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Lehrstuhl für Numerische Mechanik

Determination of Transport Parameters
of Binary Electrolyte Solutions

for the Use in Numerical Simulations

Andreas Josef Ehrl
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Abstract

Nowadays, batteries are used as portable energy source in hand-held devices such as laptops,
cameras and cell phones. In addition, advanced battery systems are also considered a key tech-
nology for the success of the German ”Energiewende”. However, the limited energy density and
lifetime of current lithium ion batteries have to be improved further to fulfill all requirements.
In this context, advanced numerical simulation tools are important for both the improvement of
existing battery systems such as lithium ion batteries as well as the development of future battery
systems such as lithium oxygen batteries. Computational methods can provide insight into phys-
ical and chemical aspects of battery systems, which are not or hardly achievable experimentally.
The optimization of future battery designs is another important application for computer-based
methods. For such numerical simulations, reproducibility and accuracy are key issues, which de-
pend on appropriate physical models, boundary conditions, and accurately determined transport
parameters, among other things.

In this work, two different physically-motivated ion-transport models for concentrated elec-
trolyte solutions are introduced and related to each other. The first model is based on the Stefan-
Maxwell approach, the second on non-equilibrium thermodynamics. Based on this comparison,
a flexible computational approach based on the finite element method is developed which en-
ables both the simulation of large realistic, geometrically resolved porous structures as well as
the simulation of porous media homogenized by the volume averaging approach. The focus is
in particular on galvanostatic boundary conditions for three-dimensional domains. The accuracy
and the robustness of the proposed computational method is demonstrated by various numerical
examples. Among others, a realistic three-dimensional porous structure is presented to accentu-
ate the computational efficiency of the presented approach.

Similar simulation tools can be found in literature, whereas accurate and reliable transport
parameters are scarce. Therefore, the focus of this work is on the development of accurate and
at the same time as simple as possible experimental procedures for the determination of trans-
port parameters required for predictive numerical simulations. In the considered models, ion-
transport is described by three independent transport parameters and one thermodynamic quan-
tity, namely the conductivity of electrolyte solution, the diffusion coefficient, the transference
number of the reacting ionic species and the thermodynamic factor or, alternatively, the mean
molar activity coefficient. For numerical simulations using the volume averaging approach, at
least two additional geometrical parameters are required, namely porosity and tortuosity of the
respective porous medium. For the direct determination of the mean molar activity coefficient,
a novel method is introduced in this work. Resulting from the known activity coefficient, the
transference number can be determined by concentration cell experiments. In addition, various
known and unknown methods for the experimental determination of the transference number,
the diffusion coefficient and the tortuosity are also discussed critically. The conductivity and the
porosity are determined by standard methods.

In summery, the combined approach consisting of the development of a computational
method for ion-transport in concentrated electrolyte solutions and the direct determination of
the corresponding model parameters enables predictive simulations of ion-transport phenomena
in advanced battery systems. The simulation of large geometrically resolved porous media al-
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lows an investigation of the influence of the microstructure on the macroscopic behavior of a
battery cell.
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Zusammenfassung

Batterien werden heutzutage nicht nur als Energiequelle für tragbare Elektrogeräte wie zum
Beispiel Laptops, Kameras und Handys eingesetzt, sondern auch als eine der entscheidenden
Technologien für das Gelingen der deutschen Energiewende angesehen. Um dabei alle gestell-
ten Anforderungen zu erfüllen, ist es erforderlich, die begrenzte Energiedichte und Lebens-
dauer von aktuellen Batteriesystemen weiter zu erhöhen. Hierbei spielen numerische Berech-
nungswerkzeuge zur Verbesserung bestehender Lithium-Ionen Batterien und zur Entwicklung
von zukünftigen Batteriesystemen wie zum Beispiel der Lithium-Luft Batterie eine wichtige
Rolle, da sie die Möglichkeit bieten, physikalisch-chemische Vorgänge zu untersuchen, die in
Experimenten nur schwer oder gar nicht abgebildet werden können. Ein weiteres wichtiges An-
wendungsfeld von numerischen Berechnungswerkzeugen ist die Optimierung von zukünftigen
Batteriekonzepten. Hierfür sind Vergleichbarkeit und Genauigkeit eine Grundvoraussetzung, die
unter anderem durch geeignete physikalische Modelle, Randbedingungen und genaue Material-
parameter beeinflusst wird.

In der vorliegenden Arbeit werden zwei unterschiedliche, physikalische Ionentransport-
modelle für konzentrierte Elektrolytlösungen vorgestellt und miteinander verglichen. Das er-
ste Modell baut auf dem Stefan-Maxwell Ansatz auf und das zweite Modell auf der Nichtgle-
ichgewichtssystematik der Thermodynamik. Ausgehend von diesem Vergleich wird ein Berech-
nungsverfahren auf Grundlage der Finiten Elemente Methode vorgestellt, das die Simulation
von aufgelösten porösen Strukturen sowie die Simulation von porösen Strukturen, die mit dem
Volumenmittelungsverfahren homogenisiert wurden, ermöglicht. Ein besonderes Augenmerk
wird auf die Modellierung von galvanostatischen Randbedingungen für dreidimensionale Ge-
biete gelegt. Die Genauigkeit und Robustheit der numerischen Berechnungsverfahren wird in
einer Vielzahl von numerischen Beispielen gezeigt. Die hohe Effizienz des vorgestellten Berech-
nungsverfahrens wird unter anderem durch die Simulation einer dreidimensionalen porösen
Struktur verdeutlicht.

In der Literatur werden vergleichbare Berechnungswerkzeuge diskutiert, genaue und ver-
trauenswürdige Transportparameter für die zugrunde liegenden Modelle sind jedoch selten. Aus
diesem Grund liegt der Schwerpunkt der Arbeit auf der Entwicklung von genauen, aber gle-
ichzeitig möglichst einfachen Methoden zur Bestimmung von Transportparametern, die für vo-
raussagende Simulationen nötig sind. Die verwendeten Ionentransportmodelle basieren auf drei
Transportparametern und einer thermodynamischen Größe, nämlich der Konduktivität der Elek-
trolytlösungen, dem Diffusionskoeffizienten, der Übergangszahl der reagierenden Ionenart und
dem Thermodynamikfaktor oder alternativ dem mittleren molaren Aktivitätskoeffizienten. Zwei
zusätzliche geometrische Parameter, die Porosität und die Tortuosität, sind notwendig, wenn
Berechnungsmethoden mit dem Volumenmittelungsverfahren eingesetzt werden. In der vor-
liegenden Arbeit wird eine neuartige Methode für die Bestimmung des mittleren molaren Ak-
tivitätskoeffizienten vorgestellt. Die Übergangszahl kann dann aus dem bekannten Aktivitätsko-
effizienten und Experimenten in einer Konzentrationszelle abgeleitet werden. Zusätzlich werden
einige bekannte und neuartige Methoden zur Bestimmung der Übergangszahl, des Diffusionsko-
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effizienten und der Tortuosität kritisch diskutiert. Die Konduktivität sowie die Porosität werden
durch Standardmethoden bestimmt.

Die kombinierte Herangehensweise bestehend aus der Entwicklung eines Berechnungsver-
fahren für Ionentransport in konzentrierten Elektrolytlösungen und der direkten Bestimmung
der zugehörigen Modellparameter ermöglicht voraussagende Simulationen von Ionentransport-
phänomenen in hochentwickelten Batteriesystemen. Die Simulation von großen, geometrisch
aufgelösten porösen Medien ermöglicht außerdem die Untersuchung des Einflusses der Mikro-
struktur auf das makroskopische Verhalten der Batterie.

iv



Contents

1 Introduction 1

2 Mathematical modeling of concentrated binary electrolyte solutions 7
2.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Electric charge conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Concentrated solution theory based on Stefan-Maxwell approach . . . . . . . . 12

2.4.1 Stefan-Maxwell approach . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Electrical state of the electrolyte solution . . . . . . . . . . . . . . . . 19
2.4.3 Cell potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Final system of ion-transport equations . . . . . . . . . . . . . . . . . 26

2.5 Nernst-Planck approach for dilute electrolyte solutions . . . . . . . . . . . . . 27
2.6 Ion-transport based on non-equilibrium thermodynamics . . . . . . . . . . . . 31
2.7 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Ion-transport in porous media 37
3.1 Volume averaging method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Volume average of the ion-transport equations . . . . . . . . . . . . . . 40

3.2 Volume average of the molar flux and current density . . . . . . . . . . . . . . 43
3.2.1 Constant transport parameters on micro- and macroscale . . . . . . . . 43
3.2.2 Constant transport parameters on microscale and variable transport pa-

rameters on macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Variable transport parameter on micro- and macroscale . . . . . . . . . 49

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Geometrical parameters for homogenized porous media 55
4.1 Overview of geometrical parameters used in the literature . . . . . . . . . . . . 55
4.2 An experimentally motivated approach for the definition of geometrical parameters 58

5 Theoretical background for the experimental determination of ion-transport pa-
rameters 61
5.1 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Electrochemical determination of the thermodynamic factor . . . . . . . . . . 64
5.3 General principle of polarization experiments . . . . . . . . . . . . . . . . . . 72
5.4 Binary diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Long-term relaxation from an non-uniform concentration profile . . . . 77

v



Contents

5.4.2 Short-term relaxation from a steady state concentration profile . . . . . 79
5.5 Transference number based on data from a polarization cell . . . . . . . . . . . 80

5.5.1 Steady-state potentiostatic polarization . . . . . . . . . . . . . . . . . 80
5.5.2 Initial time behavior of the potentiostatic polarization . . . . . . . . . . 84
5.5.3 Short-term relaxation from a steady-state concentration profile . . . . . 85
5.5.4 Long-term relaxation from a steady-state concentration profile . . . . . 86
5.5.5 Pulsed galvanostatic polarization . . . . . . . . . . . . . . . . . . . . . 86

5.6 Transference number based on data from a concentration cell . . . . . . . . . . 88
5.7 Transference number based on data from a concentration and a polarization cell 88

6 Computational approach 91
6.1 Ion-transport in concentrated binary electrolyte solutions . . . . . . . . . . . . 92
6.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Standard Galerkin formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5 Nonlinear solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.6 Galvanostatic constraint condition . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Numerical examples 105
7.1 General simulation procedures and parameters . . . . . . . . . . . . . . . . . . 105
7.2 Transient three-dimensional diffusion-migration problem for dilute electrolytes 106
7.3 Transient one-dimensional ion-transport problem for concentrated electrolytes . 110
7.4 Quasi one-dimensional simulation with a galvanostatic constraint condition . . 112
7.5 Numerical analysis of polarization experiments used for transport parameter de-

termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.5.1 General principle of polarization experiments . . . . . . . . . . . . . . 119
7.5.2 Binary diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . 123
7.5.3 Transference number . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Galvanostatic simulation of a realistic porous medium . . . . . . . . . . . . . . 132

8 Determination of a complete set of transport parameters 139
8.1 Physical properties of the electrolyte solution . . . . . . . . . . . . . . . . . . 139
8.2 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Thermodynamic factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.4 Transference number based on data from a concentration cell . . . . . . . . . . 153
8.4.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5 Binary diffusion coefficient and transference number based on polarization ex-
periments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.5.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9 Conclusions and outlook 169

vi



Contents

A A brief introduction into non-equilibrium thermodynamics 173
A.1 Heterogeneous system in a global equilibrium . . . . . . . . . . . . . . . . . . 173
A.2 Local description of the global equilibrium . . . . . . . . . . . . . . . . . . . . 174
A.3 Definition of local equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.4 Concept of electrochemical potential . . . . . . . . . . . . . . . . . . . . . . . 175
A.5 Chemical potential of a salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.6 Application of thermodynamic principles to surface reactions . . . . . . . . . . 177

B Variable transport parameters on micro- and macroscale 179

C Analytical solutions for the one-dimensional diffusion equation 183
C.1 Long-term relaxation from an non-uniform concentration profile . . . . . . . . 183
C.2 Short-term relaxation from a steady-state concentration profile . . . . . . . . . 185
C.3 Initial time behavior of a potentiostatic polarization experiment . . . . . . . . . 188

Bibliography 193

vii



Contents

viii



Nomenclature

Abbreviations

Ak chemical symbol of component k

e− symbol for an electron

BC boundary condition

CV cyclic voltammogram

ENC electroneutrality condition

GMRES Generalized minimal residual

Li symbol for lithium

OCV open circuit voltage

PGP pulsed galvanostatic polarization

RE reference electrode

REV representative element volume

RT room temperature

SSPP steady-state potentiostatic polarization

WE working electrode

Computational approach

(., .), (., .)Ω inner product of L2(Ω)

(., .)Γ inner product of L2(Γ)

(. . .)h finite element approximation to an arbitrary quantity

(. . .)n+1 quantity at new time level

(. . .)n+αf , (. . .)n+αm quantity at intermediate time levels

(. . .)n quantity at previous time level

ix



Nomenclature

αf, αm, γ parameters of the generalized-alpha scheme

S space of trial solution function

T space of test (weighting) function

ρ∞ parameter of the ρ∞-family

H1(Ω) Sobolev space

L2(Ω) space of square-integrable functions

Nh
i shape function associated to node i

nnode number of nodes in the computational domain

Domains and boundaries

n unit outer normal vector at a boundary

V (t), S(t) arbitrary control volume V (t) enclosed by the corresponding surface S(t)

x̄0 position vector defining the center of a REV

x̄
e

0 position vector defining the center of the electrolyte phase within the REV

x position vector

x′ position vector within a REV

x̂i component of position vector between arbitrary point x′i within the REV
and the center of the REV xi,0

xi component of the position vector

Γ boundary of domain Ω

ΓD, ΓN, ΓE Dirichlet, Neuman and electrode boundary part

Ω domain

Ω closure of the domain Ω

Governing equations
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1 Introduction

Many devices of our daily life such as laptops and cell phones are powered and, therefore, also
limited by the electric energy provided by batteries. Despite this fact, the battery has never been
in the focus of public perception. This changed rapidly when the energy revolution, the so-called
”Energiewende”, started a few years ago. In this context, important keywords are electromobility
and intermediate storage of electrical energy. Electromobility describes the usage of electric ve-
hicles to satisfy our mobility needs. It does not only include vehicles, which are powered solely
by batteries, but also hybrid vehicles which combine a combustion engine with an electric motor.
Electromobility has a positive effect on the release of green house gases since the used electric
energy can be produced with higher efficiency in conventional power plants than in combustion
engines of cars and, more importantly, it enables alternative energy sources such as nuclear, solar
or wind power. The increased fraction of green energy sources is the second important applica-
tion for batteries in the energy revolution. Solar or wind power rely on renewable energy sources
with the disadvantage of a fluctuating production rate. Therefore, it is necessary to develop flex-
ible energy storage systems to balance energy consumption and production. Large scale battery
systems are one potential system fulfilling the requirements.

The most basic functionality of a battery system is the conversion of stored chemical en-
ergy into electrical energy. A cylindrical battery configuration as shown in Fig. 1.1(a) is based
on a coiled configuration of an elementary cell being the basic element of each battery system.
The basic principle of an elementary cell is depicted in Fig. 1.1(b). An elementary cell consists
of six components, namely two current collectors, a negative and a positive electrode separated

(a) (b)

Figure 1.1: Basic principle of a cylindrical lithium ion battery consisting of a lithium manganese oxide
(magenta, yellow and white dots) and a carbon (black rings) electrode: a) cylindrical battery
configuration taken from [137] and b) an elementary cell taken from [39] including the path
of lithium ions for charge (green arrows) and discharge (red arrows).
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1 Introduction

(a) Lithium iron phosphate [95]. (b) Separator CG2500 [8]. (c) Graphite [119].

Figure 1.2: Scanning electron microscope images of a) the cathode, b) the separator and c) the anode.

by an electrically isolating, porous separator and a lithium-based electrolyte solution. In stan-
dard lithium-ion batteries, the positive and the negative electrode consist of porous materials to
increase the effective surface area and capacity of each electrode. The electrolyte solution fills
the void space of both electrodes and the separator. In commercial cells, the negative electrode,
being the anode during discharge, is usually made of graphite which is the soft form of carbon.
An alternative material which is already employed in commercial cells is for example lithium
titanate (LTO). For the positive electrode, being the cathode during discharge, different material
compositions such as lithium cobalt oxide (LCO), lithium manganese oxide (LMO), lithium iron
phosphate (LFP) or lithium nickel manganese cobald oxide (NMC) are used. For both cathode
and anode, research into alternative materials continues as indicated, e.g, by Andre et al. [5]
or Marom et al. [104]. Lithiumhexafluorophosphat (LiPF6), dissolved in a mixture of various
aprotic solvents is the most common electrolyte solution. Usually, various additives are added to
the electrolyte solution to improve specific properties of the electrolyte solution. A detailed dis-
cussion of electrolyte solutions used in lithium-based rechargeable batteries is given, e.g., in Xu
[156]. The last basic component of an elementary cell is the separator described best as a porous
membrane which has to ensure ion-transport between anode and cathode but prevents electrical
contact. A detailed review of commercial battery separators is given, e.g., in Arora and Zhang
[8]. All aforementioned components are also discussed in detail, e.g., in Nazri and Pistoia [108]
or Huggins [85]. Scanning Electron Microscope (SEM) images of typical cathode, separator and
anode materials are provided in Fig. 1.2.

Basic principle of a rechargeable lithium ion cell At this point, a brief introduction to the
basic operation principle of a rechargeable lithium ion cell consisting of graphite and LCO elec-
trodes is given. Initially, a charged elementary cell with a lithiated graphite and delithiated LCO
electrode is considered. The term lithiated describes the state of the electrode in which lithium
ions are intercalated into the electrode material. In rechargeable lithium ion batteries, the in-
sertion and the extraction of lithium ions to and from the electrodes are reversible. During dis-
charge, lithium ions move through the electrolyte solution from the negative graphite electrode
to the positive LCO electrode. At the graphite electrode, lithium ions are formed by the following
anodic reaction:

LiC6 → Li+ + e− + C6. (1.1)
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The lithium is extracted from the graphite and enters the electrolyte solution. The released elec-
tron e− is transported from the electrode-electrolyte interface through the electrically-conducting
graphite electrode to the current collector. This reaction is called oxidation. At the LCO cathode,
the lithium ions available in the electrolyte solution next to the electrode-electrolyte interface are
reduced and intercalated into the LCO cathode. The corresponding reaction can be written as

Li(1−x)CoO2 + x Li+ + x e− → LiCoO2. (1.2)

To close the cycle, the electrons e− have to be transported through an external circuit from the
negative to the positive electrode. By definition, oxidation always takes place at the anode and
reduction at the cathode. Therefore, the nomenclature for the single components given in the
beginning of this section is based on the discharge process. The oxidation and reduction given in
Equ. (1.1) and (1.2) are often summarized in the corresponding redox reaction

x LiC6 + Li(1−x)CoO2 À x C6 + LiCoO2.

The driving force for this reaction is a natural difference between the electrochemical potentials
of the lithiated graphite electrode and the delithiated LCO electrode. The resulting electrochem-
ical potential gradient within the electrolyte solution is also the driving force for the transport of
lithium ions in the electrolyte solution. Since the electrochemical potential is influenced by the
electrostatic potential and the concentration, among other things, ion-transport is often modeled
by a diffusive and migrative process. A detailed discussion of the basic phenomenological trans-
port mechanisms is given, e.g., in Bauer [18] or Newman and Thomas-Alyea [109, chap. 1]. Due
to the delithiation of the anode and lithiation of the cathode, the electrochemical potential dif-
ference between the electrodes is decreased continuously until the the electrochemical potential
difference is too small to act as driving force for the reaction. At this point, the elementary cell
is discharged completely and has to be charged before it can be used again. During charging, the
chemical processes are reversed by the application of an external power source.

To summarize, the discharge and charge process of an elementary cell can be split into three
major physical phenomena, namely the lithium ion-transport through the electrolyte solution, the
description of the reaction process at anode and cathode as well as the insertion (or intercalation)
and extraction (or deintercalation) of lithium from the anode and cathode. The electron conduc-
tion in commercial anode and cathode materials is usually so fast that it can be neglected in most
physically-motivated models.

Current issues of rechargeable battery systems are a limited energy density and lifetime as
well as safety issues. An overview over these is given, e.g., by Wagner et al. [145] focusing on the
needs of the electromobility or by Goodenough and Kim [71] giving a more general outlook. An
up-to-date review on current research trends in lithium-based batteries is given, e.g., by Wagner
et al. [146] or Scrosati and Garche [131]. In addition, alternative battery system such as lithium
sulfur or lithium air batteries providing much higher theoretical energy densities are investigated
as future alternatives to lithium ion batteries as discussed, e.g., by Armand and Tarascon [7].
The main issues of such alternative battery concepts are discussed, e.g., in Barchasz et al. [13]
and Girishkumar et al. [68]. However, it will still take some time until these new concepts are
used in commercial applications as emphasized by Girishkumar et al. [68, p. 2195]: ”Automotive
propulsion batteries are just beginning the transition from nickel metal hybrid to Li-ion batteries
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1 Introduction

after nearly 35 years of research and development on the latter. The transition to Li-air batteries
(if successful) should be reviewed in terms of a similar development cycle.”

Modeling of battery systems Computational methods can support the development of ad-
vanced battery systems since they can provide insight into physical and chemical aspects of
battery systems, which are not or hardly achievable experimentally. Another important field of
application for computer-based methods is the optimization of future battery designs. Therefore,
it is not very surprising that various computational methods for simulating electrochemical sys-
tems are available in literature or commercial software tools to support the development and the
design of battery systems. However, due to the large variety of computational methods and their
general availability, it is important to distinguish strictly between different perspectives used for
the development. In general, it is common to classify the computational methods with respect
to the resolved length and time scale as it is discussed, e.g., by Ramadesigan et al. [124]. In
battery applications, computational methods can be classified into four basic groups, namely the
system level, the cell level and the geometrically resolved cell level as depicted in Fig. 1.1(a),
Fig. 1.1(b) and Fig. 1.2, respectively. Beyond the geometrically resolved cell level, molecular
dynamics and kinetic Monte Carlo methods are used to gain insight into physical and chemi-
cal phenomena such as the growth of the passivating Surface Electrolyte Interface (SEI) film as
presented, e.g., by Methekar et al. [107], or the lithium diffusion within the active material as
discussed, e.g., by Wagemaker et al. [144]. The predictability but also the computational costs
of molecular dynamics and kinetic Monte Carlo methods are very high.

In contrast, computational methods used on system level exhibit usually a limited pre-
dictability combined with the advantage of low computational cost. Typical examples are em-
pirical models which are based on experimental data and only marginally on physio-chemical
principles. In this case, the model can hardly be applied to different operating conditions or ap-
plications based on different physio-chemical principles. Equivalent circuit models consisting of
basic circuit elements such as resistances or capacitors are also very common on system level
since they can be linked perfectly with experimental techniques such as impedance spectroscopy
as it is done, e.g., in Hu et al. [84] or Ogihara et al. [117]. In the latter publication, the equiva-
lent circuit model is used to describe physical phenomena on the cell level. However, the most
common model on cell level are the so-called electrochemical engineering models which are
based on fundamental physio-chemical principles such as ion-transport due to diffusion and mi-
gration resulting in an improved predictability compared, e.g., to equivalent circuit models. In
these models, the porous structure of electrodes and separator is not resolved geometrically but
modeled by so-called homogenization or volume averaging approaches. In this case, the effect of
the porous medium is incorporated into the conservation laws by the introduction of additional
geometrical parameters. Typical examples are for instance the cell model introduced by Fuller
et al. [64] or simulation approaches as used, e.g., by Cai and White [34]. As indicated, e.g., by
Albertus et al. [4], electrochemical engineering models are also combined with other computa-
tional approaches such as the equivalent circuit model to include effects which can hardly be
described by more sophisticated models. On the geometrically resolved cell level, the porous
structure of electrodes and separators are geometrically resolved which is the main difference to
the approach used on the cell level. It is important to emphasize that an increased predictability
due to a decreasing length scale also results in increased computational costs and in an increased
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number of required model parameters. The determination of such physically-motivated parame-
ters is a challenging task.

The computational methods described in this contribution focus on the cell level as well
as on the geometrically resolved cell level. In addition, the focus is solely on ion-transport in
binary electrolyte solution. Electrochemical reactions at electrodes are only considered in a very
basic manner. The modeling of the intercalation process of lithium ions into the electrodes is not
addressed at all in this work.

Objective and outline For all numerical simulations, reproducibility and accuracy are key is-
sues, which depend on appropriate physical models, boundary conditions, and accurately deter-
mined transport parameters, among other things. In this context, two physically-motivated mod-
els for ion-transport in concentrated electrolyte solutions based on completely different physical
principles are reviewed and related to each other. Based on this knowledge, a flexible compu-
tational approach for ion-transport in binary electrolyte solutions is introduced which enables
both, simulations of large realistic, resolved porous structures as well as simulations of porous
media homogenized by the volume averaging approach. Such a computational approach pro-
vides for example the opportunity to investigate the influence of the microstructure of the porous
medium on the macroscopic behavior of the elementary cell. To account for the requirement to
simulate complex realistic porous geometries, the Finite Element Method (FEM) is used as a dis-
cretization method. It has already been applied successfully to ion-transport in dilute electrolyte
solutions by Bauer et al. [20]. In this work, the basic concept presented in Bauer et al. [20] is ex-
tended to concentrated electrolyte solutions whereas the stabilized finite element approach is not
considered since convective transport can be neglected for most battery applications. The compu-
tational approach is implemented within the multi-physics computing platform BACI (Wall and
Gee [147]) which is continuously developed and maintained by the Institute for Computational
Mechanics at the Techischen Universität München.

Similar simulation tools can be found in literature, whereas accurate and reliable transport
parameters are scarce. For example, two situations are frequently encountered: either the poten-
tial range of such transport parameters provided in literature is very broad or parameters are not
reliable due to the fact that, e.g., important experimental procedures related to their determina-
tion are not specified. Therefore, it is the main objective of this work to develop accurate and at
the same time as simple as possible experimental procedures for the determination of a complete
set of transport parameters for binary electrolyte solutions required for predictive numerical sim-
ulations. In this context, experimental methods for the determination of geometrical parameters
necessary for electrochemical engineering models are discussed as well. In this work, the devel-
opment of a computational approach for ion-transport in concentrated electrolyte solutions and
the experimental determination of the corresponding model parameters is seen as an interactive
process which cannot be considered separately.

The entire project is embedded into the interdisciplinary energy storage research project
”Distributed stationary battery storage systems for the efficient use of renewable energies and
support of grid stability” (EEBatt) supported by the Bavarian Ministry of Economic Affairs and
Media, Energy, and Technology. The financial support as well as the successful cooperation
within the ”Teilprojekt 2” are gratefully acknowledged. Parts of the numerical methods as well
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1 Introduction

as related experimental and numerical results presented in this thesis are published in Ehrl et al.
[56–58], Roth et al. [127] and Landesfeind et al. [96, 97].

In section 2, two physically-motivated models for ion-transport in concentrated electrolyte
solutions based on the Stefan-Maxwell approach and non-equilibrium thermodynamics are in-
troduced and compared to each other. In addition, the connection of both models to the dilute
solution theory based on the Nernst-Planck approach is derived which has not been addressed in
literature so far. To circumvent the computationally costly spatial resolution of complex porous
structures, the volume averaging approach for ion-transport in porous media is discussed in sec-
tion 3. The validity of the volume averaging approach for ion-transport with concentration de-
pendent transport parameters is also demonstrated. The determination of geometrical parameters,
namely the porosity and the tortuosity of porous media, is addressed in section 4. In section 5,
the theoretical background for the experimental determination of a complete set of transport pa-
rameters for ion-transport in aprotic, binary electrolyte solutions is discussed. As a complete set,
three transport parameters, namely the conductivity of the electrolyte solution, the diffusion co-
efficient and the transference number and one thermodynamic quantity the so-called thermody-
namic factor or, alternatively, the mean activity coefficient are considered. The presented meth-
ods include novel experimental procedures for the determination of the concentration dependent
thermodynamic factor and the concentration dependent transference number. In addition, various
known and unknown alternatives for the determination of the transference number are discussed
critically. In section 6, the computational approach for ion-transport in concentrated electrolyte
solutions based on the finite element method is introduced focusing in particular on the numeri-
cal modeling of galvanostatic boundary conditions. The computational approach is validated by
various academic and realistic numerical examples in section 7. In addition, the experimental
methods for the determination of transport parameters are partly validated and analyzed with re-
spect to important design parameters. Finally, the applicability of the computational approach for
realistic, porous geometries is demonstrated. In section 8, transport parameters of an exemplary
electrolyte solution are determined experimentally utilizing the methods introduced in section 5.
Finally, conclusions are drawn in section 9, before ending with a short outlook.

In appendix A the theoretical background of non-linear thermodynamics is introduced
briefly. In appendix B and appendix C, more detailed mathematical derivations required in sec-
tion 3 and section 5 are provided.
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2 Mathematical modeling of concentrated
binary electrolyte solutions

The most fundamental model for concentrated binary electrolyte solutions was introduced origi-
nally by Newman et al. [112]. It is based on a multi-component diffusion approach, the so-called
Stefan-Maxwell approach, incorporating the influence of an electrostatic potential field. Often,
this model is also called the ’Newman model’. A detailed discussion of the basic thermody-
namic principles and of ion-transport in electrolyte solutions, in general, is given in Newman
and Thomas-Alyea [109]. Besides, various electrochemical applications and practical examples
are included in this textbook. The ion-transport model was extended for porous materials uti-
lizing a homogenization approach in Newman and Tiedemann [111]. Up to now, this model is
widely used in academic and industrial applications. It is also the standard model in commercial
simulation software. A good summary of the model including some interesting applications is
given, e.g., in Fuller et al. [63], Doyle [53] and Doyle et al. [54]. Over the years, the model was
extended by various aspects such as a temperature dependence as discussed, e.g., by Gu and
Wang [75], Cai and White [34], Song and Evans [134] or Botte et al. [28], transport of additional
uncharged components, as e.g., in Albertus et al. [4], solvent effects, as e.g., in Liu and Monroe
[100] and Georén and Lindbergh [67] or convection, as e.g., in Xue and Plett [157].

The model proposed by Latz and Zausch [99] is based on non-equilibrium thermodynam-
ics. The main advantage of this approach is the inherent incorporation of thermal effects into
the ion-transport equations. Similar approaches are presented, e.g., in Kontturi et al. [91] or
Kjelstrup and Bedeaux [90]. A good overview over the topic is given in Landstorfer and Ja-
cob [98]. A common model for dilute electrolyte solutions is the Nernst-Planck approach or the
diffusion-migration equation, as it is also called. The second name is quite self-explanatory since
the model is a reformulation of the Fick’s law of diffusion, extended to the motion of charged
particles. It was theoretically motivated by Planck and experimentally verified by Nernst. In the
textbook by Kontturi et al. [91], the Nernst-Planck approach is derived from the framework of
non-equilibrium thermodynamics, where in a first approximation the cross coefficients are ne-
glected in the transport equations for charged components. A detailed discussion of the entire
mathematical and numerical framework of the Nernst-Planck approach is given, e.g., in Bauer
[18]. For binary electrolyte solutions, this model can also be reformulated to the form of the
classical Fick’s law of diffusion.

Based on thermodynamic considerations and the transition state theory, a variation of the
Nernst-Planck equations for concentrated solutions is developed in Bazant et al. [22] and Fer-
guson and Bazant [61]. In contrast to the classical Nernst-Planck equations, the diffusion co-
efficients incorporate the ionic activity coefficient and are typically given as a function of the
concentration. An similar approach is presented by Lai and Ciucci [93].
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2 Mathematical modeling of concentrated binary electrolyte solutions

In section 2.1, some continuum-mechanical basics are introduced. Afterwards, the balance
equations for mass and charge are presented in section 2.2 and section 2.3, respectively. The
basic ideas of the concentrated solution theory based on the Stefan-Maxwell approach, the dilute
solution theory based on the Nernst-Planck approach and the concentrated solution theory based
on non-equilibrium thermodynamics are introduced in section 2.4, section 2.5 and section 2.6,
and, more importantly, related to each other. This is necessary since the final equations of the
different models show some significant differences. To understand these differences, the most
important highlights of the respective derivations are illustrate in the following. The derivations
are mostly based on binary electrolyte solutions since this is the most relevant case in battery
research. Theoretically, it is not so complex to extend the models to multi-ion systems, but the
main limiting factor is the determination of accurate and physically motivated transport param-
eters which are not only based on theoretical considerations. In addition, boundary and initial
conditions for the ion-transport equations are specified in section 2.7.

2.1 Mathematical preliminaries

In the following, the behavior of electrochemical systems is investigated for the time interval
[0, Tend] in a polygonally shaped and bounded domain Ω ⊂ Rd, where d ≤ 3 is the number
of spatial dimensions. The domain Ω is filled with an electrolyte solution consisting of k =
1, . . . ,m charged or uncharged components. The boundary of Ω is denoted by Γ and is assumed
sufficiently smooth. The closure of Ω is defined as Ω := Ω∪Γ. To specify Boundary Conditions
(BC) for each component k, a partition Γ = ΓD,ck

∪ ΓN,ck
∪ ΓE,ck

is considered, where the three
boundary regions are assumed pairwise disjoint. Appropriate boundary conditions are given as

ck = gk on ΓD,ck
× (0, Tend),

−Nk · n = hk on ΓN,ck
× (0, Tend), (2.1)

−Nk · n = jk on ΓE,ck
× (0, Tend),

where ck is the concentration of component k, Nk the molar flux density of component k and
n the unit outer normal vector to the boundary. On ΓD,ck

, Dirichlet boundary conditions are
applied, where gk represent prescribed ionic concentrations. The normal molar flux density on
ΓN,ck

is denoted as hk. Electrode surfaces are represented by the boundary part ΓE,ck
, which can

be further subdivided into any number of anodic and cathodic parts. At electrode surfaces, the
normal component jk of the molar flux density corresponds to the rate of all electrochemical
reactions r = 1, . . . , rmax. Thus, the boundary condition reads

jk :=

{
0 for inert ionic species,∑

r− sr,k

nrF
in for reactive ionic species,

(2.2)

with nr being the number of transferred electrons e− in reaction r of the form
∑

k

sr,kAzk
k À nre

−, (2.3)
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2.2 Mass conservation

where sr,k is the stoichiometric coefficient of ionic species k in reaction r, F the Faraday con-
stant, in the normal component of the current density i and Azk

k the chemical symbol of species
k with the valence zk. Initial conditions for ck have to be specified,

ck = ck,0 in Ω× (0).

For the boundary conditions on the potential field Φ, the same spatial partition Γ = ΓD,Φ ∪
ΓN,Φ ∪ ΓE,Φ is used as for the concentrations:

Φ = gΦ on ΓD,Φ × (0, Tend),
−i · n = hΦ on ΓN,Φ × (0, Tend), (2.4)
−i · n = in on ΓE,Φ × (0, Tend).

Since electrochemical reactions conserve mass and charge, the normal current density hΦ at
ΓN,Φ is connected to the normal molar flux density hk via hΦ = F

∑m
k=0 zkhk. Analogously, the

normal current density in on ΓE,Φ is related to jk by Equ. (2.2). It is important to mention that
not all theoretically possible combinations of BC and initial conditions are physically motivated
or mathematically valid. For instance, the initial potential field Φ0 is not independent of initial
concentration fields ck,0.

In this contribution, a macroscopic description of the electrochemical system is chosen, uti-
lizing a continuum-mechanical approach. In literature (see, e.g., Newman and Thomas-Alyea
[109], Kjelstrup and Bedeaux [90] or Kontturi et al. [91]), the continuum hypothesis is a gen-
erally accepted approximation for modeling electrochemical systems from an engineering per-
spective. A general introduction to continuum mechanics is given, e.g., in text books by Lai et al.
[94] and Gurtin [76].

2.2 Mass conservation

In general, an electrolyte solution is a solvent where m ≥ 2 ionic species and potentially ad-
ditional neutral components are dissolved. In the context of concentrated solutions, the solvent
is generally considered as the first component of the electrolyte solution and thus denoted by
k = 0. For such a system, the basic principle of mass conservation is fulfilled for the total mass
as well as for all charged and uncharged components of the electrolyte solution. In this contri-
bution, the conservation laws are given only in local form applying to every point within the
continuum. The generalized local form of the balance equation for arbitrary quantities such as
mass or charge are derived from the conservation law in integral form with respect to a control
volume V (t) enclosed by the surface S(t), as discussed e.g. by Kontturi et al. [91], Donea and
Huerta [52] or Bauer [18]. The conservation of total mass is given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.5)

where ρ denotes the density of the electrolyte solution including dissolved components, ∂ρ
∂t

the
partial time derivative of the density and u the velocity of the surface S(t). In the following, the
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2 Mathematical modeling of concentrated binary electrolyte solutions

velocity u is called reference velocity. From Equ. (2.5), it is clear that the only relevant transport
mechanism for total mass is convection. If the density ρ of the electrolyte solution is approxi-
mately constant or the total time derivative dρ

dt
= ∂ρ

∂t
+ u · ∇ρ is approximately zero, Equ. (2.5)

reduces to ∇ · u = 0 and the electrolyte solution can be considered incompressible. This is also
valid for chemical reactions since the total mass of the system is still conserved. Additionally,
the charged and uncharged components in an electrolyte solution are also conserved according
to

∂ck
∂t

+∇ · (cku + Nk)︸ ︷︷ ︸
NT

k=ckuk

= rk. (2.6)

Here, ck is the concentration of component k in the electrolyte solution, rk the reaction rate
of component k and Nk the molar flux density of component k due to diffusion and migra-
tion. The definition of the total molar flux density NT

k also includes the convective transport of
species k with respect to the reference velocity u. As indicated in Equ. (2.6), the total molar flux
density NT

k can also be expressed as a ’convective’ transport of species k with the component
velocity uk. This definition is of particular importance in the Stefan-Maxwell approach. The re-
action rate rk is only non-zero if component k is involved in a homogeneous chemical reaction.
Since the aforementioned conditions for incompressibilty are usually fulfilled for electrolyte so-
lutions, Equ. (2.5) and Equ. (2.6) can also be formulated in convective form, as it is shown here
for Equ. (2.6):

∂ck
∂t

+ u · ∇ck +∇ ·Nk = rk. (2.7)

Mathematically, an arbitrary choice of the reference velocity is possible. However, this is
not recommended from a physical point of view. A common definition for the reference velocity
is the solvent velocity u ≡ u0. This definition is called Hittorf’s reference frame. For a binary
electrolyte solution, the choice of the solvent velocity u0 as reference velocity gives

c0u0 = NT
0 = c0u0 + N0

c1u1 = NT
1 = c1u0 + N1

c2u2 = NT
2 = c2u0 + N2.

Therefore, the molar flux density N0 of the solvent with respect to the solvent velocity u0,

N0 = c0u0 − c0u0 = 0, (2.8)

has to be zero, whereas the molar flux densities N1 and N2 of the remaining components k =
1, 2 are defined as

N1,2 = c1,2 (u1,2 − u0) . (2.9)

Especially for very concentrated solutions and ionic liquids, the choice of the solvent velocity
u0 as reference velocity may be problematic since the solvent velocity of the electrolyte is also
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2.3 Electric charge conservation

influenced by the remaining components of the electrolyte solution. Therefore, it is useful to
introduce an alternative definition for the reference velocity. The concentration ck in Equ. (2.6)
can also be expressed in terms of the mass fraction wk and the molar mass Mk of component k,

ck = ρ
wk

Mk

,

which gives, when inserted into Equ. (2.6) and multiplied by Mk,

∂(ρwk)
∂t

+∇ · (ρwkuk) = Mkrk.

Summation over all m component conservation equations results in the total mass conservation
given in Equ. (2.5) since

∑m
k=0 wk = 1 by definition,

∑m
k=0 Mkrk = 0 due to mass conservation

for homogeneous reactions and

ρu ≡ ρuB = ρ

m∑

k=0

wkuk. (2.10)

Equ. (2.10) gives the definition of the barycentric velocity uB =
∑m

k=0 wkuk as reference ve-
locity u. In contrast to the solvent velocity u0, the barycentric velocity can be used generally
in the conservation law for linear momentum (Navier-Stokes equation). For dilute solutions, the
barycentric velocity uB = w0u0 +

∑m
k=1 wkuk ≈ u0 can be approximated by the solvent ve-

locity u0 if the mass fraction of the solvent is approximately one. A detailed explanation of the
basic principle of reference velocities, additional definitions and their implications are given in
Kontturi et al. [91] and Newman and Thomas-Alyea [109].

2.3 Electric charge conservation

In a continuum approach, an electrolyte solution is usually considered to be locally electrically
neutral:

∑

k

zkck = 0. (2.11)

Here, the charge number of component k is denoted by zk, which is zero for neutral compo-
nents, positive for cations and negative for anions. The validity of the ElectroNeutrality Con-
dition (ENC) can be justified, e.g., by the model of Debye-Hückel. In this model, the Debye
length describes the extent of the ionic atmosphere around a central cation or anion in an elec-
trolyte solution. Usually, the Debye length is in the order of Ångström to nanometer and hence
can be neglected in a macroscopic model. A detailed derivation of the Debye-Hückel theory is
given, e.g., in Wright [153]. In Kontturi et al. [91], electroneutrality is justified by the high en-
ergy required for charging a macroscopic system. For an electrically neutral electrolyte solution,
electric charge conservation is derived from the general law of conservation (see, e.g., Kontturi
et al. [91]). Multiplication of Equ. (2.6) by Fzk and summation over all components k of the
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2 Mathematical modeling of concentrated binary electrolyte solutions

electrolyte gives

∂

∂t

[
F

m∑

k=0

(zkck)

]
+∇ ·

(
F

m∑

k=0

(zkck)u + F

m∑

k=0

(zkNk)

)
= 0. (2.12)

Using charge density

ρe ≡ F

m∑

k=0

zkck,

and the electric current density

i = F

m∑

k=0

zkNk, (2.13)

Equ. (2.12) becomes to the electric charge conservation as given, e.g., in Kontturi et al. [91]

∂ρe

∂t
+∇ · i = 0. (2.14)

Due to the ENC, the convective term of the total molar flux density cancels out in Equ. (2.12).
Therefore, it is clear, that the electric current density is always based on molar flux densities
which do not include convective transport. Additionally, uncharged components as the solvent
or neutral components (zk = 0) do not contribute to the electric charge conservation, the charge
density and the current density. As a result of the ENC, the charge density in the electric charge
conservation is by definition zero. Hence, Equ. (2.14) simplifies to

∇ · i = 0. (2.15)

2.4 Concentrated solution theory based on Stefan-Maxwell
approach

2.4.1 Stefan-Maxwell approach

The most famous model for concentrated solutions, which is widely used in literature and in
many industrial applications, is based on the Stefan-Maxwell approach. The following derivation
is inspired by Newman and Thomas-Alyea [109] and Kontturi et al. [91].

In general, the Stefan-Maxwell approach is based on particle dynamics where all compo-
nents of an electrolyte solution are assumed to be independent particles interacting with each
other. As long as the collision between particles can be considered elastic, conservation of
momentum and energy is generally valid. For such a case, the diffusion processes in multi-
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2.4 Concentrated solution theory based on Stefan-Maxwell approach

component systems such as electrolyte solutions can be characterized by

ck∇µ̂k =
∑

l

Kkl(ul − uk), (2.16)

where µ̂k denotes the electrochemical potential of component k as introduced in appendix A.4.
The component velocities of species k and l are denoted by uk and ul, respectively, as intro-
duced in Equ. (2.6). The friction coefficient associated with components k and l is given by Kkl.
A more detailed derivation of this equation is given, e.g., in Kontturi et al. [91, chap. 2.4]. Alter-
natively, the friction coefficientKkl can also be expressed in terms of an intermolecular diffusion
coefficient Dkl:

Kkl = RT
ckcl
cT

1
Dkl

, (2.17)

where

cT =
m∑

k=0

ck (2.18)

is the total concentration of all electrolyte components. For the friction coefficients Kkl as well
as for the intermolecular diffusion coefficients Dkl, Onsager’s reciprocal theorem

Kkl = Klk and Dkl = Dlk (2.19)

is valid. As described in Newman and Thomas-Alyea [109, chap. 12.1], the theorem is a con-
sequence of Newton’s third law of motion. The physical meaning of Equ. (2.16) is the balance
between driving force and the frictional force:

driving force + frictional force = 0.

Here, the driving force is the gradient of the electrochemical potential times the concentration
and the frictional force is given by the movement of the components relative to each other mul-
tiplied by a friction coefficient. Summation over all k components of the electrolyte solution
gives

∑

k

ck∇µ̂k =
∑

k

∑

l

Kkl(ul − uk). (2.20)

In the absence of pressure and temperature gradients, the term on the left hand side of this
equation is equal to zero as a result of the Gibbs-Duhem equation (A.6). In this special case, all
frictional forces on the right hand side have to balance. This implication will be clearer when the
special case of a binary electrolyte is considered.

Stefan-Maxwell equations for binary electrolyte solutions The restriction to binary elec-
trolyte solutions in the following has mainly two reasons. In a battery system, the electrolyte
solution is usually based on a single salt with additional substances to improve specific prop-
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2 Mathematical modeling of concentrated binary electrolyte solutions

erties, but the amount of additives is generally so small that the electrochemical behavior of
the electrolyte solution is not influenced significantly. As a consequence, the assumption of a
binary electrolyte solution is justified in quite many cases. The second reason is that an accu-
rate determination of all transport parameters for a multi-component electrolyte solution is quite
challenging. Therefore, it may be favorable to approximate a multi-component electrolyte solu-
tion by a binary electrolyte solution with additional components modeled to be electrochemically
inert. Of course, such an approach may not be possible for all electrolyte solutions as, e.g., for
ionic liquids.

In general, a binary electrolyte solution is a solvent in which an arbitrary, neutral salt
Aν+Bν− consisting of the charged components Az+ and Bz− is dissolved. The neutral salt has
to fulfill the condition

ν+z+ + ν−z− = 0. (2.21)

For such an electrolyte solution, Equ. (2.16) can be written as

c+∇µ̂+ = K0+(u0 − u+) +K+−(u− − u+), (2.22)
c−∇µ̂− = K0−(u0 − u−) +K+−(u+ − u−), (2.23)
c0∇µ̂0 = K0+(u+ − u0) +K0−(u− − u0). (2.24)

Here, Onsager’s reciprocal theorem given in Equ. (2.19) is already applied to simplify the no-
tation. For binary electrolytes, the subscripts k and l in Equ. (2.16) are replaced by + for the
cation, − for the anion and 0 for the electrolyte solution. Based on Hittorf’s reference frame
defined in section 2.2 and Equ. (2.9), the molar flux density of the positive and negative ionic
species in a binary electrolyte solution can be written as

N+ = c+(u+ − u0) = −c+(u0 − u+), (2.25)
N− = c−(u− − u0) = −c−(u0 − u−). (2.26)

Additionally, it is possible to express the current density i from Equ. (2.13) in terms of the
component velocities uk,

i = F (z+N+ + z−N−)
= Fz+c+(u+ − u0) + Fz−c−(u− − u0)
= Fz+c+(u+ − u−), (2.27)

where the ENC given in Equ. (2.11) for binary electrolyte solutions is used in the form z+c+ =
−z−c−. As a result, the Stefan-Maxwell equations given in Equ. (2.22) – Equ. (2.24) for binary
electrolyte solutions can also be expressed in terms of the molar flux densities N+ and N− as
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2.4 Concentrated solution theory based on Stefan-Maxwell approach

well as the current density i

c+∇µ̂+ = −K0+
N+

c+
−K+−

i

Fz+c+
, (2.28)

c−∇µ̂− = −K0−
N−
c−

+K+−
i

Fz+c+
, (2.29)

c0∇µ̂0 = +K0+
N+

c+
+K0−

N−
c−

. (2.30)

At this point, the advantage of using Hittorf’s reference frame becomes particularly clear. In this
reference frame, the electrochemical potential is expressed in terms of the molar ionic fluxes and
current density without an additional contribution of the mean molar flux N0 of the solvent. In
contrast, for the barycentric velocity uB as a reference frame, Equ. (2.28) – Equ. (2.30) read as

c+∇µ̂+ = −K0+
NB

+

c+
+K0+

NB
0

c0
−K+−

i

Fz+c+
, (2.31)

c−∇µ̂− = −K0−
NB
−

c−
+K0−

NB
0

c0
+K+−

i

Fz+c+
, (2.32)

c0∇µ̂0 = +K0+
NB

+

c+
−K0+

NB
0

c0
+K0−

NB
−

c−
−K0−

NB
0

c0
. (2.33)

The summation of Equ. (2.28) – (2.30) and Equ. (2.31) – (2.33) fulfill the Gibbs-Duhem relation
derived from Equ. (A.6) naturally

c+∇µ̂+ + c−∇µ̂− + c0∇µ̂0 = 0, (2.34)

if the temperature T and the pressure p are constant within the electrolyte solution. The assump-
tion of a constant pressure is only valid for an electrolyte solution which is at rest u0 = uB = 0
since pressure gradients are directly connected to the existence of a flow field as a result of the
Navier-Stokes equations.

Connection between current density and electrochemical potentials Based on the defini-
tions of the current density in Equ. (2.13) and the molar flux densities in Equ. (2.28) and (2.29), a
relation between the current density and the electrochemical potentials µ̂+ and µ̂− of the charged
components is given as

1
z2

+c
2
+F 2

(
1 +

K+−
K0+

+
K+−
K0−

)
F i = −

(
1
K0+

∇µ̂+

z+
+

1
K0−

∇µ̂−
z−

)
. (2.35)

The velocity reference frame is not relevant for the current flow since it is only influenced
by the movement of the positive ionic species relative to the negative ionic species as shown
in Equ. (2.27). This is in line with the fact that the flux contributions of the solvent in Equ. (2.31)
and (2.32) cancel out if these equations are used instead of Equ. (2.28) and (2.29).
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Equation (2.35) can be further reformulated to

1
z2

+c
2
+F 2

(
K0+K0− +K+−(K0+ +K0−)

K0+ +K0−

)
F i

=−
(

K0−
K0+ +K0−

∇µ̂+

z+
+

K0+

K0+ +K0−

∇µ̂−
z−

)
, (2.36)

giving the current density of a binary electrolyte solution as a function of the electrochemical
potentials:

F

κ
i = −

(
t+
∇µ̂+

z+
+ t−

∇µ̂−
z−

)
. (2.37)

Here, κ denotes the conductivity of the electrolyte solution while t+ and t− are the transference
numbers of the positive and negative ionic species, respectively. A comparison of Equ. (2.36)
and Equ. (2.37) gives

1
κ

=
1

z2
+c

2
+F 2

(
K0+K0− +K+−(K0+ +K0−)

K0+ +K0−

)
(2.38)

and

t+ =
K0−

K0+ +K0−
, (2.39)

t− =
K0+

K0+ +K0−
. (2.40)

The transference numbers of the positive and negative ionic species are related by

t+ + t− = 1. (2.41)

Molar flux and current density based on the chemical potential of the salt For a binary
electrolyte solution, it is convenient to replace the electrochemical potentials of the ionic species
by the chemical potential of the salt as defined in Equ. (A.10). To do so, Equ. (2.37) has to be
reformulated using Equ. (2.41),

1
z+
∇µ̂+ = −F

κ
i +

t−
z+

(
∇µ̂+ − z+

z−
∇µ̂−

)
.

Using the ENC given in Equ. (2.11) in the form z+
z−

= −ν−
ν+

and the definition of the chemical
potential µ± of a salt given in Equ. (A.10), the electrochemical potential of the positive ionic
species can be written as

∇µ̂+ = −z+F

κ
i +

t−
ν+
∇µ±. (2.42)
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2.4 Concentrated solution theory based on Stefan-Maxwell approach

Analogously, the electrochemical potential of the negative ionic species can be expressed as

∇µ̂− = −z−F
κ

i +
t+
ν−
∇µ±. (2.43)

These two relations can be used together with Equ. (2.28) and (2.29) to compute the molar flux
density of the positive ionic species

N+ = − c
2
+

ν+

1
K0+ +K0−

∇µ± +
t+
z+F

i (2.44)

and the molar flux density for the negative ionic species

N− = − c
2
−
ν−

1
K0+ +K0−

∇µ± +
t−
z−F

i.

The conservation equation for the positive ionic species discussed in section 2.2 can finally be
written as

∂c+
∂t

+∇ ·
(
c+u0 − c2

+

ν+

1
K0+ +K0−

∇µ± +
t+
z+F

i

)
= r+ (2.45)

and the conservation equation for the negative ionic species as

∂c−
∂t

+∇ ·
(
c−u0 −

c2
−
ν−

1
K0+ +K0−

∇µ± +
t−
z−F

i

)
= r−. (2.46)

As a result of the ENC given in Equ. (2.11), it is sufficient for binary electrolyte solutions to solve
only for a single ionic component. The corresponding concentration of the second ionic com-
ponent is automatically determined by the ENC. In literature (see, e.g., Landstorfer and Jacob
[98]) this approach is called a strong enforcement of the ENC. Similar conservation equations
could be derived for the barycentric velocity as a reference. However, in this case, an additional
condition for the determination of the molar fluxes density N0 is necessary.

Convective effects in battery applications In an electrolyte solution, a velocity field can be
introduced essentially by three different mechanisms, namely by forced convection, natural con-
vection and volume effects. First, forced convection can be excluded for most battery applica-
tions since a battery is a closed system. Second, natural convection does not play a major role for
electrolyte solutions filling a porous medium as it is indicated by experimental results presented
in section 8.5.1. The small distance between the electrodes and the porous medium minimize the
development of a velocity field as a result of density gradients within the electrolyte solution. For
applications without a porous medium and larger distance between the two electrodes, a velocity
field as result of buoyancy effects has to be included as an potential transport mechanism. In
this case, the transport equations given in Equ. (2.45) and (2.46) are limited in their applications
since the non-uniform pressure field violate the Gibbs-Duhem equation (2.34). Under such cir-
cumstances, the more general version of the Gibbs-Duhem equation (A.3) has to be considered
for the derivation of the transport equations. The pressure field within the electrolyte solution can
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2 Mathematical modeling of concentrated binary electrolyte solutions

be determined, e.g., by solving the Navier-Stokes equations utilizing the barycentric velocity uB

as reference velocity.
Third, a velocity field within the electrolyte solution can also develop as a result of vol-

umetric effects. Concentration variations of the positive and negative ionic species can lead to
an significant driving force for solvent diffusion to keep the local volume of electrolyte solu-
tion constant. In a three-dimensional structure, this results in a complex transport of solvent and
charged components potentially inducing pressure and flow fields. Such conditions require a
coupled approach combining the ion-transport equations with the Navier-Stokes equation and an
additional closing condition as emphasized, e.g., by Liu and Monroe [100]. In contrast, the vol-
ume conservation as applied, e.g., in Nyman et al. [115] or a kinematic condition as used in Liu
and Monroe [100] is sufficient as an additional closing condition for one-dimensional models.
In this context, different definitions for transference number are possible. The transference num-
ber t+ used in this contribution is defined with respect to the solvent velocity. Other definitions
for the transference number with respect to, e.g., the barycentric velocity or the laboratory are
presented, e.g., in Nyman et al. [115] or Newman and Thomas-Alyea [109].

In the following, only the mass balance of the positive and the negative ionic species are
considered for modeling the ion-transport in concentrated binary electrolyte solution. Volumet-
ric effects are neglected assuming u0 = 0 since a consistent modeling of solvent effects in
three-dimensional domains is too elaborate within the Stefan-Maxwell approach. In addition,
the available models describing the volumetric effect are still discussed controversially in scien-
tific community. In battery applications, this approach is commonly used in literature, not only
in older publications but also in recent models as introduced, e.g., by Ferguson and Bazant [61]
or Latz and Zausch [99]. As a result of this assumption, it is not necessary to distinguish between
different transference number definitions.

Transport parameters In the literature, transport parameters are usually not given as a func-
tion of the friction coefficients Kkl but as a function of the intermolecular diffusion coefficients
Dkl. Based on Equ. (2.17), the conductivity and transference numbers defined in Equ. (2.38) –
Equ. (2.40) can equivalently be written as

1
κ

= − 1
z+z−cT

RT

F 2

(
c0t−
c+D0−

+
1
D+−

)
, (2.47)

t+ =
z+D0+

z+D0+ − z−D0−
and t− =

−z−D0−
z+D0+ − z−D0−

. (2.48)

The molecular diffusion coefficient D for a binary electrolyte solution is defined as

D =
(z+ − z−)D0+D0−
z+D0+ − z−D0−

, (2.49)

which is related to the frictional coefficients K0+ and K0− by the relation

c2
+

ν+

1
K0+ +K0−

=
1
RT

cT

c+ c0

ν+

ν
D. (2.50)
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2.4 Concentrated solution theory based on Stefan-Maxwell approach

As a result, ion-transport in a binary electrolyte solution can be described by three independent
transport parameters, namely the conductivity, the transference number of one ionic species and
the molecular diffusion coefficient. Additional parameters are the solvent concentration c0 and
the total concentration cT defined in Equ. (2.18).

2.4.2 Electrical state of the electrolyte solution

So far, equations for the molar flux densities N+ and N− have been derived based on the chemi-
cal potential µ± of the salt and the current density i. Additionally, it has been shown in section A
that the chemical potential µ± of the salt can be correlated to the concentration c and, hence,
does not depend on the electrical state of the electrolyte solution at all. However, the current
density i is not only influenced by the chemical potential of the salt but also by the electrochem-
ical potentials µ̂+ and µ̂− and, therefore, by the electrical state of the electrolyte solution, as it
can be seen in Equ. (A.9), Equ. (2.42) and Equ. (2.43). Therefore, it is necessary to introduce an
additional variable describing the electrical state of the electrolyte solution including a reference
value since Equ. (2.42) and Equ. (2.43) contain only the gradients of the electrochemical poten-
tials µ̂+ and µ̂− making the absolute level of the electrical state mathematically arbitrary. This
is also clear from an experimental point of view. The electrostatic potential of an electrode can
only be measured with respect to a second electrode such as a counter electrode or a reference
electrode. The same holds true for the electrostatic potential at an arbitrary point x within the
electrolyte solution.

a) Electrochemical potential The first option to describe the electrical state of an electrolyte
solution is the electrochemical potential of an arbitrarily picked ionic species. Here, the electro-
chemical potential µ̂+ of the positive ionic species is chosen which gives according to Equ. (2.42)

i = − κ

z+F
∇µ̂+ +

κ

z+F

t−
ν+
∇µ±.

In this equation, the chemical potential µ± of the salt is given by Equ. (A.14) with the equivalent
concentration c as introduced in Equ. (A.11). Additionally, it is common in the literature to
replace the transference number of the negative ionic species by the transference number of the
positive ionic species by means of Equ. (2.41). Thus, the current density can also be expressed
as

i = − κ

z+F
∇µ̂+ +

ν

z+ν+

RT

F
κ

(
1 +

∂ ln f±
∂ ln c

)
(1− t+)∇ ln c, (2.51)

which depends only on the equivalent concentration c, the electrochemical potential µ̂+ and var-
ious transport parameters. It is important to emphasize that the definition of the electrochemical
potential µ̂+ is not just a different form of the electrostatic potential Φ but also includes the
concentration of the positive ionic species as can be seen in Equ. (A.9) and Equ. (A.12).
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As reference state, the electrochemical potential µ̂R
+ is defined with respect to a lithium

reference electrode:

µ̂R
+ ≡ µ̂+ − µLi. (2.52)

As result of this definition, the chemical potential µ̂+ in Equ. (2.51) can be replaced by the
chemical potential µ̂R

+ defined with respect to reference electrode since ∇µ̂R
+ = ∇µ̂+. The same

concept is used, e.g, by Latz and Zausch [99].

b) Electrostatic potential with respect to a reference electrode The most widely used con-
cept for describing the electrical state of the electrolyte solution is the introduction of suitable
reference electrodes to define the electrostatic potential Φ. For battery applications, the electri-
cal state of the electrolyte solution is usually define with respect to a lithium reference electrode
since the most common salts are based on lithium. This concept is experimentally inspired since
the electrostatic potential is often measured with respect to a lithium reference electrode. For
binary electrolyte solutions consisting of a single anion and cation, the general form of an elec-
trochemical reaction given in Equ. (2.3) can be simplified to

s+Az+
+ + s−Az−

− + s0A0 + ssoAso À ne−, (2.53)

where M0 and MS denote chemical symbol of the solvent and the material of the reference
electrode, respectively. Both substances may take part in the surface reaction on the reference
electrode. As stated in Hamann and Vielstich [78, 4.1.2], the current flow through the refer-
ence electrode has to be negligibly small. This means that the electrochemical reaction can be
considered to be in equilibrium resulting in ∆RG = 0 as explained in section A.6. According
to Equ. (A.16) and with

µ̂e− = ze−FΦ, (2.54)

as given in Newman and Thomas-Alyea [109, chap. 8.1], Equ. (2.53) can be written as

(s+∇µ̂+ + s−∇µ̂−) + s0∇µ̂0 = −nF∇ΦR, (2.55)

where the absolute values of the electrochemical potential are already expressed by their gra-
dients. Since the electrochemical potential of the reference electrode is a constant, its gradient
vanishes and does not appear in Equ. (2.55). The term (s+∇µ̂+ + s−∇µ̂−) is reformulated by
adding and subtracting n

z−
∇µ̂− leading to

s+∇µ̂+ + s−∇µ̂− =
s+

ν+
(ν+∇µ̂+ + ν−∇µ̂−)− n

z−
∇µ̂−

=
s+

ν+
∇µ± − n

z−
∇µ̂−, (2.56)

where the electroneutrality condition s+z+ + s−z− = −n for the surface reaction is used.
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In the absence of pressure and temperature gradients, the Gibbs-Duhem equation (2.34) gives

∇µ̂0 = − c

c0
∇µ±. (2.57)

Inserting Equ. (2.57) and Equ. (2.56) into Equ. (2.55) results in

−F∇ΦR =
(
s+

ν+n
− s0c

c0n

)
∇µ± − 1

z−
∇µ̂−. (2.58)

Equ. (2.58) relates the electrostatic potential ΦR of reference electrode to the the electrochemi-
cal potentials µ± and µ̂− of the salt and of the negative ionic species dissolved in the electrolyte
solution, respectively. Replacing the electrochemical potential of the negative ionic species ac-
cording to Equ. (2.43), the well-known equation for the electric potential ΦR (see, e.g., Newman
and Thomas-Alyea [109, chapter 12.4]) is established:

i = −κ∇ΦR − 1
F
κ

1
ν+z+

(
z+s+

n
+ t+ − c

c0

s0ν+z+

n

)
∇µ±.

The gradient∇µ± of the chemical potential µ± can be replaced according to Equ. (A.14) leading
to

i = −κ∇ΦR +
RT

F
κ

ν

ν+z+

(
1 +

∂ ln f±
∂ ln c

)(
−z+s+

n
− t+ +

c

c0

s0ν+z+

n

)
∇ ln c.

This equation is valid for an arbitrary reference electrode. In battery science, the most common
reference electrode is the lithium reference electrode with the formal surface reaction Li À
Li+ + e−. In this case, Equ. (2.55) simplifies to

−1∇µ̂+ + 0∇µ̂− + 0∇µ̂0 = −z+F ∇ΦR, (2.59)

where s+ = −1, s− = 0, s0 = 0 and −n = s+z+ + s−z− . Hence, the equation for the electric
potential with respect to a lithium reference electrode reads as

i = −κ∇ΦR +
ν

z+ν+

RT

F
κ

(
1 +

∂ ln f±
∂ ln c

)
(1− t+)∇ ln c. (2.60)

For a lithium reference electrode, Equ. (2.58) can also be motivated physically by an equiv-
alent formulation for the lithium surface reaction:

Li + M− À LiM + e−.

Here, the lithium surface reaction Li À Li+ + e− is extended by the negative ionic species M−

dissolved in the electrolyte solution where the negative and positive ionic species are considered
as a neutral ion pair as discussed in section A.5. As a result, the surface reaction in terms of the
gradient can also be characterized by

−F∇ΦR = −∇µ± +∇µ̂−,
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which corresponds to Equ. (2.58).
For a lithium reference electrode, it is also possible to relate Equ. (2.51) to Equ. (2.60) if

the lithium surface reaction given in Equ. (2.59) is used to replace the electrochemical potential
µ̂+ by the electrostatic potential z+FΦR of the reference electrode as indicated, e.g. in Nyman
et al. [115]:

µ̂+ ≡ FΦR.

This means that the formulation with respect to electrochemical potential of an arbitrary ionic
specis is equivalent to the formulation using the electrostatic potential if both are defined with
respect to the same reference electrode.

c) Electrostatic potential with respect to a reference species According to Newman and
Thomas-Alyea [109], the reference potential can also be defined with respect to a reference
species n

µ̂n = RT ln cn + znFΦn

which gives for the electrochemical potential of any other species

µ̂k = RT ln ck + zkFΦn +RT

(
ln fk − zk

zn

ln fn

)
+RT

(
ln ak − zk

zn

ln an

)
. (2.61)

Here, Φn denotes the electrostatic potential with respect to the reference species n. The pro-
portionality constants ak and an result from the definition for the chemical potential given
in Equ. (A.12). Both definitions can be motivated by the internal energy given in Equ. (A.8):

du =T d s+
n∑

k=1

[
(µk + zkFΦn) d ck

]

=T d s+
n−1∑

k=1

[
(RT ln ck + zkFΦn +RT ln fk +RT ln ak) d ck

]

+ (RT ln cn + znFΦn) d cn + (RT ln fn +RT ln an)
n−1∑

k=1

(
−zk

zn

d ck

)

︸ ︷︷ ︸
d cn

=
n−1∑

k=1

[(
RT lnck + zkFΦn +RT

(
lnfk − zk

zn

lnfn

)
+RT

(
lnak − zk

zn

lnan

))
dck

]

+ (RT ln cn + znFΦn) d cn + T d s

= T d s+
n−1∑

k=1

µ̂k d ck + µ̂n d cn.
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In the absence of temperature and pressure gradients, the gradient of Equ. (2.61) reduces to

∇µ̂k = RT∇ ln ck + zkF∇Φn +RT

(
∇ ln fk − zk

zn

∇ ln fn

)
. (2.62)

The gradients of the proportionality constants ak and an are zero since these depend only on
the pressure and the temperature. If the negative ionic species is used as reference (n = Ä),
Equ. (2.62) can be inserted in Equ. (2.37) describing the current density as a function of the
electrochemical potentials, resulting in

i = −κ∇ΦÄ +
ν

ν+z+

RT

F
κ

[(ν−
ν
− t+

)
∇ ln c− t+∇ ln f±

]
(2.63)

In this definition, the potential ΦÄ is defined with respect to the reference species, and thus, does
not involve any influence of electrodes.

2.4.3 Cell potential

As shown in the previous section, the used reference state directly influences the structure of the
current equation as derived for Equ. (2.51), Equ. (2.60) and Equ. (2.63). It was also demonstrated
that the formulation using the electrochemical potential of an ionic species given in Equ. (2.51)
and the formulation using the electrostatic potential given in Equ. (2.60) are equivalent if both
are defined with respect to the same reference electrode. This has to be also demonstrated for the
remaining formulation given in Equ. (2.63) since the final cell potential has to be the same for
all formulations. The cell potential must not depend on the choice of the reference potential. In
this section, the connection between the equations for the current density and the cell potential
is shown and it is demonstrated that all definitions are equivalent.

Definition of cell potential The simplest cell is used for the demonstration that the cell po-
tential is independent of the choice of the reference potential. The same concept can also be
applied to more complex cell configuration. As shown schematically in Fig. 2.1, the cell con-
sists of two copper deflectors α and α′, two lithium electrodes β and β′ separated by an LiClO4

electrolyte solution γ. The transition region describes an electrolyte solution with a variable salt
concentration. According to Newman and Thomas-Alyea [109, chap. 2.4],

Figure 2.1: Basic cell setup consisting of two copper deflectors α and α′, two lithium electrodes β and β′

separated by an electrolyte solution γ.
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2 Mathematical modeling of concentrated binary electrolyte solutions

the cell potential U can be expressed as

FU = ze−F (Φso
∣∣
α
−Φso

∣∣
α′) = µ̂e−

∣∣
α
− µ̂e−

∣∣
α′ .

Here, the cell potential U is the difference between the electrochemical potentials of the electrons
in phases α and α′ which is also related to the difference in the electrostatic potentials Φso.
Assuming thermodynamic equilibrium between adjacent phases, the cell potential can also be
expressed as the difference between the electrochemical potentials of the electrons in the lithium
phases β and β′:

FU = µ̂e−
∣∣
β
− µ̂e−

∣∣
β′ . (2.64)

As a result of the electrochemical reactions at the electrode surface, the electrochemical potential
of the electrons is related to the electrochemical potentials of the products and educts of the reac-
tions. As shown in section section A.6, the lithium reaction Li À Li+ + e− can be characterized
in terms of electrochemical potentials according to

µ̂Li
∣∣
β

= µ̂+
∣∣
β|γ + µ̂e−

∣∣
β
, and µ̂Li

∣∣
β′ = µ̂+

∣∣
β′|γ + µ̂e−

∣∣
β′ .

Here, the reaction Gibbs energy ∆RG is zero which corresponds to an equilibrium between the
adjacent phases. Thus, the cell potential between the two lithium electrodes can be written as

FU = µ̂Li
∣∣
β
− µ̂+

∣∣
β|γ −

(
µ̂Li

∣∣
β′ − µ̂+

∣∣
γ|β′

)
.

Since the phases β and β′ are identical, the electrochemical potentials of lithium cancel out.
Additionally, the current flow across the electrode is zero as a result of the assumed equilibrium
state between the phases. In this case, the cell potential is given by

FU = µ̂+
∣∣
γ|β′ − µ̂+

∣∣
β|γ. (2.65)

Thus, the cell potential U is proportional to the difference between the electrochemical potentials
of the lithium ions in the vicinity of the electrodes.

Now, the cell potentials associated with the three different reference potentials are compared
for a lithium cell consisting of two lithium electrodes and an electrolyte solution. The system is
modeled by a one-dimensional approximation to allow for analytical integration along a one-
dimensional path. Although there is no current flow across the considered electrodes, the current
density i in Equ. (2.51), Equ. (2.60) and Equ. (2.63) is not dropped at this point since there could
be current flow due to the presence of additional electrodes.

a) Electrochemical potential At this point, it becomes clear why the electrochemical potential
µ̂+ is the most natural choice to define the electrical state of the electrolyte solution. The right
hand side of Equ. (2.65) is directly given by Equ. (2.51) if µ̂+ is isolated and integrated along a
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2.4 Concentrated solution theory based on Stefan-Maxwell approach

one-dimensional path as shown in Fig. 2.1:

U = −
∫ γ|β′

β|γ

1
κ
i d x+

RT

F

1
ν+

[
ν ln

c
∣∣
γ|β′

c
∣∣
β|γ

− ν

∫ γ|β′

β|γ
t+ d ln c

+ν ln
f±

∣∣
γ|β′

f±
∣∣
β|γ

− ν

∫ γ|β′

β|γ
t+ d ln f±

]
. (2.66)

b) Electrostatic potential with respect to a reference electrode According to Equ. (2.64)
and Equ. (2.54), the cell potential U between two lithium electrodes can be written as

U = ΦR
∣∣
γ|β′ −ΦR

∣∣
β|γ.

which is the equivalent to Equ. (2.64) assuming equilibrium between the different phases. The
steps leading from Equ. (2.64) to Equ. (2.65) are already included in the definition of electro-
static potential ΦR. Isolation of the electrostatic potential ΦR in Equ. (2.60) and the subsequent
integration along a one-dimensional path gives the same result as in Equ. (2.66).

c) Electrostatic potential with respect to a reference species According to Equ. (2.61) and
Equ. (A.13), the electrochemical potential µ̂Li+ of the lithium ions can be written as

µ̂+ = RT ln c+ + z+FΦÄ +RT
ν

ν+
ln f± +RT

1
ν+

ln (aν+
+ a

ν−
− )︸ ︷︷ ︸

a±

.

Inserting this relation into Equ. (2.65) gives

FU =z+F
(

ΦÄ∣∣
γ|β′ −ΦÄ∣∣

β|γ

)
+RT

[
ln
c
∣∣
γ|β′

c
∣∣
β|γ

+
ν

ν+
ln
f±

∣∣
γ|β′

f±
∣∣
β|γ

+
1
ν+

ln
a±

∣∣
γ|β′

a±
∣∣
β|γ

]
, (2.67)

whereas the last term is equal to zero for constant temperature and pressure fields. The potential
difference ΦÄ∣∣

γ|β′ −ΦÄ∣∣
β|γ is given by the integrated form of Equ. (2.63):

ΦÄ∣∣
γ|β′ −ΦÄ∣∣

β|γ = −
∫ γ|β′

β|γ

1
κ
i d x+

RT

F

1
ν+z+

[
ν− ln

c
∣∣
γ|β′

c
∣∣
β|γ

−
∫ γ|β′

β|γ
νt+ d ln c

−
∫ γ|β′

β|γ
νt+ d ln f±

]
. (2.68)
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Combining Equ. (2.67) and Equ. (2.68) with z+ = 1 gives the same cell potential as before:

U = −
∫ γ|β′

β|γ

1
κ
i dx+

RT

F

1
ν+

[
ν ln

c
∣∣
γ|β′

c
∣∣
β|γ

− ν

∫ γ|β′

β|γ
t+ d ln c

+ ν ln
f±

∣∣
γ|β′

f±
∣∣
β|γ

− ν

∫ γ|β′

β|γ
t+ d ln f±

]
(2.69)

Compared to the previous definitions, the electrostatic potential ΦÄ with respect to the negative
ionic species includes only the potential drop in the electrolyte solution due to current flow and
variations in the concentration. The potential drop at the electrodes the so-called Nernst potential
is not considered in this definition and has to be added separately.

2.4.4 Final system of ion-transport equations

Mass conservation for the positive ionic species given in Equ. (2.45) can be reformulated to

∂c+
∂t

+∇ ·
[
− c

2
+

ν+

1
RT

cT

c+ c0

ν+

ν
D∇µ± +

t+
z+F

i

]
= r+, (2.70)

where the definition of the molar flux density given in Equ. (2.44) and the definition of the
molecular diffusion coefficient D given in Equ. (2.50) are used. Mass conservation for the neg-
ative ionic species can be expressed accordingly. In Equ. (2.70), the diffusive molar flux density
depends on the chemical potential µ± of the salt. Inserting the gradient of the chemical potential
µ± of the salt

∇µ± = νRT

(
1 +

∂ ln f±
∂ ln c

)
1
c+
∇c+

given in Equ. (A.14) into Equ. (2.70) yields

∂c+
∂t

+∇ · (−D±∇c+) +∇ ·
(
t+
z+F

i

)
= r+,

where the binary diffusion coefficient D± is defined as

D± ≡ cT

c0
D

(
1 +

∂ ln f±
∂ ln c

)

with the ThermoDynamic Factor (TDF)
(

1 +
∂ ln f±
∂ ln c

)
= X . (2.71)
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This definition is equivalent to the definition used in Newman and Thomas-Alyea [109, chap.
12.2]:

D± =
cT

c0
D

(
1 +

d ln γ±
d lnm

)(
1− d ln c0

d ln c

)
,

where γ± denotes the mean molal activity coefficient and m the molality. This equation can be
derived from Equ. (2.70) with

∇µ± = RTν∇ lnmγ±

and

m =
c

c0M0
.

In many textbooks, the concentration of the positive ionic species is replaced by the equiv-
alent concentration c = c+

ν+
= c−

ν−
giving the well-known ion-transport equation for concentrated

binary electrolyte solutions:

∂c

∂t
+∇ · (−D±∇c) +∇ ·

(
t+

ν+z+F
i

)
=
r+

ν+
. (2.72)

As explained in Chap. 2.4.2, all three equations for the current density i utilizing different def-
initions for the electrical state of the electrolyte solution are equivalent. In the following, the
classical definition based on a lithium reference electrode is applied:

i = −κ∇ΦR +
ν

z+ν+

RT

F
κ

(
1 +

∂ ln f±
∂ ln c

)
(1− t+)∇ ln c. (2.73)

The system of equation is closed by the conservation of charge

∇ · i = 0. (2.74)

2.5 Nernst-Planck approach for dilute electrolyte solutions

The Nernst-Planck approximation is the classical approach to model ion-transport in dilute elec-
trolyte solutions. Due to its wide-ranging dissemination, this model has already been discussed
in many contributions. In Kontturi et al. [91, chap. 2.3], the ion-transport equations based on
the Nernst-Planck approximation are derived from a non-linear thermodynamic framework, for
instance. In Bauer [18], an overview of the entire system of ion-transport equations for dilute
electrolyte solutions is given. In the following, a short review of the Nernst-Planck model is
given and a comparison with the concentrated solution theory based on the Stefan-Maxwell
equations is drawn.
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2 Mathematical modeling of concentrated binary electrolyte solutions

In the Nernst-Planck approach, the molar flux density of component k is given as

Nk = −Dk∇ck − F

RT
zkDkck∇ΦNP, (2.75)

consisting of a diffusion and a migration term. Here, Dk denotes the diffusion coefficient of
component k and ΦNP the electrostatic potential within the electrolyte solution. As in all pre-
vious approaches, convective transport has been neglected. The motivation for this approach is
given in section 2.4.1. Hence, the mass conservation equation (2.7) can be written as follows for
component k ∈ [1, ...,m]:

∂ck
∂t

+∇ · (−Dk∇ck − F

RT
Dkzkck∇ΦNP) = rk. (2.76)

The most prominent option for closing the system of equations is to apply the electroneutrality
condition given in Equ. (2.11). Alternatively, the system can also be closed by enforcing the con-
servation of charge. A detailed discussion of the various options to close the system of equations
is given in Bauer [18].

Alternative formulation of the Nernst-Planck approach The electrochemical system de-
scribed by the Nernst-Planck approach can also be characterized by the conductivity κ of the
electrolyte solution, the transference numbers tk and the scalar multi-component diffusion coef-
ficient Dkl. The basic definition of the current density given in Equ. (2.13) can be reformulated
using Equ. (2.75)

i = −
m∑

k

(
F 2

RT
Dkz

2
kck

)

︸ ︷︷ ︸
κ

∇ΦNP − F

m∑

k

(zkDk∇ck), (2.77)

where the definition of the conductivity κ has already been applied. This equation can also be
expressed using the transference numbers tk = κk

κ

i = −κ∇ΦNP − RT

F
κ

m∑

k

tk
zk

∇ ln ck. (2.78)

The transference number tk in this equation equals the ratio of the component-based conductivity
κk to the overall conductivity κ of the electrolyte solution as indicated in Equ. (2.79).

In a next step, Equ. (2.77) can be used to eliminate the electrostatic potential ΦNP in the
mass conservation equation (2.76) giving the alternative formulation

∂ck
∂t

+∇ ·
[
−Dk∇ck − 1

zkF

F 2

RT
Dkz

2
kck

κ︸ ︷︷ ︸
tk=κk/κ

(
−i− F

m∑

l

(zlDl∇cl)
)]

= rk. (2.79)
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2.5 Nernst-Planck approach for dilute electrolyte solutions

As a result, Equ. (2.79) can be formulated as

∂ck
∂t

+∇ ·
[
−Dk∇ck +

tk
zk

(
m∑

l 6=k

(zlDl∇cl) + zkDk∇ck
)]

+∇ · tki
zkF

= rk. (2.80)

Using the ENC (2.11) to replace the second concentration ck, the multi-component diffusion
coefficient Dkl can be introduced to describe the diffusive transport in the component-based
mass conservation:

∂ck
∂t

−∇ ·
[

m∑

l

(
Dkδkl +

tk
zk

(Dk −Dl)zl

)

︸ ︷︷ ︸
Dkl

∇ci
]

+∇ · tki
zkF

= rk. (2.81)

As before, the system of equations can be closed by either the electroneutrality condition (2.11)
or condition Equ. (2.15) for conservation of charge.

So far, the ion-transport system has been described by m component-based mass conser-
vation equations. Owing to electroneutrality, the ion-transport system can also be described by
only m− 1 ion-transport equations since the concentration cm can be expressed as a linear com-
bination of the remaining m− 1 concentrations:

zmcm = −
m−1∑

k

zkck.

By eliminating component m, Equ. (2.81) and Equ. (2.78) simplify to the Charge-conservation-
Nernst-Planck (CNP) model which is derived in Bauer [18]. The CNP model has to be closed the
conservation of charge given in Equ. (2.15). This approach is called a strong enforcement of the
electroneutrality condition. In contrast, if m component-based mass conservation equations are
closed by the electroneutrality condition, the electroneutrality condition is enforced weakly. An
example for a weak enforcement of the electroneutrality condition is the Nernst-Planck approach
presented in Bauer [18].

Binary electrolyte solution So far, the ion-transport model for dilute solutions has been de-
rived for an arbitrary number of components. However, the system can also restricted to a binary
electrolyte solution as it is done for the concentrated solution theory. For a binary electrolyte
solution, the mass conservation equation for the positive ionic species given in Equ. (2.81) can
be reformulated to

∂c+
∂t

−∇ · (D±∇c+) +∇ · t+i

z+F
= r+, (2.82)

where D± denotes the dilute binary diffusion coefficient resulting from the multi-component
diffusion coefficient Dkl. Additionally, Equ. (2.78) can be expressed as

i = −κ∇ΦNP − RT

F
κ

(
t+
z+

+
t−
z−

)
∇ ln c+. (2.83)
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For binary electrolyte solutions, the conductivity κ defined in Equ. (2.77) is given as

κ =
F 2

RT
(z+D+ − z−D−)z+c+,

the transference numbers t+ and t− defined in Equ. (2.79) as

t+ =
D+z

2
+c+

(z+D+ − z−D−)z+c+
=

z+D+

(z+D+ − z−D−)
,

t− =
D−z2

−c−
(z+D+ − z−D−)z+c+

=
−z−D−

(z+D+ − z−D−)
,

and the dilute binary diffusion coefficient D± defined in Equ. (2.81) as

D± =
(z+ − z−)D+D−
(z+D+ − z−D−)

.

These transport parameters exhibit a strong similarity with the transport parameters Equ. (2.47)
– Equ. (2.50) used in the concentrated solution theory which is already indicated in Newman and
Thomas-Alyea [109, chap. 12.5].

Comparison with concentrated solution theory derived from the Stefan-Maxwell approach
Based on Equ. (2.82), Equ. (2.83) and Equ. (2.15), the final system of equations for a binary
electrolyte solution can be written as

∂c

∂t
−∇ · (D±∇c) +∇ ·

(
t+i

ν+z+F

)
=
r+

ν+
,

i = −κ∇ΦNP +
ν

z+ν+

RT

F
κ

(ν−
ν
− t+

)
∇ ln c, (2.84)

∇ · i = 0,

where c+ = ν+c is used to express the equations using the equivalent concentration c. These
equations are equivalent to those in concentrated solution theory given in Equ. (2.72), Equ. (2.63)
and Equ. (2.74) since ln f± defined in Equ. (2.63) approaches zero and the ratio c0/cT unity for
dilute solutions. Additionally, the definitions of the transport parameters based on the Nernst-
Planck approach resemble the definitions of the transport parameters for concentrated electrolyte
solutions given in Equ. (2.47) – Equ. (2.50) if the diffusion coefficients Dk of the ionic species
are interpreted as the molecular diffusion coefficient Dk. In Equ. (2.47) for the conductivity κ,
the cross diffusion coefficient D+− is negligibly small for dilute solutions, since it describes
the friction between positive and negative ions. Finally, the electrostatic potential ΦNP used in
the Nernst-Planck approach is equivalent to the electrostatic potential ΦÄ defined with respect
to negative ionic species. As for the electrostatic potential ΦÄ, the Nernst potential describing
the potential drop at the electrodes is not included in the formulation and has to be considered
separately as it is done, e.g., in Bruce and Vincent [31].
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2.6 Ion-transport based on non-equilibrium thermodynamics

An alternative model for ion-transport within electrolyte solutions has been proposed by Latz
and Zausch [99]. In this contribution, the complete derivation is based on the general principles
of non-equilibrium thermodynamics. Therefore, the proposed model is thermodynamically con-
sistent which ensures, e.g., a strictly positive entropy production. Additionally, thermal effects
can be incorporated consistently into the framework which is a significant advantage compared
to the Stefan-Maxwell approach discussed in section 2.4. A similar approach is taken, e.g., by
Kjelstrup and Bedeaux [90].

As in the Stefan-Maxwell approach, the binary electrolyte solution is considered electrically
neutral. In addition, convective transport effects are assumed to be negligibly small. As a result
of both, the concentration of the solvent can be eliminated as an independent variable utilizing
the mass conservation:

M0 d c0 +M+ d c+ +M− d c− = 0. (2.85)

Here, M0, M+ and M− denote the molar mass of the solvent, the positive and the negative ionic
species.

A total energy density of a polarizable system in an external electromagnetic field can be
described by the thermodynamic relation given in Henjes and Liu [80]

d e = T d s+ µ+ d c+ + µ− d c− + µ0 d c0 + E · d D + H · d B. (2.86)

Here, e denotes the total energy density, s the entropy density, E = −∇Φ the electric field,
D the electric displacement field, H the magnetic field and B the magnetic induction. Unlike
in the Stefan-Maxwell approach, the chemical potential µk and the electrostatic potential Φ are
independent in this formulation. Equ. (2.86) can reformulated to

d e = T d s+ µe d c+ + E · d D + H · d B,

with the chemical potential µel of the electrolyte solution

µel dc+ ≡ µ+ dc+ + µ− dc− + µ0 dc0

=
[
µ+ +

ν−
ν+
µ− − µ0

M0

(
M+ +

ν−
ν+
M−

)]
dc+ =

[
1
ν+
µ± − µ0

ν+

M±
M0

]
dc+, (2.87)

where M± = ν+M+ + ν−M−, Equ. (2.85), Equ. (2.11) and Equ. (2.21) are used. The advantage
of this formulation is that the chemical potential of the solvent is incorporated naturally into the
definition of the chemical potential µel of the electrolyte solution. At this point, it is assumed that
solvent diffusion does not induce a velocity and pressure field within the electrolyte solution. In
the original contribution, the chemical potential µel of the electrolyte solution is defined slightly
different since an alternative definition of the equivalent concentration c = c+ = −ν−z−

ν+z+
c− and

the notational simplification ν+ = ν− = 1 are used. The chemical potential µ± is based on the
same definition as given in Equ. (A.10). The electric field E, the electric displacement D,
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the magnetic field H and the magnetic induction B are related to the current density i via

E · ∂D
∂t

+ H · ∂B
∂t

= −∇ · (E ×H)− i ·E.

This equation is derived from the Maxwell equations as explained, e.g., in Jackson [86, chap.
6.7]. Additionally, the conservation of mass (section 2.2), of charge (section 2.3) and of entropy

∂s

∂t
= −∇ · q

T
+
R

T

are used to formulate the equations for the molar flux density, heat density and current density.
Here, R denotes the entropy production rate. A more detailed derivation is given in Latz and
Zausch [99]. As a result, the ion-transport equation can be written as

∂c

∂t
+∇ · (−Del∇c) +∇ ·

(
t+

ν+z+F
i

)
= 0, (2.88)

where the additional stoichometry coefficient ν+ in the third term results from the alternative
definition of the equivalent concentration c = c+

ν+
= c−

ν−
and Del denotes the diffusion coefficient

of the electrolyte solution. The current density is given as

i = −κ∇Φ− 1
z+F

κ t+
∂µel

∂c
∇c. (2.89)

The conservation equations for the heat density and the temperature dependency are not consid-
ered in the present work.

Comparison with concentrated solution theory derived from the Stefan-Maxwell approach
The mass conservation equation (2.88) has the same form as Equ. (2.72), whereas Equ. (2.89)
shows significant differences to all formulations presented in section 2.4.2. As suggested by Latz
and Zausch [99], the electrostatic potential Φ can also be expressed using the electrochemical
potential µ̂el ≡ µel + z+FΦ of the electrolyte solution giving

i = −κ∇µ̂el

z+F
+

1
z+F

κ (1− t+)
∂µel

∂c
∇c. (2.90)

In the original publication, the electrochemical potential ϕ is defined as ϕ = µ̂el
z+F

. The term
∂µel
∂c
∇c can be reformulated to

∂µel

∂c
∇c = ∇µel =

1
ν+

[
∇µ± − M±

ν+M0
∇µ0

]

=
1
ν+

[
1 +

c

c0

M±
M0

]
∇µ±, (2.91)
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using Equ. (2.87) and the Gibbs-Duhem equation (2.34)

∇µ0 = − c

c0
∇µ±.

As a result, Equ. (2.89) can also be expressed as

i = −κ∇µ̂el

z+F
+

ν

ν+z+

RT

F
κ

[
1 +

c

c0

M±
M0

](
1 +

∂ ln f±
∂ ln c

)
(1− t+)∇ ln c. (2.92)

Here, the gradient of the chemical potential ∇µ± is replaced by Equ. (A.14). The formulation is
only valid in the absence of temperature and pressure gradients. A similar reformulation for the
chemical potential of the active material is shown, e.g., in Christensen and Newman [41, Equ.
6]. As in section 2.4.2, the electrochemical potential µ̂el of the electrolyte solution is related to
the chemical potential µel of a lithium reference electrode

µ̂R
el ≡ µ̂el − µLi

giving

∇µ̂R
el = ∇µ̂el,

since the chemical potential µLi of lithium is constant.
If the influence of the solvent on the electrochemical potential of the electrolyte is neglected

in Equ. (2.91), the equation for the current given in Equ. (2.92) is equivalent to the formulation
given in Equ. (2.51). In this case, only the electrochemical potentials of the positive and negative
ionic species are considered as a driving force for the ionic species. However, the used incorpora-
tion of the solvent into the mass balance per volume given in Equ. (2.85) is also a simplification
since the variation of the electrolyte density ρel is neglected in Equ. (2.85). The consideration
of density or, actually, volumetric effect would result in a coupled approach combining the ion-
transport equations with the Navier-Stokes equations. This would also require the incorporation
of total differential of the pressure d p into Equ. (2.86). Compared to the Stefan-Maxwell ap-
proach, the thermodynamically motivated approach is much more powerful since temperature
effects can be incorporated consistently within the framework as it is shown in Latz and Zausch
[99].

2.7 Initial and boundary conditions

The mathematical description of the governing equations and boundary conditions has already
been given in section 2.1. In this section, the physical interpretation of the mathematical de-
scription is presented. In general, most electrochemical applications can be divided into three
different classes, which can be distinguished based on the applied initial and boundary con-
ditions. The first class comprises all potential-controlled applications as, e.g., potential step or
potential sweep methods. In the case of a potential-controlled experiment, an electrostatic poten-
tial difference is applied between two electrodes resulting in a variable current flow across the
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surface of the electrodes. Additionally, no-flux conditions are applied to all remaining bound-
aries and a homogeneous initial concentration field is assumed in the beginning. The second
class comprises current-controlled applications which are current-controlled such as a galvanos-
tatic experiments. In such applications, a constant current flow across the electrodes is prescribed
resulting in a variable electrostatic cell potential. As in the first class, no-flux boundary condi-
tions are applied to the remaining boundaries and a homogeneous initial concentration profile
is assumed. The last class comprises applications where no-flux conditions are applied to all
boundaries inclusive electrodes and a non-homogeneous initial concentration field is applied re-
sulting in a non-homogeneous potential field within the electrolyte solution. The most famous
representative of this class is the concentration cell. Besides, all relaxation experiments based on
galvanostatic or potentiostatic polarization can be included into this class.

In a potential-controlled simulation, the potential difference can be described via Dirichlet
conditions on the potential. In case of a current-controlled simulation, the current flow density
can be converted into an equivalent molar flux density by

i = z+FN+ (2.93)

and applied via a Neumann condition. In both cases, the kinetic behavior of the electrodes is
ignored completely. Alternatively, potential- and current-controlled applications can also incor-
porate kinetic models like the well-known Butler-Volmer law. There are many different formu-
lations of the Butler-Volmer law available in the literature. However, in all formulations, the
surface overpotential η introduced in section A.6 is assumed to be the driving force for an elec-
trochemical reaction (see, e.g., Newman and Thomas-Alyea [109, chap. 8]). It describes the
deflection of the chemical potential from the equilibrium potential with zero net reaction rate
since forward and backward reactions are in balance. Additionally, physical phenomena as, e.g.,
double layer charging on electrode surfaces can be considered.

Electrode kinetics As described in appendix A.6, the surface overpotential η is the driving
force for a reversible electrochemical reaction. Therefore, the correct description of the surface
overpotential is of central importance when modeling electrochemical cells. Irreversible reac-
tions such as the formation of the Solid Electrolyte Interface (SEI) or parasitic side reactions are
not considered in this work.

The overpotential defined in Equ. (A.17) is related to the electrochemical potentials µ̂k of all
components k participating in the electrochemical reaction. The electrochemical potential µ̂e− of
the electrons can be approximated by the electrostatic potential Φso in the solid phase. This can
be derived from the phase equilibrium between a solid and a liquid phase as demonstrated, e.g.,
in Newman and Thomas-Alyea [109, chap. 2.4]. As a result, Equ. (A.17) can be reformulated to

η = Φso +
sso

nF
µso +

∑
i

si

nF
µ̂i, (2.94)

where the charge number z− = −1 of electrons has been used. Here, the subscript i stands for all
dissolved, charged and uncharged components participating in the electrochemical reaction. The
chemical potential µso =

∑
j

sj

nF
µj includes all chemical potentials of solid, uncharged compo-

nents, which are part of the electrode. For instance, the chemical potential µso depends on the
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2.7 Initial and boundary conditions

State Of Charge (SOC) since the composition of the active material changes due to lithiation
or de-lithiation. As stated by Latz and Zausch [99], the overpotential can be defined as the ”de-
viation of the electrochemical potential from the chemical equilibrium between active particle,
the solid phase, and electrolyte”. From an alternative point of view, the term (Φso + sso

nF
µso) can

be seen as the electrochemical potential of the solid and the terms
∑

i

(
si

nF
µ̂i

)
can be regarded

as the electrochemical potential of the electrolyte. Usually, the chemical potential of lithium is
included as a reference, which gives

η = Φso − U0 +
1
nF

µLi +
∑

i

si

nF
µ̂i, (2.95)

where U0 ≡ 1
nF

(µLi − ssoµso) denotes the open circuit potential with respect to lithium reference
electrode.

In general, the definition of the overpotential given in Equ. (2.94) can be used with all
definitions describing the electrical state of electrolyte solution given in section 2.4.2. In the fol-
lowing, a binary electrolyte solution consisting of a dissolved lithium salt and lithium electrodes
are assumed giving

η = Φso − U0 +
1
nF

(µLi − µ̂+) . (2.96)

The term 1
nF

(µLi − µ̂+) = −ΦR defines the electrostatic potential with respect to a lithium
reference electrode as used for Equ. (2.60). Additionally, the definition µ̂R

+ ≡ µ̂+−µLi introduced
in Equ. (2.52) for Equ. (2.51) is also included. The surface overpotential can also be defined
based on an ionic species as reference. In this case, the inclusion of the chemical potential µLi

as done in Equ. (2.94) and (2.95) is not necessary. However, in this case, it is more elaborate to
define the chemical potential of the solid.

The simplest electrode reaction is the deposition or dissolution of a metal Mso represented
by the electrochemical reaction

ssoMso + s+M+ À ne−.

It can be modeled by the Butler-Volmer law

in = i0

(
ck
ck,0

)γ [
exp

(
αAF

RT
η

)
− exp

(
− αCF

RT
η

)]
. (2.97)

A detailed derivation of the Butler-Volmer law is given, e.g., in Wittmann [152] or Newman
and Thomas-Alyea [109]. The involved parameters are the exchange current density i0, some
reference concentration ck,0 of the reactive ionic species, an exponent γ for weighting the surface
concentration dependency, an anodic constant αA, and a cathodic constant αC. In battery science,
the most famous representative of this type of the electrochemical reaction is the reaction

Li À Li+ + e−. (2.98)

35



2 Mathematical modeling of concentrated binary electrolyte solutions

In this special case, the open circuit potential is zero by definition,

U0 =
1
nF

µLi − 1
nF

µLi = 0,

and Equ. (2.95) simplifies to

η = Φso − 1
z+F

(µ̂+ − µLi)

where the relation n = z+ resulting from Equ. (2.59) is used. In this manuscript, only the Butler-
Volmer law for the deposition or dissolution of lithium on the lithium electrode is used since
all experiments discussed in the following are based on two lithium electrodes. More complex
reaction models are discussed, e.g., in Wittmann [152], Bard and Faulkner [14] or Newman and
Thomas-Alyea [109]. In Willman [151], a numerical method is developed for the incorporation
of double layer charging into electrode boundary conditions.
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3 Ion-transport in porous media

As discussed in section 1, there are two different approaches for modeling and simulating elec-
trochemical phenomena in battery systems. The three-dimensional porous structure of electrodes
and separators filled with an electrolyte solution can be resolved geometrically resulting in a very
detailed model. However, these models are computationally very expensive and usually to large
to be applicable to the entire battery system. Alternatively, the porous microstructure can also be
modeled by a homogeneous continuum on the macroscopic level. In this case, the influence of
the microstructure is incorporated by additional geometrical parameters such as the porosity ε
and the tortuosity τ .

In literature, there are different models available describing the transfer from the micro-
scopic conservation laws to the macroscopic level. One of the most famous approaches is the
volume averaging method explained, e.g., in Whitaker [149] or Bear and Bachmat [23]. Often,
this method is also called averaged-field or mean-field theory. The basic idea of the method is the
integration of the microscopic partial differential equations over a Representative Element Vol-
ume (REV) giving the macroscopic transport equations. Applying this method to ion-transport
results in the so-called homogenized ion-transport equations. Originally, these equations were
introduced in Newman and Tiedemann [111] and Newman et al. [112]. However, in most of the
publications, Doyle et al. [54] and Fuller et al. [64] are cited as reference for the homogenized
ion-transport equations. Nevertheless, an actual derivation is missing in all these publications.
In Lai and Ciucci [93], the volume averaging method is applied to the so-called generalized
Poisson-Nernst-Planck equations. Apart from the used alternative ion-transport model, the ob-
tained macroscopic equations are equivalent to homogenized ion-transport equations given in
Newman and Tiedemann [111]. However, the volume average of terms including concentra-
tion dependent transport parameters are also not discussed in this publication. A review of the
homogenized ion-transport equations including a theoretical motivation is given in Landstorfer
and Jacob [98]. Nowadays, the homogenized ion-transport equations are the standard model for
battery applications in science and industry.

An alternative approach for the transformation of the microscopic conservation laws to the
macroscopic level is used, e.g., in Ciucci and Lai [44]. In that contribution, the homogenization
theory in combination with an asymptotic expansion of the transport equations is used to derive a
multi-scale system for ion-transport in porous media. In addition to the macroscopic equations,
a microscale problem has to be solved at each point of the domain. The introduction of addi-
tional assumptions such as a periodical three-dimensional spherical microstructure leads to the
same equations as introduced by Newman and Tiedemann [111]. In this publication it is also em-
phasized that micro-macro formulations may not be applicable for thin electrodes with ’large’
microscopic features. In Hori and Nemat-Nasser [83], it is shown in the context of structural
mechanics that the homogenization theory and the volume averaging method ’can be related
to each other, even though they are based on different concepts’ (see Hori and Nemat-Nasser
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3 Ion-transport in porous media

[83, p. 680]). At this point it is important to emphasize that the term homogenized ion-transport
equations is not connected exclusively to the homogenization theory but is generally used for the
macroscopic description of ion-transport in porous media. Alternative multi-scale approaches are
introduced for the modeling of stress-induced ion-transport as, e.g., in Salvadori et al. [130] or
Golmon et al. [69]. In general, alternative approaches with interesting features may be available
in different communities, since the modeling of transport processes in porous media is necessary
in many engineering fields as, e.g., the oil industry, bio-mechanics and so on (see, e.g., Adler [2,
chap. 2.2]).

In this section, the mathematical framework for the volume averaging of the ion-transport
equations is presented taking also account for concentration dependent transport parameters.
This is necessary since constant transport parameters are usually assumed for the derivation of
the homogenized ion-transport equations although the transport parameters are concentration de-
pendent in reality. For that purpose, the mathematical approach introduced by Bear and Bachmat
[23] is explained in detail and extended to transport equations with variable transport parameters.
In this contribution, the focus is on ion-transport in the separator since experiments for the deter-
mination of transport parameters are based on a cell without a porous electrode. However, for the
sake of completeness, the derivation of the homogenized ion-transport equations for electrodes
is also included.

3.1 Volume averaging method

The basic concept of the homogenization approach presented, e.g., in Bear and Bachmat [23] is
the averaging of the quantities of interest over a Representative Element Volume (REV) at the
microscopic level and transferring the mean values to to the macroscopic level.

3.1.1 Basic definitions

In Fig. 3.1 an exemplary REV within a porous medium is shown including basic notations. A
porous medium consisting of two phases is considered as an example for the homogenization of
a porous microstructure. The extension to more than two phases is mostly a technical issue. The
domain Ω o of the REV is a subset of the domain Ω occupied by the porous medium. Here, the
domain Ω o of the REV consists of an electrolyte phase Ω e and a solid phase Ω s . The boundary
between the electrolyte phase and solid phase is denoted by Γ e,s with the respective surface
area A e,s . The boundary Γ e,e denotes the part of the REV intersecting the electrolyte phase. The
corresponding area is A e,e . Quantities defined on the electrolyte phase are indicated by () e and
quantities defined on the solid phase by () s . For instance, the volumes of the electrolyte and solid
phase are denoted by V e and V s and the volume of the REV by V o . The center of the REV is
defined by x0 and the center of the electrolyte phase volume by x

e

0 . The location of the points
at the macroscopic level are denoted by x and the location of the points at the microscopic level
within the REV by x′. Both location vectors are part of the same coordinate system. The ratio
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3.1 Volume averaging method

Figure 3.1: Two-dimensional sketch of a porous microstructure with a spherical Representative Element
Volume (REV).

between electrolyte volume V e and the volume of the REV V
o defines the porosity ε:

ε =
V

e

V o .

The exact size of the volume V o is strongly influenced by the dimensions and the characteristic
of the underlying microstructure and by the models objectives. However, the basic requirement
for the homogenization approach is the fulfillment of the condition

∂ε(x0, V )
∂V

∣∣∣∣∣
V =V

o

= 0

at each point x = x0 within the macroscopic domain Ω. This equation simply states that the
porosity has to be independent from the position x0 and from the size V o of the REV. In re-
ality, this condition will only be fulfilled approximately. A detailed discussion about the exact
definition of the REV size is given e.g. in Bear and Bachmat [23, chap. 1.2.2].

For the definition of the volumetric average of the concentration c, the concentration c is
integrated over the domain Ω e and afterwards divided by the total volume V o of the domain Ω o .
This gives the volumetric phase average c̄ of the concentration c with respect to the volume V o

c̄(x, t) =
1
V o

∫

Ω e
c(x′, t; x) dV.
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3 Ion-transport in porous media

Here, the integral is based on the subdomain Ω e , since the considered quantity c is only a prop-
erty of the electrolyte phase. The notation c(x′, t; x) indicates that the concentration field c(x′, t)
within the REV centered at an arbitrary point x of the macroscopic domain Ω is considered for
the averaging process. All points within the REV are described by the position vector x′. In
general, the notation (. . .) is the volumetric average of any quantity inside the brackets. Alter-
natively, the quantity c can also be averaged with respect to the volume filled by the electrolyte
V

e , which results in

c̄
e
(x, t) =

1
V e

∫

Ω e
c(x′, t; x) dV,

where c̄ e denotes the volumetric intrinsic phase average of c(x, t). The notation (. . .)
e

is the
volumetric intrinsic phase average of any quantity within the brackets. In general, the volumetric
phase average and volumetric intrinsic phase average are related by the porosity ε

(. . .) = ε(. . .)
e

. (3.1)

Equivalently, the volumetric phase average Φ of the potential Φ is defined as

Φ(x, t) = εΦ
e

=
V

e

V o

1
V e

∫

Ω e
Φ(x′, t; x) dV =

1
V o

∫

Ω e
Φ(x′, t; x) dV.

The same formalism can also be applied for all other quantities such as the velocity u.

3.1.2 Volume average of the ion-transport equations

To obtain the macroscopic conservation laws, the conservation law for mass

1
V o

∫

Ω e

∂c(x′, t; x)
∂t

dV+

+
1
V o

∫

Ω e
∇ ·

(
c(x′, t; x)u(x′, t; x) + N(x′, t; x)

)
dV = 0 (3.2)

and current

1
V o

∫

Ω e
∇ · i(x′, t; x) dV = 0

at the microscopic level are integrated over an REV. Despite the fact that convective transport is
usually neglected in battery applications, it is included in Equ. (3.2) to give a complete overview
over the homogenized macroscopic conservation laws. Both conservation equations can also be
written in terms of the short notation, which gives

ε
∂c

∂t

e

+ ε∇ · (cu + N)
e

= 0 (3.3)
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3.1 Volume averaging method

and

ε∇ · i
e

= 0. (3.4)

Here, Equ. (3.1) is used to transform the volumetric phase average to the volumetric intrinsic
phase average. On the macroscopic level, the dependencies of the variables on position x and
time t are omitted to simplify the notation. In the following, the mathematical framework for
the reformulation of Equ. (3.3) and Equ. (3.4) is presented. A detailed overview including theo-
retical considerations is given in Bear and Bachmat [23]. The final averaging rules for the time
derivative

ε
∂c

∂t

e

=
∂εc̄

e

∂t
− Ξ

e,s ˜(cue,s
I · n)

e,s

, (3.5)

for the product of two non-constant quantities

εcu
e
= ε(c̄

e
ū

e
+ ĉ û

e

) (3.6)

and for the spatial derivative

ε∇ ·N
e

= ∇ · (εN
e

) + Ξ
e,s ˜(N · n)

e,s

, (3.7)

are shown exemplarily for the concentration c. As shown in Fig. 3.1, the boundary between
the electrolyte phase and solid phase is denoted by Γ e,s with the respective surface area A e,s

The velocity of the boundary between the electrolyte and the solid phase is denoted by uI. The
deviation from the concentration c(x, t) at a point x′ within a REV centered at x from its intrinsic
phase average c̄ e over that REV is denoted by ĉ(x′, t; x):

ĉ(x′, t; x) ≡ c(x′, t; x)− c̄
e
.

An important implication of this definition is that the volumetric intrinsic phase average ĉ of ĉ is
zero

ĉ(x, t) =
1
V e

∫

Ω e

(
c(x′, t; x)− c̄

e
(x, t)

)
dV = 0

since c̄ e is constant in the corresponding REV. The notation (̃. . .)
e,s

is the surface average of any
quantity

(̃. . .)
e,s

=
1
A e,s

∫

Γ e,s
(. . .) dA

and Ξ e,s for ratio between the area A e,s of the interface Γ e,s and the volume V o of the REV:

Ξ
e,s

=
A

e,s

V o .
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3 Ion-transport in porous media

The averaging rules given in Equ. (3.5) – Equ. (3.7) can be applied to Equ. (3.3) and Equ. (3.4)
resulting in

∂εc̄
e

k

∂t
− Ξ

e,s ˜(cue,s
I · n)

e,s

+∇ ·
(
εc̄

e
ū

e
+ εĉ û

e)

+∇ ·
(
εN

e)
+ Ξ

e,s ˜(N · n)
e,s

= 0, (3.8)

and

∇ ·
(
ε i

e)
+ Ξ

e,s
(̃i · n)

e,s

= 0. (3.9)

In the following, all terms of Equ. (3.8) and Equ. (3.9) are discussed with respect to battery
applications:

a) First term in Equ. (3.8)
[

∂εc̄
e
k

∂t

]

Under normal operation conditions, the porosity ε of a separator is always constant. This
is not true for electrodes since the solid phase may change its volume due to the expansion
of the active material as a result of lithium intercalation. Since the volumetric expansion
of most of the active materials is negligible small (few percents with respect to the original
volume) and does not happen rapidly, it is usually valid to assume a constant porosity for
electrodes, too. An example for an active material with a potentially time-dependent poros-
ity is silicon since the volumetric change is about 400% as mentioned, e.g., in Chakraborty
et al. [40]. An additional physical phenomenon introducing a time-dependent porosity is
the growth of a Surface Interface Layer (SEI). However, this effect can also be neglected
for most of the applications since the SEI is usually in the order of nanometer.

b) Second term in Equ. (3.8)
[
Ξ

e,s ˜(cue,s
I · n)

e,s]

This term can be neglected for a separator since the interface between electrolyte and solid
Γ e,s is fixed in space and time, i.e., ue,s

I = 0. Assuming the same operating conditions as
in item a), this also valid for electrodes.

c) Third term in Equ. (3.8)
[
∇ · (εc̄ e

ū
e)

]

This term is also zero since convective flow is usually negligible small in battery applica-
tions as explained in section 2 which means u = 0.

d) Forth term in Equ. (3.8)
[
∇ · (εĉ û

e

)
]

In literature, this term is called dispersive flux. Bear and Bachmat [23] describes the dis-
persive fluxes as a macroscopic flux of the concentration c, relative to the transport with
the average velocity ū

e of the electrolyte phase. The modeling of this term may be quite
complex. However, this term is also zero as long as the convective velocity is neglected.

e) Fifth term in Equ. (3.8)
[
∇ ·

(
εN

e) ]

The volume average of the molar flux density will be discussed in detail in the following
sections.
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3.2 Volume average of the molar flux and current density

f ) Sixth term in Equ. (3.8)
[
Ξ

e,s ˜(N · n)
e,s]

This term describes the molar flux density across the interface Γ e,s within a REV resulting,
e.g., from the electrochemical reaction of lithium ions at the surface of the active material.
This term is zero for porous media with a non-reactive surface such as a separator.

g) First term in Equ. (3.9)
[
∇ ·

(
ε i

e) ]

The volume average of the current density will be discussed in detail in the following
sections.

h) Second term in Equ. (3.9)
[
Ξ

e,s (̃i · n)
e,s]

This term describes the current flow across interface Γ e,s within a REV and is related to
term 6. by

˜(N · n)
e,s

=
1

ν+z+F
(̃i · n)

e,s

. (3.10)

As mentioned already in item f ), this term is zero for a porous medium without a reactive
surface Γ e,s such as a separator. Note, that the equivalent molar flux is defined as N = N+

ν+
.

As a result, the general macroscopic ion transport equations given in Equ. (3.8) and Equ. (3.9)
can be simplified for standard battery applications to

ε
∂c̄

e

∂t
+∇ · εN

e

+ Ξ
e,s ˜(N · n)

e,s

= 0,

∇ ·
(
ε i

e)
+ Ξ

e,s
(̃i · n)

e,s

= 0,

where the assumptions given in items a) – d) are used. For a porous medium with a non-reactive
surface, Equ. (3.8) and Equ. (3.9) simplify even more

ε
∂c̄

e

∂t
+∇ · εN

e

= 0,

∇ ·
(
ε i

e)
= 0, (3.11)

since the source terms describing the effect of the surface reaction are also zero as described in
item f ) and h).

3.2 Volume average of the molar flux and current density

3.2.1 Constant transport parameters on micro- and macroscale

So far, the standard averaging rules are applied to the ion transport equations. In a next step,
an averaging rule for the molar flux and current density is introduced. The volumetric intrinsic
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3 Ion-transport in porous media

phase average of the molar flux density N (see Equ. (2.44)) is defined as

N
e

= −D±(c)∇c
e

+
1

ν+z+F
t+(c) i

e

. (3.12)

Equivalently, the volumetric intrinsic phase average of the current density can be written as

i
e

= −κ(c)∇ΦR
e

+
RT

z+F

ν

ν+
Λm(c)

[
1 +

d ln f±(c)
d ln c

]
(1− t+(c))

︸ ︷︷ ︸
a(c)

∇c
e

, (3.13)

where the concentration dependent transport parameters in the second term are summarized in
the variable a(c). For the following derivation, the equivalent conductance Λm = κ

c
as defined

in Newman and Thomas-Alyea [109, p. 285] is used to simplify the second term. Here, the
potential ΦR is defined with respect to a lithium reference electrode. The superscript R is dropped
in the following. In these equations, it is the main challenge to derive an averaging rule for
the volumetric intrinsic phase average of the molar flux density N

e

and of the current density
i

e

which transfers the volumetric intrinsic phase average from the form ∇(. . .)
e

into the form
∇(. . .)

e

, considering concentration dependent transport parameters.
For this purpose, an alternative averaging rule is derived for the spatial gradient in Bear and

Bachmat [23, chap. 2.3.5], utilizing the quasi-stationary form of the time-dependent diffusion
problem with a constant diffusion coefficient D± on the microscopic level

∂2c

∂(xi)2 = 0. (3.14)

The spatial derivation 1
xi

= 1
x′i

are equal since the same coordinate systems are used on the
micro- and the macroscale. Additional approximations are

∫

Γ e,e

∂c

∂xj

x̂jni dA ≈ 1
A e,e

∫

Γ e,e

∂c

∂xj

dA
∫

Γ e,e
x̂jni dA (3.15)

and

1
A e,e

∫

Γ e,e

∂c

∂xj

dA ≈ 1
V e,e

∫

Ω e

∂c

∂xj

dV ≈ ∂

∂xj

(
1
V e,e

∫

Ω e
c dV

)
, (3.16)

where x̂j denotes the position vector (x′j − xj,0) between an arbitrary point x′j within the REV
and the center of the REV xj,0. As depicted in Fig. 3.1, Γ e,e is the boundary of the electrolyte
phase Ω e within the REV and A e,e the associated surface area. In the following, the Einstein
notation is used instead of the matrix notation. In the approximation given in Equ. (3.15), the
surface integral is split into a physically motivated term and a geometrically motivated term.
Since the surface integral is split into two surface integrals, the term has to be scaled additionally
with the inverse of the area A e,e . The second approximation given in Equ. (3.16) is actually a
combination of two approximations. The first is the equality between the surface integral and the
volume integral. The second is the extraction of the spatial derivative from inside the integral.
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3.2 Volume average of the molar flux and current density

Both approximation of Equ. (3.16) can be motivated by the linear behavior of the concentration
field within the REV. An approximately linear behavior of any macroscopic quantity within a
REV is a basic requirement of the volume averaging method as stated in Bear and Bachmat [23,
chap. 1.2.3]. Unfortunately, a theoretical explanation for the approximation in Equ. (3.15) is not
given in Bear and Bachmat [23].

As a result of Equ. (3.14) – Equ. (3.16), the alternative averaging rule for spatial derivatives
can be written as

∂c

∂xj

e

= T ∗ji
∂c

e

∂xi

+
Ξ

e,s

ε

1
A e,s

∫

Γ e,s
x̂j
∂c

∂xi

ni dA, (3.17)

where the geometry coefficient T ∗ji

T ∗ji =
1
V e

∫

Γ e,e
x̂jni dA (3.18)

is a fundamental property of the geometrical configuration of the electrolyte phase within REV.
A more detailed derivation is given in Bear and Bachmat [23, chap. 2.3.5]. As explained in Bear
and Bachmat [23, chap. 2.3.6] the tensor T ∗ji simplifies for an isotropic porous medium with a
spherical REV to

T ∗ji =
εa

ε
δij, (3.19)

where εa denotes the surface porosity. The same relation is also valid for a cubical REV with an
edge length l. For simple geometries as shown in Fig. 3.2, the geometry coefficient Tij can be
interpreted as the inverse of the path length tortuosity 1/τpath which describes the elongation of
the path l′ trough the porous medium with respect to a direct connection l as explained, e.g., in
Holzer et al. [82]:

T ∗11 = εaε
−1δ11 =

A
e,e

A o

(
V

e

V o

)−1

=
2Acrosst

2ht
lht

Acrossl′t
=
l

l′
=

1
τpath

.

An identical result can be derived for an isotropic three-dimensional porous medium which is
penetrated by channels with a constant cross section Across as shown in Bear and Bachmat [23,
chap. 2.3.6]. Considering the complexity of a realistic porous medium with intersecting channels
of varying cross section, it becomes clear that the path length tortuosity τpath is a very rough
approximation for the microstructure of a REV.

The second term on rhs in Equ. (3.17) includes information about the fluxes across the
interface Γ e,s as well as geometrical information about the microstructure of the REV x̂j . The
geometrical information about the microstructure as well as a different scaling factor are the
main differences to the term resulting from the averaging rule given in Equ. (3.7). This term is
zero if the concentration gradient normal to the interface Γ e,s is zero as it is the case for a non-
reactive interfaces. This is not the case for electrodes but in many publications, this term does
not show up at all as, e.g., in Lai and Ciucci [93] or Landstorfer and Jacob [98].
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3 Ion-transport in porous media

Figure 3.2: Sketch of a three-dimensional medium with the dimensions l × h × t penetrated by a single
channel filled with electrolyte solution.

3.2.2 Constant transport parameters on microscale and variable transport
parameters on macroscale

The main differences between the derivation in Bear and Bachmat [23, chap. 2.3.5] and the
balance equations considered in this contribution are the concentration dependent transport pa-
rameters within the volumetric intrinsic phase average and an additional volumetric coupling
between the concentration and the potential field.

In a first step, it is shown that Equ. (3.17) can also be used for a system with variable
transport parameters. For this, it has to be assumed that the transport parameters are constant
within a REV to use the approximation given in Equ. (3.17) but variable on the macroscale. This
simply means that the transport parameter can vary between different REVs. In the following, it
is demonstrated that the assumption of constant transport parameters within the REV is valid for
certain condition. This will be discussed based on the diffusive term of Equ. (3.12). The diffusive
molar flux density can be reformulated utilizing Equ. (3.6)

D±(c)
∂c

∂xi

e

= D±(c)
e ∂c

∂xi

e

+ D̂±(c)
∂̂c

∂xi

e

,

which includes the volumetric intrinsic phase average of the concentration dependent diffusion
coefficient, the volumetric intrinsic phase average of the concentration gradient and a term with
the deviations from the volumetric intrinsic phase average of both. In general, it is possible to
approximate the diffusion coefficient at each position x′ within the electrolyte phase of the REV
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3.2 Volume average of the molar flux and current density

as Taylor series evaluated at the volumetric center of electrolyte phase x
e

0

D±(c(x′, t))|x e
0

= D±(c(x
e

0, t)) +
3∑

i=1

[
∂D±(c(x e

0, t))
∂xi

(x′i − x
e

i,0)
]

+ . . . =
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0, t)) +
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i=1

[
∂D±(c(x e

0, t))
∂c(x e

0, t)
∂c(x e

0, t)
∂xi

(x′i − x
e

i,0)
]

+ . . . . (3.20)

Note, that the center x0 of the REV does not have to coincide with the center x
e

0 of the electrolyte
phase within the REV. Equivalently, the concentration

c(x′, t)
∣∣∣
x

e
0

= c(x′0, t) +
3∑

i=1

[
∂c(x e

0, t)
∂xi

(x′i − x
e

i,0) +
1
2
∂2c(x e

0, t)
∂x 2

i

(x′i − x
e

i,0)
2
]

+ . . .

and the concentration gradient

∂c(x′, t)
∂xi

∣∣∣
x

e
0

=
∂c(x e

0, t)
∂xi

+
∂2c(x e

0, t)
∂x 2

i

(x′i − x
e

i,0) + . . . (3.21)

can also be formulated as a Taylor series evaluated at the center of the electrolyte phase. All terms
are linear within the REV if higher order terms are neglected which is the standard approach for
the volume averaging method as stated in Bear and Bachmat [23, p. 28]. This approximation is
sufficiently accurate as long as the size of REV is adequate with respect to arising concentration
gradients. Using the linearized diffusion coefficient D±(c(x′, t))|x e

0
and concentration gradient

∂c(x′,t)
∂xi

∣∣∣
x

e
0

as basis for the volumetric intrinsic phase average of the diffusion coefficient D±(c)
e

,

it is possible to write

D±(c)
e

=
1
V e

∫

Ω e

(
D±(c(x

e

0, t)) +
3∑
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[
∂D±(c(x e

0, t))
∂c(x e

0, t)
∂c(x e

0, t)
∂xi

(x′i − x
e

i,0)
])

dV,

where terms including (x′i − x
e

i,0)
2 are also neglected. This can be reformulated to

D±(c)
e

=
1
V e

∫

Ω e
D±(c(x

e

0, t)) dV+

3∑
i=1

[
∂D±(c(x e

0, t))
∂c(x e

0, t)
∂c(x e

0, t)
∂xi

1
V e

∫

Ω e
(x′i − x

e

i,0) dV
︸ ︷︷ ︸

Υ

]
,

where the integral Υ is approximately zero if the center x0 of the REV is on the same position
as the center x

e

0 of the electrolyte phase within the REV as indicated in Fig. 3.1. This condition
is approximately fulfilled if the electrolyte phase is equivalently distributed over the REV. As
a result, the volumetric intrinsic phase average of the diffusion coefficient at the point x of the
macroscopic domain Ω is equivalent to the diffusion coefficient at the center of the electrolyte
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phase of the respective REV

D±(c)
e

≈ 1
V e

∫

Ω e
D±(c(x

e

0, t)) dV = D±(c(x
e

0, t)) = D±(c). (3.22)

As long as both conditions, the linear fields within a REV and x
e

0 = x0, are fulfilled exactly,
Equ. (3.22) is not just an approximation but also exact. The deviation from the volumetric intrin-
sic phase average of the diffusion coefficient is defined as

D̂±(c) = D±(c)−D±(c)
e

,

which gives in the context of linear approximations for the diffusion coefficient and the concen-
tration field

D̂±(c) =
3∑

i=1

[
∂D±(c(x e

0, t))
∂c(x e

0, t)
∂c(x e

0, t)
∂xi

(x′i − x
e

i,0)
]
. (3.23)

This term is also a measure for the accuracy of the linear approximation if the real diffusion co-
efficient D±(c) is used instead of the linearized diffusion coefficient. Equivalently, the deviation
from the volumetric intrinsic phase average of the concentration gradient can be written as

∂̂c

∂xi

=
3∑

i=1

∂2c(x e

0, t)
∂x 2

i

(x′i − x
e

i,0). (3.24)

As a result of Equ. (3.23) and Equ. (3.24), the term

D̂±(c)
∂̂c

∂xi

e

=
1
V e

∫

Ω e

(
D̂±(c)

∂̂c

∂xi

)
dV ≈ 0 (3.25)

can be neglected as a result of the product (x′i−x e

i,0)(x
′
j−x e

j,0) being small. Therefore, it is valid
to write

D±(c)
∂c

∂xi

e

= D±(c)
∂c

∂xi

e

,

if the concentration field and the connected diffusion coefficient can be approximated linearly
inside the REV with a sufficient accuracy and if the electrolyte phase is equivalently distributed
over the REV resulting in

x
e

0 = x0. (3.26)

Note, that the first condition is fulfilled best for small REV, whereas the REV has to be suf-
ficiently large for the volume averaging in order to be representative. It is possible that both
requirements cannot be satisfied simultaneously.
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3.2 Volume average of the molar flux and current density

The same approach can also be used for the remaining concentration dependent transport
parameters present in Equ. (3.12) and Equ. (3.13). Therefore, it is generally valid to approximate
the volumetric intrinsic phase average of the transport parameters by their value at the volumetric
center of the REV x

e

0 without neglecting substantial effects. This also means that it is valid
to approximated the transport parameters within a REV as constant for certain condition and
variable on the macroscale. However, this also means that partial differential equation given in
Equ. (3.14) used for the derivation of Equ. (3.17) is still an approximation.

3.2.3 Variable transport parameter on micro- and macroscale

Here, the derivation of Bear and Bachmat [23] is extended to multi-field problems with variable
transport parameters such as the considered ion-transport problem. The volumetric coupling of
two fields is discussed briefly in the section ’coupled fluxes’ in Bear and Bachmat [23, chap.
2.6.6]. The derivation is shown exemplarily for the current equation given in Equ. (3.11) in
combination with the charge conservation given in Equ. (3.13). After some reformulations, the
same framework can also be applied for the fluxes given in Equ. (3.12) in combination with mass
conservation given in Equ. (3.13).

As demonstrated in section B, the same approach as in Bear and Bachmat [23] can be used
to derived the following averaging rule:

a(c)
∂c

∂xj

e

− κ(c)
∂Φ
∂xj

e

=
Ξ

e,s

ε
˜̂xjiini

e,s

+ T ∗ji


 ˜
a(c)

∂c

∂xi

e,e

−
˜
κ(c)

∂Φ
∂xi

e,e
 . (3.27)

Compared to Equ. (3.17), the areal intrinsic phase average on Γ e,e is not yet converted to a
volumetric intrinsic phase average. In addition, the conservation law in form of

∂

∂xi

(
a(c)

∂c

∂xi

− κ(c)
∂Φ
∂xi

)
= 0,

is used at the microscopic level within the REV which is a more general formulation than
Equ. (3.17) since the volumetric coupling between the concentration and the potential field as
well as concentration dependent transport parameters within the REV are considered. If the trans-
port parameters are constant within the entire macroscopic domain, the approximation given in
Equ. (3.17) can be used to simplify Equ. (3.27)

a
∂c

∂xj

e

− κ
∂Φ
∂xj

e

=
Ξ

e,s

ε
˜̂xjiini

e,s

+ T ∗ji

(
a
∂c̄

e

∂xi

− κ
∂Φ

e

∂xi

)
, (3.28)

which has the same form as the averaging rule for a single field given in Equ. (3.17). This
demonstrates that the averaging rules are generally applicable to multi-field problems. However,
the general problem of concentration dependent transport parameters is still not solved yet.

In the following, an argumentation is presented which allows to convert the surface integral
to a volume integral and to extract the spatial derivative from inside the integral. It is demon-
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strated based on the areal intrinsic phase average of the concentration term ã(c) ∂c
∂xi

e,e

. Both quan-
tities can be written as their volumetric intrinsic phase averages and their derivations evaluated
only along the boundary Γ e,e
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∣∣∣

Γ e,e
= a(c)

e
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,
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Γ e,e

=
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e

+
∂̂c
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e∣∣∣
Γ e,e
.

Both relation can be inserted in the areal intrinsic phase average of the concentration term in
Equ. (3.28), which gives
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â(c)

e∣∣∣
Γ e,e

∂̂c

∂xi

e∣∣∣
Γ e,e

dA. (3.29)

At this point, all terms including the deviation from the volumetric intrinsic phase average are
neglected which results in the following approximation

˜
a(c)

∂c

∂xi

e,e

≈ a(c)
e ∂c

∂xi

e

, (3.30)

where

1
A e,e

∫

Γ e,e
dA = 1.

The approximation given in Equ. (3.30) simply states that the areal intrinsic phase average of the
current flow as a result of a concentration gradient is the same as the current flow resulting from
the volumetric intrinsic phase average of the transport parameter a(c) and of the concentration
gradient. Assuming constant transport parameters, this approximation is the same as the first ap-
proximation in Equ. (3.16). This approximation can also be motivated by the first order Taylor
series for transport parameters as well as for concentration and potential gradients within a REV.
This approach is comparable to the diffusion coefficient and the concentration gradient given in
Equ. (3.20) and Equ. (3.21), respectively. Following the approach presented earlier, the devia-
tions from the volumetric intrinsic phase average can be formulated accordingly to Equ. (3.23)
and Equ. (3.24). In this case, the fourth term on rhs of Equ. (3.29) is negligible small due to the
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3.2 Volume average of the molar flux and current density

product between (x′i − x
e

i,0)(x
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j,0). The second term can be written as
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The surface integral over Γ e,e of the spherical REV can be approximated by zero as long as the
areal center xA

0 of the outer electrolyte surface of the REV is the same as the volumetric center
x

e

0 of electrolyte phase and as the volumetric center x0 of the REV:

xA
0 = x

e

0 = x0. (3.31)

This condition is fulfilled for an electrolyte phase which is distributed equivalently over the
REV. The same argumentation can also be used for the third term of Equ. (3.29). Note that the
third term would also be present for problems with constant transport parameters. Therefore,
the equivalent conditions are required for the original approximation given in Equ. (3.16). As a
result, the approximation postulated in Equ. (3.30) is valid for the presented conditions.

As long as the approximation Equ. (3.30) is valid, it is possible to write the volumetric
intrinsic phase average of the concentration gradient as

∂c

∂xi

e

=
∂c̄

e

∂xi

, (3.32)

since the areal intrinsic phase average of the gradient at Γ e,e is equivalent to the volumetric
intrinsic phase average of the gradient at Γ e,e . This means, that the volumetric intrinsic phase
average of the gradient is constant over the entire REV and it is possible to extract the spatial
derivative from the integral. This can also be demonstrated if the linear approximation of the
concentration and concentration gradient is used in the respective definitions:
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.
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3 Ion-transport in porous media

For both reformulations, it is assumed like before that the areal center of the outer electrolyte
surface of the REV is the same as the volumetric center of electrolyte volume. As a result,
Equ. (3.27) can be written as

a(c)
∂c

∂xj

e

− κ(c)
∂Φ
∂xj

e

=
Ξ

e,s

ε
˜̂xjiini

e,s

+ T ∗ji a(c)
∂c̄

e

∂xi

− T ∗ji κ(c)
∂Φ

e

∂xi

, (3.33)

where Equ. (3.30) and Equ. (3.32) are used. In addition, the volumetric intrinsic average of the
transport parameters is replaced by the value at the center of the respective REV as demon-
strated in Equ. (3.22) for the diffusion coefficient. Compared to the original derivation giving
Equ. (3.17), the transport parameters do not have to be constant within the REV. Instead, it is
required that the areal center of the outer electrolyte surface of the REV is the same as the volu-
metric center of the REV as indicated in Equ. (3.31). However, the original approximation also
requires the same conditions as explained before. Unfortunately, there is not justification for the
approximation given in Equ. (3.15) which is also used in this derivation.

3.3 Summary

In this section, the theoretical derivation of the volume averaging method is shown for multi-field
problems with variable transport parameters. Two different approaches are presented where the
following conditions have to be fulfilled:

• The primary fields as well as the connected transport parameters can be approximated lin-
early within the REV with a sufficient accuracy. This is also one of the basic requirements
for volume averaging method, in general.

• The volumetric center x0 of the REV has to be equal to the volumetric center x
e

0 of the
electrolyte phase within the REV and to the areal center xA

0 of the outer surface of the
electrolyte phase.

• The splitting of the integral into two integrals given in Equ. (3.15) has to be valid.
In section section 3.2.2, the assumption of constant transport parameters within a REV is mo-
tivated. For this purpose, condition Equ. (3.26) would be enough but the approximation given
in Equ. (3.16) requires Equ. (3.31) as a condition. The second approach is presented in sec-
tion 3.2.3. In this approach, it is not required anymore that the transport parameters are constant
within the REV. Therefore, it is the most general approach.

Note, that the linear approximation within a REV is fulfilled best for small REV, whereas
the REV has to be sufficiently large for the volume averaging in order to be representative.
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3.3 Summary

Homogenized ion-transport equations for separators Based on the framework presented in
section 3.1, the ion-transport equations given in Equ. (2.72)–Equ. (2.74) can be written as

ε
∂c̄

e

∂t
+∇ ·

[
− ε T ∗jiD±(c)∇c e

+
t+(c)
ν+z+F

i
]

= 0 (3.34)
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RT

z+F
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ν+
ε T ∗ji κ(c)

[
1 +

d ln f±(c)
d ln c

]
(1− t+(c))

1
c
∇c e

(3.35)

∇ · i = 0. (3.36)

Since a separator consists only of non-reactive surfaces, additional terms resulting from the
volume averaging approach does not have to be considered in the macroscopic conservation
laws.

Homogenized ion-transport equations for electrodes The ion-transport equations for an
electrolyte solution shown in Equ. (2.72)–Equ. (2.74) can also be written as
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e
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∇ ·
(
ε i

e)
+ Ξ

e,s
(̃i · n)

e,s

= 0. (3.39)

where reactive-surface reactions are included in volume averaging approach. If the additional
surface term resulting from the volume averaging method (see Equ. (3.17) and Equ. (3.33))
can be neglected, the ordinary ion-transport equation for porous electrodes are obtained. If it is
justified to neglect the term resulting from the volume averaging method, has to be considered
in a separate project since the focus of this contribution is not on the modeling of electrodes but
on the determination of transport parameters.

In the literature, the mass conservation is usually formulated differently. For that reason,
Equ. (3.37) is reformulated by Equ. (3.39) giving well-known formulation for electrodes

∂εc̄
e
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−∇ ·

[
ε T ∗jiD±(c)∇c e

]
+
∇t+(c) · i
ν+z+F

− (1− t+(c))
ν+z+F

∇ · i = 0.
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4 Geometrical parameters for
homogenized porous media

4.1 Overview of geometrical parameters used in the literature

The volume averaging approach for porous media introduced in section 3 is a macroscopic de-
scription of a porous medium where the influence of the microstructure is modeled by additional
geometrical parameters, namely the porosity ε and the geometry coefficient T ∗ji. The porosity ε
is a well-defined property of a porous medium, which can be determined easily in experiments.
In contrast, the geometry coefficient T ∗ji is based on a non-intuitive mathematical derivation.
Therefore, it is quite natural that many different definitions and methods were introduced over
the years equipping the geometry coefficient T ∗ji with a more intuitive geometrical or experimen-
tal interpretation. This interpretation is strongly influenced by the application, e.g., fluid flow
or scalar transport in porous media. It is exactly this large variety of different definitions and
methods which makes it so difficult to compare different tortuosities available in the literature
with each other. In the following, the most important definitions used in battery applications are
introduced. In addition, a comprehensive overview of the recent research in this field is provided.
The result presented in this section are also published partly in Landesfeind et al. [97].

As explained in Holzer et al. [82], the effect of a porous microstructure on the macroscopic
conservation laws can be described by the relative conductivity

σR =
κeff

κ
, (4.1)

which relates the effective conductivity κeff as a macroscopic property of the porous medium to
the electrolyte conductivity κ, as indicated in Fig. 4.1(a) and Fig. 4.1(b). The conductivity is the
natural choice for this description since it can be determined easily by experiments. However,
the conductivity κ and the diffusion coefficient D± are exchangeable, as pointed out in Holzer
et al. [82, p. 2936], as long as both transport mechanisms are influenced by the same microstruc-
ture parameters. This assumption is quite credible since both the conductivity and the diffusion
coefficient are based on the mobility of the ionic species. The MacMullin numberNM as defined,
e.g., in Patel et al. [119] is the reciprocal of the relative conductivity

NM =
1
σR

=
κ

κeff
.

Sometimes, the MacMullin number is called the formation factor as, e.g., in Holzer et al. [82].
The relative conductivity or the MacMullin number are the basis for many empirical laws in-
tending to describe the influence of the microstructure on the macroscopic conservation laws in
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4 Geometrical parameters for homogenized porous media

(a) Microscopic perspective. (b) Macroscopic perspective.

Figure 4.1: Microscopic and macroscopic perspectives of a porous medium including various definitions
for the path length as well as the conductivity κ and the effective conductivity κeff.

terms of the porosity ε and additional parameters. One of the most famous empirical laws was
introduced by Archie [6]:

σR = εα, (4.2)

where a power law relationship with exponent α between the porosity ε of sandstone and the
specific conductivity σR is used. Other empirical laws are given, e.g., in the review by Shen and
Chen [133] or in Barrande et al. [15]. As mentioned in Holzer et al. [82, p. 2936], these empir-
ical laws hold ”only for a series of samples from the same geological formation, because these
rocks have similar microstructures”. For a different type of microstructure, the exponent α may
be quite different. Therefore, Archie’s law is rarely used in battery applications where different
various porous materials with a varying porosities do not exhibit similar microstructures. Excep-
tions are very porous materials such as glass fiber separators which can be easily compressed
without changing the basic features of the microstructure as done, e.g., in Nyman et al. [115].
Another exception may be the compression of self-made electrodes.

The effective conductivity as well as the associated empirical laws are based on a macro-
scopic perspective of the porous medium. In contrast, it is also possible to use a microscopic
perspective for the description of the porous microstructure. In this case, the tortuosity is in-
troduced as a measure for the elongation of the transport path due to the porous structure with
respect to a straight line. In the publication ’Tortuosity: a guide through the maze’ by Clennell
[45], it is pointed out that the ”tortuosity has no simple or universal definition: different mea-
sures of tortuosity are employed by geologist, engineers and chemists to describe the resistive
and retarding effects of the pore structure on a range of conduction, advection and diffusion
processes” (Clennell [45, p. 299]). For example, the path length tortuosity

τpath =
lpath

l

is defined for a single channel with a constant cross sectional area as depicted in Fig. 3.2. As
shown in section 3.2, this tortuosity definition can be related to the geometry coefficient T ∗ji and
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therefore provides a geometrical interpretation of the geometry coefficient. The tortuosity can
also be defined with respect to a physically motivated length definition. For instance, the path
length of the electric tortuosity τel = lel

l
is based on the gradient of the electrostatic potential

Φ. A similar concept is used for the hydraulic tortuosity τhyd where streamlines are used as path
length. Finally, the geometrical tortuosity

τgeo =
lgeo

l
(4.3)

is defined as the length of the shortest connection path between two points x1 and y1 through
the void volume of a porous medium with respect to the length of the straight connection line
between these points. As depicted in Fig. 4.1(a), the geometrical tortuosity τgeo and the physically
motivated tortuosity τel.

Until a few years ago, all tortuosity values derived from the microscopic perspective were
usually based on simplified geometries such as channel networks or regular porous structures
consisting, e.g., of agglomerated spheres (see, e.g., Wyllie and Rose [154], Cornell and Katz [47]
or Zalc et al. [159]). The availability of realistic, three-dimensional representations of porous
structures provided by improved imaging technologies gives completely new opportunities for
the characterization of the microstructure. In this context, the geometrical tortuosity τgeo is usu-
ally replaced by the mean geometrical tortuosity τ geo as explained, e.g., in Wiedenmann et al.
[150]. The mean geometrical tortuosity is based on an averaged value of the length lgeo(i, j) be-
tween two points xi and yj and is usually determined by numerical algorithms utilizing, e.g., the
random walk theory as in Tariq et al. [138] or the graph theory as in Wiedenmann et al. [150].
It should be noted that these numerical algorithms do not include any physically motivated sim-
ulations. All these tortuosity definitions consider only the elongation of the transport path, but
do not include additional factors such as non-constant cross sectional areas or the structure of
the surface. Therefore, the constriction factor β is sometimes introduced to account for a non-
constant cross sectional area. The concept of the constriction factor and its theoretical motivation
is explained, e.g., in Holzer et al. [82]. The final goal of this approach is an educated geometrical
description of the porous structure which fulfills, e.g., the relation

σR ≡ εβ

τ geo
.

The big advantage of this approach is that it is based on a pure geometrical description of the
microstructure, especially in combination with the imaging technologies used nowadays. Ad-
ditionally, a basic understanding of porous structures is generated which can be used for the
design of future porous materials. Although the geometrical tortuosity is independent of phys-
ically motivated transport schemes and experimental factors, it is of course influenced by the
exact definition of the mean geometrical tortuosity τ geo and the numerical algorithms employed
to determine it. More importantly, the limited size of the reconstructed sample has to be consid-
ered as a potential uncertainty. The sample has to be large enough to be representative as it was
observed, e.g., by Cooper et al. [46].

By now, a macroscopic and a microscopic perspective for the determination of geometrical
parameters are introduced. Theoretically, it is also possible to apply the microscopic concept
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4 Geometrical parameters for homogenized porous media

of tortuosity to the macroscopic description of a porous medium. The basic equation for this
approach is

σR =
ε

τ
, (4.4)

where the tortuosity τ is determined via experiments. In this case, the tortuosity τ does not only
describe the elongation of the transport path, but also includes all other effects such as variable
cross sectional areas, specific surface structures and so on. The incorporation of all geometri-
cally effects into the tortuosity τ is the main advantage of this approach. However, this is also
the main disadvantage since the tortuosity may not include only geometrical information, but
also experimental artifacts. As emphasized, e.g., in Holzer et al. [82], it is important to distin-
guish strictly between the tortuosity τ and the geometrical tortuosity τgeo since they are based
on different definitions. The limited sample size is usually not a problem since the complete
porous medium is used for the experimental determination of the tortuosity τ . At this point, it
is important to mention that the tortuosity τ in Equ. (4.4) appears sometimes as τ 2 which is the
result of different assumptions as discussed, e.g., in Clennell [45] or Djian et al. [50]. Based
on the principle given in Equ. (4.4), the tortuosity of a three-dimensional sample reconstructed
from imaging techniques is often determined by physically motivated numerical simulations as
shown, e.g., in Ender et al. [60], Joos et al. [88], Cooper et al. [46] or in Roth et al. [127].

The last important definition which is frequently used in battery applications results from
the combination of Equ. (4.2) and Equ. (4.4):

τ = ε1−α.

A mathematical derivation of the well-known Bruggemann relation with α = 1.5 can be found
in Bruggeman [33]. In this case, the tortuosity τ becomes

τ =
1√
ε
.

The validity of this relation is investigated experimentally and numerically in, e.g., Chung et al.
[42], Patel et al. [119] and Thorat et al. [140].

As a result of the huge variety of available definitions of the tortuosity, it is important to
consider not only the value of the tortuosity, but also the underlying definition and experimental
procedure.

4.2 An experimentally motivated approach for the definition
of geometrical parameters

As already indicated in section 4.1, there are many different approaches involving different ge-
ometrical parameters to describe the influence of a porous microstructure on the macroscopic
conservation laws. In this manuscript, the most popular approach based on Equ. (4.4) is intro-
duced and embedded in the theoretical volume averaging framework derived in section 3.
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4.2 An experimentally motivated approach for the definition of geometrical parameters

In Equ. (3.34) – Equ. (3.36), the influence of the microstructure on the macroscopic conser-
vation laws is described by the porosity ε and the theoretically motivated geometry coefficient T ∗ji
defined in Equ. (3.18). Although a geometrical interpretation of the geometry coefficient is pos-
sible under certain assumptions (see section 3.2), it is not very practical to describe the behavior
of realistic porous geometries with varying cross sectional areas and complex surface structures
by the geometry coefficient T ∗ji. Therefore, the geometry coefficient is replaced by an experi-
mentally motivated, isotropic interpretation, the so-called tortuosity τ :

T ∗ji :=

{
1/τ for i = j,

0 for i 6= j.
(4.5)

As a result of this definition, the effective transport parameters, namely the effective conductiv-
ity κeff and the effective diffusion coefficient D±,eff as defined in section 3.3 are given as

κeff =
ε

τ
κ, (4.6)

D±,eff =
ε

τ
D±, (4.7)

where Equ. (4.6) is equivalent to Equ. (4.4) with Equ. (4.1). As a result of these definitions, the
conservation laws given in Equ. (3.34) – Equ. (3.36) can be written as

ε
∂c̄

e

∂t
+∇ ·

[
− ε

τ
D±(c)∇c e

+
t+(c)
ν+z+F

i
]

= 0, (4.8)

i = − ε
τ
κ(c)∇Φ

e

+
ν

z+ν+

RT

F

ε

τ
κ(c)

[
1 +

d ln f±(c)
d ln c

]
(1− t+(c))

1
c

e∇c e
, (4.9)

∇ · i = 0. (4.10)

At this point, the term ’experimentally motivated’ becomes clearer since the tortuosity τ
can be interpreted as the ratio of the electrolyte conductivity κ to the effective conductivity κeff

or the diffusion coefficient D± to the effective diffusion coefficient D±,eff scaled by the porosity
ε. This enables a direct experimental determination of the tortuosity τ with all advantages and
disadvantages mentioned in section 4.1. Because of this, the tortuosity τ is more precisely called
experimental tortuosity. Its experimental determination is based on the representation of the
porous medium by a single ohmic resistance Rel between two parallel electrodes as depicted in
Fig. 4.2:

Rel =
1
κeff

l

A
=

1
κ

τ

ε

l

A
. (4.11)

Herein, l denotes the distance between the two electrodes and A the surface area of each elec-
trode. It is important to emphasize that this zero-dimensional projection of the original three-
dimensional domain is only valid for an ideal geometrical setup consisting of two parallel and
aligned electrodes enclosed by isolators as shown in Fig. 4.2.

Although the basic idea is quite simple, its experimental realization turns out to be tricky
since parasitic effects as a non-ideal geometrical configuration have a large influence on the
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4 Geometrical parameters for homogenized porous media

Figure 4.2: Idealized geometry and the corresponding equivalent serial circuit used for the determination
of the tortuosity.

quality of the determined tortuosity τ . The most critical aspects are the evaporation of the sol-
vent resulting in a non-constant conductivity κ and edge effects at the electrodes distorting the
assumption of an ideal geometrical setup. Experimentally, the resistance Rel is determined by
impedance spectroscopy which is described in detail, e.g., by Bard and Faulkner [14, chap. 10].
An in-depth explanation of the experimental setup and the employed methods can be found in
Landesfeind et al. [97]. The tortuosity τ , the porosity ε and the thickness l of the commercial
battery separator CG 2500 are summarized in Tab. 4.1.

For separators, this experimental method is without a real alternative since with current
imaging technologies it is hardly possible to obtain high-quality images of porous separators
made of non-conducting materials and exhibiting very fine pores. For electrodes, the experimen-
tal determination of the tortuosity τ is more challenging since the conducting matrix makes it
difficult to determine an isolated resistance Rel of the electrolyte phase. In Landesfeind et al.
[97], an alternative experimental method is presented to circumvent this problem.

Table 4.1: Geometrical parameters of the commercial battery separator CG 2500

CG 2500

Thickness l [mm] 0.025
Porosity ε [-] 0.55

Tortuosity τ [-] 2.46 ± 0.16 [97]
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5 Theoretical background for the
experimental determination of
ion-transport parameters

The mathematical model for binary electrolyte solutions presented in section 2 requires four
different concentration dependent transport parameters, namely the conductivity κ(c), the binary
diffusion coefficient D±(c), the transference number t+(c) and the thermodynamic factor or the
mean molar activity coefficient f±(c), respectively. The conductivity κ(c) can be measured in a
commercial conductivity cell. The determination of the remaining parameters is more elaborate.
In the following, various experimental techniques for the determination of transport parameters
in aprotic lithium based electrolytes are presented.

In literature, many different experimental methods are available to determine diffusion co-
efficients of electrolyte solutions and its components. The most popular methods are introduced
in the following. In Castiglione et al. [38] or Capiglia et al. [36], pulsed-field gradient Nuclear
Magnetic Resonance (NMR) is used to determine the self-diffusion coefficients of ions in an
electrolyte solution. In Castiglione et al. [38], the diffusion coefficients of all ions in the ionic
liquid LiTFSI:PYR14TFSI (0.1:0.9, molar ratio) are determined whereas Capiglia et al. [36] in-
vestigates LiPF6, LiBF4 and LiN(C2F5SO2)2 in EC:EMC (2:8, vol. %). According to McNaught
and Wilkinson [106], the self-diffusion coefficient describes the mobility of ionic species in the
absence of an electrochemical potential gradient. A theoretical discussion of the experimental
method is given in Price [123]. Another method is the Moir pattern technique which is used
in Nishikawa et al. [114] to determine the binary diffusion coefficient D± of LiClO4 in PC. This
technique is based on the optical observation of the time-dependent relaxation of the concentra-
tion profile after two electrolyte solutions with different concentrations are connected. In Nishida
et al. [113] the same technique is used for LiPF6, LITFSI and LiBF4 in PC.

The most popular method for the determination of concentration dependent binary diffusion
coefficient D± is the restricted diffusion method introduced by Harned and French [79]. This
method is based on the observation of the long-term relaxation behavior of an initial concen-
tration profile. The applicability of the method for concentrated electrolyte solutions is demon-
strated by Newman and Chapman [110] using the example of potassium chloride in water. The
relaxation process can be observed by different methods. In Stewart and Newman [136], an opti-
cal device is used to record the relaxation of the concentration profile in LiPF6 in EC:DEC (1:1,
by weight) electrolyte solution. Alternatively, the relaxation of the concentration profile can be
observed indirectly by the measured potential which is used, e.g., in Valøen and Reimers [142],
Hiller et al. [81], Nyman et al. [115] or Thorat et al. [140]. In Hiller et al. [81], the concen-
tration and temperature dependent diffusion coefficients of LiTFSI and LiBOB in polyethylene
oxide based polymer electrolytes are determined by the long-term relaxation behavior of a re-
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5 Theoretical background for the experimental determination of ion-transport parameters

stricted diffusion experiment. In addition, the diffusion coefficients are also calculated based
on the short-term relaxation behavior of steady-state concentration profiles. The diffusion co-
efficients determined by the two methods vary significantly. The restricted diffusion method is
also used in Ma et al. [103], Doeff et al. [51] and Ferry et al. [62] for different polymer elec-
trolytes. Based on different relaxation experiments, the diffusion coefficient of LiClO4 polyethy-
lene carbonate electrolyte solution soaked into a glass wool filter is determined by a numerical
optimization method in Georén and Lindbergh [67]. The optimization is based on the physical
model including solvent effects as introduced in Georén and Lindbergh [66] and Doyle et al.
[55]. As usual convective effects are neglected. The tortuosity of the glass wool filter is deter-
mined by the Bruggeman relation. A similar approach including a more elaborate optimization
framework is used in Nyman et al. [115] and Lundgren et al. [102] for LiPF6 in EC:EMC (3:7,
by weight) and in EC:DEC (1:1, by weight), respectively. In both publications, solvent effects
and convective transport due to the motion of ions are included in the physical model used for
the numerical optimization. The Bruggeman coefficient α of the used glass microfiber filters is
determined experimentally. Note that the last six publications did not only determine the diffu-
sion coefficients but the complete set of transport parameters. Recently, the influence of solvent
effects on the determination of transport parameters is investigated numerically by Liu and Mon-
roe [101]. In Xu and Farrington [155] the steady-state ion-transport-limited current at micro disc
electrode in spherical diffusion geometry is used to determine the binary diffusion coefficient
for 0.1 M LIClO4 in PC. However, concentration dependent diffusion coefficients cannot be de-
termined by this method since the limiting current is required. As a result, the concentration
difference between micro electrode and bulk is equal to the initial concentration resulting in an
averaged diffusion coefficient.

The direct determination of the activity coefficient is often based on measuring the osmotic
pressure. For example, in Barthel et al. [16], the osmotic coefficient is determined based on the
vapor pressure of lithium perchlorate LiClO4 in various alcohols. The data for the osmotic coef-
ficients are well represented by the Pitzer equation with seven parameters. Two of the parameters
are based on experience, whereas the remaining parameters have to be determined by a regres-
sion model. The mean molal activity coefficient γ± is calculated from the osmotic coefficient by
integration. In Barthel et al. [17], the same approach is used for aprotic electrolyte solutions such
as LiClO4 dissolved in dimethylcarbonate (DMC). In Stewart and Newman [135], the osmotic
coefficient for lithium hexaflurophosphate LiPF6 in Ethylene Carbonate (EC) is determined by
melting point depression. However, this method may not be applicable to all solvent mixtures
and the complete concentrations range since, according to the authors, it is limited by the eu-
tectic point of the solvent mixture. Alternatively, the mean molar activity coefficient of LiPF6

in EC:EMC (1:1, wt%) is determined based on experiments in a concentration cell assuming a
constant transference number. In Valøen and Reimers [142], this approach is also used for LiPF6

in PC:EC:EMC (10:27:63, vol%). In addition, the temperature dependence of the mean molar
activity coefficient is determined in the range from 263 K – 333 K. The validity of a constant
transference number is verified by experiments using the Hitdorf method and data available in
literature. However, a theoretical explanation for the assumption of a constant transference num-
ber is missing in both contributions. In Nyman et al. [115], the diffusion coefficient, transference
number and thermodynamic factor are determined for LiPF6 in EC:EMC (3:7, wt%) by a numer-
ical optimization approach, based on relaxation experiments in a polarization cell with a porous
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separator in combination with data from a concentration cell. The numerical optimization algo-
rithm is based on concentrated solution theory incorporating the solvent velocity into the mass
balance. Recently, the temperature dependence of LiPF6 dissolved in EC:DEC (1:1, wt%) was
investigated by the same method by Lundgren et al. [102]. Binary diffusion coefficient, trans-
ference number and thermodynamic factor can also be determined in a set of three experimental
setups. In this approach, the diffusion coefficient is measured by a galvanostatic relaxation exper-
iment as presented, e.g., by Harned and French [79]. The concentration cell and a galvanostatic
polarization experiment are then used to calculate the remaining two parameters Ma et al. [103].

The transference number t+(c) can be determined directly by the Hittorf method which is
discussed for polymer electrolyte solutions, e.g., in Bruce et al. [32]. In Valøen and Reimers
[142], the Hittorf method is also used for LiPF6 in PC:EC:DMC (0.1:0.27:0.63, vol. %). How-
ever, in this publication, it is not anymore a direct method since it also depends on data from a
concentration cell. For dilute electrolyte solution, the potentiostatic polarization method intro-
duced in Bruce and Vincent [31] can be used for the direct determination of the transference
number. In the original publication and in Hiller et al. [81], the method is used for polymer elec-
trolytes. In Mauro et al. [105] and Zugmann et al. [163], the same method is applied for liquid
electrolyte solutions such as LiClO4 dissolved in PC and LiPF6 in various electrolyte solutions.
In Zugmann et al. [163], three additional methods, namely the electromotive force method, NMR
method and the galvanostatic polarization method are discussed. The electromotive method is
based on data from a concentration cell without transference. In such an experimental setup,
the transference number can be determined either in the dilute limit (see, e.g., [142]) where the
thermodynamic factor can be assumed to be unity or the concentration dependent behavior of
the thermodynamic factor has to be known. It would also be possible to use a concentration cell
with transference (see [163]) but it is difficult to find appropriate salt bridges for aprotic lithium
based electrolytes fulfilling the condition t+ = t− = 0.5. Secondly, the transference number
can also be determined by measuring the ionic self-diffusion coefficients as demonstrated, e.g.,
in Castiglione et al. [38] or Capiglia et al. [36]. In Zhao et al. [160], the method introduced
by Bruce and Vincent [31] is compared to the NMR method resulting in completely different
values for the transference number, even for the smallest concentration. The galvanostatic po-
larization method is the most popular method to determine the transference number. It is used
for polymer electrolytes in Ma et al. [103], Ferry et al. [62] or Doeff et al. [51]. The diffusion
coefficient, the transference number and the thermodynamic factor can also be determined by a
numerical optimization approach as shown in the aforementioned publications by Georén and
Lindbergh [67], Nyman et al. [115] and Lundgren et al. [102].

In section section 5.1, the basic principle of the conductivity cell used for the determination
of the conductivity is explained. A novel method for the direct electrochemical determination of
the mean binary activity coefficient in aprotic electrolyte solutions is introduced in section 5.2.
The general principle of the parameter determination by means of polarization experiments is ex-
plained in section 5.3. Two different electrochemical methods for the determination of the binary
diffusion coefficient in a two-electrode cell with a porous separator are derived in section 5.4.
In section 5.5, various well-known and new methods for the determination of the transference
number in two-electrode cell with a porous separator are discussed critically. In section 5.6 the
transference number is calculated from data obtained in concentration cell and a known thermo-
dynamic factor. Although both methods introduced in this section are based on a very popular
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experimental procedure, the modified versions have not be used so far to determine the trans-
ference number in aprotic electrolyte solutions. In section 5.7, a very popular method for the
determination of the transference number is described. The result presented in this section are
also published in Landesfeind et al. [96], Ehrl et al. [57] and Ehrl et al. [56].

5.1 Conductivity

The determination of the conductivity κ of an electrolyte solution is based on the same physical
principle as used for the determination of the tortuosity τ in section 4.2. The conductivity κ is
calculated from the resistance R measured in an experimental setup consisting of two electrodes
immersed in an electrolyte solution:

κ =
C

R
.

The cell constant C describes the geometrical configuration of the two electrode cell and is usu-
ally determined in an electrolyte solution of known conductivity κ. As a result of this calibration,
all geometrical uncertainties such as unaligned electrodes are automatically included in the cell
constant C. However, even for perfectly manufactured electrodes, it is only possible for a very
small ratio l/A to replace the cell constant C by the distance between the electrodes l and the
electrode surface A

C =
l

A

which is the result of the inhomogeneous electric field around the electrodes. The relevance of
this effect decreases with an increasing electrode area and a decreasing distance l.

5.2 Electrochemical determination of the thermodynamic
factor

The basic idea of the method is the electrochemical determination of the mean molar activity
coefficient for aprotic binary electrolyte solutions within a single experimental setup. For that,
cyclic voltammetry in electrolyte solutions containing small amounts of ferrocene are measured
versus a lithium reference electrode, since peak positions of the ferrocene redox couple can be
related to the mean molar activity coefficient of the lithium salt. The use of the ferrocene redox
couple as a quasi-reference is discussed in detail in the original contribution by Gritzner and Kuta
[74]. In this context, the lithium salt is referred to as supporting electrolyte since the ferrocene
concentration is mostly an order of magnitude smaller.

In the following, a general correlation between the cell potential U and the mean molar ac-
tivity coefficient f±(c) of a binary salt is derived for cyclic voltammetry experiments whereas the
derivation is based on the Stefan-Maxwell approach introduced in section 2.4.1. The used exper-
imental setup is shown in Fig. 8.3. The cell potential U is the difference between the electrostatic
potential ΦWE of the Working Electrode (WE) and the electrostatic potential ΦRE of the lithium
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5.2 Electrochemical determination of the thermodynamic factor

Reference Electrode (RE). The concentration dependence of the mean molar activity coefficient
is expressed in terms of the concentration of a binary salt, which is defined as c = c+

ν+
= c−

ν−
. In

general, the mean binary activity coefficient of any salt is defined as

f ν
± ≡ f ν+

+ f
ν−
− . (5.1)

Subsequently, the subscripts ’+’ and ’-’, indicating the positive and negative ionic species, are re-
placed by the names of their corresponding ions, e.g., by lithium Li+ and perchlorate ClO−

4 . The
lithium perchlorate salt can also be thought of as a supporting electrolyte, whereas ferrocenium
is the minor ionic species in the electrolyte solution.

Theoretical derivation The redox reaction at the Reference Electrode (RE) is defined as

Li À Li+ + e−

and at the Working Electrode (WE) as

Fc À Fc+ + e−

where Fc denotes the ferrocene and Fc+ the ferrocenium ion. The reaction Gibbs energy ∆RG
for the lithium reaction at the RE is given by

∆RG
∣∣

RE = 0 = µLi − µ̃Li+ − µ̃e−

and for the ferrocene reaction at the WE by

∆RG
∣∣

WE = µFc − µ̃Fc+ − µ̃e− .

Here, µ denotes the chemical potential of an uncharged component and µ̃ the electrochemical
potential of an ionic species. The reaction Gibbs energy of the RE is zero since the reference
electrode is always in an equilibrium state due to negligible current flow across the interface. As
a result, the cell potential U expressed in terms of electrochemical potentials of the electrons e−

in WE and RE

FU = F (ΦWE −ΦRE) = µ̃e−
∣∣

RE − µ̃e−
∣∣

WE

can be written as

FU = (µLi − µ̃Li+)
∣∣
RE
− (µFc − µ̃Fc+ − ∆RG)

∣∣
WE (5.2)

where the cell potential is determined by the reactions at the interfaces of WE and RE. The elec-
trochemical potential of an arbitrary ionic species k for any electrolyte solution can be defined,
according to Newman and Thomas-Alyea [109], as

µ̃k = zkFΦn +RT ln ck +RT

(
ln fk − zk

zn

ln fn

)
+RT

(
ln ak − zk

zn

ln an

)
, (5.3)
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5 Theoretical background for the experimental determination of ion-transport parameters

where the electrostatic potential Φn in the electrolyte solution is defined with respect to an ar-
bitrary negative ionic species n present in the electrolyte solution as explained in section 2.4.2.
The physical motivation of Equ. (5.3) is introduced in the same section. In the following, the
superscript n is dropped for simplicity. Furthermore, the charge number of the ionic species k
is denoted by zk, the activity coefficient of the ionic species k by fk, the Faraday constant by
F , the gas constant by R, the temperature by T and proportionality constant of the ionic species
k by ak. In addition, the following definition for the electrochemical potential of the reference
species n defined in section 2.4.2 is used

µ̃n = znFΦ +RT ln cn. (5.4)

In this framework, the anion of the supporting electrolyte is chosen as the reference species n
since it does not contribute to any surface reaction. By combination of Equ. (5.1) and Equ. (5.3),
the electrochemical potentials of lithium and ferrocenium ions can be written as

µ̃Li+ = zLi+FΦ +RT ln cLi+ +RT ln f 2
LiClO4

+ µθ
LiClO4

, (5.5)

µ̃Fc+ = zFc+FΦ +RT ln cFc+ +RT ln f 2
FcClO4

+ µθ
FcClO4

. (5.6)

The standard chemical potentials of lithium perchlorate

µθ
LiClO4

= RT ln
(
aLi+aClO−4

)

and ferrocene perchlorate

µθ
FcClO4

= RT ln
(
aFc+aClO−4

)

defined according to Newman and Thomas-Alyea [109, chap. 2.3] are independent of the elec-
trolyte composition but are a function of additional state variables such as temperature and pres-
sure. The mean binary activity coefficients of lithium perchlorate and ferrocene perchlorate are
given by f 2

LiClO4
and f 2

FcClO4
as defined in Equ. (5.1). Therefore, using Equ. (5.5) and Equ. (5.6),

Equ. (5.2) can be expressed as,

FU = +RT ln
(
cFc+f 2

FcClO4

) ∣∣
WE + ∆RG

∣∣
WE − µFc

∣∣
WE

−RT ln
(
cLi+f

2
LiClO4

) ∣∣
RE + F

(
Φ

∣∣
WE −Φ

∣∣
RE

)
+ µCell.

Here, the standard chemical cell potential µCell includes the chemical potential of lithium µLi as
well as the standard chemical potentials of lithium perchlorate µΘ

LiClO4
and ferrocenium perchlo-

rate µΘ
FcClO4

µCell =
(
µLi

∣∣
RE − µΘ

LiClO4

∣∣
RE + µΘ

FcClO4

∣∣
WE

)
. (5.7)

The potential drop in the electrolyte is described by the term Φ|WE −Φ|RE. The cell potential U
can also be written as

U = URef − RT

F
ln

(
cLi+f

2
LiClO4

)
(5.8)
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Figure 5.1: Concentration profiles in the vicinity of the Working Electrode (WE) for the components
dissolved in the electrolyte solution at the oxidation peak and at the reduction peak.

where the reference potential URef includes all remaining terms:

URef =
[
RT

F
ln

(
cFc+

cFc

)
+ ∆RG+

RT

F
ln

(
f 2

FcClO4

)− RT

F
ln fFc

]

WE
+ µCell + ∆Φ. (5.9)

The reference potential URef is independent of the LiClO4 concentration if the ferrocene concen-
tration is kept constant.

In summery, the relation given in Equ. (5.8) is the basis for the determination of the mean
molar activity coefficient by cyclic voltammetry experiments which requires a constant ferrocene
concentration throughout a measurement series while the LiClO4 concentration is varied. As the
obtained cell potential U is given by a constant URef and an expression containing the activity
coefficient of LiClO4, latter quantity can be determined mathematically.

Position of oxidation and reduction peaks Subsequently, possible influences on the peak
positions of a cyclic voltammogram are analyzed. In general, the positions of oxidation and re-
duction peaks are defined by the ratio of ferrrocenium to ferrocene at the WE. Idealized concen-
tration profiles at both peaks are shown in Fig. 5.1. At the oxidation peak, ferrocene is depleted
at the WE while at the reduction peak the ferrocenium ion concentration approaches zero at the
WE. In addition, this ratio is also the basic boundary condition for the boundary value problem
as described, e.g., in Bard and Faulkner [14]. This becomes clearer, if Equ. (5.8) and Equ. (5.9)
are reformulated to

cFc+

cFc
= exp

{
F

RT

[
(U − ∆Φ)− U ′0

]}
.

with the formal potential U ′0 of the WE with respect to the RE

U ′0 ≡ µCell − RT

F
ln

(
f 2

FcClO4

fFc

)
− RT

F
ln

(
cLi+f

2
LiClO4

)
.

Here, in a first approximation, it is assumed that the electrochemical reaction at the WE is always
in an equilibrium state. In a cyclic voltammetry experiment with a RE, the potential between WE
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Table 5.1: Peak separation for reversible redox reactions.

|Up,ox − Ureverse| [mV] 171,5 271,5 8

Up,ox − Up,red [mV] 58,3 57,8 57,0

and RE is reduced by the potential drop ∆Φ within the electrolyte solution. The cell potential
U is time dependent and can be expressed as U = Uinit − s · t where s denotes a constant scan
rate, Uinit the initial cell potential and t the time. Based on this boundary condition, the following
theoretical relations can be derived for the oxidation peak in the first cycle as demonstrated in
Bard and Faulkner [14]. The theoretical peak position Up,ox is given by

Up,ox = U ′0 +
RT

F
ln

(
DFc

DFc+

)1/2

− 1.109
RT

F
(5.10)

and the peak current by

Ip,ox = 2.69 · 105A(DFc)
1/2c0

Fcs
1/2, (5.11)

for a perfectly reversible Nernstian couple. The diffusion coefficient of ferrocene is denoted by
DFc and the diffusion coefficient of the ferrocenium ion by DFc+ . The ferrocene concentration
in the bulk of the electrolyte solution is indicated by cFc,0. Since ferrocenium ions are the minor
species in the supporting electrolyte solution, they can be approximated by the pure diffusion
problem with the ionic diffusion coefficient DFc+ as explained in Newman and Thomas-Alyea
[109]. The connection of the mean molar activity coefficient with the oxidation peak position
for a single forward scan becomes clear in Equ. (5.10). If the measured potential U in Equ. (5.8)
is only a function of the term ln

(
cLi+f

2
LiClO4

)
and all other terms are constant, it is possible to

determine the mean activity coefficient from the peak position.
For a cyclic voltammogram of a reversible redox couple, it is also possible to derive a the-

oretical value for the peak separation defined by the potential difference between the oxidation
Up,ox and reduction peak Up,red. In general, the theoretical peak separation depends on the po-
tential difference between the oxidation peak potential Up,ox and the upper vertex potential at
which the scan rate is reversed Ureverse. The theoretical values for a reversible Nernstian couple
are shown in Tab. 5.1. Therefore, a peak separation of about 57 mV would be expected of the
difference between vertex and the peak potential is> 300 mV. This theoretical value for the peak
separation can be used to evaluate the quality of the experimental data.

Reference potential To be able to use cyclic voltammetry in combination with the shown
experimental setup for the determination of mean molar activity coefficientsfLiClO4(c), it is nec-
essary that the reference potential URef is independent of the supporting electrolyte salt concen-
tration c. Therefore, it is important to get a detailed understanding of the characteristics of the
individual terms contributing to the reference potential URef.
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5.2 Electrochemical determination of the thermodynamic factor

As discussed before, the logarithmic ratio of ferrrocenium to ferrocene at the WE, the first of
the terms in Equ. (5.9), defines the theoretical positions of oxidation and reduction peaks. For the
derivation of the theoretical peak positions and the peak separation, it is assumed that the system
is only limited by mass transport, which means that infinitely fast kinetics are assumed. However,
in reality, kinetic effects have to be considered, as they also influence the peak separation and,
therefore, peak positions. If the second term in Equ. (5.9), the reaction Gibbs energy ∆RG, is
not negligibly small, it can be approximated by the kinetic overpotential η, which describes the
deviation from the equilibrium potential at the specific condition as described in Newman and
Thomas-Alyea [109]. In this case, the peak separation is linked to the parameter Ψ defined and
tabulated in Bard and Faulkner [14]:

Ψ =
(
DFc+

DFc

)a/2

k0

(
πDFc+

F

RT
s

)−1/2

. (5.12)

Here, a denotes the transfer coefficient in the Butler-Volmer equation and k0 the standard rate
constant of the electrochemical reaction. According to Equ. (5.10), the peak separation depends
on the diffusion coefficient ratio and the standard rate constant, whereas both quantities may
be a function of the supporting electrolyte concentration. A decreasing parameter Ψ, e.g. slow
kinetics, results in an increase in the peak separation, which is distributed symmetrically between
oxidation and reduction peaks as shown, e.g., by Table 6.5.2 in Bard and Faulkner [14]. To
decrease the influence of the non-ideal conditions in cyclic voltammetry experiments, the half
wave potential Up,1/2 = 1/2 (Up,ox + Up,red) can be used as a reference point instead of oxidation
or reduction peak positions (see section 5.1). For the half wave potential, the symmetric potential
shifts of oxidation and reduction peaks cancel out due to their symmetry.

The next term in Equ. (5.9), the mean molar activity coefficient of ferrocenium perchlorate
ln (fFcClO4)

∣∣
WE is assumed to be constant in this work. Latter assumption can be endorsed with

the original publication by Gritzner and Kuta [74]. In their publication the authors argue that
the activity of the ferrocene – ferrocenium is independent of the surrounding solution. An even
stronger argument for the constancy of the term ln (fFcClO4)

∣∣
WE is its influence on oxidation

and reduction peak positions. As ferrocenium ions only exist at the oxidation peak, a possible
contribution by this term can only occur for this peak. Thus, if the LiClO4 concentration is
varied between experiments, a varying contribution to oxidation peaks should be observable
compared to the reduction peak. Experimental results shown in section 8.3 prove that oxidation
and reduction peaks behave completely identical.

The chemical potential of the cell µCell, as defined in Equ. (5.7), depends on the used elec-
trode materials and the electrolyte solution and is generally constant for isothermal and isobaric
conditions. So far, all discussed terms deal with the electrolyte composition in the vicinity of the
electrodes. In contrast to those, the potential drop ∆Φ describes the potential difference in the
electrolyte between working and reference electrode. The potential field in such an electrolyte
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5 Theoretical background for the experimental determination of ion-transport parameters

solution is described by

Φ = +
RT

F
∇ ln cClO−4

− i

κ

− RT

F

[
tLi+∇ ln

(
cLi+cClO−4

f 2
LiClO4

)
+ tFc+∇ ln

(
cFc+cClO−4

f 2
FcClO4

)]

︸ ︷︷ ︸
ζ

, (5.13)

which is derived from

F
i

κ
= −

(
n∑

k=1

tk
zk

∇µ̃k

)

using Equ. (5.4) – Equ. (5.6) as described in Newman and Thomas-Alyea [109]. The latter equa-
tion is a more general form of Equ. (2.37). Here, the current density is denoted by i, the conduc-
tivity of the electrolyte solution by κ and the transference numbers of lithium and ferrocenium
ions by tLi+ and tFc+ , respectively. A similar system is also discussed for example in Newman
and Thomas-Alyea [109]. Using a one-dimensional approximation of the given setup and per-
forming an integration along a path between RE and WE, it is possible to get an approximation
for the potential drop between RE and WE

∆Φ =
RT

F
ln

(
cClO−4

∣∣
WE

cClO−4

∣∣
RE

)
−RelI − RT

F

∫ WE

RE
ζ dx. (5.14)

The ohmic resistance of the electrolyte solution is denoted byRel and the current by I . In this for-
mulation, the third term of Equ. (5.13) is not integrated, yet. The first term on the right hand side
is zero since the perchlorate ion concentration is approximately constant in the entire electrolyte
solution for oxidation as well as reduction peaks as indicated in Fig. 5.1.

The second term RelI describes the potential drop within the electrolyte solution as a result
of the current. Although the current between WE and RE is negligibly small, an ohmic potential
is included in the cell potential U as a result of the current flowing between WE and CE. The
so-called effect of uncompensated resistance between RE and WE also leads to an increased
peak separation as described by Bard and Faulkner [14]. This effect is particularly pronounced
for small supporting electrolyte concentrations since the resistance of the electrolyte solution
is increased drastically. The increase in peak separation is not completely symmetric, since the
peak currents at oxidation and reduction peak are usually not equal in a cyclic voltammogram.
In order to reduce the effect of uncompensated resistance, the current between WE and CE
electrode has to be minimized. Experimental parameters influencing the current are the scan rate
and the ferrocene concentration, as indicated in Equ. (5.11).

Furthermore, the potential drop ∆Φ in the electrolyte is also influenced by the third term
in Equ. (5.14), which describes the concentration overpotential resulting from concentration
gradients within the electrolyte. In general, concentration gradients have to be considered only
in the vicinity of the WE. The RE compartment is separated from the WE, thereby guaranteeing
uniform lithium and perchlorate ion concentration profiles. Additionally, the polarization times
are short enough, so that developing concentration gradients at the WE do not penetrate far into
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5.2 Electrochemical determination of the thermodynamic factor

the bulk region of the electrolyte solution. As a result of small concentration variations within
the electrolyte solution, it is valid to assume constant transference numbers for the integration of
the third term Equ. (5.14)

RT

F

∫ WE

RE
ζ d x =

RT

F

[
tLi+ ln

{(
cLi+f

2
LiClO4

)
WE(

cLi+f
2
LiClO4

)
RE

}
+ tFc+ ln

{(
cFc+f 2

FcClO4

)
WE(

cFc+f 2
FcClO4

)
RE

}]
. (5.15)

Contributions of the perchlorate ions in the integral cancel out due to its uniform concentration
profile. The last term depending on the transference number of the ferrocenium ion can also be
neglected since the transference number of the minor species in a supporting electrolyte solution
is approximately zero for a high ratio of supporting electrolyte to minor component. Such a high
ratio also has a positive effect on the first term of the Equ. (5.15) since the concentration differ-
ence of lithium ions between WE and RE is also minimized resulting in a small influence of the
first term in Equ. (5.15). Concluding, a minimal ratio of ferrocenium ions, respective ferrocene,
to supporting electrolyte is also advantageous to avoid concentration overpotentials. This is of
course most critical for small concentrations of supporting electrolyte. It is emphasized that the
concentration overpotential does not influence both peaks symmetrically. At the oxidation peak,
the concentration difference for lithium as well as ferrocenium ions are maximal resulting in
a maximum concentration overpotential. On the contrary, the concentration differences of sup-
porting electrolyte ions between RE and WE are negligibly small at the reduction peak. As a
result, concentration overpotentials influence oxidation but not reduction peaks. As for all non-
symmetric terms, this has to be considered if the half wave potential is used for the determination
of the mean activity coefficient, particularly for small supporting electrolyte concentrations.

Theoretical behavior of the mean molar activity coefficient of binary salts If all afore-
mentioned theoretical assumptions and experimental requirements are fulfilled, the mean molar
activity coefficient fLiClO4 can be obtained by means of Equ. (5.8). For the validation of the ex-
perimental results, the theoretical behavior of the mean molar activity coefficient described by
the Debye-Hückel law can be used which is discussed for example in Bard and Faulkner [14] or
Hamann and Vielstich [78]. In general, the Debye-Hückel law is written as

ln fLiClO4 = −
∣∣∣zLi+zClO−4

∣∣∣ A
√
I(

1 +Bȧ
√
I
) , (5.16)

where the ionic strength I of the electrolyte solution is defined as

I =
1
2

m∑

k=1

z2
kck (5.17)

for m = 3 dissolved ionic species in the electrolyte and the parameters A and B as

B =

(
2e2NA

)1/2

(ε0εRkT )1/2 = ε
−1/2
R · 2.914 · 109 dm

1
2 mol−

1
2 , (5.18)
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and

A =
e2

(8πε0εRkT )
B = ε

−3/2
R · 817.1 dm

3
2 mol−

1
2 , (5.19)

respectively. The number of dissolved ionic species in the electrolyte solution is denoted by
m = 3, the minimal distance between two ionic species by ȧ, the relative permittivity by εR,
the permittivity of vacuum by ε0 = 8.854 · 10−12 Fm−1, the electronic charge by e = 1.602 ·
10−19 C, the Avogadro constant by NA = 6.022 · 1023 mol−1 and the gas constant by R =
8.314 J mol−1 K−1. As explained in Wright [153], Equ. (5.16) can also be approximated by the
Debye-Hückel limiting law

ln fLiClO4 = −
∣∣∣zLi+zClO−4

∣∣∣A
√
I (5.20)

for low ionic strengths. For electrolyte solutions with higher ionic strengths, the Debye-Hückel
theory can be extended by a linear term

ln fLiClO4 = −
∣∣∣zLi+zClO−4

∣∣∣ A
√
I(

1 +Bȧ
√
I
) + x1I (5.21)

as introduced, e.g., in Wright [153]. This is an empirical extension accounting for effects as for
example short range interactions between ions and the solvent, dispersion forces between ions
or ion association. A detailed discussion of this topic can be found, e.g., in Wright [153]. An nth-
order polynomial with respect to the concentration instead of ionic strength is used to account for
effects which are not included in Debye-Hückel’s theory by Newman and Thomas-Alyea [109]

ln fLiClO4 = −
∣∣∣zLi+zClO−4

∣∣∣ A
√
I(

1 +Bȧ
√
I
) + x1c+ x2c

3/2 + x2c
2 + . . . . (5.22)

In this work, the extended form of the Debye-Hückel law given in Equ. (5.21) is used as the
suggested polynomial form given in Equ. (5.22) overinterprets the experimental results.

5.3 General principle of polarization experiments

For the determination of the diffusion coefficient and the transference number, two different
experimental setups are considered. The first experimental setup, the so-called two-electrode
cell, consists of two electrodes at distance l. The space between the two electrodes can be filled
with an liquid electrolyte solution or, alternatively, with an electrically isolating porous medium
such as a separator soaked with a electrolyte solution. Initially, the two-electrode cell without
porous medium was applied, e.g., by Stewart and Newman [136] to determine the diffusion co-
efficient and in Valøen and Reimers [142] to determine the complete set of transport parameters.
The two-electrode cell with porous medium is used in combination with a numerical optimiza-
tion approach, e.g., by Georén and Lindbergh [66] or Nyman et al. [115]. The advantages and
disadvantages of a cell with and without separator are discussed in the following. The second ex-
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5.3 General principle of polarization experiments

perimental setup is a concentration cell consisting of two electrodes connected by an electrolyte
solution. Both experimental setups are described in detail in section 8.5.1.

In a two-electrode cell with separator, all experimental methods for the determination of
ion-transport parameters are based on different analytical solutions of the volume averaged mass
component-based mass conservation. The advantage of this geometrical setup is that convective
effects can be neglected as discussed in section 8.5.1. Additionally, the area to distance ratio is
typically larger than in a two-electrode cell without separator minimizing the influence of the
edge effect and, thereby, improving the requirement of one-dimensional concentration and po-
tential gradients. The disadvantage of the cell with separator is that only a small amount of elec-
trolyte is used for the experiments. As a result, the experimental procedure is quite sensitive to
evaporation of single electrolyte components or similar effects changing the electrolyte composi-
tion. In the following, the volume averaged ion-transport equation based on the Stefan-Maxwell
approach given in Equ. (4.8) is used to determine the transport parameters. Volumetric effects
are neglected in this approach as explained in section 2.4.1. In addition to these reasons, the
method for the determination of the thermodynamic factor presented in section 5.2 is also based
on the Stefan-Maxwell approach neglecting volumetric effects. The combination of two different
physical models for the determination of transport parameter is not recommended. For the same
reason, the alternative thermodynamically-consistent approach introduced in section 2.6 cannot
be used either. It has to be emphasized that the experimentally determined transport parameters
are influenced by potential volumetric effects although they are not considered directly in the
present ion-transport model.

The mass conservation law given in Equ. (4.8) can also be written as

ε
∂c

e

∂t
−∇ ·

( ε
τ
D±(c)∇c e

)
+
∇t+(c)
z+ν+F

· i +
t+(c)
z+ν+F

∇ · i = 0, (5.23)

where the product rule is applied to the divergence of the conduction term. Potential boundary
conditions for the electrodes are Dirichlet, Neuman or electrode BC whereas Neuman and elec-
trode BC are very similar for one-dimensional domains since the overpotential η is a constant
for each of the electrodes. In the context of transport parameter determination, Dirichlet BC are
seldom used since the concentrations c

e
at both electrodes are usually unknown. A potential

exception is the determination of transport parameters based on the limiting current where the
concentration at the cathode can be approximated by c e = 0 and at the anode by c e = 2c e

0 . How-
ever, this method is limited to electrolyte solutions which are hardly influenced by concentration
dependent transport parameters. In general, the flux and current density at the electrode surface
is given as

N = − ε
τ
D±(c)∇c e

+
t+(c)
z+ν+F

i, (5.24)

and

i = z+ν+FN , (5.25)
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5 Theoretical background for the experimental determination of ion-transport parameters

respectively. Equ. (5.25) is based on a binary electrolyte solution with the cation as reacting
species. As result, the flux density at the electrode surface can also be expressed as

N = − D±,eff(c)
1− t+(c)

∇c e
,

where Equ. (5.24) and (5.25) and the definition for the effective diffusion coefficient D±,eff(c) =
ε
τ
D±(c) given in Equ. (4.7) are used. Compared to the transport of uncharged components, an

additional scaling factor 1/(1− t+(c)) has to be considered for the calculation of the flux density
which includes the effect of ion-transport due to the potential field. In case of one-dimensional
ion-transport, the flux density reads

N = − D±,eff(c)
1− t+(c)

∂c
e

∂x
, (5.26)

where N denotes the volume averaged intrinsic phase average of the flux density in an one-
dimensional model. The corresponding boundary condition reads

−N n = j =
1

z+ν+F

I

A
(5.27)

where I denotes the applied or measured current. The electrode surface A and the normal com-
ponent n are definitions which are based on the three-dimensional domain shown in Fig. 4.2. At
this point, only one-electrode reactions with nr = 1 and sr = −1 are considered such as the
oxidation of lithium and the reduction of lithium ions. In terms of the current density, Equ. (5.27)
reads

−i n =
I

A
(5.28)

For polarization experiments, the x-axis of the coordinate system points always from the cathode
towards the anode as it is depicted in Fig. 4.2. In addition, all analytical expressions are derived
with respect to the anode resulting in n = 1. According to the definition given in section 2.1,
the current I at the anode is positive since the current flow is directed into the domain. At the
cathode, the current I is negative since it exits the domain. Note that the current density i is
defined with respect to the positive charges as it can be seen in Equ. (2.13). As result of this
definition, the concentration difference ∆c e between the Anode (A) and the Cathode (C)

∆c e
= c

e

A − c
e

C

as well as the concentration gradient ∂ c
e

∂x
are always positive.

Using the charge conservation given in Equ. (4.10), Equ. (5.23) can be simplified to an
one-dimensional scalar transport equation

ε
∂c

e

∂t
− ε

τ
D±(c0)

∂2c
e

∂x2 = 0 (5.29)
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5.3 General principle of polarization experiments

if the following assumptions are valid:
1. The experimental setup resembles an ideal geometrical configuration consisting of two

parallel and aligned flat electrodes separated by an electrolyte solution and enclosed by
insulators as depicted in Fig. 4.2. In such a geometrical setup, concentration and potential
gradients are exclusively orientated in x-direction. As a result, ion-transport in the elec-
trolyte solution can be described by the one-dimensional partial differential equation. In
reality, this ideal configuration can be approximated by two electrode cell with a large area
to distance ratio.

2. The concentration dependent diffusion coefficient D±(c) and the transference number
t+(c) are assumed to be constant for small concentration variations around an initial con-
centration c e

0 . This assumption is equivalent to a zero order approximation of concentration
dependent diffusion coefficient D(c) = D±(c0) and transference number t+(c) = t+(c0).
The same condition is required for the remaining ion-transport parameters. Typical con-
centration dependent transport parameters of various binary electrolyte solutions usually
fulfilled this assumption as demonstrated in section 7.5.

3. The porosity ε and the tortuosity τ are constant with respect to time and space. For battery
applications this condition is usually fulfilled as it is already discussed in section 3.1.2.

The partial differential equation given in Equ. (5.29) can be solved analytically for different types
of BCs. As a result, an expression for the concentration difference ∆c e between the Cathode (C)
and the Anode (A) is obtained

∆c e
= f(D±(c0), t+(c0), ε, τ, c

e

0,BC). (5.30)

If the concentration difference ∆c e
is known, it is possible to calculate the effective binary dif-

fusion coefficient D± and the transference number t+ based on the analytical expression given
in Equ. (5.30). The local concentration c e in the vicinity of the anode and cathode can be de-
termined experimentally, e.g., by optical methods as described, e.g., in Newman and Chapman
[110]. Limiting factors of this method are the spatial resolution of the optical device and the
complexity of the required analysis equipment.

In this contribution, the concentration difference ∆c e is determined indirectly utilizing a
correlation with the measured cell potential U . Based on section 2.4.3 and section 5.2, the cell
potential U between two lithium electrodes can be written as

U = ηC + ∆Φ
e

+ ηA,

where ηC denotes the surface overpotential at the cathode, ηA the surface overpotential at the
anode and ∆Φ

e

the potential difference between the lithium electrodes

∆Φ
e

= Φ
e

A −Φ
e

C.

Here, the potential is defined with respect to a lithium reference electrode as introduced in sec-
tion 2.4.3. For an ideal geometrical setup, the potential difference ∆Φ

e

can be calculated by the
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integrated, one-dimensional form of the current equation given in Equ. (4.9)

∆Φ
e

=
∫ A

C

∂Φ
e

∂x
d x

=
∫ A

C

[
− 1
κeff(c0)

i+
ν

z+ν+

RT

F

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

∂ ln c e

∂x

]
dx, (5.31)

where the definition for the effective conductivity κeff = ε
τ
κ as given in Equ. (4.7) is used.

In theory, the correlation between the measured cell potential U and the concentration c
e at

the surface of the electrode can be used for all kinds of BCs but it is most accurate for the
relaxation process after the polarization. During polarization, the cell potential U is influenced
additionally, e.g., by electrode reactions or modifications of the electrode surface indicated by
a non-constant surface resistance RI. This means that an accurate functional description of all
physical phenomena is more elaborate than during the relaxation process. For the relaxation
process, the integrated formulation of Equ. (5.31) can be written as

∆Φ
e

=
ν

z+ν+

RT

F

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0)) ln

c
e

A

c
e

C
, (5.32)

where the TDF is assumed to be constant with respect to c0 as it is done already for the diffusion
coefficient and the transference number. For small concentration variations, the natural logarithm
can be approximated by

ln
c

e

A

c
e

C

≈ ∆c e

c
e

0
, (5.33)

as it is shown, e.g. in Bruce and Vincent [31]. The error of this linear relation is shown in Fig. 5.2.
As a result of this approximation, the integrated form of Equ. (5.32) reads

U = ∆Φ
e

=
ν

z+ν+

RT

F

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

∆c e

c
e

0
. (5.34)

In theory, the cell potential U is equivalent to the potential difference ∆Φ
e

between the electrodes
during the relaxation process since the current flowing across the electrodes is zero. Therefore,
the concentration difference ∆c e

is directly proportional to cell potential U ∝ ∆c e
for the used

approximations which is a central point for electrochemical determination of transport parame-
ters. The same method is also applied, e.g., in Ma et al. [103], Zugmann et al. [163] or Valøen
and Reimers [142].

5.4 Binary diffusion coefficient

The two-electrode cell as described in the beginning of section 5.3 is used for the determination
of the binary diffusion coefficient D±. The first geometrical setup is used, e.g., in Stewart and
Newman [136] or Valøen and Reimers [142]. The second geometrical setup has not been used
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so far to determine the binary diffusion coefficient D± experimentally by observing the time-
dependent relaxation behavior after a polarization phase. In general, the presented methods for
the determination of the diffusion coefficient can be used for both versions of the two-electrode
cell.

5.4.1 Long-term relaxation from an non-uniform concentration profile

For the investigation of the long-term relaxation behavior, the two-electrode cell is polarized
galvanostatically or potentiostatically resulting in a non-uniform concentration profile at current
interruption time TI. For this method, the concentration profile c e(TI) at the interruption time
t = TI is considered as the initial concentration profile c

e

0 . Subsequently, the relaxation of the cell
potentialU(t) is observed for t→∞. Originally, the method was developed for dilute electrolyte
solution by Harned and French [79]. The theoretical verification for concentrated solutions is
given in Newman and Chapman [110]. In both publications, only electrolyte solutions without
separator are considered. The analytical expression for the volume averaged and time dependent
concentration difference ∆c e(t) is derived in this contribution assuming a constant diffusion
coefficient D±(c0).

The partial differential equation given in Equ. (5.23) can be reformulated to

∂c

∂t
−D∗

±,eff(c0)∇2c = 0, in (0, l)× (TI, Tend). (5.35)
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where the relation εc
e = c and the partial binary diffusion coefficient

D∗
±,eff(c0) =

1
τ
D±(D0) (5.36)

is used. The BCs for the relaxation process read

∂c
e

C

∂x
=
∂cC

∂x
= 0 and

∂c
e

A

∂x
=
∂cA

∂x
= 0. (5.37)

The concentration profile c e(TI) at current interruption time has to be point-symmetric to x =
1
2 l. For ionic liquids the influence of the concentration profile c

e(TI) at current interruption is
investigated theoretically and experimentally in Thompson and Newman [139]. This boundary
value problem can be solved by separation of variables:

∆c e
(t) =2C1 exp

(
−π

2D∗
±,eff(c0)
l2

t

)
+

2C3 exp
(
−9π2D∗

±,eff

l2
t

)
+ 2

∞∑
n=3

C(2n−1) exp
(
−(2n− 1)2π2D∗

±,eff(c0)
l2

t

)
. (5.38)

A short outline of the derivation is given in section C.1. Compared to the solution presented
in Harned and French [79], the exponential prefactor in the second term is smaller which results
in slower decay. This difference can be explained by different reference points. In the original
publication, additional electrodes were placed at x = 1/6 l and x = 5/6 l whereas the concen-
tration difference between anode x = l and cathode x = 0 is used in this contribution. In the
derivation of Newman and Chapman [110] a variable diffusion coefficient and solvent effects
are considered resulting in a similar relationship with an additional term

B exp
(
−3

π2D∗
±,eff(c0)
l2

t

)
(5.39)

where B is a function of the initial conditions and concentration derivatives of the physical
properties. The potential influence of this term will be discussed in section 7.5. For large times
t → ∞, the first term of the analytical solution is dominating which gives a linear relationship
between ln ∆c e(t) and the time t:

lnU(t) ∝ ln ∆c e
(t) = ln(2|C1|)−

π2D∗
±,eff(c0)
l2︸ ︷︷ ︸
mln

t. (5.40)

Since concentration difference ∆c e
and the measured cell potential U are directly proportional as

shown by Equ. (5.34), the linear behavior can also be observed for the cell potential U(t). Here,
mln denotes the slope of cell potential lnU(t) plotted over the time t for t→∞. As a result, the

78



5.4 Binary diffusion coefficient

diffusion coefficient can be calculated from the linear slope mln

D∗
±,eff(c0) =

l2

π2mln. (5.41)

The advantage of this method is that the concentration difference decreases with increasing time
which supports the requirement of small concentration variations. The tortuosity τ of the sepa-
rator is required to determine the binary diffusion coefficient D±.

5.4.2 Short-term relaxation from a steady state concentration profile

For this method, a steady-state concentration profile c e(TI) is considered as a concentration pro-
file c e(TI) at current interruption time TI which can be approximated by a linear function for
small concentration variations. Whether the steady-state concentration profile is obtained by a
galvanostatic or a potentiostatic polarization phase is irrelevant for this method. After current
interruption, the short-term relaxation behavior of the potential is observed.

Apart from the steady-state concentration profile, the same boundary value problem as
in section 5.4.1 is considered. In this case, the boundary value problem is solved by two Laplace
transformations as outlined in section C.2. For the short-term relaxation process from a steady-
state concentration profile, the time dependent concentration difference ∆c e(t) is given by the
relation

∆c e
(t) = ∆c e

(TI)


1−

√
16D∗

±,eff(c0)
πl2

t


 . (5.42)

The short-term relaxation process is linear with respect to
√
t. A similar equation is presented for

polymer electrolytes in Hiller et al. [81]. Since the cell potential U ∝ ∆c e
for small concentration

variations, Equ. (5.42) can also be expressed in terms of the cell potential

U(t) = U(TI)− U(TI)

√
16D∗

±,eff(c0)

l
√
π︸ ︷︷ ︸

msqrt

√
t,

where msqrt denotes the slope the cell potential U with respect to
√
t. As a result, the diffusion

coefficient D∗
±,eff can be determined by

D∗
±,eff(c0) =

πl2

16

(
msqrt

U(TI)

)2

. (5.43)

As for the method based on the long term relaxation behavior, the tortuosity τ of the separator is
required to determine the binary diffusion coefficient D±.

Alternatively, it is also possible to determine the slope of U(t)/U(TI) with respect to the
time

√
t. However, this alternative method is not used in this contribution since the cell potential

U(TI) is influenced directly after current interruption by additional phenomena such as the dis-
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5 Theoretical background for the experimental determination of ion-transport parameters

charge of the double layer or lithium corrosion as presented, e.g., in Osaka et al. [118]. Therefore,
a linear fit of U(t) with respect to

√
t would be already necessary to determine the cell potential

U(TI) at interruption time TI .

5.5 Transference number based on data from a polarization
cell

The conductivity κ(c), the binary diffusion coefficient D±(c), respectively, the partial effec-
tive binary diffusion coefficient D∗

±,eff(c) and the binary activity coefficient f±(c), respectively,
the thermodynamic factor can be determined directly by independent experimental setups. In
contrast, at least two different experimental setups are necessary for the determination of the
transference number t+(c) as indicated already in the literature survey. A direct determination of
the transference number is only possible for dilute electrolyte solutions.

In this section, the transference number is determined based on three different experiments.
The TDF is determined by the experimental method described in Landesfeind et al. [96] and
in section 5.2. The two-electrode cell is used for the determination of the partial effective diffu-
sion coefficient D∗

±,eff as well as for a third experiment determining additional coefficients of the
form

f(f±, t+, D∗
±,eff) =

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))2

D∗
±,eff(c0)

(5.44)

or, alternatively,

f(f±, t+,
√
D∗
±,eff) =

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))2

√
D∗
±,eff(c0)

. (5.45)

Based on a known partial effective binary diffusion coefficient D∗
±,eff(c0), a known TDF(c0) and

one of the coefficients given in Equ. (5.44) and Equ. (5.45), it is possible to calculate trans-
ference number t+(c0) at the concentration c0. The methods introduced in section 5.5.2, sec-
tion 5.5.3 and section 5.5.4 have not been applied so far to determine the transference number
experimentally.

For the determination of the transference number t+(c) the tortuosity τ of the porous
medium is not required. The tortuosity τ of the porous medium is only necessary to get the bi-
nary diffusion coefficient D±(c) from the partial effective binary diffusion coefficient D∗

±,eff(c)
measured by the methods introduced in section 5.4.

5.5.1 Steady-state potentiostatic polarization

The direct determination of the transference number t+ for dilute electrolyte solutions is based
on the application of a potentiostatic cell potential Up until the steady-state current is reached.
Theoretically, it is possible to calculate the transference number t+ from the ratio between the
initial current I0 and the steady-state current IS. However, a correction term for variable electrode
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5.5 Transference number based on data from a polarization cell

kinetics as a result of, e.g., the SEI formation or the growth of mossy Lithium has to be consid-
ered for most realistic experimental setups. In the original form introduced by Blonsky et al. [25],
the method was restricted to dilute electrolyte solutions. Bruce and Vincent [31] extended it for
non-ideal electrolyte solutions assuming variable ionic diffusion coefficients. In this extension,
the thermodynamic factor has to be close to unity. However, this method can also be embedded
into a more general framework which is also valid for concentrated electrolyte solutions.

The potential difference ∆Φ
e

between the anode and the cathode for an one-dimensional
approximation is given by Equ. (5.31). Integration of Equ. (5.31) results in

∆Φ
e

=
∫ A

C

(
1

κ(c0)
l

A

τ

ε

)
dx I +

ν

ν+z+

RT

F

(
1 +

∂lnf±(c0)
∂ ln c

)
(1− t+(c0))

∆c e(t)
c

e

0
, (5.46)

where Equ. (5.28) is used to replace the current density. In contrast to Equ. (5.34), an additional
ohmic contribution has to be considered for the potential difference. The integral in Equ. (5.46)
is equivalent to the ohmic resistance Rel of the electrolyte solution

Rel,0 =
∫ A

C

(
1

κ(c0)
l

A

τ

ε

)
d x.

Note that this relation would also be valid for arbitrary concentration variations and not only for
small concentration variations. The initial potential difference ∆Φ

e

0 reads

∆Φ
e

0 = Rel,0 I0 (5.47)

since the concentration difference is very small directly after the application of the cell poten-
tial Up. The initial electrolyte resistance is denoted by Rel,0. At the steady-state, the potential
difference ∆Φ

e

S is given by

∆Φ
e

S = Rel,S IS +
ν

ν+z+

RT

F

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

∆c e

S

c
e

0
. (5.48)

The initial and the steady-state electrolyte resistance measured by impedance spectroscopy can
be assumed to be identical

Rel,0 = Rel,S = Rel, (5.49)

since the variation of the conductivity is negligibly for small concentration variations. The sec-
ond term is the so-called concentration overpotential. For a steady-state concentration profile,
the concentration difference ∆c e

S can be replaced by

∆c e

S =
1

z+ν+F

1− t+(c0)
D±,eff(c0)

l

A
IS, (5.50)
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where Equ. (5.26) and Equ. (5.27) are used with

∂c

∂x
=
cA − cC

l
.

The current I is replaced by the steady-state current IS to emphasize that this equation is based
on a linear steady-state concentration profile. As a result, Equ. (5.48) reads

∆Φ
e

S = Rel IS +
ν

ν2
+z

2
+

RT

F 2

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

2

D±,eff(c0)
l

A

IS

c
e

0
, (5.51)

As a result of Equ. (5.49), Equ. (5.47) and (5.51) can be combined to

∆Φ
e

0

I0
=

∆Φ
e

S

IS
− ν

ν2
+z

2
+

RT

F 2

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

2

D±,eff(c0)
l

A

1
c

e

0
. (5.52)

Note that the ratio ∆ΦS
IS

6= Rel,S is not only the ohmic resistance but also includes a contribu-
tion of the concentration overpotential as it can be concluded from Equ. (5.51). Multiplication
of Equ. (5.52) with I0/∆Φ

e

0 and a rearrangement results in

I0 ∆Φ
e

S

IS ∆Φ
e

0

= 1 +
ν

ν2
+z

2
+

RT

F 2

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

2

D±,eff(c0)
l

A

1
c

e

0

1
Rel

, (5.53)

where I0/∆Φ
e

0 = 1/Rel is used in the last term on the rhs. In Doyle [53, chap. 4.9] an equivalent
formulation is given

I0 ∆Φ
e

S

IS ∆Φ
e

0

= 1 +
ν

ν2
+z

2
+

RT

F 2

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

2

D±,eff(c0)
1
c

e

0
κeff, (5.54)

where Equ. (4.11) is used to replace the resistance of the electrolyte Rel by the effective conduc-
tivity κeff. This formulation is of particular interest since it is the link to the equation used for
dilute electrolyte solutions:

t+ =
IS ∆Φ

e

0

I0 ∆Φ
e

S

. (5.55)

Equ. (5.54) can be reformulated to Equ. (5.55) if the approximations
(

1 +
∂ ln f±
∂ ln c

)
≈ 1, κ− ≈ F 2

RT
z2
−ν−D−c

e

0,

and definitions

(1− t+) = t−,
κeff

D±,eff
=

κ

D±
, t− =

κ−
κ
, D± = D± =

(z+ − z−)D+D−
D+ +D−

,
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5.5 Transference number based on data from a polarization cell

according to the dilute solution theory are used. In this context, the dilute solution theory is for-
mulated with respect to lithium reference electrodes whereas the dilute solution theory discussed
in section 2.5 is based on a potential definition with respect to the negative ionic species. The
comparison of Equ. (5.54) and Equ. (5.55) also gives a mathematical condition for the validity
of the dilute solution theory:

t+

(
1 +

ν

ν2
+z

2
+

RT

F 2

(
1 +

∂ ln f±
∂ ln c

)
(1− t+(c0))

2

D±(c0)
κ

c
e

0

)
= 1. (5.56)

Based on Equ. (5.53), the coefficient f(f±, t+, D∗
±,eff) can be calculated as

f(f±, t+, D∗
±,eff) =

[
I0 (Up − (RLF,S −Rel)IS)
IS (Up − (RLF,0 −Rel)I0)

− 1
]
ν2

+z
2
+

ν

F 2

RT

A

l
ε c

e

0 Rel (5.57)

where the following relation between the potential difference ∆Φ
e

and the polarization potential
Up is used:

∆Φ
e

= Up − (RLF −Rel)I. (5.58)

Here, RLF denotes the Low Frequency (LF) resistance determined by impedance spectroscopy.
Equ. (5.58) is based on a serial equivalent circuit consisting of an electrolyte resistance Rel and
additional resistances such as kinetic resistance or contact resistances. Additionally, the relation
D±,eff = εD∗

±,eff is applied.
An alternative formulation for Equ. (5.57) is

f(f±, t+, D∗
±,eff) =

[
∆Φ

e

S

IS
−Rel

]
ν2

+z
2
+

ν

F 2

RT

A

l
ε c

e

0.

which can further be reformulated using Equ. (5.58)

f(f±, t+, D∗
±,eff) =

[
Up

IS
−RLF,S

]
ν2

+z
2
+

ν

F 2

RT

A

l
ε c

e

0. (5.59)

The advantage of this formulation is that the number of parameters which has to be determined
is reduced compared to Equ. (5.57). In addition, the steady-state current IS is much easier to
determine than the initial current I0 due to additional effects such as double layer charging. The
same reformulations can be applied to Equ. (5.55):

t+(c0) =
ISRel

Up − (RLF,S −Rel)IS
. (5.60)

This equation was introduced by Hiller et al. [81].
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5.5.2 Initial time behavior of the potentiostatic polarization

The coefficient f(f±, t+,
√
D∗
±,eff) can also be determined from the short-term relaxation behav-

ior of the current I(t) in a SSPP experiment. The theoretical time behavior of the current I(t) in
such an experiment can be derived from the partial differential equation of the form

∂c

∂t
−D∗

±,eff(c0)∇2c = 0, in (0, l)× (0, TI) (5.61)

with the current condition given in Equ. (5.27) as BC at anode and cathode. The semi-infinite
limit

limx→∞ c = c0 (5.62)

is used as an additional condition. The semi-infinite limit can be interpreted as c = c0 for x →
l/2 which introduces a limitation for the time range in which the analytical solution is valid. A
uniform concentration profile is assumed as an initial condition c0. This boundary value problem
can be solved by Laplace transformation as shown in appendix C.3. A similar boundary value
problem is solved, e.g., in Bard and Faulkner [14].

According to Equ. (C.24), the current I(t) at the anode and the cathode can be expressed as

I(t) =
Up

RLF,0
exp(H2t)erfc(Ht1/2), (5.63)

where erfc(H
√
t) is the complementary error function defined as 1 − erf(H

√
t). The constant

H is defined as

H =
2ν
z2

+ν
2
+

RT

F 2

1
Aε c

e

0 RLF,0

(
1 +

∂ ln f±(c0)
∂ ln c

)
(1− t+(c0))

2

√
D∗
±,eff(c0)

.

According to Bard and Faulkner [14, chap. 5.5.1], the factor exp(H2t)erfc(Ht1/2) can be lin-
earized for small values of H

√
t:

exp(H2t)erfc(Ht1/2) ' 1− 2H√
π

√
t. (5.64)

In this case, Equ. (5.63) can be written as

I(t) =
Up

RLF,0︸ ︷︷ ︸
I0

(
1− 2H√

π

√
t
)

= I0 − I0
2H√
π︸ ︷︷ ︸

mSSPP

√
t. (5.65)
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where mSSPP denotes the slope of the current I(t) with respect to
√
t. As a result, the coefficient

f(f±, t+,
√
D∗
±,eff) can be calculated by

f(f±, t+,
√
D∗
±,eff) =

z2
+ν

2
+

4ν
√
π
F 2

RT
Aε c

e

0 RLF,0
mSSPP

I0
. (5.66)

If the requirements for the linearization in Equ. (5.64) are not fulfilled, the additional information
provided by Equ. (5.63) is limited since the unknown factor H cannot be separated from the
time t. The theoretical time behavior predicted by Equ. (5.65) can also be used to determine the
initial current I0 although it is not stringently required for the method presented in section 5.5.1.
Last but not least the knowledge about the expected time behavior is a good control mechanism
showing immediately the quality of experimental results.

5.5.3 Short-term relaxation from a steady-state concentration profile

This method is based on the short-term relaxation behavior from a steady-state concentration
profile as it is used in section 5.4.2 for the determination of the diffusion coefficient. The starting
point is Equ. (5.42) which can be inserted in Equ. (5.34) utilizing Equ. (5.50):

U(t) =
ν

z2
+ν

2
+

RT

F 2

l

A

1
c

e

0
IS f(f±, t+, D∗

±,eff)
︸ ︷︷ ︸

U(TI)

(
1−

√
16D∗

±,eff(c0)
πl2︸ ︷︷ ︸

msqrt

√
t

)
. (5.67)

This equation describes the linear relaxation of the cell potential U(t) with respect to
√
t from

the initial value U(TI) at the current interruption time TI. Based on the initial value U(TI), the
coefficient f(f±, t+, D∗

±,eff) can be calculated by

f(f±, t+, D∗
±,eff) =

z2
+ν

2
+

ν

F 2

RT

A

l
ε c̄

e

0
U(TI)
IS

. (5.68)

Here, the cell potential U(TI) is the potential measured directly after current interruption.
The idea behind this is that the cell potential U reduces immediately to U = ∆Φ

e

after polar-
ization whereas the concentration difference ∆c e

has not changed significantly since diffusion
is based on a different time scale. Therefore, it is valid to use Equ. (5.34) to get a measure for
the steady-state concentration profile at current interruption time TI. However, it is also difficult
to determine the correct potential directly after current interruption since parasitic contributions
as described in section 5.4.2 interfere with the signal due to the concentration difference ∆c e

between anode and cathode. To overcome this problem, the linear relation of the cell potential
U(t) with respect to

√
t can be used to determine the cell potential U(TI) exactly at the current

interruption time TI by means of extrapolation. In addition, the observation of the time behavior
gives a good indication for the quality of experimental data.

The slope msqrt is used in section 5.4.2 to determine the diffusion coefficient. Alternatively,
the slope can also be used to determine the coefficient f(f±, t+,

√
D∗
±,eff). Therefore, Equ. (5.67)
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is reformulated to

U(t) = U(TI)− 4ν
z2

+ν
2
+

1√
π

RT

F 2

1
A

1
ε

1
c

e

0
IS f(f±, t+,

√
D∗
±,eff)

︸ ︷︷ ︸
msqrt

√
t.

As a result, the coefficient f(f±, t+,
√
D∗
±,eff) can be calculated by

f(f±, t+,
√
D∗
±,eff) =

z2
+ν

2
+

4ν
√
π
F 2

RT
Aε c

e

0
msqrt

IS
.

This formula is not considered anymore in the following since the slope msqrt is already used to
determination of the binary diffusion coefficient D±.

5.5.4 Long-term relaxation from a steady-state concentration profile

As for the determination of the diffusion coefficient described in section 5.4.1, the long-term
relaxation behavior from the concentration profile at current interruption time TI provides in-
formation for the determination of the coefficient f(f±, t+, D∗

±,eff). In contrast to section 5.4.1,
a mathematical description for the prefactor C1 is necessary. To be able to determine the pref-
actors C2n−1, a steady-state concentration profile is required as initial condition whereas it is
arbitrary how the steady-state concentration profile is obtained. The derivation is presented in
appendix C.1. As a result, the concentration difference ∆c̄ e(t) can be expressed as

∆c̄ e
(t) = 8

∆c̄ e(TI)
π2 exp

(
−π

2D∗
±,eff(c0)
l2

t

)
. (5.69)

Higher order terms are already neglected in Equ. (5.69). As usual, the expression for the concen-
tration difference ∆c̄ e(t) given in Equ. (5.69) can be inserted in Equ. (5.34) giving

lnU(t) = ln
( 8ν
z2

+ν
2
+

RT

F

(
1 +

∂lnf±(c0)
∂ ln c

)
(1− t+(c0))

1
π2

∆c e(TI)
c

e

0

)

︸ ︷︷ ︸
O(TI)

− π2D∗
±,eff(c0)
l2︸ ︷︷ ︸
mln

t. (5.70)

The long-term relaxation of the cell potential lnU(t) is proportional to the time t whereas O
stands for the constant factor in the linear relationship. Based on the constant factor O and
Equ. (5.50), it is possible to write

f(f±, t+, D∗
±,eff) =

z2
+ν

2
+

8ν
π2 F

2

RT

A

l
ε c

e

0
exp (O(TI))

IS
. (5.71)

5.5.5 Pulsed galvanostatic polarization

The most famous method for the determination of the coefficient f(f±, t+,
√
D∗
±,eff) is based on

the Pulsed Galvanostatic Polarization (PGP) of a two-electrode cell. In this method the concen-
tration difference ∆c e(TI) between anode and cathode at the current interruption time TI is used
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to determine the coefficient f(f±, t+,
√
D∗
±,eff). The analytical solution of such an procedure is

based on the partial differential equation

∂c

∂t
−D∗

±,eff(c0)∇2c = 0, in (0, l/2)× (0, TI),

for the half cell with the boundary conditions

−
(
− D∗

±,eff(c0)
(1− t+(c0))

∂cC

∂x

)
=

1
z+ν+F

I

A
, (5.72)

at the cathode and

c(x) = c0 for x→∞.

The second BC can also be interpreted as c(x) = c0 for x → l/2 which introduces a limitation
for the polarization time. The BC given in Equ. (5.72) is equivalent to Equ. (5.27). In addition,
a constant initial concentration profile c e

0 is assumed at time t = 0. This boundary value prob-
lem can be solved by Laplace transformation as demonstrated for ε = 1, τ = 1 and t+ = 0
in Bard and Faulkner [14, chap. 8.2.1]. As a result, the concentration difference ∆c e

/2 between
the cathode and x = l/2 is given as

∆c e(t)
2

= 2
1√
πFA

1
ε

(1− t+(c0))√
D∗
±,eff(c0)

Ip

√
t. (5.73)

This relation is also known as the Sand equation. Since a one-dimensional representation of a
half cell with constant transport parameters is always symmetric with respect to x = l

2 and
c

e = c
e

0 , Equ. (5.73) can be multiplied by two to obtain the concentration difference ∆c e(t)
between anode and cathode. The insertion of Equ. (5.73) into Equ. (5.34) gives an expression
for the coefficient f(f±, t+,

√
D∗
±,eff)

f(f±, t+,
√
D∗
±,eff) =

z2
+ν

2
+

4ν
√
π
F 2

RT
Aε c̄

e

0
U(TI)
Ip
√
t
. (5.74)

As in section 5.5.3, U(TI) is the cell potential measured directly after current interruption. There-
fore, the quality of the method can be improved further if the theoretical short-term relaxation
behavior after the PGP is used to evaluate the cell potential U(TI) exactly at current interruption
time TI. According to Hafezi and Newman [77], the cell potential U(t) is proportional to the
artificial time τ ∗

τ ∗ =
√
TI√

t+
√
t− TI

. (5.75)

This formulation is used mainly for polymer electrolytes as, e.g., in Ma et al. [103], Ferry et al.
[62] and Doeff et al. [51]. In Zugmann et al. [163], this method is applied to a liquid electrolyte
solution.
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5.6 Transference number based on data from a concentration
cell

Compared to section 5.5, the transference number can also be determined by only two differ-
ent experimental setups. Based on the known TDF, it is possible to calculate the concentration
dependent transference number from experimental data obtained in a concentration cell with a
liquid junction, i.e., concentration overpotentials are included. In a concentration cell, two dif-
ferent electrolyte solutions with defined concentrations are brought in contact. In the absence of
kinetic reactions at the electrodes, the measured cell potential U is defined as

U =
ν

z+ν+

RT

F

∫ A

C

[(
1 +

∂ ln f±(c)
∂ ln c

)
(1− t+(c))

]
d

(
ln c

e)
, (5.76)

which can be derived from Equ. (5.31) with I = 0. In accordance with the concentration profile
in a polarization cell, A denotes the electrode which is in contact with the higher electrolyte con-
centration chigh and C the electrode which is in contact with the lower electrolyte concentration
clow. The measured cell potential U is independent from the porosity ε and the tortuosity τ of the
interconnecting porous medium. No restrictions regarding the concentration dependence of the
transport parameters are introduced so far.

For a known functional description of the concentration dependent transference number
t+(c) and for many experiments with different combinations of cA and cC covering the concen-
tration range of interest, it is possible to determine the necessary functional parameters of the
predefined function by numerical fitting. However, the functional description of the concentra-
tion dependent transference number t+(c) is usually not known a priori. Alternatively, a constant
transference number t+(c0) within the concentration range c0 = 0.5(cA + cC) can be assumed if
the concentration difference is small. In this case, the transference number t+(c0) can be calcu-
lated by

t+(c0) = 1− z+ν+

ν

F

RT
U

[∫ A

C

[(
1 +

∂ ln f±(c)
∂ ln c

)]
d

(
ln c

e)]−1

. (5.77)

Compared to all other introduced methods for the determination of the concentration dependent
transference number t+(c), this approach requires the least assumptions, which is a constant
transference number within a small concentration range.

5.7 Transference number based on data from a concentration
and a polarization cell

In literature, a popular experimental approach for the determination of the transference num-
ber is the combination a concentration cell experiments with two-electrode cell experiments.
In the two-electrode cell, the diffusion coefficient D± and the coefficients f(f±, t+, D∗

±,eff) or
f(f±, t+,

√
D∗
±,eff) are determined. In the concentration cell, it is possible to determine a coeffi-
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cient of the form f(f±, t+):

U =
ν

z+ν+

RT

F

∫ A

C

[(
1 +

∂ ln f±(c)
∂ ln c

)
(1− t+(c))

]

︸ ︷︷ ︸
f(f±,t+)

d
(
ln c

e)
,

which can be determined by numerical fitting based on many concentration cell experiments
with different combinations of cA and cC. However, as before, the functional description of the
coefficient f(f±, t+) has to be defined before the fitting procedure can start. This approach is
used, e.g., in Ma et al. [103] or Ferry et al. [62]. The same idea is combined with a numerical
optimization approach for the two-electrode cell in Nyman et al. [115] or Lundgren et al. [102].
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6 Computational approach

Over the last decades, various computational approaches were proposed for the numerical sim-
ulation of electrochemical systems. For dilute electrolyte solutions, an overview is given, e.g.,
in Bauer et al. [19] and Bauer [18]. In contrast, the literature survey given in the following fo-
cuses on numerical schemes for concentrated electrolyte solutions as introduced in section 2 and
in section 3.

In the year 2000, Botte et al. [29] reviewed different mathematical models for secondary
lithium-ion batteries including an overview over used numerical solution schemes. A more re-
cent overview is given, e.g., in Ramadesigan et al. [124]. The classical numerical solution scheme
for the concentrated solution theory is the Finite Difference (FD) scheme as presented, e.g., in
Newman and Thomas-Alyea [109], Fuller et al. [64], Doyle et al. [54] or Albertus et al. [3].
In these publications, the BAND algorithm introduced in Newman and Thomas-Alyea [109] is
utilized for the numerical simulation of battery cells approximated by one-dimensional, volume
averaged conservation equations for electrodes and separators as presented in section 3. Algorith-
mic improvements for the FD scheme and a decoupling of the partial differential equations are
suggested in Reimers [126]. In Danilov and Notten [48], an alternative model for concentrated
solutions is solved using the pre-implemented Matlab ’pdepe’ solver. For such applications, the
finite difference scheme is usually a sufficient numerical approach although it has its limitations
regarding conservation of mass and discretization of curved domains. Therefore, alternative ap-
proaches have to be considered for the simulation of complex computational domains such as
a resolved porous medium. In Popov et al. [122], a Finite Volume (FV) method is proposed as
a numerical solution scheme for the thermodynamic consistent model suggested by Latz and
Zausch [99]. The homogenized model developed by Ferguson and Bazant [61] is also solved
using FV scheme implemented in Matlab. However, the most common solution scheme for the
concentrated solution theory is the Finite Element Method (FEM) since it is implemented in
many commercial software packages. A large flexibility regarding the adaptation or extension
of physical models is provided by the software package Matlab. This is the main reason why it
is used so frequently in the applied science community as, e.g., in Zadin et al. [158], Cai and
White [35], Awarke et al. [12] or Elul et al. [59]. The software package Abaqus is used, e.g., in
Awarke et al. [11], where a stress analysis for active material particles is included in the physical
model. A more detailed discussion of the finite element method for concentrated solution theory
is presented, e.g., in Golmon et al. [70], which includes also a multi-scale investigation with
respect to the mechanical behavior.

In the following, the finite element method is presented as a numerical solution scheme
for conservation equations describing concentrated binary electrolyte solutions. The numeri-
cal solution scheme is based on the computational approach presented in Bauer et al. [19] and
Bauer [18]. First, different mathematical formulations for concentrated binary electrolyte solu-
tion considered in this contribution are summarized. Afterwards, the weak form of the standard
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ion-transport system is given exemplarily (see section 6.2). In section 6.3 the Finite Element
Method (FEM) is introduced for the spatial discretization of the weak form. The generalized
time-integration scheme is introduced in section 6.4 for the time discretization of the standard
Galerkin formulation. The numerical solution scheme for the nonlinear system of equations is
given in section 6.5. In section 6.6 the galvanostatic constraint condition proposed in Ehrl et al.
[58] is extended by two alternative predictor steps.

6.1 Ion-transport in concentrated binary electrolyte solutions

The ion-transport equations discussed in section 2 are based on a strong enforcement of the
electroneutrality condition (see, e.g., Landstorfer and Jacob [98]), which means that the ENC is
automatically fulfilled at each point of the computational domain. A similar approach is used for
the charge-conservation Nernst-Planck formulation presented in Bauer [18]. On the contrary, the
classical Nernst-Planck formulation utilizing the ENC as an closing equation is based on a weak
enforcement of the ENC as used, e.g., in Bauer et al. [19]. In case of a strong enforcement of
the ENC, it is mathematically sufficient to solve the ion-transport equation of the reactive ionic
species. It only has to be the ion-transport equation of the reactive ionic species to be able to
apply appropriate boundary conditions.

Standard formulation for ion-transport in concentrated binary electrolyte solutions So
far, the ion transport system for concentrated binary electrolyte solutions given in Equ. (4.8) –
Equ. (4.10) is always formulated based on three equations, being the ion-transport equation, an
expression for the current density and charge conservation. It is possible to solve this system
by introducing the current density as an additional primary variable. A positive effect of this
approach is an improved fulfillment of the charge conservation. However, the resulting system
of equations is larger, has a saddle point structure and does not fulfill the inf-sub condition (see,
e.g., Brezzi and Fortin [30]) naturally. Therefore, the ion-transport system is considered in the
following form where the ion-transport equation reads as

ε
∂c̄

e

∂t
+∇ ·N = 0 (6.1)

with the molar flux density defined as

N = −
[ ε
τ
D±(c)∇c̄ e

]
−

[
ε

τ
κ(c)

t+(c)
ν+z+F

∇Φ
e
]

+
[
RT

F 2

ε

τ
κ(c)

ν

ν2
+z

2
+

(
1 +

∂ ln f±(c)
∂ ln c

) (
1− t+(c)

)
t+(c)

∇c̄ e

c̄ e

]
(6.2)

and the charge conservation equation as

∇ ·
(

1
F

i

)
= 0 (6.3)
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with current density density defined as

i = − ε
τ
κ(c)∇Φ

e

+
RT

F

ε

τ
κ(c)

ν

ν+z+

(
1 +

∂ ln f±(c)
∂ ln c

)
(1− t+(c))

∇c̄ e

c̄ e . (6.4)

Here, the charge conservation Equ. (6.3) is divided by the Faraday constant F to ensure a similar
scaling compared to the ion-transport equation. The standard formulation Equ. (6.1) – Equ. (6.4)
is based on Newman and Thomas-Alyea [109]. In accordance to Kontturi et al. [91], this standard
formulation is named Volume-Averaged Diffusion-Conduction (VADC) formulation.

Variation 1 The thermodynamic consistent model introduced by Latz and Zausch [99] and
discussed in section 2.6 is considered with the molar flux density

N = −
[ ε
τ
De(c)∇c̄ e

]
−

[
ε

τ
κ(c)

t+(c)
ν+z+F

∇µ̂R
e

e

z+F

]
+

[
RT

F 2

ε

τ
κ(c)

ν

ν2
+z

2
+

[
ν+

νRT

∂µe

∂c

] (
1− t+(c)

)
t+(c)

∇c̄ e

c̄ e

]

and the current density

i = − ε
τ
κ(c)

∇µ̂R
e

e

z+F
+
RT

F

ε

τ
κ(c)

ν

ν+z+

(
ν+

νRT

∂µe

∂c

)
(1− t+(c))

∇c̄ e

c̄ e .

The implementation of the standard formulation can also be used in this case if the electrostatic
potential Φ

e

is interpreted as µ̂R
e

e

/(z+F ) and the thermodynamic factor X (c) as
(

ν+
νRT

∂µe
∂c

)
.

Variation 2 The Nernst-Planck approach for dilute electrolyte solutions presented, e.g., in
Bauer et al. [19], is reformulated in section 2.5 to a similar form as used for concentrated elec-
trolyte solutions which is in accordance with the dilute limit of the concentrated solution theory.
In this case, the molar flux density is given as

N = −
[ ε
τ
D±∇c̄ e

]
−

[
ε

τ
κ(c)

t+
ν+z+F

∇Φ
e
]

+
[
RT

F 2

ε

τ
κ(c)

(
ν− − νt+
ν2

+z
2
+

)
t+
∇c̄ e

c̄ e

]

and the current density as

i = − ε
τ
κ(c)∇Φ

e

+
RT

F

ε

τ
κ(c)

(
ν− − νt+
ν+z+

) ∇c̄ e

c̄ e .

In the following, this formulation is called Volume-Averaged Dilute Diffusion-Conduction for-
mulation (VADDC).

Variation 3 The first two formulations are based on the volume average of both ion-transport
and the charge conservation equation. However, the same equations can be used when consid-
ering a computational domain consisting of a non-averaged porous medium. In this case, the
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geometrical parameters have to be chosen as ε = 1 and τ = 1. This yields for the volumetric
intrinsic phase average of the concentration c̄ e and the potential Φ̄ e:

c
e
= c,

Φ
e

= Φ.

For simulations without the volume averaging approach introduced in section 3, the VADC for-
mulation is named Diffusion-Conduction (DC) formulation and the VADDC formulation Dilute
Diffusion-Conduction (DDC) formulation.

6.2 Weak formulation

The weak form of a boundary value problem is obtained by the multiplication with appropriate
weighting functions and the subsequent integration over the computational domain Ω. The re-
quirements regarding differentiability of the arising weighted residual formulation are decreased
by a successive partial integration. The resulting weak form of the boundary value problem is
the basis for the spatial discretization procedure performed in the following. The solution of the
weak form are those concentration and potential functions for which the weak formulation is
fulfilled for all admissible weighting functions.

The space Sc of trial functions with respect to the equivalent concentration c satisfying the
Dirichlet boundary condition on ΓD,c is given as

Sc :=
{
c ∈ H1(Ω) | c = g on ΓD,c

}
.

The corresponding space Tc of weighting functions is defined as

Tc :=
{
w ∈ H1(Ω) | w = 0 on ΓD,c

}
.

In addition, the respective spaces of trial and weighting functions for the potential Φ are given
as

SΦ :=
{

Φ ∈ H1(Ω) | Φ = gΦ on ΓD,Φ
}

and

TΦ :=
{
ϕ ∈ H1(Ω) | ϕ = 0 on ΓD,Φ

}
,

where the Dirichlet boundary conditions on ΓD,Φ are also satisfied. The space H1(Ω) is a subset
of the Hilbert space L2(Ω) and denotes the Sobolev space of L2(Ω)-functions possessing a weak
derivative. Note that the concentration c and the potential Φ are only defined up to constant in the
absence of Dirichlet conditions or equivalent boundary conditions such as the electrode kinetic
condition. This is the consequence of the coinciding spaces for trial and weighting functions.
For getting a unique solution, different strategies are conceivable such as the definition of a
reference value at a single point within the domain Ω or alternative solver strategies utilizing,
e.g., the Krylov space projection (see, e.g., Bochev and Lehoucq [26]).
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6.2 Weak formulation

The ion-transport equation given in Equ. (6.1) and the charge conservation in Equ. (6.3) are
multiplied with arbitrary weighting functions w ∈ Tc and ϕ ∈ TΦ, respectively, and integrated
over Ω. As a result, the weighted residual formulations read

∫

Ω
w ε ˙̄c

e
d x +

∫

Ω
w∇ ·N d x = 0 ∀w ∈ Tc, (6.5)

∫

Ω
ϕ∇ ·

(
1
F

i(c,Φ)
)

d x = 0 ∀ϕ ∈ TΦ. (6.6)

The second term of Equ. (6.5) and Equ. (6.6) are integrated by parts resulting in
(
w, ε ˙̄c

e)− (∇w,N)
+

(
w,N · n)

Γ = 0 ∀w ∈ Tc, (6.7)

−
(
∇ϕ, 1

F
i

)
+

(
ϕ,

1
F

i · n
)

Γ
= 0 ∀ϕ ∈ TΦ. (6.8)

Here, (·, ·) denotes the L2-inner product in Ω and (·, ·)Γ the L2-inner product on the boundary
Γ of Ω. As introduced in section 2.1, the boundary conditions Equ. (2.1) and Equ. (2.4) on the
boundary partition Γ = ΓD ∪ ΓN ∪ ΓE and Γ = ΓD,Φ ∪ ΓN,Φ ∪ ΓE,Φ are inserted. In addition,
the property w = 0 is used on ΓD and ϕ = 0 on ΓD,Φ. As a result, the final weak formulation of
the binary ion-transport system can be written as

(
w, ε ˙̄c

e)− (∇w,N)− (
w, j(c,Φ)

)
ΓE

= (w, h)ΓN
∀w ∈ Tc, (6.9)

−
(
∇ϕ, 1

F
i

)
−

(
ϕ,

1
F
in(c,Φ)

)

ΓE,Φ

=
(
ϕ,

1
F
hΦ

)

ΓN,Φ

∀ϕ ∈ TΦ. (6.10)

In accordance to the notation used in Equ. (6.7) and Equ. (6.8), the L2-inner product with re-
spect to ΓN, ΓE, ΓN,Φ and ΓE,Φ are denoted by (·, ·)ΓN

, (·, ·)ΓE
, (·, ·)ΓN,Φ

and (·, ·)ΓE,Φ
, respectively.

Using Equ. (6.2), the second term in Equ. (6.9) can be reformulated to

− (∇w,N)
=

(
∇w,

[ ε
τ
D±(c)∇c̄ e

])
+

(
∇w,

[
ε

τ
κ(c)

t+(c)
ν+z+F

∇Φ
e
])

− (6.11)
(
∇w,

[
RT

F 2

ε

τ
κ(c)

ν

ν2
+z

2
+

(
1 +

∂ ln f±(c)
∂ ln c

) (
1− t+(c)

)
t+(c)

∇c̄ e

c̄ e

])
.

Equivalently, the first term in Equ. (6.10) can be expressed as

−
(
∇ϕ, 1

F
i

)
=

(
∇ϕ,

[
− 1
F

ε

τ
κ(c)∇Φ

e
])

−
(
∇ϕ,

[
RT

F 2

ε

τ
κ(c)

ν

ν+z+

(
1 +

∂ ln f±(c)
∂ ln c

)
(1− t+(c))

∇c̄ e

c̄
e
+

])
,

using Equ. (6.4). Note that the molar flux boundary conditions on ΓN,c, ΓE,c and the current
boundary conditions on ΓN,Φ, ΓE,Φ are naturally fulfilled assuming sufficiently smooth solution
functions. This is an inherent characteristic of the weak form as demonstrated, e.g., in Bauer
et al. [19].
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To sum up, the entire weak formulation of the binary ion-transport system reads as follows:
find c ∈ Sc and Φ ∈ SΦ, such that

(
w, ε ˙̄c

e)
+

(
∇w,

[ ε
τ
D±(c)∇c̄ e

])
+

(
∇w,

[
ε

τ
κ(c)

t+(c)
ν+z+F

∇Φ
e
])

−
(
∇w,

[
RT

F 2

ε

τ
κ(c)

ν

ν2
+z

2
+

(
1 +

∂ ln f±(c)
∂ ln c

) (
1− t+(c)

)
t+(c)

∇c̄ e

c̄ e

])
− (6.12)

(w, j)ΓE
= (w, h)ΓN

∀w ∈ Tc,

(
∇ϕ,

[
1
F

ε

τ
κ(c)∇Φ

e
])

−
(
∇ϕ,

[
RT

F 2

ε

τ
κ(c)

ν

ν+z+

(
1 +

∂ ln f±(c)
∂ ln c

)
(1− t+(c))

∇c̄ e

c̄
e
+

])
− (6.13)

(
ϕ,

1
F
in

)

ΓE,Φ

=
(
ϕ,

1
F
hΦ

)

ΓN,Φ

∀ϕ ∈ TΦ.

In a more compact formulation, Equ. (6.12) and Equ. (6.13) can be written as

BM(w, c,Φ)− I(w, c,Φ) = F(w) ∀w ∈ Tc, (6.14)
BC(ϕ, c,Φ)− IC(ϕ, c,Φ) = FC(ϕ) ∀ϕ ∈ TΦ, (6.15)

where the following notation is used:

BM(w, c,Φ) :=
(
w, ε ˙̄c

e)
+

(
∇w,

[ ε
τ
D±(c)∇c̄ e

])
+

(
∇w,

[
ε

τ
κ(c)

t+(c)
ν+z+F

∇Φ
e
])

−
(
∇w,

[
RT

F 2

ε

τ
κ(c)

ν

ν2
+z

2
+

(
1 +

∂ ln f±(c)
∂ ln c

) (
1− t+(c)

)
t+(c)

∇c̄ e

c̄ e

])
,

IM(w, c,Φ) :=(w, j(c,Φ))ΓE
,

FM(w) :=(w, h)ΓN
,

BC(ϕ, c,Φ) :=
(
∇ϕ,

[
1
F

ε

τ
κ(c)∇Φ

e
])

−
(
∇ϕ,

[
RT

F 2

ε

τ
κ(c)

ν

ν+z+

(
1 +

∂ ln f±(c)
∂ ln c

)
(1− t+(c))

∇c̄ e

c̄ e

])
,

IC(ϕ, c,Φ) :=
(
ϕ,

1
F
in(c,Φ)

)

ΓE,Φ

,

and

FC(ϕ) :=
(
ϕ,

1
F
hΦ

)

ΓN,Φ

. (6.16)
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As discussed in section 2.7, the current density i and the molar flux density N are related
to each other by Equ. (2.93). As a consequence, the boundary terms IM(w, c,Φ) and IC(w, c,Φ)
as well as FM(w, c,Φ) and FC(w, c,Φ) are correlated by the following relations:

IC(w, c,Φ) = ν+z+IM(w, c,Φ), (6.17)
FC(w, c,Φ) = ν+z+FM(w, c,Φ). (6.18)

Note that the Faraday constant F is missing in both equations since the charge conservation
equation given in Equ. (6.3) is already scaled with the Faraday constant. The inherent coupling
of molar fluxes and current densities has to be considered for the application of boundary condi-
tions. This is straight forward for flux conditions where the corresponding, scaled molar fluxes or
current densities have to be applied on the respective boundaries. In case of Dirichlet conditions,
the situation is more complex since the molar flux or current density at the Dirichlet boundaries
ΓD,c and ΓD,Φ are not known a priori. However, the weak form of the ion-transport system pro-
vides a method to calculate the molar and current flux densities at the Dirichlet boundaries. A
comprehensive overview over a consistent flux calculation is provided, e.g., in Gresho et al. [73]
or Bauer [18]. Based on Equ. (6.7) and Equ. (6.8), the molar flux density at ΓD,c and the current
density at ΓD,Φ are given as

(
w,N · n)

ΓD
= −BM(w, c,Φ) (6.19)

and
(
ϕ,

1
F

i · n
)

ΓD,Φ

= −BC(ϕ, c,Φ), (6.20)

respectively. As a result, the molar flux density resulting from a Dirichlet condition on ΓD,c can
be prescribed as a Neumann condition on ΓN,Φ to ensure a consistent coupling between the molar
flux and the current density. The same concept can be applied to a Dirichlet condition on ΓD,Φ.

6.3 Standard Galerkin formulation

In the following, the standard Galerkin finite element method is used for the spatial discretization
of the weak form of the binary ion-transport system given in Equ. (6.14) and Equ. (6.15). The
Galerkin approximation restricts the function spaces to finite-dimensional subspaces T h

{c,Φ} ⊂
T{c,Φ} and Sh

{c,Φ} ⊂ S{c,Φ} resulting in a discrete version of the weak form. The standard Galerkin
finite element formulation reads: find ch ∈ Sh

c and Φh ∈ Sh
Φ such that

BM(wh, ch,Φh)− IM(wh, ch,Φh) = FM(wh) ∀wh ∈ T h
c , (6.21)

BC(ϕh, ch,Φh)− IC(ϕh, ch,Φh) = FC(ϕh) ∀ϕh ∈ T h
Φ . (6.22)

The computational domain Ω is discretized with nel non-overlapping domains Ωe, the so-called
finite elements, whereas each finite element consists of nnode nodal points. Based on this spatial
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discretization, the finite element approximation ch to the concentration c is given as

ch =
nnode∑
i=1

Nh
i c̃i,

where c̃i denotes the unknown concentration value at node i and Nh
i the shape function associ-

ated to node i. A similar approximation is used for the potential Φh

Φh =
nnode∑
i=1

Nh
i Φ̃i,

where Φ̃i is the unknown potential value at node i. Identical shape functions are used for all
solution variables. A more detailed discussion of the finite element method, in general, is pro-
vided, e.g., in Zienkiewicz et al. [161]. A specific introduction for scalar transport problems with
convective flow is given in Donea and Huerta [52] or Zienkiewicz et al. [162], for instance.

In this work, the stabilized finite element formulation for multi-ion transport proposed in
Bauer et al. [20] is not considered since convective transport can usually be neglected as a rel-
evant transport mechanism in typical battery applications. In addition, the so-called ’migration
velocity’ resulting from the migration term in the dilute solution theory does not show up in
the present formulation. Even if an additional convective transport has to be considered for bat-
tery applications in the future, there is hardly any application addressing convection-dominated
ion-transport in concentrated electrolyte solutions. However, there is no technical reason against
the application of the residual-based variational multiscale finite element method to the present
framework.

6.4 Time discretization

In this contribution, the generalized-alpha time-integration scheme for a first-order system pro-
posed in Jansen et al. [87] is used for the discretization in time of Equ. (6.21) and (6.22). Origi-
nally, the generalized-alpha time-integration scheme was introduced for structural dynamics by
Chung and Hulbert [43]. In Bauer et al. [21], the time-integration scheme was already applied
successfully to the ion-transport equations in dilute electrolyte solutions. A big advantage of this
time-integration scheme is the inherent incorporation of several well-known and popular time
integration schemes as special cases as discussed, e.g., in Gamnitzer [65].

The basic principle of the generalized-alpha time-integration scheme is demonstrated based
on the general, ordinary differential equation of the order one

∂

∂t
y(t) = f(y(t), t) (6.23)

in combination with the initial values for the solution y(t0 = 0). The time period of interest
[0, Tend] is divided into n time steps with the constant interval ∆t. The next time value tn+1 is
related to the previous time tn by tn+1 = tn + ∆t. In the generalized-alpha time-integration
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scheme, two additional intermediate time levels with the parameters αm and αf are introduced:

tn+αf = (1− αf)tn + αf t
n+1,

tn+αm = (1− αm)tn + αm t
n+1.

As a result, Equ. (6.23) can be discretized as

ẏn+αm = f(yn+αf , tn+αf), (6.24)

ẏn+αm = (1− αm)ẏn + αm ẏ
n+1, (6.25)

yn+αf = (1− αf)yn + αf y
n+1, (6.26)

yn+1 = yn + ∆t((1− γ)ẏn + γ ẏn+1) (6.27)

At this point, a third parameter γ is introduced. For a stable method, the relation αm ≥ αf ≥ 0.5
has to be fulfilled as shown in Jansen et al. [87].

The so-called ρ∞-family introduced in Jansen et al. [87] is a second-order accurate method
characterized by the single parameter ρ∞. Hence, the parameters αm, αf and γ are defined based
on this parameter ρ∞:

αm =
1
2

(
3− ρ∞
1 + ρ∞

)
, αf =

1
1 + ρ∞

and γ =
1
2

+ αm − αf.

The last relation is essential to satisfy second-order accuracy for the generalized-alpha time-
integration scheme, in general. A typical value for the parameter ρ∞ ∈ [0; 1] is ρ∞ = 0.5
which is used throughout this contribution. As a result of this choice, the three parameters of the
generalized-alpha time-integration scheme are given as αm = 5/6, αf = 2/3 and γ = 2/3.

The application of generalized-alpha time-integration scheme to Equ. (6.21) and Equ. (6.22)
gives

BM(wh, ch,n+αm , ch,n+αf ,Φh,n+αf)− IM(wh, ch,n+αf ,Φh,n+αf) = FM(wh) ∀wh ∈ T h
c , (6.28)

BC(ϕh, ch,n+αf ,Φh,n+αf)− IC(ϕh, ch,n+αf ,Φh,n+αf) = FC(ϕh) ∀ϕh ∈ T h
Φ , (6.29)

where the term including the time derivative of the concentration c is evaluated at the intermedi-
ate time level n+αm. The solution variables of all remaining terms in Equ. (6.28) and Equ. (6.29)
are evaluated at the intermediate time level n + αf. The residuals RM(wh, ch,n+1,Φh,n+1) and
RC(ϕh, ch,n+1,Φh,n+1) of the fully discretized standard Galerkin formulation are defined as

RM(wh, ch,n+1,Φh,n+1) := B(wh, ch,n+αm , ch,n+αf ,Φh,n+αf)−
I(wh, ch,n+αf ,Φh,n+αf)−F(wh) = 0 ∀wh ∈ T h

c , (6.30)

RC(ϕh, ch,n+1,Φh,n+1) := BC(ϕh, ch,n+αf ,Φh,n+αf)−
IC(ϕh, ch,n+αf ,Φh,n+αf)−FC(ϕh) = 0 ∀ϕh ∈ T h

Φ , (6.31)

where the intermediate time levels n+ αm and n+ αf are summarized in the time level n+ 1.
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6 Computational approach

6.5 Nonlinear solution procedure

For the following presentation of the nonlinear solution procedure, a solution vector z = {c̃, Φ̃}
containing all concentration and potential degrees of freedom is defined. A Newton-Raphson
scheme is used to solve the residuals of the time discretized standard Galerkin formulation given
in Equ. (6.30) and (6.31):

∂F (zn+1
i )

∂zn+1

∣∣∣
zn+1

i

∆zn+1
i = −F (zn+1

i ). (6.32)

Here, F (z) contains the residuals of the ion-transport equation and charge conservation given
in Equ. (6.30) and Equ. (6.31) in matrix notation. The increment vector ∆zn+1

i of the iteration i
determined by the linear equation system given in Equ. (6.32) is used to calculate the solution
vector zn+1

i+1 of the next iteration step i+ 1:

zn+1
i+1 = ∆zn+1

i + zn+1
i .

The binary ion-transport system at time step n+ 1 reads

F (zn+1
i ) =

[
RM

(
cn+1

i ,Φn+1
i

)
RC

(
cn+1

i ,Φn+1
i

)
]

=
[

0
0

]
with zn+1

i =
[

cn+1
i

Φn+1
i

]
, (6.33)

where RM
(
cn+1

i ,Φn+1
i

)
is defined as

RM
(
cn+1

i ,Φn+1
i

)
= Mċn+αm

i + D
(
cn+αf

i

)
+ OM

(
cn+αf

i ,Φn+αf
i

)−
CM

(
cn+αf

i

)− IM
(
cn+αf

i ,Φn+αf
i

)− fn+αf
N (6.34)

and RC
(
cn+1

i ,Φn+1
i

)
as

RC
(
cn+1

i ,Φn+1
i

)
= OC

(
cn+αf

i ,Φn+αf
i

)−CC
(
cn+αf

i

)−
IC

(
cn+αf

i ,Φn+αf
i

)− fn+αf
N,Φ . (6.35)

Here, M denotes the mass matrix. The matrices D
(
cn+αf

i

)
, OM

(
cn+αf

i ,Φn+αf
i

)
and CM

(
cn+αf

i

)
result from the respective terms in Equ. (6.12). Contributions emanating from electrode kinetic
conditions and Neumann conditions are denoted by IM

(
cn+αf

i ,Φn+αf
i

)
and fn+αf

N,Φ , respectively.
The matrices OC

(
cn+αf

i ,Φn+αf
i

)
and CC

(
cn+αf

i

)
arise from the first two terms of the Equ. (6.13).

The matrix IC
(
cn+αf

i ,Φn+αf
i

)
and the vector fn+αf

N,Φ are the result of kinetic electrode conditions
and Neumann conditions. Note that, as a result of the relations given in Equ. (6.17) and (6.18),
the matrices IC

(
cn+αf

i ,Φn+αf
i

)
and IM

(
cn+αf

i ,Φn+αf
i

)
as well as the vectors fn+αf

N,Φ and fn+αf
N are

related to each other if kinetic boundary conditions or Neumann conditions are defined at the
boundary of the computational domain Ω. As explained in section 6.2, the effect of a Dirichlet
condition on ΓD,c or ΓD,Φ on the respective charge conservation or ion-transport equation is
incorporated into the numerical solution scheme.
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6.6 Galvanostatic constraint condition

As a result, the final linear system of equations solved in each iteration step i can be written
as




M + αf
γ∆t
αm

Kn+1
wc,i αf

γ∆t
αm

Kn+1
wΦ,i

αf
γ∆t
αm

Kn+1
ϕc,i αf

γ∆t
αm

Kn+1
ϕΦ,i







∆cn+1
i

∆Φn+1
i


 = −




γ∆t
αm

RM
(
cn+1

i ,Φn+1
i

)

γ∆t
αm

RC
(
cn+1

i ,Φn+1
i

)


 , (6.36)

where the matrices are defined as

Kn+1
wc,i =

∂

∂cn+1

[
D

(
cn+αf

i

)
+ OM

(
cn+αf

i ,Φn+αf
i

)−CM
(
cn+αf

i

)− IM
(
cn+αf

i ,Φn+αf
i

) ]
,

Kn+1
wΦ,i =

∂

∂Φn+1

[
OM

(
cn+αf

i ,Φn+αf
i

)− IM
(
cn+αf

i ,Φn+αf
i

) ]
,

Kn+1
ϕΦ,i =

∂

∂cn+1

[
OC

(
cn+αf

i ,Φn+αf
i

)−CC
(
cn+αf

i

)− IC
(
cn+αf

i ,Φn+αf
i

) ]
,

Kn+1
ϕc,i =

∂

∂Φn+1

[
OC

(
cn+αf

i ,Φn+αf
i

)− IC
(
cn+αf

i ,Φn+αf
i

) ]
.

As stated, e.g., in Gravemeier and Wall [72], the time integration factors γ∆t
αm

and αf
γ∆t
αm

of the
generalized-alpha time-integration scheme result from the Newton-Raphson linearization of the
intermediate time levels with respect to the time level n+ 1:

∂ċn+αm

∂cn+1 =
∂ċn+αm

∂ċn+1

∂ċn+1

∂cn+1 =
αm

γ∆t
,

∂cn+αf

∂cn+1 = αf and
∂Φn+αf

∂Φn+1 = αf.

These relations are derived based on Equ. (6.25) – Equ. (6.27). The whole linear system of
equations given in Equ. (6.36) is scaled with γ∆t

αm
to ensure a mass matrix M without additional

scaling factors.
The linear equation system defined by Equ. (6.36) can be solved using iterative Krylov

methods (see, e.g., Saad [129]), combined with algebraic multigrid preconditoners (see, e.g.,
U. Trottenberg [141]). Compared to an ion-transport system closed by the mathematical elec-
troneutrality condition resulting in a saddle-point structure of the linear equation system as dis-
cussed, e.g., in Bauer [18], no special solution strategies are required for the considered linear
system of equations.

6.6 Galvanostatic constraint condition

For galvanostatic problems, the polarization current Ip(t) passing an electrochemical system is
prescribed. In experiments, an external control device is used to continually adjust the applied
cell voltage to the prescribed current curve. The continuous adjustment of the cell voltage also
has to be realized numerically within the computational approach. In the following, the focus is
on galvanostatic applications, for which the polarization current is kept constant over time.

As outlined in section 2.1, the boundary ΓE can be subdivided into any number of cathodic
and anodic parts representing the electrode surfaces. In the following, an exclusive decompo-
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6 Computational approach

Algorithm 1 Galvanostatic constraint condition

Solve ion-transport system Equ. (6.32)
Compute ∆ΦC

i,j,∆ΦA
i,jand∆Φ e

i,j:

∂RC
E

(
ΦC

i,j

)

∂ΦC

∣∣∣∣∣
ΦC

i,j

∆ΦC
i,j = −RC

E

(
ΦC

i,j

)
(6.37)

∂RA
E

(
ΦA

i,j

)

∂ΦA

∣∣∣∣∣
ΦA

i,j

∆ΦA
i,j = −RA

E

(
ΦA

i,j

)
(6.38)

∆Φ e

i,j ≈ Ri,j∆In,i,j

Check convergence: |∆ΦC
i,j + ∆ΦA

i,j + ∆Φ e

i,j| ≤ εGCC,

|RC
E

(
ΦC

i,j

) | ≤ εR and |RA
E

(
ΦA

i,j

) | ≤ εR (6.39)

Update: Ui,j+1 = Ui,j + ∆Ui,j (6.40)

sitions based on two electrodes, a cathode ΓC
E and an anode ΓA

E is considered. However, the
consideration of any number of electrode surfaces does not pose a problem for the presented
computational approach. Each electrode surface represents an equipotential surface on the metal
side of the corresponding metal-solution interface. The electric potential on the metal side of
the cathode ΓC

E and anode ΓA
E are denoted by ΦC and ΦA, respectively. The overall cell voltage

U = ΦA − ΦC resulting from the Faradaic current In follows the prescribed current Ip. Thus, at
each time t, the following equations have to be satisfied both at the cathode and anode surface,
respectively:

RC
E

(
ΦC)

:= Ip − IC
n

(
ΦC)

= Ip −
∫

ΓC
E

iCn
(
ΦC)

dS = 0 on ΓC
E × (0, Tend), (6.41)

RA
E

(
ΦA)

:= Ip − IA
n

(
ΦA)

= Ip −
∫

ΓA
E

iAn
(
ΦA)

dS = 0 on ΓA
E × (0, Tend), (6.42)

where In = IC
n = IA

n has to hold to ensure charge conservation. The current Ip can also be ex-
pressed as the mean current density ip = Ip/A where A denotes the respective electrode surface.
The superscript n+ 1 indicating the current time step is not used in this section to simplify nota-
tion. For the case of only one reactive ionic species and a single electrochemical reaction process,
the Faradaic current density in normal to an electrode surface is given by any reaction model de-
fined in section 2.7. Note that Equ. (6.41) and Equ. (6.42) are nonlinear since in depends on all
governing equations of the electrochemical system given in Equ. (6.1) and Equ. (6.3), including
nonlinear bulk and boundary equations. From a computational point of view it is convenient to
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6.6 Galvanostatic constraint condition

set ΦA = 0 V to define a zero level for the electric potential. Given that, U = −ΦC represents
the only additional degree of freedom within the considered Galvanostatic Constraint Condition
(GCC). Based on a Newton-Raphson scheme, increments ∆ΦC

i,j , ∆ΦA
i,j and ∆Φ e

i,j are computed
iteratively, yielding the new overall cell potential

Ui,j+1 = −ΦC
i,j+1 = −ΦC

i,j︸ ︷︷ ︸
=Ui,j

+ ∆ΦC
i,j + ∆ΦA

i,j + ∆Φ e

i,j︸ ︷︷ ︸
=:∆Ui,j

,

until convergence is achieved, as shown in Algorithm 1.
After solving the ion-transport system Equ. (6.36), the new overall cell potential needs to

be evaluated. Therefore, the potential increments ∆ΦC
i,j and ∆ΦA

i,j depending on the results of
the ion-transport solver in GCC iteration j are determined via Equ. (6.37) and Equ. (6.38). An
additional potential increment ∆Φ e

i,j accounting for the potential drop within the electrolyte so-
lution is also necessary to preserve a fast convergence rate of the applied overall cell potential
Ui,j+1. This predictor step is particularly important for electrolyte solutions with a high potential
drop within the electrolyte as it is the case for rather long distances between the electrodes or
electrolyte solutions with a rather low ionic conductivity. The electrical resistance of an elec-
trolyte solution can be approximated by Ohm’s law, including a one-dimensional projection of
the two-dimensional or three-dimensional domain:

∆Φ e

i,j ≈
τ

εκ

L

A︸ ︷︷ ︸
Ri,j

(−Ip + In,i,j︸ ︷︷ ︸
∆In,i,j

). (6.43)

Here, κ is the specific conductivity of the bulk electrolyte solution,A the area of an electrode, and
generally, L the average length of the electric field lines (for simple geometries, L is the inter-
electrode distance). For this preconditioner, the electrical resistance Ri,j is constant Ri,j = R
since the conductivity is computed once in the beginning assuming a uniform concentration
level. Conductivity variations in the electrolyte solution due to concentration variations in the
vicinity of the electrode are neglected in this approximation. Thus, this approach is only valid
for small concentration variations across the electrolyte solutions. For significant concentration
variations, the approximation given in Equ. (6.43) underestimates the potential drop which re-
sults in an increased number of GCC iterations. This becomes particularly important if the ap-
plied current density is close to the limiting current. Therefore, the constant conductivity κ used
for the calculation of the resistance Ri,j in Equ. (6.43) is replaced by the volume average of
the concentration dependent conductivity κ(c) to improve the quality of the predicted potential
increment:

Ri,j =
L

A

1
V

∫

Ω

τ

εκ(c)
d x. (6.44)

Here, a one-dimensional projection of the two-dimensional or three-dimensional domain is also
used as in Equ. (6.43) which requires a basic knowledge about the average length of the electric
field lines L in the beginning of the simulation. For simple domains the length L is usually
known but it can only be approximated for complex geometries.
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t  n+1

t  n

Ion-Transport Solver

Galvanostatic constraint

i,ji,jU     = U    + ΔU i,j+1

n+1 n+1 n+1

Figure 6.1: Numerical solution scheme for the galvanostatic constraint condition.

The length L is not necessary if the resistance Ri,j is calculated according to

Ri,j =
∆Φi,j

In,i,j

. (6.45)

In this third variant, all effects such as geometry, ohmic potential drop and concentration over-
potentials are included automatically which should result in an optimal prediction for the new
cell potential Ui,j+1. Here, the current flow In,i,j based on the previous GCC iteration is used for
a consistent calculation of the resistance Ri,j .

After determining Ui,j+1 in the update step given in Equ. (6.40) and if not converged, the
ion-transport system Equ. (6.36) has to be solved again to compute the new current In,i,j+1 and
the resulting variations in all solution variables caused by the new overall cell voltage Ui,j+1. The
GCC iteration is terminated when the absolute value of the computed voltage increment falls
below a user-specified tolerance εGCC or the absolute L2 error norm of the residuals |RC

E

(
ΦC

i,j

) |
and |RA

E

(
ΦC

i,j

) | is smaller than εR, where εR denotes the tolerance for the residual norm. To
proceed to the next time step, both the criteria for terminating the outer iteration loop and the
GCC have to be fulfilled. The iterative scheme for a computation including the GCC is shown in
Fig. 6.1.

The proposed methodology works also for simpler cases, for example, when neglecting con-
tributions due to anode overpotential ∆ΦA

i,j+1 and ohmic drop ∆Φ e

i,j . However, as a consequence,
very slow convergence can be observed for particular configurations, since the computed voltage
increment is considerably underestimated if not all potential increments are considered. In the
presented method, a temporal or spatial distribution of the local current density is not assumed;
only the total amount of current is controlled. This galvanostatic control can be easily added to
already existing electrochemical solution schemes, just introducing a GCC loop. The evaluation
of In and its derivative represent the only additional evaluations in the galvanostatic solution
procedure.

A potential future extension would be a simultaneous solution of the equation for U and all
governing equations of the electrochemical problem. This would result in a monolithic solution
approach for galvanostatic applications with U as an additional degree of freedom. In that case,
no nested solution loops would be required.
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7 Numerical examples

In this chapter, various numerical examples are presented to demonstrate the robustness and the
accuracy of the computational method introduced in section 6. In addition, the general applica-
bility of the computational method to miscellaneous problems such as one-dimensional volume
averaged simulations of porous media or simulations of complex three-dimensional geometries
is proven in this section.

This chapter is organized as follows. In the beginning, some generally valid simulation
parameters are introduced which are used throughout this contribution. In section 7.2, the Di-
lute Diffusion-Conduction (DDC) formulation is compared with two different computational
methods for dilute electrolyte solutions presented in Bauer et al. [19] using a three-dimensional
example with a known analytical solution. It is shown that all three computational methods yield
the same results, but the efficiency is different. In section 7.3, the optimal convergence rate of the
Volume Averaged Diffusion-Conduction (VADC) scheme is demonstrated for a one-dimensional
problem. In section 7.4, the VADC formulation is compared with numerical results presented in
Thorat et al. [140]. In addition, the numerical efficiency of the galvanostatic constraint condition
proposed in section 6.6 is investigated. The different methods for the determination of the diffu-
sion coefficient and the transference number introduced in section 5 are evaluated in section 7.5.
These examples can also be considered as numerical validation of the VADC formulation. The
applicability of the Diffusion-Conduction (DC) formulations for complex three-dimensional ge-
ometries is demonstrated in section 7.6.

7.1 General simulation procedures and parameters

The following simulation procedures and parameters are used for the simulations presented in
this chapter if not explicitly mentioned otherwise. The computational domain is always dis-
cretized by linear finite elements. For three-dimensional problem setups, hexahedral elements
with tri-linear shape functions are used. Two-dimensional geometries are discretized by bilin-
early interpolated quadrilateral elements and a one-dimensional domain is meshed with linearly
interpolated line elements. For all simulations presented in this section, the second-order accurate
generalized-alpha time-integration scheme presented in section 6.4 is used. The three parameters
of this time-integration scheme are αm = 5/6, αf = 2/3 and γ = 2/3. In all simulations, the
following units are used for the amount of substance, current, voltage, space and time: µmol,
µA, V, mm and s.

With the exception of the numerical example presented in section 7.2, all simulations are
based on lithium salts with stoichiometry ν+ = ν− = 1 and charge numbers z+ = −z− = 1.
As a result, the concentration of the cation, the anion and the salt are equivalent, i.e., c+ = c− =
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c. This simplification is quite realistic since many of the lithium-based salts as, e.g., LiClO4,
LiAsF6, LiBF4 and LiPF6 fulfill this condition.

Since the initial transients in experiments are important, e.g., for the determination of trans-
port parameters, it is crucial to model them correctly in numerical simulations. If required, a
simulation is started with a kick-start, although the application of the full load at t = 0 is nu-
merically more challenging than ramping it up slowly. For such a kick-start, the initial time step
size ∆t has to be very small. The time step is increased later in discrete steps. Additionally, it is
beneficial to calculate the initial time derivative ċ at t = 0 based on the relation

ε
∂c̄

e

∂t
= −∇ ·N(c,Φ),

using all BCs, the initial concentration field c
e

0 and a consistent potential field Φ
e

0 determined by
Equ. (6.3).

An important method for the determination of transport parameters is based on relaxation
experiments. In such experiments, the polarization phase induced by the application of a po-
larization current Ip or potential Up is followed by a relaxation phase with no-flux boundary
conditions at the cathode and the anode. The polarization phase always obeys a Butler-Volmer
law of the form Equ. (2.97) describing the kinetic effects at the electrode surfaces. The transfer
form polarization to relaxation at the current interruption time TI is realized by a restart from
the last time step during the polarization phase with the original BCs replaced by no-flux BCs.
During the relaxation process, the uniqueness of the numerical solution for the potential field is
guaranteed by the Krylov space projection as introduced in Bochev and Lehoucq [26]. The ad-
vantage of this method is that the reference level of the potential field after current interruption
is defined by the potential field before current interruption. However, the time step size has to be
very small to avoid oscillations in the potential field.

In all simulations, an iterative Krylov solver with an algebraic multigrid preconditioner is
used for solving the linear system of equations

7.2 Transient three-dimensional diffusion-migration problem
for dilute electrolytes

As explained in section 2, the dilute solution theory is a special case of the concentrated solution
theory with a constant diffusion coefficientD±, transference number t+ and thermodynamic fac-
tor

(
1 + ∂ ln f±

∂ ln c

)
= 1. Additionally, the potential Φ has to be defined with respect to the negative

ionic species present in the electrolyte solution. In this special case, the analytical solution for
the three-dimensional transient diffusion-migration problem introduced in Bauer et al. [19] can
be used to validate the basic implementation of the concentrated solution theory. Therefore, the
standard Galerkin DDC formulation is compared to the standard Galerkin formulations of the
Electroneutrality-Nernst-Planck (ENP) and Charge-conservation Nernst-Planck (CNP) systems
introduced in Bauer et al. [19] and Bauer [18].

The transient diffusion-migration problem presented in Bauer et al. [19] can be described
as a relaxation process starting from predefined initial concentration fields c+,0 and c−,0 with
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7.2 Transient three-dimensional diffusion-migration problem for dilute electrolytes

(a) Initial concentration field c+,0. (b) Initial potential field Φ0.

Figure 7.1: Initial concentration field c+,0 and potential field Φ0 for the transient three-dimensional ion-
transport problem with element length h = 0.05.

zero-flux conditions at all boundaries and for all ionic species. The time-dependent relaxation
process of the concentration field c+ is described by the relation

c+(x, y, z, t) = 2.0 + cos(πx)cos(2πy)cos(3πz) exp(−14D±π2t),

where x, y and z denote the spatial coordinates, t the time and D± the binary diffusion coeffi-
cient. As a result of the ENC, the analytical solution for the concentration field c− is

c−(x, y, z, t) = −z+

z−
c+(x, y, z, t).

Note that the concentration c− of the negative ionic species is only a solution variable in the
ENP formulation, but not in the DDC and CNP formulations. The potential field Φ can also be
calculated from the concentration field c+ by the relation

F

RT
Φ(x, y, z, t) =

(
ν− − νt+
ν+z+

)
ln

(
c+(x, y, z, t)
c+(0, 0, 0, t)

)
. (7.1)

Compared to the formulation given in Bauer et al. [19], the analytical solution for the potential
field Φ is reformulated to be consistent with the DDC formulation. As in the original publication,
the factor F/RT is assumed to be 1.0. In contrast to the definition given in section 7.1, a different
salt with stoichiometry ν+ = 2, ν− = 1 and charge numbers z+ = 1, z− = −2 is used. The
initial concentration field c+,0 is given in Tab. 7.1 and depicted in Fig. 7.1(a). The initial potential
field Φ0 shown in Fig. 7.1(b) can be calculated from Equ. (7.1). The remaining parameters such
as geometrical dimensions, discretization and transport parameters are summarized in Tab. 7.1.

Spatial convergence is investigated for five uniform discretizations with characteristic ele-
ment lengths h = 0.2, h = 0.1, h = 0.05, h = 0.025 and h = 0.0125 utilizing absolute errors
||ch+ − c+||L2(Ω) and ||Φh − Φ||L2(Ω) based on the L2-norm. The results are depicted in Fig. 7.2.

107



7 Numerical examples

Table 7.1: Dimensionless simulation parameters for the transient three-dimensional diffusion-migration
problem based on the dilute solution theory.

Computation domain Ω (0, 1)3

Number of elements 53, 103, 203, 403, 803

Element size h 0.2, 0.1, 0.05, 0.025, 0.0125

Porosity ε 1

Tortuosity τ 1

Initial concentration c+,0 2.0 + cos(πx)cos(2πy)cos(3πz)

Time step ∆t 0.005

End time Tend 0.1

Charge numbers zk z+ = 1, z− = −2

Stoichiometry ηk η+ = 2, η− = 1

Diffusion coefficient D± 2.4 · 10−3

Transference number t+ 0.2

Thermodynamic factor
(

1 + ∂ ln f±
∂ ln c

)
1

Conductivity κ
F 2

RT
10.0 · 10−3c

Both the concentration c+ and the potential Φ computed with the DDC and ENP formulations
exhibit a second-order convergence rate. Additionally, the absolute errors produced by the DDC
and ENP formulations are equal within the chosen tolerance 10−12 for the linear solver and the
Newton iteration. The same results are also obtained for the CNP formulation. This is expected
since the DDC, ENP and CNP formulations are analytically equivalent. In this contribution,
temporal convergence is not explicitly investigated since the numerical results are identical for
simulations with different time step sizes ∆t. This indicates that the implementations of the three
formulations are absolutely equivalent.

In a next step, the computational efficiency of the three formulations is estimated and com-
pared to each other. The numbers are based on discretizations with 203 and 403 elements. The
most efficient formulation with respect to element evaluation time is the CNP formulation. The
ENP formulation is about a factor 1.4 slower than the CNP formulation, and the DDC formu-
lation is about a factor 2.05 slower. The reason for the difference between the CNP and ENP
formulations is that the ENP formulation is based on three Degrees Of Freedom (DOF) per node
(c+, c− and Φ) whereas the CNP formulation is only based on two DOF per node (c+ and Φ). In
case of the DDC formulation, the element evaluation time is increased compared to the CNP and
ENP formulations since the same implementation is used as for the DC formulation involving
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Figure 7.2: Spatial convergence of the abslute error of the concentration field c+ and the electric potential
field Φ over the element size h.

concentration dependent transport parameters as shown in Equ. (6.1) – Equ. (6.4). As a result,
the computational costs for the complete linearization of all terms are much higher. This effect
even dominates the decreased number of DOF as compared to the ENP formulation. The effi-
ciency of the DDC and DC formulations could be increased by exploiting similarities between
the second terms on the right-hand sides in Equ. (6.2) and (6.4) in the implementation. The av-
eraged number of linear iterations per Newton iteration is comparable for the DDC and CNP
formulation amounting to 18.55 and 18.25 linear iterations, respectively. The ENP formulation
requires about 48.5 linear iterations per Newton step until the solution is converged. The ENP
formulation is based on a weak enforcement of the ENC and yields a saddle point system requir-
ing special solution strategies. By contrast, the element matrices resulting from the DDC and
CNP formulations are completely filled due to the strong enforcement of the ENC allowing the
usage of standard non-linear solvers. Improved solution strategies for saddle point systems may
reduce the number of linear iterations required for the ENP formulation. All three formulations
converge within three Newton iterations. The same qualitative behavior of the element evalu-
ation time and number of linear iterations can also be observed in other numerical examples,
although the absolute numbers may be different.
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7 Numerical examples

7.3 Transient one-dimensional ion-transport problem for
concentrated electrolytes

In the previous section, it is demonstrated that the Dilute Diffusion-Conduction (DDC) formu-
lation gives the same results as the dilute solution theory presented in Bauer et al. [19]. The
standard Diffusion-Conduction (DC) formulation is based on the same implementation where
all transport parameters are potentially concentration dependent. In this section, the convergence
behavior of the Volume Averaged Diffusion-Conduction (VADC) formulation is investigated for
a one-dimensional computational domain with Dirichlet boundary conditions on the concentra-
tion at both ends. The Dirichlet boundary conditions are ramped up linearly until the maximum
values are reached at Tend = 1. To define a reference value for the potential field Φ

e

, the potential
is set to zero at x = 0.1. The domain is discretized uniformly by a varying number of elements
with element lengths h as given in Tab. 7.2. Since there is no analytical solution available, a
simulation with 5480 linearly-interpolated line elements is used as reference solution. The re-
maining parameters such as geometrical dimensions, discretization and transport parameters are
summarized in Tab. 7.2.

The concentration and potential profiles of the reference solution involving 5120 elements
are depicted in Fig. 7.3. In case A, the variation of the concentration is limited to±0.2 M whereas
the mass-transport limited current is reached in case B. Both concentration profiles exhibit dis-
tinct diffusion layers at the cathode and the anode enclosing a bulk region of unchanged concen-
tration. In this bulk region, the potential Φ

e

shows a linear behavior since Equ. (6.4) simplifies
to

i = − ε
τ
κ(c)∇Φ

e

in the absence of concentration gradients. Hence, the gradient of the potential is determined by
the overall current flow which is much higher in case B. In the bulk region, the only active trans-
port mechanism is migration where the cations move towards the cathode x = 0 and the anions
towards the anode x = 0.1. Within the diffusion layers, the potential is also influenced by con-
centration gradients resulting in a deviation from the linear potential profile. This is particularly
pronounced in case B with the mass-transport limited current. Two effects influence the deviation
from the linear behavior in the bulk region. The first effect is the non-constant conductivity κ(c)
and the second effect is the influence of the last term in Equ. (6.4), the so-called concentration
overpotential.

The resulting spatial convergence in case A and case B is depicted in Fig. 7.4(a) and
Fig. 7.4(b), respectively. In these figures, the relative errors

εc
e =

||c e,h − c
e||L2(Ω)

||c e||L2(Ω)
and εΦ

e =
||Φ e,h −Φ

e||L2(Ω)

||Φ e||L2(Ω)

are used. In case A, both the concentration and the potential exhibit a perfect second-order con-
vergence rate. In case B, only the concentration shows a second-order convergence rate over the
entire range of the element length h. The potential approaches the second-order convergence rate
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Figure 7.3: Concentration and potential profiles of the reference solution along the x-axis involving 5120
elements for case A and case B at t = 1 s.
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Figure 7.4: Spatial convergence of the relative error of the concentration field and the potential field over
the element size h with respect to the reference solution involving 5120 elements.
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Table 7.2: Simulation parameters for the transient one-dimensional ion-transport problem with concen-
tration dependent transport parameters.

Computation domain Ω [mm] (0, 0.1)

Number of elements 10, 20, 40, 80, 160, 320, 640, 1280, (5120)

Element size h [µm] 10, 5, 2.5, 1.25, 0.625,

0.3125, 0.15625, 0.078125, (0.01953125)

Porosity ε [−] 0.55

Tortuosity τ [−] 2.899

Initial concentration c e

0 [M] 0.9

Dirichlet BC c
e(x = 0) [M] 0.7 (case A) 0.005 (case B)

Dirichlet BC c
e(x = 0.1) [M] 1.1 (case A) 1.795 (case B)

Dirichlet BC Φ
e

(x = 0.1) [M] 0 (case A) 0 (case B)

Time step ∆t [s] 0.01

End time Tend [s] 1

Diffusion coefficient D±(c) [mm2

s ] 1.48 · 10−4 c−0.125

Transference number t+(c) [−] 0.4− 0.01c

Thermodynamic factor
(

1 + ∂ ln f±
∂ ln c

)
[−] 1− 0.5c1/2 + 2c

Conductivity κ(c) [ µS
mm ]

3900c− 8700c3/2 + 8000c2 + 5000c3

1.0 + 7.0c2 + 9.0c4

with decreasing element length h. This behavior can be explained by a steep potential gradient
at the cathode for c e → 0 resulting from the natural logarithm in the concentration as given
in Equ. (6.4). This is the so-called concentration overpotential. Accordingly, the error level of
the potential field is clearly increased whereas the error level of the concentration field is only
slightly influenced. In the following numerical examples, this effect is integrated by non-uniform
discretizations with smaller elements near the electrodes.

7.4 Quasi one-dimensional simulation with a galvanostatic
constraint condition

Galvanostatic experiments and associated galvanostatic simulations constitute a very important
operation mode in battery research. Unfortunately, a galvanostatic load involving kinetic effects
is a non-trivial phenomenon for two- and three-dimensional geometrical configurations since
the current density is a function of the local concentration and electric potential and, therefore,
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7.4 Quasi one-dimensional simulation with a galvanostatic constraint condition

Table 7.3: Simulation parameters taken from Thorat et al. [140] for a quasi one-dimensional domain with
a galvanostatic constraint condition on both electrodes.

Computational domain Ω [mm] (0, 0.075)

Electrode area A [mm2] 1.0 · 10−4

Number of elements 1000

Element size h [mm] non-uniform element size (dual bias scheme)

h(x = 0) = h(x = 0.075) = 0.25 · 10−4

Porosity ε [−] 0.37

Tortuosity τ [−] 3.15, 3.65

Initial concentration c e

0 [M] 1.0

Galvanostatic current density in [ µA
mm2 ] 12.5 , 90

Min. and max. time step size ∆t [s] 0.001 / 0.5

Current interruption time TI [s] 120

Diffusion coefficient D± [mm2

s ] 2.582 · 10−3 exp(−2.856c)

Transference number t+ [−] 0.36

Thermodynamic factor
(

1 + ∂ ln f±
∂ ln c

)
[−] 1

Conductivity κ [ µS
mm ] 780

(
1.262c

1.0 + 0.2c2 + 0.08c4 + 0.014
)

Butler-Volmer boundary conditions i0 = 4.1µA mm−2, γ = 0.5, αA = αC = 0.5

in general non-uniformly distributed at the electrode surfaces. The general numerical imple-
mentation of the galvanostatic constraint condition has been described in section 6.6. For one-
dimensional or quasi one-dimensional domains, a different approach is possible since the current
density i is known throughout the computational domain. As a result, the system Equ. (4.8) –
Equ. (4.10) can be solved by a partitioned scheme. In a first step, the concentration profile c e

is determined by Equ. (4.8) where the term t+(c)
ν+z+F

i is considered as a concentration dependent
reaction term r. In a second step, the determined concentration profile c e is used to calculate the
potential profile Φ

e

based on Equ. (4.9) and, afterwards, the cell potential U incorporating the
Butler-Volmer law. However, in this contribution the general approach presented in section 6.6
is also used for one-dimensional or quasi one-dimensional simulations.

Comparison with literature First, the results produced by the VADC approach including gal-
vanostatic BCs are validated against an analytical solution which is based on the steady-state
reached at the end of the polarization phase. In a second step, the results are also compared to
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Figure 7.5: Numerical and analytical concentration and potential profiles at time t = 120 s.

experimental and numerical data for a relaxation experiment provided by Thorat et al. [140].
Therein, the tortuosity τ of the separator is determined by varying it in a numerical model until
the data from the corresponding steady-state galvanostatic polarization experiment is best re-
produced. The dimensions of the quasi one-dimensional domain as well as the transport and
kinetic parameters summarized in Tab. 7.3 are taken from that publication. The basic simulation
procedure for relaxation experiments can be found in section 7.1 and section 7.5.1.

Since the transference number t+ is constant in this case, it is possible to write the standard
partial differential equation for the mass conservation given in Equ. (6.1) and (6.2) as

ε
∂c

e

∂t
− ε

τ
D±(c)

∂2c
e

∂x2 = 0

with the reformulated boundary condition given in Equ. (5.26) for the anode and the cathode:

∂c
e

∂x
= j =

1
z+ν+F

(1− t+)
ε
τ
D±(c)

in
nx

.

Herein, the current density in at the electrode is given as 12.5 µA
mm2 . As an additional condition, the

concentration c
e

C = 0.824881µmol mm−3 at the cathode is given to define the reference level of
the steady-state concentration profile. This value is taken from the numerical simulation shown
in Fig. 7.5.
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Figure 7.6: Comparison of the time dependent cell potential U resulting from a steady-state galvanostatic
polarization experiment given in Thorat et al. [140] with numerical results also given in Thorat
et al. [140] and numerical results obtained by the VADC approach.

The analytical solution of this boundary value problem is determined by the software Maple:

c
e
(x) =

1
b

ln
(

1
bA(B + x)

)
.

The factor b = 2.856 is related to the concentration dependent diffusion coefficient D± =
a exp(−bc). The parameters A and B

A =
1

bB exp (b c e

C)
and B = − 1

b j

involve the prescribed flux density j and the Dirichlet boundary condition c
e

C at the cathode.
Based on the concentration profile c e , the potential profile Φ

e

can be calculated from the one-
dimensional form of the current equation (5.31). At steady-state after 120 s polarization time,
the analytical and numerical solutions are equivalent as shown in Fig. 7.5.

In Fig. 7.6, the time dependent behavior of the cell potential U obtained by the VADC ap-
proach is compared to numerical and experimental data provided by Thorat et al. [140]. There-
fore, two simulations with different tortuosities τ = 3.15 and τ = 3.65 are considered. At the
end of the polarization time, the cell potential U resulting from the VADC algorithm is constant
since steady-state has already been reached. However, it is about 21 mV larger than the numeri-
cal results and about 41 mV larger than the experimental results presented by Thorat et al. [140].
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7 Numerical examples

The influence of the different tortuosities on the cell potential U is minimal. After current in-
terruption, the cell potential U drops rapidly since the ohmic overpotential has no contribution
anymore. The remaining cell potential U only depends on the concentration difference ∆c e be-
tween the anode and the cathode. During relaxation, the logarithm of the cell potential log10 U

decreases linearly with time t. The slope mlog10 is defined as mlog10 = 1
ln 10

π2D±(c0)
l2τ

. Compared
to Equ. (5.41), an additional factor for the transformation between the natural logarithm and the
common logarithm is included. It is important to emphasize that this formula is not used for the
determination of the tortuosity τ in Thorat et al. [140]. The cell potential U of the simulation
using the lower tortuosity relaxes faster than the experimental and numerical results provided
in Thorat et al. [140]. The simulation results using the higher tortuosity exhibit the same slope
but on a higher level. Since the diffusion coefficient D± is clearly defined for both numerical
simulations, the different slopes of the cell potential U during relaxation can only be explained
by different values for the tortuosity τ . The two values applied to the simulations in Fig. 7.6
can be motivated by the experimental approach used in Thorat et al. [140] to determine the tor-
tuosity. As mentioned at the beginning of this section, the tortuosity is determined by varying
it in a numerical model until the experimental data are reproduced best. This procedure is not
only applied to an experimental setup consisting of two lithium electrodes separated by a sin-
gle separator but repeated for many different numbers of separators. The tortuosity τ = 3.15 is
the averaged value resulting from all experiments with a varying number of separators whereas
τ = 3.65 is the specific value resulting from a single experiment with three separators which
corresponds to the numerical setup used in this section. The latter value for the tortuosity can be
extracted from Thorat et al. [140, Fig. 7].

Unfortunately, the constant offset in Fig. 7.6 between the VADC result using the tortuosity
τ = 3.65 and the experimental and numerical results presented in Thorat et al. [140] cannot be
explained. The concentration profile as well as the potential difference ∆Φ e resulting from the
VADC formulation at t = 120 s are confirmed by the analytical solution depicted in Fig. 7.5.
Different models for the electrode reaction can be excluded since the difference can be observed
during the polarization phase and the relaxation phase. Therefore, the lower cell potential level in
Thorat et al. [140] can only be explained by a lower concentration difference between the anode
and the cathode at current interruption time which is in contrast to the aforementioned analytical
solution. An incorrect time behavior of the VADC approach resulting in an early steady-state
can also be excluded since the time dependent behavior of the simulation with the higher tortu-
osity and the numerical results provided in Thorat et al. [140] is equivalent during the relaxation
process. In addition, the time behavior of the present implementation is validated for the DDC
approach in section 7.2 and for the VADC approach in section 7.5. Other numerical examples
such as an adapted Gaussian hill presented in Donea and Huerta [52] and a comparison between
the VADC and the DC approaches based on a two-dimensional porous geometry consisting of
spheres also confirm a correct implementation. These numerical examples are not further dis-
cussed in this contribution.

Numerical efficiency of the galvanostatic constraint condition The numerical efficiency of
the galvanostatic constraint condition introduced in section 6.6 is discussed based on the same
numerical example as before, but with an increased polarization current density in = 90 µA

mm2 to
generate a more challenging numerical setup. With this polarization current density, the mass-
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7.4 Quasi one-dimensional simulation with a galvanostatic constraint condition

Table 7.4: Number of Galvano-Static Iterations (GSI) for different predictors in a galvanostatic simulation
reaching the mass-transport limited current at t = 45 s.

Prediction step based on num. of GSI GSI / time step max. GSI
in one time step

1.) Initial cond. (Equ. (6.43)) not converged

2.) Integrated cond. (Equ. (6.44)) 2723 2.48 13 (t = 45 s)

3.) Overall resistance (Equ. (6.45)) 4651 4.23 9 (38.6 < t < 43.5 s)

transport limited current is reached after 45 s. The remaining simulation parameters in Tab. 7.3
are left unchanged.

The numerical efficiency of the galvanostatic constraint condition is especially important for
large, three-dimensional computational domains due to the additional outer loop enclosing the
ion-transport solver as introduced in section 6.6. In such a partitioned scheme, the galvanostatic
constraint condition is enforced iteratively which requires an educated prediction of the resis-
tance R within the electrolyte to minimize computational costs. Afterwards, the predicted resis-
tanceR is used to calculate the potential difference ∆Φ

e

between the two electrodes. An accurate
prediction of the surface overpotentials ηC and ηA is provided by Equ. (6.37) and Equ. (6.38),
respectively. In the following, the three different predictor steps for the resistance R presented in
section 6.6 are compared to each other based on a quasi one-dimensional simulation. The same
numerical behavior is also observed for more complex geometries as used, e.g., in section 7.6.
The results are summarized in Tab. 7.4. The outer iteration loop of the partitioned scheme fails
to converge after about 9 s simulation time if the first predictor based on the initial electrolyte
conductivity κ(c0) is used. Even before 9 s, the number of Galvano-Static Iterations (GSI) per
time step is very high. The predicted resistance R corresponds to the initial electrolyte resistance
Rel,0 which is usually too small for non-uniform concentration fields c e . Since the electrolyte
conductivity κ(c) is concentration dependent, the resistance R is dominated by the decreased
electrolyte conductivity at the cathode as a result of the inverse relation between R and κ(c):

R =
L

A

1
V

∫

Ω

τ

εκ(c)
d x.

As a result of the resistance R being too small, the potential difference ∆Φ
e

is also underesti-
mated which is the reason for the limited convergence of the numerical scheme.

In the second approach based on Equ. (6.44), the concentration dependence of the elec-
trolyte conductivity κ(c) is considered for the prediction of the resistance R which improves the
performance of the galvanostatic constraint condition dramatically as can be seen in Tab. 7.4.
In this case, the resistance R is always equal to the electrolyte resistance Rel, not only at the
beginning of the simulation.

The third approach is based on the resistance R calculated from the ratio between the po-
tential difference ∆Φ

e

and the current I as given in Equ. (6.45). In this case, the resistance R
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Figure 7.7: Comparision of the cell potential U resulting from the galvanostatic constraint condition for
all time steps including the intermediate GSI.

includes the electrolyte resistance Rel as well as the resistive contribution of the concentration
overpotential. Therefore, it should be the most accurate prediction of the resistance R. However,
the number of GSI per time step is almost twice as large as compared to the second approach.
This behavior can be explained by a numerical damping effect which is inherently introduced by
the approach and often used in numerical solution schemes. However, in this case, the amount of
numerical damping is physically motivated and not arbitrarily selected as in other cases. By con-
trast, the third approach tends to overestimate the potential difference ∆Φ

e

as it can be observed
in Fig. 7.7. Only in the case of for the mass-transport limited current, the third approach con-
verges faster than the second approach since the concentration overpotential is the dominating
contribution.

As a result of the preceding numerical investigation, the second approach based on the
integrated electrolyte conductivity κ(c) is chosen as the standard predictor for the galvanostatic
constraint condition. In the following, this predictor is used for all galvanostatic simulations.

7.5 Numerical analysis of polarization experiments used for
transport parameter determination

The analytical expressions for the determination of the diffusion coefficient D± or the trans-
ference number t+ introduced in section 5.4 and 5.5 are analyzed in terms of their potential
applicability for the experimental determination of transport parameters by means of numerical
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7.5 Numerical analysis of polarization experiments used for transport parameter determination

Table 7.5: Parameters used for the numerical simulation of polarization experiments.

Computational domain Ω [mm] (0, 0.5)

Electrode area A [mm2] 2.0 · 10−4

Scaled electrode area A [mm2] 226.98

Number of elements 1000

Element size h [mm] dual bias scheme

with h(x = 0) = h(x = 0.5) = 1.0 · 10−4

Porosity ε [−] 0.55

Tortuosity τ [−] 2.6

Initial concentration c e

0 [M] 0.1 / 1.0 / 2.0

Min. and max. time step size ∆t [s] 0.001 / 1

Diffusion coefficient D± [mm2

s ] 2.8 · 10−4 exp(−0.45c)

Transference number t+ [−] 0.4 + 0.2c− 0.125c2

Thermodynamic factor
(

1 + ∂ ln f±
∂ ln c

)
[−] 1− 1

2
3.95

√
c

(1 + 63.05
√
c)2 + 0.907c

Conductivity κ [ µS
mm ]

3400c− 4700c3/2 + 2000c2

1.0 + 0.2c4

BV conditions i0 = 3µA mm−2, γ = 0.0, αA = αC = 0.5

simulations. In addition, the excellent match between theory and simulation can also be inter-
preted as a validation for the simulation approach. The result presented in this section are also
published in Ehrl et al. [57] and Ehrl et al. [56].

7.5.1 General principle of polarization experiments

The analytical methods for the determination of transport parameter described in section 5.4
and 5.5 can be combined with the following relaxation experiments: Pulsed Galvanostatic Polar-
ization (PGP) and Steady-State Potentiostatic Polarization (SSPP). The different experimental
procedures with the associated analytical methods are explained in the following.

The numerical simulations are based on a quasi one-dimensional domain with an electrode
area A = 2.0 · 10−4 mm2. In a postprocessing step, the results are scaled to represent the ex-
perimental setup with an electrode area A = 226.98 mm used in section 8. The basic numerical
methods used for the simulation of relaxation experiments are described in section 7.1. The re-
maining simulation and transport parameters are summarized in Tab. 7.5 whereas the functional
description of the transport parameters is guided by the experimental results for an electrolyte
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Figure 7.8: Simulation of a PGP experiment with a polarization time of 30 s, a polarization current density
ip = 8 · 10−3 mA

mm2 corresponding to the polarization current Ip = 1.82 mA and an initial
electrolyte concentration c

e

0 = 1 M.

solution consisting of lithium perchlorate (LiClO4) dissolved in an Ethylene Carbonate (EC, 50
% wt.) and Diethyl Carbonate (DEC, 50 % wt.) presented in section 8.

Pulsed Galvanostatic Polarization (PGP) As shown in Fig. 7.8, a PGP experiment consists
of a polarization and relaxation phase. During the polarization phase, a short galvanostatic pulse
with the current Ip is applied to establish a concentration gradient within the two-electrode
cell. The concentration difference ∆c e(t) between anode and cathode develops according to
Equ. (5.73). During this phase, the cell potential U(t) is influenced by the concentration dif-
ference ∆c e(t), the current flow Ip and kinetic effects at the electrode. At the time t = TI the
current Ip is interrupted. During the following relaxation phase, the concentration difference
∆c e(t) as well as the corresponding cell potential U(t) slowly relax with time. In contrast to
the polarization phase, the cell potential U(t) is only influenced by the concentration difference
∆c e(t). As long as the applied polarization current Ip is small, a linear relationship between
the cell potential U(t) and the concentration difference ∆c e(t) can be assumed as explained in
section 5.3. In this case, the non-linearities introduced by the concentration dependence of the
transport parameters and by the linearization of the natural logarithm are negligibly small.

The expected linear behavior of the cell potential U with respect to the artificial time τ ∗

for the short-term relaxation as well as the linear behavior of the cell potential lnU with respect
to the time t for the long-term relaxation are clearly observable for reasonable time periods in
Fig. 7.8. Since the determination of the coefficient f(f±, t+,

√
D∗
±,eff) according to Equ. (5.74)
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Figure 7.9: Polarization phase of a SSPP experiment with the polarization time of 3300 s, a polarization
potential Up = 50 mV and an initial electrolyte concentration c

e

0 = 1 M.

is based on the cell potential U(TI) at the current interruption time, the linearity in τ ∗ can be
used to determine the cell potential U(TI) at current interruption time TI more accurately. This is
particularly important for experiments where the cell potential U(t) is influenced by additional
parasitic contributions as, e.g., the discharge of the double layer. The slope mln obtained from
the long-term relaxation behavior is proportional to the diffusion coefficient D± as indicated by
Equ. (5.41).

Steady-State Potentiostatic Polarization (SSPP) A SSPP experiment also consists of two
phases. In the first phase, the two-electrode cell is polarized with a constant cell potential Up

until the steady-state current IS is established as shown in Fig. 7.9. The steady-state current IS is
based on a steady-state concentration profile within the cell. The electrode kinetics are modeled
by a Butler-Volmer law without concentration dependency γ = 0 resulting in a constant inter-
face resistance RI due to the linearity of the Butler-Volmer law for small surface overpotentials
η. The initial current I0 is the maximal current value obtained during polarization since the con-
centration overpotential is negligible small in the beginning as explained in section 5.5.1. Due
to an increasing concentration overpotential with time, the current I decreases until the steady-
current IS is reached. For concentrated electrolyte solutions, the same SSPP experiment can be
used to determine the coefficient f(f±, t+, D∗

±,eff) with Equ. (5.59). The short-term relaxation
of the current I(t) is linear with respect to time

√
t. Based on the slope mSSPP, the coefficient

f(f±, t+,
√
D∗
±,eff) can be calculated by Equ. (5.66).
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Figure 7.10: Relaxation behavior of I(t)/I0 with respect to (a) the square root of time
√

t and (b) a
complex function of time derived in Equ. (5.64). The smallest concentration is polarized
with Up = 20 mV and the remaining concentrations with Up = 50 mV. The length of the
green line corresponds to equal time ranges in (a) and (b).

The linear behavior of the current I(t) with respect to the square root of time is already an
approximation for the more complex function exp(H2t) erfc(H

√
t) which is given in Equ. (5.64).

The influence of this approximation is highlighted in Fig. 7.10. The scaling of the concentrations
c

e = 1.0 M and c
e = 2.0 M with the factors 0.7 and 0.6, respectively, is only introduced since

otherwise all three curves would have been on top of each other in Fig. 7.10(b). A clear differ-
ence between Fig. 7.10(a) and Fig. 7.10(b) can only be observed for the smallest concentration
c

e = 0.01 M. For the higher concentrations, the differences are marginal but still visible. A good
indication for the difference is the green line representing equivalent time ranges of the linear fits
in Fig. 7.10(a) and Fig. 7.10(b). In Fig. 7.10(a), the normalized current I(t)/I0 starts to deviated
already from the linear fit whereas both lines are still on top of each other in Fig. 7.10(b). This
behavior can be explained by a smaller value ofH for the higher concentrations. For the smallest
concentration, H is given as H = 0.0595 1√

s whereas H = 0.0036 1√
s and H = 0.0055 1√

s for
c

e = 1.0 M and c
e = 2.0 M, respectively. Consequently, the approximation given in Equ. (5.64)

is fulfilled for longer time periods for c
e = 1.0 M and c

e = 2.0 M. As a result, this method can
be only used for electrolyte solutions where a clear linear trend with respect to the square root
of time can be observed.

If the steady-state current IS is reached, the polarization of the cell is interrupted and the
relaxation phase of the SSPP experiment starts. During the relaxation phase, the cell potential
U(t) decreases continuously as shown in Fig. 7.11. The relaxation process is much longer than
in a PGP experiment because of the larger changes to the salt concentration profile. The same
linearity of the cell potential lnU with respect to time t for the long-term relaxation can be ob-
served as in a PGP experiment which allows to determine the diffusion coefficient D± based on
Equ. (5.41). In addition, the offsetO(TI) can be used to calculate the coefficient f(f±, t+, D∗

±,eff)
by means of Equ. (5.71). The short-term relaxation behavior is different than in a PGP exper-
iment. In a SSPP experiment, the cell potential U(t) is proportional to the time

√
t. The slope
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Figure 7.11: Relaxation phase of a SSPP experiment with the polarization time of 3300 s, a polarization
potential Up = 50 mV and an initial electrolyte concentration c

e

0 = 1 M.

msqrt is related to the binary diffusion coefficientD± by Equ. (5.43). The extrapolated cell poten-
tial U(TI) at current interruption time TI can be used to calculate the coefficient f(f±, t+, D∗

±,eff)
with Equ. (5.68).

7.5.2 Binary diffusion coefficient

In a two-electrode cell, the binary diffusion coefficient D± can be determined by three different
methods which are summarized in Tab. 7.6. The diffusion coefficient D±|PGP-ln and D±|SSPP-ln

are based on the long-term relaxation behavior of a PGP and a SSPP experiment, respectively.
The diffusion coefficient D±|SSPP-sqrt can be calculated from the short term relaxation behav-
ior of a SSPP experiment. The basic principles for the experimental determination of diffusion
coefficients D±|PGP-ln, D±|SSPP-ln and D±|SSPP-sqrt are explained in section 7.5.1.

The only design parameter influencing the results of the three methods is the concentration
difference ∆c e(TI) at current interruption time TI. The polarization time in a PGP experiment is
not a major factor since the long-term relaxation behavior is independent from the concentration
profile at current interruption time TI. However, a short polarization time in a PGP experiment
results in a short relaxation period which makes it more difficult to observe the linear relaxation
behavior of the cell potential lnU with respect to time t. This is of particular interest for exper-
imental investigations since the accuracy of the measured cell potential is limited to values of a
few hundred µV. In Fig. 7.12 the diffusion coefficients determined by the different determination
methods are depicted with respect to the concentration difference ∆c e(TI) at the current inter-
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Table 7.6: Analytical methods for the determination of the binary diffusion coefficient D±.

D±

D±|PGP-ln, D±|SSPP-ln
l2

π2 τ mln Equ. (5.41)

D±|SSPP-sqrt
πl2

16
τ

(
msqrt

U(TI)

)2

Equ. (5.43)
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Figure 7.12: Binary diffusion coefficient D± with respect to the concentration difference ∆c
e
(TI) at the

current interruption time for c
e

0 = 1 M .

ruption time for c e

0 = 1 M. To demonstrated the independence of the initial concentration c e

0 , the
results of two additional initial concentrations c e

0 = 0.1 M and c e

0 = 2 M are listed in Tab. 7.7.
The diffusion coefficient D±|PGP-ln is based on the current interruption time TI = 300 s. The re-
sults presented in Fig. 7.12 and Tab. 7.7 confirm that all three methods are accurate enough for a
moderate relative concentration difference ∆c e

/c
e

0 at the current interruption time of up to 20 %.
The concentration difference ∆c e(TI) at the current interruption time does not have any influence
on the results obtained by the two methods based on the long-term relaxation behavior. At one
point during the relaxation process, the concentration difference ∆c e is small enough to fulfill the
requirement of small concentration variations. In real experiments, the maximal concentration
difference ∆c e(TI) is limited by the polarization current Ip since high current densities during
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Table 7.7: Influence of the concentration difference ∆c
e
(TI) at the current interruption time on the deter-

mination of the diffusion coefficient.

c0 [M] D±(c0) [mm2/s] ∆c/c0

1 · 10−4 < 5 % 10− 20 % > 60 %

D±|PGP-ln - 2.787 2.787

0.01 2.787 D±|SSPP-ln - 2.787 2.787

D±|SSPP-sqrt - 2.791 3.106 (11%)

D±|PGP-ln 1.785 1.785 1.785

1 1.785 D±|SSPP-ln 1.785 1.785 1.785

D±|SSPP-sqrt 1.786 1.794 2.167 (21%)

D±|PGP-ln 1.139 1.139 1.139

2 1.138 D±|SSPP-ln 1.138 1.138 1.138

D±|SSPP-sqrt 1.141 1.163 (2.1%) 1.973 (73%)

polarization increase the probability of an electrode surface modifications as, e.g., by the growth
of lithium dendrites.

The long-term relaxation behavior of an electrolyte solution may be deteriorated by the first
term on the rhs

U(t) ∝ ∆c e
(t) =B exp

(
−3

π2D∗
±,eff

l2
t

)
+ 2C1 exp

(
−π

2D∗
±,eff

l2
t

)

introduced in section 5.4.1. This term is a result of the concentration dependent diffusion co-
efficient and variations of the solution volume as indicated in Newman and Chapman [110].
Nevertheless, the numerical results depicted in Fig. 7.8 and Fig. 7.11 exhibit a distinct linear
behavior for a considerably long time period although concentration dependent transport param-
eter are considered. This observation can be confirmed by the following additional theoretical
considerations. According to Newman and Chapman [110, p. 346], ”it is not necessary in prac-
tice to recognize the variation in solution volume” since the second and third derivative of the
density ρ(c) with respect to the concentration c in the factor B can be neglected as a result of the
almost linear behavior of the electrolyte density ρ(c) as shown in Fig. 8.1 and Equ. (8.1). This
linear behavior of the electrolyte density ρ(c) is typical for many electrolyte solutions and leads
to a simplification of the factor B

B =
√

3
16
C3

1

[
1
D±

d 2D±
d c2 − 2

(
1
D±

dD±
d c

)2
]
.
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only being influenced by the concentration dependent diffusion coefficient and the factor C1. For
the used concentration dependence of the diffusion coefficient D± = a exp(−bc), the first and
the second term in the brackets are b2 and −2b2 with b = 0.45. For a steady-state concentration
profile, the coefficient C1 is given by C1 = 8∆c

e
(TI)

π2 as given in Equ. (5.69). As a result, the factor
C3

1 is always much smaller than factor C1 for small concentration variations ∆c e(TI) at current
interruption time as used for the determination of transport parameter. For shorter polarization
times, the coefficient C1 cannot be determined exactly but it will not exhibit a completely dif-
ferent behavior. As a result of both estimations, the coefficient B is always much smaller than
the coefficient C1 which reduces the influence of the term given by Equ. (5.39). This is an ad-
ditional indication for the assumption of negligible small volumetric effects, at least for small
concentration variations arising during the determination of transport parameters.

Compared to the two methods which are based on the long-term relaxation behavior, the re-
sults of the short-term relaxation are clearly influenced by the concentration difference ∆c e(TI)
at the current interruption time since high values of ∆c e(TI) violate the requirement of small
concentration variations automatically. Additionally, the error for the determined diffusion coef-
ficient D±|SSPP-sqrt increases for an increasing initial concentration c

e

0 as shown in Tab. 7.7 since
the absolute concentration difference ∆c e(TI) at current interruption is larger for a high initial
concentration c e

0 . The effect of the concentration difference ∆c e(TI) on the linearity of the cell
potential U(t) with respect to the time

√
t is shown in Fig. 7.13 for c e

0 = 1 M. A variation of
about 20% with respect to the initial concentration c

e

0 does not influence the linearity of the cell
potential U(t) significantly. For a higher relative concentration difference, a notable deviation of
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the linear behavior can be observed. Two different effects are the reason for this deviation. First,
the concentration dependent thermodynamic factor and transference number t+(c) as well as the
linearization of the natural logarithm in Equ. (5.34) violate the ideal proportionality between the
concentrations difference ∆c e(t) and the cell potential U (t). Additionally, the concentration de-
pendent diffusion coefficientD±(c) violates the condition of a constant diffusion coefficient used
for the derivation of the analytical solution. In case of numerical simulations, the diffusion coef-
ficientD±|SSPP-sqrt can also be determined directly based on the relaxing concentration difference
∆c e(t) and not on the cell potential U(t). The advantage of this approach is that non-linearities
introduced by the concentration dependent thermodynamic factor and transference number as
well as the linearization of the natural logarithm are not included. As a result, the error in the
diffusion coefficient D±|SSPP-sqrt reduces, e.g., from 21% to 7% for a 1 M electrolyte solution and
for the highest polarization. These values are a good indication for the errors resulting from the
indirect observation of the concentration difference ∆c(t) by the cell potential U(t).

7.5.3 Transference number

In this section, the transference number t+ is calculated from the coefficients f(f±, t+, D∗
±,eff)

and f(f±, t+,
√
D∗
±,eff) determined by the five methods introduced in section 5.5 and summa-

rized in Tab. 7.8, the diffusion coefficientD± determined in section 7.5.2 and the thermodynamic
factor TDF(c) which is assumed to be known. In case of an experimental determination of the
transference number t+, the TDF is measured by the method introduced in section 5.2. The ba-
sic principle of the determination of the coefficients f(f±, t+, D∗

±,eff) and f(f±, t+,
√
D∗
±,eff) is

explained in section 7.5.1.
As for the diffusion coefficient, the influence of the concentration difference ∆c e(TI) be-

tween the two electrodes at current interruption time TI is investigated numerically. For a SSPP
experiment, the concentration difference ∆c e(TI) defined by the polarization cell potential Up is

Table 7.8: Analytical methods for the determination of the transference number t+ by the coefficients
f(TDF, t+,

√
D±) or f(TDF, t+, D±), the binary diffusion coefficient and the TDF.

f(f±, t+,
√
D∗
±,eff)|PGP

z+ν+

8
√
π
F 2

RT
A

ε√
τ
c̄

e

0
U(TI)
Ip
√
t

Equ. (5.74)

f(f±, t+,
√
D∗
±,eff)|SSPP-pol-sqrt

1
8
√
π
F 2

RT
A

ε√
τ
c

e

0 RLF,0
mSSPP

I0
Equ. (5.66)

f(f±, t+, D∗
±,eff)|SSPP-ss

z+ν+

2
F 2

RT

A

l

ε

τ
c̄

e

0
U(TI)
IS

Equ. (5.68)

f(f±, t+, D∗
±,eff)|SSPP-ln

z+ν+

16
π2 F

2

RT

A

l

ε

τ
c

e

0
exp (O(TI))

IS
Equ. (5.71)

f(f±, t+, D∗
±,eff)|SSPP-pol

[
Up

IS
−RLF,S

]
ν+z+

2
F 2

RT

A

l

ε

τ
c

e

0 Equ. (5.59)
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Figure 7.14: Influence of the concentration difference ∆c
e
(TI) at the current interruption time on the de-

termination of the transference number t+ for a c
e

0 = 1 M electrolyte solution.

the only design parameter influencing the quality of the determined transference number. The re-
sults are shown for the 1 M electrolyte solution in Fig. 7.14 and for the 0.1 M and 2 M electrolyte
solutions in Tab. 7.9. All methods summarized in Tab. 7.8 are capable to determine the exact
transference number t+ for a small concentration difference ∆c e(TI). For higher concentration
differences ∆c e(TI), it is not possible to determine the transference accurately by the method
SSPP-pol-sqrt which is based on the initial time behavior of the current I(t) during the polar-
ization phase in a SSPP experiments. In this case, the initial time behavior is not just influenced
by concentration dependent transport parameters and the linearization of the natural logarithm
but also by the basic characteristic of the electrode kinetics. For an increasing concentration dif-
ferences ∆c e

, the Butler-Volmer law cannot be assumed anymore to be linear which violates the
linear boundary condition used for the derivation of Equ. (5.65). As a result, the linear behavior
of the current I(t) can only be observed clearly for the lowest polarization potential Up. For this
method, as mentioned already in section 7.5.1, the linearity of the time dependent current is a
very good indication for the reliability of experimentally measured data. Therefore, this method
is only considered for the determination of the transference number if a clear linear trend is ob-
servable. All remaining methods are accurate up to relative concentration differences ∆c e(TI)/c

e

0
of about 20 %. The method SSPP-ln is also very accurate for higher polarization potentials since
it is based on the long-term relaxation behavior. Therefore, a small concentration difference be-
tween the electrodes is fulfilled automatically with increasing time.

As explained in section 5.5.1, the transference number t+ can also be calculated directly
from Equ. (5.60) for dilute electrolyte solutions. The method is based on the steady-state current
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7.5 Numerical analysis of polarization experiments used for transport parameter determination

Table 7.9: Influence of the concentration difference ∆c
e
(TI) at the current interruption time on the deter-

mination of the transference number t+.

c0 [M] t+(c0) ∆c/c0

∼ 5 % ∼ 20 % > 60 %

t+|PGP - 0.402 0.391 (3%)

t+|SSPP-pol-sqrt - - -

0.01 0.402 t+|SSPP-ss - 0.402 0.383 (5%)

t+|SSPP-ln - 0.402 0.401

t+|SSPP-pol - 0.402 0.37 (8%)

t+|PGP 0.3 0.296 0.213 (29%)

t+|SSPP-pol-sqrt 0.305 0.251 (16%) 0.027 (91%)

2 0.3 t+|SSPP-ss 0.3 0.297 0.206 (31%)

t+|SSPP-ln 0.3 0.3 0.286 (5%)

t+|SSPP-pol 0.3 0.297 0.187 (38%)

IS, the steady-state low frequency resistance RLF, the electrolyte resistance Rel and the polar-
ization potential Up. For the smallest polarization potential Up, the transference numbers t+ are
0.32, 0.525 and 0.465 for the concentrations 0.01 M, 1 M and 2 M, respectively. Even for smaller
concentrations c e

0 , the expected transference number t+ cannot be determined correctly since the
mathematical condition given in Equ. (5.56) is not fulfilled for the given parameters set and for
c

e

0 → 0. However, it is possible to calculate the transference number correctly for the initial
concentration c

e

0 = 0.5 M since the mathematical condition is fulfilled in this case. As a result,
Equ. (5.60) can be used as an additional condition for the determination of the parameter set for
dilute electrolyte solutions c e

0 → 0.

Influence of a non steady-state concentration profile on the determination of the transfer-
ence number Although the concentration difference ∆c e(TI) at the current interruption time is
the only design parameter in a SSPP experiment which can be influenced actively, it is possible
that a non steady-state concentration profile at the current interruption time deteriorates the re-
sults of the determined transference number. A non steady-state concentration profile originates
from too short polarization times or from the continuous variation of the interface resistance RI

during a SSPP experiment. The influence of a non steady-state concentration profile as a result
of too short polarization times on the determined transference number is depicted in Fig. 7.15
for all methods which rely on a steady-state concentration profile at current interruption time.
The relaxation of the current I(t) during the polarization with selected interruption times in-
dicated by vertically dashed black lines is depicted in Fig. 7.16(a) and the relaxation behavior
of the relative cell potential U(t)/U(TI) with respect to the time

√
t is shown in Fig. 7.16(b).
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Figure 7.15: Influence of the polarization time TI on the determined transference number t+ for a polar-
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Figure 7.16: Polarization and relaxation phase of a SSPP experiment with the polarization potential Up =
50 mV and the initial concentration c
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0 = 1 M: (a) current I over time t during polarization
phase with selected current interruption times TI and (b) relative cell potential U(t)/U(TI)
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t during the relaxation phase.
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The presented numerical data are the result of a 1 M electrolyte solution polarized with a cell
potential Up = 50 mV which corresponds to a 10% relative concentration difference. The error
for the transference number t+ based on a polarization time of t = 1000 − 1500 s is below 5%.
For short polarization times t > 1500 s, the determined transference number t+ does not exhibit
a distinct deterioration at all. For polarization times t < 1000 s, the error in the transference
number t+ increases rapidly because the steady-state concentration profile is not reached yet.
After a polarization time of t = 1000 − 1500 s, the current I(t) approaches a horizontal line as
shown in Fig. 7.16(a) and the relative cell potential U(t)/U(TI) exhibits a clear linear behavior
with respect to time

√
t as depicted in Fig. 7.16(b). For shorter polarization times, it is clearly

visible from the current I(t) relaxation behavior shown in Fig. 7.16(a) that the steady-state is
not reached yet. In contrast, the corresponding non-linearity of the relative cell potential during
subsequent relaxation is not so significant as depicted in Fig. 7.16(b). Therefore, it is important
for a SSPP experiment to observe the relaxation behavior of the current I(t) during polarization
as well as the relaxation behavior of the cell potential U(t) after current interruption. Numerical
simulations indicate that a similar behavior can be expected for non steady-state concentration
profile as a result of a continuously varying interface resistance RI.

Influence of polarization time for the determination transference number by a PGP experi-
ment In a PGP experiment, the polarization current Ip and the polarization time defined by cur-
rent interruption time TI influence the concentration difference ∆c e(TI) according to Equ. (5.73).
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Figure 7.17: Influence of polarization time TI in a PGP experiment with the polarization current Ip =
0.454 mA and the initial concentration c
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0 = 1 M on the quality of the determined transfer-
ence number t+.
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Figure 7.18: Relaxation behavior of the relative cell potential U(t)/U(TI) after the PGP pulse with respect
to (a) the artificial time 1−τ∗ and (b) the time

√
t− TI with the cell potential U(TI) at current

interruption time: U(150 s) = 3.36 mV, U(500 s) = 5.83 mV and U(3000 s) = 7.38 mV

Both design parameters have to be chosen so that the relative concentration difference ∆c e(TI)/c
e

0
does not exceed 20 %. Additionally, the current interruption time TI has to be short enough to
ensure that the semi-infinite limit used for the derivation of Equ. (5.73) is not violated. For
longer polarization times, the concentration profile will slowly approach the steady-state case
which is desired for a SSPP experiment. In Fig. 7.17, the calculated transference number t+ with
respect to the polarization time for a 1 M electrolyte solution polarized with a current density
Ip = 0.454 mA is depicted. For polarization times of about 500 s, the deviation of the deter-
mined transference number is below 5%. The corresponding relaxation behavior of the relative
cell potential U(t)/U(TI) with respect to the artificial time 1−τ ∗ and the time

√
t− TI are shown

in Fig. 7.18(a) and Fig. 7.18(b), respectively. Additionally, simulations with a shorter and longer
polarization time are shown to discuss the differences. As expected, the relative cell potential
is linear with respect to the time

√
t− TI for long polarization times. A distinct non-linearity

can be observed for short polarization times. With respect to the artificial time 1 − τ ∗, the cell
potential U exhibits a linear behavior over long time period for short polarization time whereas
the length of time period in tau∗ is decreased for an increasing polarization time.

7.6 Galvanostatic simulation of a realistic porous medium

In this section, it is demonstrated that the proposed DC approach can also be applied to complex
porous geometries such as resolved electrodes or separators. For this purpose, a galvanostatic
polarization step with a polarization current Ip approaching the mass-transport limited current
followed by a relaxation phase is selected since it is the most challenging load case for the nu-
merical solution scheme as it is demonstrated in section 7.3 and section 7.4. This procedure cor-
responds to a PGP experiment with a high polarization current. Unfortunately, the reconstruction
of a three-dimensional porous battery separator could not be achieved within this project since
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7.6 Galvanostatic simulation of a realistic porous medium

Figure 7.19: Reconstructed cubical-shaped volume meshes of synchrotron-based X-ray tomography scans
of a sample of lung tissue.

the Scanning Electron Microscope (SEM) used for the imaging process is not suitable for non-
conducting samples such as separators. Electrones induced by the SEM cannot be conducted
away resulting in a blurred image. Hence, a sample of lung tissue is used to demonstrate the suit-
ability of the computational approach for complex geometries. For the proof of concept, this does
not make any difference since the porous structure of the lung tissue exhibits some similarities
with porous media used in battery applications.

The computational domain of the porous lung tissue is depicted in Fig. 7.19. The imaging
procedure, the reconstruction process and the mesh generation resulting in the computational
domain are explained in Roth et al. [127]. Compared to all other numerical examples presented
in this chapter, the domain is discretized by linearly-interpolated tetrahedral elements to ac-
count for the complexity of the porous structure. The sample is characterized by a porosity of
ε = 0.319 and a tortuosity of τ = 1.71. In Roth et al. [127], the tortuosity of the porous sample
is determined based on Equ. (4.11) and physically-motivated numerical simulations as discussed
in section 4.2. The electrolyte resistance Rel of the porous sample defined as the ratio ∆Φ

I
is cal-

culated from numerical simulations based on the charge conservation law given in Equ. (2.15)
with i = −κ∇Φ, the so-called Laplace equation. The term describing the concentration over-
potential is not considered since only the ohmic resistance Rel of the electrolyte is required for
the determination of the tortuosity. In this case, the current flow I is the result of the potential
difference ∆Φ applied as Dirichlet condition between opposite surfaces. A detailed description
of the method is given in Roth et al. [127]. The same method is used for porous electrodes, e.g.,
in Ender et al. [60], Joos et al. [88] or Cooper et al. [46]. In general, the simulation is based on
the same procedure as used for the quasi one-dimensional PGP simulations performed in sec-
tion 7.5.1. Further details on the computational domain and simulation parameters are given in
Tab. 7.11 (Table is located at the end of section 7.6).

In Fig. 7.20 the concentration field c and the potential field Φ are depicted for selected
cross-sections of the computational domain at current interruption time TI. The current flow is
directed from the anode on the left hand side to the cathode on the right hand side resulting
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(a) x = 25.1 µm (b) x = 110 µm (c) x = 180 µm

(d) x = 25.1 µm (e) x = 110 µm (f) x = 180 µm

Figure 7.20: Selected cross-section of the computational domain at current interruption time TI = 10 s: a)
– c) concentration field c in [M] and e) – f) potential field Φ in [V].

in an increased concentration level on the left hand side and in a decreased concentration level
on the right hand side. The local reaction rate which is directly related to the current density
i at the electrode surface is non-constant as a result of the galvanostatic boundary condition
in combination with the Butler-Volmer law given in Equ. (2.97). In this case, the reaction rate
depends on the local concentration c and potential Φ next to the electrode as well as on the
adjustable cell potential U . The concentration profiles c at anode and cathode are inhomogeneous
with a maximum concentration at the anode of c = 2.49 M and a minimum concentration at the
cathode of c = 0.014 M. The areal intrinsic phase average of the concentration at the anode is
c

e

A = 2.16 M and at the cathode c
e

C = 0.063 M. These numbers confirm the visual impression
that the inhomogenity of the concentration profile at the anode is higher than at the cathode
which is a result of the mass-transport limitation. The same inhomogenity can be also observed
for the electric potential in the electrolyte solution next to anode and cathode.

The current I(t) and the cell potential U(t) during the polarization phase and the relaxation
phase are depicted in Fig. 7.21. As for the PGP experiment shown in Fig. 7.8, the current is con-
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Figure 7.21: Time-dependent cell potential U(t) for polarization and relaxation phase as a result of the a
polarization current Ip = 6.1 µA.

stant during the polarization and zero after current interruption. As a result of the concentration
dependent conductivity and the increasing concentration and surface overpotentials, the cell po-
tential raises continuously from about 0.8 V to about 1.15 V during the polarization phase. After
current interuption, the cell potential is slowly decreased as a result of the relaxing concentration
profile. Compared to simulations presented in section 7.5, the cell potential U(TI) is much higher
since limiting current and, therefore, the maximum possible concentration difference for a 1 M
electrolyte solution is reached at current interuption time. As a result, the linearity of the cell
potential U(t) with respect to the artificial time τ ∗ cannot be observed anymore. In contrast, the
long-term relaxation behavior of the cell potential U(t) exhibits the same characteristic as for
smaller polarization currents. However, the tortuosity τmln = 2.1 calculated based on the slope
mln and the known diffusion coefficient D(c0 = 1 M) differs significantly from the tortuosity
calculated from electrolyte resistance. This can be explained by the mass limiting current re-
sulting in a non-symmetric concentration difference as indicated in the previous paragraph. For
PGP and SSPP experiments with smaller applied currents, the tortuosity based on electrolyte
resistance Rel is confirmed.

In section 7.2 and section 7.4, the computational efficiency was shown for simple three-
dimensional and quasi one-dimensional computational domains, respectively. The efficiency and
stability of the proposed computational approach for a complex domain discretized with a large
number of elements is demonstrated by this numerical example. The simulation was performed
with 64 processors resulting in about 25 000 DOF’s per processor. A tolerance of 1 · 10−8 is
required for the linear solver and a tolerance of 1 · 10−6 for the Newton-Raphson iteration and
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the galvanostatic constraint condition. The mean element evaluation time was 3.4 s. This num-
ber could be decreased further if the similarity between two terms were used as discussed in
section 7.2. The number of GMRES iteration per Newton iteration is given in Tab. 7.10. During
the polarization phase, the number of GMRES iterations is higher than during the relaxation
phase. Both numbers are slightly larger than the number of GMRES iterations resulting from
the three-dimensional test case discretized with hexahedral elements presented in section 7.2.
During the polarization and relaxation phase, two Newton iteration per galvanostatic iteration
(GSI) are necessary to get a converged solution. As indicated by the low number of GSI per
time step, the galvanostatic constraint condition using the integrated conductivity as predictor
step also performs very well in complex three-dimensional domains with non-uniform electrode
areas. During the relaxation phase, the number of GSI corresponds to the number of time steps
since the no-flux condition is fulfilled automatically.

Table 7.10: Numerical efficiency of the proposed numerical solution scheme for a realistic domain.

linear GMRES iterations Newton iterations num. GSI GSI
per Newton iteration per GSI per time step

Polarization phase 30.01 2.02 2581 2.15

Relaxation phase 23.83 2.0 13300 1
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7.6 Galvanostatic simulation of a realistic porous medium

Table 7.11: Simulation parameter for the galvanostatic simulation of lung tissue.

Edge length of computational domain [mm] 0.2

Volume of computational domain V e [mm3] 2.7 · 10−3

Number of elements / degrees of freedom 2,272,169 / 1,428,708

Element size h [mm] 2.25 · 10−3

Initial concentration c
e

0 [M] 1.0

Polarization current Ip [µA] 6.1

Min. and max. time step size ∆t [s] 0.001 / 0.1

Current interruption time TI [s] 10

Diffusion coefficient D± [mm2

s ] 1.48 · 10−4 c−0.125

Transference number t+ [−] 0.4− 0.01c

Thermodynamic factor
(

1 + ∂ ln f±
∂ ln c

)
[−] 1− 0.5c1/2 + 2c

Conductivity κ [ µS
mm ]

3900c− 8700c3/2 + 8000c2 + 5000c3

1.0 + 7.0c2 + 9.0c4

BV conditions i0 = 10µA mm−2, γ = 1.0, αA = αC = 0.5
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8 Determination of a complete set of
transport parameters

In this work, transport parameters are determined exemplarily for an electrolyte solution con-
sisting of Lithiumperchlorate (LiClO4) dissolved in a mixture of Ethylene Carbonate (EC, 50 %
wt.) and Diethyl Carbonate (DEC, 50 % wt.) which is abbreviated by xM LiClO4 in EC:DEC
(1:1 w %). Generally, the mixture of a polar (EC) and an nonpolar (DEC) solvent is favorable
to guarantee good wettability of the nonpolar polypropylene separator as well as good solubil-
ity of the polar salt. A detailed review on nonaqueous liquid electrolytes for lithium-ion-based
batteries is given, e.g., by Xu [156] and on porous separators, e.g., by Arora and Zhang [8]. It is
important to emphasize that all presented methods can also be applied to any lithium-ion-based
binary electrolyte solutions.

In section 8.1, various physical properties of individual components and of the electrolyte
solution such as molar mass M and density ρ are summarized. The results of the conductivity
cell introduced in section 5.1 are discussed shortly in section 8.2. In section 8.3, the novel experi-
mental procedure for the determination of the mean molar activity coefficient f± or, respectively,
the thermodynamic factor proposed in section 5.2 is analyzed. In section 8.4, the transference
number is determined based on concentration cell data as described in section 5.6. The different
methods for the determination of the diffusion coefficient and the transference number based
on polarization experiments introduced in section 5.4 and section 5.5 are discussed critically in
section 8.5. The results presented in this section are also published in Landesfeind et al. [96] and
Ehrl et al. [56].

8.1 Physical properties of the electrolyte solution

In Tab. 8.1, the density ρ, the molar mass M and the relative permittivity εR of all electrolyte
components and of the solvent mixture EC:DEC (1:1 w%) are given. The molar mass MEC:DEC

is calculated based on the formula

MEC:DEC =
MECMDEC

(wECMDEC + wDECMEC)
.

The density ρ of the solvent EC:DEC (1:1 w%) can be approximated by the mass of EC and
DEC contained in 1 L solvent

ρ =
mEC +mEC

1 L
= 2

ρEC ρDEC

ρEC + ρDEC
.
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8 Determination of a complete set of transport parameters

Table 8.1: Physical properties of all electrolyte components and the solvent mixture EC:DEC (1:1 w %)
at T = 25◦C.

LiClO4 EC DEC EC:DEC(1:1 w %)
(solid) calc. meas.

Density ρ
[ g

cm3

]
2.42[1] 1.321[156] 0.969[156] 1.118 1.124

Molar mass M
[ g

mol

]
106.4[1] 88[156] 118[156] 100.8 -

Relative permittivity εR [−] - 89.78[156] 2.805[156] - 35± 3[96]
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Figure 8.1: Density ρ of LiClO4 in EC:DEC (1:1 w %).

The calculated density ρ of the solvent is confirmed experimentally as indicated in Tab. 8.1. The
same density measurements were repeated for the electrolyte solution with a varying LiClO4 con-
centration. The results are depicted in Fig. 8.1 showing almost a linear behavior for an increasing
LiClO4 concentration. Such a behavior is typical for many electrolyte solutions as shown, e.g.,
in Barthel et al. [17]. The experimental data are represented well by the linear function

ρ(c) = 1.124 + 0.06c. (8.1)

As a result, the total concentration cT = c0 + c and the solvent concentration c0 can be
calculated based on the ratio of components, the salt concentration c and the density ρ. These
quantities are only important for the model suggested by Latz and Zausch [99] and for the refor-
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8.2 Conductivity

mulation of the binary diffusion coefficient in terms of the molecular diffusion coefficients Dkl

as explained in section 2.4.1. The total concentration cT is related to the total amount of nT

nT = nEC + nDEC + nLiClO4 =
(

1
MEC

+
1

MDEC

)
mEC/DEC + nLiClO4 , (8.2)

where nEC denotes the amount of EC, nDEC the amount of DEC, nLiClO4 the amount of the salt
and mEC/DEC the mass of the single solvent components. For the used solvent, the mass of single
components is given by mEC/DEC = mEC = mDEC. Based on the definition of the electrolyte
density ρ = (2mEC/DEC +mLiClO4)/V , the mass mEC/DEC can be also written as

mEC/DEC =
1
2

(ρV −MLiClO4nLiClO4) . (8.3)

In terms of the total concentration cT = nT/V , Equ. (8.2) and Equ. (8.3) can be combined to

cT =
(

1
MEC

+
1

MDEC

)
1
2

(ρ−MLiClO4c) + c,

where c = nLiClO4/V . The solvent concentration c0 is given by cT − c.

8.2 Conductivity

As presented in section 5.1, the concentration dependent conductivity κ(c) of the electrolyte
solution is measured with a conductivity cell. The resulting experimental data depicted in Fig. 8.2
are fitted by the function

κ(c) = κmax

(
c

cmax

)x3

exp
(
x4 (c− cmax)

2 − x3

cmax
(c− cmax)

)
(8.4)

proposed by Casteel and Amis [37] or, alternatively, by the function

κ(c) =
x1c− x2c

3/2 + x3c
2 + x4c

3

1.0 + x5c2 + x6c4 . (8.5)

In Kreysa et al. [92], Equ. (8.4) is introduced as a fitting function representing best the conduc-
tivity of moderate and high concentrated electrolyte solutions. Equ. (8.5) is defined in order to

Table 8.2: Fitting parameters for Equ. (8.4) and Equ. (8.5) describing the conductivity κ(c).

x1 x2 x3 x4 x5 x6

Equ. (8.4) 0.83(cmax) 5.94 (κmax) 0.81 −0.06 - -

Equ. (8.5) 39.0 75.13 67.60 −10.38 2.30 0.30
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Figure 8.2: Conductivity κ and molar conductivity κ/c for LiClO4 in EC:DEC (1:1 w %).

fulfill additionally the Kohlrausch square law λm(c) = κ(c)
c

= λ0
m − k

√
c for dilute solutions as

discussed, e.g., in Hamann and Vielstich [78]. Similar functions are used, e.g., in Nyman et al.
[115] or Thorat et al. [140]. The corresponding fitting parameters for both functions are given in
Tab. 8.2. For Equ. (8.4), the parameters x1 and x2 are equal to cmax and κmax, respectively. For
Equ. (8.5), the parameter x1 can be interpreted as the molar conductivity λ0

m at infinite dilution
and the parameter x2 as parameter k of Kohlrausch square law. For the conductivity shown in
Fig. 8.2(a), the differences between the two fits are negligibly small. In case of the molar conduc-
tivity, differences are observable for dilute solutions. Therefore, Equ. (8.5) is used as functional
description for the conductivity in this contribution. However, for the investigated electrolyte so-
lution, the differences between Equ. (8.4) and Equ. (8.5) are so small that the numerical results
would not be influenced significantly if Equ. (8.5) was used instead of Equ. (8.4).

8.3 Thermodynamic factor

In the following section, the experimental setup and procedure for the determination of the trans-
ference number introduced in section 5.2 is described in detail. Afterwards, the experimental
results are presented.

8.3.1 Experimental procedure

Measurements and electrolyte preparations were performed in an argon filled and temperature
controlled glove box (MBraun, 25 ◦C± 1◦C, water content<0.1 ppm, Ar 5.0, Westfalen, 99.999
% Vol). A custom made three electrode glass setup as shown in Fig. 8.3 was used with a plat-
inum (Advent, 99.99+ %) counter electrode (CE), gold (Alfa Aesar, 99.999 %) working elec-
trode (WE) and a lithium (Rockwood Lithium, 0.45 mm, high purity) reference electrode (RE).
Individual cell compartments were separated by porous glass frits. The distance between the
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8.3 Thermodynamic factor

Figure 8.3: Three electrode glass setup: platinum counter electrode and gold working electrode in
EC:DEC (1:1, wt%) electrolyte containing LiClO4 concentrations from 0.1 x 10−3 to 2 M
and 50 µM ferrocene and lithium reference electrode in same electrolyte without ferrocene.

electrodes was kept small (∼ 1 cm) to minimize ohmic drops in the electrolyte phase. To prevent
electrolyte evaporation the cell is sealed with polytetrafluorethylen sealing rings (Glindemann)
at all grounded glass joints and the electrodes are electronically connected with the potentio-
stat via fused-in tungsten wires. All glass cell parts were cleaned by boiling them in a mixture of
ethanol and water (Millipore, Elix, 15 MΩ), thoroughly rinsed with water and then dried at 70 ◦C
in a heating oven before bringing them into the glove box. Relative solvent permittivities were
measured in a custom made coaxial stainless steel setup using impedance spectroscopy. A mix-
ture of ethylene carbonate (EC, 50 %, by weight, Sigma Aldrich, anhydrous, 99 %) and diethyl
carbonate (DEC, 50 %, by weight, Sigma Aldrich, anhydrous, >99 %) was used as solvent for
the investigated electrolytes, containing LiClO4 (Sigma Aldrich, 99.99%) concentrations from
0.1 x 10−3 to 2 M. Ferrocene (Fc, Merck, > 98 %) was added to the electrolyte in CE and WE
compartment at concentrations of 50µM or 100µM. Due to the small association constant of
comparable electrolytes, 48 dm3/mol for LiClO4 in PC/EMC as discussed, e.g., by Besenhard
[24], ion pair formation is neglected in this work. In consecutive measurement series with mul-
tiple LiClO4 concentrations, smallest concentrations were measured first to avoid contamination
by salt remains of previous experiments.

A Biologic VMP3 potentiostat/galvanostat was connected to the cell inside the glove box
using actively shielded cables. The cell impedance was measured and the high frequency re-
sistance between WE and RE was extracted by linear extrapolation of the high frequency part
in a Nyquist plot. Recorded cyclic voltammograms between 2.5 V and 4 V versus Li/Li+ were
online IR corrected for different percentages of the determined WE-RE resistance. Always five
consecutive scans were performed per analyzed scan rate (10 mV/s or 20 mV/s).

8.3.2 Results and discussion

Selection of experimental procedure As the parameters of the CV measurements influence
the validity of theoretical assumptions, it is necessary to identify a proper set of measurement
conditions to fulfill the requirements described in the theoretical part of this work, mostly the
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Figure 8.4: Cyclic voltammetry using two different scan rates (10 mV/s, dashed line and 20 mV/s, solid
line) of two different ferrocene concentrations (cFc = 50 µM, black and cFC = 100 µM, red)
in a 2 mM LiClO4 electrolyte solution, 85 % online IR correction.

small ferrocene concentration in comparison with the LiClO4 salt. Fig. 8.4 shows the second CVs
with 50µM and 100µM concentrations of ferrocene in 2 mM LiClO4 at scan rates of 10 mV/s
and 20 mV/s. Of five consecutive voltammograms only scans 2 – 4 are used in the following anal-
ysis. The first scan is always omitted. All curves show reversible oxidation and reductions peaks
of the ferrocene couple at ∼ 3.51 V and ∼ 3.43 V respectively. Following the argumentation in
the theoretical part of this work, the smaller ferrocene concentration of 50µM was used for the
following experiments in order to satisfy the requirement of a small cFc+ to cLiClO4 ratio to avoid
parasitic effects such as diffusion overpotentials. Additionally, small ferrocene concentrations
result in small currents and, thus, small ohmic drops in the electrolyte phase. It also guarantees
that the ionic strength can be approximated by the concentration of supporting electrolyte. Ex-
traction of oxidation and reduction peak potentials was done by calculation of maximum and
minimum of a fifth order polynomials which were fitted through the data points ± ∼ 50 mV
around the measured extrema. Due to the sensitivity of this procedure on the peak sharpness, the
larger scan rates of 20 mV/s, showing higher oxidation and reduction currents, are used subse-
quently. For the same reason the ferrocene concentration is not reduced further. All following
experiments have been conducted using the just determined set of measurement conditions, a
scan rate of 20 mV

s and a ferrocene concentration of 50µM.

Ohmic drop compensation and correction The effect of uncompensated resistance is dis-
cussed in the following using the aforementioned set of measurement conditions, a scan rate of
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Figure 8.5: CVs showing the influence of IR correction on oxidation and reduction peak positions of
50 µM ferrocene, scan rate of 20 mV/s, 1 mM LiClO4 supporting electrolyte solution. Differ-
ent methods for the IR-correction: raw data (dashed line), 100 % post IR-correction (dash-
dotted line) and 75 % online + 25 % post IR-correction (solid line).

20 mV/s and a ferrocene concentration of 50µM. Fig. 8.5 shows an example for the influence
of different types of IR correction on the peak positions. Without IR correction, oxidation and
reduction peak potentials in a 1 mM LiClO4 electrolyte are 3.550 V and 3.428 V respectively.
Ferrocene oxidation and reduction peak potentials of 3.531 V and 3.443 V are obtained if raw
data are IR corrected after the measurement according to

Ui,corr = Ui,meas − Ii,meas ·RRE-WE

In the following, this method is called post IR correction, according to its execution after the
measurement. The resistance RRE-WE was determined from impedance measurements prior to
the cyclic voltammetry scans. As oxidation and reduction currents are different (2.8µA and
2.3µA respectively), the IR correction has different impacts on oxidation and reduction peak
potentials resulting in a non-symmetric behavior which can be observed in Fig. 8.5. Note that
oxidation and reduction currents also include a current flow which is used for the build-up of the
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double layer and, therefore, do not impose an ohmic drop in the electrolyte phase. Double layer
currents were estimated from the capacity obtained by impedance measurements as well as the
scan rate. Although this correction was done for all post IR corrected potentials reported below,
its magnitude is negligible as the double layer currents are 10 to 40 times smaller than the CV’s
peak currents.

For electrolyte solutions with RE-WE resistances in the kΩ range, the effective potential
in the cyclic voltammogram is not truly linear with time anymore. This behavior can be cir-
cumvented by an online, i.e. live, IR correction for a certain percentage of the uncompensated
resistance as explained theoretically, e.g., in Bard and Faulkner [14]. Essentially, the scan rate
is adjusted continuously during the scan resulting in a linear effective potential time behavior
although the applied potential is non-linear as discussed by Bond et al. [27]. As oscillations are
observed for online IR corrections close to 100 % of the total uncompensated resistance which
are due to the measurement hardware, it is only possible to correct for 85 % of the ohmic drop.
As a result, a combined IR correction consisting of an online IR correction and a subsequent post
IR correction is introduced in the following. Fig. 8.5 shows the effect of such a combined IR cor-
rection, based on 75 % online + 25 % post IR correction, giving a peak potential of 3.526 V for
oxidation and 3.447 V for reduction peak potentials, respectively. Although both cases, 100 %
post IR correction and a combined 75 % on. + 25 % post. IR correction, theoretically account for
the same total ohmic drop, a difference in peak positions of ∼ 5 mV is observed between both
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8.3 Thermodynamic factor

methods. This shows the importance of online over post IR correction and raises the question of
remaining uncertainties within the combined IR correction.

As a 100 % online IR correction cannot be realized, CVs with four different percentages
of online IR correction were measured in a 0.1 mM LiClO4 electrolyte as shown in Fig. 8.6
to validate the following analysis procedure. This smallest LiClO4 concentration is chosen on
purpose to visualize the methodology best. Cross and plus symbols in Fig. 8.6 correspond to
oxidation and reduction peak potentials which are only improved by an x% online IR correction.
Further (100 − x) % post IR correction of these potentials by the remaining resistance results
in oxidation and reduction potentials indicated by circles and triangles, respectively. Both peak
potentials resulting from an x% online IR correction and an x% online + (100 − x) % post
IR corrections are extrapolated to 100 % based on the peak potential values for 25 %, 45 %,
65 % and 85 % online correction. The data are well represented by linear extrapolation lines
as shown in Fig. 8.6 with an interception point close to 100 % IR correction. It is concluded
that the peak potentials obtained by 85 % online + 15 % post IR correction still shows a small
deviation of about 3 mV from the extrapolated value for 100 % online IR correction. Therefore,
measurements for two ratios of x% online + (100 − x) % post IR correction were performed
and extrapolated to 100 % online IR correction. For concentrations above 5 mM LiClO4 this
procedure leads to negligibly small corrections compared to the value obtained from a 85 %
online + 15 % post IR correction and cannot be distinguished from non-extrapolated values in
the following figures.

Data selection A quality measure for obtained oxidation and reduction potentials is the peak
separation. For reversible processes with fast electrode kinetics, the theoretical peak separation
as given in Tab. 5.1 should be 58 ± 1 mV since the potential difference between the oxidation
peak and the vertex potential is larger than 300 mV.

For all measured LiClO4 concentrations, the potential differences between oxidation and
reduction peaks are plotted in Fig. 8.7. To show reproducibility, the peak separation data are
shown for three independent measurement series. In the measurement series three, extrapolated
values exist only for concentrations between 0.5 mM and 20 mM. Other measurements in this se-
ries were only done using 85 % online + 15 % post IR correction. In the following analysis data
points for measurement series three for concentrations above 20 mM are the values from the
combined IR correction directly, without extrapolation. Fig. 8.7 depicts a constant peak separa-
tion for concentrations above 5 mM. For concentrations below 5 mM LiClO4, the peak potential
increases to 90 – 100 mV for the extrapolated values of a 0.1 mM LiClO4 concentration. From
the constant peak separation of all measurement series for concentrations above 5 mM it is con-
cluded, that all aforementioned parasitic effects influencing the peak potentials are negligible for
these measurements. The first measurement series shows a shift of all measured peak separations
by about 5mV compared to measurement two and three. This was identified as an experimental
artifact caused by not flame annealing, and thereby removing thin oxide layers on the working
electrode for this set of measurements. As explained in Besenhard [24], a thin oxide film on the
gold WE reduces the rate constant k0 of the outer electron transfer of the ferrocene / ferrocenium
couple, which depends on the electron tunneling length, i.e., the thickness of the oxide layer on
the gold surface. A smaller rate constant k0 results in an increased peak separation according to
Equ. (5.12). Nevertheless, a deviation from the expected peak separation according to Tab. 5.1
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Figure 8.7: Peak separation of three independent measurement series with extrapolated values. The solid
line indicates a concentration of 5 mM.

remains which can also be explained by non-ideal kinetic effects resulting in a decreased rate
constant k0 as indicated in Bard and Faulkner [14].

However, for the methodology presented in the theoretical part as well as below, a constant
peak separation is sufficient for further analysis. For concentrations below 5 mM, the observed
increase in peak separation can be ascribed to the following effects. The kinetic rate constant k0,
the ratio of diffusion coefficients of ferrocene and ferrocenium as well as the activity coefficient
of FcClO4 may depend on the concentration of supporting electrolyte as explained in the theoret-
ical part of this work. In addition, the ratio of ferrocene to supporting electrolyte may introduce
a diffusion overpotential, which affects oxidation and reduction peak potentials asymmetrically
(compare Equ. (5.15)). The concentration overpotential can be estimated by Equ. (5.15), only
partly explaining the increase in peak separation. For example, a decrease in peak separation of
about 2 mV is expected for a 1 mM LiClO4 concentration if the concentration overpotential is
subtracted from the oxidation peak potential. This low value is a result of the chosen experi-
mental setup with a minimal ferrocene to supporting electrolyte concentration ratio. An obvious
trend is only visible for the smallest LiClO4 concentration where the half peak potential is clearly
shifted towards the oxidation peak as a result of the non-symmetric behavior of the concentration
overpotential as explained in the theory section.

In addition, the ratio between ferrocenium and ferrocene diffusion coefficients as shown in
Equ. (5.12), which may depend on the supporting electrolyte concentration as indicated, e.g.,
in Wang et al. [148] or Ruff et al. [128], also influences the peak separation. A quantitative
estimation is not possible as no literature values exist for the considered system. The reaction
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Figure 8.8: a) Potentials, extrapolated to 100 % online IR correction, of reduction peaks (red), half
wave positions (black) and oxidation peaks (blue) for measurement series one (circles), two
(crosses) and three (triangles), for different salt concentrations, b) zoom to small concentration
region.

rate constant k0 may also depend on the concentration of the supporting electrolyte as was shown,
e.g., by Peter et al. [120]. In the same publication, the effect of ion pairing is also mentioned as an
explanation for the non-ideal behavior of a cyclic voltammogram. A similar concept is discussed
in Redepenning et al. [125]. The best explanation for the increase in peak separation is, in our
opinion, a supporting electrolyte concentration dependence of the rate constant k0. Nonetheless,
for concentrations below 5 mM, a combination of all of the described effects has to be assumed.
The result of the data selection is that only concentrations above 5 mM LiClO4 are used for
evaluating the activity coefficient from measured data points while smaller concentrations are
still plotted for comparison.

Parameter extraction In Fig. 8.8, oxidation, reduction and half wave potentials of all mea-
sured concentrations are subtracted by RT/F ln c and their negative values are plotted over the
square root of concentration to visualize the theoretically expected linear behavior for lowest
concentrations as shown in Equ. (5.8) and Equ. (5.21):

yAxis = −Umeas − RT

F
ln(cLi+) = −URef + 2

RT

F
ln(fLiClO4)

In Fig. 8.8, the previously mentioned constant peak separation as well as its increase for con-
centrations below 5 mM can be observed. It can also be seen that above 5 mM the curves look
identical, only shifted along the y-axis. Data fitting with Equ. (5.21) can therefore be done for
oxidation, half wave or reduction peak potential for concentrations above 5 mM, as the only ne-
cessity is a constant reference potential. For lowest concentrations, Equ. (5.21) simplifies to the
Debye-Hückel limiting law given by Equ. (5.20) which predicts a linear slope of the logarithmic
mean molar activity coefficient over the square root of concentration. As the concentration is
equivalent to the ionic strength for small ferrocene concentrations, the slope of the tangent at
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Figure 8.9: a) Fit of reformulated, extrapolated to 100 % online IR correction, half wave potentials for
measurement series one (circles), two (crosses) and three (triangles) in concentration range
from 5 mM to 2 M with Debye-Hückel behavior of activity coefficient. Concentrations below
5 mM are neglected for the fit (magenta), b) zoom to small concentration region.

concentration zero corresponds to the Debye-Hückel parameter A. The concentration range, in
which this linear relationship is still visible, can be estimated by comparing Equ. (5.21) with
its simplified form, Equ. (5.20). As long as Bȧ

√
I in the denominator of Equ. (5.21) is small,

a linear behavior is expected. Parameter ȧ is proportional to a distance of closest approach and
parameter B depends on the relative permittivity of the solvent as discussed, e.g., in Hamann and
Vielstich [78]. The relative permittivity was measured in a coaxial cell setup using impedance
spectroscopy resulting in a value ofεR ≈ 35 ± 3. This value is further confirmed for a similar
system of LiClO4 in PC:DEC, 1:1 by weight by Ding [49]. A reasonable assumption for the dis-
tance of closest approach of lithium and perchlorate ions in the used aprotic solvent is 1 nm as
given in Hamann and Vielstich [78]. Based on the aforementioned parameters, the concentration
range showing the linear relationship is up to LiClO4 concentrations of 0.1 mM, which is way
below the range of previously selected good quality measurement points. In comparison, a linear
trend should be observable up to concentrations of about 2.5 mM for aqueous systems (εR ≈ 80,
distance of closest approach 0.3 nm) as given in Hamann and Vielstich [78]. For the investigated
non-aqueous electrolyte solution a linear behavior is thus not expected in the measured concen-
tration range. Hence, data points were fitted using a calculated slope A based on the measured
relative permittivity of the solvent.

Resulting fits of the reformulated half wave potentials are depicted in Fig. 8.9 with fixed
relative permittivities εR of the solvent of 35 or 40. A second relative permittivity is shown to
analyze the sensitivity of the fit towards the relative permittivity. Although half wave potentials
are used in further analysis, essentially identical results can be obtained for a fit utilizing the
oxidation or reduction peak potentials as long as only concentrations above 5 mM are considered.
Extracted fitting parameters, the distance of closest approach ȧ, the reference potential as well as
the slope x1 of the linear term of the extended Debye-Hückel equation, are collected in Tab. 8.3.
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8.3 Thermodynamic factor

Table 8.3: Extracted fitting parameters for fixed relative permittivities of 35 and 40.

εr[−] URef[V] ȧ[nm] x1[−] R2 [−]

35 3.3079 ± 0.0042 12.8 ± 23.4 0.907 ± 0.016 0.996

40 3.3077 ± 0.0047 13.7 ± 25.6 0.907 ± 0.016 0.996

For both relative permittivities, Tab. 8.3 and Fig. 8.9 show the same good correlation, indi-
cated by the good fit parameter R2. Within the given errors, the same constant reference poten-
tials, distances of closest approach as well as linear slopes x1 are determined. While for the first
and the last of those parameters, the error is negligibly small, this is not true for the distance of
closest approach, where a standard deviation of nearly 200 % indicates the invariance of the fit
with respect to ȧ. In aqueous electrolyte theory the parameter ȧ commonly ranges from 0.3 nm
to 0.6 nm as given, e.g., in Wright [153]. A large size of the ferrocene molecule, a shielding by
solvent molecules as well as a changed relative permittivity compared to water based systems
can only explain a tendency towards larger distances of closest approach. Bottom line, given
the quality and number of data points, especially at the low concentration region, ȧ cannot be
determined from the fit of measured half wave potentials of LiClO4 concentrations of 5 mM to
2 M in EC:DEC. Interestingly concentrations below 5 mM, which are not taken into account in
the fitting procedure, are in good accordance with the result of the fit. This means that oxidation
and reduction peak potentials are affected more or less symmetrically by additional effects alter-
ing the peak separation, as discussed in detail above. It has to be added that an extension of the
Debye-Hückel equation to higher orders, compare Equ. (5.22), do not improve the quality of the
fit significantly.

Discussion of determined activity coefficient The mean molar activity coefficient of LiClO4

in a mixture of EC:DEC(1:1, by weight) was determined by fitting measured potentials of a
lithium reference electrode versus half wave potentials of the ferrocene / ferrocenium redox
system. The natural logarithm of the resulting activity coefficient is shown in Fig. 8.10(a), based
on parameters obtained by fixing the relative permittivity to 35. Apart for a rescaled y-axis, this
graph is, identical with Fig. 8.9(a). In the equations of the concentrated electrolyte theory the
binary activity coefficient often appears in the form of a so-called thermodynamic factor (TDF):

TDF =
(

1 +
∂ ln f±
∂ ln c

)
≈ 1 + 0.907 c

Fig. 8.10(a) shows the TDF for the investigated electrolyte in a concentration range from 0 M
to 2 M. As only linear terms in the extended Debye-Hückel equation were considered, also the
TDF can be considered linear from 5 mM to 2 M. Only at lowest concentrations a deviation from
the linear slope can be seen in the inset of Fig. 8.10(b). This is the result of the assumed Debye-
Hückel behavior at lowest concentrations which should be understood as a reliable result given
the fit’s insensitivity towards the distance of closest approach. Concluding, for determination of
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Figure 8.10: a) Concentration dependent mean molar activity coefficient of LiClO4 in EC:DEC (1:1,
w:w), b) corresponding thermodynamic factor.

the TDF, it is sufficient to determine the mean molar activity coefficient in a concentration range
from 5 mM to 2 M.

Comparison with literature A comparison with similar electrolytes investigated in literature
is shown in Fig. 8.11. Direct comparison is difficult though, as all were performed with LiPF6

salts. In all publications the TDFs show a mostly linear concentration dependence for concentra-
tions above 0.5 M. Different slopes in this region may result from different solvents, being used
by the individual groups. The behavior at low concentrations in these publications are either ne-
glected as, e.g., in Nyman et al. [115] and Lundgren et al. [102], or fixed with a theoretically
assumed Debye-Hückel behavior as discussed, e.g., in Stewart and Newman [135] and Valøen
and Reimers [142]. A distinct non-linear behavior can be observed in the determined TDF of
Valøen and Reimers [142]. In this case the natural logarithm of the mean molar activity coef-
ficient is only assumed to be a series expansion of

√
c terms. This formulation does not allow

for a fast deviation from the linear Debye-Hückel behavior and thus leads to a pronounced neg-
ative bump in the TDF. Only in the publication by Stewart and Newman [135], a Debye-Hückel
behavior as described by Equ. (5.21) is assumed for small concentrations. In this case, the Debye-
Hückel behavior also does not affect the curvature of the resulting TDF, but only imposes a small
correction at lowest concentrations.
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Figure 8.11: Comparison of determined thermodynamic factor for LiClO4 in EC:DEC, 1:1 w/w, with
similar electrolytes in literature, Nyman et al. [115]: LiPF6 in EC:EMC, 3:7 w/w, Lundgren
et al. [102]: LiPF6 in EC:DEC, 1/1 w/w, Valøen and Reimers [142]: LiPF6 in PC:EC:DMC,
10:27:63, v/v/v, Stewart and Newman [135]: LiPF6 in EC:EMC, 1:1 w/w.

8.4 Transference number based on data from a concentration
cell

In this section, the concentration dependent transference number t+(c) is determined from ex-
periments in a concentration cell in combination with the thermodynamic factor determined in
section 8.3. For this purpose, two different experimental procedures are proposed which are
explained theoretically in section 5.6.

8.4.1 Experimental procedure

The electrolyte solution, consisting of a mixture of ethylene carbonate (EC, 50 %, by weight,
Sigma Aldrich, anhydrous, 99 %), diethyl carbonate (DEC, 50 %, by weight, Sigma Aldrich,
anhydrous, >99 %) and lithium perchlorate LiClO4 (Sigma Aldrich, 99.99%), was prepared in
an argon filled and temperature controlled glove box (MBraun, 25 ◦C ± 1 ◦C, water content
<0.1 ppm, Ar 5.0, Westfalen, 99.999 % Vol). The concentrations of LiClO4 ranged from c =
0.1 · 10−3 M to c = 2 M. Metallic lithium (Rockwood Lithium, 0.45 mm, high purity) was used
as counter electrode (CE) and working electrode (WE). The concentration cell consisted of two
parallel lithium stripes which were in contact with a stripe of glass fiber separator soaked with
an electrolyte solution of two salt concentrations. To minimize electrolyte evaporation, separator
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Figure 8.12: Concentration cell setup between two glass plates.
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Figure 8.13: Transient of cell potential U of a concentration cell measurement inside the temperature
controlled glovebox (temperature hysteresis of 25.6◦C ± 1.1 K) for 0.8 M versus 1.2 M
LiClO4 in EC:DEC (1:1, wt.%).

and electrodes were sandwiched between two glass plates as depicted in Fig. 8.12 in a side view.
Concentration cell potentials were measured over a time interval of four minutes using either a
handheld voltmeter (Voltcraft VC830) inside the glovebox or a Biologic VMP3.

8.4.2 Results and discussion

In the following, the transference number of lithium ions will be determined based on concen-
tration cell data and a known thermodynamic factor determined in section 8.3. For a precise
determination of transport parameters, a controlled temperature environment is required since
the transport parameters show a distinct temperature dependence as shown, e.g., in Valøen and
Reimers [142] or Lundgren et al. [102]. The temperature influence on the cell potential can be
observed in Fig. 8.13. Although the temperature was regulated by the climate control system
inside the glovebox, a pronounced temperature hysteresis can be monitored leading to a non-
negligible variation in the measured cell potential. The concentration cell setup described in
section 8.5.1 is particularly sensitive for such temperature variations since the amount of elec-
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Figure 8.14: Concentration overpotentials resulting from a set of permutations of low and high salt con-
centrations measured in the concentration cell setup: lower concentrations are indicated be-
low the fit lines, higher concentrations are plotted as the common logarithm (log10) on the
x-axis.

trolyte is very small. The temperature was observed manually and correlates with the measured
potential fluctuations. In the depicted case the temperature varied between 24.5 ◦C and 26.8 ◦C.
Based on these temperature extremes the concentration overpotential at 25 ◦C is interpolated be-
tween the potential maxima. Due to the large influence of the temperature, subsequently an error
of ±0.3 mV is assumed for the measured cell potential.

First, a set of concentration overpotentials are measured with the experimental setup de-
scribed in Fig. 8.12. Because all permutations of low and high concentrated electrolytes are
measured in a matrix style, the method is refereed as matrix measurement or matrix method.
Over 70 concentrations cell were measured, of which most combinations are conducted at least
twice. In Fig. 8.14, the cell potentials are plotted versus the higher salt concentration. Each
line corresponds to a fixed lower salt concentration. The solid lines represent the numerical fit
of the measured concentration cell potentials using Equ. (5.76). As a result of the integral in
Equ. (5.76), a functional description has to be assumed for the transference number dependence
on the salt concentration. As a constant or a linear functional result in poor representation of
measured data and third and higher order polynomials only improve the fit quality mathemati-
cally, a quadratic description for the transference number is used for the fits in Fig. 8.14.

In addition to the matrix method, an alternative approach also described in section 5.6 is
applied to determine the transference number. In this case, the concentration overpotentials be-
tween two electrolytes of concentrations c− ∆c and c+ ∆c are measured. In the following, this
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Figure 8.15: Transference numbers t+(c) determined from concentration cell data using the delta and the
matrix method.

approach is called the delta method. The advantage of the latter approach is that no functional
description for the transference number has to be assumed and a pointwise calculation is possible
within the concentration c± ∆c. In this case, the transference number is approximated by a con-
stant value within the considered concentration range c±∆c. The transference number resulting
from this approach is depicted in Fig. 8.15. The concentration ranges used for the determination
of the concentration potentials are indicated by the widths of the x-error bars. Error bars in y-
direction are the result of ± 0.3 mV uncertainty due to the temperature hysteresis. Exemplarily,
the temperature induced potential variation shown in Fig. 8.13 yields a variation of the calcu-
lated transference number between 0.50 and 0.52 for 19.5 ± 0.3 mV. A quadratic fit based on
data from the delta method with its confidence interval as well as the quadratic functional for
the transference number resulting from the matrix method are also depicted in Fig. 8.15. The
corresponding functional descriptions are given by

t+,delta(c) = −0.117c2 + 0.171c+ 0.472, (8.6)

t+,matrix(c) = −0.165c2 + 0.247c+ 0.446. (8.7)

As a result, the quadratic functional assumed for the matrix methods can be confirmed by the
delta method. The two different experimental approaches represent the experimental data shown
in Fig. 8.14 and Fig. 8.15 very well. In both cases, the transference number shows a peak around
0.8 M of t+ ≈ 0.53. It is striking that the peak coincides with the peak of conductivity as shown
in Fig. 8.2(a). For c → 0, a value of t+ ≈ 0.45 is found. For c = 2 M salt concentration, the
transference number drops to about t+ ≈ 0.35.
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Figure 8.16: Overview over transference numbers available in literature: Nyman et al. [115] (LiPF6 in
EC:EMC, 3:7, wt.%, 25 ± 1 ◦C), Lundgren et al. [102] (LiPF6 in EC:DEC, 1:1, wt.%, 25
± 1 ◦C), Georén and Lindbergh [67] (LiClO4 in PC, RT), Valøen and Reimers [142] (LiPF6
in PC:EC:DMC, 10:27:63, vol.%, 21 ◦C), Zugmann et al. [163] (LiD-BOB in EC:DEC, 3:7,
wt.%, 24 ◦C), Sethurajan et al. [132] (LiTFSI in PC, RT).

For comparison with literature shown in Fig. 8.16, the concentration dependent transference
number determined with the matrix method is used. In literature, a wide variety of transference
numbers of liquid non-aqueous electrolytes is reported. Rather constant transference numbers
of about 0.412 or about 0.4528 are reported by Zugmann et al. [163] for LiPF6 in a mixture of
PC, DC and DMC (10:27:63, vol.) and by Valøen and Reimers [142] for LiDFOB in EC:DEC
(3:7, wt.), respectively. Monotonically decreasing values for the lithium transference number
are reported by Nyman et al. [115] for LiPF6 in EC:EMC (3:7, wt.) and Lundgren et al. [102]
for LiPF6 in EC:DEC (1:1, wt.). Georén and Lindbergh [67] also use a second order polyno-
mial to describe the concentration dependence of the transference number resulting in a similar
behavior as in the present results, only shifted to smaller values. The latter publication is also
based on the salt LiClO4 but uses PC as a solvent. To the authors best knowledge, no litera-
ture sources exist, investigating exactly the same electrolyte solution EC:DEC (1:1, wt.%) with
LiClO4 salt as used in this work. A similar behavior for the transference number of lithium
bis(trifluoromethanesulfonyl)imide lithium salt (LiTFSI) is obtained by Sethurajan et al. [132].
In this publication, the decreasing transference number with an increasing salt concentration is
explained by the formation of ion-pairs. A similar effect was previously reported by Vatamanu
et al. [143]. Another explanation why the mobility of the highly solvated lithium ions are affected
more than the perchlorate ions at high concentrations might be the interaction with the solvent
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molecules rather than with each other. At low concentrations the lithium ions are likely to be
surrounded by a solvation shell of multiple EC molecules while the perchlorate ions exist more
or less freely in the solvent. Due to the larger volume of the latter ion, over which the charge is
smeared out, it only scarcely interacts with the solvent. In a dilute electrolyte solution, a balance
of concentrations may be given as follows. The electrolyte consists roughly of 5 M of DEC, 5 M
of EC as indicated in section 8.1 and, e.g., 0.1 M of LiClO4. The fully dissociated lithium ions
may be solvated by 2 to 4 EC molecules leaving 4.7 M of EC in the non-solvated electrolyte. In
contrast, a large fraction of the EC molecules are solvated to the lithium ion at higher concen-
trations such as 2 M electrolyte solution to maintain the same solvation shell around itself. As a
result, lithium ions have to drag along half of the solvent at high concentrations while the per-
chlorate ions remain rather unperturbed by the changing quantity of non-solvated EC molecules.
An explanation for the increase of the lithium ion transference number at concentrations be-
low 0.5 M could be ion-ion interactions. While at infinite dilution the ion-ion distance is large,
their movement may couple at medium concentrations before at high concentrations the lithium
solvation effect becomes predominant.

The advantage of the delta method is that almost no assumptions are necessary for the deter-
mination of the concentration dependent transference number t+(c). In particular, no functional
description is required for the fitting procedure. However, the measured cell potentials U are
small compared to the arising cell potentials in the matrix method resulting in higher relative
errors and, therefore, an increased influence of experimental uncertainties. Consequently, the
combination of both methods would provide the best result.

8.5 Binary diffusion coefficient and transference number
based on polarization experiments

The diffusion coefficient can be determined directly by experiments in a polarization cell as
introduced in section 5.4. For the determination of the transference number, the partial effective
diffusion coefficient D∗

±,eff(c), the thermodynamic factor and experiments in a polarization cell
are required as outlined in section 5. The tortuosity τ of the separator is not needed for the
determination of the transference number t+(c), but for the calculation of the binary diffusion
coefficient D±(c) from the partial effective diffusion coefficient D∗

±,eff(c).

8.5.1 Experimental procedure

The electrolyte solutions for these experiments were prepared as described in section 8.4.1. Po-
larization experiments were executed in a two electrode cell schematically shown in Fig. 8.17.
Twenty circular layers of Celgard 2500 separator (porosity 55%, thickness 25µm) with a di-
ameter of 20 mm were placed between two lithium electrodes with a diameter of 17 mm. A
larger separator size ensured that no stray currents could flow around the porous medium. The
electrode distance is determined by the thickness of these separators, which are incompress-
ible in the pressure range induced by the mechanical spring. Due to the chosen setup, the ge-
ometrical distance between the electrodes can be adjusted accurately to small values such as
l = 20 x 25µm = 0.5 mm. As a result, a large area to distance ratio was obtained, minimizing
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Figure 8.17: Schematic of a two electrode cell.

Table 8.4: Experimental procedure for potentiostatic and galvanostatic experiments.

Salt Concentration PGP SSPP

2 min, ±50µA

0.01 M 4 min, ±50µA 20 mV, ∼ 60 min

3 min, ±75µA

0.5 M
6 min, ±500µA

1.0 M
16 min, ±500µA 50 mV, ∼ 15 min

1.5 M
12 min, ±750µA

2.0 M

the influence of the edge effects of the electric field and thereby fulfilling the requirement of a
one-dimensional concentration and potential gradients. It is emphasized that convective effects
are also suppressed using this setup. After positive and negative polarization of the two elec-
trode cell, with electrodes aligned perpendicularly to the gravitational field, equivalent potential
relaxation transients were observed. Convective electrolyte transference can thus be neglected.
After the cells were sealed with PTFE gaskets, measurements were conducted in a climate cham-
ber outside the glovebox. All experiments were repeated at least twice if not stated otherwise.
All cell parts were cleaned by boiling them in a mixture of ethanol and water (Millipore, Elix,
15 MΩ), thoroughly rinsed with water and then dried at 70 ◦C in a heating oven overnight be-
fore bringing them into the glove box. A Biologic VMP3 potentiostat/galvanostat was used to
measure polarization experiments. Cell impedances were measured in a frequency range from
200 kHz to 1 Hz.

Steady state potentiostatic and pulsed galavanostatic polarization experiments (SSPP, PGP)
were conducted in this two electrode cell. In each cell a 6 h OCV phase was followed by sev-
eral PGP experiments with various polarization currents Ip and times TI whereas a pulse with
a positive current flow was always followed by an identical pulse with a reversed current flow.
After each individual polarization, an OCV phase of at least 3 h ensured a complete relaxation of
remaining concentration profile. Following the set of PGP experiments, a SSPP experiment was
conducted. In these experiments, the polarization phase was terminated individually for each cell
when the current I(t) has remained stable for at least 2 minutes. The high frequency resistance
RHF of cells were measured before and at the end of the polarization step. Applied potentiostatic
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Figure 8.18: High frequency resistance (200 kHz) of cell with 0.01 M LiClO4 in EC:DEC (1:1, wt.%)
over time at OCV.

and galvanostatic pulses are summarized in Tab. 8.4. The polarization times for the SSPP ex-
periments are only approximated since they varied also within cells of identical concentrations.
The constant polarization currents and potentials were selected to ensure a current density below
0.3 mA/cm2. For such conditions, metallic lithium electrodes were reported to be comparably
stable as discussed in Aurbach et al. [10].

8.5.2 Results and discussion

Experiments with dilute electrolyte solutions in the two electrode cell setup Polarization
experiments conducted with the lowest salt concentration of c0 = 0.01 M exhibit a non-constant
electrolyte resistance Rel as shown in Fig. 8.18. Within the first 10 h of OCV, the electrolyte
resistance Rel decreases from the expected resistance of 320 Ω to about 220 Ω. This change in
electrolyte resistance Rel could result e.g. from a 50 % up to a 100 % increase in ion concen-
tration. As no final assignment of latter effect was possible, polarization cell data with 0.01 M
salt concentrations could only be used for the determination of the diffusion coefficient since
the potential error of +0.01 M is almost not visible in this case. For the determination of the
coefficients f(f±, t+,

√
D∗
±,eff) or f(f±, t+, D∗

±,eff) and, therefore, for the determination of the
transference number, this error is not marginal since the concentration is used directly for the
calculation of the coefficients as it can be seen in Tab. 7.8. As a result, a large error for both co-
efficients and, therefore, for the transference number has to be considered. This also means that
the widely applied transference number estimation at low concentrations given in Equ. (5.60)
cannot be applied in this experimental setup as a result of the non-constant electrolyte resis-
tance. The used two electrode cell setup described in section 8.5.1 is particularly sensitive for
such parasitic effects since the amount of electrolyte in the cell is very small.
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Figure 8.19: Long-term relaxation of the cell potential ln U(t) for 0.5 M, 1.5 M and 2.0 M LiClO4 elec-
trolyte solution after a SSPP experiment with a polarization potential Up = 50 mV and the
corresponding linear fits.

Diffusion coefficient from polarization experiments First, the partial effective diffusion co-
efficient D∗

±,eff(c) as well as the binary diffusion coefficient D±(c) are determined directly based
on PGP and SSPP experiments as outlined in section 5.4. The tortuosity τ , which is necessary
for the calculation of the binary diffusion coefficient D±(c), is given in section 4.2.

In general, the diffusion coefficient can be determined based on the long-term relaxation of
the cell potential U(t) after a PGP experiment and based on the short and long-term relaxation
of the cell potential U(t) after a SSPP experiment. In Fig. 8.19, the relaxation of the potential
lnU(t) with respect to time t for a 0.5 M, 1.5 M and 2.0 M LiClO4 electrolyte solution after a
SSPP experiment is shown. The cell potential U(t) never relaxes exactly to zero which means
that a stable open circuit potential between −0.5 mV and +0.5 mV remains even for long times.
Therefore, all relaxation curves are fitted with an offset potential since the linear relaxation be-
havior can only be observed if the open circuit potential U(t) approaches zero for long times.
As a result of this approach, the linear behavior is observable over a time range from 5 to 25
minutes which allows the quantification of the partial effective diffusion coefficient D∗

±,eff|SSPP-ln

according to Equ. (5.41). The apparent increase in noise for long times is due to the logarithmic
scale which also leads to the visibility of the digital accuracy of the potentiostat. By the applica-
tion of the same method, the diffusion coefficient D±|PGP-ln can be obtained from the long-term
relaxation of the cell potential U(t) after a PGP experiment which is not shown explicitly in this
work.
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Figure 8.20: Short-term relaxation of the potential U(t) for 0.5 M, 1.5 M and 2.0 M LiClO4 electrolyte
solution after a SSPP experiment with a polarization potential Up = 50 mV and the corre-
sponding linear fits.

The short-term relaxation of the cell potential U(t) with respect to the time
√
t after a SSPP

experiment is the basis for the determination of the diffusion coefficient according to Equ. (5.43).
In this case, the binary diffusion coefficientD± does not only depend on the slope of the relaxing
cell potential but also on the cell potential U(TI) at the current interruption time. In Fig. 8.20,
representative relaxation curves are plotted for 0.5 M, 1.5 M and 2 M electrolyte solutions. The
experimental cells with c0 = 0.5 M and c0 = 2 M show a linear correlation of the relaxing cell
potential U(t) with the square root of time

√
t. The indicated fitting ranges correspond to real

times between 25 s and 300 s and 25 s and 400 s for c0 = 0.5 M and c0 = 2 M, respectively. The
cell filled with c0 = 1.5 M electrolyte solution shows only a poor linearity which possibly re-
sults from the relaxation from a non-steady state concentration profile as discussed later on and
shown in Fig. 8.24. As outlined in section 7.5.3, the diffusion coefficients D±|SSPP-sqrt can only
be determined from the short-term relaxation behavior after a SSPP experiment with a confirmed
steady-state current flow I(t). Therefore, the summary of determined diffusion coefficients given
in Fig. 8.21 does not include any values for D±|SSPP-sqrt at c0 = 1.5 M. An explanation for the
pronounced drop in the cell potential U(t) within a time range of a view seconds after cur-
rent interruption may be the reformation of the SEI. Similar transients have been recorded by
Odziemkowski and Irish [116] when metallic lithium was cut while being in contact with an
electrolyte solution. However, this relaxation behavior is a good example for necessity of the
extrapolation technique as introduced in section 5.5.3.
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Figure 8.21: Concentration dependent binary diffusion coefficient D± of LiClO4 in EC:DEC (1:1, wt.%)
with the standard deviation resulting from multiple cells and experiments and the nonlinear
fit based on D±|PGP-ln.

In summery, the binary diffusion coefficients depicted in Fig. 8.21 show a good correlation
between the three methods within the common standard deviation of individual pulses and cells.
Highest confidence is presumed for the diffusion coefficient determined from the long term re-
laxation after PGP experiments. In this case, the measured potentials during relaxation are larger
compared to the relaxation after SSPP experiments which results in a better signal to noise ra-
tio and a longer time range in which the expected behavior can be observed. Due to the long
polarization times in a SSPP experiment, large polarization potentials Up have to be avoided in
order to prevent pronounced lithium dendrite formation. Consequently, further analysis of the
diffusion coefficient D± and the transference number t+ is based on values obtained from the
long-term relaxation behavior after PGP experiments. Fig. 8.21 also includes an exponential fit
for the diffusion coefficient of the D±|PGP-ln values giving

D±(c) = 2.36 · 10−6 exp (−0.375c)
[

cm2

s

]
.

A decrease in the binary diffusion coefficient D±(c) as observed in Fig. 8.21 is expected theo-
retically since an increasing salt concentration results in an increased electrolyte viscosity and,
thereby, a reduced the ionic mobility. In addition, the binary diffusion coefficient D± determined
by the described experimental method also includes additional factors such as the ratio between
the total concentration and solvent concentration, the thermodynamic factor and potential volu-
metric effects as discussed, e.g., by Nyman et al. [115] or Georén and Lindbergh [67] and derived
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Figure 8.22: Overview over binary diffusion coefficients available in literature: Stewart and Newman
[136] (LiPF6 in EC:DEC, 1:1, wt.%, RT), Nyman et al. [115] (LiPF6 in EC:EMC, 3:7, wt.%,
25 ± 1 ◦C), Lundgren et al. [102] (LiPF6 in EC:DEC, 1:1, wt.%, 25 ± 1 ◦C), Georén and
Lindbergh [67] (LiClO4 in PC, RT), Xu [156] (LiClO4 in PC, 25 ◦C), Nishikawa et al. [114]
(LiClO4 in PC, 25 ◦C), Valøen and Reimers [142] (LiPF6 in PC:EC:DMC, 10:27:63, vol.%,
21 ◦C).

in section 2.4. However, it is not necessary to separate these different effects from each other in
order to use the determined diffusion coefficient, e.g., in numerical simulations with a consistent
physical model.

In literature, binary diffusion coefficients are determined by various techniques such as
rotating disc measurements, numerical fitting procedures, relaxations experiments with optical
observation of the concentration gradient and the Moiré pattern as indicated in the introduction
of section 5. As depicted in Fig. 8.22, a similar trend is described by all publications showing a
decrease of the binary diffusion coefficient which is in accordance with theory. Lundgren et al.
[102], Nyman et al. [115] and Valøen and Reimers [142] get a very similar strong concentration
dependence for LiPF6 dissolved in different electrolyte solutions ranging from 5.5 · 10−6cm2/s
at infinite dilution to 1.5 · 10−6cm2/s for a 2 M electrolyte solution. The differences may be ex-
plained by different solvents viscosities. An unproportionally strong concentration dependence
for a LiPF6 electrolyte solution is reported by Stewart and Newman [136]. In this publication,
the diffusion coefficient is determined based on concentration gradient measurements with an
optical sensor. Georén and Lindbergh [67], Xu [156] and Nishikawa et al. [114] determine the
binary diffusion coefficient of LiClO4 in PC. Their results compare well with the binary diffusion
coefficient of LiClO4 in EC:DEC (1:1 w %) presented in this work.
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Transference number from polarization experiments In the following, the procedure for the
determination of the concentration dependent transference number t+(c) based on polarization
experiments as outlined in section 5.5 is investigated and compared to the methodology based
on concentration cell experiments. As described in section 5.5, the alternative method is based
on three experiments in two different experimental setups. The determination of the thermody-
namic factor is described in section 8.3 and the diffusion coefficient D±(c) is obtained from po-
larization experiments as discussed in the previous paragraph. In addition, either the coefficient
f(f±, t+,

√
D∗
±,eff) or the coefficient f(f±, t+, D∗

±,eff) is required to calculate the transference
number. In this contribution, the diffusion coefficient and the coefficients f(f±, t+,

√
D∗
±,eff) and

f(f±, t+, D∗
±,eff) are determined at discrete concentrations whereas the thermodynamic factor is

given as a continuous functional description. As presented in section 7.5.3, five different analyt-
ical expressions based on PGP and SSPP experiments are considered finally for the determina-
tion of f(f±, t+,

√
D∗
±,eff) and f(f±, t+, D∗

±,eff). The analytical expressions are summarized in
Tab. 7.8 and their accuracy was demonstrated by means of numerical simulations.

First of all, the coefficient f(f±, t+,
√
D∗
±,eff)|PGP can be determined from PGP experiments

based on Equ. (5.74), which requires only the cell potential U(TI) at current interruption time.
The accuracy of the method is improved by the observation of the short term relaxation after
current interruption which exhibits a linear relationship with respect to the artificial time τ ∗

defined in Equ. (5.75). In Fig. 8.23, four normalized potential transients are depicted over the
artificial time 1 − τ ∗. The relaxation curves resulting from the short polarization time exhibit
the theoretically expected s-shape which can also be observed in Fig. 7.18(a). The linear fits
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Figure 8.23: Relaxation of the normalized cell potential U(t) after a PGP experiment with Ip = 0.5 mA
for 360 s or 960 s in a 1.0 M and 2.0 M electrolyte solution.
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indicated by the dashed black lines correspond to real times between about 10 s and about 150 s.
The extrapolation of these fits to (1 − τ ∗) = 0 gives the desired cell potential U(TI) at current
interruption time. A linear relaxation behavior can also be observed for longer polarization times
but, the typical s-shape as depicted in Fig. 7.18(a) is missing. This is an indication for a violation
of the semi-infinite limit as a result of too long polarization times as discussed in section 7.5.3.
However, the polarization time of 960 s is not long enough to reach the steady-state which is
indicated by the nonlinear relaxation behavior of the cell potential U(t) with respect to

√
t. A

further reduction of the polarization time beyond 360 s decreases the signal to noise ratio and is
thus unsuitable for the precise determination of the cell potential at the polarization interruption
time. Higher polarization currents Ip should not be used since the stability of metallic lithium
electrodes cannot be guaranteed anymore as indicated by Aurbach et al. [10]. As a result, only
the coefficients f(f±, t+,

√
D∗
±,eff)|PGP based on 360 s – 0.5 mA PGPs are used in the following

analysis. It is emphasized that the experiments with the longer polarization time are used for the
determination of the diffusion coefficient since the long-term relaxation time is increased in this
case.

All other methods for the determination of the coefficients f(f±, t+,
√
D∗
±,eff) and f(f±, t+,

D∗
±,eff) are based on SSPP experiments. At first, the transient behavior of the current I(t) dur-

ing the potentiostatic polarization with Up is analyzed. Exemplary current transients for a 0.5 M,
1.5 M and a 2 M electrolyte solutions are depicted in Fig. 8.24. While a linear current relaxation
with respect to time

√
t can be observed for concentrations larger than c0 = 0.5 M, this linear-

ity is not apparent for c0 = 0.5 M. This cannot be explained by the approximation of the term
exp(H2t)(1 − erf(H

√
t)) with the square root of time

√
t as outlined in section 7.5.1 since the

values for H ≈ 0.003 (
√

s)−1 are of the same order for all depicted concentrations. Since the
theoretical relation between the current I(t) and the square root of time

√
t is derived based on

the linearized Butler-Volmer law and, therefore, on a constant interface resistance, the observed
curvature may result from parasitic effects such as the reduction of the total charge transfer resis-
tance which can be measured during the polarization time. The distinct drop of the current in the
beginning of the polarization time may also be related to this effect. For larger concentrations,
this effect may be restricted to a short time period in the beginning of the polarization whereas it
is distributed over a longer time period for the concentration c0 = 0.5 M, thereby interfering with
the expected

√
t relaxation. As a result of Fig. 8.24, the coefficient f(f±, t+,

√
D∗
±,eff)|SSPP-pol-sqrt

is determined only for concentrations c0 ≥ 1 M by means of Equ. (5.66). In this case, the ratio
mSSPP/I0 is determined based on the linear fits indicated by the back dashed lines. Additionally,
the required low frequency resistance RLF,0 is measured by impedance spectroscopy before each
SSPP experiment. For this method, it is not important that the steady-state is reached at the end
of the polarization.

For the remaining three coefficients f(f±, t+, D∗
±,eff)|SSPP-pol, f(f±, t+, D∗

±,eff)|SSPP-ss and
f(f±, t+, D∗

±,eff)|SSPP-ln, a linear, steady-state concentration profile is strictly required at the end
of the polarization time as discussed in section 7.5.3. In a SSPP experiment, the steady state is
indicated by a distinct current plateau at the end of polarization time as it is depicted in Fig. 8.24
for c0 = 0.5 M and c0 = 2 M. The pronounced time dependence of the current at the end of the
polarization phase for c0 = 1.5 M excludes this experiment from analysis of latter factors be-
cause a linear concentration profile may not be given at the end of the polarization. The increase
in the current may be explained by a decreasing interface resistance as a result of a modification
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Figure 8.24: Time dependent current I(t) of SSPP experiments with a constant polarization potential
Up = 50 mV for a 0.5 M, 1.5 M and 2.0 M electrolyte solution. The gaps at the end of the
polarization are due to an impedance measurement.

of the lithium electrode – electrolyte interface. It is emphasized that the electrolyte resistance
remains almost unchanged over the time of polarization.

The first coefficient f(f±, t+, D∗
±,eff)|SSPP-pol defined by Equ. (5.59) is based on the steady

state current IS and the low frequency resistance RLF,S at steady state which is determined by
impedance spectroscopy in the end of the polarization time. The second coefficient f(f±, t+,
D∗
±,eff)|SSPP-ss depends on the analytical solution for a steady state concentration profile at the

end of the polarization. In this case, the cell potential U(TI) at current interruption and the steady
state current IS are used to calculate the coefficient by means Equ. (5.68). As for the coefficient
f(f±, t+,

√
D∗
±,eff)|PGP, the short-term relaxation behavior of the cell potential can be used to

determine the cell potential U(TI) at current interruption. The usage of the measured cell poten-
tial U(TI) at current interruption, being much higher than the extrapolated cell potential U(TI)
as shown in Fig. 8.20, results in an unrealistic transference number. The expected linear relation
with respect to time

√
t can only be observed for c0 = 0.5 M and c0 = 2 M. A non-linear behavior

with respect to time
√
t is a sign for an instationary concentration profile at the end of the polar-

ization or, alternatively, for experimental data with dominating parasitic effects. As a result, such
experimental data are not used for the determination of the coefficient f(f±, t+, D∗

±,eff)|SSPP-ss in
the following. In a SSPP experiment, the coefficient f(f±, t+, D∗

±,eff)|SSPP-ln can also be deter-
mined from the long-term relaxation behavior by means of Equ. (5.71). In this context, a linear
fit of lnU(t) with respect to the time t is required as it is shown in Fig. 8.19. The offset of such
an linear fit is the basis for the determination of the coefficient f(f±, t+, D∗

±,eff)|SSPP-ln.
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Figure 8.25: Overview over transference numbers determined from polarization experiments by the coef-
ficients summarized in Tab. 7.8 and comparison with transference number obtained from the
delta method given in Equ. (8.6).

In Fig. 8.25, the concentration dependent transference numbers calculated from polarization
experiments in a two electrode cell are collected. Additionally, the transference number based
on the delta method discussed in section 8.4 is inserted into the same figure. In general, a qual-
itative agreement can be found between both experimental approaches. The only outlier is the
transference number calculated from the coefficient f(f±, t+, D∗

±,eff)|SSPP-pol which is based on
the polarization phase of a SSPP experiment. The qualitative behavior is in accordance with the
other methods but the absolute value is significantly smaller. Unfortunately, there is no obvious
reason for this shift. Although the qualitative results of the transference number determined by
polarization experiments are comparable to the transference number determined by the matrix
and the delta method in a concentration cell, the method based on data from a concentration cell
is clearly superior since it is much easier to perform experiments in the concentration cell than
in the two electrode cell. Another advantage of the concentration cell is that only the concen-
tration overpotential resulting from two different concentrated electrolyte solutions is measured.
Therefore, additional physical phenomena such as mass and current transport does not influence
the result. In addition, the number of required experiments is reduced resulting in a decreased
number of potential error sources.

A similar result as shown in Fig. 8.25 is obtained if the half-cell potential measurements ver-
sus the ferrocene redox potential for the determination of the thermodynamic factor are replaced
by measurements in a concentration cell as introduced theoretically in section 5.7.
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In this work, a combined approach consisting of a computational method for ion-transport in
concentrated binary electrolyte solutions and the experimental determination of all correspond-
ing model parameters is developed. The presented computational method is based on the ion-
transport model for concentrated electrolyte solution derived from the Stefan-Maxwell approach
and is related to an alternative ion-transport model based on non-equilibrium thermodynamics.
For isothermal and isobaric conditions, the only difference between both models is the definition
of the chemical potential being the driving force for the ion-transport. In the Stefan-Maxwell ap-
proach, the chemical potential of the salt is derived from the chemical potentials of the positive
and the negative ionic species whereas in the approach based on non-equilibrium thermodynam-
ics the chemical potential of the electrolyte includes the chemcial potentials of the positive and
the negative ionic species and the solvent. The second model is also incorporated into the pre-
sented computational approach. To ensure a consistent modeling approach for dilute and concen-
trated electrolyte solutions, the dilute solution theory derived from the Nernst-Planck approach
is related to the concentrated solution theory which is only applicable if a consistent definition
for the reference potential is employed. The correlation between dilute and concentrated solution
theory is of particular interest for the evaluation and validation of the experimental methods used
for the determination of concentration dependent transport parameters.

The presented computational approach enables both the simulation of resolved porous me-
dia as well as the simulation of porous media homogenized with the volume averaging approach.
To account for the geometrical complexity of resolved porous media, the finite element method
is used for the discretization of the computational domain. The employed standard finite element
approach also includes a consistent computational model for galvanostatic boundary conditions
including non-constant electrode kinetics which is of particular interest in three-dimensional
models. Additionally, it is shown mathematically that the volume averaging approach used for
the homogenization of porous media is not influenced by concentration dependent transport pa-
rameters. The robustness, the accuracy and the efficiency of the computational approach is ver-
ified by several numerical examples including one and three-dimensional simulations. Among
others, the simulation of a realistic porous structure with galvanostatic boundary conditions and
a polarization current approaching the mass-limited current is considered as most challenging
test case.

Although appropriate physical models and computational methods are important for numer-
ical simulations of ion-transport in concentrated electrolyte solutions, the quality of the numer-
ical results strongly depends on the accuracy of the used transport and geometrical parameters.
Therefore, the main focus of this work is on the determination of all required transport param-
eters. The transport parameters of interest are the conductivity of the electrolyte solution, the
binary diffusion coefficient and the transference number of the reacting ionic species. In addi-
tion, the thermodynamic factor is required as a thermodynamic quantity. This specific parameter
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set results from the Stefan-Maxwell approach which is used for the derivation of experimen-
tal methods. Modifications may be necessary if the experimental procedures are applied to the
ion-transport model derived from non-equilibrium thermodynamics. The presented methods are
partly validated and analyzed by the developed computational approach. To demonstrate the ac-
curacy and the simplicity of the proposed experimental methods, the transport parameters are
determined exemplarily for an electrolyte solution consisting of lithium perchlorate dissolved in
a mixture of Ethylene Carbonate (EC, 50 % wt.) and Diethyl Carbonate (DEC, 50 % wt.). In ad-
dition to the aforementioned transport parameters, geometrical parameters describing the effect
of the microstructure on the macroscopic behavior in a homogenization approach are necessary
for numerical simulations and the determination of transport parameters. In this work, only the
porosity and the tortuosity of the porous media are considered as geometrical parameters since
the used experimental procedure for the determination of the tortuosity does not only include the
elongation of the diffusion path but also other effects such as varying cross sectional areas.

The conductivity of the electrolyte solution is measured with a standard conductivity cell
and the resulting experimental data are fitted with two different functionals. For the thermody-
namic factor, a novel experimental procedure is proposed which allows for a direct determination
by measurements conducted in a standard three electrode glass cell using cyclic voltammetry.
Therefore, the relation between peak position and mean molar activity coefficient is derived in
detail which is necessary to understand underlying principles as well as parasitic effects such
as non-ideal kinetics or diffusion overpotentials. To evaluate the influence of these parasitic ef-
fects, the peak separation between ferrocene oxidation and reduction peak potentials is used as
a quality measure for experimental data. Application of this quality measure to exemplary mea-
surements allowed to select a data set for determination of the mean molar activity coefficient.
The selected half wave potentials are successfully correlated with an extended Debye Hückel
law finally allowing for an extraction of the mean molar activity coefficient. The quantity of
interest for simulations, the thermodynamic factor, can further be calculated from the activity
coefficient. Compared to the available literature for mean molar activity coefficients in similar
electrolyte systems, the same qualitative trend is observed.

In this work, the effective diffusion coefficient is determined from the short-term and long-
term relaxation behavior after a galvanostatic or a potentiostatic polarization pulse. In contrast to
other experimental procedures available in literature, the distance between the lithium electrode
is minimized to ensure a large area to distance ratio for the electrodes and, therefore, to reduce
the influence of a non-homogenous electrical field. The small distance between the electrodes is
realized by several layers of separators. Potential convective effects are also suppressed by this
setup. As a result of the used experimental setup, it was necessary to extend analytical methods
available in literature to include the effect of the porous medium. The resulting concentration
dependent binary diffusion coefficient obtained by the presented experimental methods is in
good agreement with binary diffusion coefficients available in literature.

As a result of the direct determination of the thermodynamic factor, the transference number
can be calculated from experimental data measured in a concentration cell. For this purpose, two
different experimental procedures are proposed resulting in comparable concentration dependent
transference numbers. The first procedure is based on measurements over the entire concentra-
tion range including large concentration differences and a numerical fitting procedure with an
assumed concentration dependence for the transference number. The second procedure based on
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small concentration variations does not require a functional description for the concentration de-
pendence. In addition to the determination via the concentration cell, the transference number is
also determined by a different experimental approach based on a known thermodynamic factor,
a known binary diffusion coefficient and data from a polarization cell. In literature, a comparable
approach consisting of a known binary diffusion coefficient and measurements in a concentra-
tion and a polarization cell is popular. In this work, five different experimental methods for the
determination of the transference number based on polarization cell experiments are discussed
whereas three of the five methods have not yet been used in literature for the determination of the
transference number. The new methods are based on the initial relaxation behavior of the current
in a potentiostatic polarization experiment and on the short-term and the long-term relaxation
behavior of the cell potential after a potentiostatic polarization experiment. The resulting trans-
ference numbers also confirm the concentration dependent transference number determined by
the first approach. However, experimental efforts and uncertainties are much higher in the sec-
ond approach based on polarization cell experiments since it is required to combine results of
three different experimental procedures.

In summary, the presented work is an important contribution for the development of a pre-
dictive simulation tool for battery applications. The combined approach including the develop-
ment of a computational approach and the determination of the corresponding transport param-
eters by simple experimental procedures enables new opportunities in the field of computational
electrochemistry.

The proposed computational approach provides for example the opportunity to investigate
the influence of the microstructure of the porous medium on the macroscopic behavior of an
elementary cell. Therefore, three-dimensional simulations of resolved porous media could be
analyzed and compared to simulations using a homogenization approach. By this comparison, it
would be possible to establish a general understanding of ion-transport in porous media. In addi-
tion, this approach would support the definition and the determination of improved geometrical
parameters. In a final step, geometrical parameters determined by numerical simulations could
be validated with experimentally determined geometrical parameters.

A theoretical and experimental framework for the determination of ion-transport parame-
ters is developed in this work. In a next step, additional electrolyte solution used in lithium ion
batteries have to be investigated whereas the temperature dependence of the transport parameters
also has to be taken into account. In general, the same experimental methods could be used for
the determination of the temperature dependence of the transport parameters. However, modi-
fications of the experimental setups are necessary to guarantee constant isothermal conditions
within an experiment because transport parameters are sensitive to temperature fluctuations as
indicated in this work. In addition, the determined ion-transport parameters are not sufficient for
the numerical simulation of complete charge and discharge cycles in an elementary cell. There-
fore, it is necessary to determine further physically-motivated parameters describing, e.g., the
electrode kinetics of common electrode materials or the lithiation and delithiation process of the
active materials in anode and cathode.
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A A brief introduction into
non-equilibrium thermodynamics

As stated in Atkins and de Paula [9], thermodynamics is ”the study of the transformation of en-
ergy’ and allows the prediction of energy release in various systems. Therefore, thermodynamics
is a central point in the modeling of electrochemical systems such as batteries. In this section, a
short review of the basic thermodynamic principles is given. A detailed derivation can be found,
e.g., in Atkins and de Paula [9, chap. 2 - 5], Newman and Thomas-Alyea [109], Kontturi et al.
[91, chap. 1] or Kjelstrup and Bedeaux [90, chap. 3]. The following derivation is inspired by
Kjelstrup and Bedeaux [90].

A.1 Heterogeneous system in a global equilibrium

In the following, a heterogeneous system consisting of two homogeneous phases separated by
an interface is considered. The different phases are assumed to be in equilibrium with each other.
This setup can also be interpreted as an electrode immersed in an electrolyte solution. The total
internal energy U of the system is the sum of the internal energies of the different phases

U = Uel + UI + Uso,

where the subscripts el, I and so stand for the electrolyte phase, the interface and the solid phase,
respectively. However, to explain the basic principle of a thermodynamic system, the thermody-
namic relations are only shown for the homogeneous phase el. The same principles are also valid
for the other phases, although different physical phenomena have to be considered possibly. In
the following, the subscript el is dropped for notational simplicity. For a homogeneous system,
the total differential of the internal energy can be written as the total differential of the extensive
variables S,Nk and V :

dU = T dS − p dV +
m∑

k=0

µk dNk. (A.1)

Here, T denotes the temperature, S the entropy, p the pressure, V the volume, µk the chemical
potential of the component k and Nk the particle number of the component k. This equation is
also called the Gibbs equations. The formulation is in accordance with the formulation given in
Atkins and de Paula [9, chap. 5.1c]. In Kjelstrup and Bedeaux [90] or Henjes and Liu [80], this
equation is extended with additional terms accounting for systems being polarizable in an elec-
trical field such as an electrolyte solution. The solvent with index k = 0 is not always included in
the term

∑m
k=0 µk dNk, as, e.g., Kontturi et al. [91, chap. 1.1.3] or Newman and Thomas-Alyea
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[109]. In this case, it is assumed that the number of solvent particles is constant in the consid-
ered volume. Integration of Equ. (A.1) for constant temperature, pressure and composition fields
within the considered phase gives

U = TS − pV +
m∑

k=0

µkNk. (A.2)

The Gibbs-Duhem equation is obtained by differentiating Equ. (A.2) and subtracting Equ. (A.1):

0 = S dT − V d p+
m∑

k=0

Nk dµk. (A.3)

A.2 Local description of the global equilibrium

In section A.1, a system in a global equilibrium is considered where the state variables are
constant throughout the phase. To transfer the global formulation of the thermodynamic relations
to a local formulation, the internal energy density u = U

V
, the entropy density s = S

V
and the

concentration ck = Nk

V
are introduced. By dividing Equ. (A.2) by the volume V , the internal

energy density u is obtained

u = Ts− p+
m∑

k=0

µkck. (A.4)

To get the differential of the internal energy density, the definitions of the extensive variables per
volume are inserted into Equ. (A.1):

V du+ u dV = TV d s+ Ts dV − p dV +
m∑

k=0

(µkV d ck + µkck dV ) .

Inserting Equ. (A.4) into the term (u dV ) and dividing this formulation by the volume V gives
the differential of the internal energy density

du = T d s+
m∑

k=0

µk d ck. (A.5)

Compared to the formulation in Equ. (A.1), the term including the pressure is missing, since
a constant volume V was assumed for the derivation. The Gibbs-Duhem equation given in
Equ. (A.3) becomes

0 = s dT − d p+
m∑

k=0

ck dµk. (A.6)

An equivalent approach is presented in Kontturi et al. [91, chap. 1.1.2]. In this approach,
Equ. (A.5) can be directly deduced from Equ. (A.1) after division by the volume element dV .
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A.3 Definition of local equilibrium

The volume element dV has to be sufficiently small such it can be considered as a homogeneous
subsystem.

A.3 Definition of local equilibrium

Equ. (A.4) – Equ. (A.6) are the local thermodynamic relations for a system which is in global
equilibrium. As stated in Kjelstrup and Bedeaux [90, chap. 3.5], ”a local equilibrium can be
assumed for an arbitrary volume element V within the considered homogeneous phase fulfilling
the equations” (A.4) – (A.6). The size of the volume element V has to be chosen carefully since
it includes an averaging of the quantities over the chosen volume element. As stated in Kjelstrup
and Bedeaux [90, chap. 3.5], the volume element has to be ”large compared to microscopic
distances, and small compared to distances over which the averaged quantity varies”. From this
point on, all local variables are functions of time and space, as u(x, t) and T (x, t). Since the
local formulation of the thermodynamic relations does not refer to a closed system anymore, the
thermodynamic quantities are also conserved according to the rules used for balance equations.
A detailed discussion is given in Kontturi et al. [91, chap. 1.2].

The temperature dependent ion-transport model introduced by Latz and Zausch [99] and
discussed in section 2.6 is derived from the principles of non-linear thermodynamics utilizing
the aforementioned local equilibrium. In contrast, the Stefan-Maxwell approach is based on
particle dynamics which is combined with some thermodynamic principles.

A.4 Concept of electrochemical potential

In many textbooks, the concept of electrochemical potential is used to incorporate the effect
of an electrostatic potential Φ into the thermodynamic relations. The most basic approach is
the introduction of an electrical work dwel = Φ dQ contributing to the inner energy U of the
system. Using the definition of the charge density ρe = Q

V
, the differential of the internal energy

density reads

du = T d s+
m∑

k=0

µk d ck + Φ d ρe, (A.7)

as suggested in Atkins and de Paula [9, chap. 2.3]. Mathematically, Equ. (A.7) is equivalent
to Equ. (A.5) as long as only electrical neutral electrolyte solutions ρe = 0 are considered.
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Equ. (A.7) can be reformulated to define the electrochemical potential µ̂k of ionic species k:

du = T d s+
m∑

k=0

µk d ck + Φ
m∑

k=0

(zkF d ck)

= T d s+
m∑

k=0

[
(µk + zkFΦ) d ck

]

= T d s+
m∑

k=0

µ̂k d ck. (A.8)

Therefore, the chemical potential µk can be replaced by the electrochemical potential µ̂k without
changing in the internal energy density u in electrical neutral electrolyte solutions. Based on this
derivation, the electrochemical potential of the ionic species k is defined as

µ̂k ≡ µk + zkFΦ. (A.9)

The same result can be derived based on the differential of the Gibbs energy density d g, as
shown, e.g., in Kharton [89, chap. 3.3.2]. In Kontturi et al. [91], the same result is obtained
although the electrical work wel does not contribute to the internal energy U . In this case, the
electrical field is considered to be external to the system. In Kjelstrup and Bedeaux [90], Henjes
and Liu [80] or Latz and Zausch [99], the electrochemical potential is not used for the derivation
of the ion-transport equations since terms due to polarization are already included in the internal
energy density.

A.5 Chemical potential of a salt

Another important implication of Equ. (A.5) and (A.7) is that chemical potentials of charged
components can be expressed as neutral combinations without changing the internal energy.
Therefore, the chemical potential µ± of a salt can be written as

µ± d c = (ν+µ+ + ν−µ−) d c = (ν+µ̂+ + ν−µ̂−) d c, (A.10)

where the equivalent concentration c is defined as

c =
c+
ν+

=
c−
ν−
. (A.11)

The positive ionic species of a binary electrolyte solution is denoted by ’+’ and the negative
ionic species by ’−’. The approach to replace the chemical potentials of the single ionic species
by an equivalent chemical potential µ± of the salt is not just valid for binary systems, but also
for multi-ion systems as emphasized in Kontturi et al. [91, chap. 1.1.3].
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A.6 Application of thermodynamic principles to surface reactions

As discussed, e.g., in Newman and Thomas-Alyea [109, chap. 2.3], the chemical potential
µk of the charged or uncharged component k is defined as

µk ≡ RT lnλk = RT ln(ckfkak), (A.12)

where λk denotes the absolute activity of the component k, fk the molar activity coefficient
of component k and ak a proportionality constant which is independent of composition and
electrical state, but dependent on temperature and pressure. Based on Equ. (A.12), Equ. (A.10)
can be reformulated to

µ± = RT ln
(
cν+
+ c

ν−
− f ν

± a
ν+
+ a

ν−
−

)

= νRT ln (c f±) +RT ln (νν+
+ ν

ν−
− ) +RT ln (aν+

+ a
ν−
− ) , (A.13)

where Equ. (A.11), ν = ν+ + ν− and the definition of the mean activity coefficient of a binary
electrolyte,

f ν
± ≡ f ν+

+ f
ν−
− ,

are used. In literature, an alternative definition of the binary activity coefficient,
µA = RT ln (cfAaA), is also popular. The two definitions are connected to each other via

fA = (νν+
+ ν

ν−
− ) cν−1f ν

±.

If constant temperature and pressure fields can be assumed, the terms νν+
+ ν

ν−
− and aν+

+ a
ν−
− are

independent of the position and the gradient of the chemical potential µ± can be written as

∇µ± = νRT ∇
[

ln (c f±)
]

= νRT
[
∇ ln c+∇ ln f±

]
.

Alternatively, this equation can be expressed using the thermodynamic factor X :

∇µ± = νRT

(
1 +

∂ ln f±
∂ ln c

)

︸ ︷︷ ︸
X

∇ ln c = νRT

(
1 +

∂ ln f±
∂ ln c

)
1
c+
∇c+. (A.14)

A.6 Application of thermodynamic principles to surface
reactions

The thermodynamic principles of chemical reactions are explained in detail, e.g., in Atkins and
de Paula [9, chap. 6]. Here, only a short review is given. As given already in Equ. (2.3), an
electrochemical half cell reaction can be formulated as

∑

k

sr,kAzk
k À nre

− (A.15)
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where charge balance is fulfilled according to
∑

i sr,kzk = −nr. In the following, the subscript
r is dropped since only a single reaction is considered. The change in the reaction Gibbs energy
∆RG can be written as

∆RG = −nµ̂e− +
∑

i

siµ̂i, (A.16)

as shown, e.g., in Newman and Thomas-Alyea [109, chap. 8]. Alternatively, the reaction Gibbs
energy can also be formulated based on chemical potentials as discussed, e.g., in Atkins and
de Paula [9, chap. 6.1]. Macroscopically, both formulations should be equivalent since charge is
conserved in every electrochemical reaction. For ∆RG < 0, the forward reaction is spontaneous,
for ∆RG > 0, the backward reaction is spontaneous and for ∆RG = 0, the reaction is in chemical
equilibrium, i.e., that the forward reaction rate is as fast as the backward reaction rate resulting
in a net reaction rate of zero. As a consequence, the current density in normal to the interface is
zero. The Gibbs energy can also be related to the overpotential η of a reaction, which describes
the deviation from the equilibrium state. As defined in Newman and Thomas-Alyea [109], the
overpotential can be written as

η ≡ ∆RG

nF
= − µ̂e−

F
+

∑
i

si

nF
µ̂i. (A.17)

For chemical equilibrium with ∆RG = η = 0, Equ. (A.16) reduces to

nµ̂e− =
∑

i

siµ̂i.
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B Variable transport parameters on
micro- and macroscale

In this section, it is demonstrated that it is also possible to consider a multi-field problem with
variable transport parameters within the REV instead of the simplified Equ. (3.14) where con-
stant transport parameter are assumed within the REV.

In a first step, Green’s vector theorem given, e.g., in Bear and Bachmat [23, chap. 2.1.10 is
applied to

∫

Γ e,e
a(c)c

∂x̂j

∂xi

ni dA =
∫

Ω e

∂

∂xi

(
a(c)c

∂x̂j

∂xi

)
dV

=
∫

Ω e

∂

∂xi

(
a(c)c

)∂x̂j

∂xi

dV +
∫

Ω e

(
a(c)c

)∂2x̂j

∂x2
i

dV (B.1)

and
∫

Γ e,e
a(c)

∂c

∂xi

x̂jni dA =
∫

Ω e

∂

∂xi

(
a(c)

∂c

∂xi

x̂j

)
dV

=
∫

Ω e

∂

∂xi

(
a(c)

∂c

∂xi

)
x̂j dV +

∫

Ω e

(
a(c)

∂c

∂xi

)
∂x̂j

∂xi

dV, (B.2)

where x̂j denotes the vector between an arbitrary point within REV and the volumetric center
of the REV x̂j = (x′j − xj,0). By subtracting Equ. (B.2) from Equ. (B.1) and reformulation of
the first term on rhs of Equ. (B.1), an alternative formulation of the Green’s vector theorem is
obtained

∫

Γ e,e

(
a(c)c

∂x̂j

∂xi

− a(c)
∂c

∂xi

x̂j

)
ni dA =

=
∫

Ω e

∂a(c)
∂xi

c
∂x̂j

∂xi

dV +
∫

Ω e

(
a(c)c

)∂2x̂j

∂x2
i

dV −
∫

Ω e

∂

∂xi

(
a(c)

∂c

∂xi

)
x̂j dV. (B.3)

The alternative Green’s vector theorem can be also formulated with respect to the potential field
Φ and the conductivity κ(c) giving

∫

Γ e,e

(
−κ(c)Φ∂x̂j

∂xi

+ κ(c)
∂Φ
∂xi

x̂j

)
ni dA = (B.4)

=
∫

Ω e
−∂κ(c)

∂xi

Φ
∂x̂j

∂xi

dV +
∫

Ω e

(
− κ(c)Φ

)∂2x̂j

∂x2
i

dV −
∫

Ω e

∂

∂xi

(
−κ(c)∂Φ

∂xi

)
x̂j dV.
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Summation of Equ. (B.3) and Equ. (B.4) leads to
∫

Γ e,e

(
a(c)c− κ(c)Φ

)
∂x̂j

∂xi

ni dA+
∫

Γ e,e

(
−a(c) ∂c

∂xi

+ κ(c)
∂Φ
∂xi

)
x̂jni dA

=
∫

Ω e

(
∂a(c)
∂xi

c− ∂κ(c)
∂xi

Φ
)
∂x̂j

∂xi

dV+
∫

Ω e

(
a(c)c− κ(c)Φ

)∂2x̂j

∂x2
i

dV −
∫

Ω e

∂

∂xi

(
−κ(c)∂Φ

∂xi

+ a(c)
∂c

∂xi

)
x̂j dV, (B.5)

where similar terms are grouped together. It is possible to replace some of the terms in Equ. (B.5)
by

∂x̂j

∂xi

=
∂(x′j − xj,0)

∂xi

= δji, (B.6)

∂2x̂j

∂x2
i

=
∂δji
∂x2

i

= 0, (B.7)

δjini = nj. (B.8)

These relation are only defined within the REV. Additionally, the last term of Equ. (B.5) can be
replaced by

∂

∂xi

(
−κ(c)∂Φ

∂xi

+ a(c)
∂c

∂xi

)
= 0, (B.9)

which is the same as Equ. (3.11) with Equ. (3.13). This equation is equivalent to Equ. (3.14) in
the original derivation. However, compared to the original derivation, concentration depending
transport parameters and the multi-field problem are included. In case of time-dependent prob-
lem types such as Equ. (3.12) with Equ. (3.13), it is additionally necessary that the problem can
be approximated by its quasi-stationary formulation within the REV. As a result of Equ. (B.6) –
Equ. (B.9), Equ. (B.5) can be also written as

∫

Γ e,e

(
a(c)c− κ(c)Φ

)
nj dA =

∫

Γ e,e

(
a(c)

∂c

∂xi

− κ(c)
∂Φ
∂xi

)
x̂jni dA+

∫

Ω e

(
∂a(c)
∂xi

c− ∂κ(c)
∂xi

Φ
)
δji dV. (B.10)

In addition, it is possible to reformulate the first term by the Gauss theorem
∫

Γ e,e

(
a(c)c− κ(c)Φ

)
nj dA =

∫

Ω e

∂

∂xj

(
a(c)c− κ(c)Φ

)
dV

=
∫

Ω e

(
a(c)

∂c

∂xj

− κ(c)
∂Φ
∂xj

)
dV+

∫

Ω e

(
∂a(c)
∂xj

c− ∂κ(c)
∂xj

Φ
)

dV. (B.11)
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Using Equ. (B.11), Equ. (B.10) can be simplified to
∫

Ω e

(
a(c)

∂c

∂xj

− κ(c)
∂Φ
∂xj

)
dV =

∫

Γ e,e

(
a(c)

∂c

∂xi

− κ(c)
∂Φ
∂xi

)
x̂jni dA,

where the last integral of Equ. (B.10) and Equ. (B.11) cancel out. In a next step, the surface area
enclosing the electrolyte phase can be split into the outer boundary of the electrolyte phase Γ e,e

and into the interface between electrolyte and solid phase Γ e,s

V
e

(
a(c)

∂c

∂xj

e

− κ(c)
∂Φ
∂xj

e)
=

∫

Γ e,s
x̂j

(
a(c)

∂c

∂xi

− κ(c)
∂Φ
∂xi

)
ni dA+

∫

Γ e,e

(
a(c)

∂c

∂xi

)
x̂jni dA+

∫

Γ e,e

(
−κ(c)∂Φ

∂xi

)
x̂jni dA.

The application of the approximation given in Equ. (3.15) ’allows’ to split the surface integral of
Γ e,e into two parts

V
e

(
a(c)

∂c

∂xj

e

− κ(c)
∂Φ
∂xj

e)
=

∫

Γ e,s
x̂j

(
a(c)

∂c

∂xi

− κ(c)
∂Φ
∂xi

)
ni dA+

1
A e,e

∫

Γ e,e

(
a(c)

∂c

∂xi

)
dA

︸ ︷︷ ︸
˜“

a(c) ∂c
∂xi

” e,e

∫

Γ e,e
x̂jni dA+

1
A e,e

∫

Γ e,e

(
−κ(c)∂Φ

∂xi

)
dA

∫

Γ e,e
x̂jni dA,

where the integral
˜(
a(c) ∂c

∂xi

) e,e

is the areal intrinsic phase average over the area of the boundary

Γ e,e . The information about the orientation of the surface is included in the second surface inte-
gral. This equation can be further reformulated using the definition for the coefficient T ∗ji given
in Equ. (3.18)

a(c)
∂c

∂xj

e

− κ(c)
∂Φ
∂xj

e

=
1
V e

∫

Γ e,s
x̂j

(
a(c)

∂c

∂xi

− κ(c)
∂Φ
∂xi

)
ni dA+ (B.12)

T ∗ji

(
1
A e,e

∫

Γ e,e

(
a(c)

∂c

∂xi

)
dA+

1
A e,e

∫

Γ e,e

(
−κ(c)∂Φ

∂xi

)
dA

)
.

This equation is equivalent to Equ. (3.27).
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C Analytical solutions for the
one-dimensional diffusion equation

C.1 Long-term relaxation from an non-uniform concentration
profile

The differential Equ. (5.35) with the boundary conditions given in Equ. (5.37) describes the
relaxation behavior from a non-uniform concentration profile with respect to time t. The partial
differential equation can also be expressed with respect to the following dimensionless variables

θ =
c

e

c
e

0
, ξ =

x

l
, and Fo =

D∗
±,eff t

l2
,

which gives the dimensionless partial differential equation

∂θ(ξ, Fo)
∂Fo

=
∂2θ(ξ, Fo)

∂ξ2 ,

and for the boundary conditions

∂θC(0, Fo)
∂x

= 0, and
∂θA(1, , Fo)

∂x
= 0. (C.1)

In the appendix, the zero order approximationD∗
±,eff(c0) of the concentration dependent diffusion

coefficientD∗
±,eff(c) is abbreviated byD∗

±,eff to simplify the notation. For the long-term relaxation
behavior, the boundary value problem is solved based on the separation of variables

θ(ξ, Fo) = ψ(ξ)ϕ(Fo) (C.2)

with the general solutions

ϕ(Fo) = A1 exp(±δ2Fo),
ψ(ξ) = A2 sin(δξ) + A3 cos(δξ),

as shown, e.g., in Polifke and Kopitz [121, chap. 14]. As a result of the relaxation process, the
negative sign in the exponential term has to be considered for the following expression:

θ(ξ, Fo) = [A2 sin(δξ) + A3 cos(δξ)] exp(−δ2Fo).
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Based on the boundary condition at ξ = 0 given in Equ. (C.1)

∂θ(ξ, Fo)
∂ξ

= [δA2 cos(0)− δA3 sin(0)] = 0

it follows that A2 = 0. On the other hand, based on the boundary condition at ξ = 1

∂θ(ξ, Fo)
∂ξ

= [δA2 cos(δ)− δA3 sin(δ)] = 0

0 = A3 sin(δ),

it follows that δn = iπ, where i ∈ [0, 1, ..]. Each eigenvalue δn corresponds to an eigenfunction
θn, which gives, with Equ. (C.2)

θn(ξ, Fo) = A3 cos(δnξ) exp(−δ2
nFo).

Therefore, the general solution can also be expressed as a Fourier series

θ(ξ, Fo) = 1 +
∞∑

n=1

Cnθn = 1 +
∞∑

n=1

CnA3 cos(δnξ) exp(−δ2
nFo), (C.3)

where the factor CnA3 can be combined to Cn = CnA3. The coefficients Cn are weighting
factors for the single eigenfunctions θn in order to fulfill the initial concentration field. Finally,
Equ. (C.3) can be transformed to dimensional values

c
e
(x, t) = c

e

0 + c
e

0

∞∑
n=1

Cn cos
(nπ
l
x
)

exp
(
−n

2π2D∗
±,eff

l2
t

)
.

The concentration difference between the two electrodes ∆c e(t) = c
e

A(l, t)− c
e

C(0, t) is given by

∆c e
(t) = c

e

0

∞∑
n=1

Cn (cos(nπ)− 1) exp
(
−n

2π2D∗
±,eff

l2
t

)
, (C.4)

with

(cos(nπ)− 1) = −2 for {2n− 1 : n ∈ Z+},
(cos(nπ)− 1) = 0 for {2n : n ∈ Z+}. (C.5)

As a result, Equ. (C.4) reads as

∆c e
(t) = −2c

e

0

∞∑
n=1

C(2n−1) exp
(
−(2n− 1)2π2D∗

±,eff

l2
t

)
, (C.6)

where the coefficients C(2n−1) have to be negative to give a physically meaningful concentration
difference. The sign of the concentration difference ∆c e(t) is closely related to its definition and
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C.2 Short-term relaxation from a steady-state concentration profile

the orientation of the initial field in the one-dimensional domain. The same result is presented in
Harned and French [79] without the specification of the coefficients C(2n−1).

For a known concentration profile such as a steady-state concentration profile at current
interruption time TI, it is possible to determine the coefficients Cn in Equ. (C.4) based on the
dimensionless form

Cn =

∫ 1
0 θ0(ξ, 0) cos(δnξ)dξ∫ 1

0 cos2(δnξ)dξ
, (C.7)

given in Polifke and Kopitz [121, chap. 14.1]. The concentration profile at current interruption
time is defined as

c
e
(x, TI) =

(
x

l
− 1

2

)
∆c e

(TI) + c
e

0, (C.8)

where ∆c e(TI) denotes the concentration difference between the two electrodes at the current in-
terruption time and c

e

0 the initial concentration without concentration gradients. The combination
of Equ. (C.7) with Equ. (C.8) and δn = nπ allows to determine the coefficients Cn as

Cn =
2∆c e(TI) (cos(nπ)− 1)

c
e

0n
2π2 ⇒ C(2n−1) =

−4∆c e(TI)
c

e

0(2n− 1)2π2 ,

where Equ. (C.5) is used again. The coefficients C(2n−1) can be inserted in Equ. (C.6), which
gives the final expression for the concentration difference

∆c e
(t) = 8

∆c e(TI)
π2

∞∑
n=1

1
(2n− 1)2 exp

(
−(2n− 1)2π2D∗

±,eff

l2
t

)
. (C.9)

For t = 0, this formulation is verified by ∆c e(0) = ∆c e

0 , where the relation

∞∑
n=1

1
(2n− 1)2 =

π2

8
,

and exp(0) = 1 is used.

C.2 Short-term relaxation from a steady-state concentration
profile

The partial differential equation given in Equ. (5.35) with the boundary conditions given in
Equ. (5.37) describe the short-term relaxation behavior from a steady-state concentration profile
with respect to time t. The steady-state concentration profile given in Equ. (C.8) is considered
as the initial condition for the concentration c e(x, TI). This boundary value problem is solved by
two Laplace transformations. A general introduction in solving partial differential equations by
Laplace transformation is given, e.g., in Bard and Faulkner [14, chap. A.1].
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The partial differential equation given in Equ. (5.35) is reformulated by a Laplace transfor-
mation in t

d2ĉ
e

(x, s)
dx2 − s

D∗
±,eff︸ ︷︷ ︸
a2

ĉ
e

(x, s) = − c
e(x, TI)
D∗
±,eff︸ ︷︷ ︸
b

, (C.10)

where ĉ
e

(x, s) is the Laplace transform of the concentration c e(x, t) in t. In the appendix, the zero
order approximation D∗

±,eff(c0) of the concentration dependent diffusion coefficient D∗
±,eff(c) is

abbreviated by D∗
±,eff to simplify the notation. According to the solution of an ordinary differ-

ential equation by an additional Laplace transformation in x (see, e.g., Bard and Faulkner [14,
chap. A.1.4]), Equ. (C.10) can be written as

ĉ
e

(x, s) =
c

e(x, TI)
s

+ Â(s)exp(−ax) + B̂(s)exp(ax). (C.11)

The Laplace transformed boundary conditions given Equ. (5.37) can be evaluated at the cathode
x = 0 and at the anode x = l

∂ĉ
e

C(0, s)
∂x

=
1
s

∂c
e(0, TI)
∂x

+
(
s/D∗

±,eff

)1/2 [−Â(s) + B̂(s)
] ≡ 0, (C.12)

∂ĉ
e

A(l, s)
∂x

=
1
s

∂c
e(l, TI)
∂x

+
(
s/D∗

±,eff

)1/2
[
− Â(s)exp

(
− (

s/D∗
±,eff

)1/2
l︸ ︷︷ ︸

2f(
√

s)

)

+ B̂(s)exp
( (
s/D∗

±,eff

)1/2
l︸ ︷︷ ︸

2f(
√

s)

)]
≡ 0. (C.13)

Now, Equ. (C.12) can be reformulated to

B̂(s) = Â(s)− (D∗
±,eff)

1/2 ∆c e(TI)
l︸ ︷︷ ︸

C1

1
s3/2 , (C.14)

where the initial condition for the concentration given in Equ. (C.8) is used. Based on Equ. (C.14)
and Equ. (C.13) the coefficient Â(s) can be determined as

Â(s) =
C1

s3/2

[
exp (2f(

√
s))− 1

exp (2f(
√
s))− exp (−2f(

√
s))

]
, (C.15)

and the coefficient B̂(s) as

B̂(s) =
C1

s3/2

[
exp (−2f(

√
s))− 1

exp (2f(
√
s))− exp (−2f(

√
s))

]
. (C.16)
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As a result, the concentration ĉ
e

C(0, s) at the cathode is given as

ĉ
e

C(0, s) =
c

e

0 − 1
2∆c e(TI)
s

+
C1

s3/2 tanh(2f(
√
s)).

where Equ. (C.15), Equ. (C.16) and Equ. (C.8) are inserted in Equ. (C.11). In addition, the
relation

[
exp (2f(

√
s))− 1

exp (2f(
√
s))− exp (−2f(

√
s))

]
+

[
exp (−2f(

√
s))− 1

exp (2f(
√
s))− exp (−2f(

√
s))

]
= tanh(f(

√
s))

is used to simplify the complex exponential function. The concentration ĉ
e

A(l, s) at the anode is
given by

ĉ
e

(l, s) =
c

e

0 + 1
2∆c e(TI)
s

+ Â(s)exp(− (
s/D∗

±,eff

)1/2
l︸ ︷︷ ︸

2f(
√

s)

) + B̂(s)exp(
(
s/D∗

±,eff

)1/2
l︸ ︷︷ ︸

2f(
√

s)

),

ĉ
e

(l, s) =
c

e

0 + 1
2∆c e(TI)
s

+
C1

s3/2

[
exp (2f(

√
s))− 1

exp (2f(
√
s))− exp (−2f(

√
s))

]
exp(−2f(

√
s)),

+
C1

s3/2

[
exp (−2f(

√
s))− 1

exp (2f(
√
s))− exp (−2f(

√
s))

]
exp(2f(

√
s)),

ĉ
e

(l, s)) =
c

e

0 + 1
2∆c e(TI)
s

− C1

s3/2 tanh(2f(
√
s)).

In a last step, the relations 1
s3/2 → 2

(
t
π

)1/2 and lims→∞tanh(2f(
√
s)) = 1 are used to invert the

Laplace transform:

c
e
(0, t)) = (c

e

0 −
1
2

∆c e
(TI)) +

2
√
D∗
±,eff ∆c e

0

l
√
π

√
t,

c
e
(l, t)) = (c

e

0 +
1
2

∆c e
(TI))−

2
√
D∗
±,eff ∆c e

0

l
√
π

√
t.

Note that the limit s → ∞ corresponds to t → 0. As a result, the concentration difference
∆c e(t) = c

e

A(l, t)− c
e

C(0, t) is given by

∆c e
(t) = ∆c e

(TI)−
4
√
D∗
±,eff ∆c e

0

l
√
π

√
t.
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C.3 Initial time behavior of a potentiostatic polarization
experiment

The solution of the boundary value problem in section 5.5.2 is based on the Laplace transforma-
tion given in Equ. (C.11):

ĉ(x, s) =
c0

s
+ Â(s)exp(−ax) + B̂(s)exp(ax). (C.17)

Here, s denotes the Laplace transform of t and ĉ the Laplace transform of c. The variable a is
defined as a =

(
s/D∗

±,eff

)1/2 and b as b = c0/D
∗
±,eff. In the appendix, the zero order approx-

imation D∗
±,eff(c0) of the concentration dependent diffusion coefficient D∗

±,eff(c) is abbreviated
by D∗

±,eff to simplify the notation. In contrast to the derivation presented in section C.2, the ini-
tial concentration field c0 is constant and the volumetric phase average of the concentration c is
considered instead of the volumetric intrinsic phase average c e . Using the Laplace transformed
semi-infinite limit for x→∞ defined in Equ. (5.62) as boundary condition

limx→∞(ĉ) =
c0

s
,

Equ. (C.17) reads as

ĉ(x→∞, s) =
c0

s
+ Â(s) exp(−ax)︸ ︷︷ ︸

→0

+B̂(s) exp(ax)︸ ︷︷ ︸
→∞

≡ c0

s
.

As a result of this equation, the constant B̂(s) has to be B̂(s) = 0 to fulfill the semi-infinite
limit. At the cathode x = 0, the spatial derivative of Equ. (C.17) is given by

∂ĉC(0, s)
∂x

= −aÂ, (C.18)

where B̂(s) = 0 and exp(0) = 1 is used. Additionally, the concentration ĉC at the cathode is
given as

ĉC(0, s) =
c0

s
+ Â(s). (C.19)

During a SSPP experiment, the initial current I0 decreases with time until the steady-state current
IS is reached. This means that the concentration gradient at anode and cathode are not constant
over time but adjusted continuously. Therefore, it is necessary to find an analytical expression for
the time dependent concentration gradient. In a second step, this time-dependent concentration
gradient can be related to the current I(t). Based on Equ. (5.26) and (5.27), the concentration
gradient at the cathode can be expressed as a function of the current I:

− D∗
±,eff

1− t+

∂ cC(0, t)
∂x

=
1

z+ν+F

I(t)
A

, (C.20)
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where the porosity ε is shifted from the effective diffusion coefficient D±,eff to the concentra-
tion c

e
and the normal nx is given as nx = −1. Note that according to the definition given in

section 5.3 the current at the cathode is negative. Equ. (C.20) can be reformulated using the
equivalent circuit model

R =
U − ∆Φ

e

Ieq
,

which gives

∂ cC(0, t)
∂x

= − 1
z+ν+F

1− t+
D∗
±,eff

−Ieq

A
=

1
z+ν+F

1− t+
D∗
±,eff

1
A

(U − ∆Φ
e

)
RI

. (C.21)

At this point, it has to be considered that the cell potential U and the current Ieq in a equiva-
lent circuit model are not defined with respect to a coordinate system but relative to each other.
Therefore, the current Ieq in the equivalent circuit model is positive in this setup whereas the cur-
rent I in Equ. (C.21) has to be negative. To account for these different definitions, an additional
negative sign is introduced in Equ. (C.21). As a result, Equ. (C.21) can be expressed as

∂ cC(0, t)
∂x

=
1

z+ν+F

1− t+
D∗
±,eff

1
A RI

[
U +Rel I(t)− ν

z+ν+

RT

F

(
1 +

d lnf±
d lnc

)
(1− t+)

∆c e(t)
c

e

0

]
,

where the integrated form Equ. (5.31) with the approximation for small concentration variations
given in Equ. (5.33) is used. At this point, the concentration gradient in the concentration over-
potential (second term on the rhs in Equ. (5.31)) is only considered as an absolute concentration
difference ∆c e(t) but does not influence the concentration gradient directly. The current I(t) in
the term Rel I(t) is given by Equ. (C.20) and the concentration difference ∆c e(t) between anode
and cathode can be reformulated to

∆c e(t)
c

e

0
=

2∆c
e
(t)

2

c
e

0
=

2(c e

0 − c
e

C(t))
c

e

0
= 2

(
1− c

e

C(t)
c

e

0

)
= 2

(
1− cC(0, t)

c0

)

if the developing concentration profile is point symmetric to x = l/2. This is the case for constant
transport parameters. As a result, the concentration gradient at the cathode reads as

∂cC(0, t)
∂x

=
1

z+ν+F

1− t+
D∗
±,eff

1
A (RI +REl)︸ ︷︷ ︸

C1[
U − ν

z+ν+

RT

F

(
1 +

d lnf±
d lnc

)
(1− t+) 2

(
1− cC(0, t)

c0

)]
,
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where the constant C1 is used to simplify the notation. The notation can be simplified further
utilizing the constants C2 and C3

∂cC(0, t)
∂x

=C1

[
U − 2ν

z+ν+

RT

F

(
1 +

d lnf±
d lnc

)
(1− t+)

]

︸ ︷︷ ︸
C2

+ C1
2ν
z+ν+

RT

F

(
1 +

d lnf±
d lnc

)
(1− t+)

1
c0︸ ︷︷ ︸

C3

cC(0, t),

which results in

∂cC(0, t)
∂x

=C2 + C3 cC(0, t). (C.22)

The Laplace transformation of Equ. (C.22) in t reads as

∂ĉC(0, s)
∂x

=
C2

s
+ C3 ĉC(0, s). (C.23)

Based on Equ. (C.18) and (C.19), Equ. (C.23) can also be formulated as

−aÂ(s) =
C2

s
+ C3

(
c0

s
+ Â(s)

)
.

Utilizing the definition for a, the coefficient Â is given by

Â(s) = −
√
D∗
±,eff (C2 + C3c0)

1
s
[√
s+ C3

√
D∗
±,eff

] .

As a result, the concentration ĉC(0, s) at the cathode can be written as

ĉC(0, s) =
c0

s
−

√
D∗
±,eff (C2 + C3c0)

1
s [
√
s+H]

and the concentration gradient as

∂ĉC(0, s)
∂x

= (C2 + C3c0)
1

s1/2 [s1/2 +H]
,

where the relation H = C3
√
D∗
±,eff is used. After inverting the Laplace transformation, the

current I(t) is given by

I(t) = −z+ν+FA
D∗
±,eff

1− t+
(C2 + C3c0) exp(H2t)

(
1− erf(Ht1/2)

)
.
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After insertion of the coefficients C1, C2 and C3, the current I(t) at the cathode reads as

I(t) =− U

RLF
exp(H2t)

(
1− erf(Ht1/2)

)
, (C.24)

where the constant H is defined as

H =
2ν
z2

+ν
2
+

RT

F 2

1
A RLF ε c

e

0

(
1 +

d lnf±
d lnc

)
(1− t+)2

(D∗
±,eff)1/2 . (C.25)

Here, the interface and the electrolyte resistance are already combined in the low frequency
resistance RLF = RI +REl.
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[121] W. Polifke and J. Kopitz, Wärmeübertragung: Grundlagen, analytische und numerische
Methoden, Ing - Maschinenbau, Pearson Studium, 2009.

[122] P. Popov, Y. Vutov, S. Margenov, and O. Iliev, Finite volume discretization of equations
describing nonlinear diffusion in Li-ion batteries, In Numerical Methods and Applica-
tions, Springer Berlin Heidelberg, 2011.

[123] W. S. Price, Pulsed-field gradient nuclear magnetic resonance as a tool for studying trans-
lational diffusion. Part 1: Basic theory, Journal of Magnetic Resonance 9, 299 – 336,
1997.

[124] V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R.
Subramanian, Modeling and simulation of lithium-ion batteries from a systems engineer-
ing perspective, Journal of The Electrochemical Society 159, R31 – R45, 2012.

201



Bibliography

[125] J. Redepenning, E. Castro-Narro, G. Venkataraman, and E. Mechalke, Influence of sup-
porting electrolyte activity on formal potentials measured for dissolved internal standards
in acetonitrile, Journal of Electroanalytical Chemistry 498, 192 – 200, 2001.

[126] J. N. Reimers, Algorithmic improvements and PDE decoupling for the simulation of
porous electrode cells, Journal of The Electrochemical Society 160, A811 – A818, 2013.

[127] J. C. Roth, A. Ehrl, T. Becher, S. J. Frerichs, I and, N. Weller, and W. W. A., Correlation
between alveolar ventilation and electrical properties of lung parenchyma, Physiological
Measurement 36, 1211 – 1226, 2015.

[128] I. Ruff, V. J. Friedrich, K. Demeter, and K. Csillag, Transfer diffusion. II. Kinetics of
electron exchange reaction between ferrocene and ferricinium ion in alcohols, The Journal
of Physical Chemistry 75, 3303 – 3309, 1971.

[129] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, 2 Edition, Society
for Industrial and Applied Mathematics, 2003.

[130] A. Salvadori, E. Bosco, and D. Grazioli, A computational homogenization approach for
Li-ion battery cells. Part 1 - Formulation, Journal of the Mechanics and Physics of Solids
65, 114 – 137, 2014.

[131] B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, Journal of
Power Sources 195, 2419 – 2430, 2010.

[132] A. K. Sethurajan, S. A. Krachkovskiy, I. C. Halalay, G. R. Goward, and B. Protas, Ac-
curate characterization of ion transport properties in binary symmetric electrolytes using
in situ NMR imaging and inverse modeling, The Journal of Physical Chemistry B 119,
12238–12248, 2015.

[133] L. Shen and Z. Chen, Critical review of the impact of tortuosity on diffusion, Chemical
Engineering Science 62, 3748 – 3755, 2007.

[134] L. Song and J. W. Evans, Electrochemical-thermal model of lithium polymer batteries,
Journal of The Electrochemical Society 147, 2086 – 2095, 2000.

[135] S. Stewart and J. Newman, Measuring the salt activity coefficient in lithium-battery elec-
trolytes, Journal of The Electrochemical Society 155, A458 – A463, 2008.

[136] S. G. Stewart and J. Newman, The use of UV/vis absorption to measure diffusion coeffi-
cients in LiPF6 electrolytic solutions, Journal of The Electrochemical Society 155, F13 –
F16, 2008.

[137] J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries,
Nature 414, 359 – 367, 2001.

[138] F. Tariq, V. Yufit, M. Kishimoto, P. Shearing, S. Menkin, D. Golodnitsky, J. Gelb, E. Peled,
and N. Brandon, Three-dimensional high resolution X-ray imaging and quantification of
lithium ion battery mesocarbon microbead anodes, Journal of Power Sources 248, 1014 –
1020, 2014.

202



Bibliography

[139] S. D. Thompson and J. Newman, Differential diffusion coefficients of sodium polysulfide
melts, Journal of The Electrochemical Society 136, 3362 – 3369, 1989.

[140] I. V. Thorat, D. E. Stephenson, N. A. Zacharias, K. Zaghib, J. N. Harb, and D. R. Wheeler,
Quantifying tortuosity in porous Li-ion battery materials, Journal of Power Sources 188,
592 – 600, 2009.

[141] A. S. U. Trottenberg, Cornelis W. Oosterlee, Multigrid, Academic Press, 2001.

[142] L. O. Valøen and J. N. Reimers, Transport properties of LiPF6–based Li-ion battery elec-
trolytes, Journal of The Electrochemical Society 152, A882 – A891, 2005.

[143] J. Vatamanu, O. Borodin, and G. D. Smith, Molecular dynamics simulation studies of the
structure of a mixed carbonate / LiPF6 electrolyte near graphite surface as a function of
electrode potential, The Journal of Physical Chemistry C 116, 1114 – 1121, 2012.

[144] M. Wagemaker, A. Van Der Ven, D. Morgan, G. Ceder, F. M. Mulder, and G. J. Kearley,
Thermodynamics of spinel LixTiO2 from first principles, Chemical Physics 317, 130 –
136, 2005.

[145] F. T. Wagner, B. Lakshmanan, and M. F. Mathias, Electrochemistry and the future of the
automobile, The Journal of Physical Chemistry Letters 1, 2204 – 2219, 2010.

[146] R. Wagner, N. Preschitschek, S. Passerini, J. Leker, and M. Winter, Current research trends
and prospects among the various materials and designs used in lithium-based batteries,
Journal of Applied Electrochemistry 43, 481 – 496, 2013.

[147] W. A. Wall and M. W. Gee, Baci - A multiphysics simulation environment, Technical
report, Technische Universität München, 2010.

[148] Y. Wang, E. I. Rogers, and R. G. Compton, The measurement of the diffusion coefficients
of ferrocene and ferrocenium and their temperature dependence in acetonitrile using dou-
ble potential step microdisk electrode chronoamperometry, Journal of Electroanalytical
Chemistry 648, 15 – 19, 2010.

[149] S. Whitaker, The Method of Volume Averaging, Theory and Applications of Transport in
Porous Media, Springer, 1999.

[150] D. Wiedenmann, L. Keller, L. Holzer, J. Stojadinovć, B. Münch, L. Suarez, B. Fumey,
H. Hagendorfer, R. Brönnimann, P. Modregger, M. Gorbar, U. F. Vogt, A. Züttel, F. L.
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