO:0016491 oxidoreductase activity 191 19

GO:0008233 peptidase activity 275 19

GO:0004672 protein kinase activity 629 17

GO:0004175 endopeptidase activity 227 17

GO:0008289 lipid binding 113 16

GO:0003697 single-stranded DNA binding 16 14

GO:0000287 magnesium ion binding 209 13

GO:0019900 kinase binding 41 12

GO:0017171 serine hydrolase activity 177 12

GO:0008236 serine-type peptidase activity 177 12

GO:0005496 steroid binding 66 12

GO:0019842 vitamin binding 61 11

GO:0019787 small conjugating protein ligase activity 96 11

GO:0016881 acid-amino acid ligase activity 100 11

GO:0016746 transferase activity, transferring acyl groups 70 11

GO:0015291 secondary active transmembrane transporter activity 74 11

GO:0004252 serine-type endopeptidase activity 176 11

GO:0048037 cofactor binding 94 10
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GO:0019901 protein kinase binding 36 10

GO:0016747 transferase activity, transferring acyl groups other than amino-acyl groups 69 10

GO:0008415 acyltransferase activity 69 10

GO:0008022 protein C-terminus binding 34 10

GO:0004842 ubiquitin-protein transferase activity 69 10

GO:0004674 protein serine/threonine kinase activity 601 10
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Table 8.6: Enriched biological processes in predicted protein interaction partners of chlamydial e�ectors in the human
cell
Shown are all enriched Gene Ontology terms describing biological processes of interacting host protein candidates (p-value
<= 0.05) and targeted by 10 or more chlamydial e�ectors. Beside the description of each GO term, the number of host
interaction candidates annotated with this GO term as well as the number of chlamydial e�ectors targeting these host proteins
are given.

GO term description # interaction candidates # interacting e�ectors

GO:0006259 DNA metabolic process 143 29

GO:0046907 intracellular transport 174 27

GO:0051716 cellular response to stimulus 206 26

GO:0044265 cellular macromolecule catabolic process 228 26

GO:0019752 carboxylic acid metabolic process 178 24

GO:0006519 amino acid and derivative metabolic process 95 24

GO:0006082 organic acid metabolic process 180 24

GO:0006066 alcohol metabolic process 134 23

GO:0046483 heterocycle metabolic process 118 22

GO:0033554 cellular response to stress 156 22

GO:0022402 cell cycle process 165 22

GO:0007049 cell cycle 248 22

GO:0050790 regulation of catalytic activity 165 21

GO:0034984 cellular response to DNA damage stimulus 96 20

GO:0009117 nucleotide metabolic process 94 20

GO:0006974 cellular response to DNA damage stimulus 104 20

GO:0006520 cellular amino acid metabolic process 78 20

GO:0006457 protein folding 69 20

GO:0019725 cellular homeostasis 98 19

GO:0000279 M phase 81 18

GO:0051246 regulation of protein metabolic process 162 16

GO:0044255 cellular lipid metabolic process 147 16

GO:0006281 DNA repair 80 16
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GO:0051603 proteolysis involved in cellular protein catabolic process 188 15

GO:0051276 chromosome organization 119 15

GO:0044257 cellular protein catabolic process 188 15

GO:0043085 positive regulation of catalytic activity 118 15

GO:0042493 response to drug 68 15

GO:0006605 protein targeting 67 15

GO:0055114 oxidation-reduction process 145 14

GO:0043086 negative regulation of catalytic activity 77 14

GO:0019941 modi�cation-dependent protein catabolic process 177 14

GO:0006725 cellular aromatic compound metabolic process 88 14

GO:0006260 DNA replication 55 14

GO:0051186 cofactor metabolic process 93 12

GO:0032446 protein modi�cation by small protein conjugation 62 12

GO:0006984 ER-nucleus signaling pathway 13 12

GO:0005996 monosaccharide metabolic process 54 12

GO:0000278 mitotic cell cycle 142 12

GO:0044262 cellular carbohydrate metabolic process 82 11

GO:0032269 negative regulation of cellular protein metabolic process 36 11

GO:0031647 regulation of protein stability 20 11

GO:0006839 mitochondrial transport 52 11

GO:0051301 cell division 76 10

GO:0046942 carboxylic acid transport 54 10

GO:0019318 hexose metabolic process 49 10

GO:0018193 peptidyl-amino acid modi�cation 56 10

GO:0009166 nucleotide catabolic process 26 10
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Table 8.7: Enriched pathways of predicted protein interaction partners targeted by chlamydial e�ectors in the human
cell
Shown are all KEGG pathways that are enriched in interacting host protein candidates (p-value <= 0.05) and targeted by
3 or more chlamydial e�ectors. Beside the description of each KEGG pathway, the number of host interaction candidates
assigned to this pathway as well as the number of chlamydial e�ectors targeting these host proteins are given.

KEGG pathway id description # interaction candidates # interacting e�ectors

hsa03040 Spliceosome 34 12

hsa04010 MAPK signaling pathway 91 11

hsa04310 Wnt signaling pathway 64 10

hsa04810 Regulation of actin cytoskeleton 68 8

hsa04110 Cell cycle 46 8

hsa04722 Neurotrophin signaling pathway 75 7

hsa04666 Fc gamma R-mediated phagocytosis 23 7

hsa04660 T cell receptor signaling pathway 49 7

hsa04530 Tight junction 59 7

hsa03420 Nucleotide excision repair 17 7

hsa04916 Melanogenesis 36 6

hsa04914 Progesterone-mediated oocyte maturation 33 6

hsa04114 Oocyte meiosis 70 6

hsa00250 Alanine, aspartate and glutamate metabolism 12 6

hsa05014 Amyotrophic lateral sclerosis (ALS) 19 5

hsa04520 Adherens junction 24 5

hsa04120 Ubiquitin mediated proteolysis 68 5

hsa03430 Mismatch repair 13 5

hsa02010 ABC transporters 43 5

hsa00520 Amino sugar and nucleotide sugar metabolism 15 5

hsa00360 Phenylalanine metabolism 11 5

hsa04960 Aldosterone-regulated sodium reabsorption 21 4

hsa04910 Insulin signaling pathway 50 4

hsa04670 Leukocyte transendothelial migration 28 4

1
7
8



hsa04664 Fc epsilon RI signaling pathway 33 4

hsa04621 NOD-like receptor signaling pathway 21 4

hsa04614 Renin-angiotensin system 8 4

hsa04360 Axon guidance 34 4

hsa04350 TGF-beta signaling pathway 28 4

hsa04270 Vascular smooth muscle contraction 47 4

hsa04062 Chemokine signaling pathway 44 4

hsa04020 Calcium signaling pathway 54 4

hsa03320 PPAR signaling pathway 21 4

hsa00970 Aminoacyl-tRNA biosynthesis 14 4

hsa00620 Pyruvate metabolism 15 4

hsa04540 Gap junction 25 3

hsa04510 Focal adhesion 71 3

hsa04210 Apoptosis 30 3

hsa04150 mTOR signaling pathway 21 3

hsa03050 Proteasome 40 3

hsa03030 DNA replication 12 3

hsa00650 Butanoate metabolism 15 3

hsa00640 Propanoate metabolism 11 3

hsa00310 Lysine degradation 24 3

hsa00270 Cysteine and methionine metabolism 13 3

hsa00052 Galactose metabolism 9 3
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Table 8.8: Enriched cellular components in predicted protein interaction partners of chlamydial e�ectors in the human
cell
Shown are all enriched Gene Ontology terms describing cellular components of interacting host protein candidates (p-value
<= 0.05). Beside the description of each GO term, the number of host interaction candidates annotated with this GO term
as well as the number of chlamydial e�ectors targeting these host proteins are given.

GO term description # interaction candidates # interacting e�ectors

GO:0044429 mitochondrial part 161 29

GO:0005626 insoluble fraction 161 23

GO:0031988 membrane-bounded vesicle 105 22

GO:0016023 cytoplasmic membrane-bounded vesicle 103 22

GO:0005624 membrane fraction 156 22

GO:0019866 organelle inner membrane 107 20

GO:0005625 soluble fraction 84 20

GO:0042995 cell projection 140 17

GO:0042598 vesicular fraction 54 14

GO:0015629 actin cytoskeleton 75 13

GO:0012506 vesicle membrane 37 12

GO:0005793 endoplasmic reticulum-Golgi intermediate compartment 12 12

GO:0005777 peroxisome 38 12

GO:0045177 apical part of cell 47 10

GO:0016324 apical plasma membrane 30 9

GO:0046581 intercellular canaliculus 4 7

GO:0043235 receptor complex 42 7

GO:0019861 �agellum 34 6

GO:0008287 protein serine/threonine phosphatase complex 27 6

GO:0043190 ATP-binding cassette (ABC) transporter complex 9 5

GO:0043198 dendritic shaft 9 4

GO:0032391 photoreceptor connecting cilium 5 3

GO:0009288 bacterial-type �agellum 26 3

GO:0005852 eukaryotic translation initiation factor 3 complex 10 3
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GO:0005851 eukaryotic translation initiation factor 2B complex 5 3

GO:0005839 proteasome core complex 29 3

GO:0000502 proteasome complex 49 3

GO:0000159 protein phosphatase type 2A complex 21 3

GO:0048179 activin receptor complex 5 1

GO:0008305 integrin complex 27 1

GO:0005964 phosphorylase kinase complex 27 1

GO:0005954 calcium- and calmodulin-dependent protein kinase complex 5 1

GO:0005890 sodium:potassium-exchanging ATPase complex 5 1

GO:0005838 proteasome regulatory particle 6 1
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