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Abstract

In this paper we study the effect of network structure between agents and objects on

measures for systemic risk. We model the influence of sharing large exogeneous losses to

the financial or (re)insuance market by a bipartite graph. Using Pareto-tailed losses and

multivariate regular variation we obtain asymptotic results for conditional risk measures

based on the Value-at-Risk and the Conditional Tail Expectation. These results allow us to

assess the influence of an individual institution on the systemic or market risk and vice versa

through a collection of conditional risk measures. For large markets Poisson approximations

of the relevant constants are provided. Differences of the conditional risk measures for an

underlying homogeneous and inhomogeneous random graph are illustrated by simulations.
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1 Introduction

Quantitative assessments of financial risk and of (re)insurance risk have to take the interwoven

web of agents and business relations into account in order to capture systemic risk phenomena.

Measuring such risks while accounting for this complex system of agents is an ongoing area of

research, see for example [7, 10, 13, 14, 15, 17, 21]. An economic model involving conditional

systemic risk measures has been developed in [1]; and an econometric model which uses condi-

tional systemic risk measures can be found in [9]. This paper joins the discussion by adapting

conditional systemic risk measures on a bipartite graph model for an agent-object market struc-

ture. This specific market structure, which we have proposed in [20], has not been investigated

in the context of conditional risk measures before.

Conditional risk measures originate in the seminal paper [2], where a quantile-based con-

ditional systemic risk measure, the so-called CoVaR, was introduced. Since then this idea has
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been developed much further; in the survey paper [8] the entire Section E is dedicated to Cross-

Sectional Measures with the CoVaR as prominent example. Following the observation in [2] that

∆CoVaR is a “tail dependency measure” (p. 2), we carry out a probabilistic study in the frame-

work of heavy-tailed loss distributions, explicitly allowing for tail dependence between exposures

of financial agents.

Applications of the bipartite graph model include the insurance market considered in [20] as

well as investments in overlapping portfolios [16]. The bipartite model has also been successfully

applied to operational risk data in [19].

We extend results derived in [20] to a conditional setting. In [20] two marginal risk measures

have been considered; the Value-at-Risk (VaR), which is defined for a random variable X at

confidence level 1− γ as

VaR1−γ(X) := inf{t ≥ 0 : P (X > t) ≤ γ}, γ ∈ (0, 1),

and the Conditional Tail Expectation (CoTE) at confidence level 1−γ, based on the correspond-

ing VaR, defined as

CoTE1−γ(X) := E[X | X > VaR1−γ(X)], γ ∈ (0, 1). (1.1)

The conditional systemic risk measures in this paper are conditional versions of the VaR and

the CoTE, and they are motivated by the following observations. For a systemic risk approach

it is of interest to quantify not only the risk of single agents, but also the aggregated market

risk, which is of high relevance to regulators. Moreover, it is natural to investigate an agent’s

risk based on market risk; see e.g. Theorem 2.4 of [24]. Consequently, we will study conditional

systemic risk measures, where the conditioning event involves the aggregated market risk, as well

as its influence on one specific agent. In the same way, it is of interest to evaluate the market

risk conditioned on the event that one agent faces high losses. Such ideas lead to a classification

of conditional systemic risk measures as in Table 1.1 (inspired by [11]) which will be defined in

Definition 1.1.

marginal risk measure agent | system system | agent agent | agent

VaR ICoVaR SCoVaR MCoVaR

CoTE ICoTE SCoTE MCoTE

Table 1.1: Classifying conditional systemic risk measures: “I” stands for individual indicating the risk of

an individual agent given high market risk; “S” stands for system indicating the risk of the system given

high risk of an agent; and “M” stands for mutual indicating the risk measure of one agent given high risk

in another agent.

In [7, 10, 14, 21] an axiomatic framework for systemic risk has been developed. This general

framework assumes that a conditional systemic risk measure ρ of a multivariate risk X =

(X1, . . . , Xn) can be represented as the composition of a univariate (single-agent) risk measure
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ρ0 with an aggregation function h : Rn → R, so that ρ = ρ0 ◦ h. Here, ρ0 is usually assumed to

be convex as well as monotone and positively 1-homogeneous, so that ρ(ax) = aρ(x) for a > 0.

While the conditions on h vary, there is consensus that h should be (positively) 1-homogeneous.

We deviate from [10] in that we do not assume that h((1, . . . , 1)>) = n. Examples for such

aggregation functions are h(x) = ‖x‖ = (
∑n

i=1 |xi|r)
1
r , which is a norm for r ≥ 1 and a quasi-

norm for 0 < r < 1, and h(x) = xi, the projection onto one coordinate.

The fact that we do not require h((1, . . . , 1)>) = n has consequences in terms of system size:

Assuming that ρ0 is monotone, the inequalities n < ρ0(‖(1, . . . , 1)>‖r) for 0 < r < 1 as well

as n > ρ0(‖(1, . . . , 1)>‖r) for 1 < r ≤ ∞ hold. Therefore, systemic risk may increase faster or

increase slower, respectively, as the number of individual risks grows compared to systemic risk

with respect to a normalized aggregation function. It is well-known for insurance portfolios that

the risks of a larger market is not necessarily linearly related to the risks of a smaller market,

because of balancing of risks. In addition, we argue that in a small and risky market the regulator

may well strive for more risk capital than the sum of risks. Also moral hazard from different

agents is well-known, and the regulator may guard against this hazard by choosing a conditional

systemic risk measure which is larger than the sum of the individual risks in the market, as

a quasi-norm would imply. Whatever type of aggregation function is chosen, in practice this

is an economic decision. Our framework provides considerable variability in the choice of the

aggregation function.

In this paper we relate market risk to individual risk in the mathematical framework of

multivariate regular variation. This framework allows us to assess conditional systemic risk

measures as in Table 1.1 asymptotically in a precise way; cf. [1, 2, 9].

Definition 1.1. [Conditional systemic risk measures] Let F = (F1, . . . , Fq) be the random ex-

posure vector. For γi, γ ∈ (0, 1) referring to agent i and the market, respectively, the conditional

systemic risk measures from Table 1.1 are defined as follows:

(a) Individual Conditional Value-at-Risk

ICoVaR1−(γi|γ)(Fi | h(F )) := inf{t ≥ 0 : P (Fi > t | h(F ) > VaR1−γ(h(F ))) ≤ γi},
(b) Systemic Conditional Value-at-Risk

SCoVaR1−(γ|γi)(h(F ) | Fi) := inf{t ≥ 0 : P (h(F ) > t | Fi > VaR1−γi(Fi)) ≤ γ},
(c) Mutual Conditional Value-at-Risk

MCoVaR1−(γi|γk)(Fi | Fk) := inf{t ≥ 0 : P (Fi > t | Fk > VaR1−γk(Fk)) ≤ γi},
(d) Individual Conditional Tail Expectation

ICoTE1−γ(Fi | h(F )) := E[Fi | h(F ) > VaR1−γ(h(F ))],

(e) Systemic Conditional Tail Expectation

SCoTE1−γ(h(F ) | Fi) := E[h(F ) | Fi > VaR1−γ(Fi)],

(f) Mutual Conditional Tail Expectation

MCoTE1−γ(Fi | Fk) := E[Fi | Fk > VaR1−γ(Fk)].

For the risk measures (d)-(f) finite first moments of the underlying random variables are required.

�

Note that the Conditional Value-at-Risk measures in (a)-(c) are quantiles of the conditional

distributions, whereas, the Conditional Tail Expectations in (d)-(f) measure the average or
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O1 O2 O3 O4 O5 O6 O7

W34 W74

Figure 1: The hierarchical structure of the market as a bipartite graph with agents A1, . . . , A8 and risky

objects O1, . . . , O7 including exemplarily the weights W34 and W74.

expected behavior of an agent’s exposure, when some extreme event affects another agent, or

groups of agents.

To model the complex interaction between economic agents and objects we use a bipartite

network; cf. Figure 1. Each agent may cover a random amount or proportion of an object,

modelled by a random weight matrix W = (Wij)
q,d
i,j=1 (we abbreviate with this notation a matrix

with row index i = 1, . . . , q and column index j = 1, . . . , d). We assume that Wij > 0 for all

(i, j) such that agent i is connected to object j, which we denote by i ∼ j. The random variable

1(i ∼ j) equals 1 whenever agent i holds a contractual relationship to object j, and 0 otherwise.

The amount or proportion of object j which affects agent i is represented by Wij1(i ∼ j).

Then Fi :=
∑d

j=1Wij1(i ∼ j) denotes the exposure of agent i and F = (F1, . . . , Fq)
> is the

vector of the joint exposures of the agents in the market. Hence, the weighted adjacency matrix

A : Ω→ Rq×d representing the market structure is given by

Aij = Wij1(i ∼ j). (1.2)

Throughout this paper we assume that the objects, which are large claims or losses, incur a

random amount if the claim or loss occurs; these amounts differ between objects and are modelled

by random variables Vj for j = 1, . . . , d with Pareto-tails such that, for possibly different scale

parameters Kj > 0 and tail index α > 0,

P (Vj > t) ∼ Kjt
−α, t→∞, j = 1, . . . , d. (1.3)

(For two functions f and g we write f(t) ∼ g(t) as t→∞ if limt→∞ f(t)/g(t) = 1.) We sum-

marize all objects in the vector V = (V1, . . . , Vd)
> and assume that V is independent of the

random graph construction, while V1, . . . , Vd may not be independent of each other. The vector

F of agent exposures is the matrix-vector product

F = AV.

In Section 4 we shall see that the network is of considerable importance for the asymptotic

behaviour of the conditional systemic risk measures.

Example 1.2. As a first example, assume that agents are reinsurance companies and objects

can generate catastrophic claims, see [20]. Under the simplified assumption that claims are split
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into equal proportions among all agents which insure this risk, the market matrix A is

Aij =
1(i ∼ j)
deg(j)

, with
0

0
:= 0, (1.4)

where deg(j) denotes the number of agents that insure object j. In this case Wij = deg(j)−1

for all i = 1, . . . , q and j = 1, . . . , d. As it can happen that deg(j) = 0, namely when no agent

insures claim j, in that case we define the entries Aij , i = 1, . . . q in the market matrix as 0; this

is meant by the convention that 0
0 := 0.

Example 1.3. As a second example, assume that agents are investors and objects are investment

opportunities which can result in large losses, as investments in land banking, some venture

capital trust, unregulated collective investment schemes, high risk real estate trusts, or cat bonds

of some reinsurance company; see also [16]. Each agent i has a certain amount of capital to

invest, say ci > 0. Again for simplicity, we assume that the agents split their investment capital

equally among all the assets they have chosen to invest in. This results in a market matrix A

given by

Aij = ci
1(i ∼ j)

deg(i)
, with

0

0
:= 0, (1.5)

where deg(i) denotes the number of different assets agent i invests in. In this case Wij =

ci deg(i)−1 for all j = 1, . . . , d and i = 1, . . . , q. As it can happen that deg(i) = 0, namely

when an agent does not invest at all, in this case we define the entries Aij , j = 1, . . . d in the

market matrix as 0.

We consider risk measures of the exposure vector F = AV , where the random matrix A

models the network structure of the market. When attributing a risk measure to an agent’s

exposure or to the market exposure, we write as abbreviation an agent’s risk or the market risk.

In Corollaries 3.6 and 3.7 of [20] it was shown that under the assumption of regularly varying

exposure vectors the asymptotic behaviour of the VaR and the CoTE can be described using

the constants

Ciind = Ciind(A) :=
d∑
j=1

KjEAαij , i = 1, . . . , q, and CSind = CSind(A) =
d∑
j=1

KjE‖Aej‖α, (1.6)

as well as

Cidep = Cidep(A) := E(AK1/α1)αi , i = 1, . . . , q, and CSdep = CSdep(A) = E‖AK1/α1‖α, (1.7)

where ‖ · ‖ is an arbitrary norm in Rq, ej is the j-th unit vector in Rd with entry 1 at its j-th

component and 0 elsewhere, and 1 is the d−dimensional vector with entries all equal 1. Moreover,

with tail index α and scale parameter Kj as in (1.3), K1/α = diag(K
1/α
1 , . . . ,K

1/α
d ) is a d × d

diagonal matrix. The subscripts “ind” and “dep” in (1.6) and (1.7) refer to asymptotically in-

dependent or asymptotically fully dependent components of the Vj ’s, respectively. Furthermore,

the superscript i indicates the individual setting of agent i, whereas S refers to the systemic

setting.

5



The applications we envisage concern objects which can have very high amounts Vj associated

with them, such as be catastrophic insurance claims, high risk investments, or operational risk

cells. Furthermore, we consider high risk as modelled by extreme quantiles like 99% or even

99.9%, which are required, for instance, for operational risk assessment by the regulator. Such

quantile-based risk measures cannot be estimated empirically from real data, simply because

there are too few data points available for empirical estimation. Extreme value theory provides

methods to estimate such high risk based on the asymptotics for γ → 0 as in for example in

(1.8) below.

The individual Value–at–Risk of agent i ∈ {1, . . . , q} shows the asymptotic behaviour

VaR1−γ(Fi) ∼ C1/αγ−1/α, γ → 0, (1.8)

with either C = Ciind or C = Cidep, respectively, in the case that V1, . . . , Vd are asymptotically

independent or asymptotically fully dependent, respectively. The market Value–at–Risk of the

aggregated vector ‖F‖ satisfies

VaR1−γ(‖F‖) ∼ C1/αγ−1/α, γ → 0, (1.9)

with either C = CSind or C = CSdep, respectively, in the case that V1, . . . , Vd are asymptotically

independent or asymptotically fully dependent, respectively. Analogous statements hold for the

CoTE; see [20].

For the asymptotic behaviour of the Value-at-Risk and of the Conditional Tail Expectation

the underlying network model enters only through the constants (1.6) and (1.7). Many underlying

networks may hence give rise to the same asymptotic behaviour, including even networks for

which the adjacency matrix is deterministic. In general, small constants are more desirable,

indicating a smaller risk. The case of fully dependent objects is equivalent to having a single

source of risk, but with the loss possibly unevenly distributed among the agents.

As indicated in [20] these two extreme dependence cases give rise to risk bounds (cf. [18])

which are determined via the constants given in (1.6) and (1.7). These constants also play a

major role in the asymptotic behaviour of the conditional risk measures in this paper.

Our paper is organised as follows. Section 2 summarizes the necessary results from regular

variation. Here we also present the asymptotic results of conditional probabilities and conditional

expectations. Whereas we formulate our results in the general context of regular variation with

arbitrary dependence structure, we single out two cases for the dependence among the loss

variables, namely asymptotic independence and asymptotic complete dependence. In Section 3

we discuss the asymptotic behaviour of the conditional systemic risk measures in our network

model. When introducing conditional systemic risk measures, for the individual risk of every

agent in the market we focus on the one-dimensional projections of the exposure vector, and

take norms and quasinorms as appropriate aggregation functions.

Calculating the network-dependent quantities which determine the asymptotic behaviour of

the conditional systemic risk measures is in many cases not straightforward. On the one hand

they can be approximated through functions of Poisson variables, and on the other hand they

can be found by numerical algorithms. In Section 4 we provide a Poisson approximation for the

example of a portfolio of large insurance claims as in (1.4) with bounds on the total variation
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distance. Simulations for a homogeneous and inhomogeneous bipartite model for the example of

a portfolio of risky investments as in (1.5) illustrate the numerical approach and the differences

between these two random graphs.

2 Asymptotic results from multivariate regular variation

Our framework is that of regular variation of the random vector of exposures F = (F1, . . . , Fq),

which follows from the Pareto-tailed claims and the dependence structure introduced by the

bipartite graph; cf. [20]. There are several equivalent definitions of multivariate regular variation;

cf. Theorem 6.1 of [22] and Ch. 2.1 of [4]. Also notions like one point uncompactification and

vague convergence are defined there, we refer to [22], Section 6.1.3, for more background.

For d ∈ N, let Sd−1+ = {x ∈ Rd+ : ‖x‖ = 1} denote the positive unit sphere in Rd with respect

to an arbitrary norm ‖ · ‖ on Rd so that ‖ej‖ = 1 for all unit vectors ej . Furthermore, we shall

use the notation E := Rd+ \ {0} with R+ = [0,∞], 0 is the d−dimensional vector with entries all

equal to 0, and B = B(E) denotes the Borel σ-algebra with respect to the so-called one point

uncompactification.

Definition 2.1. A random vector X with state space E is called multivariate regularly varying

if there is a Radon measure µ 6≡ 0 on B(E) with µ(Rd+ \ Rd+) = 0 and

P(X ∈ t·)
P(‖X‖ > t)

v→ µ(·), t→∞, (2.1)

where
v→ denotes vague convergence. In this case there exists some α > 0 such that the limit

measure is homogeneous of order −α:

µ(uS) = u−αµ(S)

for every S ∈ B(E) satisfying µ(∂S) = 0. The measure µ is called intensity measure of X.

The tail index α > 0 is also called index of regular variation of X, and we write X ∈ R(−α).

�

Remark 2.2. Vague convergence is a useful concept in the framework of multivariate regular

variation as explained in [22]. We do not want to go into topological details, but it may help to

understand the concept by the following equivalences for regular variation in R+; cf. Theorem 3.6

of [22]. Suppose that X is a nonnegative random variable with distribution function G. Then

the following are equivalent:

(i) 1−G =: G ∈ R(−α) for α > 0.

(ii) There exists a sequence bn →∞ such that limn→∞ nG(bnx) = x−α for x > 0.

(iii) There exists a sequence bn →∞ such that µn(·) = nP
(
X
bn
∈ ·
) v→ µ(·), where µ((x,∞]) =

x−α.
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The set of intervals {(x,∞] : x > 0} generate the Borel σ-algebra B(E) from Definition 2.1 for

d = 1, and the measure µ is defined on B(E). The dot in (iii) stands for an arbitrary Borel set

in B(E). The implication (iii)⇒(ii) follows immediately from evaluating µn(·) for the interval

(x,∞] for x > 0. �

We shall use that regular variation of V implies regular variation of F under the Breiman

condition

E[‖W‖α+δ] <∞ for some δ > 0

on the weight matrix W from (1.2), see Proposition 2.3.

To obtain asymptotic results as in Corollaries 3.6 and 3.7 of [20] for the conditional systemic

risk measures from Definition 1.1 in a more general framework, we first extend classical results

of regular variation to continuous 1-homogeneous functions. Examples for such continuous 1-

homogeneous functions are projections of the vector F = (F1, . . . , Fq)
> on the i-th coordinate

Fi and a norm or quasinorm of the vector F .

We shall use the following result, which is based on Proposition A.1 in [5].

Proposition 2.3. Let V := (V1, . . . , Vd)
> ∈ R(−α) having components with Pareto-tails P(Vj >

t) ∼ Kjt
−α as t→∞ for Kj , α > 0 as in (1.3) with intensity measure µ as in (2.1). Furthermore,

let the weight matrix W : Ω→ Rq×d+ satisfy E[‖W‖α+δ] <∞ for some δ > 0. Then the random

vector F = AV with A as in (1.2) and independent of V belongs to R(−α) if there is a relatively

compact set C ⊆ Rq \ {0} with Eµ ◦ A−1(C) > 0. Let h : Rq \ {0} → Rk \ {0} for k ∈ N be a

continuous 1-homogeneous function. Then we have on B(h(Rq+) \ {0}):

P (h(F ) ∈ t·)
P (‖V ‖ > t)

v→ Eµ{x ∈ Rd+ : h(Ax) ∈ ·}, t→∞. (2.2)

Proof. Vague convergence of F is given by Proposition A.1 in [5] and is equivalent to

P (F ∈ tC)

P (‖V ‖ > t)
→ Eµ{x ∈ Rd+ : Ax ∈ C}, t→∞,

for all relatively compact sets C ∈ B(Rq+ \ {0}). This implies F ∈ R(−α) due to Corollary 2.1.9

in [4]. Furthermore, by 1-homogeneity of h, for t > 0 and B ∈ B(Rk+ \ {0}) we have {h(F ) ∈
tB} = {F ∈ th−1(B)}. Note also that every B which is bounded away from zero is relatively

compact in the topology we use. Since h−1(B) is bounded away from zero, by continuity of h

and the fact that h(0) = 0, h−1(B) is also relatively compact. Putting all this together, for every

relatively compact set B ∈ B(Rk+ \ {0}) we have, as t→∞,

P (h(F ) ∈ tB)

P (‖V ‖ > t)
=

P
(
F ∈ th−1(B)

)
P (‖V ‖ > t)

→ Eµ{x ∈ Rd+ : Ax ∈ h−1(B)} = Eµ{x ∈ Rd+ : h(Ax) ∈ B}.

This is equivalent to vague convergence in (2.2).

When the vector V has asymptotically independent components, the limit measure µ has

support on the axes, whereas for V with asymptotically fully dependent components it is sup-

ported on the line {sK1/α1 : s > 0}. This difference in support is reflected in the difference

between (1.6) and (1.7) and affects the behaviour of aggregated exposures.
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Proposition 2.4. Assume the situation of Proposition 2.3. For the aggregated exposures h(F )

we obtain

P(h(F ) > t) ∼ Cht−α, t→∞,

with

Ch = Chind =

d∑
j=1

Ehα(AK1/αej) and Ch = Chdep(h) = Ehα(AK1/α1), (2.3)

if V1, . . . , Vd are asymptotically independent or asymptotically fully dependent, respectively.

Proof. The assertion can be shown in an analogous way to Theorem 3.4 of [20].

The following result gives limit relations in the most general situation, without any restriction

on the dependence in the exposure vector.

Theorem 2.5. Let g, h : Rq+ → R+ be continuous 1−homogeneous functions and assume the

situation of Proposition 2.3. Then for u ∈ (0,∞), the following assertions hold:

(a) lim
t→∞

P (g(F ) > t | h(F ) > ut) = uα
Eµ ◦A−1({x ∈ Rq+ : h(x) > u, g(x) > 1})

Eµ ◦A−1({x ∈ Rq+ : h(x) > 1})
.

(b) If α > 1 and g is additionally bounded or has compact support on Rd+ \ {0}, then

lim
t→∞

E[g(F ) | h(F ) > t] =
t

µ̃({h(x) > 1})

∫
h(x)>1

g(x)µ̃(dx), (2.4)

where µ̃(·) = Eµ ◦A−1(·).

Proof. (a) We use Proposition 2.3 to obtain

P (g(F ) > t | h(F ) > ut) =

∫
h(F )>ut
g(F )>t

dP
P (h(F ) > ut)

=

∫
h(x)>u
g(x)>1

P (F ∈ tdx)

P (‖V ‖ > t)

P (‖V ‖ > t)

P (h(F ) > ut)
.

The second ratio converges by Proposition 2.3(a) and also the first, when taking there for h the

identity function. The result follows then by vague convergence.

(b) Using 1-homogeneity of g and Proposition 2.3,

E[g(F ) | h(F ) > t] =
1

P(h(F ) > t)

∫
h(x)>t

g(x)P(F ∈ dx)

=
1

P(h(F ) > t)

∫
h(x)>1

g(tx)P(F ∈ tdx)

=
P(‖V ‖ > t)

P(h(F ) > t)

∫
h(x)>1

g(tx)
P(F ∈ tdx)

P(‖V ‖ > t)

∼ t

µ̃({h(x) > 1})

∫
h(x)>1

g(x)µ̃(dx), t→∞. (2.5)

Recall that the sequence of bounded measures in (2.2) converges to a bounded measure vaguely

if and only if it converges weakly to this measure; see Theorem 2.1.4 in [4] for further details.

Hence, either assumption on g in (b) is sufficient to achieve convergence in (2.5).
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Corollary 2.6. Let u ∈ (0,∞) and assume the situation of Theorem 2.5. Recall the constants

Chind and Chdep from (2.3).

(a) If V1, . . . , Vd are asymptotically independent, then

lim
t→∞

P (g(F ) > t | h(F ) > ut) = (Chind)−1
d∑
j=1

Emin{hα(AK1/αej), u
αgα(AK1/αej)}. (2.6)

(b) If V1, . . . , Vd are asymptotically fully dependent, then

lim
t→∞

P (g(F ) > t | h(F ) > ut) = (Chdep)−1Emin{hα(AK1/α1), uαgα(AK1/α1)}. (2.7)

Proof. The proof is similar to the proof of Theorem 3.4 of [20]. For asymptotically independent

claims V1, . . . , Vd we obtain by Theorem 2.5(a) for the numerator

Eµ ◦A−1({h(x) > u, g(x) > 1}) = (
d∑
j=1

Kj)
−1

d∑
j=1

KjEmin{u−αhα(Aej), g
α(Aej)},

and the expression in the denominator is

(
d∑
j=1

Kj)
−1

d∑
j=1

KjE{u−αhα(Aej)} = (
d∑
j=1

Kj)
−1Chind,

which yields (2.6). In the case of asymptotically fully dependent claims we get

Eµ ◦A−1({h(x) > u, g(x) > 1}) = ‖K1/α1‖−αEmin{u−αhα(AK1/α1), gα(AK1/α1)},

giving with corresponding nominator relation equation (2.7).

Remark 2.7. In bivariate extreme value theory the tail dependence coefficient is usually defined

for two possibly dependent random variables X1, X2 with distribution functions H1, H2 by means

of their generalized inverse functions H←1 , H
←
2 as

lim
x↑1

P(X2 > H←1 (x) | X1 > H←2 (x)), (2.8)

provided that this limit exists; e.g. [6], p. 343, eq. (9.75). If X1, X2 are multivariate regularly

varying and asymptotically independent, then the tail dependence coefficient equals 0, while the

tail dependence coefficient equals 1 in case of asymptotically fully dependent variables X1, X2.

As the VaR of a random variable acts as its generalized inverse distribution function,

lim
γ→0

P (g(F ) > VaR1−γ(g(F )) | h(F ) > VaR1−γ(h(F ))) ,

is of the form (2.8). As a consequence of regular variation the limits of the following conditional

probabilities can be computed explicitly: if γg/γh → 1, then

P
(
g(F ) > VaR1−γg(g(F )) | h(F ) > VaR1−γh(h(F ))

)
∼ P

(
h(F ) > VaR1−γh(h(F )) | g(F ) > VaR1−γg(g(F ))

)
.

The conditional probabilities in Definition 1.1 (a)-(c) are defined via such quantities. In addition,

we allow for asymmetry in the sense that the confidence levels of the VaRs do not need to be

asymptotically equivalent, we only require γg/γh → κ for some κ ∈ (0,∞). �
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Corollary 2.8. Let u ∈ (0,∞), α > 1, and assume the situation of Proposition 2.3. Recall the

constants from (2.3).

(a) If V1, . . . , Vd are asymptotically independent, we find

E[g(F ) | h(F ) > t] ∼ α

α− 1
(Chind)−1

d∑
j=1

Eg(AK1/αej)h
α−1(AK1/αej) t, t→∞. (2.9)

(b) If V1, . . . , Vd are asymptotically fully dependent, we find

E[g(F ) | h(F ) > t] ∼ α

α− 1
(Chdep)−1Eg(AK1/α1)hα−1(AK1/α1) t, t→∞. (2.10)

(c) For g = h we obtain the classical Conditional Tail Expectation (1.1).

Proof. (a) We evaluate the integral in (2.4) as

E
∫
h(x)>1

g(x)µ ◦A−1(dx)

= (

d∑
j=1

Kj)
−1E

d∑
j=1

∫
h(x)>1,x∈{uAK1/αej :u>0}

g(x)ν∗({sej ∈ Rd : sAK1/αej ∈ dx}),

where the measure ν∗, called the canonical exponent measure, is related to the exponent mea-

sure ν of the vector V = (V1, . . . , Vd) by ν = ν∗ ◦ K−1/α, see Lemma 2.2 in [20]. For in-

dependent components ν∗ is concentrated on the axes. We take into account that, whenever

x ∈ {uAK1/αej : u > 0}, the equality

ν∗({sej ∈ Rd : sAK1/αej ∈ dx}) = αu−α−1du

holds. Integration over the set {u > 1/h(AK1/αej)} yields∫ ∞
1/h(AK1/αej)

αg(AK1/αej)u
−αdu =

α

α− 1
g(AK1/αej)h

α−1(AK1/αej),

implying∫
h(x)>1

g(x)Eµ ◦A−1(dx) =
α

α− 1
(

d∑
j=1

Kj)
−1

d∑
j=1

E[g(AK1/αej)h
α−1(AK1/αej)].

Since µ̃({h(x) > 1}) =
∫
h(x)>1 Eµ ◦A

−1(dx) = (
∑d

j=1Kj)
−1Chind, we get (2.9).

(b) To show (2.10), recall that for asymptotically fully dependent components the canonical

exponent measure ν∗ is concentrated on the diagonal {u1 ∈ Rd : u > 0} and connected to the

exponent measure ν of V by ν = ν∗ ◦K−1, see also Lemma 4.2 in [20]. Hence,∫
h(x)>1

g(x)Eµ ◦A−1(dx)

= ‖K1/α1‖−αE
∫
h(x)>1,x∈{uAK1/α1:u>0}

g(x)ν∗({s1 ∈ Rd : sAK1/α1 ∈ dx}).
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For x ∈ {uAK1/α1 : u > 0}, we have Eν({sK1/α1 ∈ Rd : sAK1/α1 ∈ dx}) = αu−α−1du, which

yields ∫
h(x)>1

g(x)Eµ ◦A−1(dx) = ‖K1/α1‖−αE
∫ ∞
1/h(AK1/α1)

αu−αg(AK1/α1)du

= ‖K1/α1‖−α α

α− 1
Ehα−1(AK1/α1)g(AK1/α1).

This leads to (2.10).

Remark 2.9. (i) For two risks (X1, X2) which are multivariate regularly varying, the Condi-

tional Tail Expectation of the form E[X1 | X2 > t] has been investigated in [12]. In particular,

an estimation procedure has been developed, which also details the case of asymptotically inde-

pendent risks under hidden regular variation.

(ii) A statistical methodology which is based on the spectral measure of regular variation has

been developed for estimating unconditional and conditional risk measures, and has been applied

in [19] to operational risk data. �

3 The conditional systemic risk measures

We are now ready to investigate the conditional systemic risk measures from Definition 1.1 of

a financial or insurance market based on the bipartite graph represented by the random matrix

A = (Aij)
q,d
i,j=1 as in (1.2) with q agents and d objects.

First, we assess to which extent the risk of agent i is affected by high market losses. Second,

we evaluate the influence of an individual agent’s risk to the market risk, reflecting the systemic

importance of an individual agent. Third, we consider the influence of the risk of agent k on the

risk of agent i.

Throughout this section we assume that the loss variables V1, . . . , Vd are asymptotically

independent. The asymptotically fully dependent case can be tackled similarly to the asymptot-

ically independent case, with the modification that the intensity measure of the loss vector V is

concentrated on the line {sK11/α1 : s > 0}.
The assumption of losses being asymptotically independent is sensible, for example, when

modelling risks in reinsurance markets, where V1, ..., Vd represent large claims of different type

and spread over different geographic regions—it is appropriate to assume the claims arising from

a storm in the Gulf of Mexico to be independent from the claims arising from an earthquake in

Turkey. A similar argument applies to examples for high-risk investment such as a venture capital

trust or cat bonds of a reinsurance company. There is also evidence for asymptotic independence

situations in operational risk modelling, where V1, . . . , Vd represent losses of different event types

with arbitrary dependence structure; see [19].

In this section we return to the conditional risk measures from Definition 1.1 applied to

appropriate aggregation functions; we take g(F ) as the projection on some component and

h(F ) = ‖F‖ as a norm or quasinorm. In particular this norm can be different to the reference

norm in the definition of regular variation in (2.1).
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The following result determines the probability of joint large losses for individual agents and

the system in different conditional situations.

Proposition 3.1. Let V1, . . . , Vd be asymptotically independent and u ∈ (0,∞). Assume that

the conditions of Proposition 2.3 are satisfied. Moreover, assume that κ ∈ (0,∞) and γ → 0.

Then

P (Fi > VaR1−γκ(Fi) | ‖F‖ > VaR1−γ(‖F‖)) →
d∑
j=1

KjEmin
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
, (3.1)

P (‖F‖ > VaR1−κγ(‖F‖) | Fi > VaR1−γ(Fi)) →
d∑
j=1

KjEmin
{
κ
‖Aej‖α

CSind
,
Aαij
Ciind

}
, (3.2)

P (Fi > VaR1−γκ(Fi) | Fk > VaR1−γ(Fk)) →
d∑
j=1

KjEmin
{
κ
Aαij
Ciind

,
Aαkj

Ckind

}
. (3.3)

Moreover, for the Conditional Tail Expectations, if α > 1, then

ICoTE1−γ(Fi | ‖F‖) ∼
α

α− 1
(CSind)1/α−1

d∑
j=1

KjE[Aij‖Aej‖α−1]γ−1/α, (3.4)

SCoTE1−γ(‖F‖ | Fi) ∼
α

α− 1
(Ciind)1/α−1

d∑
j=1

KjE[Aα−1ij ‖Aej‖]γ
−1/α, (3.5)

MCoTE1−γ(Fi | Fk) ∼
α

α− 1
(Ckind)1/α−1

d∑
j=1

KjE[Aα−1kj Aij ]γ
−1/α. (3.6)

Proof. We show the following, slightly more general result: Let

g, h ∈ {f : Rq+ → R+ : f(x) = ‖x‖ and fk : Rq+ → R+; fk(x) = xk, k = 1, . . . , q},

then, under the assumptions of this proposition,

P (g(F ) > VaR1−γκ(g(F )) | h(F ) > VaR1−γ(h(F )))

→
d∑
j=1

Emin
{hα(AK1/αej)

Chind
,
κgα(AK1/αej)

Cgind

}
, γ → 0. (3.7)

To show (3.7) we set VaR1−γκ(g(F )) = t and VaR1−γ(h(F )) = ut. Now recall that by (1.8) and

(1.9)

VaR1−γ(Fi) ∼ (Ciind)1/αγ−1/α and VaR1−γ(‖F‖) ∼ (CSind)1/αγ−1/α, γ → 0.

This implies that

u =
VaR1−γ(h(F ))

VaR1−γκ(g(F ))
=

(Chind)1/αγ−1/α

(Cgind)1/α(γκ)−1/α
(1 + o(1)), γ → 0

such that

uα =
Chind
Cgind

κ(1 + o(1)), γ → 0.

Corollary 2.6 now gives that (3.7) holds.

The analogous expressions for the Conditional Tail Expectation follow similarly from Corol-

lary 2.8.
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Remark 3.2. For simplicity we refer to the first contribution of the sum on the right-hand side

of (3.1), ‖Aej‖α/CSind, as the systemic constant, and to the second contribution, κAαij/C
i
ind, as

the individual constant of (3.1).

With these notions we give an interpretation of (3.1). First note that for any market matrix

A with bounded components such that P (Aij > 0) > 0 for all i = 1, . . . , q and j = 1, . . . , d,

there is some δ > 1 such that

Emin
{‖Aej‖α

CSind
, κδα

Aαij
Ciind

}
= E
‖Aej‖α

CSind

for all j = 1, . . . , d. Suppose that there is a crisis situation worse than presumed by the regulator;

i.e., instead of the event {‖F‖ > VaR1−γ(‖F‖)} the more extreme event {‖F‖ > δVaR1−γ(‖F‖)}
for some δ > 1 is observed. Then by (2.6) the factor κ in the limit of (3.1) changes to δακ.

Consider the situation where the minimum in (3.1) has been attained by the individual

constant under the previous market condition that ‖F‖ > VaR1−γ(‖F‖). Assume that the

occurrence of a severe crisis event, which results in the change of κ to δακ for some δ > 1, is so

severe that δ becomes so large that the minimum in (3.1) is attained for the systemic contribution

part. Then, as a consequence, for such large δ, by (1.6), the tail dependence coefficient between Fi

and ‖F‖ equals 1, so that there will be full asymptotic dependence between the single financial

agent and the market. In order to avoid this dangerous full dependence of a single agent on

the market in a future crisis situation of the same extent, the regulator might impose capital

restrictions on all agents in the market by adjusting the exposure weights Wij to Wij/δ. Clearly,

this adjustment must be carried out smoothly in order to avoid provoking fire sales or other

shocks to the market. Then

κδα
Aαij
Ciind

= κ
Wα
ij

Ciind
1(i ∼ j),

so that the dependence on δ vanishes. Then with positive probability, the minimum (3.1) will be

attained by the individual constant and full asymptotic dependence between the single financial

agent and the market is avoided.

The other limit relations have analogous interpretations. �

For each of the expressions in Proposition 3.1 the limiting behaviour for κ→ 0 is linear, as

is made precise in the next Proposition 3.3. For this result we assume that there exist constants

w and W which do not depend on the network, such that for all i = 1, . . . q and j = 1, . . . , d,

0 < w ≤Wij ≤W. (3.8)

For the reinsurance market with Wij = deg(j)−1 (cf. (1.4)) we can take w = 1/(1 + d) and

W = 1. Then—with the matrix A given by (1.2)—there are constants b, B which do not depend

on the network so that

0 < b ≤ ‖Aej‖ ≤ B, (3.9)

whenever 1(i ∼ j) = 1 for at least one i in 1, . . . , q. We set

κ0 = κ0(i) =
bα

CSind

Ciind
Wα

, κ1 = κ1(i) =
CSind
Ciind

bα

Wα
, and κ2 = κ2(i, k) =

Ciind
Ckind

wα

Wα
. (3.10)
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Moreover, we define

τ(i) =

d∑
j=1

KjE
[
1(i ∼ j)‖Aej‖

α

CSind

]
and τ(i, k) =

d∑
j=1

KjE
[
1(k ∼ j)

Aαij
Ciind

]
, (3.11)

and note that τ(i) ≤ 1 and τ(i, k) ≤ 1 through the definitions of CSind and Ciind, respectively. If

i and k do not share an object then τ(i, k) = 0.

With these notations we can give more precise expressions for the right-hand side of (3.1),

(3.2) and (3.3).

Proposition 3.3. Assume that the conditions of Proposition 3.1 as well as (3.8) and thus (3.9)

hold.

(a) For κ ≤ κ0(i),

d∑
j=1

KjEmin
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
= κ

d∑
j=1

KjE
Aαij
Ciind

= κ. (3.12)

(b) For κ ≤ κ1(i),

d∑
j=1

KjE
{

min
{
κ
‖Aej‖α

CSind
,
Aαij
Ciind

}
= κτ(i). (3.13)

(c) For κ ≤ κ2(i, k),

d∑
j=1

KjEmin
{
κ
Aαij
Ciind

,
Aαkj

Ckind

}
= κτ(i, k). (3.14)

Proof. To show (3.12) we start with (3.1). Consider the expression

min
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
= 1(i ∼ j) min

{‖Aej‖α
CSind

, κ
Wα
ij

Ciind

}
.

If i 6∼ j then the minimum is 0, and if i ∼ j we can choose

κ <
‖Aej‖α

CSind

Ciind
Wα
ij

. (3.15)

While this expression can be random, κ0 is not random, and for κ ≤ κ0, the inequality (3.15) is

satisfied for every realisation of the network. Hence,

Emin
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
= κE

[
1(i ∼ j)

Wα
ij

Ciind

]
.

Summing over j = 1, . . . , d and recalling the definition of Ciind gives (3.12).

To show (3.13) we start with (3.2); the argument is similarly straightforward. Consider the

expression

min
{
κ
‖Aej‖α

CSind
,
Aαij
Ciind

}
= 1(i ∼ j) min

{
κ
‖Aej‖α

CSind
,
Wα
ij

Ciind

}
.
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If

κ ≤
Wα
ij

Ciind

CSind
‖Aej‖α

,

then

1(i ∼ j) min
{
κ
‖Aej‖α

CSind
,
Wα
ij

Ciind

}
= 1(i ∼ j)κ‖Aej‖

α

CSind
.

In particular, this equation holds for κ ≤ κ1 with κ1 given in (3.10). Again summing over all j

gives (3.13).

To show (3.14) we use (3.3) Consider the expression

min
{
κ
Aαij
Ciind

,
Aαkj

Ckind

}
= 1(i ∼ j)1(k ∼ j) min

{
κ
Wα
ij

Ciind
,
Wα
kj

Ckind

}
.

For κ ≤ κ(i, k),

1(i ∼ j)1(k ∼ j) min
{
κ
Wα
ij

Ciind
,
Wα
kj

Ckind

}
= 1(k ∼ j)κ

Wα
ij

Ciind
= κ1(k ∼ j)

Aαij
Ciind

for α > 0. Summing over j gives the assertion (3.14).

Continuing from (3.12), (3.13) and (3.14) we can now assess the limiting behaviour of

ICoVaR, SCoVaR and MCoVaR from Definition 1.1, specified for the aggregation function

h(f) = ‖F‖ of the exposure vector. For γi, γ ∈ (0, 1) referring to agent i and the market,

respectively, we consider the following conditional systemic risk measures:

(a) Individual Conditional Value-at-Risk

ICoVaR1−(γi|γ)(Fi | ‖F‖) := inf{t ≥ 0 : P (Fi > t | ‖F‖ > VaR1−γ(‖F‖)) ≤ γi},
(b) Systemic Conditional Value-at-Risk

SCoVaR1−(γ|γi)(‖F‖ | Fi) := inf{t ≥ 0 : P (‖F‖ > t | Fi > VaR1−γ(Fi)) ≤ γ},
(c) Mutual Conditional Value-at-Risk

MCoVaR1−(γi|γk)(Fi | Fk) := inf{t ≥ 0 : P (Fi > t | Fk > VaR1−γk(Fk)) ≤ γi}.

Theorem 3.4. Assuming (3.8) and (3.9), we observe the following asymptotic behaviour of the

different versions of the conditional risk measures (a) - (c):

(a) As γ → 0 for γi ≤ κ0(i),

ICoVaR1−(γi|γ)(Fi | ‖F‖) ∼ VaR1−γiγ(Fi) ∼ (Ciind)
1
α (γiγ)−

1
α . (3.16)

(b) As γi → 0 for γ ≤ κ1(i)τ(i),

SCoVaR1−(γ|γi)(‖F‖ | Fi) ∼ VaR1− γiγ

τ(i)
(‖F‖) ∼ (CSind)

1
α

{
γiγ

τ(i)

}− 1
α

. (3.17)

(c) If τ(i, k) 6= 0, then as γk → 0, for γi ≤ κ2(i, k)τ(i, k), we have

MCoVaR1−(γi|γk)(Fi | Fk) ∼ VaR1− γiγk
τ(i,k)

(Fi) ∼ (Ciind)
1
α

{
γiγk
τ(i, k)

}− 1
α

; (3.18)

and, if τ(i, k) = 0, then as γi → 0,

MCoVaR1−(γi|γk)(Fi | Fk) ∼ VaR1−γi(Fi) ∼ (Ciind)
1
αγ
− 1
α

i .
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Proof. First, from (3.1) and (3.12), for κ ≤ κ0 = κ0(i) as γ → 0,

P (Fi > VaR1−γκ(Fi) | ‖F‖ > VaR1−γ(‖F‖)) →
d∑
j=1

KjEmin
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
= κ.

Hence, for γi ≤ κ0, as γ → 0,

P (Fi > VaR1−γγi(Fi) | ‖F‖ > VaR1−γ(‖F‖)) ∼ γi.

Thus ICoVaR1−(γi|γ)(Fi | ‖F‖) ∼ VaR1−γiγ(Fi). The asymptotics for the VaR follow from (1.8)

and (1.9), yielding (3.16).

For (3.17), relations (3.2) and (3.13) imply that for γ → 0 and κ > κ1 = κ1(i),

P (‖F‖ > VaR1−κγ(‖F‖) | Fi > VaR1−γ(Fi)) →
d∑
j=1

KjEmin
{
κ
‖Aej‖α

CSind
,
Aαij
Ciind

}
= κτ(i).

In particular, a simple rescaling gives for γi → 0,

P (‖F‖ > VaR1−κγi(‖F‖) | Fi > VaR1−γi(Fi)) → κτ(i).

Letting γ = κτ(i) gives for γ ≤ κ1τ(i), as γi → 0 ,

P
(
‖F‖ > VaR1− γiγ

τ(i)
(‖F‖) | Fi > VaR1−γi(Fi)

)
→ γ.

Now (3.17) follows as before.

For (3.18), relations (3.3) and (3.14) give for γ → 0 and κ ≤ κ2(i, k),

P (Fi > VaR1−γκ(Fi) | Fk > VaR1−γ(Fk)) →
d∑
j=1

KjEmin
{
κ
Aαij
Ciind

,
Aαkj

Ckind

}
= κτ(i, k).

Changing variables gives for γk → 0,

P (Fi > VaR1−γkκ(Fi) | Fk > VaR1−γk(Fk)) → κτ(i, k).

Setting γ = κτ(i, k) and requiring that γ ≤ κ2(i, k)τ(i, k) gives (3.18), provided that τ(i, k) 6= 0.

The last assertion follows from the fact that Fi and Fk are independent, if agents i and k do

not share an object.

Remark 3.5. The asymptotic behaviour of the risk measures is assessed in Theorem 3.4 through

the exceedance probabilities conditioned on an extreme event. For example, in (3.18), agent k

has already experienced a very large loss. This loss will have an effect on the loss of agent i

if they share some objects in their portfolios. The more objects they share, the larger τ(i, k)

will be. The unconditional VaR threshold 1− γi at which P (Fi > t) = γi has to be adjusted to

1 − γ γk
τ(i,k) if τ(i, k) 6= 0. The larger τ(i, k), the larger 1 − γ γk

τ(i,k) will be, hence, the higher the

capital requirements for agent i.

The effect of the network on the agent in (3.17) indicates the dependence on τ(i), which

increases with the number of connections of agent i. Again, the larger τ(i), the higher the

capital requirements on agent i should be.

Even in (3.16) there is dependence of the network structure, which is reflected in κ0(i) as

well as in Ciind. �
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4 Network effects

Throughout this section we restrict ourselves to the situation that the losses V1, . . . , Vd are

asymptotically independent. Furthermore, we exemplify our results based on a bipartite network

model with independent edges. More precisely, we assume that the edge indicator variables

{1(i ∼ j), 1 ≤ i ≤ q, 1 ≤ j ≤ d} are independent Bernoulli random variables with E1(i ∼ j) =

pij . For the situation of a large claims insurance market as in (1.4), we have Aij = 1(i∼j)
deg(j) , while

for the capital investment problem as in (1.5), we have Aij = ci
1(i∼j)
deg(i) (with 0

0 := 0).

This model allows us to compute Poisson approximations for the relevant constants in Propo-

sition 3.1 and Theorem 3.4, which we present in Section 4.1 for the insurance network (1.4).

In Section 4.2 we present numerical simulations, now for the investor network (1.5) contrast-

ing the homogeneous model with a Rasch-type inhomogeneous model.

4.1 Independent bipartite graph model: Poisson approximations

In this section we consider the insurance example, where agents are reinsurance companies,

objects are possible catastrophic claims, and Aij = 1(i∼j)
deg(j) . If d and q are large, we can pro-

vide Poisson approximations for the quantities CSind, Ciind, EAij‖Aej‖α−1, EAα−1ij ‖Aej‖, and

EAα−1kj Aij concerning the CoTE and CoVaR, which appear in Proposition 3.1 We define by

X ∼ Pois(λ) a Poisson-distributed random variable X with mean λ > 0. We shall use the

following Poisson variables;

Xi,k
j ∼ Pois(λi,kj ) with λi,kj =

q∑
l=1,l 6=i,k

pli,

Xi
j ∼ Pois(λij) with λij =

q∑
l=1,l 6=i

pli, and

Xj ∼ Pois(λj) with λj =

q∑
k=1

pkj .

Proposition 4.1 from [20] gives that∣∣EAαij − pijE(1 +Xi
j)
−α∣∣ ≤ pij min{1, (λij)−1}

∑
k=1,...,q;k 6=i

p2kj =: B(i, j), (4.1)

and, for the r-norm for some r ≥ 1,∣∣∣E‖Aej‖α − E
[
1{Xj ≥ 1}(1 +Xj)

α(1/r−1)]∣∣∣ ≤ min{1, (λj)−1}
q∑

k=1

p2kj =: B(j). (4.2)

We shall also employ

B(i, j, k) := min{1, (λi,kj )−1}
∑

`=1,...,q;`6=i
p2`j . (4.3)

The following is an immediate consequence of (1.6), (4.1) and (4.2).
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Lemma 4.1. With the notation as above∣∣∣Ciind − d∑
j=1

KjpijE(1 +Xi
j)
−α
∣∣∣ ≤ d∑

j=1

KjB(i, j). (4.4)

∣∣∣CSind − d∑
j=1

KjE
[
1{Xj ≥ 1}(1 +Xj)

−α r−1
r
]∣∣∣ ≤ d∑

j=1

KjB(j). (4.5)

For r ≥ 1, with B(i, j) given in (4.1), B(j) given in (4.2), and B(i, j, k) given in (4.3) we

obtain the following results for the quantities in Proposition 3.1.

Proposition 4.2. For the quantities from Proposition 3.1, let

M1 = min
{ κ

Ciind
,

1

CSind

}
, M2 = min

{ 1

Ciind
,
κ

CSind

}
, M3 = min

{ κ

Ciind
,

1

Ckind

}
.

Then∣∣∣Emin
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
− pi,jEmin

{(1 +Xi
j)
−α+α

r

CSind
, κ

(1 +Xi
j)
−α

Ciind

}∣∣∣ ≤ M1B(i, j), (4.6)

∣∣∣Emin
{
κ
‖Aej‖α

CSind
,
Aαij
Ciind

}
− pi,jEmin

{
κ

(1 +Xi
j)
−α+α

r

CSind
,
(1 +Xi

j)
−α

Ciind

}∣∣∣ ≤ M2B(i, j), (4.7)

and for i 6= k∣∣∣Emin
{
κ
Aαij
Ciind

,
Aαkj

Ckind

}
− pijpkjM3E

[
(2 +Xi,k

j )−α
]∣∣∣ ≤ pijpkjM3B(i, j, k). (4.8)

Moreover, if α > 1, then∣∣∣EAij‖Aej‖α−1 − pijE[(1 +Xi
j

)−α(r−1)+1
r

]∣∣∣ ≤ B(i, j), (4.9)∣∣∣EAα−1ij ‖Aej‖ − pijE
[(

1 +Xi
j

) 1
r
−α]∣∣∣ ≤ B(i, j), (4.10)

and for i 6= k,∣∣∣EAα−1kj Aij − pijpkjE
[(

2 +Xi,k
j

)α]∣∣∣ ≤ pijpkj min{1, (λi,kj )−1}
∑

`=1,...,q;`6=i
p2`j . (4.11)

Proof. We compute

‖Aej‖α =
( q∑
k=1

1(k ∼ j)
deg(j)r

)α
r

=
( 1

deg(j)r−1

)α
r
1(deg(j) > 0). (4.12)

With (4.12), we obtain

min
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
= 1(i ∼ j) min

{deg(j)−α+
α
r

CSind
, κ

deg(j)−α

Ciind

}
= 1(i ∼ j) min

{(1 +
∑

k 6=i 1(k ∼ j))−α+
α
r

CSind
, κ

(1 +
∑

k 6=i 1(k ∼ j))−α

Ciind

}
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and, consequently,

Emin
{‖Aej‖α

CSind
, κ

Aαij
Ciind

}
= pijEmin

{(1 +
∑

k 6=i 1(k ∼ j))−α+
α
r

CSind
, κ

(1 +
∑

k 6=i 1(k ∼ j))−α

Ciind

}
.

(4.13)

Now consider the function

k(x) = min
{(1 + x)−α+

α
r

CSind
, κ

(1 + x)−α

Ciind

}
.

If CSind ≥ 1 or κ
Ciind
≥ 1, then k(x) ∈ [0, 1]. In general,

0 ≤ k(x) ≤ min
{ 1

CSind
,
κ

Ciind

}
= M1

with M1 as in (4.6). Hence

t(x) = M1
−1k(x) = max

{
CSind,

Ciind
κ

}
k(x) ∈ [0, 1].

Now we use a standard approximation result in total variation distance, Eq. (1.23), p. 8, from

[3]. This result states that, if S is the sum of n independent Bernoulli random variables with

success probabilities pi, ES = λ =
∑n

i=1 pi, and Z ∼ Pois(λ), then

sup
h:Z+→[0,1]

|Ek(S)− Ek(Z)| ≤ min{1, λ−1}
n∑
i=1

p2i . (4.14)

Applying (4.14) to the function t(x) and keeping (4.13) in mind yields (4.6). Now (4.7) follows

similarly. Finally,

min
{
κ
Aαij
Ciind

,
Aαkj

Ckind

}
= min

{
κ

1(i∼j)
deg(j)α

Ciind
,

1(k∼j)
deg(j)α

Ckind

}
= 1(i ∼ j)1(k ∼ j)

(
2 +

∑
`6=i,k

1(` ∼ j)
)−α

min
{
κ

1

Ciind
,

1

Ckind

}
= M31(i ∼ j)1(k ∼ j)

(
2 +

∑
`6=i,k

1(` ∼ j)
)−α

.

As the positive function k(x) = (2 + x)−α is bounded by 1 and as
∑

`=1,...,q;`6=i,k 1(` ∼ j) is a

sum of independent Bernoulli variables, (4.14) can be applied, and (4.8) follows.

For the Conditional Tail Expectations, with (4.12),

Aij‖Aej‖α−1 =
( 1

deg(j)r−1

)α−1
r 1(i ∼ j)

deg(j)
=
(1(i ∼ j)

deg(j)

)α(r−1)+1
r

= A
α(r−1)+1

r
ij .

Hence, (4.1) applies and yields (4.9). Similarly, with (4.12),

Aα−1ij ‖Aej‖ =
1(i ∼ j)

deg(j)α−1

( 1

deg(j)r−1

) 1
r

= A
α− 1

r
ij .
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Figure 2: Homogeneous bipartite network (risk of an agent given the system is under stress): C(ICoTE)

as a function of the tail index α ∈ [1.5, 3] and the market activity p ∈ (0.01, 1.0].

Again (4.1) applies, and yields (4.10). For the last part we mimick the proof of Proposition 4.1

in [20]. By the independence of the edges,

E
[
Aα−1kj Aij

]
= E

[
1(i ∼ j)1(k ∼ j) 1

deg(j)α

]
= pijpkjE

[(
2 +

∑
`=1,...,q;`6=i,k

1(` ∼ j)
)−α]

.

Again (4.14) can be applied and the bound (4.11) follows.

Remark 4.3. Using (4.4) and (4.5) the constants M1,M2, and M3, as well as the expressions

on the left-hand side of Proposition 4.2, could be bounded further if desired. �

Remark 4.4. Proposition 4.2 gives an exact bound on the distance to Poisson; no asymptotic

regime is suggested. Hence, it can be interpreted in different asymptotic regimes.

If the number d of objects increases, while the number q of agents is such that q = o(
√
d),

and the number of objects which an agent would connect to, stays constant in expectation, in

a fashion so that pij ∼ c
d for a fixed c, then B(j) and B(i, j, k) are of order q/d−2, B(i, j) is of

order qd−3; as long as q = o(
√
d) the Poisson approximation will be suitable.

Similarly, if the number q of agents increases and the number d of objects only increases as

d = o(
√
q), and if pij ∼ c/q for a fixed c, the Poisson approximation will be suitable. �

4.2 Independent bipartite graph model: numerical results

In this section we consider the investment example, where agents are investors and objects are

possible investments. All investors distribute their investment capital equally among all of their

investments, which they have chosen as in (1.5). Furthermore, we set all Kj = 1.

We are interested in the asymptotic constants given in Proposition 3.1 as well as in Theo-

rem 3.4 concerning the CoTE and CoVaR. We considered all conditioning situations: investor

conditioned on system’s stress, system conditioned on investor’s stress, and investor conditioned
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on another investor’s stress. For illustration purposes we present the first two situations in terms

of CoTE and the last one in terms of CoVaR.

The conditional systemic risk measures ICoTE (risk of agent i given the system is under

stress) in (3.4) and SCoTE (the system’s risk given agent i is under stress) in (3.5), respectively,

are determined by the constants

C(ICoTE) :=Ci(ICoTE) :=
α

α− 1
(CSind)1/α−1

d∑
j=1

KjE[Aij‖Aej‖α−1], (4.15)

and

C(SCoTE) :=Ci(SCoTE) :=
α

α− 1
(Ciind)1/α−1

d∑
j=1

KjE[Aα−1ij ‖Aej‖], (4.16)

which capture all necessary market information. The third example, the MCoVaR (risk of agent

i given agent k is under stress) from (3.18) is associated with the constant

C(MCoVaR) := Ci|k(MCoVaR) := (Ciindτ(i, k))1/α =

d∑
j=1

KjE[1(k ∼ j)Aαij ] (4.17)

for τ(i, k) 6= 0 from (3.11). For the independent bipartite graph model τ(i, k) 6= 0 holds whenever

pik > 0. All plots starts with p = 0.01, which corresponds to a market with (almost) no activity,

ranging to p = 1. For α we choose the interval α ∈ [1.5, 3] to cover situations where the losses

have finite mean, and the interval α ∈ [0.8, 3] if there is no restriction that the mean of the losses

should exist, as the mean only exists for α > 1.

4.2.1 Homogeneous bipartite graph model

For this model all edge probabilities pij = p ∈ [0, 1] are equal, such that all agents behave

exchangeably. Then the market ranges from no investment activity at all (p = 0) to a complete

bipartite graph (p = 1) reflecting that each investor holds every investment. We consider the

situation of q = 5 investors and d = 5 investments.

In Figure 2 we plot the constant C(ICoTE) from (4.15) as a proxy for the risk of an agent

given the system is under stress as a function of the tail index α for α ∈ [1.5, 3] and the

probability p, where the plot starts with p = 0.01 corresponding to a market with (almost) no

activity, ranging to p = 1, where each investor holds every investment. Considering a curve in

p for fixed α, the graph increases first—since the probability that investors have invested at

all (and do not only hold cash) increases in p, the probability that they are exposed to risk at

all increases. With further increasing connectivity in the market, we recognize that there is a

positive effect of risk diversification: the curve decreases after having attained a local maximum.

This effect can be observed for all α under consideration, though it is stronger for larger α

corresponding to lighter tails.

In Figure 3 we plot the constant C(SCoTE) from (4.16) as a proxy for the risk of the system

given an agent is under stress as a function of α ∈ [1.5, 3] and the probability p ranging from

0.01 to 1. If we fix α and consider a curve in p, we recognize for lighter tails the same behaviour
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Figure 3: Homogeneous bipartite network (risk of the system given an investor is under stress): C(SCoTE)

as a function of the tail index α ∈ [1.5, 3] and the market activity p ∈ (0.01, 1.0].

as in Figure 2; i.e., after an increase due to increasing the investment probability, there is a

positive effect of risk diversification in the way that the constant decreases again for p large

enough. However, for smaller α corresponding to heavier tails the non-monotonous behaviour of

the curve vanishes, so the risk increases throughout. Consequently, an increased connectivity in

the market (often considered as diversification) does not always lower the corresponding risk.

In Figure 4 we plot the constant C(MCoVaR) from (4.17) as a proxy for the risk of one agent

given another agent is under stress as a function of the tail index α ∈ [0.8, 3] and the probability

p ranging from 0.01 to 1. Considering again curves in p for fixed α we recognize the effects of

the previous plots: For larger α there is a non-monotonous behaviour of the curve indicating a

positive effect of risk diversification shown by a final decrease of the curve for growing network

connectivity. This effect is not observable for intermediate values of α, where the curves are

monotonically increasing in p. In addition, if α < 1, there are not only no positive effects of risk

diversification, but the change in the curvature from concave to convex actually indicates that

risk accelerates to rise as the network connectivity increases, so we discover negative effects of

diversification. That diversification is not preferrable in infinite-mean models (α≤1) has already

been observed in non-conditional situations; see e.g. [16, 20, 23].

4.2.2 Rasch-type bipartite graph model

In the homogeneous example agents are exchangeable, so all investors are of the same type.

Now we allow for different types of investors by considering a Rasch-type model as motivated

in Section 4.2.3 of [20]. We assume that pij = p βiδj for suitably chosen parameters βi, δj > 0

and a free parameter p ∈ [0, 1]. Here, the parameter βi gives a measure for the risk proneness

of investor i, while the parameter δj reflects the attractiveness of investment j; the parameter p

again indicates the activity in the market.

In our market there are 5 investors and, in contrast to the homogeneous model, we have two
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Figure 4: Homogeneous bipartite network (risk of one investor given another one is under stress):

C(MCoVaR) as a function of the tail index α ∈ [1.5, 3] and the market activity p ∈ (0.01, 1.0].

different types of investors corresponding to β1 = 0.2 (a single risk averse investor 1) and β2 = 1

(four risk prone investors with same risk affinity).

The situation for the investments is given by a vector δ, where in Scenario 1 one investment

is dominantly attractive in contrast to all the others, given as δ = (0.2, 0.2, 0.2, 0.2, 0.9). In

Scenario 2 we have a market, in which only one investment is unattractive opposed to the rest,

which are attractive given as δ = (0.9, 0.9, 0.9, 0.9, 0.2).

Figure 5 depicts the constant C(ICoTE) from (4.15), which represents the conditional risk

of an investor given the market is under stress. In Scenario 1 there is only one attractive in-

vestment. The risk obviously increases with the probability p; i.e. with the market activity. The

conditional risk of the risk averse investor remains always smaller than that of a risk prone

investor. Comparing with the homogeneous investor of Figure 2, the risk of the homogeneous in-

vestor lies between the risk of the risk averse and the risk prone investor. Moreover, the risk also

increases when α becomes smaller, corresponding to heavier tails. A diversification effect cannot

be observed for this scenario. In contrast to the homogeneous model there is no diversification

effect visible.

Figure 6 shows the same constant C(ICoTE) from (4.15), but now for Scenario 2; i.e., there

are 4 attractive investments. Here the risk averse investor’s conditional risk increases with p, and

decreases with α. For the risk prone investor the situation changes: the conditional risk for the

risk prone investor increases first with p, but with further increasing connectivity in the market,

there is a positive effect of risk diversification. This effect can be observed for all α ∈ [1.5, 3],

though it is stronger for larger α; i.e. for lighter tails.

Figure 7 illustrates the conditional systemic risk given an investor is in distress by the con-

stant C(SCoTE) from (4.16) for a portfolio with one attractive risk. The market risk conditional

on the risk averse investor’s distress is always smaller than that conditional on the risk prone

investor being under stress. For small α and very large connectivity, this conditional risk is

doubled compared to the risk averse investor. In particular, for small α there is a change in the
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Figure 5: Rasch model (risk of an investor given the system is under stress for Scenario 1):

C(ICoTE) as a function of the tail index α ∈ [1.5, 3] and the market activity p ∈ (0.01, 1.0].

Left: risk averse investor. Right: risk prone investor.
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Figure 6: Rasch model (risk of an investor given the system is under stress for Scenario 2):

C(ICoTE) as a function of the tail index α ∈ [1.5, 3] and the market activity p ∈ (0.01, 1.0].

Left: risk averse investor. Right: risk prone investor.

curvature indicating that risk accellerates to rise as the network connectivity increases. This

confirms the obvious fact that a risk prone investor may be much more dangerous for the system

than a risk averse one.

Figure 8 shows the same constant for Scenario 2, where 4 attractive risks are available for

investment. If we fix α and consider a curve in p, we notice a profound difference when the risk

averse investor is under stress compared to when the risk prone investor is under stress. In the

left-hand plot we see a monotonous increase for increasing p and decreasing α. In the right-hand

plot, however, there is a positive effect of risk diversification for not too small α, i.e. for not too

heavy tailed investment risk, when the network connectivity increases. It is remarkable that this

diversification effect can compensate the stress of a risk prone investor better than the stress of

the risk averse investor: the risk for lighter tailed risk and large p is smaller.
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Figure 7: Rasch model (risk of the system given an investor is under stress for Scenario 1):

C(SCoTE) as a function of the tail index α for α ∈ [1.5, 3] and with market activity p ∈ (0.01, 1.0].

Left: risk averse investor. Right: risk prone investor.

Figures 9-12 show the constant C(MCoVaR) from (4.17), which represents the conditional

risk of one investor given another is under stress. Here we plot C(MCoVaR) for α ∈ [0.8, 3]; i.e.,

including the infinite mean case. As these curves have different curvatures in different areas, we

show the same figure twice, the left plot as before, and the right plot presenting it at a different

angle.

Figures 9 and 10 consider Scenario 1; i.e., for one attractive risk in the market. Figure 9 shows

the risk of the risk averse investor given that a risk prone investor is under stress. For fixed small

market activity p the risk increases moderately (and almost linearly) when α decreases. When p

becomes larger, then the risk increases further, but now it also increases with α. For an (almost)

complete graph corresponding to p near 1, the risk increases with α in a concave fashion. For

small α and small p the plot increases almost linearly, for large α and p the curvature becomes

positive.

Figure 10 shows the risk of the risk prone investor given that a risk averse investor is under

stress again for Scenario 1 with one attractive investment in the market. At its largest point,

for p = 1 and α = 3 the risk remains below the value of Figure 9. So, the risk prone investor

takes still some benefit from diversifying his investments. The stress situation of the risk averse

investor as the conditioning event stems from a loss in one investment on which the averse

investor concentrates the capital or at least a huge fraction of it.

Figures 11 and 12 correspond to Figures 9 and 10 for Scenario 2, where 4 attractive invest-

ments are in the market. The conditional risk of the risk averse investor, shown in Figure 11 has

similar curvature as for Scenario 1, but it is larger throughout. The conditional risk of the risk

prone investor exhibits again some diversification effect when the market connectivity exceeds

some p. Thus the threshold p varies with α and is non-trivial.
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Figure 8: Rasch model (risk of the system given an agent is under stress for Scenario 2):

C(SCoTE) as a function of the tail index α for α ∈ [1.5, 3] and with market activity p ∈ (0.01, 1.0].

Left: risk averse agent. Right: risk prone agent

5 Conclusion and Outlook

We have investigated conditional systemic risk measures for a agent-object market given by a

bipartite graph structure. Within the appropriate framework of multivariate regular variation, a

classic setting for heavy-tailed distributions, we have formulated and investigated the asymptotic

behaviour of Individual, Systemic, and Mutual Conditional Value-at-Risk and Conditional Tail

Expectation ; these notions are applicable to very high risk settings.

For the insurance example, where the agents (reinsurance companies) insure possible catas-

trophic claims, we provide Poisson approximations for the conditional risk measures represented

by a number of constants. Based on our theoretical results, we have investigated the network

effect for different scenarios. For an envisioned high-risk investment example we present numer-

ical results for bipartite graph models. For the homogeneous model, where all agents behave

exchangeably, we have plotted and interpreted the Individual and the Systemic Conditional Tail

Expectation as well as the Mutual Conditional Value-at-Risk. For a Rasch-type bipartite graph

model we have investigated different scenarios concerning the risk proneness of the agents as

well as the attractiveness of the different investments.

Our work is applied in [19] to a real data set of operational risk data. In that paper we

also develop a new statistical methodology for the estimation of the distribution of the joint

exposures, taking the discreteness of the dependence structure into account.

This paper shows that understanding the behaviour of conditional risk under different market

scenarios can be informative both for agents and for the regulator.
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Figure 9: Rasch model (risk of the risk averse investor given the risk prone investor is under stress for

Scenario 1): Left plot: C(MCoVaR) as a function of the tail index α ∈ [0.8, 3] and the market activity

p ∈ (0.01, 1.0]. Right plot: left plot rotated by 180 degrees.
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Figure 10: Rasch model (risk of the risk prone investor given the risk averse investor is under stress for

Scenario 1): Left plot: C(MCoVaR) as a function of the tail index α ∈ [0.8, 3] and the market activity

p ∈ (0.01, 1.0]. Right plot: left plot rotated by 90 degrees.
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Figure 11: Rasch model (risk of the risk averse investor given the risk prone investor is under stress for

Scenario 2): Left plot: C(MCoVaR) as a function of the tail index α ∈ [1.5, 3] and with market activity

p ∈ (0.01, 1.0]. Right plot: left plot rotated by 180 degrees.
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Figure 12: Rasch model (risk of the risk prone investor given the risk averse investor is under stress for

Scenario 2): Left plot: C(MCoVaR) as a function of the tail index α ∈ [1.5, 3] and the market activity

p ∈ (0.01, 1.0]. Right plot: left plot rotated by 180 degrees.
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