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Abstract

The present thesis provides a comprehensive analysis of exchangeable exogenous shock

models. This model class is fully characterized in terms of its survival function, which

admits a surprisingly simple and elegant structure. A subclass of exchangeable exogenous

shock models based on a new stochastic representation is derived. It is parameterized

by a single stochastic process and is used to both construct new families of multivariate

distribution functions and characterize the respective process via the general shock model

conditions. From a theoretical point of view, the latter characterization results are

used to identify a subclass of in�nitely divisible probability distributions in a novel way.

From a practical perspective, exchangeable exogenous shock models are applied in the

de�nition of new portfolio default models, the pricing of multiname credit derivatives,

and the embedding of model uncertainty in risk management applications.

Zusammenfassung

Die vorliegende Arbeit beinhaltet eine umfassende Untersuchung austauschbarer exo-

gener Schockmodelle. Diese Modellklasse wird vollständig anhand ihrer Überlebensfunk-

tion charakterisiert, welche eine überraschend einfache und elegante Struktur aufweist.

Eine auf einer neuen, alternativen stochastischen Darstellung basierende Unterklasse

austauschbarer exogener Schockmodelle wird hergeleitet. Diese wird durch einen einzel-

nen stochastischen Prozess parametrisiert und dazu verwendet, sowohl neue multivariate

Verteilungsfunktionen zu konstruieren als auch den verwendeten Prozess mittels der all-

gemeinen Schockmodellbedingungen zu charakterisieren. In theoretischer Hinsicht wer-

den letztere Charakterisierungsergebnisse zur Identi�kation einer Unterklasse unendlich

teilbarer Wahrscheinlichkeitsverteilungen verwendet. Aus praktischer Perspektive wer-

den austauschbare exogene Schockmodelle für die De�nition neuer Portfolioausfallmo-

delle, die Bewertung mehrdimensionaler Kreditderivate und die Einbettung von Modell-

unsicherheit in Risikomanagementfragestellungen herangezogen.
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1 Introduction

1.1 Motivation

This thesis is located in the �eld of high-dimensional dependence modeling. Given d

dependent random variables X1, . . . , Xd, the overall aim is to describe their mutual in-

teraction in a �reasonable� way. As a matter of course, reasonability is strongly context-

sensitive, and the judgment on a model's adequacy is in�uenced by many aspects. In

general, being an abstraction of reality by de�nition, any model has to deal with the

con�icting objectives of covering stylized empirical facts while maintaining mathemati-

cal tractability. In the present manuscript, this area of tension is analyzed within the

universe of exogenous shock models, i.e. for random vectors (X1, . . . , Xd) that can be

represented as

Xk = min{ZE : k ∈ E}, k = 1, . . . , d, (1.1)

for 2d − 1 independent real-valued random variables ZE , ∅ 6= E ⊆ {1, . . . , d}.

X1 X2

X3

Figure 1.1 Visualization of a three-dimensional exogenous shock model. The blue ar-

eas depict seven shocks to the non-empty subsets of the trivariate system

(X1, X2, X3).
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The construction principle of exogenous shock models is visualized in Figure 1.1 for the

three-dimensional case. The key assumption is that in a system of d components, each

subset ∅ 6= E ⊆ {1, . . . , d} is exposed to an independent source of risk ZE . In the

given example, there are 7 shocks, a�ecting one or several constituents and consisting

of idiosyncratic risk factors Z{1}, Z{2}, Z{3} (dark blue inner circles), twofold sources of

risk Z{1,2}, Z{1,3}, Z{2,3} (blue ellipses), and a cataclysmic event Z{1,2,3} (light blue outer

circle). The random variable Xk represents the �rst time component k is hit by a shock

and is thus de�ned as the minimum of all ZE with k ∈ E.

By construction, exogenous shock models provide a high degree of �exibility in the sense

that interactions between subsets of {X1, . . . , Xd} can be managed by the respective

random variable ZE . When laying the focus on high-dimensional random vectors, how-

ever, the wide range of possible dependence patterns is rather cumbersome. This the-

sis is motivated by applications in insurance and portfolio credit risk modeling, where

Xk, k = 1, . . . , d, might represent, for instance, the lifetimes of policyholders or �nancial

assets. In this context, d is typically a large number (d = 125 for multiname credit

derivatives, d � 100 for insurance portfolios), such that calibrating or simulating the

2d − 1 shocks ZE is not practical. For that reason, the present work deals with the

subclass of exchangeable exogenous shock models. Exchangeability refers to a homo-

geneity assumption for the random vector (X1, . . . , Xd) and, roughly speaking, implies

that shocks ZE that a�ect the same number of constituents are equal in distribution.

In the example in Figure 1.1, this means that Z{1}, Z{2}, Z{3} and Z{1,2}, Z{1,3}, Z{2,3}

have the same distribution function, respectively, which essentially reduces the originally

seven degrees of freedom to the speci�cation of ZE for the three possible cardinalities

|E| ∈ {1, 2, 3}.

Within the class of exchangeable exogenous shock models, this thesis makes a contribu-

tion in both theoretical and practical regard. The results can be structured as follows.

Firstly, exchangeable exogenous shock models are completely characterized with respect

to the survival function of the corresponding random vector (X1, . . . , Xd). While it is

straightforward to show that the survival function of (X1, . . . , Xd) as constructed in

Equation (1.1) has a �nice� functional form, it is challenging to prove that this func-

tional form represents a survival function only if it represents the survival function of

an exchangeable exogenous shock model. This characterization generalizes, extends, and

uni�es many investigations in the literature that, for the stated reasons of complexity

reduction, either solely deal with the bivariate case (i.e. d = 2) or speci�c distributions

for the shocks ZE . On top of that, an alternative stochastic model for a subclass of

exchangeable exogenous shock models is presented. The alternative setup consists of a

8



1.1 Motivation

�rst-passage time framework forX1, . . . , Xd which is parameterized by a single increasing

stochastic process Λ = {Λt}t≥0 with independent increments. More precisely,

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d, (1.2)

where E1, . . . , Ed are independent and identically distributed (i.i.d.) random variables

with standard exponential law. On a high level, this distinct perspective on shock mod-

els relates the independence of the increments of Λ to the independence of the random

variables ZE in the minimum construction (1.1). Besides, it is obvious that (1.2) not

only provides a framework for a �xed set (X1, . . . , Xd) of d random variables, but can

be raised to higher dimensions, i.e. Xd+1, Xd+2, . . ., by simply adding further i.i.d. com-

ponents Ed+1, Ed+2, . . . to the construction. Exchangeable random vectors respectively

exchangeable exogenous shock models that can be extended in this way are called ex-

tendible.

What to do with these results? Apart from drawing a line under the seemingly delimited

world of exchangeable exogenous shock models, it turns out that these �ndings open the

door for further interesting characterizations that at a �rst glance have nothing to do

with the starting point in Equation (1.1) or random vectors at all. Abstractly speaking,

the proceeding works as follows: Leading to an exchangeable exogenous shock model,

the stochastic process Λ in the alternative construction (1.2) inevitably has to satisfy

the necessary and su�cient conditions derived for the survival function of the general

model in (1.1). Possibly, the reverse reasoning works as well, and these conditions may

even be used to characterize the stochastic process in concern. This attempt is pursued

in the second major outcome of the present manuscript, which emphasizes the manifold-

ness of the approach and concerns the set of self-decomposable probability measures on

[0,∞). These measures correspond to a subset of in�nitely divisible distributions on the

compacti�ed positive half-line, which in turn can be described via Bernstein functions.

Bernstein functions are used in diverse areas of mathematical application and consist of

a linear part (described by constants a, b) and an integral part with respect to a cer-

tain measure ν on (0,∞). Two novel characterizations of self-decomposable Bernstein

functions are derived, providing interesting insights into the peculiarity of this subclass.

While existing results mainly focus on the shape of the measure ν, the present work

analyzes self-decomposable Bernstein functions one layer above in terms of monotonicity

of the whole function. In addition to that, self-decomposable probability measures on

[0,∞) are characterized by a speci�c class of multivariate distribution functions that

arises from choosing a Sato process for Λ in Equation (1.2).

As a third major contribution of this thesis, the previous results on shock models and

9



self-decomposability are applied to the pricing of collateralized debt obbilgations (CDOs),

probably the most famous representatives of multiname credit derivatives. Given a

portfolio of d assets with default times X1, . . . , Xd, the central quantity for pricing

these products are call respectively put options on the portfolio loss process {Lt}t≥0,

Lt :=
(∑d

k=1 1{Xk≤t}
)
/d, which denotes the fraction of defaulted �rms in the portfo-

lio in time. Considering the subclass of exchangeable shock models in the �rst-passage

time setup (1.2) for the random vector (X1, . . . , Xd), it is pointed out how to derive

an approximation formula for these option values based on inverse Laplace transforms.

In addition to that, a fast and e�cient evaluation algorithm for the resulting Laplace

inversion integrals is presented, yielding model prices for CDOs within fractions of a sec-

ond. A generic step-by-step instruction for model calibration to market prices of CDOs

is given and illustrated by means of Sato processes for Λ.

Last but not least, the fourth highlight of this manuscript comprises another practical

application of exchangeable exogenous shock models and introduces a fundamentally

new, universal approach for model risk analysis. The starting point is a company's risk

manager who � in order to derive risk measures for the log-return of a given portfolio

with respect to (w.r.t.) a certain holding period � typically models granular log-returns

R = {Rtk}k=1,...,d for d short periods and deduces the requested risk measure from

aggregating Rt1 + . . . + Rtd . By a classical result in probability theory, any model

for {Rtk}k=1,...,d can be decomposed into a vector U := {Uk}k=1,...,d of i.i.d. random

variables � accounting for the randomness in the model � and a d-variate function f �

representing the economic reasoning behind. While existing literature mainly addresses

model uncertainty by manipulating the function f , we introduce a new philosophy by

distorting the source of randomness U . The proposed construction involves the �rst-

passage time framework (1.2) for the distorted random vector Ũ := {Ũk}k=1,...,d and

an additive process connected to a Dirichlet process for Λ. It is is shown that this

proceeding not only satis�es several consistency conditions for a reasonable distortion,

but additionally leads to extremely fast simulation algorithms. The universal nature of

the methodology is illustrated by means of a case study comparing the impact of the

distortion on the aggregated return distribution Rt1 + . . .+Rtd for popular models f .

This thesis is separated into seven chapters. Chapter 1 consists of the present introduc-

tion and a brief depiction of this work's incurrence. Chapter 2 elucidates the necessary

mathematical background and establishes well-known results on copulas, additive pro-

cesses, and Bernstein functions, three objects that are of central importance throughout

the entire manuscript. Required knowledge on chapter-speci�c contents such as self-

decomposability or Laplace inversion is conveyed in the respective sections themselves.

10



1.2 Personal note on the history of origins

In Chapter 3, the previously mentioned characterization of exchangeable exogenous shock

models is derived. The investigations result in Theorem 3.3.1 (p. 61), which can be con-

sidered a major �nding of the present thesis. Furthermore, an important subclass of

exchangeable shock models additionally exhibiting extendibility is presented in Proposi-

tion 3.5.1 (p. 80). The novel characterizations regarding self-decomposable probability

measures on the half-line are depicted in Chapter 4 and summarized in Theorem 4.2.1 (p.

91), the second substantial contribution of this work. Among others, self-decomposability

is linked to a new class of multivariate distribution functions termed Sato�frailty copu-

las. Chapter 5 focuses on the application of extendible exogenous shock models to the

evaluation of CDOs. The crucial result of this part of the thesis is Theorem 5.3.2 (p.

122), which paves the way to an extremely e�cient pricing algorithm. Picking up the

special case of Sato�frailty copulas, the calibration to market quotes of these multiname

credit derivatives is described in detail. In Chapter 6, model uncertainty is addressed

in terms of dilution of the stochastic root U := {Uk}k=1,...,d of a random vector. The

joint distribution function of the originally i.i.d. components in U is changed towards

the newly introduced Dirichlet copula in Theorem 3.5.3 (p. 83). At long last, Chapter 7

concludes and gives an outlook on potential future research.

1.2 Personal note on the history of origins

The present thesis contains most of the �nal results I have been working on for the past

few years. Yet it tells nothing about their genesis. To my mind, though �nally disem-

boguing in the statement of several conclusions and their validation, scienti�c progress

is typically characterized by a starting point and various directions of movement rather

than by a prede�ned destination. Who knows where the road will end up anyway? By

�lling this gap and shortly commenting on the milestones of this project, I wish to value

and clarify the �scienti�c pedestal� my work is grounded on, and to point out the new

results this thesis places on top. In so doing, I hope to convey a deeper understanding

of the current manuscript's structure and to arouse interest for further research on the

presented ideas.

I �rst came across exogenous shock models in the dissertation of Mai (2010) and the

related papers by Mai and Scherer (2009b, 2011). There, the authors analyze models

of type (1.1) for the special case of exponentially distributed shocks ZE . One of their

main �ndings is a coherence between a subclass of these models, an algebraic concept

called complete monotonicity, and an equivalent alternative stochastic construction for

11



(X1, . . . , Xd) as in (1.2), involving an increasing Lévy process for Λ. Given the suitability

of the latter construction for both theoretical deliberations and practical purposes, such

as the pricing of multiname credit derivatives, my aim was to investigate this topic in

more detail.

As it turned out, considering the alternative construction, yet replacing the Lévy process

by a di�erent class of stochastic processes, resulted in a very similar functional form for

the joint survival function of (X1, . . . , Xd). This observation led to the central questions

of this thesis:

1. Is there a reasonable superclass of both survival functions?

2. If so, how can it be characterized and interpreted?

3. How does it relate to the alternative construction with stochastic processes?

4. Do the characterization results for the superclass and the construction with stochas-

tic processes yield a characterization of the stochastic processes themselves?

5. Is the superclass suitable for practical applications?

All of these questions are addressed in this manuscript and the �ndings have been pub-

lished in, respectively submitted to, peer-reviewed international journals. The considered

superclass turns out to precisely describe the class of exchangeable exogenous shock mod-

els. The �ndings (among others, the answers to questions one to three) are summarized

in [Mai, Schenk, Scherer (2015b)] and constitute Chapter 3 of this thesis. The transitive

nature of the characterization results (and, thus, question four) is exploited in [Mai,

Schenk, Scherer (2015c)] and revealed in Chapter 4. By transferring the necessary and

su�cient conditions for the superclass to the alternative construction with Sato pro-

cesses, it is possible to derive new results for self-decomposable probability measures.

In order to put the superclass into play and address question �ve, Chapter 5 derives a

powerful algorithm for e�ciently pricing multiname credit derivatives. The procedure is

similar to the one in [Mai, Olivares, Schenk, Scherer (2014)]1, yet additionally uses the

theoretical results in [Bernhart, Mai, Schenk, Scherer (2015)] to derive a mathematically

rigorous evaluation formula. Another demonstration of the manifold practical applica-

bility of the extendible exogenous shock model construction is given in Chapter 6 in a

risk management context. The presented model-independent approach for incorporating

1This paper builds on the Master's thesis [Schenk (2011)]. Supported by the �Deutsche Gesellschaft für

Versicherungs- und Finanzmathematik� � which I profoundly want to give thanks to at this point �

I have been funded for six months in order to convert and enhance the thesis' results into a scienti�c

article.

12



1.2 Personal note on the history of origins

model uncertainty is enhanced by an empirical case study and interesting mathemat-

ical byproducts and subsumed in [Mai, Schenk, Scherer (2015a)]. Supplementally to

the mentioned references, compact survey articles on fast Fourier transform pricing (see

[Schenk (2014)]) and portfolio credit risk modeling (see [Kant and Schenk (2015)]) have

been published in a practically oriented, non-peer reviewed journal.
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2 Mathematical prerequisites

This chapter recalls mathematical objects that are repeatedly used throughout this the-

sis. The present manuscript mainly deals with multivariate distribution functions. Thus,

Section 2.2 establishes the notion of copulas and motivates their use by means of Sklar's

Theorem (see Theorem 2.2.3), which states that an arbitrary d-variate distribution func-

tion can be decomposed into the respective marginal distribution functions and a stan-

dardized multivariate distribution function on [0, 1]d called copula. Besides giving two

equivalent formal de�nitions of copulas in Section 2.2.1, the chapter introduces related

properties such as the concepts of exchangeability and extendibility (see Section 2.2.2),

both being of central importance for the study of exchangeable respectively extendible

exogenous shock models. Moreover, Section 2.2.3 introduces the most common depen-

dence measures for bivariate copulas.

The second major building block of this manuscript are d-monotone sequences and func-

tions and their relationship to certain copula families. Given a sequence (respectively

su�ciently smooth function), these algebraic concepts are introduced in Section 2.3.1

and refer to a homogeneity property of the sequence's �nite di�erences (respectively the

function's derivatives). For some popular copula families being parameterized by a se-

quence respectively single function � among others the Archimedean copulas presented

in Section 2.3.2 and the exchangeable Marshall�Olkin copulas depicted in Section 2.3.3

� it is known that the d-monotonicity conditions represent necessary and su�cient re-

quirements for well-de�nedness. A similar relationship can be derived for the extendible

exogenous shock models in Chapter 4, which is why we review this framework in more

detail.

Functions that are d-monotone for any natural number d are called completely mono-

tone. Completely monotone functions are closely connected to Bernstein functions (see

Bernstein (1929)), which are de�ned in Section 2.4. Being linked to in�nitely divisible

distributions on the positive half-axis, Bernstein functions provide a natural transition

to increasing additive processes, which are captured in Section 2.4 as well. Additive

processes are stochastic processes that are essentially characterized by the property of
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independent increments. The most prominent example are Lévy processes (see Section

2.4.2), which additionally feature stationarity, i.e. equality in distribution of increments

corresponding to periods of equal length. A less common, yet crucial class for Chapters

4 and 6 of this thesis are Sato processes and transformed Dirichlet processes as intro-

duced in Sections 2.4.3 and 2.4.4. Furthermore, Section 2.4.5 indicates several examples

of Bernstein function that are useful for later chapters.

2.1 Notations and de�nitions

Table 2.1 depicts some of the symbols and abbreviations which are used throughout this

thesis without further explanation. In addition to that, the following conventions are

established:

• Equality in law: Equality in law between two random vectors X = (X1, . . . , Xd)

and Y = (Y1, . . . , Yd) is denoted by X
d
= Y . We recall that equality in law

means E[f(X1, . . . , Xd)] = E[f(Y1, . . . , Yd)] for all bounded, continuous functions

f : Rd → R, where the expectation values E are taken on the respective probability

spaces of (X1, . . . , Xd) and (Y1, . . . , Yd), which might be di�erent. Equality in law

X
d
= Y for two stochastic processes X = {Xt}t∈R and Y = {Yt}t∈R means that

(Xt1 , . . . , Xtd)
d
= (Yt1 , . . . , Ytd) for arbitrary d ∈ N and t1, t2, . . . , td ∈ R.

• Generalized inverse: We use the de�nition in Embrechts and Hofert (2013). For

an increasing function f : R → R, the generalized inverse f−1 : R → [−∞,∞] is

given by

f−1(y) := inf{x ∈ R : f(x) ≥ y}, y ∈ R,

where inf ∅ :=∞. Analogously, for a decreasing function f , we denote

f−1(y) := sup{x ∈ R : f(x) ≥ y}, y ∈ R,

and set sup ∅ := −∞.

• Laplace transform: The Laplace transform of a non-negative function f , prob-

ability measure π, respectively random variable X is denoted by L, meaning that
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2.1 Notations and de�nitions

Label Symbol Description

Cardinality |.| For a set A, |A| denotes the number of elements

in A.

Cartesian product × For two sets A and B, A × B := {(a, b) : a ∈
A, b ∈ B}.

Derivative (k) For k ∈ N0 and a function f , f (k) denotes the

k-th derivative of f : R 7→ R; f (1) is sometimes

abbreviated as f
′
.

Expected value E E[X] denotes the expected value of the random

variable X on the respective probability space.

Exponential distribu-

tion

Exp(λ) X ∼ Exp(λ) for a random variable X and a pa-

rameter λ > 0 means that X is exponentially

distributed with parameter λ, i.e. P(X > x) =

exp(−λx) for x ≥ 0.

Gamma function Γ For x > 0, the Gamma function Γ is de�ned as

Γ(x) :=
∫∞

0 tx−1 exp(−t) dt.

Identity on [0, 1] id[0,1] Identity mapping on [0, 1], i.e. id[0,1](u) = u, u ∈
[0, 1].

Law of random vector ∼ Writing X = (X1, . . . , Xd) ∼ F for a d-

dimensional random vectorXmeans that the dis-

tribution function of X is given by F .

Number sets N (N0), Q,
R, C

Set of natural (extended by {0}), rational, real,
and complex numbers, respectively.

Poisson distribution Poi(λ) X ∼ Poi(λ) for a random variable X and a pa-

rameter λ > 0 means that X is Poisson dis-

tributed with probability mass function P(X =

n) = λn/n! exp(−λ), n ∈ N0.

Probability space (Ω,F ,P) Ω denotes the event space, F the σ-algebra, and

P the probability measure.

Subset ⊂,⊆ For two sets A and B, A ⊂ B means that A is a

strict subset of B. A ⊆ B additionally allows A

to equal B.

Uniform distribution U([a, b]) X ∼ U([a, b]) for a random variable X and a, b ∈
R, a < b, means that X is uniformly distributed

on [a, b], i.e. P(X ≤ x) = (x−a)/(b−a), x ∈ [a, b].

Table 2.1 Abbreviations/symbols that are repeatedly used in this thesis.
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for z ∈ C,

L[f ](z) : =

∫ ∞
0

e−z s f(s) ds,

L[π](z) : =

∫ ∞
0

e−z s π(ds),

L[X](z) : = E[e−z X ],

provided the respective integrals exist. Consequently, for the probability measure

π corresponding to X, the expressions L[π] and L[X] are used substitutively. The

same equivalency holds for L[f ] if π possesses a density f . For certain non-negative

probability measures π respectively random variables X, it is convenient to char-

acterize the Laplace transform via its Laplace exponent Ψ, which is de�ned as

Ψ(z) := − log
(
L[π](z)

)
= − log

(
L[X](z)

)
, z ∈ C,

provided the respective expression exists.

• Margins/Marginal distributions: For a random vector X = (X1, . . . , Xd) ∈
Rd,X ∼ F , with multivariate distribution function F : Rd → R, the univariate

distribution functions of X1, . . . , Xd are called margins or marginal distributions

of X and are denoted by F1, . . . , Fd. The same reasoning applies to the marginal

survival functions of X, which are typically written as F̄1, . . . , F̄d.

• Monotonicity: Whenever talking about an increasing function f , we refer to the

function as being non-decreasing, i.e.

f(y)− f(x) ≥ 0 for all x ≤ y in the domain of f.

If the di�erence f(y) − f(x), x < y, is always greater than zero, we call f strictly

increasing. The same logic is applied to (strictly) decreasing functions.

• Order relations: Order relations between two vectors are to be understood com-

ponentwise, i.e. for x := (x1, . . . , xd),y := (y1, . . . , yd) ∈ Rd, x ≤ y means xk ≤ yk
for all k = 1, . . . , d. Furthermore, we denote by x(1) ≤ . . . ≤ x(d) the ordered list

of (x1, . . . , xd).

• Random variable: When referring to a random variable X without further sup-

plement, we always assume that X is de�ned on a probability space (Ω,F ,P) and

is a real-valued, measurable mapping X : (Ω,F) → (R,B(R)), with B(R) denot-

ing the Borel σ-algebra on R. For subsets A ⊂ Rd, B(A) denotes the respective

restriction of the Borel σ-algebra on Rd to A.
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2.2 Copulas

2.2 Copulas

This section introduces copulas and demonstrates their suitability for the study of mul-

tivariate distribution functions. A broad overview of copulas and their origin is given

in Durante and Sempi (2010). The subsequent review is far from complete, however

introduces the basic concepts that are relevant for the present thesis. Among others,

it addresses questions such as �What are copulas?�, �Which classes can they be divided

into?�, �Which properties are there to analyze?�, or �How do examples look like?�, all of

which prove helpful for the analysis of exogenous shock models.

2.2.1 Probabilistic and analytic de�nition

When having a look at standard literature on copulas (e.g. Nelsen (2006); Joe (1997);

McNeil et al. (2005)), one is likely to �nd two di�erent, yet equivalent notions. The

�rst one is a rather analytic perspective and introduces copulas as mappings from the

unit cube to the unit interval ful�lling certain technical conditions. The most crucial

one of those conditions (in the sense that it is the most di�cult one to check for a given

mapping) is related to d-boxes.

De�nition 2.2.1 (d-box)

The Cartesian product I1 × . . . × Id of �nite sets Ik = [xk, yk] ∈ R,−∞ < xk ≤ yk <

∞, k = 1, . . . , d, is called d-box. If xk = yk for at least one k ∈ {1, . . . , d}, it is

called degenerated. For vectors x := (x1, . . . , xd),y := (y1, . . . , yd), x ≤ y, d-boxes are
abbreviated by

[x,y] := ×dk=1[xk, yk] = I1 × . . .× Id.

Now we can proceed with the de�nition of a copula from an analytic perspective.

De�nition 2.2.2 (Copula, analytic)

A function C : [0, 1]d → [0, 1] is called a d-dimensional copula if C exhibits

(i) groundedness, i.e. C(u1, . . . , ud) = 0 if uk = 0 for a k ∈ {1, . . . , d},

(ii) uniform margins, i.e. C(1, . . . , 1, uk, 1, . . . , 1) = uk for all uk ∈ [0, 1], k ∈ {1, . . . , d},

(iii) d-increasingness, i.e. for all u, v ∈ [0, 1]d with u ≤ v,

dC([u, v]) :=
∑

(w1,...,wd)∈×di=1{ui,vi}

(−1)|{i :wi=ui}|C(w1, . . . , wd) ≥ 0.
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2.2.1 Probabilistic and analytic de�nition

The meaning of the respective conditions is clari�ed in the sequel. The importance

of studying copulas in the context of dependence modeling is emphasized by Sklar's

Theorem, which establishes a connection between arbitrary multivariate distribution

functions and copulas.

Theorem 2.2.3 (Sklar's Theorem, Sklar (1959))

Let F be a d-dimensional distribution function with margins F1, . . . , Fd. Then there exists

a d-dimensional copula C such that for all (x1, . . . , xd) ∈ Rd,

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
. (2.1)

If F1, . . . , Fd are continuous, C is unique. Conversely, if C is a d-dimensional copula

and F1, . . . , Fd are univariate distribution functions, the function F de�ned by (2.1) is a

d-dimensional distribution function with margins F1, . . . , Fd.

Proof

See (Nelsen, 2006, Theorem 2.10.9, p. 46). �

Described verbally, any multivariate distribution function can be decomposed into its

margins and a copula, and, reversely, plugging arbitrary univariate distribution functions

into a copula is a valid approach for constructing new multivariate distribution functions.

A similar version of Sklar's Theorem is available for survival functions.

Theorem 2.2.4 (Sklar's Theorem for survival functions)

Let F̄ be a d-dimensional survival function with marginal survival functions F̄1, . . . , F̄d.

Then there exists a d-dimensional copula Ĉ such that for all (x1, . . . , xd) ∈ Rd,

F̄ (x1, . . . , xd) = Ĉ
(
F̄1(x1), . . . , F̄d(xd)

)
. (2.2)

If F̄1, . . . , F̄d are continuous, Ĉ is unique. Conversely, if Ĉ is a d-dimensional copula

and F̄1, . . . , F̄d are univariate survival functions, the function F̄ de�ned by (2.2) is a

d-dimensional survival function with marginal survival functions F̄1, . . . , F̄d.

Proof

See (McNeil et al., 2005, p. 195-196). �

Throughout this thesis, we mostly deal with random vectors X ∼ F having continuous

marginal distribution respectively survival functions. In this case, the corresponding cop-

ulas C respectively Ĉ in (2.1) and (2.2) are unique and are termed the copula respectively

the survival copula of X.
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2.2 Copulas

From a stochastic point of view (as we will see in the sequel), copulas are standardized

distribution functions on the unit cube. Therefore, it is important to note that both

copula and survival copula of a random vector are distribution functions. In order to shine

a light on the link between the probabilistic interpretation of copulas and De�nition 2.2.2,

the following well-known result on the probability of a union of sets is required.

Lemma 2.2.5 (Principle of inclusion and exclusion)

For arbitrary sets A1, . . . , An ∈ F , it holds that

P
( n⋃
i=1

Ai

)
=

∑
∅6=I⊆{1,...,n}

(−1)|I|+1P
(⋂
j∈I

Aj

)
.

Proof

See (Billingsley, 1995, p. 24). �

Now we are able to give a �stochastic� view on copulas.

Proposition 2.2.6 (Copula, probabilistic)

A function C : [0, 1]d → [0, 1] is a d-dimensional copula if and only if there is a probability

space (Ω,F ,P) supporting a random vector (U1, . . . , Ud) such that Uk ∼ U [0, 1] for all

k = 1, . . . , d and

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1]. (2.3)

Proof

Let C : [0, 1]d → [0, 1] satisfy (2.3) for a random vector (U1, . . . , Ud) with Uk ∼ U [0, 1] for

all k = 1, . . . , d. It is trivial to check that C exhibits groundedness and uniform margins

in De�nition 2.2.2. The remaining d-increasingness condition can be shown in the spirit

of (Mai and Scherer, 2012, p. 8). For vectors u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ [0, 1]d,

u ≤ v, and a subset ∅ 6= I ⊆ {1, . . . , d}, de�ne

w
(I)
k :=

uk, k ∈ I,

vk, k /∈ I,
k = 1, . . . , d.

It holds that

0 ≤ P
( d⋂
k=1

{uk ≤ Uk ≤ vk}
)

= P
(( d⋂

k=1

{Uk < vk}
)
\
( d⋃
k=1

{Uk < uk}
))
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2.2.1 Probabilistic and analytic de�nition

= P
( d⋂
k=1

{Uk < vk}
)
− P

(( d⋂
k=1

{Uk < vk}
)
∩
( d⋃
k=1

{Uk < uk}
))

= P
( d⋂
k=1

{Uk < vk}
)
− P

( d⋃
k=1

(
{Uk < uk} ∩

d⋂
k=1

{Uk < vk}
))

(∗)
= P

( d⋂
k=1

{Uk < vk}
)
−

∑
∅6=I⊆{1,...,d}

(−1)|I|+1P
(
{Uk < uk, k ∈ I} ∩ {Uk < vk, k /∈ I}

)
= C(v1, . . . , vd) +

∑
∅6=I⊆{1,...,d}

(−1)|I|C
(
w

(I)
1 , . . . , w

(I)
d

)
=

∑
(w1,...,wd)∈×di=1{ui,vi}

(−1)|{i :wi=ui}|C(w1, . . . , wd),

where Lemma 2.2.5 has been applied in (∗).

Conversely, let C be a copula according to De�nition 2.2.2. By Theorem 2.2.3, using

F1 = . . . = Fd = id[0,1], C is a d-dimensional distribution function on [0, 1]d with

uniform margins. �

Interpreting the probabilistic perspective on copulas in the context of Sklar's Theo-

rem, (Embrechts and Hofert, 2013, Proposition 3.2) shows that given a d-dimensional

distribution function F with continuous margins F1, . . . , Fd, the random vector X =

(X1, . . . , Xd) ∼ F has the copula C if and only if C is the distribution function of(
F1(X1), . . . , Fd(Xd)

)
. Analogously, C̄ is the distribution function of

(
F̄1(X1), . . . , F̄d(Xd)

)
for the marginal survival functions F̄1, . . . , F̄d corresponding to X.

Proposition 2.2.6 implies that given U = (U1, . . . , Ud) ∼ C for a d-dimensional copula

C, the distribution function of the subvector (Uj1 , . . . , Uji), i ∈ {1, . . . , d}, 1 ≤ j1 <

. . . < ji ≤ d, is a copula (denoted by Cj1,...,ji) as well. For �xed J := {j1, . . . , ji},
uj1 , . . . , uji ∈ [0, 1], and

w
(J)
k :=

uk, k ∈ J,

1, k /∈ J,
k = 1, . . . , d,

it is given by

Cj1,...,ji(u1, . . . , ui) = C
(
w

(J)
1 , . . . , w

(J)
d

)
. (2.4)

Furthermore, Proposition 2.2.6 indicates that any d-dimensional copula C induces a

probability measure dC on [0, 1]d de�ned by

dC(B) := P
(
(U1, . . . , Ud) ∈ B

)
, B ∈ B

(
[0, 1]d

)
,
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2.2 Copulas

called the probability measure associated with the copula C. The proof of the proposition

provides a vivid interpretation of the d-increasingness condition in De�nition 2.2.2. It

ensures that dC assigns non-negative mass to any d-box [u,v] in the unit cube.

Two very simple examples of copulas are given by the independence copula and the

comonotonicity copula. As the name suggests, the independence copula is the distribu-

tion function of i.i.d. random variables U1, . . . , Ud with uniform distribution on the unit

interval. It is denoted by Π and given by

Π(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) = P(U1 ≤ u1) · . . . · P(Ud ≤ ud)

= u1 · . . . · ud, u1, . . . , ud ∈ [0, 1].

In contrast to that, the comonotonicity copula M describes the distribution function of

�perfectly dependent� uniformly distributed random variables U1, . . . , U1 on [0, 1], i.e.

M(u1, . . . , ud) := P(U1 ≤ u1, . . . , U1 ≤ ud) = P(U1 ≤ u(1)) = u(1), u1, . . . , ud ∈ [0, 1].

Another famous representative is the Gaussian copula. Denoting by Φµ,Σ : Rd →
[0, 1],µ ∈ Rd,Σ ∈ Rd×d, the multivariate normal distribution function with mean vector

µ = (µ1, . . . , µd) and symmetric, positive de�nite covariance matrix Σ = (σij)i,j=1,...,d,

the Gaussian copula is given by

C(u1, . . . , ud) = Φµ,Σ
(
Φ−1
µ1,σ11

(u1), . . . ,Φ−1
µd,σdd

(ud)
)
, u1, . . . , ud ∈ [0, 1].

The Gaussian copula allegorically demonstrates how copulas can be deduced from mul-

tivariate distribution functions F . By Sklar's Theorem (see Equation (2.1)), if F :

Rd → [0, 1] exhibits continuous marginal distribution functions F1, . . . , Fd, the associ-

ated unique copula C satis�es

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
.

Replacing xk by F−1
k (uk), uk ∈ [0, 1], k = 1, . . . , d, and using the fact that Fk ◦ F−1

k is

the identity for continuous Fk (see (Embrechts and Hofert, 2013, Proposition 2.3, (4))),

it follows that C is given by

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
.

The same reasoning can be applied to the survival copula, which in case of continuous

marginal survival functions F̄1, . . . , F̄d of the joint survival function F̄ equals

Ĉ(u1, . . . , ud) = F̄
(
F̄−1

1 (u1), . . . , F̄−1
d (ud)

)
.

Having introduced copulas and survival copulas, we brie�y comment on how to extract

one from the other.
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2.2.1 Probabilistic and analytic de�nition

Proposition 2.2.7 (Coherence copula ↔ survival copula)

For a given random vector U ∼ C with copula C : [0, 1]d → [0, 1], let Ĉ be the corre-

sponding survival copula of U. The relationship between C and Ĉ is given by

Ĉ(u1, . . . , ud) = 1 +

d∑
k=1

(−1)k
∑

1≤j1<...<jk≤d
Cj1,...,jk(1− uj1 , . . . , 1− ujk)

for all u1, . . . , ud ∈ [0, 1].

Proof

On the one side, by Equation (2.2), we know that

Ĉ(u1, . . . , ud) = P(1− U1 ≤ u1, . . . , 1− Ud ≤ ud)

= P(1− u1 ≤ U1 ≤ 1, . . . , 1− ud ≤ Ud ≤ 1).

On the other side, the proof of Proposition 2.2.6 has shown that

P
( d⋂
k=1

{1− uk ≤ Uk ≤ 1}
)

=
∑

(w1,...,wd)∈×di=1{1−ui,1}

(−1)|{i :wi=ui}|C(w1, . . . , wd).

Combining those two observations and recalling the de�nition of Cj1,...,jk in (2.4) yields

the claim. �

Another coherence between copula and survival copula can be given via strictly decreas-

ing transformations of the random vector in concern.

Corollary 2.2.8 (Strictly decreasing transformations)

Let (X1, . . . , Xd) be a random vector with continuous marginal distribution functions

and copula C. For strictly decreasing functions hk : R → R, k = 1, . . . , d, the copula of(
h1(X1), . . . , hd(Xd)

)
is the survival copula of (X1, . . . , Xd).

Proof

See (Mai and Scherer, 2012, Corollary 1.1, p. 22). �

As a very similar result, it is easy to show that for strictly increasing transformations

h1, . . . , hd, the copula of
(
h1(X1), . . . , hd(Xd)

)
equals the copula of (X1, . . . , Xd). Sum-

ming up, copulas are multivariate distribution functions on the unit cube that are subject

to additional normalization constraints. Groundedness and d-increasingness stem from

the general requirements of an arbitrary multivariate distribution function and can be

seen as multivariate analogues of the limit and monotonicity behavior of univariate dis-

tribution functions. Property (ii) in De�nition 2.2.2 is copula-speci�c and ensures that
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2.2 Copulas

in addition to the right-continuity of general multivariate distribution functions, cop-

ulas provide continuity and uniform marginal distributions1. One can even show (see

(Schweizer and Sklar, 1983, Lemma 6.1.9, p. 82)) that a copula C : [0, 1]d → [0, 1] is

Lipschitz-continuous with constant one, i.e.

|C(v1, . . . , vd)− C(u1, . . . , ud)| ≤
d∑

k=1

|vk − uk|, u1, . . . , ud, v1, . . . , vd ∈ [0, 1].

Due to the continuous marginal distributions, the associated probability measure dC

assigns zero mass to both single points (u1, . . . , ud) ∈ [0, 1]d (as P(U1 = u1, . . . , Ud =

ud) = 0) and hyperplanes of the form {(u1, . . . , ud) ∈ [0, 1]d : uk = c}, c ∈ [0, 1],

k ∈ {1, . . . , d} (as P(Uk = c) = 0). Therefore, one can deduce that the probability mass

assigned to a d-box consisting of a set of non-overlapping d-boxes equals the sum of

probability masses assigned to each individual d-box.

De�nition 2.2.9 (Non-overlapping d-boxes)

Two d-boxes [x(1),y(1)], [x(2),y(2)] are called non-overlapping if [x(1),y(1)]∩ [x(2),y(2)] is

either a degenerated d-box or the empty set. A set of d-boxes [x(l),y(l)], l = 1, . . . ,m,

is called non-overlapping if any two of the d-boxes [x(l),y(l)], l = 1, . . . ,m, are non-

overlapping.

Lemma 2.2.10 (Additivity property of associated probability measure)

Let C be a d-dimensional copula, dC the associated probability measure, and [u, v] a d-box

in [0, 1]d. For a decomposition [u, v] = ∪ml=1[u(l), v(l)] of [u, v] into m non-overlapping

d-boxes [u(l), v(l)], l = 1, . . . ,m, it holds that

dC
(
[u, v]

)
=

m∑
l=1

dC
(
[u(l), v(l)]

)
.

Proof

By the principle of inclusion and exclusion (see Lemma 2.2.5), we have

dC
(
[u, v]

)
= dC

( m⋃
l=1

[u(l), v(l)]
)

=
m∑
l=1

dC
(
[u(l), v(l)]

)
+

∑
∅6=J⊆{1,...,d}
|J |≥2

(−1)|J |+1dC
( ⋂
j∈J

[u(j), v(j)]
)
.

1The normalization of marginals to the uniform distribution on [0, 1] is arbitrary to some extent, see for

instance Embrechts (2009) and the reference therein for alternative speci�cations. As an example,

early publications of Wassilij Hoe�ding refer to the interval [−0.5, 0.5] instead.
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2.2.2 Properties and classes

The non-overlapping property of the d-boxes [u(l), v(l)] implies that ∩j∈J [u(j), v(j)] for

|J | ≥ 2 is either empty or a degenerated d-box. In any case, there exists a d-box of the

form I = [0, 1] × . . . × [0, 1] × [w,w] × [0, 1] × . . . × [0, 1] with a degenerated interval

[w,w], w ∈ [0, 1], such that

dC
( ⋂
j∈J

[u(j), v(j)]
)
≤ dC(I) = P(U1 = w) = 0. �

Though being easy to prove, the decomposition of a given d-box into non-overlapping d-

boxes is an essential tool in the context of multivariate distribution functions. Checking

whether a d-variate function C on the unit cube exhibits d-increasingness is a very

di�cult task in general, with complexity rising exponentially for increasing d. Therefore,

it is often crucial to �nd a function-speci�c decomposition of arbitrary d-boxes that allows

to reduce the analysis to simpler problems. A striking example is given in Section 3.3,

where the considered class of multivariate distribution functions is characterized w.r.t.

the decomposition described in Lemma 3.3.7.

As a last remark, despite of the fact that dC has no atoms and assigns zero mass to

certain hyperplanes, it is important to note that dC does not have to be absolutely

continuous. By Lebesgue's decomposition theorem (see (Klenke, 2006, p. 158)), dC can

be uniquely split into a sum dC = dCabs +dCsing of measures, where dCabs is absolutely

continuous w.r.t. the Lebesgue measure and dCsing is a singular measure, meaning that

there exists a Lebesgue null set B ∈ B(Rd) such that dCsing([0, 1]d \ B) = 0. The

absolutely continuous part can be calculated by

dCabs(u1 . . . , ud) =

∫ u1

0
. . .

∫ ud

0

∂d

∂s1 . . . ∂sd
C(s1, . . . sd) ds1 . . . dsd, (2.5)

where the mixed partial derivatives of C exist almost everywhere in [0, 1]d (this follows

from the monotonicity of C in each argument, see also Durante et al. (2013)). If dC =

dCabs, C is said to be absolutely continuous and the mixed partial derivative of order

d in (2.5) is called the copula density. In contrast to that, if dC = dCsing, C is called

singular. In this thesis, we mostly deal with copulas that exhibit both an absolutely

continuous and a singular part.

2.2.2 Properties and classes

There are various terminologies how to classify, distinguish, or delimit the universe of

copula functions. For the present thesis, we restrict ourselves to the separation of copulas
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2.2 Copulas

w.r.t. the following aspects. On the one hand, we consider the extent of a copula's

homogeneity expressed in terms of exchangeability or extendibility of the corresponding

random vector. On the other hand, we analyze these multivariate distribution functions

regarding a limit condition termed extreme-value property and a symmetry feature called

radial symmetry.

This thesis is devoted to exchangeable shock models. Exchangeability relates to a unifor-

mity property of a random vector guaranteeing that the law of any subset of the vector's

components solely depends on the size, not the constituents of the subset.

De�nition 2.2.11 (Exchangeability)

• A random vector (X1, . . . , Xd) on a probability space (Ω,F ,P) is called exchangeable

if for all permutations σ : {1, . . . , d} → {1, . . . , d}, one has

(X1, . . . , Xd)
d
= (Xσ(1), . . . , Xσ(d)).

• An in�nite sequence {Xk}k∈N of random variables on a probability space (Ω,F ,P)

is called exchangeable if for each d ∈ N and 1 ≤ i1 < i2 < . . . < id, the random

vector (Xi1 , . . . , Xid) is exchangeable.

• A distribution function F is called exchangeable if it is invariant w.r.t. permutation

of its arguments, i.e. if for all permutations σ : {1, . . . , d} → {1, . . . , d}, it holds
that

F (x1, . . . , xd) = F (xσ(1), . . . , xσ(d)), x1, . . . , xd ∈ R.

For a deeper study of exchangeable sequences, we refer to Aldous (1985). A subclass of

exchangeable distribution functions respectively random vectors which also plays a major

role in the present thesis are extendible laws respectively random sequences. Extendibil-

ity demands for a continuation of the exchangeability concept to higher dimensions and

is de�ned as follows.

De�nition 2.2.12 (Extendibility)

• An exchangeable random vector (X1, . . . , Xd) on a probability space (Ω,F ,P) is

called extendible if there exists a probability space (Ω̃, F̃ , P̃) supporting an in�nite

exchangeable sequence {X̃k}k∈N such that (X1, . . . , Xd)
d
= (X̃1, . . . , X̃d).

• An exchangeable distribution function F (respectively a copula C) is called ex-

tendible, if on some probability space (Ω,F ,P), a random vector (X1, . . . , Xd) ∼ F
(respectively (U1, . . . , Ud) ∼ C) is extendible.
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2.2.2 Properties and classes

The crucial consequence for an extendible random vector {Xk}k=1,...,d is the existence

of a random distribution function {Ft}t∈R on R such that, conditioned on F , the ran-

dom variables {Xk}k=1,...,d are i.i.d. with respective distribution function {Ft}t∈R. This
�nding goes back to De Finetti (1937).

Theorem 2.2.13 (De Finetti's Theorem)

An in�nite sequence of random variables {Xk}k∈N on a probability space (Ω,F ,P) is

exchangeable (i.e. any subsequence {Xi1 , . . . , Xid}, 1 ≤ i1 < . . . < id, is exchangeable for

arbitrary d ≥ 2) if and only if it is conditionally i.i.d., i.e. there exists a sub-σ-algebra

G ⊂ F such that

P(X1 ≤ x1, . . . , Xd ≤ xd|G) =

d∏
k=1

P(X1 ≤ xk|G), x1, . . . , xd ∈ R.

Proof

See De Finetti (1937). �

In De Finetti's Theorem above, the random distribution function {Ft}t∈R is given by

Ft = P(X1 ≤ t|G), t ∈ R. A limit concept di�erent to extendibility is provided by

extreme-value copulas. An overview on their origin and usage is provided in Gudendorf

and Segers (2010). Starting with a sample X(i) = (X
(i)
1 , . . . , X

(i)
d ), i = 1, . . . , n, of i.i.d.

random vectors with joint continuous distribution function F , extreme-value copulas

arise as limiting copulas of
(

max{X(i)
1 , i = 1, . . . , n}, . . . ,max{X(i)

d , i = 1, . . . , n}
)
for n

approaching in�nity. The resulting set of copulas can be characterized as follows.

De�nition 2.2.14 (Extreme-value copula)

A copula C : [0, 1]d → [0, 1] is called extreme-value copula if it satis�es

C(u1, . . . , ud)
t = C(ut1, . . . , u

t
d) for all t > 0, u1, . . . , ud ∈ [0, 1]. (2.6)

In the characterization in Gudendorf and Segers (2010), the authors solely require that

C(ut1, . . . , u
t
d) = C(u1, . . . , ud)

t holds for t = 1/m, m ∈ N (∗). If (∗) is valid, however,

any positive rational number p/q, p, q ∈ N satis�es

C(u1, . . . , ud)
p
q =

(
C(u1, . . . , ud)

1
q

)p (∗)
= C

(
u

1
q

1 , . . . , u
1
q

d

)p
= C

((
u
p
q

1

) 1
p , . . . ,

(
u
p
q

d

) 1
p

)p (∗)
= C

(
u
p
q

1 , . . . , u
p
q

d

)
.

By continuity of C, the same relationship holds for positive irrational numbers as well

such that both de�nitions of extreme-value copulas coincide.
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2.2 Copulas

Another property a given copula C can be checked for is radial symmetry. In the uni-

variate case, a real-valued random variable X ∼ F is called symmetric about µ ∈ R if

X − µ d
= µ − X (or equivalently X

d
= 2µ − X). Roughly speaking, this means that

deviations of X to the left or right of µ are �equally likely�. As an example, a uniformly

distributed random variable U on the unit interval is symmetric about 1/2. Lifting the

symmetry concept to the multivariate level leads to the de�nition of radial symmetry for

random vectors.

De�nition 2.2.15 (Radial symmetry)

1. A d-dimensional random vector (X1, . . . , Xd) is called radially symmetric about the

vector (µ1, . . . , µd) ∈ Rd if

(X1, . . . , Xd)
d
= (2µ1 −X1, . . . , 2µd −Xd).

2. A copula C : [0, 1]d → [0, 1] is called radially symmetric if U ∼ C is radially

symmetric (about the vector (1/2, . . . , 1/2)).

Regarding radially symmetric copulas, two peculiarities are worth mentioning. First

of all, radial symmetry of a copula C necessarily requires radial symmetry of U =

(U1, . . . , Ud) ∼ C about (1/2, . . . , 1/2). This is due to the fact that the uniform law on

[0, 1], which corresponds to the marginal distribution functions of U, is symmetric about

1/2. Secondly, applying Corollary 2.2.8, the copula of the vector (1 − U1, . . . , 1 − Ud),
which at the same time is its distribution function due to 1 − Uk

d
= Uk, k = 1, . . . , d,

is the survival copula of (U1, . . . , Ud). Consequently, a copula C is radially symmetric

if and only if it equals its survival copula Ĉ. Recall that the coherence between both

objects is given in Proposition 2.2.7.

2.2.3 Concordance and dependence measures

There are various measures capturing the interaction of random variables respectively

the dependence induced by a given multivariate distribution function. In many cases,

the interrelationship of a random vector is compressed into a single number in order

to simplify the interpretation and facilitate the comparison among di�erent distribution

functions. An extensive overview on dependence concepts is given in (Joe, 1997, Chapter

2). In this thesis, we analyze exchangeable exogenous shock models with respect to

three well-known and widespread dependence coe�cients, each of which refers to the

interrelationship of a bivariate random vector respectively copula. Supplements and
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2.2.3 Concordance and dependence measures

multivariate extensions of these measures are given in Joe (1990), Schmid and Schmidt

(2007), or Schmid et al. (2010).

A �rst prominent measure of extremal dependence are tail dependence coe�cients (see

(Nelsen, 2006, p. 214 f.)), which, loosely speaking, represent the likelihood of one ran-

dom variable being extremely small (large), given that the other one is extremely small

(large).

De�nition 2.2.16 (Tail dependence)

Let X1, X2 be continuous random variables with distribution functions X1 ∼ F1, X2 ∼ F2,

copula C, and survival copula C̄. The lower tail dependence coe�cient λL of (X1, X2)

is de�ned by

λL : = lim
u↘0

P(X2 ≤ F−1
2 (u)

∣∣X1 ≤ F−1
1 (u))

(∗)
= lim

u↘0
P(F2(X2) ≤ u

∣∣F1(X1) ≤ u)

= lim
u↘0

P(F2(X2) ≤ u, F1(X1) ≤ u)

P(F1(X1) ≤ u)
= lim

u↘0

C(u, u)

u
,

where (∗) is valid due to (Embrechts and Hofert, 2013, Proposition 2.3, (4)). In a similar

way, the upper tail dependence coe�cient λU is given by

λU : = lim
u↗1

P(X2 > F−1
2 (u)

∣∣X1 > F−1
1 (u)) = lim

u↗1

Ĉ(1− u, 1− u)

1− u

= lim
u↗1

C(u, u)− 2u+ 1

1− u
,

provided the respective limits exist.

Being de�ned as the limit of a conditional distribution function, it naturally holds that

0 ≤ λL, λU ≤ 1. Besides tail dependence, which measures dependence in extreme scenar-

ios, the two most famous dependence coe�cients are Kendall's tau and Spearman's rho.

Both concepts can be assigned to the class of concordance measures. Loosely speaking,

concordance of a bivariate random vector (X1, X2) means that large (low) values of X1

are likely to concur with large (low) values of X2. An axiomatic speci�cation of bivariate

concordance measures is given in Scarsini (1984).

De�nition 2.2.17 (Kendall's tau)

Let (U1, U2), (V1, V2) ∼ C be i.i.d. random vectors with bivariate copula C. Kendall's tau

τC of C is de�ned as

τC : = P
(
(U1 − V1) (U2 − V2) > 0

)
− P

(
(U1 − V1) (U2 − V2) < 0

)
.

Equivalently (see (Nelsen, 2006, p. 159 �.)), one can use the representations
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2.3 Copula characterizations via monotonicity of sequences and functions

(i) τC = 4E[C(U1, U2)]− 1,

(ii) τC = 1− 4
∫ 1

0

∫ 1
0

∂
∂ u1

C(u1, u2) ∂
∂ u2

C(u1, u2) du1 du2.

De�nition 2.2.18 (Spearman's rho)

Let (U1, U2), (V1, V2), (W1,W2) ∼ C be i.i.d. random vectors with bivariate copula C.

Spearman's rho ρC of C is de�ned as

ρC := 3
(
P
(
(U1 − V1) (U2 −W2) > 0

)
− P

(
(U1 − V1) (U2 −W2) < 0

))
.

Equivalently (see (Mai and Scherer, 2012, p. 32 �.)), one can use the representations

(i) ρC = Corr(U1, U2), where �Corr� denotes the Pearson correlation coe�cient.

(ii) ρC = 12
∫ 1

0

∫ 1
0 C(u1, u2) du1 du2 − 3 =

∫ 1
0 C(u1,u2) du1 du2−

∫ 1
0 u1 u2 du1 du2∫ 1

0 min{u1,u2} du1 du2−
∫ 1
0 u1 u2 du1 du2

.

For a multivariate extension of these measures (and general measures of concordance),

the reader is referred to Taylor (2007).

2.3 Copula characterizations via monotonicity of sequences

and functions

Up to now, we still lack concrete examples of non-trivial copulas, which is made up

for in the present section. The core of this thesis is the characterization of exchange-

able exogenous shock models. This is achieved by analyzing the copula linked to the

respective multivariate distribution function. Characterization results for some popular

and commonly used copula families have already been derived in the literature. Indeed,

such characterizations might have worked as a driver for the copulas' popularity in the

�rst place. This section recalls these results for two families called Archimedean and ex-

changeable Marshall�Olkin copulas. The families are parameterized by a single function

on [0,∞) (in the Archimedean case) respectively a non-negative sequence of numbers

(in the Marshall�Olkin case). It turns out that the characterization of these distribu-

tion functions is linked to a monotonicity behavior of the function respectively sequence,

which on a high level can be interpreted as a multivariate analogue to the increasingness

of a univariate distribution function. Keeping in mind the d-increasingness condition

in the De�nition 2.2.2 of copulas, such a coherence seems to be natural, though it is

generally very hard to derive explicitly. As this thesis reveals similar results for a quite

general class of copulas, the concepts are introduced in the present section.
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2.3.1 Monotone sequences and functions

2.3.1 Monotone sequences and functions

We introduce a monotonicity concept for both sequences and functions by the notion of

d-monotonicity.

De�nition 2.3.1 (d-monotone sequence)

A real-valued sequence {a0, . . . , ad−1} is called d-monotone if

j−1∑
i=0

(−1)i
(
j − 1

i

)
ak+i ≥ 0 for all k ∈ N0, j ∈ N : k + j ≤ d.

De�nition 2.3.2 (d-monotone function)

A function ψ : [0,∞)→ R is called d-monotone, d ≥ 2, if it is d− 2 times di�erentiable

on (0,∞), if the derivatives satisfy

(−1)k ψ(k)(x) ≥ 0, k = 0, 1, . . . , d− 2, x > 0,

if further (−1)d−2ψ(d−2) is decreasing and convex on (0,∞), and if ψ is continuous at

zero.

Interestingly, d-monotone functions have a stochastic representation by means of certain

distributional transforms. Establishing a connection between copulas and d-monotonicity

in the following, this link provides a powerful tool in interpreting, constructing, and

simulating the respective multivariate distribution functions.

De�nition 2.3.3 (Williamson d-transform, Williamson (1956))

Let X be a positive random variable. For d ≥ 2, the Williamson d-transform ψd,X of X

is given by

ψd,X(x) := E
[

max
(

1− x

X
, 0
)d−1]

, x ≥ 0.

The following theorem shows that the Williamson d-transform uniquely determines the

law of a positive random variable and outlines the correspondence with d-monotone

functions.

Proposition 2.3.4 (Properties of the Williamson d-transform)

1. The distribution of a positive random variable X is uniquely determined by its

Williamson d-transform ψd,X .

2. For �xed d ≥ 2, the sets {ψd,X : X positive random variable} of Williamson d-

transforms and {φ : φ d-monotone with limx→∞ φ(x) = 0 and φ(0) = 1} of d-

monotone functions coincide.

32



2.3 Copula characterizations via monotonicity of sequences and functions

Proof

See (McNeil and Ne²lehovà, 2009, Proposition 3.1), which goes back to a result by

Williamson (1956). �

Extending the concept of d-monotonicity from �xed to arbitrary d ≥ 2 leads to the

class of completely monotone sequences and functions. Sections 2.3.2 and 2.3.3 reveal

their meaning and demonstrate that the transition from exchangeable to extendible

Archimedean and Marshall�Olkin copulas (recall De�nitions 2.2.11 and 2.2.12) goes hand

in hand with the transition from d-monotone to completely monotone sequences and

functions.

De�nition 2.3.5 (Completely monotone sequence)

A sequence {ak}k∈N0 is called completely monotone if

j−1∑
i=0

(−1)i
(
j − 1

i

)
ak+i ≥ 0 for all k ∈ N0, j ∈ N.

De�nition 2.3.6 (Completely monotone function)

A function ψ : [0,∞)→ R is called completely monotone if it is continuous at zero, has

derivatives of all orders on (0,∞), and

(−1)k ψ(k)(x) ≥ 0 k ∈ N0, x > 0.

For both completely monotone sequences and functions, there are classical results pro-

viding probabilistic interpretations.

Theorem 2.3.7 (Hausdor�'s Theorem, Hausdor� (1921))

The sequence {ak}k∈N0 is completely monotone with a0 = 1 if and only if there exists

a random variable X : Ω → [0, 1] such that ak = E[Xk] for all k ∈ N0. Moreover, the

random variable X is uniquely determined by its moments.

Proof

See (Feller, 1966, p. 225 �.). �

In contrast to the Williamson d-transform, the corresponding distributional transform

for completely monotone functions is very well-known: It is the Laplace transform of a

positive random variable.

Theorem 2.3.8 (Bernstein's Theorem, Bernstein (1929))

A function ψ : [0,∞) → [0, 1] with ψ(0) = 1 and limx→∞ ψ(x) = 0 is completely mono-

tone if and only if ψ is the Laplace transform of a positive random variable M , i.e.

ψ(x) = E[exp(−xM)] and P(M > 0) = 1.
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2.3.1 Monotone sequences and functions

Proof

See (Feller, 1966, p. 439 f.). �

A connection between completely monotone sequences and functions is given in the

following lemma.
Lemma 2.3.9

Let ψ : [0,∞)→ R be continuous with ψ(0) = 1. Then ψ is completely monotone if and

only if the sequence {ψ(q k)}k∈N0 is completely monotone for every q ∈ Q ∩ [0,∞).

Proof

This proof is adapted from (Widder, 1946, p. 162 f.), who uses the same argument to

prove Bernstein's Theorem as a corollary to Hausdor�'s Theorem.

�⇐�: For all m ∈ N, by Hausdor�'s Theorem (Theorem 2.3.7), there exists a unique

random variable Xm with values in [0, 1] such that E[Xk
m] = ψ(k/m), k ∈ N0. Conse-

quently,

E
[
Xk

1

]
= ψ(k) = E

[
Xmk
m

]
= E

[
(Xm

m )k
]
,

where by uniqueness in Hausdor�'s Theorem, X1 is a random variable with X1
d
= Xm

m ,

m ∈ N. As a result,

ψ
( k
m

)
= E[Xk

m] = E
[
(Xm

m )
k
m

]
= E

[
X

k
m
1

]
, k ∈ N0,m ∈ N.

Therefore, for all q ∈ Q ∩ [0,∞), one has ψ(q) = E[Xq
1 ]. As both ψ and x 7→ E[Xx

1 ]

are continuous on [0,∞), we conclude that ψ(x) = E[Xx
1 ] for all x ∈ [0,∞). Thus, by

Bernstein's Theorem (Theorem 2.3.8), x 7→ E[Xx
1 ] = ψ(x) is completely monotone, since

it is the Laplace transform of the random variable − log(X1) ∈ [0,∞) (by continuity of

ψ at zero, P(X1 = 0) = 0).

�⇒�: Let ψ be completely monotone. By Bernstein's Theorem, there exists a unique

random variable X on [0,∞) (again, since ψ is continuous, P(X = ∞) = 0) such that

ψ(x) = E[exp(−xX)] for x ∈ [0,∞). As a consequence,

{ψ(q k)}k∈N0 =
{
E
[(
e−q X

)k]}
k∈N0

is the moment sequence of the random variable Xq := exp(−q Y ) ∈ [0, 1]. By Hausdor�'s

Theorem, it follows that the sequence {ψ(q k)}k∈N0 is completely monotone. �

Both the concepts of d-monotone respectively completely monotone functions and the

corresponding transforms of positive random variables become especially important in

the characterization and construction of Archimedean copulas.
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2.3.2 Archimedean copulas

Archimedean copulas are parameterized by a single function ψ : [0,∞) → [0, 1], which

is termed Archimedean generator and is commonly demanded to satisfy some technical

conditions.

De�nition 2.3.10 (Archimedean generator)

A function ψ : [0,∞) → [0, 1] is an Archimedean generator if it satis�es the following

conditions:

1. ψ(0) = 1 and limx→∞ ψ(x) = 0,

2. ψ is continuous,

3. ψ is decreasing on [0,∞) and strictly decreasing on [0, inf{x > 0 : ψ(x) = 0}], with
the convention inf ∅ :=∞.

Now we can proceed to the de�nition of Archimedean copulas.

De�nition 2.3.11 (Archimedean copula)

A copula C : [0, 1]d → [0, 1] is an Archimedean copula if C has the form

C(u1, . . . , ud) = ψ
(
ψ−1(u1) + . . .+ ψ−1(ud)

)
, u1, . . . , ud ∈ [0, 1], (2.7)

for an Archimedean generator ψ.

Due to the �nice� analytical structure and the parameterization in terms of the single, yet

�exible generator ψ, Archimedean copulas have been extensively studied in the literature.

Genest and Rivest (1993) deal with statistical inference in the bivariate case. Results

on tail properties (among others the tail dependence coe�cients in De�nition 2.2.16) of

multivariate Archimedean copulas are given in Charpentier and Segers (2009). Studies

on the construction, sampling, and application of standard and nested Archimedean

copulas (the latter referring to a certain combination of several copulas of Archimedean

type) can be found in Hering et al. (2010); Hofert (2008); Hofert and Scherer (2011);

McNeil (2008).

By the de�nition above, Archimedean copulas are exchangeable. Permuting the input

arguments u1, . . . , ud has no in�uence on the value of the joint distribution function C

as the generator ψ is evaluated at the sum of the generalized inverses ψ−1 for u1, . . . , ud.

As a note of caution, it has to be emphasized that the requirements of an Archimedean

generator ψ are just necessary conditions for C in (2.7) to de�ne a copula. Su�cient
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2.3.2 Archimedean copulas

criteria in dimension d are for instance imposed in Genest and Rivest (1989); Müller

and Scarsini (2005), where the �rst d derivatives of ψ are demanded to exist and satisfy

(−1)k ψ(k) ≥ 0 for k ∈ {1, . . . , d}. These conditions already hint at the characterization

results for Archimedean copulas in arbitrary, yet �xed dimension d ≥ 2, which are given

in (McNeil and Ne²lehovà, 2009, Theorem 2.2).

Theorem 2.3.12 (Characterization of Archimedean copulas)

Let ψ be an Archimedean generator and de�ne a function C : [0, 1]d → [0, 1] by (2.7).

Then C is a copula if and only if ψ is d-monotone.

Proof

See (McNeil and Ne²lehovà, 2009, Theorem 2.2). �

Consequently, the generator of an Archimedean copula can be linked to the Williamson d-

transform in De�nition 2.3.3. In McNeil and Ne²lehovà (2009), this connection is used to

construct a stochastic model for a random vector (U1, . . . , Ud) with Archimedean copula.

A more classical result which refers to the characterization of Archimedean generators

that de�ne a copula in any dimension d ≥ 2 is given in Kimberling (1974).

Theorem 2.3.13 (Characterization of extendible Archimedean copulas)

Let ψ be an Archimedean generator and de�ne a function C : [0, 1]d → [0, 1] by (2.7).

Then C is a copula for any d ≥ 2 if and only if ψ is completely monotone.

Proof

The seminal reference for this result is (Kimberling, 1974, Theorems 1 and 2). Naturally,

it also follows in a straightforward way from Theorem 2.3.12. �

By De Finetti's Theorem (see Theorem 2.2.13), we know that an exchangeable structure

for an in�nite sequence of random variables implies the existence of a sub-σ algebra

conditioned on which the random variables are i.i.d. Following the deliberations in

Marshall and Olkin (1988), this implicit coherence can be made explicit and a stochastic

model for a random vector corresponding to an extendible Archimedean copula C can

be derived. More precisely, it is straightforward to show that C : [0, 1]d → [0, 1] is the

survival copula of the random vector (X1, . . . , Xd) constructed by

Xk :=
Ek
M

= inf{t ≥ 0 : tM > Ek}, k ∈ N, (2.8)

where M is a positive random variable such that its Laplace transform is given by

the Archimedean generator. The existence of such a random variable is guaranteed by
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2.3 Copula characterizations via monotonicity of sequences and functions

Theorem 2.3.8. Conditioned on (the σ-algebra generated by) M , the {Xk}k∈N are i.i.d.

with distribution function

P
(
Xk ≤ x|M

)
= P

(
Ek ≤ xM |M

)
= 1− e−xM , x ≥ 0.

Put another way, each Xk is exponentially distributed with a random parameterM that

introduces dependence between the random variables. The stochastic model in (2.8)

already bears resemblance to the �rst-passage time construction

Xk := inf{t ≥ 0 : Λt > Ek}, k = 1, . . . , d,

of extendible exogenous shock models in Equation (1.2) in the introduction, the di�er-

ence being that as opposed to {Λt}t≥0, the process {tM}t≥0 obviously does not exhibit

independent increments. The coherence between monotonicity behavior of sequences and

functions, extendibility of distribution functions, and �rst-passage time representations

of the underlying random vector turns out to be a core element of the present thesis.

2.3.3 Exchangeable Marshall�Olkin copulas

A second example of copula families is given by (exchangeable) Marshall�Olkin copulas,

which arise as survival copulas of the Marshall�Olkin (MO) distribution. This class of

distributions can be seen as a multivariate analogue of the exponential distribution in the

univariate case and is originally introduced in Marshall and Olkin (1967). MO distribu-

tions constitute the presumably most widespread and studied representative of exogenous

shock models. The underlying stochastic model of a random vector (X1, . . . , Xd) with

d-variate MO distribution is given by the general construction

Xk = min{ZE : k ∈ E}, k = 1, . . . , d,

with the additional condition that the independent shocks ZE , ∅ 6= E ⊆ {1, . . . , d}, are
exponentially distributed. It is shown in (Mai and Scherer, 2011, Lemma 2.1) with the

help of results in Li (2008) that for exchangeable MO distributions, the corresponding

(unique) survival copula of (X1, . . . , Xd) admits the form

C(u1, . . . , ud) =

d∏
k=1

uak−1 , u1, . . . , ud ∈ [0, 1], (2.9)

for non-negative parameters a0, . . . , ad−1 ≥ 0 with a0 = 1. Thus, exchangeable MO

copulas are parameterized by a sequence {ak}k=0,...,d−1 compared to the function ψ in
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2.3.3 Exchangeable Marshall�Olkin copulas

the Archimedean setup. As a consequence, it might be tempting to draw an analogy

and call {ak}k=0,...,d−1 a Marshall�Olkin-generating sequence. However, it is in no sense

obvious that any sequence leading to a copula C in (2.9) necessarily induces that C is the

survival copula of an exchangeable MO distribution or a general exchangeable exogenous

shock model at all.

In fact, this reverse direction is a tough mathematical challenge on its own, which is

solved for a very general class of copulas in the present thesis. In the special case of

copulas of type (2.9), Mai (2010) and the related publications mentioned in the personal

note in Section 1.2 derive three major results:

1. The function C in (2.9) de�nes a copula if and only if {a0, . . . , ad−1} is d-monotone

with a0 = 1.

2. The set of copulas with form (2.9) coincides with the set of survival copulas of

exchangeable exogenous shock models with exponentially distributed shocks.

3. The function C in (2.9) de�nes a copula for all d ≥ 2 if and only if {ak}k∈N0 is a

completely monotone sequence with a0 = 1. In this case, C is the survival copula

of

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d, (2.10)

where Λ = {Λt}t≥0 is a killed Lévy subordinator (see Section 2.4) which is (uniquely

in law) related to the sequence {ak}k∈N0 . Conversely, any killed Lévy subordinator

in the construction above leads to a survival copula of the form (2.9) with a com-

pletely monotone sequence {ak}k∈N0 satisfying a0 = 1. Following Mai and Scherer

(2009b), the corresponding set of copulas is termed Lévy�frailty copulas.

Interestingly (see also (Mai, 2010, p. 87)), the characterization results for Archimedean

and exchangeable MO copulas are somewhat similar from a structural point of view.

First, Equations (2.7) and (2.9) de�ne a copula in �xed dimension d if and only if the

function ψ respectively the sequence {ak}k=0,...,d−1 are d-monotone. Second, in both

cases, the extendible subclass of copulas can be constructed via an explicitly known

�rst-passage time setup involving an increasing process {tM}t≥0 in the Archimedean

and a Lévy subordinator {Λt}t≥0 in the MO case.
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2.4 Additive processes and Bernstein functions

2.4 Additive processes and Bernstein functions

Up to now, we have not introduced or further speci�ed the Lévy subordinator appearing

in the �rst-passage time framework for MO copulas in Equation (2.10). However, similar

constructions involving the more general class of increasing additive processes for {Λt}t≥0

play a crucial role in this thesis. Therefore, the present section establishes the notion

of additive processes and indicates three exemplary subclasses consisting of Lévy pro-

cesses, Sato processes, and a simple transformation of certain Dirichlet processes. The

distinctive property of an additive process {At}t≥0 is the independence of its increments,

meaning that the change AT − At between two arbitrary points in time 0 ≤ t < T is

independent of the history of {At}t≥0 before and its state at time t. When considering

increasing additive processes {Λt}t≥0 starting at Λ0 = 0, non-negativity and additivitiy

of {Λt}t≥0 allow for a convenient process characterization in terms of the set of Laplace

transformations of Λt for all t ≥ 0. In this context, in�nite divisibility of Λt provides a

link between the set of Laplace transforms and a family {Ψt}t≥0 of Bernstein functions.

Bernstein functions represent the second mathematical object depicted in detail in the

present section. Besides the connection to increasing additive processes, we provide some

illustrative Bernstein functions that are picked up in later chapters.

2.4.1 De�nition and coherence

In the sequel, we rely on the following de�nition of additive processes.

De�nition 2.4.1 (Additive process)

A stochastic process A = {At}t≥0 on R is called additive if it satis�es the following

properties:

(i) Start at zero: A0 = 0 almost surely.

(ii) Independent increments: For any choice of n ∈ N and 0 ≤ t0 < t1 < . . . < tn, the

random variables At0 , At1 −At0 , At2 −At1 , . . . , Atn −Atn−1 are independent.

(iii) Stochastic continuity: For every t ≥ 0 and ε > 0, it holds that lims→t P(|As−At| >
ε) = 0, i.e. A almost surely has no jumps at �xed points in time.

This is a slightly di�erent formulation compared to the seminal reference (Sato, 1999,

De�nition 1.6, p. 3). There, the conditions of De�nition 2.4.1 solely describe an additive

process in law. For the term additive process, it is additionally required that A possesses

càdlàg paths, i.e. that there is an Ω0 ∈ F with P(Ω0) = 1 such that for every ω ∈ Ω0,
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2.4.1 De�nition and coherence

{At(ω)}t≥0 is right-continuous in t ≥ 0 and has left limits in t > 0. For our purposes,

this distinction is not necessary as we are only interested in the law of A, i.e. the system

of its �nite-dimensional distributions P(At1 ∈ B1, . . . , Atn ∈ Bn) for n ∈ N, 0 ≤ t1 <

t2 < . . . < tn, and B1, . . . , Bn ∈ B(R). This system is uniquely determined by the

marginal distributions of the additive process, i.e. the law of At for all t ≥ 0 (see (Sato,

1999, Theorem 9.7 (iii), p. 51)). According to (Sato, 1999, Theorem 11.5, p. 63), an

additive process can be modi�ed (without changing its marginal distributions) such that

it exhibits càdlàg paths.

In this thesis, we primarily deal with increasing additive processes, called additive sub-

ordinators and denoted Λ = {Λt}t≥0 in the sequel. In this case, Λt is a non-negative

random variable for any t ≥ 0. As such, the law of Λt can be uniquely described by

its Laplace transform (compare (Doetsch, 1974, Theorem 5.1, p. 21)). We will see that

the Laplace transform of an additive subordinator at �xed points in time is closely re-

lated to Bernstein functions, which form an important building block of the present

manuscript.

De�nition 2.4.2 (Bernstein function)

A function Ψ : [0,∞)→ [0,∞) is said to be a Bernstein function if Ψ(0) = 0, Ψ possesses

derivatives of all orders on (0,∞), and (−1)n−1 Ψ(n)(x) ≥ 0 for all n ∈ N and x > 0.

Note that by de�nition, a non-negative, in�nitely often di�erentiable function f : [0,∞)→
R with f(0) = 0 is a Bernstein function if and only if its derivative f

′
(to be exact its

continuation at zero) is completely monotone (compare De�nition 2.3.6). An excellent

textbook on the subject is Schilling et al. (2010). Each in�nitely divisible probability law

π on the compacti�ed positive half-axis [0,∞] is uniquely associated with a Bernstein

function Ψ via the relation L[π] = exp(−Ψ), i.e. Ψ is the Laplace exponent of π. It

is well-known (see, e.g., (Schilling et al., 2010, Theorem 3.2, p. 15)) that every such Ψ

admits a unique Lévy�Khintchine representation

Ψ(x) = a1{x>0} + b x+

∫
(0,∞)

(1− e−x t) ν(dt), x ≥ 0, (2.11)

with constants a, b ≥ 0 and a measure ν on (0,∞) (called the Lévy measure) satisfying∫
(0,∞) min{1, t} ν(dt) < ∞. Conversely, any such choice of (a, b, ν) determines a unique

Bernstein function Ψ.

For an additive subordinator Λ = {Λt}t≥0, the independence of increments induces that

Λt is an in�nitely divisible random variable (see (Sato, 1999, Theorem 9.1, p. 47)) on

[0,∞) for any t ≥ 0. Combining this observation with the fact that an additive process is
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2.4 Additive processes and Bernstein functions

(uniquely in law) described by its marginal distributions, the law of Λ can be described

by a family {Ψt}t≥0 of Bernstein functions via the relation L[Λt] = exp(−Ψt). The link

to De�nition 2.4.1 is established by the following consistency conditions for {Ψt}t≥0.

(i) Start at zero: Ψ0(x) ≡ 0 for all x ≥ 0.

(ii) Independent increments: Ψt −Ψs is a Bernstein function for all 0 ≤ s ≤ t.

(iii) Stochastic continuity: t 7→ Ψt(x) is continuous in (0,∞) for each x ≥ 0.

Any family {Ψt}t≥0 of Bernstein functions corresponding to an additive subordinator

satis�es these properties. Condition (i) simply re�ects the fact that Λ0 = 0. The

second requirement follows from the independence (and, thus, the in�nite divisibility) of

increments as for 0 ≤ s ≤ t, it holds that

exp(−Ψt) = L[Λt] = L[Λs + Λt − Λs] = L[Λs]L[Λt − Λs] = exp(−Ψs)L[Λt − Λs].

As Λt − Λs is in�nitely divisible, its Laplace exponent has to be a Bernstein function

given by Ψt−Ψs. To recognize Condition (iii), note that t 7→ Ψt(x) is continuous if and

only if for arbitrary x, t > 0,

0 = lim
s→t

Ψs(x)−Ψt(x) = lim
s→t

(
− log

(
E
[
e−xΛs

]))
+ log

(
E
[
e−xΛt

])
(∗)
= log

E
[
e−xΛt

]
E
[

lims→t e−xΛs
] ⇔ E

[
e−xΛt − lim

s→t
e−xΛs

]
= 0,

where we have used the continuity of the logarithm and bounded convergence in (∗). If
the last expected value was larger than zero, the probability

P
(
e−xΛt − lim

s→t
e−xΛs > 0

)
would have to be larger than zero as well, implying that there is a positive likelihood for

lims→t Λs to exceed Λt. This would contradict the stochastic continuity of Λ. Reversely,

it is induced by (Sato, 1999, Theorem 9.7, p. 51) that the properties (i)-(iii) of {Ψt}t≥0

already guarantee the existence of a (unique in law) additive subordinator Λ characterized

by L[Λt − Λs] = exp(−Ψt + Ψs) for all 0 ≤ s ≤ t.

As a side remark (and note of caution), it has to be kept in mind that there might still be

other stochastic processes outside the universe of additive subordinators corresponding

to {Ψt}t≥0. It is shown in (Mai and Scherer, 2014, Theorem 1.1) that a family {Ψt}t≥0

of Bernstein functions satisfying Ψt = tΨ, t ≥ 0, with a Bernstein function Ψ and,

thus, ful�lling Conditions (i)-(iii) above corresponds to an increasing stochastic process
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2.4.2 Lévy process

S = {St}t≥0 that is in�nitely divisible with respect to time (see the proof of Proposition

4.3.1 for a de�nition). However, generally, S is not unique in law, which is illustrated

by means of an example in Mansuy (2005). Consider the Bernstein function Ψ(x) =

xα, x ≥ 0, α ∈ (0, 1), for which the requirements in De�nition 2.4.2 are easy to verify.

There are two quite di�erent processes {St}t≥0 and {Λt}t≥0 satisfying E[exp(−xSt)] =

E[exp(−xΛt)] = exp(−tΨ(x)). The �rst one is St := t1/αM for a random variable M

with Laplace transform L[M ] = exp(−Ψ). The second one is an additive subordinator

that features stationary increments, meaning that for an equidistant grid tk − tk−1 =

∆ > 0, k = 1, . . . , n, the increments in De�nition 2.4.1 are not only independent, but

even identically distributed. Self-evidently, the joint distribution of {St}t≥0 at di�erent

points in time strongly di�ers from the one of {Λt}t≥0. For 0 ≤ t1 < t2, the law of

St2 −St1 fully depends on the increment St1 −S0 = St1 , while there is no dependence at

all for the increments of {Λt}t≥0.

2.4.2 Lévy process

In the preceding example, the process {Λt}t≥0 represents one of the most prominent

and best analyzed subclasses of additive processes. It belongs to the class of Lévy

processes, which are de�ned as additive processes {At}t≥0 with the additional property

of stationary increments, i.e. for any s, t ≥ 0, the distribution of As+t−At is independent
of t. Increasing Lévy processes Λ = {Λt}t≥0 are called Lévy subordinators. Referring to

the characterization of increasing additive processes via a family {Ψt}t≥0 of Bernstein

functions with consistency Conditions (i)-(iii) above, stationarity implies that

e−Ψt(x)+Ψs(x) = L[Λt − Λs](x) = L[Λt−s](x) = e−Ψt−s(x) ⇔ Ψt−s(x) = Ψt(x)−Ψs(x) (∗)

for all x ≥ 0. Thus, it holds that for all t1, t2, x ≥ 0,

Ψt1(x) + Ψt2(x) = Ψt1(x) + Ψt1+t2−t1(x)
(∗)
= Ψt1+t2(x),

where (∗) is applied for t = t1 + t2, s = t1. De�ning Φx(t) := Ψt(x), we have that

Φx(t1) + Φx(t2) = Φx(t1 + t2). By the Cauchy functional equation, it consequently

holds that Φx(t) = tΦx(1), which �nally yields the distinctive property Ψt(x) = tΨ1(x),

x, t ≥ 0, of Lévy subordinators. A slight extension of a Lévy subordinator {Λt}t≥0 is

given by the notion of a killed Lévy subordinator {Λ̃t}t≥0 (see (Schilling et al., 2010, p.

36)), which is de�ned via an additional, exponentially distributed random variable Ea
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2.4 Additive processes and Bernstein functions

with parameter a > 0 (called killing rate) by

Λ̃t =

Λt, t < Ea,

+∞, t ≥ Ea.

Thus, the state space [0,∞) of a Lévy subordinator is extended to [0,∞) ∪ {∞} in the

killed case. It is straightforward to deduce that if {Λt}t≥0 is a Lévy subordinator with

Bernstein family {Ψt}t≥0, Ψt = tΨ1, the killed process {Λ̃t}t≥0 satis�es

E[e−x Λ̃t ] = e−t Ψ̃1(x), x ≥ 0,

for Ψ̃1(x) := a1{x>0} + Ψ1(x). Reversely (see (Schilling et al., 2010, p. 35 �.)), it can

be shown that for an arbitrary Bernstein function Ψ̃1, there is a (unique in law) killed

Lévy subordinator such that the corresponding family {Ψ̃t}t≥0 of the process satis�es

Ψ̃t = t Ψ̃1, t ≥ 0. As a �nal remark, take note of the fact that in the Lévy�Khintchine

representation of Ψ1 in (2.11), the parameter a represents the killing rate of the corre-

sponding Lévy subordinator. Therefore, for classical, non-killed Lévy subordinators, it

holds that a = 0.

2.4.3 Sato process

The second class of additive processes which especially play a major role in Chapter 4

of this thesis are self-similar additive processes. A stochastic process {Xt}t≥0 is called

self-similar if for any a > 0, there is a b > 0 such that {Xa t}t≥0
d
= {bXt}t≥0. (Sato,

1999, Theorem 13.11, p. 73) shows that any self-similar process features an H > 0 such

that b = aH . In the literature, H > 0 is often called the self-similarity exponent, while

the corresponding self-similar additive process with exponent H is referred to as H-Sato

process.

Describing increasing self-similar additive processes {Λt}t≥0 with self-similarity exponent

H, termed H-Sato subordinators in the sequel, via the corresponding family {Ψt}t≥0 of

Bernstein functions, one notes that Λa t
d
= aH Λt for all a > 0 and t ≥ 0 is equivalent

to

Ψa t(x) = − log
(
E[e−xΛa t ]

)
= − log

(
E[e−x a

H Λt ]
)

= Ψt(a
H x), a > 0, x, t ≥ 0.

This implies, yet is not equivalent to Ψt(x) = Ψ1(tH x) for all x, t ≥ 0. Considering

the reverse, for a given Bernstein function Ψ1, the family {Ψt}t≥0 de�ned for a speci�c

H > 0 by Ψt(x) := Ψ1(tH x), x, t ≥ 0, corresponds to a Sato subordinator if and only
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if Ψ1 is self-decomposable. This coherence is treated in more detail in Section 4.1. Self-

decomposable Bernstein functions form a subclass of Bernstein functions that results

from a special structure of the Lévy measure ν in the Lévy-Khintchine representation

(2.11). More precisely, it can be shown (see (Sato, 1999, Corollary 15.11, p. 95)) that a

Bernstein function is self-decomposable if and only if in the general Bernstein function

representation (2.11), it holds that a = 0 and that the Lévy measure ν has a density

ν(dt) = k(t)/tdt such that t 7→ k(t) is decreasing.

2.4.4 Dirichlet and neutral-to-the-right process

The third class of additive subordinators which is considered in this thesis originates from

the construction of Dirichlet processes, which are initially introduced in Ferguson (1973)

in a Bayesian analysis context. Dirichlet processes are not additive processes themselves,

however can be connected to the latter by a simple transformation. In general, a Dirichlet

process Z = {Zt}t∈R is a certain random distribution function on the real line. It is

parameterized by a pair (c,G), where G denotes a non-random distribution function on

R (the expected path of Z) and c > 0 in�uences the ��uctuations� of the paths of Z

around G. In a non-parametric Bayesian context, the popularity of the Dirichlet process

stems from the fact that the support of Z (i.e. the set of possible realizations of the

random distribution function) is �huge�, while its posterior distribution given samples

from Z is still a Dirichlet process and, thus, remains tractable. The latter property is

immaterial for the present thesis. However, the support condition plays a crucial role in

Chapter 6.

The Dirichlet process is intimately connected with the Dirichlet distribution, whose de�-

nition is brie�y recalled in order to proceed with the de�nition of the process itself. The

Dirichlet distribution with parameters (α1, . . . , α`) ∈ [0,∞)`, not all components zero,

is the law of the random vector( E1∑`
k=1Ek

, . . . ,
E`∑`
k=1Ek

)
,

where E1, . . . , E` is a list of independent Gamma-distributed random variables with

densities (for those components k with αk > 0)

fEk(x) =
e−x xαk−1

Γ(αk)
1{x>0}, k = 1, . . . , `.

The case αk = 0 is interpreted as Ek ≡ 0. The Dirichlet process Z with parameters (c,G)

is a random distribution function on R which is characterized by the property that for
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2.4 Additive processes and Bernstein functions

any measurable partition2 {B1, . . . , B`} of R, the random vector
(
dZ(B1), . . . ,dZ(B`)

)
has a Dirichlet distribution with parameters c

(
dG(B1), . . . ,dG(B`)

)
. It follows that the

random variable Zt has a Beta-distribution with parameters
(
cG(t), c (1−G(t))

)
, using

the standard parameterization3 of the latter. In particular, this implies that E[Zt] = G(t)

and Var[Zt] = G(t) (1−G(t))/(c+1). Summarizing, Z is a random distribution function

with �average realization� G, whose variance is controlled by the parameter c > 0.

A stochastic representation of the Dirichlet process which manifests the connection to

additive processes is given in Ferguson (1974). De�ne t0 := sup{t ∈ R : G(t) = 0} and
t1 := inf{t ∈ R : G(t) = 1}, with t0 := −∞ respectively t1 :=∞ if G(t) > 0 respectively

G(t) < 1 for all t ∈ R. Let Λ = {Λt}t∈R be a right-continuous, increasing stochastic

process with independent increments, whose probability law is uniquely determined by

the Laplace transforms of its marginals. For t < t0 respectively t > t1 (provided t0 > −∞
respectively t1 < ∞), we set Λt = 0 respectively Λt = ∞. For t ∈ R ∩ [t0, t1], we

demand

E
[
e−xΛt

]
= e−Ψt(x), x ≥ 0, t ∈ R ∩ [t0, t1],

where the family {Ψt}t∈R∩[t0,t1] of Laplace exponents has the Lévy�Khintchine represen-

tation

Ψt(x) =

∫ ∞
0

(
1− e−xu

) e−u c (1−G(t)) − e−u c

u (1− e−u)
du (2.12)

with a constant c > 0. Relying on results of Doksum (1974), Ferguson (1974) shows that

the random distribution function de�ned by Zt := 1 − exp(−Λt), t ∈ R, is a Dirichlet

process with parameters (c,G).

It is important to mention that the process Λ characterized by (2.12) generally deviates

from an additive subordinator (i.e. an additive process in the sense of De�nition 2.4.1

that is increasing) in two regards: On the one hand, it is de�ned on R rather than

on [0,∞). On the other hand, when analyzing the continuity of t 7→ Ψt in (2.12), one

recognizes that Λ is stochastically continuous if and only if G is a continuous distribution

function (see also (Doksum, 1974, Proposition 3.1)). However, when plugging a non-

negative continuous distribution function G into (2.12), the corresponding process Λ is

an additive process in terms of our de�nition.

2I.e. the {Bk}k=1,...,` are measurable, disjoint, and their union equals R.
3A random variable X is said to be Beta(p, q)-distributed, p, q > 0, if its density on (0, 1) is given by

f(x) = xp−1 (1 − x)q−1/B(p, q) and f(x) = 0 for x /∈ (0, 1), where B(p, q) :=
∫ 1

0
up−1 (1 − u)q−1 du

denotes the Beta function.
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A generalizing concept of Dirichlet processes is introduced in Doksum (1974) as neutral-

to-the-right priors. It is motivated in a quite similar way and aims at o�ering a broader

class of random distribution functions in a non-parametric Bayesian context. In par-

ticular, the posterior distribution for observed samples from a neutral-to-the-right prior

is again neutral-to-the-right, which is convenient for statistical applications. The cru-

cial result for this thesis is (Doksum, 1974, Theorem 3.1), which characterizes separable

neutral-to-the-right processes {Zt}t∈R as random distribution functions of the form

Zt := 1− e−Λt

for a separable, increasing, right-continuous stochastic process {Λt}t≥0 with indepen-

dent increments and limt→−∞ Λt = 0, limt→∞ Λt = ∞ almost surely. Consequently,

neutral-to-right-priors on [0,∞) that satisfy stochastic continuity can be used to derive

speci�cations of additive subordinators de�ned on the real line.

2.4.5 Examples of Bernstein functions

The relationship Ψ = − log(L[π]) between Bernstein functions Ψ and in�nitely divisible

probability laws π on [0,∞] plays an important role in this thesis. Thus, we consider

four examples of popular in�nitely divisible distributions on the positive half-axis and

the associated Bernstein functions, which are picked up later in various applications.

Positive stable distribution

In general, the density of positive, strictly stable distributions is unknown. Nevertheless,

they can be characterized by the Laplace exponent of the related probability law, which

is given by

ΨSt
α,β(x) = β xα, 0 < α < 1, β > 0, x ≥ 0,

and can be written as

ΨSt
α,β(x) = β

∫ ∞
0

(1− e−s x)
α s−1−α

Γ(1− α)
ds.

Consequently, one derives the Lévy measure of ΨSt
α,β in the Lévy�Khintchine representa-

tion (2.11) as

ν(ds) = β
α

Γ(1− α)
s−1−α ds.

Inverse Gaussian distribution

The Inverse Gaussian (IG) distribution (for a detailed introduction, see Seshadri (1993))
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constitutes another famous example of in�nitely divisible laws. It possesses the density

f IGβ,η(x) =
β√
2π

x−
3
2 exp

(
η β − 1

2

(β2

x
+ η2 x

))
, x > 0,

for parameters β, η > 0. The corresponding Bernstein function is given by

ΨIG
β,η(x) = − log

(
L[f IGβ,η]

)
(x) = β (

√
2x+ η2 − η), x ≥ 0.

The related Lévy measure can be derived as

ν(ds) =
√

2β
1

2 Γ(1
2)
s−

3
2 e−

η2

2
s ds.

Gamma distribution

As a third example, the Gamma distribution is presented. For parameters β, η > 0, it is

characterized by the density

fGa
β,η(x) =

ηβ

Γ(β)
xβ−1 e−η x, x ≥ 0.

The corresponding Bernstein function is given by

ΨGa
β,η(x) = β log(1 +

x

η
),

and the Lévy measure of ΨGa
β,η equals

ν(ds) = β
e−η s

s
ds.

Compound Poisson distribution with exponentially distributed jumps

Consider a sequence {Ek}k∈N of i.i.d. exponentially distributed random variables with pa-

rameter η > 0. For an independent Poisson distributed random variable N ∼ Poi(β), β >

0, the law of

X :=
N∑
k=1

Ek

is called compound Poisson distribution with exponentially distributed jumps (CPE dis-

tribution). Conditioning on N and using the i.i.d. property of {Ek}k∈N, the Laplace

transform of X is given by

E[e−z X ] =
∞∑
n=0

E
[
e−z

∑N
k=1 Ek |N = n

]
P(N = k)

=

∞∑
n=0

E
[
e−z

∑n
k=1 Ek

] βn
n!
e−β

= e−β
∞∑
n=0

L[E1](z)n
βn

n!
, z ≥ 0.
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2.4.5 Examples of Bernstein functions

Exploiting the series representation of the exponential function, this yields

E[e−z X ] = e−β eβ L[E1](z) = e−β(1−L[E1](z)). (2.13)

It is straightforward to show that the Laplace transform of E1 ∼ Exp(λ) is given by

L[E1](z) = η/(z + η) for z ∈ [0,∞). As a result, the Bernstein function corresponding

to X is given by

ΨCPE
β,η (x) = β(1− L[E1](x)) = β

(
1− η

x+ η

)
, x ≥ 0.

Furthermore, denoting the distribution function of E1 by F , (2.13) can be written as

E[e−z X ] = exp
(
− β

(
1−

∫ ∞
0

e−z x F (dx)
))

= exp
(
−
∫ ∞

0
(1− e−z x)β F (dx)

)
,

indicating that the Lévy measure corresponding to ΨCPE
β,η is given by

ν(ds) = β F (ds) = β η e−η s ds.

As pointed out in Section 2.4.3, in order to examine the Bernstein functions above for self-

decomposability, one has to check whether the Lévy measures ν have a density ν(dt) =

k(t)/t dt with a decreasing function k. Denoting kStα,β, k
IG
β,η, k

Ga
β,η, k

CPE
β,η for the positive

stable, Inverse Gaussian, Gamma, and CPE distribution, respectively, we obtain

kStα,β(s) = β
α

Γ(1− α)
s−α,

kIGβ,η(s) =
√

2β
1

2 Γ(0.5)
s−0.5 e−

η2

2
s,

kGa
β,η(s) = β e−η s,

kCPEβ,η (s) = β η s e−η s, s > 0.

It is easy to see that kStα,β, k
IG
β,η, and kGa

β,η are decreasing. Therefore, the related Bern-

stein functions are self-decomposable and can be used as Laplace exponents to construct

both Lévy and Sato subordinators. In contrary to that, kCPEβ,η is strictly increasing in

a neighborhood su�ciently close to zero, implying that ΨCP
β,η is a non-self-decomposable

Bernstein function.
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3 Exchangeable exogenous shock models

Having the basic mathematical tools at hand, we are turning the focus to exchangeable

exogenous shock models in the following. The chapter is primarily based on [Mai, Schenk,

Scherer (2015b)], however enhances the results by some of the theoretical �ndings in [Mai,

Schenk, Scherer (2015a)] and a new proof idea of the central Theorem 3.3.1. Section 3.1

de�nes exchangeable exogenous shock models and shows related work by other authors.

In the bivariate case, this class has already been investigated and characterized in litera-

ture. The respective �ndings and an example are outlined in Section 3.2. The centerpiece

of this chapter is constituted by the general d-variate characterization results (see The-

orem 3.3.1) in Section 3.3. As with many studies of multivariate distribution functions,

�true� multidimensionality starts with d ≥ 3, meaning that the analytic approach in

the bivariate proof can not be raised to higher dimension in a straightforward way and

demands for alternative concepts. Two distinct proofs of (parts of) Theorem 3.3.1 are

given, both being technical at a �rst glance, yet relying on rather vivid ideas. Having

accomplished the characterization, properties of exchangeable exogenous shock models

are depicted in Section 3.4. An interesting subclass consisting of extendible exogenous

shock models is introduced in Section 3.5. This subclass is represented by an alternative

stochastic model involving additive processes. The link between copulas, additive pro-

cesses, and the related results on Bernstein functions and complete monotonicity proves

quite powerful in the remaining chapters. A �rst �foretaste� is given in Section 3.6, where

the recent results on Marshall�Olkin distributions depicted in Section 2.3.3 are recalled

and established in an alternative way by means of Theorem 3.3.1.

3.1 De�nition and literature overview

Whenever talking about exogenous shock models in the sequel, we refer to random vectors

(X1, . . . , Xd) that can be represented as follows.
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De�nition 3.1.1 (Exogenous shock model)

A random vector X = (X1, . . . , Xd) is called exogenous shock model if

Xk = min{ZE : k ∈ E}, k = 1, . . . , d, (3.1)

for 2d − 1 independent real-valued random variables ZE (called shocks), ∅ 6= E ⊆
{1, . . . , d}.

The term �shock model� has already been motivated in the introduction. Thinking

of (X1, . . . , Xd) as a vector of lifetimes of companies/individuals, the shocks ZE are

typically random variables on [0,∞) and may refer to economic, political, or social

disturbances a�ecting several lifetimes at once. Lifetime Xk is simply de�ned as the �rst

arrival time of a shock hitting component k.

Exogenous shock models have been extensively analyzed in the literature. The most

prominent example is given by the multivariate distribution introduced in Marshall and

Olkin (1967) (see also Section 2.3.3). The authors consider a random vector (X1, . . . , Xd)

as constructed in (3.1), where the shocks ZE are exponentially distributed. Sarhan and

Balakrishnan (2007) relax this condition in the bivariate case by considering univariate

shocks Z{1}, Z{2} with generalized exponential distribution. Kundu and Gupta (2009)

extend this idea and study the law of the vector (X1, X2), where X1 = max{Z1, Z3},
X2 = max{Z2, Z3}, and both Z1, Z2, and Z3 are independent random variables with

generalized exponential distribution1. Proceeding in a similar way, Li and Pellerey (2011)

consider construction (3.1) with the shocks ZE having arbitrary distribution functions

on (0,∞), and study the resulting dependence structure in the bivariate case. Relying

on a method of the eponymous authors, Shoaee and Khorram (2012) introduce the Block

and Basu bivariate generalized exponential distribution, which results from decomposing

the joint distribution function in its singular and absolutely continuous part and solely

considering the latter. Another direction is pursued by Kundu and Gupta (2014). The

authors start with the construction in (3.1) for d = 2 and consider Weibull distributed

random variables ZE . Denoting by F the resulting joint distribution function of (X1, X2),

they study the law of (Y1, Y2) given by

Y1 = min{X{1,1}, . . . , X{1,N}}, Y2 = min{X{2,1}, . . . , X{2,N}},

where N is a mixing variable with geometric distribution and (X{1,n}, X{2,n})n∈N are

i.i.d. random vectors with distribution function F .
1Keeping in mind Corollary 2.2.8, analyzing the maximum construction in terms of its copula is equiv-

alent to studying the minimum de�nition by means of the survival copula.

50



3.1 De�nition and literature overview

Considering an exogenous shock model for practical applications has two immediate

advantages: On the one side, this class is easy to interpret. For an insurance company

modeling a portfolio of d policies, (X1, . . . , Xd) might represent the occurrence times

of claim reports. Identifying ZE with external magnitudes of in�uence such as natural

catastrophes, epidemics, or military con�icts, exogenous shock models o�er a natural

framework for depicting these systemic e�ects. On the other hand, the independence of

shocks ZE in the model construction makes this class tractable. When being given the

survival functions of the shocks, calculating the joint survival function of (X1, . . . , Xd)

is straightforward as for x1, . . . , xd ∈ R,

P(X1 > x1, . . . , Xd > xd) = P
(

min{ZE : k ∈ E} > xk, k = 1, . . . , d
)

=P
(
ZE > max{xk, k ∈ E}, ∅ 6= E ⊆ {1, . . . , d}

)
=
∏
E

P
(
ZE > max{xk, k ∈ E}

)
. (3.2)

The suitability for various applications explains the ongoing research interest concerning

exogenous shock models. Marshall and Olkin (1967) show that in their setup with

exponentially distributed shocks, the joint survival function of (X1, . . . , Xd) can be linked

to the �rst jump times of independent Poisson processes a�ecting either one or several

components of the random vector. This derivation is picked up in Linkskog and McNeil

(2003), where (X1, X2) is identi�ed with the �rst occurrence time of windstorm losses in

France, respectively Germany, that are governed by west (a�ecting only France), central

(a�ecting only Germany), and pan-European (a�ecting both countries) windstorms. The

idea of modeling insurance events by independent counting processes and mapping the

events to one or several claim types is a popular approach in multivariate insurance

models (see the extensive overview in Anastasiadis and Chukova (2012)). Alternatively,

applying exogenous shock models in a credit risk context, one might also think of ZE as

arrival times of economic catastrophes in�uencing the default of one or several assets in a

portfolio. This idea is applied, e.g., in Giesecke (2003). In Baglioni and Cherubini (2013),

the authors rely on the Marshall�Olkin setup (i.e. exponentially distributed shocks) and

model cross-country dependencies between European obligors in order to compute the

systemic risk of the banking sector in the post-crisis era.

However, the apparent advantages vanish, if not turn into major challenges for large

portfolios. Interpreting and simulating the 2d − 1 shocks in a reasonable way becomes

more and more di�cult for increasing dimension d. Determining the distribution of ZE ,

for instance by calibration to market data, becomes highly involved, if not impossible.

In addition to that, identifying and characterizing reasonable subclasses of exogenous

shock models is quite challenging. When analyzing the joint distribution of (X1, . . . , Xd)
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and validating its (survival) copula, the crucial condition to verify is d-increasingness

(see De�nition 2.2.2). However, this property is typically non-trivial to check, with the

complexity of the problem increasing exponentially in higher dimensions. Thus, it is not

surprising that while the universe of exogenous shock models in the literature is wide,

most of them are restrictive in the sense that the distribution functions of the shocks

ZE are speci�ed in a certain way and/or the vector (X1, . . . , Xd) is only studied in the

bivariate case, i.e. for d = 2 (compare e.g. the examples above, Kundu et al. (2014), and

the references therein).

Given that we are aiming at applications in high-dimensional portfolios in credit risk and

insurance, we are dealing with the subclass of exchangeable exogenous shock models in

the present thesis. Before discussing pros and cons of this crucial structural restriction,

we show how the exchangeability property stated in De�nition 2.2.11 translates to the

shock model class in (3.1).

Proposition 3.1.2 (Exchangeability of exogenous shock models)

Let (X1, . . . , Xd) be an exogenous shock model as given in (3.1). Denote by F̄E the sur-

vival function of ZE and by F̄ the survival function of (X1, . . . , Xd). Then (X1, . . . , Xd)

is exchangeable if and only if supp(F̄ ) = Id for I ⊆ R and

F̄D(x) = F̄E(x) for all x ∈ I and ∅ 6= D,E ⊆ {1, . . . , d} with |D| = |E|.

Proof

Let (X1, . . . , Xd) be exchangeable. It follows that F̄ is invariant w.r.t. its input argu-

ments, which immediately implies the claimed form of the support. For the remainder,

we proceed similarly to the proof of Lemma 3.1.1 in Mai (2010), where the special case

of exponentially distributed shocks ZE is considered. Using Equation (3.2) and the ex-

changeability of (X1, . . . , Xd), it holds that for all j ∈ {2, . . . , d} and x ∈ I,∏
E 6={1}

F̄E(x) = P(X2 > x, . . . ,Xd > x) = P(Xk > x, k ∈ {1, . . . , d} \ {j}) =
∏

E 6={j}

F̄E(x).

Dividing by
∏
E F̄

E
(
x
)
> 0 and comparing the reciprocals yields F̄ {1}(x) = . . . =

F̄ {d}(x). Now assume that F̄D(x) = F̄E(x) for all x ∈ I and ∅ 6= D,E ⊆ {1, . . . , d}
with |D| = |E| ≤ k ∈ {1, . . . , d − 2}. For an arbitrary subset E0 ⊆ {1, . . . , d} with

|E0| = k + 1, it analogously holds that∏
E*E0

F̄E(x) = P(Xk > x, k ∈ {1, . . . , d} \ E0)

= P(Xk+2 > x, . . . ,Xd > x) =
∏

E*{1,...,k+1}

F̄E(x), x ∈ I.
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3.1 De�nition and literature overview

Again dividing by
∏
E F̄

E(x) and comparing the reciprocals results into

F̄E0(x)
∏
E⊂E0

F̄E(x) = F̄ {1,...,k+1}(x)
∏

E⊂{1,...,k+1}

F̄E(x).

By induction hypothesis,
∏
E⊂E0

F̄E(x) only depends on the cardinality of E0. Conse-

quently, F̄E0(x) = F̄ {1,...,k+1}(x) and one part of the claim is established.

The converse is straightforward. Simplifying (3.2), the joint survival function equals

P(X1 > x1, . . . , Xd > xd) =
∏
E

F̄E
(

max{xk, k ∈ E}
)

=

d∏
j=1

∏
E:|E|=j

F̄ {1,...,j}
(

max{xk, k ∈ E}
)
.

Considering the inner expression, there are l−1 over j−1 sets E with cardinality j that

contain x(l), l ∈ {j, . . . , d}, as its largest element. As a result,

P(X1 > x1, . . . , Xd > xd) =

d∏
j=1

d∏
l=j

(
F̄ {1,...,j}(x(l))

)(l−1
j−1) =

d∏
l=1

l∏
j=1

(
F̄ {1,...,j}(x(l))

)(l−1
j−1),

(3.3)

which indicates the independence of the joint survival function w.r.t. permutation of the

input arguments. �

Proposition 3.1.2 implies that w.l.o.g., the shock survival functions in exchangeable ex-

ogenous shock models can be altered such that F̄D(x) = F̄E(x) for all x ∈ R and

|D| = |E|. We always assume that the model is given in that way in the following. Put

di�erently, the class of exchangeable exogenous shock models arises from considering

(3.1) with the distribution of ZE solely depending on the cardinality of E. It is be-

yond debate that focusing on this subclass is a strong limitation in terms of �exibility. It

means that while the number of random sources is still the same (2d−1 random variables

ZE), their structure simpli�es massively and becomes rather homogeneous. All shocks

a�ecting a �xed number of components Xk are identically distributed, ignoring the pos-

sibility of asymmetry between the idiosyncratic risk factors in concern. When modeling

a small portfolio of various �nancial instruments (i.e. stocks, bonds, commodities), the

exchangeability assumption is justi�ably in question.

However, for large portfolios, dealing with the increasing complexity of (X1, . . . , Xd) de-

mands for simplifying assumptions or alternative approaches. If one is only interested
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in functionals f(X1, . . . , Xd), f : Rd → R, of the random vector, a popular top-down

ansatz is to model the distribution of f(X1, . . . , Xd) directly (see e.g. Giesecke et al.

(2010b,a)). However, in general, it is di�cult to derive the induced stochastic model for

the underlying vector (X1, . . . , Xd), which might be an important aspect for understand-

ing the model and its dependence structure. When starting with a bottom-up approach

and modeling the random variables Xk themselves, exchangeability is one possibility to

reduce complexity and maintain the interpretability of (X1, . . . , Xd). The severity of the

disadvantages resulting from homogeneity depends on the application in concern. For

insurance portfolios consisting of numerous policies of similar type, homogeneity might

not only be acceptable, but even desirable and natural. The same argument can be

applied to large credit portfolios of a bank or standardized multiname credit derivatives

which are examined later.

In addition to this application-sensitive justi�cation, another reason for considering the

subclass of exchangeable exogenous shock models is their mathematical tractability. This

manuscript reveals deep results on the connection between exchangeable exogenous shock

models and copulas C : [0, 1]d → [0, 1], d ≥ 2, of the form

C(u1, . . . , ud) =
d∏

k=1

gk(u(k)), (3.4)

where g1 = id[0,1] is the identity on [0, 1] and the mappings gk : [0, 1] → [0, 1] satisfy

gk(1) = 1, k = 2, . . . , d. Within the framework of exchangeable exogenous shock models,

Proposition 3.1.3 shows that the corresponding set of survival copulas has form (3.4).

For uniqueness of the copula, we consider the case of continuous marginal distribution

functions.

Proposition 3.1.3 (Survival copula of exchangeable exogenous shock models)

Let X := (X1, . . . , Xd) be an exchangeable exogenous shock model. Assume that the

distribution functions of the random variables ZE are continuous. The (unique) survival

copula C of X has the form (3.4).

Proof

Let ZE have survival function F̄E. Due to exchangeability, we can assume that F̄E(x) =

F̄ {1,...,m}(x) for all x ∈ R and shocks ZE with |E| = m. By (3.3), the marginal survival

functions of X = (X1, . . . , Xd) equal

F̄1(x) := P(Xk > x) =

d∏
j=1

(
F̄ {1,...,j}(x)

)(d−1
j−1), x ∈ R.
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3.2 Characterization in the bivariate case

The survival copula C of (X1, . . . , Xd) is given by

C(u1, . . . , ud) = P
(
X1 ≥ F̄−1

1 (u1), . . . , Xd ≥ F̄−1
1 (ud)

)
(∗)
=

d∏
l=1

l∏
j=1

(
F̄ {1,...,j}

(
F̄−1

1 (u(d+1−l))
))(l−1

j−1)

=

d∏
l=1

d+1−l∏
j=1

(
F̄ {1,...,j}

(
F̄−1

1 (u(l))
))(d−lj−1)

, u1, . . . , ud ∈ [0, 1],

where we have used Equation (3.3) in (∗). De�ning

gl : [0, 1]→ [0, 1], gl(u) :=
d+1−l∏
j=1

(
F̄ {1,...,j}

(
F̄−1

1 (u)
))(d−lj−1)

, l = 1, . . . , d,

the copula has the claimed form. In particular, g1 = id[0,1] by the de�nition of F̄−1
1 . �

The di�cult part is to establish the converse and hence to show that any copula of

form (3.4) is the survival copula of an exchangeable exogenous shock model. In this

regard, the characterizing Theorem 3.3.1 is the main contribution to be derived in the

present chapter. To get accustomed to the general proceeding of identifying necessary

and su�cient conditions for g1, . . . , gd, the following section analyzes copulas of type

(3.4) in the simpler bivariate case.

3.2 Characterization in the bivariate case

In Durante et al. (2007), the authors study functions of type (3.4) for the special case

g2 = g3 = . . . = gd and derive necessary and su�cient conditions on g2 such that (3.4)

de�nes a copula. In the bivariate case, such copulas coincide with the more general

class considered in the present thesis. Consequently, it is reasonable to use the available

characterization results for d = 2 in order to get an idea of how to proceed for arbitrary

d ≥ 2. When checking De�nition 2.2.2, it is straightforward to see that groundedness of

C(u1, u2) := u(1) g2(u(2)) is ful�lled for any g2, while uniform margins require g2(1) =

1. For 2-increasingness, one has to make sure that dC assigns non-negative mass to

any 2-box [u1, v1] × [u2, v2] ⊆ [0, 1]2. As C is exchangeable by de�nition such that

dC
(
[u1, v1]×[u2, v2]

)
= dC

(
[u2, v2]×[u1, v1]

)
, it su�ces to consider 2-boxes with v1 ≤ v2.

Thus, one has to distinguish between the three possible cases (a)u1 < v1 ≤ u2 < v2,

(b)u1 ≤ u2 < v1 ≤ v2, and (c)u2 ≤ u1 < v1 ≤ v2.
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Figure 3.1 Decomposition of 2-boxes [u,v] into squares around the diagonal (red) and

2-boxes exclusively located (blue) in the upper or lower triangular (separated

by dotted line) of the unit square. The three plots illustrate the cases

(from left to right) (a)u1 < v1 ≤ u2 < v2, (b)u1 ≤ u2 < v1 ≤ v2, and

(c)u2 ≤ u1 < v1 ≤ v2

.

Figure 3.1 visualizes these 2-boxes and highlights a useful decomposition as considered in

(Durante et al., 2007, Theorem 3). It becomes obvious (and can be shown analytically)

that any 2-box can be split into a non-overlapping combination of squares on the diagonal

(marked red in Figure 3.1) and 2-boxes that entirely lie above or below the diagonal

(marked blue). Due to exchangeability of C, the latter two cases coincide. Thus, C

is a copula if and only if dC assigns non-negative mass to two types of 2-boxes. For

blue boxes of the form [u1, v1] × [u2, v2], v1 ≤ u2, respectively the red boxes [u, v]2, one

demands

(i) dC
(
[u1, v1]× [u2, v2]

)
= (v1 − u1)

(
g2(v2)− g2(u2)

)
≥ 0,

(ii) dC
(
[u, v]2

)
= v g2(v)− 2u g2(v) + u g2(u) ≥ 0.

While already providing an analytical characterization of C, these conditions can be

translated to continuity and monotonicity requirements for g2 and used to derive the

stochastic model behind the copula. It is clear that (i) is valid if and only if g2 is increas-

ing on (0, 1]. A simple computation (which is carried out later in the proof of Theorem

3.3.1) indicates that (ii) implies g2 to be strictly positive and continuous on (0, 1]. Last

but not least, the proof of (Durante et al., 2008, Theorem 4) shows that in order for

(ii) to hold, u 7→ g2(u)/u must be decreasing on (0, 1]. Characterizing exchangeable

exogenous shock models in the bivariate case, we are brie�y reciting the computations.
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3.2 Characterization in the bivariate case

The �rst step in Durante et al. (2008) is to arti�cially rewrite Condition (ii) as

g2(u)

u
≥ g2(v)

v
− g2(v)

(v − u)2

u2 v
. (3.5)

If u 7→ g2(u)/u is not decreasing, there exist 0 < u0 < v0 ≤ 1 such that

g2(v0)

v0
− g2(u0)

u0
≥ a(u0, v0) (v0 − u0)

for a positive constant a(u0, v0) > 0. With g2 being continuous, it follows that for an

arbitrary ε ∈ (0, v0 − u0], there are uε, vε ∈ [u0, v0], uε = vε − ε, satisfying
g2(vε)

vε
− g2(uε)

uε
≥ a(u0, v0) (vε − uε) = a(u0, v0) ε.

Plugging uε, vε into (3.5) and replacing g2(vε)/vε by the latter inequality yields

g2(uε)

uε
≥ g2(vε)

vε
− g2(vε)

ε2

u2
ε vε
≥ g2(uε)

uε
+ a(u0, v0) ε− g2(vε)

ε2

u2
ε vε

⇔ g2(vε)
ε2

u2
ε vε
≥ a(u0, v0) ε.

As a �nal step, noting that g2(vε)/(u
2
ε vε) ≤ g2(v0)/u3

0, the left-hand side of the last

inequality is quadratic in ε, while the one on the right-hand side is linear. Consequently,

for su�ciently small ε, the demanded inequality is violated and u 7→ g2(u)/u necessarily

has to be decreasing.

This monotonicity requirement can be naturally interpreted from a probabilistic point

of view: In (Durante et al., 2007, Remark 4), it is shown that C is the copula of U =

(U1, U2), where

U1 = max{V {1}, V {1,2}},

U2 = max{V {2}, V {1,2}},

and V {1}, V {2}, V {1,2} are independent random variables with distribution functions2

V {1}, V {2} ∼ g2 and V {1,2} ∼ g1/g2. To verify this stochastic model, note that for

u1, u2 ∈ [0, 1],

P(U1 ≤ u1, U2 ≤ u2) = P(max{V {1}, V {1,2}} ≤ u1,max{V {2}, V {1,2}} ≤ u2)

= P(V {1} ≤ u1, V
{2} ≤ u2, V

{1,2} ≤ u(1))

= P(V {1} ≤ u1)P(V {2} ≤ u2)P(V {1,2} ≤ u(1))

= g2(u1) g2(u2)
g1(u(1))

g2(u(1))
= g1(u(1)) g2(u(2)).

2Strictly speaking, in order for g2 and g1/g2 to be proper distribution functions on [0, 1], one has to

consider their right-continuous extensions at zero.
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For an arbitrary continuous survival function F̄ on R, the generalized inverse F̄−1 is

strictly decreasing on [0, 1] (see (Embrechts and Hofert, 2013, Proposition 2.3)). De�ning

ZE := F̄−1(V E) and applying Corollary 2.2.8 on strictly monotone transformations, C

is the survival copula of (X1, X2), where

X1 := F̄−1(U1) = min
{
F̄−1

(
V {1}

)
, F̄−1

(
V {1,2}

)}
= min{Z{1}, Z{1,2}},

X2 := F̄−1(U2) = min{Z{2}, Z{1,2}}.

This insight complements Proposition 3.1.3 in the bivariate case and shows that any

copula of type (3.4) is the survival copula of an exchangeable exogenous shock model

such that (3.4) not only comprises, but precisely consists of the set of survival copulas

corresponding to exchangeable exogenous shock models.

Several dependence properties of C can be derived in closed form. For instance (see also

(Nelsen, 2006, Theorem 5.4.2, p. 214)), the lower and upper tail dependence coe�cients

λL and λU equal

λL = lim
u↘0

C(u, u)

u
= lim

u↘0
g2(u),

λU = lim
u↗1

C(u, u)− 2u+ 1

1− u
= 1− g′2(1−),

where g
′
2(1−) denotes the left-sided derivative of g2 at u = 1, which exists by mono-

tonicity of g2. Further dependence properties are derived in Durante (2006); Durante

et al. (2007), including measures of association and extremal dependence coe�cients.

For instance, the authors show that Kendall's tau τC respectively Spearman's rho ρC
are given by

τC = 4

∫ 1

0
u g2

2(u) du− 1,

ρC = 12

∫ 1

0
u2 g2(u) du− 3.

Furthermore, given (U1, U2) ∼ C, the stochastic model for (U1, U2) allows to derive the

probability P(U1 = U2) > 0, showing that the induced measure dC of C possesses a
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3.2 Characterization in the bivariate case

singular component. It holds that3

P(U1 = U2) = P
(

max{V {1}, V {1,2}} = max{V {2}, V {1,2}}
)

= P
(

max{V {1}, V {2}}︸ ︷︷ ︸
∼g2

2

≤ V {1,2}︸ ︷︷ ︸
∼g1/g2

)

= g2
2(0) +

∫ 1

0

(
1− u

g2(u)

)
2 g2(u) dg2(u)

= g2
2(0) + 2

∫ 1

0
(g2(u)− u) dg2(u).

By simple application of integration by parts, it follows that

P(U1 = U2) = 2

∫ 1

0
g2(u) du− 1. (3.6)

In addition to that, (Durante, 2006, Theorem 3) points out that C is radially symmetric

if and only if C = αΠ + (1 − α)M for some α ∈ [0, 1], i.e. if and only if C is a linear

combination of the independence and the comonotonicity copula (recall Section 2.2.1

for the de�nition of these copulas). A generalization of this radial symmetric copula to

higher dimensions is given via the Dirichlet copula introduced in Section 3.5.

As an example of C, de�ne g2 : [0, 1]→ [0, 1] by

g2(u) := min{a u+ b, 1− c+ c u}, a > 1, b > 0, c > 0, b+ c ≤ 1.

Speci�ed in that way, g2 starts at b with slope a, has a kink at u = (1− (b+ c))/(a− c),
continues to increase with slope c, and ends at g2(1) = 1. Applying the tail dependence

formulas, it follows that λL = limu↘0 g2(u) = b and λU = 1 − g′2(1−) = 1 − c. Thus,

copulas of type (3.4) can admit both positive upper and lower tail dependence with

arbitrary values in [0, 1].

Concerning simulation, arbitrary bivariate copulas C can be simulated by conditional

sampling. Being monotonic in each argument as a distribution function, C is partially

di�erentiable almost everywhere. For (U1, U2) ∼ C and u1, u2 ∈ [0, 1], it holds that

P(U1 ≤ u1|U2 = u2) : = lim
ε↘0

P(U1 ≤ u1|U2 ∈ [u2 − ε, u2 + ε])

= lim
ε↘0

C(u1, u2 + ε)− C(u1, u2 − ε)
ε

=
∂

∂ u2
C(u1, u2),

3Once again, we consider the right-continuous extension of g2 and g1/g2 at zero to guarantee proper

distribution functions on [0, 1].
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provided the derivative exists, meaning that the conditional distribution function of U1

given U2 is the (right-continuous extension of the) partial derivative of C (see Darsow

et al. (1992)). Consequently, a simple two-step routine can be carried out as follows.

Algorithm 3.2.1 (Simulating arbitrary bivariate copulas)

1. Sample a uniformly distributed random variable U2 on [0, 1].

2. Sample a uniformly distributed random variable Ũ1 on [0, 1], independent of U2.

De�ne the function FU1|U2
: [0, 1] → [0, 1], FU1|U2

(u) := ∂/(∂ u2)C(u, u2)|u2=U2
,

set U1 := F−1
U1|U2

(Ũ1), and return the vector (U1, U2) ∼ C.

Applying the algorithm to a copula of the form C(u1, u2) = g1(u(1)) g2(u(2)) yields

∂

∂ u2
C(u, u2) =

g2(u), u2 ≤ u,

u g
′
2(u2), u < u2,

wherever g
′
2 is well-de�ned. As a consequence, FU1|U2

has a jump at U2 with jump height

g2(U2) − U2 g
′
2(U2). The induced probability of U1 and U2 taking the same values on

[0, 1] is thus given by

P(U1 = U2) =

∫ 1

0

(
g2(u2)− u2 g

′
2(u2)

)
du2 = 2

∫ 1

0
g2(u2) du2 − 1,

establishing the link to Equation (3.6).

3.3 General characterization

The essential property of a d-variate function C to serve as distribution function of a

probability law is d-increasingness or, equivalently, complete monotonicity when viewed

as a mapping from the semigroup ([0,∞)d,∧) to R, see Ressel (2011), both properties

being non-trivial to verify in general. Though having identi�ed the meaning of copulas

with form (3.4) in the bivariate case, deriving a general characterization for arbitrary

d ≥ 2 turns out to be rather complicated for two major reasons. On the one hand,

�nding a suitable decompositon of d-boxes as in Figure 3.1 is not straightforward. While

it seems reasonable to consider cubes around the diagonal by analogy with the (red)

squares in dimension two, there is no obvious way how to treat the remaining building

blocks. On the other hand, even when assuming to have found a useful fragmentation

along with necessary and su�cient non-negativity conditions of the form dC([u,v]) ≥ 0,

it is not clear how to translate these inequalities into monotonicity properties of the
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3.3 General characterization

functions g1, . . . , gd (if possible at all) and how to relate them to a stochastic model

for the copula. The existing results in the bivariate case are based on purely analytical

reasoning and are hard to adapt in arbitrary dimension. We overcome both di�culties

in the following theorem, which characterizes copulas of type (3.4) and establishes the

connection to general exchangeable exogenous shock models. For notational brevity, we

introduce a particular set of distribution functions on [0, 1], denoted D and de�ned by

D :=
{
F : [0, 1]→ [0, 1] : F continuous and increasing, F (1) = 1,

F strictly positive on (0, 1]
}
.

Theorem 3.3.1 (Characterization of exchangeable exogenous shock models)

Let C : [0, 1]d → [0, 1] have form (3.4). The following statements are equivalent:

(i) C is a copula, i.e. a multivariate distribution function.

(ii) For all 0 < u < v ≤ 1, k ∈ N0, j ∈ N, with k + j ≤ d, it holds that

Gj,k(u, v) :=

j∑
i=0

(
j

i

)
(−1)i

i∏
l=1

gl+k(u)

j∏
l=i+1

gl+k(v) ≥ 0.

(iii) For all k ∈ N0, j ∈ N, with k + j ≤ d, it holds that Hj,k ∈ D, where

Hj,k(u) :=


∏j−1
i=0 g

(−1)i (j−1
i )

k+1+i (u), u ∈ (0, 1],

limv↘0
∏j−1
i=0 g

(−1)i (j−1
i )

k+1+i (v), u = 0.

(iv) For all m ∈ {1, . . . , d}, it holds that Hm,d−m ∈ D.

In this case, C is the distribution function of (U1, . . . , Ud), where

Uk := max{V E : k ∈ E}, k = 1, . . . , d,

and V E are independent random variables with V E ∼ Hm,d−m for all subsets E with

cardinality |E| = m.

Remark 3.3.2 (Implications of Theorem 3.3.1)

1. Theorem 3.3.1 consists of three crucial achievements: First of all, in (ii), copulas

of type (3.4) are characterized purely analytically and it is shown that the func-

tions gk, k = 1, . . . , d, have to satisfy certain inequality conditions. Second, in

(iii) respectively (iv), these conditions are translated to monotonicity requirements,

showing that certain functionals of the gk have to yield distribution functions on
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[0, 1]. Last but not least, these functionals are interpreted from a probabilistic point

of view by introducing a stochastic model, which manifests the connection to shock

models.

2. It is important to note that the Hm,d−m de�ned in Theorem 3.3.1.(iii) can be solved

for the gk, yielding

gk =

d+1−k∏
m=1

H
(d−km−1)
m,d−m, k = 1, . . . , d.

Consequently, Hm,d−m ∈ D, m = 1, . . . , d, can be arbitrary distribution functions,

provided that the normalization constraint

g1 =
d∏

m=1

H
( d−1
m−1)
m,d−m = id[0,1],

which solely stems from the formulation of the theorem in terms of copulas rather

than general multivariate distribution functions, is ful�lled.

3. The gk, k = 1, . . . , d, can be interpreted as conditional distribution functions. More

precisely, for u ∈ (0, 1] and (U1, . . . , Ud) ∼ C,

gk(u) =

∏k
i=1 gi(u)∏k−1
i=1 gi(u)

=
P(U1 ≤ u, . . . , Uk ≤ u)

P(U1 ≤ u, . . . , Uk−1 ≤ u)

= P(U1 ≤ u, . . . , Uk ≤ u|U1 ≤ u, . . . , Uk−1 ≤ u).

Note that for k ≥ 3, gk corresponds to the ratio between two diagonal sections of

copulas. As such, due to the Lipschitz continuity of copulas mentioned in Section

2.2, it is the ratio between a k-Lipschitz and a (k − 1)-Lipschitz function.

4. The distribution functions Hj,k de�ned in Theorem 3.3.1.(iii) can be constructed

via the �monotonicity triangle� visualized in Figure 3.2. The �rst row of the triangle

simply consists of the functions g1, . . . , gd. The cells in the subsequent rows arise as

the quotient of the top and top-right elements in the row above. Depicted like that,

the function Hj,k corresponds to the j-th row and (k+ 1)-th column of the triangle.

Consequently, the functions Hm,d−m,m = 1, . . . , d, equal the colored diagonal in

the respective �gure.

Theorem 3.3.1.(ii) indicates that for functions of form (3.4), the d-increasingness con-

ditions can be massively simpli�ed and reduce to the veri�cation of Gj,k(u, v) ≥ 0 for

certain indices k ∈ N0, j ∈ N, and certain pairs (u, v) ∈ [0, 1]2, u ≤ v. Apart from some
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3.3 General characterization

g1 g2 g3 . . . gd |E| = 1

g1/g2 g2/g3 . . . gd−1/gd |E| = 2

g1 g3/g
2
2 . . . gd−2 gd/g

2
d−1 |E| = 3

...

∏d−1
i=0 g

(d−1
i ) (−1)i

i+1 |E| = d

Figure 3.2 Distribution functions Hj,k in Theorem 3.3.1.(iii) in terms of the functions

gk. The blue cells mark the distribution functions Hm,d−m appearing in the

stochastic model for (U1, . . . , Ud) ∼ C.

technical lemmata, the proof of Theorem 3.3.1 provides valuable insights into the struc-

ture of the objects Gj,k and Hj,k and their relation to the stochastic model in Equation

(3.1). We are going to show that (iv) ⇒ (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). The central ideas

can be summarized as follows.

Remark 3.3.3 (Structure of the proof of Theorem 3.3.1)

(iv)⇒ (i) Starting with the random vector U = (U1, . . . , Ud) given in the theorem, one

can compute that each Uk, k = 1, . . . , d, is uniformly distributed on [0, 1] and

that C is the distribution function of U, hence a copula.

(i)⇒ (ii) Being a copula, C induces a probability measure dC on [0, 1]d. It can be

deduced that Gj,k(u, v) corresponds to the mass assigned by dC to certain

subsets of [0, 1]d. Therefore, it has to be greater than or equal to zero.

(ii)⇒ (iii) This is the most di�cult and lengthy part of the proof. Besides minor techni-

cal conditions, the central task is to show that non-negativity of Gj,k(u, v), u <

v, implies increasingness of Hj,k. The underlying proof idea is to split up

Gj,k(u, v) into two summands, one involving the di�erence Hj,k(v)−Hj,k(u),

the other one corresponding to the probability mass dC(I) induced by a cop-

ula C of type (3.4) for a subset I ⊂ [0, 1]d. For a su�ciently �small� subset

I, it is shown that the sign of Gj,k(u, v) is dominated by the �rst part, i.e.

the di�erence Hj,k(v) − Hj,k(u). Thus, for Gj,k(u, v) to be non-negative,

Hj,k(v) − Hj,k(u) has to be greater than or equal to zero, which establishes

the claimed increasingness of Hj,k.
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(iii)⇒ (iv) This is trivial as (iv) is a special case of (iii).

Proof (Proof of Theorem 3.3.1)

(iv) ⇒ (i): If (iv) holds, the functions Hm,d−m de�ned in Theorem 3.3.1.(iii) are valid

distribution functions on [0, 1], and we can consider the corresponding stochastic model

given in the theorem. We will show that the resulting distribution function of (U1, . . . , Ud)

is a copula given by C. First of all, recognize that each Uk, k = 1, . . . , d, has a uniform

marginal distribution due to

P(Uk ≤ u) =
∏

E:k∈E
P
(
V E ≤ u

) (∗)
=

d∏
m=1

H
( d−1
m−1)
m,d−m(u)

=
d∏

m=1

(m−1∏
i=0

g
(−1)i (m−1

i )
d−m+1+i (u)

)( d−1
m−1)

=
d∏

m=1

m−1∏
i=0

g
(−1)i (m−1

i ) ( d−1
m−1)

d−m+1+i (u)

(∗∗)
=

d∏
k=1

g

∑d
m=d+1−k(−1)k+m−d−1 ( m−1

k+m−d−1) ( d−1
m−1)

k (u) = u.

The equality in (∗) stems from the fact that there are d− 1 over m− 1 shocks V E with

cardinality m and distribution function Hm,d−m that appear in the stochastic construction

of Uk. The equality in (∗∗) is yielded by grouping the gk, i.e. regarding all gd−m+1+i with

d − m + 1 + i = k, which is the same as setting i = k + m − 1 − d. For k = 1, it is

apparent that the exponent in the last line is equal to one. For k ≥ 2, due to(
m− 1

k +m− d− 1

)(
d− 1

m− 1

)
=

(d− 1)!

(d− k)! (k − 1)!

(
k − 1

d−m

)
,

it follows that the exponent equals

(d− 1)!

(d− k)! (k − 1)!

d∑
m=d+1−k

(−1)k+m−d−1

(
k − 1

d−m

)

=
(d− 1)!

(d− k)! (k − 1)!

k−1∑
m=0

(−1)m
(
k − 1

m

)
= 0.

Secondly, consider the joint distribution function of (U1, . . . , Ud). For u1, . . . , ud ∈ (0, 1],

it is given by

P(Uk ≤ uk, k = 1, . . . , d) =
∏

∅6=E⊆{1,...,d}

P
(
V E ≤ min{uk : k ∈ E}

)
. (3.7)
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3.3 General characterization

Among all subsets E with cardinality |E| = m, there are d−1 over m−1 elements where

min{uk : k ∈ E} = u(1). Analogously, there are d − k choose m − 1 elements where

min{ul : l ∈ E} = u(k), k ∈ {2, . . . , d−m+ 1}. Thus, (3.7) is equal to

d∏
m=1

d−m+1∏
k=1

P
(
V E ≤ u(k), |E| = m

)(d−km−1)

=
d∏

m=1

d−m+1∏
k=1

H
(d−km−1)
m,d−m(u(k)),

=
d∏

m=1

d−m+1∏
k=1

m−1∏
i=0

g
(−1)i (m−1

i ) (d−km−1)
d−m+1+i (u(k))

=
d∏

k=1

d−k+1∏
m=1

m−1∏
i=0

g
(−1)i (m−1

i ) (d−km−1)
d−m+1+i (u(k))

(∗)
=

d∏
k=1

d∏
n=k

g

∑d+1−k
m=d+1−n(−1)m−1+n−d ( m−1

m−1+n−d) (d−km−1)
n (u(k))︸ ︷︷ ︸

should be equal to gk(u(k))

.

Now (∗) can be derived by sorting all gd−m+1+i with d −m + 1 + i = n, i.e. i = m −
1 + n − d. For n = k, it becomes obvious that the exponent of gn is equal to one. For

n ∈ {k + 1, . . . , d}, by using the same deliberations as for the derivation of the marginal

distributions, the exponent of gn is given by

(d− k)!

(d− n)! (n− k)!

d+1−k∑
m=d+1−n

(−1)m−1+n−d
(

n− k
m− 1 + n− d

)

=
(d− k)!

(d− n)! (n− k)!

n−k∑
m=0

(−1)m
(
n− k
m

)
= 0.

Summing up, we have

P(Uk ≤ uk,∀k = 1, . . . , d) =

d∏
k=1

gk(u(k)) = C(u1, . . . , ud),

and we can conclude that C is a copula.

(i) ⇒ (ii): Let (U1, . . . , Ud) be a random vector with copula C in (3.4) as distribu-

tion function. Moreover, assume for a moment that the gk, k = 2, . . . , d, are strictly

65



positive on (0, 1]. Then, for u, v ∈ (0, 1], u < v, Gj,k has the representation

Gj,k(u, v) =
1∏k

m=1 gm(u)

(
P(A∅)−

j∑
i=1

(−1)i+1
∑

L⊆{k+1,...,k+j}:
|L|=i

P
(⋂
l∈L

Al

))
,

Al : =
( ⋂
m∈{1,...,k,l}

{Um ≤ u}
)
∩
( ⋂
m∈{k+1,...,k+j}\{l}

{Um ≤ v}
)

A∅ : = {U1 ≤ u, . . . , Uk ≤ u, Uk+1 ≤ v, . . . , Uk+j ≤ v}.

Applying the principle of inclusion and exclusion (see Lemma 2.2.5), we have

Gj,k(u, v) =
1∏k

m=1 gm(u)

(
P(A∅)− P

( k+j⋃
l=k+1

Al

))
=

1∏k
m=1 gm(u)

P
(
U1 ≤ u, . . . , Uk ≤ u, Uk+1 ∈ [u, v], . . . , Uk+j ∈ [u, v]

)
= P

(
Uk+1 ∈ [u, v], . . . , Uk+j ∈ [u, v]

∣∣U1 ≤ u, . . . , Uk ≤ u
)
≥ 0.

Strict positivity of gk (which we have assumed so far) as well as continuity on (0, 1]

for k = 2, . . . , d can be shown by induction. To begin with, assume that there is a

u∗ := sup{u ≥ 0 : g2(u) = 0} > 0. As C is a copula and hence continuous, it follows

that g2(u∗) = 0, such that for v > u∗,

P
(
U1 ∈ [u∗, v], U2 ∈ [u∗, v]

)
= G2,0(u∗, v) = v g2(v)− 2u∗ g2(v) < 0

for v su�ciently close to u∗. This is a contradiction and hence g2(u) > 0 for u ∈ (0, 1].

Similarly, to show continuity, assume that there is a v∗ ∈ (0, 1] such that g2(v∗−) :=

limu↗v∗ g2(u) < g2(v∗). Then

0 ≤ lim
u↗v∗

G2,0(u, v∗) = lim
u↗v∗

(
v∗ g2(v∗)− 2u g2(v∗) + u g2(u)

)
= −v∗ g2(v∗) + v∗ g2(v∗−) < 0,

which is a contradiction. Hence, there is no such v∗ and g2 is left-continuous on (0, 1].

Analogously, if g2(u∗+) := limv↘u∗ > g2(u∗) for an u∗ ∈ (0, 1), G2,0(u∗, v) becomes

negative for su�ciently small v > u∗. Consequently, g2 is continuous on (0, 1].

For the induction step k − 1 7→ k, note that

G2,k−1(u, v) = P
(
Uk ∈ [u, v], Uk+1 ∈ [u, v]

∣∣U1 ≤ u, . . . , Uk−1 ≤ u
)
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3.3 General characterization

induces 0 ≤ G2,k−1(u, v) = gk−1(v) gk(v)− 2 gk−1(u) gk(v) + gk−1(u) gk(u). By the same

arguments as for the induction start, this implies that gk is both strictly positive and

continuous on (0, 1].

(ii)⇒ (iii): To begin with, we establish an auxiliary lemma that � apart from the outlined

interpretation of Gj,k as a conditional distribution function � provides another perspective

on Gj,k. However, note that in the proof of �(i)⇒ (ii)� above, we solely require that C is

a copula and do not assume increasingness of Hm,k+j−m, which is why we can not apply

the alternative interpretation in the respective case.

Lemma 3.3.4 (Alternative interpretation of Gj,k)

If Hm,k+j−m in Theorem 3.3.1.(iii) is an element of D for all m ∈ {1, . . . , j}, one has

Gj,k(u, v) = P(Xk+1 ∈ [u, v], . . . , Xk+j ∈ [u, v]), where

Xl := max{ZE : k ∈ E}, l = k + 1, . . . , k + j, and

ZE ∼ Hm,k+j−m for |E| = m,

with independent random variables ZE , ∅ 6= E ⊆ {k + 1, . . . , k + j}.

Proof

Similarly to the proof of �(iv)⇒ (i)� above, the distribution function of (Xk+1, . . . , Xk+j)

is given by

P(Xk+1 ≤ x1, . . . , Xk+j ≤ xj) =

j∏
i=1

gk+i(x(i)), x1, . . . , xj ∈ [0, 1].

Consequently, by applying the principle of inclusion and exclusion in the very same way

as in the proof of �(i)⇒ (ii)�, the claim follows. �

Let Gj,k(u, v) ≥ 0 for all 0 < u < v ≤ 1, k ∈ N0, j ∈ N with k + j ≤ d. By the proof of

�(i)⇒ (ii)� above, this induces gk, k = 2, . . . , d to be strictly positive and continuous on

(0, 1]. The idea of this part of the proof is to establish a connection between Gj,k and a

related stochastic model similar to Lemma 3.3.4 in order to derive reasonable estimates

that help to extract the required conditions in (iii). For readability, we are going to pro-

ceed by induction.

Suppose that we have already shown that for a j−1 ∈ {1, . . . , d}, the conditions Gi,k(u, v) ≥
0 for all 1 ≤ i ≤ j−1 and k+ i ≤ d imply that Hi,k is increasing for all 1 ≤ i ≤ j−1 and

k+ i ≤ d. For j = 2, this is obviously satis�ed and the induction basis is established. In

order to carry out the induction step j − 1 7→ j, we need to show that Hj,k is increasing
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for all k + j ≤ d (Hi,k for i ≤ j − 1 are increasing by induction hypothesis). This is

shown in several steps.

Step 1 (Main observation): There is a useful decomposition of Gj,k that we require below.

Lemma 3.3.5 (Decomposition of Gj,k)

Instead of Gj,k, write Ggk+1,...,gk+j
to emphasize the dependence of Gj,k on the functions

gk+1, . . . , gk+j. It holds that

Ggk+1,...,gk+j
(u, v) = g̃k+1(v) gk+2(v) . . . gk+j(v)

(gk+1(v)

g̃k+1(v)
− gk+1(u)

g̃k+1(u)

)
+
gk+1(u)

g̃k+1(u)
Gg̃k+1,gk+2,...,gk+j

(u, v), 0 < u < v ≤ 1, (3.8)

for an arbitrary function g̃k+1 that is unequal to zero on (0, 1).

Proof

The decomposition consists of nothing else than changing the last summand of Ggk+1,...,gk+j

(ending up with the last line in Equation (3.8)) and adding the resulting di�erence as an

extra term (corresponding to the �rst line in Equation (3.8)). The non-zero condition

for g̃k+1 is required for well-de�nedness of the quotients. �

De�ne g̃k+1 := gk+1/Hj,k, which is continuous and strictly positive on (0, 1] as seen

earlier, and note that Lemma 3.3.5 then yields

0 ≤ Ggk+1,...,gk+j
(u, v) =g̃k+1(v) gk+2(v) . . . gk+j(v)

(
Hj,k(v)−Hj,k(u)

)
+Hj,k(u)Gg̃k+1,gk+2,...,gk+j

(u, v). (3.9)

We want to conclude that Hj,k(v) ≥ Hj,k(u). Therefore, we have to prove that the second

summand is not responsible for non-negativity of Ggk+1,...,gk+j
. The crucial consequence

of (3.9) is that Gg̃k+1,gk+2,...,gk+j
can be related to a stochastic model. To this end, we

want to apply Lemma 3.3.4 to Gg̃k+1,gk+2,...,gk+j
. In order to do so, one has to make

sure that the corresponding functions H̃m,k+j−m (which are de�ned just like Hm,k+j−m

in Theorem 3.3.1.(iii), however with replacing gk+1 by g̃k+1) are distribution functions

in D for all m = 1, . . . , j. Due to the de�nition of g̃k+1, it holds that

H̃m,k+j−m =

Hm,k+j−m, for m = 1, . . . , j − 1,

1, for m = j.

As Hm,k+j−m are distribution functions for m = 1, . . . , j−1 by induction hypothesis and

H̃m,k+j−m is a degenerated distribution function for m = j, the requirements of Lemma
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3.3 General characterization

3.3.4 are satis�ed.

Step 2 (Stochastic model): As a consequence of Lemma 3.3.4,

Gg̃k+1,gk+2,...,gk+j
(u, v) = P

(
Xk+1, . . . , Xk+j ∈ [u, v]

)
, where

Xl := max
{
ZE , ∅ 6= E ⊂ {k + 1, . . . , k + j}, l ∈ E

}
, l = k + 1, . . . , k + j,

ZE ∼ Hm,k+j−m for |E| = m,

with independent random variables ZE , ∅ 6= E ⊂ {k + 1, . . . , k + j}. Thus,

P
(
Xk+1, . . . , Xk+j ∈ [u, v]

)
=P
( k+j⋂
l=k+1

{
max

{
ZE , E ∩ {l} 6= ∅

}
∈ [u, v]

}
︸ ︷︷ ︸

:=A

)

requires that all ZE are less than or equal to v and � as there is no common shock with

|E| = j due to H̃j,k(x) ≡ 1 � at least two ZI , ZJ , I, J ⊂ {k + 1, . . . , k + j}, I 6= J, need

to be in the interval [u, v]. This implies that

A ⊂
⋃

∅6=I,J⊂{k+1,...,k+j}
I 6=J

{
u ≤ ZI , ZJ ≤ v

}
.

Moreover, as P(∪ni=1Ai) ≤
∑n

i=1 P(Ai) for arbitrary Ai ∈ F , and as there are (2j − 2)

over 2 possibilities to pick ZI , ZJ ∈ [u, v], we have

Gg̃k+1,gk+2,...,gk+j
(u, v) = P(A) ≤

∑
∅6=I,J⊂{k+1,...,k+j}

I 6=J

P
({
u ≤ ZI , ZJ ≤ v

})

≤
(

2j − 2

2

)
︸ ︷︷ ︸

:=b

max
m=1,...,j−1

{(
Hm,k+j−m(v)−Hm,k+j−m(u)

)2}
.

(3.10)

Step 3 (Lipschitz-continuity): Using Equation (3.10), we are going to derive Lipschitz-

continuity-type results for Gg̃k+1,gk+2,...,gk+j
. In order to do so, the following lemma is

helpful.

Lemma 3.3.6

For k ∈ N0, j ≥ 2, let H1,k, . . . ,Hj,k : (0, 1] → (0, 1] and H1,k+1, . . . ,Hj−1,k+1 : [0, 1] →
[0, 1] be increasing functions with Hl,k = Hl−1,k/Hl−1,k+1 for l ∈ {2, . . . , j}. Then it
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holds that

0 ≤ Hj,k(v)−Hj,k(u) ≤
( j−1∏
l=1

1

Hl,k+1(u)

) (
H1,k(v)−H1,k(u)

)
.

Proof

For j = 2 and k ∈ N0, we have

0 ≤H2,k(v)−H2,k(u) =
1

H1,k+1(u)

( H1,k+1(u)

H1,k+1(v)︸ ︷︷ ︸
≤1

H1,k(v)−H1,k(u)
)

≤ 1

H1,k+1(u)

(
H1,k(v)−H1,k(u)

)
.

For j 7→ j + 1, the claim follows by simple induction. �

Applying Lemma 3.3.6 to Equation (3.10), Gg̃k+1,...,gk+j
(u, v) has an upper bound

b · max
m=1,...,j−1

{(m−1∏
l=1

1

Hl,k+j−m+1(u)

)2 (
gk+j−m+1(v)− gk+j−m+1(u)︸ ︷︷ ︸

=H1,k+j−m(v)−H1,k+j−m(u)

)2}
. (3.11)

This can be further simpli�ed as

0 ≤ G2,0(u, v) = g1(v) g2(v)− 2 g1(u) g2(v) + g1(u) g2(u)

= g2(v)
(
g1(v)− g1(u)

)
− g1(u)

(
g2(v)− g2(u)

)
⇔ g2(v)− g2(u) ≤ g2(v)

g1(u)

(
g1(v)− g1(u)

)
=
g2(v)

u

(
v − u

)
and since g1 is the identity by de�nition. Analogously, one has

0 ≤ G2,k(u, v)⇔ gk+2(v)− gk+2(u) ≤ gk+2(v)

gk+1(u)

(
gk+1(v)− gk+1(u)

)
By induction over k, one can conclude that

gk(v)− gk(u) ≤
( k−1∏
l=1

gl+1(v)

gl(u)

)
(v − u) for all k in concern.

Applying this result, the expression in (3.11) is less than or equal to

b · max
m=1,...,j−1

{(m−1∏
l=1

1

Hl,k+j−m+1(u)

)2 ( k+j−m∏
l=1

gl+1(v)

gl(u)

)2
(v − u)2

}
= pj,k(u, v) (v − u)2,
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3.3 General characterization

with

pj,k(u, v) := b · max
m=1,...,j−1

{(m−1∏
l=1

1

Hl,k+j−m+1(u)

)2 ( k+j−m∏
l=1

gl+1(v)

gl(u)

)2}
.

Additionally, due to the monotonicity of the gk and Hj,k appearing in pj,k, we can con-

clude that for any u0, v0 ∈ (0, 1], u0 < v0, it holds that pj,k(u, v) ≤ pj,k(u0, v0) for all

u, v ∈ [u0, v0], u ≤ v. Combining all those observations, one ends up with

0 ≤ Gg̃k+1,gk+2,...,gk+j
(u, v) ≤ pj,k(u0, v0) (v − u)2, u, v ∈ [u0, v0], u ≤ v. (3.12)

Step 4 (Proof by contradiction): Finally, we can proceed similarly to the proof in the

bivariate case depicted in (Durante et al., 2008, p. 67). Assume that Hj,k is not increasing

and that there exist u0, v0 ∈ (0, 1], u0 < v0, such that

Hj,k(v0)−Hj,k(u0) = −a(u0, v0) (v0 − u0)

for a positive constant a(u0, v0) > 0. Consequently, by continuity of the gk and hence

Hj,k, for every ε ∈ (0, v0 − u0], there are uε, vε ∈ [u0, v0], uε = vε − ε, such that

Hj,k(vε)−Hj,k(uε) ≤ −a(u0, v0) (vε − uε) = −a(u0, v0) ε. (3.13)

Independently of this assumption, splitting the positive and negative powers in Hj,k,

Hj,k(u) =

j−1∏
i=0

g
(−1)i (j−1

i )
k+1+i (u) =

∏b j−1
2
c

i=0 g
(j−1

2 i )
k+1+2 i(u)∏b j−2

2
c

i=0 g
( j−1

2 i+1)
k+1+2 i+1(u)

, u > 0,

with �b·c� denoting the �oor function. Thus, for u ∈ [u0, v0], it holds by the monotonicity

of the gk that

Hj,k(u) ≤
∏b j−1

2
c

i=0 g
(j−1

2 i )
k+1+2 i(v0)∏b j−2

2
c

i=0 g
( j−1

2 i+1)
k+1+2 i+1(u0)

=: pmax(u0, v0).

Plugging uε, vε into Equation (3.9) and using all previous results yields

0 ≤ Ggk+1,...,gk+j
(uε, vε) = g̃k+1(vε)︸ ︷︷ ︸

=
gk+1(vε)

Hj,k(vε)

gk+2(vε) . . . gk+j(vε)
(
Hj,k(vε)−Hj,k(uε)︸ ︷︷ ︸

≤−a(u0,v0) ε

)

+Hj,k(uε)Gg̃k+1,...,gk+j
(uε, vε)

(3.12)

≤ gk+1(u0)

pmax(u0, v0)
gk+2(u0) . . . gk+j(u0) (−a(u0, v0) ε)

+ pmax(u0, v0) pj,k(u0, v0) ε2.
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Thus, for su�ciently small ε, Gj,k becomes negative and yields a contradiction. Conse-

quently, Hj,k has to be increasing and the induction is complete.

(iii)⇒ (iv): Trivial, as (iv) is a special case of (iii) for j = m, k = d−m. �

In order to relate the inequality constraints for Gj,k in Theorem 3.3.1.(ii) to necessary

and su�cient conditions for the copula-induced measure dC (as was done in the bivari-

ate case), we provide an alternative proof of (i)⇔(ii) in Theorem 3.3.1 by means of a

tricky decomposition of d-boxes. The following lemma is tailor-made for checking d-

increasingness of functions with representation (3.4) as it splits d-boxes [u,v] in a way

that helps to exploit the factorial structure in (3.4).

Lemma 3.3.7 (Decomposition of d-boxes)

Consider two vectors u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ [0, 1]d, d ≥ 2, with u < v,

v1 ≤ . . . ≤ vd, and with m := min
{
i ∈ {1, . . . , d} : vi > u(d)

}
≤ d. Then [u, v] has a

decomposition into 2 (d−m) + 1 non-overlapping d-boxes

[u, v] =

d⋃
l=m+1

Al ∪
d−m⋃
k=1

Bk ∪ C, where

Al = ×mi=1[ui, vi] ×l−1
i=m+1 [ui, vm] × [vm, vl] ×di=l+1 [ui, vi],

Bk = ×m−1
i=1 [ui, vi] ×di=m [um,d,ki , vm,d,ki ],

C = ×m−1
i=1 [ui, vi] × [u(d), vm]d−m+1,

um,d,ki =

ui, if i ∈ {m, . . . , d} \ σm,d({1, . . . , k − 1}),

u(d), else,

vm,d,ki =

u(d), if i = σm,d(k),

vm, else,

σm,d : {1, . . . , d−m+ 1} → {m, . . . , d} is a bijection ordering (um, . . . , ud) such that

uσm,d(1) ≤ . . . ≤ uσm,d(d).

Proof

In a �rst step, it is shown that the sets Al, Bk, C appearing above are non-overlapping.

Consider Al1 , Al2 , l1 < l2.

• The l1-th component of Al1 is given by [vm, vl1 ].

• The l1-th component of Al2 is given by [ul1 , vm].
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3.3 General characterization

Consider Bk1 , Bk2 , k1 < k2.

• The σ−1
m,d(k1)-th component of Bk1 is given by [uσ−1

m,d(k1), u(d)].

• The σ−1
m,d(k1)-th component of Bk2 is given by [u(d), vm].

Consider Al, Bk.

• The l-th component of Al is given by [vm, vl].

• The l-th component of Bk is a subset of [uσ−1
m,d(1), vm].

The sets Al, C (respectively Bk, C) can be treated analogously to the sets Al, Bk (respec-

tively Bk1 , Bk2 , k1 < k2) and it becomes obvious that all sets in the decomposition of

[u, v] are non-overlapping. In a second step, it is demonstrated that the union of the sets

Al, Bk, C yields the d-box [u, v]. To begin with, note that

C ∪Bd−m = ×m−1
i=1 [ui, vi] × [u(d), vm]σ

−1
m,d(d−m)−1 × [uσ−1

m,d(d−m), vm]

× [u(d), vm]d−m+1−σ−1
m,d(d−m).

Proceeding in the same manner, one recognizes that

C ∪
d−m⋃
k=1

Bk = ×mi=1[ui, vi] ×di=m+1 [ui, vm].

Adding Ad yields

C ∪
d−m⋃
k=1

Bk ∪ Ad = ×m−1
i=1 [ui, vi] ×d−1

i=m [ui, vm] × [ud, vd].

Finally, continuing analogously, one ends up with

C ∪
d−m⋃
k=1

Bk ∪
d⋃

l=m+1

Al = ×di=1[ui, vi] = [u, v]. �

Figure 3.3 illustrates the described decomposition of 3-boxes with m ∈ {1, 2}. Lemma

3.3.7 has a crucial consequence: Any d-box [u,v] with u < v, v1 ≤ . . . ≤ vd, and

with m := min
{
i ∈ {1, . . . , d} : vi > u(d)

}
∈ {1, . . . , d} can be decomposed into non-

overlapping d-boxes of types Al, Bk, and C.

• Comparing ×di=1[ui, vi] to Al, we note that
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� ul is replaced by vm,

� vm+1, . . . , vl−1 are replaced by vm, . . . , vm.

• Comparing ×di=1[ui, vi] to Bk, we note that

� k − 1 elements of {um, . . . , ud} are replaced by u(d),

� one element of {vm, . . . , vd} is replaced by u(d), the remaining ones by vm.

Thus, both Al and Bk are d-boxes with an increased index for m. By recursively seg-

menting Al and Bk further, we solely end up with d-boxes of type C for di�erent values

of m. Summing up, C is a copula if and only if dC assigns non-negative mass to d-boxes

of the form

×m−1
i=1 [ui, vi] × [u(d), vm]d−m+1, v1 ≤ . . . ≤ vd, vm−1 ≤ u(d) < vm, m = 1, . . . , d,

with the convention v0 := 0. The special structure of these d-boxes yields

dC
(
×m−1
i=1 [ui, vi] × [u(d), vm]d−m+1

)
= dC1,...,m−1

(
×m−1
i=1 [ui, vi]

)
· Gd−m+1,m−1(u(d), vm)

(3.14)

for all m = 1, . . . , d, where we set dC∅ ≡ 1. This relationship paves the way for a proof

by induction. We have already shown in Section 3.2 that C is a bivariate copula if and

only if for all 0 < u < v ≤ 1, k ∈ N0, j ∈ N, with k + j ≤ 2, it holds that Gj,k(u, v) ≥ 0.

Given that this relationship holds in dimensions 2, . . . , d− 1, it follows by (3.14) that C

is a copula in dimension d if and only if dC1,...,m−1([u,v]) ≥ 0 and Gd−m+1,m−1(u, v) ≥ 0

for all m = 1, . . . , d. This shows the claimed equivalence (ii)⇔(i) in Theorem 3.3.1.

3.4 Properties and classes

One may determine the intersection between copulas having form (3.4) and extreme-value

copulas. Proposition 3.4.1 shows that extreme-value copulas of type (3.4) correspond to

choosing power functions for gk, where the sequence of exponents must be d-monotone.

Proposition 3.4.1 (Extreme-value copulas of type (3.4))

Let C have the form (3.4). C is an extreme-value copula if and only if gk(u) = uak−1 , k =

1, . . . , d, for u ∈ (0, 1] and a d-monotone sequence {a0, . . . , ad−1} with a0 = 1.
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(2)

(3)

(1)

1

1

1

(2)

(3)

(1)

1

1

1

Figure 3.3 Iterative decomposition of d-boxes according to Lemma 3.3.7. The left �gure

shows a fragmentation of the d-box [0.1, 0.6] × [0.2, 0.7] × [0.35, 0.9] with

m = 1 into 2 (3−m) + 1 = 5 d-boxes of types A2, A3 (marked blue), B1, B2

(red), and C (yellow). The right �gure indicates the next iteration for A2

(which now has an index m = 2) into 3 d-boxes of type C.

Proof

If gk(u) = uak−1 , k = 1, . . . , d, for a sequence {a0, . . . , ad−1}, the functions Hj,k in

Theorem 3.3.1.(iii) are given by

Hj,k(u) =

j−1∏
i=0

g
(−1)i (j−1

i )
k+1+i (u) =

j−1∏
i=0

u(−1)i (j−1
i ) ak+i = u

∑j−1
i=0 (−1)i (j−1

i ) ak+i .

Thus, the Hj,k are distribution functions in D (i.e. C is a copula) if and only if the

sequence {a0, . . . , ad−1} is d-monotone. Moreover, it is apparent that due to the power

function structure of the gk, C satis�es the extreme-value property.

It remains to show that any extreme-value copula of type (3.4) implies a power function

structure for the gk. By setting u1 = u2 = u ∈ [0, 1] and u3 = . . . = ud = 1 in the

extreme-value copula de�nition in (2.6),

g2(ut) = g2(u)t for all u ∈ (0, 1], t > 0.

De�ning Θ : [0,∞)→ R,Θ(x) := g2(exp(−x)), this is equivalent to

Θ(t x) = Θ(x)t for all x, t > 0. (3.15)

Thus, setting t = n ∈ N and x = 1/n, it holds that

Θ(1) = Θ
( 1

n

)n
⇒ Θ

( 1

n

)
= Θ(1)

1
n . (3.16)
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Consequently, for all x ∈ Q ∩ (0,∞), x = p/q, p, q ∈ N, we have

Θ
(p
q

)
(3.15)

= Θ
(1

q

)p (3.16)
= Θ(1)

p
q .

By Theorem 3.3.1.(iii), it holds that H1,1 = g2 ∈ D, implying that g2(u) > 0 for u ∈ (0, 1].

Therefore, one deduces that 0 < Θ(1) = g2(exp(−1)) ≤ 1 and the previous equation yields

Θ(x) = exp(−a1 x) for all x ∈ Q ∩ (0,∞), where a1 = − log
(
Θ(1)

)
≥ 0. As Q ∩ (0,∞)

is dense in (0,∞), it follows that

g2

(
e−x
)

= Θ(x) = e−a1 x =
(
e−x
)a1 , x ∈ (0,∞).

Iteratively, by setting u1 = . . . = ul = u ∈ (0, 1], ul+1 = . . . = ud = 1, and subsequently

raising l, we conclude that gk(u) = uak−1 , k = 1, . . . , d, for parameters a0, . . . , ad−1 ≥
0, a0 = 1.4 �

The corresponding class of extreme-value copulas is well-known in the literature and

has already been introduced in Section 2.3.3: It is precisely the exchangeable subfamily

of Marshall�Olkin survival copulas. In Section 3.6, we will investigate this example

in more detail. Besides the extreme-value-property, the subclass of radially symmetric

copulas corresponding to exchangeable exogenous shock models can be derived explicitly

as well.

Theorem 3.4.2 (Radially symmetric copulas of type (3.4))

Let C have the form (3.4) and assume that the functions gk, k = 1, . . . , d, are di�eren-

tiable. Then C is radially symmetric if and only if

gk(u) =
c u+ k − 1

c+ k − 1
, u ∈ [0, 1], k = 1, . . . , d,

for some c ∈ [0,∞].

4An alternative way to constitute the power function structure of the gk for extreme-value copulas of

type (3.4) is via Pickands' Theorem as considered in Durante and Sempi (2010). Comparing the

Pickands representation of C with the functional form in (3.4) on the diagonal u = u1 = . . . = ud, it

can be shown by induction that gk(u) = uak−1 for a parameter

ak−1 = k P
( 1

k
, . . . ,

1

k︸ ︷︷ ︸
k times

, 0, . . . , 0
)
− (k − 1)P

( 1

k − 1
, . . . ,

1

k − 1︸ ︷︷ ︸
(k−1) times

, 0, . . . , 0
)

depending on the Pickands dependence function P for �xed values. By the �rst part of the proof,

the claim follows.
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Proof

The proof can be found in [Mai, Schenk, Scherer (2015a)]. Assume that C is radially

symmetric. Since C is invariant w.r.t. the ordering of its arguments, we may simplify

notation by restricting our attention to preordered input arguments 0 ≤ u1 ≤ u2 ≤ . . . ≤
ud ≤ 1. Denoting C1,...,k :=

∏k
i=1 gi(ui), so that C = C1,...,d, radial symmetry of the

exchangeable copula C is equivalent to (see De�nition 2.2.15 and Proposition 2.2.7)

u1 g2(u2) · . . . · gd(ud) = C(u1, . . . , ud) = Ĉ(u1, . . . , ud)

= 1 +

d∑
k=1

(−1)k
∑

1≤j1<...<jk≤d
C1,...,k(1− uj1 , . . . , 1− ujk). (3.17)

Applying the mixed partial derivative operator (∂/∂u1) . . . (∂/∂ud) on both sides of the

last equation (which is possible due to di�erentiability of the gk), apparently all but one

summand of the right-hand side vanish, leaving us with

g
′
2(u2) . . . g

′
d(ud) = g

′
2(1− ud−1) . . . g

′
d(1− u1).

Iteratively, this implies that all g
′
k, k = 1, . . . , d, are constants, hence gk is linear with

gk(1) = 1, i.e. gk(u) = (1 − gk(0))u + gk(0). Thus, it already follows that g2 has the

claimed form g2(u) = (c u + 1)/(c + 1) for some c := 1/g2(0) − 1 ≥ 0. If g2(0) = 0,

then we conveniently interpret this as c = ∞, i.e. C1,2 equals the independence copula.

Due to Theorem 3.3.1.(iii), we know that for any copula C of the structural form above,

H3,k(u) :=
(
gk+1(u) gk+3(u)

)
/g2
k+2(u) has to be increasing on (0, 1] for all k ∈ {0, . . . , d−

3}. If gk+1(u) = gk+2(u) = u for a certain k and if gk+3 is linear with gk+3(0) ≥ 0,

increasingness of H3,k(u) = gk+3(u)/u requires gk+3(0) = 0 and consequently gk+3(u) =

u. Iteratively, for c =∞, it follows that C equals the d-dimensional independence copula.

Consequently, we will henceforth assume that c < ∞ and we are left with the task of

computing gk(0) for d ≥ 3. Evaluating Equation (3.17) for u1 = . . . = ud = u yields

d∏
k=1

gk(u) = 1 +

d∑
k=1

(−1)k
(
d

k

) k∏
l=1

gl(1− u).

Di�erentiating the left-hand side w.r.t. u results in

∂

∂u

d∏
k=1

gk(u) =
d∑

k=1

g
′
k(u)

d∏
j=1
j 6=k

gj(u).

Analogously, the right-hand side gives

∂

∂u

(
1 +

d∑
k=1

(−1)k
(
d

k

) k∏
l=1

gl(1− u)
)

=
d∑

k=1

(−1)k+1

(
d

k

) k∑
l=1

g
′
l(1− u)

k∏
j=1
j 6=l

gj(1− u).
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Plugging in u = 0 on both sides and using that g1(0) = 0, gk(1) = 1, k = 1, . . . , d, we end

up with the equality

d∏
k=2

gk(0) =
d∑

k=1

(−1)k+1

(
d

k

) k∑
l=1

g
′
l(1). (3.18)

Inductively, the only unknowns are gd(0) on the left-hand side and g
′
d(1) on the right-hand

side. As we know that g
′
d(1) = 1− gd(0), this is a linear equation in gd(0). We are going

to show by induction that gd(0) := (d − 1)/(c + d − 1) solves this equation. For d = 3,

the statement is easy to verify. Thus, consider d  d + 1 and set gd+1(0) := d/(c + d).

The respective right-hand side of (3.18) then equals5

d+1∑
k=1

(−1)k+1

(
d+ 1

k

)
︸ ︷︷ ︸

=(dk)+( d
k−1)

k∑
l=1

g
′
l(1) =

d∑
k=1

(−1)k+1

(
d

k

) k∑
l=1

g
′
l(1) +

d∑
k=0

(−1)k
(
d

k

) k+1∑
l=1

g
′
l(1)

=
d∑

k=1

(−1)k+1

(
d

k

) k∑
l=1

g
′
l(1) + 1−

d∑
k=1

(−1)k+1

(
d

k

) k+1∑
l=1

g
′
l(1)︸ ︷︷ ︸∑k

l=1 g
′
l (1)+g

′
k+1(1)

= 1−
d∑

k=1

(−1)k+1

(
d

k

)
g
′
k+1(1).

Summing up, we have to show that

d∏
j=1

j

c+ j
=

d+1∏
k=2

gk(0) =

d+1∑
k=1

(−1)k+1

(
d+ 1

k

) k∑
l=1

g
′
l(1) = 1−

d∑
k=1

(−1)k+1

(
d

k

)
c

c+ k
,

(3.19)

given that the equation is valid for arbitrary c > 0 when replacing d by d−1. Decomposing

the binomial coe�cient on the right-hand side of (3.19), it holds that6

1−
d∑

k=1

(−1)k+1

(
d

k

)
c

c+ k

= 1−
d−1∑
k=1

(−1)k+1

(
d− 1

k

)
c

c+ k︸ ︷︷ ︸
apply (3.19) for d− 1

+
d−1∑
k=0

(−1)k+1

(
d− 1

k

)
c

c+ 1 + k

5We use the convention
(
d
d+1

)
= 0 in the �rst equality.

6We use the convention
(
d−1
d

)
= 0 in the �rst equality.
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3.5 Additive�frailty copulas

=
d−1∏
j=1

j

c+ j
− c

c+ 1
+

d−1∑
k=1

(−1)k+1

(
d− 1

k

)
c

c+ 1 + k︸ ︷︷ ︸
= c
c+1

∑d−1
k=1(−1)k+1 (d−1

k ) c+1
c+1+k

=

d−1∏
j=1

j

c+ j
− c

c+ 1

(
1−

d−1∑
k=1

(−1)k+1

(
d− 1

k

)
c+ 1

c+ 1 + k︸ ︷︷ ︸
apply (3.19) for d− 1 and ĉ = c+ 1

)

=
d−1∏
j=1

j

c+ j
− c

c+ 1

d−1∏
j=1

j

c+ j + 1
=

(d− 1)! (c+ d)− c (d− 1)!∏d
j=1(c+ j)

=
d!∏d

j=1(c+ j)
=

d∏
j=1

j

(c+ j)
.

�

As a plausibility check, recall that in Section 3.2, we have cited a known result concerning

radial symmetry in the bivariate case. It states that a bivariate copula of type (3.4)

is radially symmetric if and only if C = αΠ + (1 − α)M for some α ∈ [0, 1], i.e.

C(u1, u2) = αu1 u2 +(1−α)u(1) for u1, u2 ∈ [0, 1]. By de�ning c such that c/(c+1) = α

(α = 1 corresponds to the limiting case c→∞), one can rewrite

C(u1, u2) = αu1 u2 + (1− α)u(1) = u(1) (αu(2) + 1− α) = u(1)

c u(2) + 1

c+ 1
,

which is precisely the structure of the gk required in Theorem 3.4.2. The fact that

the radial symmetry result in the bivariate case does not demand di�erentiability of

the copula suggests that Theorem 3.4.2 would also work without the di�erentiability

assumption for the gk. However, we forego this possible generalization as we are mostly

dealing with di�erentiable functions gk in the subsequent chapters.

3.5 Additive�frailty copulas

Theorem 3.3.1 has shown that any d-dimensional copula of the form (3.4) arises from

the stochastic construction in (3.1), involving 2d − 1 random variables ZE , ∅ 6= E ⊆
{1, . . . , d}. This section introduces an alternative construction for a subclass of type

(3.4)-copulas based on a �rst-passage time construction with additive processes, which

is useful in at least three regards: First, it allows to easily build new families of exoge-

nous shock models by means of di�erent speci�cations of the additive process. Second, it
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provides an alternative viewpoint to the classical shock construction in (3.1) that can be

helpful for interpreting the dependence structure on the one hand and deriving depen-

dence measures and other properties on the other hand. Third, if the additive process can

be simulated e�ciently and accurately, the �rst-passage time model facilitates sampling,

especially in large dimensions, as essentially only paths of a one-dimensional stochastic

process have to be sampled.

Consider an additive subordinator Λ = {Λt}t≥0 with limt→∞ Λt = ∞ and de�ne a

sequence {Xk}k∈N of random variables by

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k ∈ N, (3.20)

where Ek, k ∈ N, are i.i.d. unit exponentially distributed random variables that are

independent of {Λt}t≥0. By construction, {Xk}k∈N is an exchangeable sequence of ran-

dom variables. The following proposition outlines that the (unique) survival copula of

(X1, . . . , Xd), denoted CΛ,d in the sequel, is of type (3.4) for any d ≥ 2. In analogy

to the terminology �Lévy�frailty copula� in Section 2.3.3, where {Λt}t≥0 in (3.20) was

speci�ed as a Lévy subordinator, we call the more general class CΛ,d in Proposition

3.5.1 additive�frailty copulas. This term further underlines the interpretation of Λ as a

joint risk factor impacting the random variables Xk. When referring to the sequence

{Xk}k∈N as a whole or its subvectors (X1, . . . , Xd), we call the construction in (3.20)

additive�frailty model.

Proposition 3.5.1 (Additive�frailty copulas)

De�ne a sequence {Xk}k∈N of random variables as in (3.20). Let {Ψt}t≥0 be the family

of Bernstein functions corresponding to the increasing additive process Λ = {Λt}t≥0 via

L[Λt] = exp(−Ψt) and denote by F̄1 the survival function of X1. The survival copula

CΛ,d of (X1, . . . , Xd) has the form (3.4) for any d ≥ 2, with

gk(u) : = exp
(
−ΨF̄−1

1 (u)(k) + ΨF̄−1
1 (u)(k − 1)

)
, k = 1, . . . , d,

F̄1(x) = exp(−Ψx(1)), x ≥ 0.

Proof

The survival function of each Xk is given by

F̄1(x) : = P(Xk > x) = P(Ek > Λx) = E
[
P(Ek > Λx|Λx)

]
= E

[
e−Λx

]
= e−Ψx(1), x ≥ 0.

The joint survival function of (X1, . . . , Xd) can be derived analogously. For the vector
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3.5 Additive�frailty copulas

x := (x1, . . . , xd) ≥ 0, with the convention x0 := 0, it is given by

F̄ (x) : = P(X1 > x1, . . . , Xd > xd) = E
[
e−

∑d
k=1 Λxk

]
= E

[
e
−

∑d
k=1(d−k+1) (Λx(k)

−Λx(k−1)
)]

=

d∏
k=1

E
[
e
−(d−k+1) (Λx(k)

−Λx(k−1)
)]

=

d∏
k=1

exp
(
−Ψx(k)

(d− k + 1) + Ψx(k−1)
(d− k + 1)

)
=

d∏
k=1

exp
(
−Ψx(k)

(d− k + 1) + Ψx(k)
(d− k)

)
.

As outlined in Section 2.4, x 7→ Ψx(1) is continuous. Thus, the unique survival copula

CΛ,d of (X1, . . . , Xd) is de�ned as

CΛ,d(u1, . . . , ud) : = F̄
(
F̄−1

1 (u1), . . . , F̄−1
1 (ud)

)
=

d∏
k=1

exp
(
−ΨF̄−1

1 (u(k))
(k) + ΨF̄−1

1 (u(k))
(k − 1)

)
=

d∏
k=1

gk(u(k)), (3.21)

with gk as de�ned in the proposition. By construction, g1 = id[0,1] and g2(1) = . . . =

gd(1) = 1. �

Proposition 3.5.1 shows that any additive�frailty model corresponds to an exchangeable

exogenous shock model. By Theorem 3.3.1, CΛ,d is the copula (and distribution function)

of (U1, . . . , Ud), where

Uk := max{V E : k ∈ E}, k = 1, . . . , d,

and V E ∼ Hm,d−m (Hm,d−m as de�ned in Theorem 3.3.1.(iii)) for all subsets E with

cardinality |E| = m. Analogously to (Embrechts and Hofert, 2013, Proposition 2.3, (7)),

one knows that the generalized inverse F̄−1
1 of the continuous marginal survival function

F̄1 in Proposition 3.5.1 is strictly decreasing. By Corollary 2.2.8, CΛ,d is the survival

copula of
(
F̄−1

1 (U1), . . . , F̄−1
1 (Ud)

)
, where

F̄−1
1 (Uk) = F̄−1

1

(
max{V E : k ∈ E}

)
= min

{
F̄−1

1 (V E) : k ∈ E
}
, k = 1, . . . , d.
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Last but not least, as the transformed random variable F̄−1
1 (Uk) has survival function

F̄1 (compare (Embrechts and Hofert, 2013, Proposition 3.1, (2))), we conclude that the

additive�frailty model (X1, . . . , Xd) is equal in distribution to the exchangeable exoge-

nous shock model setup
(
F̄−1

1 (U1), . . . , F̄−1
1 (Ud)

)
.

The connection between the additive�frailty construction in Proposition 3.5.1 and the

characterization of general exchangeable exogenous shock models in Theorem 3.3.1 turns

out to be bene�cial in many regards and helps to derive some of the most interesting

insights of the present thesis. For additive�frailty copulas CΛ,d, we now know two quite

di�erent construction approaches: One is based on a minimum/maximum construction

involving 2d−1 independent random variables, the other one results from a �rst-passage

time setup parameterized by a single additive subordinator Λ. On a high level, the

independence of the additive subordinator's increments is re�ected by the independence

of the random variables in the shock model. A generic sampling algorithm for CΛ,d based

on the additive�frailty construction can be stated as follows.

Algorithm 3.5.2 (Simulation of CΛ,d in Proposition 3.5.1)

1. Simulate d independent, unit exponentially distributed random variables E1, . . . , Ed.

2. Simulate one path of {Λt}t≥0 until Λt ≥ max{E1, . . . , Ed}.

3. Compute Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d.

4. Set Uk := F̄1(Xk), k = 1, . . . , d, and return (U1, . . . , Ud).

Clearly, the central task is to simulate the paths of the additive process Λ. Provided this

can be accomplished e�ciently, the algorithm provides a fast sampling routine even in

large dimensions. Extending d solely requires the simulation of further i.i.d. exponentially

distributed triggers Ed+1, Ed+2, . . ., possibly supplemented by simulating additional in-

crements of Λ until the largest trigger is exceeded (it is shown in Mai and Scherer (2009a)

that limd→∞ E[E(d)]/ log d = 1). One example of easy-to-simulate additive processes are

Lévy subordinators of (compound) Poisson type, see (Sato, 1999, p. 17 �.). Another in-

stance is given in Section 4.3 within the class of Sato subordinators introduced in Section

2.4.3.

As an aside, note that the proof of Proposition 3.5.1 works in the very same way for

Xk := inf{t ∈ R : Λt ≥ Ek}, k ∈ N, (3.22)

with additive subordinators de�ned on the real-line, i.e. satisfying limt→−∞ Λt = 0 in-

stead of the standard condition Λ0 = 0 presupposed in De�nition 2.4.1. The di�erence
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3.5 Additive�frailty copulas

simply consists in the marginal distribution function of theXk potentially having support

on R instead of [0,∞). As the proposition refers to the (survival) copula of (X1, . . . , Xd),

this subtlety is �eradicated� and has no impact. Consequently, Proposition 3.5.1 also ap-

plies to additive processes related to stochastically continuous neutral-to-the-right priors

as introduced in Section 2.4.4. Considering a transformed Dirichlet process for Λ results

in a very tractable additive�frailty copula.

Theorem 3.5.3 (Dirichlet copula)

Let {Zt}t≥0 be the Dirichlet process introduced in Section 2.4.4 with parameters (c,G),

c > 0, G continuous, and consider the additive subordinator Λ = {Λt}t∈R,Λt := − log(1−
Zt). The corresponding additive�frailty copula CΛ,d (termed Dirichlet copula in the se-

quel) is given by

CΛ,d(u1, . . . , ud) =

d∏
k=1

c u(k) + k − 1

c+ k − 1
, u ∈ [0, 1].

Note that CΛ,d in the theorem is not termed Dirichlet�frailty, but solely Dirichlet copula.

The reason is that the characterizing process Λ is not a Dirichlet process itself. Instead,

it is connected to the latter via a simple log-transform, which is why we have chosen the

stated denomination.

Proof (Proof of Theorem 3.5.3)

Recall the stochastic representation of the Dirichlet process in Section 2.4.4. We let

Λ = {Λt}t∈R be the related additive subordinator on R de�ned by Λt := − log(1−Zt) for
t ∈ R. Furthermore, de�ne t0 := sup{t ∈ R : G(t) = 0} and t1 := inf{t ∈ R : G(t) = 1},
with t0 := −∞ respectively t1 := ∞ if G(t) > 0 respectively G(t) < 1 for all t ∈ R.
We observe with the �nite geometric series and the Frullani integral formula, cf. Tricomi

(1951), that for k ∈ N, the Bernstein family {Ψt}t∈R in Equation (2.12) corresponding

to Λ satis�es

Ψt(k) =

∫ ∞
0

1− e−k u

1− e−u
e−u c (1−G(t)) − e−u c

u
du

=

k−1∑
i=0

∫ ∞
0

e−u (i+c (1−G(t))) − e−u (i+c)

u
du

=
k−1∑
i=0

log
( c+ i

c (1−G(t)) + i

)
= log

( k−1∏
i=0

c+ i

c (1−G(t)) + i

)
, t ∈ R ∩ [t0, t1].
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Thus, w.r.t. Proposition 3.5.1, one can derive the three quantities

F̄1(x) = exp(−Ψx(1)) = exp
(
− log

( 1

1−G(x)

))
= 1−G(x), x ∈ R ∩ [t0, t1],

F̄−1
1 (u) = G−1(1− u), u ∈ (0, 1),

−ΨF̄−1
1 (u)(k) + ΨF̄−1

1 (u)(k − 1) = − log
( c+ k − 1

c (1−G(F̄−1
1 (u))) + k − 1

)
= log

(c u+ k − 1

c+ k − 1

)
.

Applying Proposition 3.5.1, the claimed form of the copula CΛ,d follows. �

As an immediate consequence, we derive the following corollary regarding radial sym-

metry of the Dirichlet copula.

Corollary 3.5.4 (Radial symmetry of the Dirichlet copula)

The Dirichlet copula is radially symmetric. If furthermore the univariate probability

law dG in the construction of the Dirichlet process Z = {Zt}t∈R in Theorem 3.5.3 is

continuous and symmetric about its median, the random vector (X1, . . . , Xd) de�ned

in (3.22) for the additive subordinator Λ = {Λt}t∈R, Λt := − log(1 − Zt), is radially

symmetric for any d ≥ 2 as well.

Proof

Radial symmetry of the copula immediately follows from Theorem 3.4.2. For the second

claim, note that the function G equals the (unconditional) distribution function of the

components Xk (compare the survival function F̄1 of Xk in the proof of Theorem 3.5.3).

The continuity assumption on G implies that Z almost surely has no jump at any given

x ∈ R, since7

0 = G(x)−G(x−) = E[Zx − Zx−]

implies that the non-negative random variable Zx − Zx− is almost surely zero. Due to

radial symmetry of dG, there is a number µ ∈ R, namely the median of dG, such that

µ−Xk
d
= Xk −µ holds for each k. Moreover, G is point symmetric about µ in the sense

that 1−G(µ− x) = G(µ+ x) for all x ∈ R. Since Z has no jumps at �xed time points

and conditioned on Z, the Xk are i.i.d. with distribution function Z, it holds that

P(µ−X1 ≤ x1, . . . , µ−Xd ≤ xd) = P(X1 ≥ µ− x1, . . . , Xd ≥ µ− xd)

= E
[
(1− Z(µ−x1)−) . . . (1− Z(µ−xd)−)

]
= E

[
(1− Zµ−x1) . . . (1− Zµ−xd)

]
.

7Dominated convergence is used in the second equality.
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3.5 Additive�frailty copulas

Thus, in order to verify radial symmetry of {Xk}k=1,...,d, it remains to show that

P(X1 − µ ≤ x1, . . . , Xd − µ ≤ xd)

=E[Zµ+x1 . . . Zµ+xd ]
!

= E
[
(1− Zµ−x1) . . . (1− Zµ−xd)

]
.

We are going to show an even stronger statement, namely that

{Zt}t∈R
d
=
{

1− Z2µ−t
}
t∈R.

To this end, it is su�cient to verify that for arbitrary d ∈ N and t1 < t2 < . . . < td,

(Zt1 , Zt2 − Zt1 , . . . , Ztd − Ztd−1
, 1− Ztd)

d
=
(
1− Z2µ−t1 ,−Z2µ−t2 + Z2µ−t1 , . . .

. . . ,−Z2µ−td + Z2µ−td−1
, Z2µ−td

)
. (3.23)

Concerning the left-hand side, by de�nition, the distribution of (Zt1 , Zt2 −Zt1 , . . . , Ztd −
Ztd−1

, 1−Ztd) is a Dirichlet distribution with parameters c
(
G(t1), G(t2)−G(t1), . . . , G(td)−

G(td−1), 1 − G(td)
)
. Concerning the right-hand side of Equation (3.23), the respective

random vector by de�nition follows a Dirichlet distribution with parameters

c
(
1−G(2µ− t1), G(2µ− t1)−G(2µ− t2), . . .

. . . , G(2µ− td−1)−G(2µ− td), G(2µ− td)
)

= c
(
G(t1), G(t2)−G(t1), . . . , G(td)−G(td−1), 1−G(td)

)
,

where we have used the symmetry property 1−G(µ− x) = G(µ+ x). �

Summing up, we have not only identi�ed the subclass of radially symmetric copulas cor-

responding to exchangeable exogenous shock models in Theorem 3.4.2, but also found the

stochastic model behind to be of additive�frailty type. The copula itself is surprisingly

simple in the sense that there are only few examples of high-dimensional multivariate

distribution functions available in closed form. Furthermore, it allows for the explicit

calculation of concordance measures and an extremely fast simulation algorithm. Both

issues are treated in more detail in Chapter 6, where the Dirichlet copula is applied in

a risk management context. Another class of additive�frailty copulas is introduced in

Chapter 4, where Λ is chosen as the Sato subordinator introduced in Section 2.4.3. Both

the Dirichlet and the Sato setup show how Proposition 3.5.1 can lead to new, tractable

multivariate distribution functions.
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3.6 Exchangeable Marshall�Olkin copulas revisited

A �rst example of the relationship between general shock model construction, �rst-

passage time framework, and corresponding (survival) copula function has already been

adumbrated in the characterization of exchangeable MO copulas by means of d-monotone

sequences in Section 2.3.3. The aim of the present paragraph is to use the general results

in Section 3.3 to put a new complexion on this special case. For convenience, we restate

the well-known �ndings in Mai (2010) and the references therein for copulas of the form

C(u1, . . . , ud) =
d∏

k=1

u
ak−1

(k) , u1, . . . , ud ∈ [0, 1], (3.24)

with non-negative parameters a0, . . . , ad−1 ≥ 0.

1. (3.24) de�nes a copula if and only if {a0, . . . , ad−1} is d-monotone with a0 = 1.

2. The set of copulas with form (3.24) coincides with the set of survival copulas of

exchangeable exogenous shock models with exponentially distributed shocks.

3. The function C in (3.24) de�nes a copula for all d ≥ 2 if and only if {ak}k∈N0 is a

completely monotone sequence with a0 = 1. In this case, C is the survival copula

of

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d,

where Λ = {Λt}t≥0 is a (unique in law) killed Lévy subordinator characterized by

a family {Ψt}t≥0, Ψt = tΨ1, of Bernstein functions with Ψ1(k) − Ψ1(k − 1) =

ak−1, k ∈ N. Conversely, any killed Lévy subordinator in the construction above

leads to a survival copula of the form (3.24) with a completely monotone sequence

{ak}k∈N0 satisfying a0 = 1.

Note that the third �nding above is a slight re�nement of the third item in Section

2.3.3, where the coherence between the Lévy subordinator in (2.10) and the completely

monotone sequence {ak}k∈N0 has not been speci�ed. We are going to investigate how

the general characterization results derived in the present chapter relate to the three

observations above.

1. Concerning the �rst item, by applying Theorem 3.3.1, a function C of type (3.4) with

gk(u) = uak−1 , k = 1, . . . , d, and a real-valued sequence {a0, . . . , ad−1}, a0 = 1, de�nes a

copula in dimension d ≥ 2 if and only if Hj,k ∈ D for all j ∈ N, k ∈ N0 : k + j ≤ d. As
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3.6 Exchangeable Marshall�Olkin copulas revisited

discussed in the proof of Proposition 3.4.1, this is naturally equivalent to {a0, . . . , ad−1}
being d-monotone.

2. Addressing the second aspect, consider an exchangeable exogenous shock models with

exponentially distributed shocks, i.e. (recall the exchangeability condition in Proposi-

tion 3.1.2) a vector (X1, . . . , Xd) that satis�es Equation (3.1) with ZE ∼ Exp(λj) for

|E| = j. By Proposition 3.1.3, the survival copula of (X1, . . . , Xd) is given by (3.4)

with

gk(u) =
d+1−k∏
j=1

(
F̄ {1,...,j}

(
F̄−1

1 (u)
))(d−kj−1)

, u ∈ [0, 1], k = 1, . . . , d,

where

F̄ {1,...,j}(x) = P(ZE > x, |E| = j) = e−λj x,

F̄1(x) =
d∏
j=1

(
F̄ {1,...,j}(x)

)(d−1
j−1) = e

−x
∑d
j=1 (d−1

j−1)λj , x > 0.

Plugging F̄ {1,...,j} and F̄1 into gk yields

gk(u) = uak−1 , ak−1 :=

∑d+1−k
j=1

(
d−1
j−1

)
λj∑d

j=1

(
d−1
j−1

)
λj

,

proving one part of the second claim above. Conversely, when starting with a copula

C of the form (3.4) with gk(u) = uak−1 , k = 1, . . . , d, Theorem 3.3.1 shows that the

random variables V E in the corresponding stochastic model for C with |E| = m have

the distribution function Hm,d−m : [0, 1]→ [0, 1],

Hm,d−m(u) =
m−1∏
i=0

g
(−1)i (m−1

i )
d−m+1+i (u) = uλm , λm :=

m−1∑
i=0

(−1)i
(
m− 1

i

)
ad−m+i.

Due to Corollary 2.2.8, C is the survival copula of the transformed vector(
− log(X1), . . . ,− log(Xd)

) d
=
(

min{− log(V E) : 1 ∈ E}, . . . ,min{− log(V E) : d ∈ E}
)
.

It is straightforward to show that − log(V E) is exponentially distributed, outlining the

remaining part of the second claim above.

3. Last but not least, we have to analyze the alternative stochastic model mentioned

in point three above. As a technical prerequisite, Theorem 2.5.8 (originally derived by
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Gnedin and Pitman (2008)) and Lemma 4.1.1 in Mai (2010) show that a real-valued

sequence {ak}k∈N0 with a0 = 1 is completely monotone if and only if there exists a

(unique in law) killed Lévy subordinator Λ = {Λt}t≥0 characterized by {Ψt}t≥0,Ψt =

tΨ1, such that ak−1 = Ψ1(k) − Ψ1(k − 1) for all k ∈ N. Now consider construction

(3.20) for a killed Lévy subordinator Λ = {Λt}t≥0 with {Ψt}t≥0,Ψt = tΨ1. W.l.o.g., i.e.

without having an impact on the resulting survival copula, we can assume that Ψ1(1) = 1.

Applying Proposition 3.5.1, CΛ,d is a copula of type (3.4) for all d ≥ 2, with

gk(u) : = exp
(
−ΨF̄−1

1 (u)(k) + ΨF̄−1
1 (u)(k − 1)

)
, k ∈ N,

F̄1(x) = e−Ψx(1) (Ψx=xΨ1)
= e−xΨ1(1) (Ψ1(1)=1)

= e−x.

Substituting F̄−1
1 (u) = − log(u) in gk, it follows that

gk(u) = exp
(
−Ψ− log(u)(k) + Ψ− log(u)(k − 1)

)
= exp

(
log(u) Ψ1(k)− log(u)Ψ1(k − 1)

)
= uΨ1(k)−Ψ1(k−1).

Summarizing, if C in (3.4) exhibits gk(u) = uak−1 , k = 1, . . . , d, and de�nes a copula

for any d ≥ 2, it can be constructed in two quite di�erent ways. On the one hand,

C is the survival copula of (X1, . . . , Xd) in (3.1) with exponentially distributed shocks

ZE . On the other hand, it is the survival copula of the random vector (X1, . . . , Xd)

de�ned in (3.20) when choosing {Λt}t≥0 to be a killed Lévy subordinator. It is well-

known (see also Section 2.4) that within the class of increasing additive processes, Lévy

subordinators are distinguished by the feature of stationary increments. Besides, the

exponential distribution is the only continuous law on (0,∞) exhibiting the lack-of-

memory property (see e.g. Marsaglia and Tubilla (1975)), i.e. X ∼ Exp(λ) satis�es the

distinctive condition P(X > x + t|X > t) = P(X > x) for all x, t > 0. Thus, from

an algebraic point of view, the coherence between the minimum construction in (3.1)

and the �rst-passage time setup in (3.20) indicates that the i.i.d. property of the Lévy

subordinator's increments translates to the memoryless property of the shock distribution

functions.
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4 Self-decomposability on the half-line

The analysis of extendible Marshall�Olkin distributions in Section 3.6 has shown that

there is an intimate relationship between completely monotone sequences and Bernstein

functions Ψ. However, the connection has solely referred to the values of Ψ on the discrete

grid N0, which is why it could not be used to describe Bernstein functions distinctively.

In the current chapter, we consider a di�erent class of copulas that is parameterized

by one single self-decomposable Bernstein function, yet involves this function's values

on the whole domain. As a result, it is possible to derive new characterization results

located in the area of self-decomposable probability measures on [0,∞). The chapter

builds on [Mai, Schenk, Scherer (2015c)] and is structured as follows: Section 4.1 recalls

self-decomposability and reveals di�erent accesses to this concept. In Section 4.2, two

novel characterizations of self-decomposable Bernstein functions are derived. One of

these characterizations is given in terms of a multivariate distribution function termed

Sato�frailty copula. Section 4.3 analyzes this copula class with respect to its properties

(see Section 4.3.1), simulation routines (see Section 4.3.2), and some examples involving

the (self-decomposable) Gamma distribution (see Section 4.3.3).

4.1 De�nition and alternative representations

Self-decomposable laws constitute a proper subfamily of in�nitely divisible laws. For

a random variable X on a probability space (Ω,F ,P), they are characterized by the

property (see, e.g., Jurek and Yor (2004))

X ∼ π, π self-decomposable

⇔ ∀c ∈ (0, 1)∃ random variable Y independent of X s.t. X
d
= cX + Y . (4.1)

The set of self-decomposable Bernstein functions arises as the set of Laplace exponents

of self-decomposable probability laws on [0,∞), denoted SD[0,∞) in the sequel.
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There are di�erent ways to access self-decomposable probability laws on the real line.

Apart from the classical de�nition (4.1), Lévy (1937) and Khintchine (1938) introduce

the so-called class L distributions (which subsequently have been found to coincide with

the set of self-decomposable distributions) arising as limit distributions of shifted and

scaled sums of an in�nite sequence of independent random variables. More precisely,

a distribution function F on Rd is said to belong to class L if there exists a sequence

{Zk}k∈N of independent random vectors on Rd and �suitable� sequences {bk}k∈N, {ck}k∈N
with bk > 0, ck ∈ Rd, k ∈ N, such that the distribution function of cn+1/bn

∑n
k=1 Zk con-

verges to F in distribution for n→∞. A special case is the common central limit theorem

which states that for i.i.d. random variables {Zk}k∈N with �nite variance Var(Z1) <∞,

the scaled sum converges to a normal distribution when choosing bn =
√
nVar(Z1)

and cn = −nE[Z1]. More details and the equivalence to self-decomposable probability

measures are provided in (Sato, 1999, Theorem 15.3, p. 91).

A di�erent approach relies on additive processes as introduced in Section 2.4. Wolfe

(1982) analyzes a generalized Ornstein�Uhlenbeck process {Ot}t≥0 given by the stochas-

tic di�erential equation dOt = −γ Ot dt + dLt, γ > 0, where {Lt}t≥0 is a real-valued

Lévy process. As a main result, he shows that {Ot}t≥0 converges in law to a random

variable for t → ∞ if and only if E[max{log(|L1|), 0}] < ∞, and that the resulting set

of random variables coincides with the set of self-decomposable random variables on the

real line. Jurek and Vervaat (1983) generalize these �ndings to real separable Banach

spaces. Related results can also be found in Sato and Yamazato (1984).

The crucial connection for the derivations in the present manuscript is the relation be-

tween self-decomposable probability laws and self-similar additive processes (see Section

2.4.3). A key result is (Sato, 1999, Theorem 16.1, p. 99), stating that the marginal

distribution of an H-Sato process is self-decomposable at any time and that, conversely,

for any self-decomposable probability law π on R and any H > 0, there is a (unique in

law) real-valued H-Sato process {Xt}t≥0 such that X1 ∼ π. Thus, if we focus on self-

decomposable probability laws π ∈ SD[0,∞) on the half-line, then associated with each

pair (π,H), H > 0, there exists a uniqueH-Sato subordinator {Λt}t≥0 with Λ1 ∼ π. This
characterization and the previous approach via stochastic integrals are elegantly uni�ed

in Jeanblanc et al. (2002). As an application in practice, Carr et al. (2007) embed Sato

processes in stock price models used for option pricing and point out in an empirical

study that the �tting performance of the corresponding models is quite encouraging.

Summing up, self-decomposable probability laws in many respects form an interesting

subclass of in�nitely divisible laws. The present chapter provides new characteriza-
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4.2 Two novel characterizations

tions of SD[0,∞), analytically in terms of monotonicity conditions for self-decomposable

Bernstein functions Ψ and probabilistically in terms of an exchangeable exogenous shock

model. The copula of the corresponding random vector turns out to be quite tractable

and is analyzed in more detail. Among others, it may be used to model dependent default

times in a multivariate setting. This potential application is picked up in Chapter 5.

4.2 Two novel characterizations

The starting point for the self-decomposability results in the present chapter is Proposi-

tion 3.5.1, which shows that additive�frailty copulas constitute an (extendible) subclass

of exchangeable exogenous shock models. With the proceeding in the present paragraph

potentially being applicable to derive characterizations of other mathematical objects as

well, we outline the fundamental line of reasoning underlying the upcoming computa-

tions.

(a) Considering an arbitrary increasing additive process Λ = {Λt}t≥0 with limt→∞ Λt =

∞ (for instance one of the families depicted in Section 2.4), we know that CΛ,d as

de�ned in Proposition 3.5.1 is a copula corresponding to an exchangeable exoge-

nous shock model for any d ≥ 2.

(b) Consequently, Λ satis�es the equivalence conditions stated in Theorem 3.3.1.

(c) Reversely, do the conditions in the theorem even characterize the stochastic process

Λ in concern?

When regarding H-Sato subordinators Λ = {Λt}t≥0, we already know due to Sec-

tion 2.4.3 that Λ is (uniquely in law) determined by the corresponding familiy {Ψt}t≥0 of

Bernstein functions satisfying Ψt(x) := Ψ1(tH x) for all x, t ≥ 0 and a self-decomposable

Bernstein function Ψ1. Executing steps (a) − (c) above and translating the conditions

for Λ into requirements for Ψ1 yields the following main �nding of the present chapter.

Theorem 4.2.1 (Characterization of self-decomposability on the half-line)

Let ψ : [0,∞) → (0, 1] be continuous and strictly decreasing with ψ(0) = 1 and with

limx→∞ ψ(x) = 0. The following statements are equivalent:

(i) ψ = exp(−Ψ) for a self-decomposable Bernstein function Ψ.
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(ii) For all k ∈ N0 and j ∈ N, with Ψ := − log(ψ), it holds that

x 7→ Aj,k(x) :=

j∑
i=0

(
j

i

)
(−1)i Ψ

(
(k + i)x

)
is decreasing in [0,∞). (4.2)

(iii) For every d ≥ 2, the function CψΛ,d : [0, 1]d → [0, 1],

CψΛ,d(u1, . . . , ud) : =
d∏

k=1

gk(u(k)),

is a copula, where gk : [0, 1]→ [0, 1], k = 1, . . . , d, is de�ned by

gk(u) : =


ψ
(
k ψ−1(u)

)
ψ
(

(k−1)ψ−1(u)
) , u > 0,

0, u = 0.

Theorem 4.2.1 provides two interesting insights. On the one side, it extends the corre-

spondence results between multivariate distributions and transforms of univariate prob-

ability laws derived for (a) Archimedean copulas and Laplace transforms, see Kimberling

(1974); Marshall and Olkin (1988); McNeil and Ne²lehovà (2009) and the other references

mentioned in Section 2.3.2 respectively Theorem 2.3.13, and (b) Marshall�Olkin distri-

butions and Bernstein functions, see the example in Section 3.6 and Mai and Scherer

(2009b); Ressel (2011, 2013). Comparing the �ndings to Theorem 2.3.13, instead of char-

acterizing extendible Archimedean copulas in terms of completely monotone functions,

the new result establishes a connection between extendible copulas of the form

C(u1, . . . , ud) =

d∏
k=1

ψ
(
k ψ−1(u(k))

)
ψ
(
(k − 1)ψ−1(u(k))

) , u1, . . . , ud ∈ [0, 1],

and the shape of the copula-generating function ψ. As an additional constraint compared

to generators of extendible Archimedean copulas, ψ not only has to coincide with the

Laplace transform of an in�nitely divisible, but a self-decomposable random variable on

[0,∞).

On the other side, Theorem 4.2.1.(ii) provides a new perspective towards the dissociation

of self-decomposable Bernstein functions from general ones. So far, self-decomposable

Bernstein functions Ψ have been described by the special structure of the Lévy measure

in (2.11), see Section 2.4.3. This distinction is �lifted up� to the behavior of the function

92



4.2 Two novel characterizations

Ψ itself. It is known (see (Gnedin and Pitman, 2008, Corollary 4.2)) that the sequence

{Ψ(k)}k∈N of an arbitrary Bernstein function Ψ is completely alternating, meaning that

j∑
i=0

(−1)i
(
j

i

)
Ψ(k + i) ≤ 0 for all k ∈ N0, j ∈ N.

In terms of Aj,k, this is equivalent to Aj,k(1) ≤ 0 for all k ∈ N0, j ∈ N. Given that

Ψ(0) = 0 and therefore Aj,k(0) = 0, the characterizing property (4.2) establishes that Ψ

is self-decomposable if and only if, additionally, Aj,k is interpolated in such a way that

it becomes decreasing in [0,∞). Another perspective on (4.2) can be given in terms of

complete monotonicity. Aj,k being decreasing is equivalent to

j∑
i=0

(
j

i

)
(−1)i

(
Ψ
(
(k + i)x

)
−Ψ

(
(k + i) y

))
≥ 0, 0 ≤ x ≤ y.

This means that the sequence {ax,yk }k∈N0 , a
x,y
k := Ψ

(
k x
)
−Ψ

(
k y
)
, is completely mono-

tone for any pair (x, y) ∈ [0,∞)2 with x ≤ y.

We now proceed to the proof of Theorem 4.2.1.

Remark 4.2.2 (Structure of the proof of Theorem 4.2.1)

(i)⇒ (iii) Any self-decomposable Bernstein function Ψ can be connected to an H-Sato

subordinator Λ = {Λt}t≥0. Considering the corresponding additive�frailty

construction in (3.20), Propositon 3.5.1 shows that CψΛ,d = CΛ,d.

(i)⇒ (ii) Due to (i) ⇒ (iii), we know that CψΛ,d is a copula. Therefore, one could

directly apply the equivalence (i)⇔(iii) in Theorem 3.3.1 and deduce that

in order for the respective functions Hj,k to be elements of D, Aj,k must

be decreasing. However, we will proceed di�erently. The major distinction

between copulas CψΛ,d and the superclass in (3.4) is that for Ψ being a self-

decomposable Bernstein function, the gk in the de�nition of CψΛ,d are di�er-

entiable. Due to this structural simpli�cation, we partially replicate the proof

of (ii)⇔(iii) in Theorem 3.3.1, yet shorten it massively. As a byproduct, for

the case of di�erentiable functions gk, this �elegant� version of the proof also

veri�es the rather complicated general proceeding.

(ii)⇒ (i) Due to decreasingness of Aj,k, the di�erence Aj,k(x)−Aj,k(y) is non-negative

for any 0 ≤ x < y < ∞. By relating these di�erences to completely mono-

tone sequences and by relying on an auxiliary lemma and classical results on

the conjunction of completely monotone sequences and absolutely monotonic

functions (which are de�ned in the sequel), the claim follows.
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(iii)⇒ (i) The copula-induced measure dCψΛ,d assigns non-negative mass to any d-box

on [0, 1]d. Similarly to the proof of (ii) ⇒ (i), the resulting inequalities can

be a�liated to completely monotone structures and yield the required self-

decomposability of Ψ.

Proof (Proof of Theorem 4.2.1)

(i)⇒ (iii): Assume that ψ = exp(−Ψ1) with a self-decomposable Bernstein function Ψ1.

As pointed out in Section 2.4.3, for every H > 0, there exists an H-Sato subordinator

{Λt}t≥0 with L[Λt] = exp(−Ψt) for a family {Ψt}t≥0 of Bernstein functions satisfying

Ψt(x) = Ψ1(tH x) for all x, t ≥ 0. De�ne a sequence {Xk}k∈N of random variables by

the additive�frailty model

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k ∈ N.

By Proposition 3.5.1, the copula CΛ,d has the form (3.4) for all d ≥ 2, with gk, k =

1, . . . , d, given by

gk(u) : = exp
(
−ΨF̄−1

1 (u)(k) + ΨF̄−1
1 (u)(k − 1)

)
, k ∈ N,

F̄1(x) = e−Ψx(1) (Ψx(1)=Ψ1(xH))
= e−Ψ1(xH).

Plugging F̄−1(u) =
(
Ψ−1

1 (− log u)
)1/H into gk yields

gk(u) = exp
(
−Ψ(

Ψ−1(− log u)
)1/H (k) + Ψ(

Ψ−1(− log u)
)1/H (k − 1)

)
= exp

(
−Ψ1

(
kΨ−1

1 (− log u)
)

+ Ψ1

(
(k − 1) Ψ−1

1 (− log u)
))

=
ψ
(
k ψ−1(u)

)
ψ
(
(k − 1)ψ−1(u)

) .
By de�nition of g1, it holds that g1(0) = 0. As the value of gk(0) has no in�uence on

CΛ,d for k ≥ 2, part (iii) of Theorem 4.2.1 is established.

(i) ⇒ (ii): Let Ψ be a self-decomposable Bernstein function and de�ne ψ = exp(−Ψ).

By the proof of (i) ⇒ (iii) above, CψΛ,d is a copula for all d ≥ 2. Applying Theorem

3.3.1.(ii), for all u, v ∈ [0, 1], u < v, it holds that

j∑
i=0

(−1)i
(
j

i

) i∏
l=1

gl+k(u)

j∏
l=i+1

gl+k(v) ≥ 0, k ∈ N0, j ∈ N.

We can rewrite this inequality as

j−1∑
i=0

(−1)i
(
j − 1

i

)(
gk+1+i(v)− gk+1+i(u)

) i∏
l=1

gk+l(u)

j∏
l=i+2

gk+l(v) ≥ 0.
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4.2 Two novel characterizations

Dividing by (v− u)
∏j
l=1 gk+l(u), letting v approach u, and using the di�erentiablity1 of

gm,m ∈ {k + 1, . . . , k + j}, it follows that

j−1∑
i=0

(−1)i
(
j − 1

i

)(
gk+i+1(u)

)′
gk+i+1(u)

=

j−1∑
i=0

(−1)i
(
j − 1

i

)(
log
(
gk+i+1(u)

))′

=

(
log
( j−1∏
i=0

(ψ((k + 1 + i)ψ−1(u)
)

ψ
(
(k + i)ψ−1(u)

) )(−1) (j−1
i )))′

=

( j−1∑
i=0

(−1)i
(
j − 1

i

)(
−Ψ

(
(k + i+ 1)ψ−1(u)

)
+ Ψ

(
(k + i)ψ−1(u)

)))′

=
( j∑
i=0

(−1)i
(
j

i

)
Ψ
(
(k + i)ψ−1(u)

))′
≥ 0.

As ψ and, thus, ψ−1 are continuous and strictly decreasing by assumption, we deduce

that

x 7→ Aj,k(x) :=

j∑
i=0

(−1)i
(
j

i

)
Ψ
(
(k + i)x

)
is decreasing in [0,∞)

for all k ∈ N0, j ∈ N.

(ii) ⇒ (i): Let Aj,k be decreasing for all k ∈ N0, j ∈ N. Consequently, for arbitrary

x, y ∈ [0,∞), x < y, one has

j∑
i=0

(
j

i

)
(−1)i

(
Ψ
(
(k + i)x

)
−Ψ

(
(k + i) y

))
≥ 0,

such that the sequence {Ψ(k x) − Ψ(k y)}k∈N0 is completely monotone. By (Lorch and

Newman, 1983, Lemma 1), if f is an absolutely monotonic2 function on [0,∞), and

{ak}k∈N0 a completely monotone sequence, the transformation {f(ak)}a∈N0 again yields a

completely monotone sequence. Thus, by applying the absolutely monotonic function x 7→
exp(x) to {Ψ(k x) − Ψ(k y)}k∈N0, it follows that the sequence {ψ(k y)/ψ(k x)}k∈N0 , ψ =

exp(−Ψ), is completely monotone for any x, y ∈ [0,∞), x < y. This implies that

{ψ(q k)/ψ(c q k)}k∈N0 is completely monotone for all c ∈ (0, 1) and all q ∈ Q ∩ [0,∞).

Finally, applying Lemma 2.3.9, x 7→ ψ(x)/ψ(c x) is a completely monotone function for

all c ∈ (0, 1) and, according to (Schilling et al., 2010, De�nition 5.12), it holds that

1Di�erentiablity is given by assumption as gm consists of (self-decomposable) Bernstein functions.
2A function f : R → R is called absolutely monotonic in the interval (a, b), a, b ∈ R, a < b, if it has

non-negative derivatives of all orders in (a, b). If, in addition, f is continuous in a respectively b, it

is called absolutely monotonic in [a, b) respectively (a, b].
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ψ = exp(−Ψ) for a self-decomposable Bernstein function Ψ.

(iii)⇒ (i): Let {Uk}k∈N be a sequence of random variables with (U1, . . . , Ud) ∼ CψΛ,d for
all d ≥ 2. Applying (i)⇔ (ii) of Theorem 3.3.1, for all u, v ∈ [0, 1], u < v, k ∈ N0, j ∈ N,
it holds that

Gj,k(u, v) =

j∑
i=0

(
j

i

)
(−1)i

i∏
l=1

gl+k(u)

j∏
l=i+1

gl+k(v) ≥ 0.

Due to the telescope structure of
∏i
l=1 gl+k(u) respectively

∏j
l=i+1 gl+k(v) for the given

form of gk, the inequality simpli�es to

Gj,k(u, v) =
ψ
(
(k + j)ψ−1(v)

)
ψ
(
k ψ−1(u)

) j∑
i=0

(−1)i
(
j

i

)
ψ
(
(k + i)ψ−1(u)

)
ψ
(
(k + i)ψ−1(v)

) ≥ 0.

As 0 < u < v ≤ 1 implies∞ > ψ−1(u) > ψ−1(v) ≥ 0, we get for arbitrary∞ > b > a ≥ 0

that

j∑
i=0

(−1)i
(
j

i

)
ψ
(
(k + i) b

)
ψ
(
(k + i) a

) ≥ 0.

Let c ∈ (0, 1) and q ≥ 0 be arbitrary and set b := q, a := c q ≤ b. Then we obtain complete

monotonicity of the sequence {ψ(k q)/ψ(k c q)}k∈N0. With Lemma 2.3.9, it follows that

x 7→ ψ(x)/ψ(c x) is completely monotone for c ∈ (0, 1). By De�nition 5.12 in Schilling

et al. (2010), the claim follows. �

4.3 Sato�frailty copulas

In Section 3.5, the copula CΛ,d arising from the �rst-passage time construction in Propo-

sition 3.5.1 is termed additive�frailty copula, referring to the additive process Λ param-

eterizing the multivariate distribution function. The proof of Theorem 4.2.1 has shown

that the copula CψΛ,d in (iii) arises in a similar way by considering an H-Sato subordi-

nator for Λ. As a consequence, CψΛ,d is termed Sato�frailty copula in the sequel. The

self-similarity exponent H can be dropped in the denomination as we have seen that

for a �xed self-decomposable Bernstein function Ψ and the corresponding law π with

Lπ = ψ := exp(−Ψ), any H-Sato subordinator {Λt}t≥0 with Λ1 ∼ π leads to the same

copula. The independence of H is simply a result of the copula-inherent normalization
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4.3 Sato�frailty copulas

to uniform marginal distributions. Another normalization e�ect results from the ex-

pressions ψ
(
k ψ−1(u)

)
appearing in the de�nition of a Sato�frailty copula: Given that

ψ = exp(−Ψ) for some self-decomposable Bernstein function Ψ, it holds that

ψ
(
k ψ−1(u)

)
= exp

(
−Ψ

(
kΨ−1(− log u)

))
, u ∈ (0, 1].

De�ning the stretched/compressed (self-decomposable) Bernstein functionΨ̃ by Ψ̃(x) :=

Ψ(c x), x ≥ 0, for a constant c > 0, it follows that Ψ̃−1(x) = (1/c) Ψ−1(x), x ≥ 0.

Therefore, when considering the Sato�frailty copula Cψ̃Λ,d with ψ̃ := exp(−Ψ̃), it holds

that

ψ̃
(
k ψ̃−1(u)

)
= exp

(
− Ψ̃

(
k Ψ̃−1(− log u)

))
= exp

(
−Ψ

(
c k (1/c) Ψ−1(− log u)

))
= exp

(
−Ψ

(
kΨ−1(− log u)

))
= ψ

(
k ψ−1(u)

)
, u ∈ (0, 1]. (4.3)

As a consequence, the copulas CψΛ,d and C
ψ̃
Λ,d coincide and we can always stretch respec-

tively compress the Bernstein function in the construction, thus eliminating one degree

of freedom in the parameterization of Ψ.

4.3.1 Statistical properties and connection to Archimedean copulas

This section investigates Sato�frailty copulas CψΛ,d w.r.t. the classes and structural prop-

erties introduced in Section 2.2.2 and the concordance measures in Section 2.2.3. In-

terestingly, as it turns out, Sato�frailty and extendible Archimedean copulas share a

variety of similarities. This coherence is elucidated in the present paragraph and illus-

trated graphically in Section 4.3.3.

By construction of the additive�frailty model behind, we already know that Sato�frailty

copulas are extendible. Applying the general result in Proposition 3.4.1 for extreme-value

copulas corresponding to exchangeable exogenous shock models, CψΛ,d is an extreme-value

copula for any d ≥ 2 if and only if

gk(u) :=
ψ
(
k ψ−1(u)

)
ψ
(
(k − 1)ψ−1(u)

) = uak−1 , u ∈ [0, 1], k ∈ N,

for a completely monotone sequence {ak}k∈N0 with a0 = 1. The corresponding family of

(extendible) copulas has already been treated in Sections 2.3.3 and 3.6. It coincides with

the set of extendible MO copulas, which results from plugging a Lévy subordinator Λ

into the additive�frailty construction in Proposition 3.5.1. In (Sato, 1999, Remark 16.2,

p. 100), it is outlined that an H-Sato subordinator with corresponding Bernstein family
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4.3.1 Statistical properties and connection to Archimedean copulas

{Ψt}t≥0 is a Lévy subordinator if and only if H ≥ 1 and Ψ1(x) = β x1/H , β > 0, x ≥ 0.

Recall that this Bernstein function has already been introduced in Section 2.4.5 and

corresponds to the positive stable distribution. Therefore, the intersection of Lévy and

Sato subordinators is called α-stable (Lévy) subordinator. The following proposition

states that Ψ(x) = β xα, α ∈ (0, 1], is not only su�cient, but also necessary for CψΛ,d to

be of extreme-value type for any d ≥ 2.

Proposition 4.3.1 (Extreme-value Sato�frailty copulas)

A Sato�frailty copula CψΛ,d satis�es the extreme-value property for any d ≥ 2 if and only

if ψ = exp(−Ψ), Ψ(x) = β xα, α ∈ (0, 1], β > 0, x ≥ 0.

Proof

Before proceeding with the proof, we introduce the following auxiliary lemma in Mai and

Scherer (2014) addressing processes that are weakly in�nitely divisible with respect to

time3 (weak IDT).

Lemma 4.3.2 (Weak IDT processes and Bernstein functions)

Let {Ht}t≥0 be a stochastic process which is right-continuous, non-negative, and non-

decreasing with H0 = 0 and limt→∞Ht = ∞. {Ht}t≥0 is weak IDT if and only if there

exists a non-zero Bernstein function Ψ : [0,∞)→ [0,∞) such that

E
[
e−xHt

]
= e−tΨ(x), x, t ≥ 0.

Proof

See (Mai and Scherer, 2014, Theorem 1.1). �

Moreover, Remark (b) on page 6 and Theorem 5.3 in Mai and Scherer (2014) imply

that the survival copula CΛ,d of (X1, . . . , Xd) as constructed in Proposition (3.5.1) is an

extreme-value copula for any d ≥ 2 if and only if there exists a strictly increasing function

h : [0,∞) → [0,∞) with h(0) = 0 such that Λ̃ = {Λ̃t}t≥0, Λ̃t := Λh(t), is strong IDT4.

As additive processes are described uniquely in law by their marginal distributions (see

Section 2.4), weak and strong IDT property coincide in the present case. Now consider

3{Λt}t≥0 is called weak IDT if

Λt
d
= Λ

(1)

t/n + . . . + Λ
(n)

t/n for all t ≥ 0 and n ∈ N,

where {Λ(k)
t }t≥0, k = 1, . . . , n, are independent copies of {Λt}t≥0.

4A weak IDT process {Λt}t≥0 is called strong IDT if it additionally satis�es

{Λt}t≥0
d
=
{

Λ
(1)

t/n + . . . + Λ
(n)

t/n

}
t≥0

for all t ≥ 0, n ∈ N.
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4.3 Sato�frailty copulas

an H-Sato subordinator {Λt}t≥0 characterized by L[Λ1] = exp(−Ψ). We are going to

show that {Λ̃t}t≥0, Λ̃t = Λh(t) for a strictly increasing function h with h(0) = 0, is a

weak IDT process if and only if there exists an α ∈ (0, 1] such that h(t) = h(1) t1/(αH)

and E[exp(−xΛ1)] = exp(−β xα), β > 0, x ≥ 0.

The �if �-part follows from Lemma 4.3.2 since under the stated conditions,

E
[
e−x Λ̃t

]
= E

[
e−xΛh(t)

]
= E

[
e−xh(t)H Λ1

]
= e−t β h(1)αH xα , x, t ≥ 0,

and Ψ : [0,∞) → [0,∞),Ψ(x) = β̃ xα, β̃ := β h(1)αH , de�nes a proper Bernstein func-

tion for α ∈ (0, 1] and β̃ > 0. For the �only if �-part, assume that {Λ̃t}t≥0 is weak IDT.

Denote by Ψ the Bernstein function associated with Λ1, i.e. E[exp(−xΛ1)] = exp(−Ψ(x))

for x ≥ 0. Due to Lemma 4.3.2, there exists a Bernstein function Ψ̃ such that

e−t Ψ̃(x) = E
[
e−x Λ̃t

]
= E

[
e−xΛh(t)

]
= E

[
e−xh(t)H Λ1

]
= e−Ψ(xh(t)H). (4.4)

By strict monotonicity of h, the inverse function h−1 exists and the function h̃ : [0,∞)→
[0,∞), h̃(t) := h(t)H , possesses an inverse h̃−1 : [0,∞) → [0,∞), h̃−1(t) = h−1(t1/H),

for all t ≥ 0. Thus, for any u > 0, it holds that

Ψ(x) = Ψ
(x
u
h̃
(
h̃−1(u)

))
= Ψ

(x
u
h
(
h−1(u1/H)

)H) (4.4)
= h̃−1(u) Ψ̃

(x
u

)
(4.4)
= h̃−1(u) Ψ

(x
u
h(1)H

)
= h̃−1(u) Ψ

(x
u
h̃(1)

)
. (4.5)

As shown in Section 2.4.2, there exists a (unique in law) Lévy subordinator {Lt}t≥0

associated with Ψ by E[exp(−xL1)] = exp(−Ψ(x)) for x ≥ 0. In addition, for �xed

u > 0, the Bernstein function Ψ(u) : [0,∞) → [0,∞),Ψ(u)(x) = h̃−1(u) Ψ(x h̃(1)/u),

corresponds to the Lévy subordinator {L(u)
t }t≥0, L

(u)
t := h̃(1)/uLh̃−1(u) t. Equation (4.5)

and Sato (1999), Theorem 7.10. (iii), imply that

{Lt}t≥0
d
=
{ h̃(1)

u
Lh̃−1(u) t

}
t≥0(

a:=h̃−1(u)
)

⇔ {La t}t≥0
d
=
{ h̃(a)

h̃(1)
Lt

}
t≥0
⇔ {La t}t≥0

d
=
{h(a)H

h(1)H
Lt

}
t≥0

. (4.6)

It is well-known (see for instance (Sato, 1999, Remark 16.2)) that the only non-decreasing

Lévy process {Lt}t≥0 with the selfsimilarity property (4.6) is an α-stable Lévy subor-

dinator with index α ∈ (0, 1] such that h̃(a)/h̃(1) = a1/α. Therefore, h is given by

h(t) = h(1) t1/(αH). Last but not least, substituting h̃−1(u) = (u/h̃(1))α, u ≥ 0, in

Equation (4.5) yields

Ψ(x) =
( u

h̃(1)

)α
Ψ
(x
u
h̃(1)

) (ũ:=h̃(1)/u
)

= ũ−α Ψ(x ũ).
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4.3.1 Statistical properties and connection to Archimedean copulas

Setting x = 1, it follows that

Ψ(ũ) = Ψ(1) ũα
β:=Ψ(1)

= β ũα, ũ ≥ 0,

and the claim is established. �

Recall that our characterization result for Sato�frailty copulas (see Theorem 4.2.1)

represents an analogue to Kimberling's Theorem (see Theorem 2.3.13) for extendible

Archimedean copulas. While an Archimedean generator ψ de�nes an Archimedean cop-

ula in any dimension d ≥ 2 if and only if ψ is the Laplace transform of a positive random

variable, the function ψ de�nes an extendible family CψΛ,d of Sato�frailty copulas via

L[Λ1] = ψ if and only if ψ is the Laplace transform of a self-decomposable positive

random variable. Interestingly, the result on extreme-value Sato�frailty copulas yields

another connection to Archimedean copulas. As we have just shown, Sato�frailty copu-

las CψΛ,d are of extreme-value type in any dimension if and only if ψ = exp(−β xα), β >

0, α ∈ (0, 1], i.e. ψ is the Laplace transform of a positive stable random variable. The

same kind of result exists for Archimedean copulas (see Genest and Rivest (1989)), which

also exhibit the extreme-value property for all d ≥ 2 if and only if the generator ψ is the

Laplace transform of a positive stable random variable5.

Last but not least, the similarity between Sato�frailty and (extendible) Archimedean

copulas manifests in another structural property, namely the behavior in the tails. (Char-

pentier and Segers, 2009, p. 1525) point out that for bivariate Archimedean copulas CA2
with generator ψ, the respective lower tail dependence coe�cient introduced in De�nition

2.2.16 is given by

λL := lim
u↘0

CA2 (u, u)

u
= 2

− 1
θ0 , (4.7)

where θ0 := − lims↘0 s (ψ−1)
′
(s)/ψ−1(s), provided the limit exists in [0,∞]. Here, 2−1/θ0

is de�ned as 0 or 1 if θ0 equals 0 or ∞, respectively.

In Equation (2.8), it has been demonstrated that extendible Archimedean copulas arise

as survival copulas of the random sequence

Xk :=
Ek
M

= inf{t ≥ 0 : tM ≥ Ek}, k ∈ N,

involving i.i.d. unit exponentially distributed random variables Ek that are independent

of an arbitrary positive random variable M . Applying a strictly increasing transforma-

tion to each Xk does not a�ect the survival copula of the corresponding random vector.
5The corresponding Archimedean copula is called Gumbel copula.
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4.3 Sato�frailty copulas

Therefore, for any H > 0, extendible Archimedean copulas equivalently arise as survival

copulas of (X̃1, . . . , X̃d), where

X̃k := X
1
H
k =

(Ek
M

) 1
H

= inf{t ≥ 0 : tHM ≥ Ek}, k ∈ N.

The resemblance to the frailty construction in Section 3.5 becomes apparent at this

point. If the distribution of the random variable M above is self-decomposable, there

exists an H-Sato subordinator {Λt}t≥0 such that M
d
= Λ1 and Λt

d
= tH Λ1 for all t ≥

0. Thus, the construction of X̃k above looks similar to the frailty�setup (3.5.1) with

H-Sato subordinators {Λt}t≥0 in the sense that the marginal distribution functions of

the processes {Λt}t≥0 and {tHM}t≥0 are the same. However, note that there is still

a substantial di�erence, since in general the processes are not equal in distribution.

Nevertheless, the following proposition outlines that the extendible Archimedean and

Sato construction result in a similar behavior of the resulting survival copula in terms of

tail dependence. The resemblance allows for a nice explicit representation of the lower

tail dependence coe�cient in the Sato�frailty setup with respect to the Lévy measure

corresponding to the in�nitely divisible random variable Λ1.

Proposition 4.3.3 (Tail dependence of Sato�frailty copulas)

Let Ψ := − log(ψ) be a self-decomposable Bernstein function, i.e. Ψ has a representation

as in (2.11), with a=0 and a Lévy density ν(dt) = k(t)/tdt such that t 7→ k(t) is

decreasing. The lower and upper tail dependence coe�cients of the bivariate Archimedean

copula CA2 with generator ψ and the Sato�frailty copula CψΛ,2 coincide. If Ψ additionally

satis�es b = 0 in (2.11) and k(0+) := limt↘0 k(t) < ∞, the lower tail dependence

coe�cient λL is given by (4.7) with θ0 = 1/k(0+).

Proof

Denote by λ
CA2
L (λ

CA2
U ) and λ

CψΛ,2
L (λ

CψΛ,2
U ) the lower (upper) tail dependence coe�cients of

CA2 and CψΛ,2, respectively. According to De�nition 2.2.16, it holds that

λ
CA2
L = lim

u↘0

CψΛ,2(u, u)

u
= lim

u↘0

ψ
(
2ψ−1(u)

)
u

= lim
u↘0

CψΛ,2(u, u)

u
= λ

CψΛ,2
L ,

λ
CA2
U = 2− lim

u↗1

1− CA2 (u, u)

1− u
= 2− lim

u↗1

1− CψΛ,2(u, u)

1− u
= λ

CψΛ,2
U ,

which establishes the equality of the tail dependence coe�cients. Now let Ψ := − log(ψ)

satisfy b = 0 and k(0+) <∞.
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4.3.1 Statistical properties and connection to Archimedean copulas

It remains to show that θ0 in (4.7) is given by θ0 = 1/k(0+). It holds that

θ−1
0 = − lim

s↘0

ψ−1(s)

s (ψ−1)′(s)
= − lim

s↘0

ψ−1(s)ψ
′
(ψ−1(s))

s

= − lim
x→∞

xψ
′
(x)

ψ(x)
= lim

x→∞
xΨ

′
(x) = lim

x→∞
x
∂

∂ x

∫ ∞
0

(1− e−x t) k(t)

t
dt

= lim
x→∞

x

∫ ∞
0

∂

∂ x
(1− e−x t) k(t)

t
dt = lim

x→∞
x

∫ ∞
0

e−x t k(t) dt

= lim
x→∞

∫ ∞
0

e−t k(t/x) dt = k(0+),

having used dominated convergence. �

As k(0+) < ∞ is equivalent to {Λt}t≥0 being �nitely active6 (see Carr et al. (2005)),

the theorem above states that for �nitely active non-decreasing Sato processes without

drift, the lower tail dependence coe�cient of the resulting copula is fully characterized

by k(0+) and equals the one induced by the respective Archimedean setup.

In addition to that, further properties of Sato�frailty copulas such as Kendall's tau,

Spearman's rho, and the singular component of CψΛ,2 can be derived in semi-closed form

as a simple integral w.r.t. the function ψ.

Proposition 4.3.4 (Kendall's tau and Spearman's rho of Sato�frailty copulas)

Kendall's tau τ
CψΛ,2

and Spearman's rho ρ
CψΛ,2

of Cψ,2 are given by

τ
CψΛ,2

= 4

∫ 1

0

ψ
(
2ψ−1(u)

)2
u

du− 1,

ρ
CψΛ,2

= 12

∫ 1

0
uψ
(
2ψ−1(u)

)
du− 3.

Moreover, for (U1, U2) ∼ CψΛ,2, it holds that

P(U1 = U2) = 2

∫ 1

0

ψ
(
2ψ−1(u)

)
u

du− 1.

Proof

The results follow from the general formulas in Section 3.2. �

6{Λt}t≥0 being �nitely active means that the process jumps �nitely often within every �nite interval.

In contrast, in�nite activity induces in�nitely many jumps in any interval.
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4.3 Sato�frailty copulas

As a mnemonic trick, note that when rewriting

P(U1 = U2) = 4

∫ 1

0

1
2 ψ
(
2ψ−1(u)

)
u

du− 1,

the probability P(U1 = U2) looks very similar to Kendall's τ , the di�erence being that

ψ
(
2ψ−1(u)

)
in the integrand is multiplied with 1/2 instead of being squared.

Summing up, there is an intimate relationship between Sato�frailty and extendible

Archimedean copulas. Similarities between Archimedean and exchangeable Marshall�

Olkin copulas of the form C(u1, . . . , ud) =
∏d
k=1 u

ak−1

(k) have already been discussed in

(Mai, 2010, Section 3.6). However, the results in the present paragraph show that within

the class of additive�frailty copulas, the Sato�frailty subclass bears a much more distinct

resemblance to the (extendible) Archimedean setup than the Lévy�frailty construction

for MO copulas in Section 3.6. Table 4.1 gives an overview on the commonalities. On a

high level, some of these analogies can be explained by the fact that the diagonal section7

S of a Sato�frailty copula CψΛ,d is given by

S(u) = CψΛ,d(u, . . . , u) =

d∏
k=1

ψ
(
k ψ−1(u)

)
ψ
(
(k − 1)ψ−1(u)

) = ψ
(
dψ−1(u)

)
,

and, thus, equals the diagonal section of an Archimedean copula CAd with generator ψ.

As an immediate consequence, being a function of the diagonal section, lower and upper

tail dependence coe�cient naturally coincide in both setups.

4.3.2 Simulation

This paragraph illustrates how to simulate copulas of type CψΛ,d and presents some para-

metric families, one of which will be used to apply and verify the statistical results derived

in the previous section. For Sato�frailty copulas, Algorithm 3.5.2 reads as follows.

Algorithm 4.3.5 (Simulation of d-dimensional copulas CψΛ,d)

1. Simulate d independent, unit exponentially distributed random variables E1, . . . , Ed.

2. Simulate one path of the 1-Sato subordinator {Λt}t≥0 corresponding to ψ until

Λt ≥ max{E1, . . . , Ed}.

7Given a copula C : [0, 1]d → [0, 1], the diagonal section S : [0, 1] → [0, 1] of C is de�ned by S(u) :=

C(u, . . . , u).
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4.3 Sato�frailty copulas

3. Compute Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d.

4. Set Uk := ψ(Xk), k = 1, . . . , d, and return (U1, . . . , Ud).

The crucial task in Algorithm 3.5.2 is the simulation of {Λt}t≥0. One possible approach

can be deduced from the general results in Marsaglia and Tsang (1984). As an alternative,

sampling the independent, yet not necessarily identically distributed increments of a

Sato process can be simpli�ed by using the connection to Lévy processes. Following

(Jeanblanc et al., 2002, Theorem 1), every H-Sato process {Λt}t≥0 corresponds to a

Lévy process {Lt}t≥0 with E[log(max{1, |Ls|})] < ∞ for all s ≥ 0 (and vice versa) via

the relationship

Λr =


∫∞

log(1/r) e
−tH dL

(−)
t , 0 ≤ r ≤ 1,

Λ1 +
∫ log(r)

0 etH dL
(+)
t , r ≥ 1,

(4.8)

where {L(−)
t }t≥0, {L(+)

t }t≥0 are two independent copies of {LtH}t≥0. In Jurek and Yor

(2004), it is pointed out that the coherence between {Λt}t≥0 and {LtH}t≥0 can be ex-

pressed in terms of the Fourier transforms

log
(
E
[
ei tΛ1

])
=

∫ t

0
log
(
E
[
ei v LH

])dv
v
, t ∈ R,

log
(
E
[
ei t LH

])
= t

∂

∂ t
(log

(
E
[
ei tΛ1

])
), t ∈ R.

On the level of Laplace exponents for Sato and Lévy subordinators, this translates to

log
(
E
[
e−tΛ1

])
=

∫ t

0
log
(
E
[
e−v LH

])dv
v
, t ≥ 0,

log
(
E
[
e−t LH

])
= t

∂

∂ t
(log

(
E
[
e−tΛ1

])
), t ≥ 0. (4.9)

The decomposition in Equation (4.8) implies that a Sato process is in�nitely active,

meaning that it jumps in�nitely often on every compact interval, if and only if the

underlying Lévy process is. In the in�nitely active case, the path of {Lt}t≥0 can not

be simulated exactly and has to be approximated. In case of �nite activity, the Lévy

process is of compound Poisson type and exact simulation is possible, provided that the

jump size distribution can be simulated accurately. By means of Equation (4.8), it holds

that

Λr − Λr0 =

∫ log(1/r0)

log(1/r)
e−tH dL

(−)
t for r0 < r ≤ 1,

Λr − Λ1 =

∫ log(r)

0
etH dL

(+)
t for r ≥ 1. (4.10)

Consequently, the sampling approach can be realized as follows.
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4.3.3 Examples

Algorithm 4.3.6 (Simulation of �nitely active Sato processes)

1. Sample Λr0 for very small r0 (which can be achieved easily if the Fourier, respec-

tively Laplace transform of Λr0 is known analytically).

2. Simulate the jump times and heights of {L(−)
t }t≥0 on [0, log(1/r0)].

3. If max{E1, . . . , Ed} > Λ1, subsequently simulate the jump times and heights of

{L(+)
t }t≥0 and extract {Λt}t≥0 for t > 1 from (4.10) until Λt ≥ max{E1, . . . , Ed}.

4.3.3 Examples

We can insert any self-decomposable Bernstein function Ψ in ψ = exp(−Ψ) to de�ne

a valid Sato�frailty copula CψΛ,d in arbitrary dimension d ≥ 2. A wide range of (not

necessarily self-decomposable) Bernstein functions can be found in (Schilling et al., 2010,

p. 218-277). To begin with, we focus on the Gamma distribution introduced in Section

2.4.5 with corresponding Bernstein function

ΨGa
β,η(x) =

∫ ∞
0

(1− e−x t) β exp(−η t)
t

dt︸ ︷︷ ︸
:=ν(dt)

= β log
(

1 +
x

η

)
, x, β, η > 0.

We have already noted that ν has the form ν(dt) = k(t)/tdt, with k(t) := β exp(−η t)
being decreasing in t, implying ΨGa

β,η to be self-decomposable. Moreover, as pointed out

at the beginning of Section 4.3, the associated Sato�frailty copula C
exp(−ΨGa

β,η)

Λ,d is invariant

w.r.t. stretching or compressing ΨGa
β,η. Therefore, the parameter η has no in�uence on

the copula and

C
exp(−ΨGa

β,η)

Λ,d (u1, . . . , ud) = C
exp(−ΨGa

β,1)

Λ,d (u1, . . . , ud)

=

( d∏
k=1

1 + (k − 1)
(
u
− 1
β

(k) − 1
)

1 + k
(
u
− 1
β

(k) − 1
)

)β
, u1, . . . , ud ∈ [0, 1],

which in the bivariate case simpli�es to

C
exp(−ΨGa

β,1)

Λ,2 (u1, u2) =
u(1)(

2− u
1
β

(2)

)β .
Interestingly, the Gamma example allows to explicitly derive and interpret the Lévy

process connected to the Sato process in (4.8). Applying the relations in Equation (4.9),
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4.3 Sato�frailty copulas

the Lévy subordinator {LtH}t≥0 corresponding to the H-Sato subordinator Λ = {Λt}t≥0

is characterized by (see also Barndor�-Nielsen and Sheppard (2001))

ΨLH (t) := − log
(
E[e−t LH ]

)
= t

∂

∂ t
ΨGa
β,η(t) = t β

1

η + t
= β

(
1− η

η + t

)
, t ≥ 0.

This Bernstein function is well-known. It has already been introduced in Section 2.4.5

and is the Laplace exponent of a Compound Poisson random variable with exponen-

tially distributed jump sizes. Consequently, the associated Lévy process is a Compound

Poisson process and can be simulated e�ciently and accurately (see (Sato, 1999, p. 18

�.)). Thus, we can use either conditional sampling (for dimension d = 2) or exact path

simulation of the Sato subordinator according to Algorithm 4.3.6 by means of the under-

lying Lévy subordinator (for arbitrary d ≥ 2) to create realizations of the above copula.

Figures 4.1 and 4.2 illustrate some exemplary sample plots for dimensions d = 2 and

d = 3 and for varying values of β.

It becomes obvious that the lower the value of β, the more concentrated the samples of

(U1, U2) ∼ C
exp(−ΨGa

β,1)

Λ,2 respectively (U1, U2, U3) ∼ C
exp(−ΨGa

β,1)

Λ,3 on the diagonal of the unit

square respectively cube. This observation is in line with Proposition 4.3.4: Kendall's τ

of C
exp(−ΨGa

β,1)

Λ,2 , respectively the singular component P(U1 = U2), (U1, U2) ∼ C
exp(−ΨGa

β,1)

Λ,2 ,

are given by

τ
C

exp(−ΨGa
β,1

)

Λ,2

= 4

∫ 1

0

(
2u
− 1
β − 1

)−2β

u
du− 1,

P(U1 = U2) = 2

∫ 1

0

(
2u
− 1
β − 1

)−β
u

du− 1.

Table 4.2 depicts the resulting values for varying parameters of β. Apparently, both

Kendall's tau and the probability P(U1 = U2) are decreasing from 1 to 0 with increasing

β. The table also indicates the lower tail dependence coe�cient of the Sato�frailty

copula in the Gamma speci�cation. The general results in Section 3.2 show that the tail

dependence coe�cients of C
exp(−ΨGa

β,1)

Λ,2 are given by

λ
C

exp(−ΨGa
β,1)

Λ,2

L = g2(0+) = 2−β,

λ
C

exp(−ΨGa
β,1)

Λ,2

U = 1− g′2(1−) = lim
u↗1

u
1
β
−1

(2− u
1
β ))β+1

= 0.

Note that this validates the properties of Sato�frailty copulas derived in Section 4.3.1.

As the Lévy measure ν(dt) = k(t)/tdt, k(t) = β exp(−η t), t ≥ 0, corresponding to the
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4.3.3 Examples
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Gamma Sato−frailty copula with β=0.1
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Gamma Sato−frailty copula with β=0.5
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Gamma Sato−frailty copula with β=2.0
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Gamma Sato−frailty copula with β=10.0

Figure 4.1 500 realizations of CGa
ψ,2 for two di�erent values of β.

Gamma distribution satis�es k(0+) = β <∞, Proposition 4.3.3 states that

λ
C

exp(−ΨGa
β,1)

Λ,2

U = 2−k(0+) = 2−β.

As a last illustration, we visualize the coherence between extendible Archimedean and

Sato�frailty copulas as depicted in Section 4.3.1. We consider the self-decomposable
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4.3 Sato�frailty copulas

Gamma Sato−frailty copula with β=0.5
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Figure 4.2 500 realizations of C
exp(−ΨGa

β,1)

Λ,3 for varying values of β.

β τ
C

exp(−ΨGa
β,1

)

Λ,2

P(U1 = U2) λ
C

exp(−ΨGa
β,1)

Λ,2

L

0.01 0.9729 0.9846 0.9931

0.05 0.8762 0.9346 0.9659

0.1 0.7766 0.8762 0.9330

0.3 0.5225 0.6952 0.8123

0.5 0.3863 0.5708 0.7071

1 0.2274 0.3863 0.5000

2 0.1215 0.2274 0.2500

10 0.0250 0.0497 0.0010

100 0.0025 0.0050 0.0000

Table 4.2 Kendall's τ , P(U1 = U2), and λ
CGamma

ψ,2

L for the copula C
exp(−ΨGa

β,1)

Λ,2 and vary-

ing values of β > 0. Computations are carried out using standard Matlab

integration algorithms.

Bernstein functions corresponding to the positive stable and Inverse Gaussian distribu-

tion in Section 2.4.5. Due to the invariance of the Sato�frailty copula CψΛ,d w.r.t. stretch-

ing/compression of ψ, the following normalized Bernstein functions Ψ := − log(ψ) are

109



4.3.3 Examples

taken into account.

(i) Positive stable: ΨSt
α,1(x) = xα, 0 < α < 1, x ≥ 0.

(ii) Inverse Gaussian: ΨIG
1,η(x) =

√
2x+ η2 − η, η > 0, x ≥ 0.

As for the Gamma example, these speci�cations lead to one-parametric Archimedean and

Sato�frailty copulas. Figures 4.3 and 4.4 contrast the resulting bivariate scatterplots in

the positive stable and the Inverse Gaussian case. In order to compare Archimedean and

Sato�frailty setup, the parameter α respectively η is set to the identical value for both

copula families. At a �rst glance, the Sato�frailty and Archimedean framework look

quite diverse, an impression that is strengthened by the di�erence w.r.t. the singular

component, i.e. the diagonal of the unit square. Looking closer, however, one perceives

the indicated similarities. On the one hand, the behavior in the tails, i.e. in the left lower

and right upper corner of the unit square, is perceptible. On the other hand, making a

rough estimate on the points within the squares [0, u]×[0, u], u ∈ [0, 1], it becomes at least

plausible that it is approximately the same in the Archimedean and Sato�frailty case.

This guess is quanti�ed by Figure 4.5, which shows the diagonal section for both copula

families in the positive stable and Inverse Gaussian example. For a more meaningful and

smoother comparison, the latter plot refers to an increased sample size of 10,000.
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Figure 4.3 500 realizations of C
exp(−ΨIG

1,η)

ψ,2 (left) and the Archimedean copula

C2 (right) for the Inverse Gaussian distribution and η = 2.
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4.3 Sato�frailty copulas
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Figure 4.4 500 realizations of C
exp(−ΨSt

α,1)

ψ,2 (left) and the Archimedean copula

C2 (right) for the positive stable distribution and α = 0.3.
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Figure 4.5 Empirical diagonal section u 7→ C(u, u), u ∈ [0, 1], in the Inverse Gaussian

(left) and positive stable (right) case. The parameters are the same as in

Figures 4.3 and 4.4, however, the sample size has been set to 10,000. In

both plots, the red line indicates the diagonal section of the Sato�frailty

speci�cation, while the Archimedean setup is depicted in blue.
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5 CDO pricing with additive�frailty

copulas

This chapter demonstrates how to apply exchangeable exogenous shock models to the

pricing of CDOs in the spirit of Mai and Scherer (2009c). It is premised on [Schenk

(2011), Mai, Olivares, Schenk, Scherer (2014)]. The payo� structures of these multi-

name credit derivatives and the related index credit default swaps (index CDS) are

sketched in Section 5.1. Both instruments are basically linked to the cumulated losses

in a high-dimensional portfolio of assets. Given the mathematical complexity of the loss

distribution for large portfolios, considering the subclass of additive�frailty models in Sec-

tion 3.5 for modeling the default times is motivated. Providing a useful limit theorem

for the portfolio loss process, the special structure of the additive�frailty framework is

exploited in Section 5.3 to derive an e�cient pricing formula for CDOs when the portfolio

size tends to in�nity. The implementation of the formula for particular additive�frailty

models is based on recent results in [Bernhart, Mai, Schenk, Scherer (2015)] regarding

the Laplace inversion of Bondesson distributions and, together with the connection to

shock models, manifests the main contribution of this chapter. �Operating instructions�

for the calibration of additive�frailty models to market prices of CDOs and index CDS

are given in Section 5.4.

5.1 Multiname credit derivatives

According to (Hull, 2008, p. 525), credit derivatives refer to �contracts where the payo�

depends on the creditworthiness of one or more companies or countries�. More general,

Bielecki and Rutkowski (2001) specify them as �privately negotiated derivative securities

that are linked to a credit-sensitive asset (index) as the underlying asset (index)� where

the reference security �can be any �nancial instrument that is subject to risk of default (or,

more generally, to the credit risk)�. By credit risk, they pool the �risk associated with any

kind of credit-linked events, such as [. . . ] changes in the credit quality [. . . ], variations of
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credit spreads, and the default event�. In short, multiname credit derivatives are bilateral

contracts in which two parties agree to exchange payo�s dependent on realized losses in

an underlying portfolio. The realized loss resulting from an asset's default is essentially

described by three characteristics. First, the default time X indicates the random point

in time of the asset's bankruptcy. Second, the constantN represents the nominal invested

in the asset. Third, the �nal loss at time X might be less than the notional N due to a

recovery payment of the respective company, denoted by the (possibly random) variable

Rec. For a given pool of d assets, the total accumulated loss at time t ≥ 0, denoted

Losst, is given as the sum of the individual losses and, thus, equals

Losst =

d∑
k=1

Nk (1− Reck)1{Xk≤t}.

To facilitate the tractability of the central object Losst, one often neglects the possibility

of random, inhomogeneous recovery rates. Though this restriction is not backed by

empirical evidence (for instance, recovery rates have repeatedly found to be negatively

correlated to default frequencies, see Andersen and Sidenius (2004) and the references

therein), we proceed according to market practice and �x Reck = Rec, k = 1, . . . , d,

for a constant 0 ≤ Rec ≤ 1 (typically, one sets Rec = 0.4). In addition to that, when

considering identical nominal values and assuming a total investment of one unit to be

equally distributed among the d assets, it holds that

Losst = (1− Rec)
1

d

d∑
k=1

1{Xk≤t}︸ ︷︷ ︸
=:Lt

= (1− Rec)Lt, t ≥ 0. (5.1)

In this context, the process {Lt}t≥0 is termed portfolio loss process and denotes the

fraction of defaulted �rms in the portfolio in time. In the sequel, we always assume that

Losst is given in this simpli�ed way.

Many multiname credit derivatives essentially depend on the distribution of Lt at �xed

points in time. Two examples are index credit default swaps (index CDS) and collater-

alized debt obligations (CDOs). An index CDS can be thought of as an insurance-like

contract between two parties, with the assets in the portfolio representing the subject

matter of the insurance. Until maturity, the buyer of the index CDS periodically pays

a �xed percentage (termed premium) of the remaining nominal of the portfolio to the

seller and in exchange receives a monetary compensation whenever defaults occur. In

our setup, at the beginning of the contract, the buyer has to pay the premium on the

total nominal of one. Once a default occurs, the seller has to make a payment equal to
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5.1 Multiname credit derivatives

the associated realized loss. For instance, once asset k defaults, the realized loss at time

Xk is given by

LossXk − lim
ε↘0

LossXk−ε = (1− Rec)
(
LXk − lim

ε↘0
LXk−ε

)
= (1− Rec)/d.

After time Xk, the buyer's premium payments are guided by the remaining notional,

which is reduced by an absolute amount of 1/d compared to the nominal before default.

Whereas an index CDS guarantees protection against all losses in a given portfolio, the

idea of a synthetic CDO is to provide insurance against parts of the portfolio by dividing

the total realized loss Losst into loss segments (called tranches) determined by lower and

upper attachment points lj respectively uj , with 0 = l1 < u1 = l2 < u2 = l3 . . . < uJ =

1. In a CDO contract for tranche [lj , uj ], j ∈ {1, . . . , J}, both premium and default

payments at time t are guided by the tranche-speci�c realized loss Lt,j , which is given

by (see Figure 5.1 for a visualization)

Lt,j := min
(

max
(
0, (1− Rec)Lt − lj

)
, uj − lj

)
.

The payment procedure is similar to an index CDS. At the beginning, the buyer's

lj uj

uj − lj

0 Lt

payo�

Figure 5.1 Payo� pro�le of tranche loss Lt,j with respect to the portfolio loss process

Lt at time t.

premium payment is proportional to the whole tranche nominal uj − lj . Once the �rst
asset, for example company k, defaults, the realized tranche loss compensated by the

CDO seller equals LXk,j − limε↘0 LXk−ε,j . After the default, the premium payments of

the buyer refer to the reduced tranche nominal uj − lj − Lt,j . Consequently, except for
the �rst tranche [l1, u1] = [0, u1] (also termed equity tranche in practice), initial defaults

in the portfolio do not trigger payments in a CDO. As long as the realized tranche loss

Lt,j does not exceed the lower attachment point lj , defaults neither reduce the buyer's

premium payments nor trigger reimbursements by the seller. Once the realized tranche
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loss is above lj , the payment streams evolve as described until the end of the maturity

respectively until the upper attachment point uj is exceeded as well.

For a detailed depiction of the payment streams, including additional quantities such as

discount factors or upfront payments, see Brigo et al. (2007). Further subtleties such

as accrued interest are out of scope of the present analysis. From a pricing point of

view, index CDS and CDOs essentially depend on the (risk-neutral) distribution of the

portfolio loss Lt for t ≥ 0. In an index CDS, both premium and default payments depend

linearly on the portfolio loss process, such that the evaluation reduces to the calculation

of risk-neutral expected values

E[Lt] = E
[1

d

d∑
k=1

1{Xk≤t}

]
=

1

d

d∑
k=1

P
(
Xk ≤ t

)
, t ≥ 0.

Thus, when modeling the vector (X1, . . . , Xd) of default times, the dependence structure

is irrelevant and only the marginal distributions of Xk, k = 1, . . . , d, matter. The evalua-

tion of CDOs is more complex. Here, the central quantity is the tranche-speci�c realized

loss Lt,j , demanding the computation of E[Lt,j ] for t ≥ 0, j ∈ {1, . . . , J}. Keeping in

mind the payo� pro�le of Lt,j in Figure 5.1, one recognizes that Lt,j has a bull spread

structure and, therefore, can be decomposed into the di�erence of two put (alternatively

call) options on the portfolio loss Lt by

E[Lt,j ] = uj − lj + E
[(
lj − (1− Rec)Lt

)+]− E
[(
uj − (1− Rec)Lt

)+]
, (5.2)

where �(.)+� denotes the maximum between the expression in brackets and zero. Due

to this non-linear relationship between Lt,j and Lt, CDOs are sensitive w.r.t. the de-

pendence structure of the default times X1, . . . , Xd. Indeed, the �nancial crisis has

demonstrated the huge impact of default correlation on the evaluation of these multi-

name credit derivatives. The challenge in �nding a suitable model is exacerbated by

the generally large dimensionality of the underlying portfolio. For the major markets,

broad indices of investment grade companies have been created, serving as a basis for

standardized index CDS and CDOs. For North America, the respective index is abbre-

viated CDX.NA.IG, the European counterpart is termed iTraxx Europe. Detailed and

up-to-date information on the attachment points lj , uj , and further practical conventions

can be found in Markit (2014). Both indices comprise d = 125 (periodically updated)

companies (see Amato and Gyntelberg (2005) for a detailed composition), raising the

question how to �nd a suitable, yet tractable model for the vector (X1, . . . , Xd) of default

times.
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5.2 Additive�frailty model for default times

5.2 Additive�frailty model for default times

It is beyond debate that modeling the high-dimensional default time vector (X1, . . . , Xd)

without losing tractability of the portfolio loss process Lt = 1/d
∑d

k=1 1{Xk≤t}, i.e. the

sum of d random variables, requires severe restrictions on the random vector's depen-

dence structure. Even if it was possible to derive the distribution of Lt for a complex,

heterogeneous model, calibration to market data would be almost impossible as the uni-

verse of credit derivatives linked to dependencies within each subset of (X1, . . . , Xd) is

generally sparse.

A common escape from this situation consists in directly modeling the portfolio loss

process in a top-down approach. The process {Lt}t≥0 is speci�ed as an increasing, right-

continuous, piecewise constant stochastic process starting at L0 = 0, with jumps repre-

senting an asset's default. In many cases (see for example Giesecke et al. (2010b)), this

task is achieved by considering a portfolio loss point process and modeling the dynamics

of its conditional arrival rate. Other examples of top-down models are given in Arnsdorf

and Halperin (2008), Brigo et al. (2007), Cont and Minca (2008), Giesecke et al. (2010a),

Lopatin and Misirpashaev (2008), or Schönbucher (2005). While being appealing due

to their �exibility, top-down models usually su�er from a limited knowledge about the

underlying default times, i.e. the di�culty of linking the distribution of the aggregated

quantity Lt to the individual random variables Xk, k = 1, . . . , d. This de�ciency induces

a model that is arti�cial to some extent in the sense that it provides no interpretation

for the stochastic origin behind.

This drawback is circumvented when using bottom-up models. Starting with a direct

de�nition of the default times Xk, the stochastic construction is given by de�nition.

However, the challenge entails dealing with the distribution of the sum Lt. An exten-

sive overview on bottom-up approaches and corresponding literature is given in (Mai,

2010, Section 6.2) and the references therein. In Giesecke (2003), the default times are

modeled via the exogenous shock model introduced in De�nition 3.1.1 for exponentially

distributed random variables ZE . Given the characterization results in the present the-

sis, we are aiming at modeling (X1, . . . , Xd) by a general exchangeable exogenous shock

model. Assuming the marginal survival function (which is the same for all components

due to exchangeability) ofXk, k = 1, . . . , d, to be continuous and given by F̄ , by Theorem

3.3.1, we already know that the survival copula of (X1, . . . , Xd) is given by an explicitly
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known copula C of type (3.4), i.e. we have

P(X1 > x1, . . . , Xd > xd) = P
(
F̄ (X1) ≤ F̄ (x1), . . . , F̄ (Xd) ≤ F̄ (xd)

)
= C(F̄ (x1), . . . , F̄ (xd)) =

d∏
k=1

gk
(
F̄ (xd+1−k)

)
, x1, . . . , xd ∈ R,

for known functions gk, k = 1, . . . , d. Consequently, the distribution of the portfolio loss

process can be derived in closed form. For x = l/d, l ∈ {0, . . . , d}, it holds that

P(Lt = x) = P
( d∑
k=1

1{Xk≤t} = l
)

(∗)
=

(
l

d

)
P(X1 ≤ t, . . . ,Xl ≤ t,Xl+1 > t, . . . ,Xd > t)

=

(
l

d

)
P
(
F̄ (X1) ≥ F̄ (t), . . . , F̄ (Xl) ≥ F̄ (t), F̄ (Xl+1) < F̄ (t), . . . , F̄ (Xd) < F̄ (t)

)
, (5.3)

where we have used exchangeability in (∗). Given that
(
F̄ (X1), . . . , F̄ (Xd)

)
∼ C, the

proof of Proposition 2.2.6 has shown that the latter probability can be expressed in terms

of an alternating sum. More precisely, it holds that

P
(
F̄ (X1) ≥ F̄ (t), . . . , F̄ (Xl) ≥ F̄ (t), F̄ (Xl+1) < F̄ (t), . . . , F̄ (Xd) < F̄ (t)

)
=

∑
(w1,...,wd)∈×di=1{ui,vi}

(−1)|{i :wi=ui}|C(w1, . . . , wd), (5.4)

for {u1, v1} = . . . = {ul, vl} = {F̄ (t), 1} and {ul+1, vl+1} = . . . = {ud, vd} = {0, F̄ (t)}.
On a theoretical basis, this formula enables us to apply exchangeable exogenous shock

models to the pricing of index CDS and CDOs as the distribution of Lt can be used

to calculate the expected tranche loss E[Lt,j ]. From a practical perspective, however,

the crucial di�culties in evaluating P(Lt = x) for large d are the binomial coe�cient

in (5.3) and cancellation e�ects in the alternating sum (5.4). For the standardized

portfolios with d = 125 mentioned in Section 5.1, this coe�cient can become huge.

Together with the alternating sum in (5.4), the formula for the portfolio loss distribution

potentially becomes numerically unstable and prevents the model from being applicable

practically.

One way out of this quandary that has been pursued in the literature for other families

of distribution functions is to not only require (X1, . . . , Xd) to be exchangeable, but

even extendible (see De�nition 6.4). The crucial consequence of this additional restric-

tion is the validity of De Finetti's Theorem (see Theorem 2.2.13), linking the vector of

default times to an in�nite sequence {Xk}k∈N of conditionally i.i.d. random variables.

Conditioned on a sub-σ-algebra G ⊂ F , the random variables {Xk}k∈N are i.i.d., which
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5.2 Additive�frailty model for default times

is why this setup is often termed conditionally independent and identically distributed

(CIID) framework in the literature (for an overview on the subject, see e.g. Mai et al.

(2012)). The most famous CIID representative is the one-factor Gaussian copula model,

see Vasicek (1987); Li (2000). Extensions and alternative approaches aiming at improv-

ing the �exibility in modeling the dependence structure are given in Burtschell et al.

(2009). As a major consequence of the CIID structure, well-known limit results for d

tending towards in�nity can be applied to the distribution function of the portfolio loss

Lt. This methodology allows to approximate the law of Lt by its limiting distribution

for an in�nitely large portfolio and provides an evaluation formula for index CDS and

CDOs.

Before elucidating the proceeding in more detail, the initial question for the applica-

bility in our context is: When considering an exchangeable exogenous shock model for

(X1, . . . , Xd), how do we know that it is even extendible and how can we derive the

sub-σ-algebra G? In general, this is an open question that could be addressed in future

research (see Chapter 7). However, we have already identi�ed a subclass of extendible

exogenous shock models via the additive�frailty models in Section 3.5. De�ning the

default times by

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d, (5.5)

for an additive subordinator Λ = {Λt}t≥0 with limt→∞ Λt = ∞ and independent unit

exponentially distributed random variables {Ek}k∈N, extendibility is given by construc-

tion. For the special case of Λ being a Lévy subordinator, this model has already been

analyzed in (Mai and Scherer, 2009c, Section 5). The random vector (X1, . . . , Xd) can

be extended to an in�nite exchangeable sequence {Xk}k∈N by de�ning Xd+1, Xd+2, . . . in

the very same way as X1, . . . , Xd for additional i.i.d. unit exponentially distributed ran-

dom variables Ed+1, Ed+2, . . . In this case, the sub-σ-algebra G is precisely the σ-algebra

generated by Λ as it holds that

P(X1 ≤ x1, . . . , Xd ≤ xd|Λ) = P(E1 ≤ Λx1 , . . . , Ed ≤ Λxd |Λ) =
d∏

k=1

P(Ek ≤ Λxk |Λ)

=

d∏
k=1

(
1− e−Λxk

)
=

d∏
k=1

P(X1 ≤ xk|Λ), x1, . . . , xd ∈ [0,∞).

When assuming the sequence {Xk}k∈N to be de�ned by an additive�frailty model, the

CIID structure provides a useful limit theorem known as large homogeneous portfolio

(LHP) approximation. In our context, it reads as follows.
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Proposition 5.2.1 (LHP approximation for additive�frailty models)

Let {Xk}k∈N be given by the additive�frailty model in (5.5) and consider the portfolio

loss process {Lt}t≥0 in (5.1). Then it holds that

P
(

lim
d→∞

sup
t≥0

∣∣(1− e−Λt
)
− Lt

∣∣ = 0
)

= 1.

Proof

See the more general result in (Mai et al., 2012, Lemma 2.2). �

Thus, the portfolio loss Lt almost surely converges to the random distribution function

Ft = 1 − exp(−Λt) for d → ∞. Referring to index CDS and CDOs with d = 125, this

means that for additive�frailty models, we can approximate the portfolio loss distribution

at time t by the law of 1 − exp(−Λt). In other words, the bottom-up construction of

(X1, . . . , Xd) is replaced by a top-down speci�cation of Lt. Yet, in this case, the portfolio

loss process is not some arti�cial object, however provides a probabilistic insight into the

underlying dependence structure of the default times.

From a practical point of view, while in general the portfolio loss process {Lt}t≥0 is a

sum of d dependent random variables, the CIID structure in additive�frailty models can

be exploited to reduce complexity and constrain computations to the one-dimensional

stochastic process Λ = {Λt}t≥0. Another desirable advantage of this simpli�cation com-

pared to the portfolio loss distribution in arbitrary exchangeable exogenous shock models

is related to the calibration of the model. Instead of having to specify the d shock dis-

tribution functions in an exchangeable exogenous shock model, solely the parameters of

the stochastic process Λ have to be determined. All in all, representing the default times

by an additive�frailty model, two challenges remain. First of all, the computation of the

expected (tranche) loss E[Lt] and E[Lt,j ] relevant for index CDS and CDO pricing has to

be discussed. Secondly, deriving a consistent calibration of the parameters of Λ to both

index CDS and CDOs is a necessary requirement for the model's practical suitability.

Both aspects are addressed in the next two sections.

5.3 Laplace inversion formula for expected tranche loss

Consider the additive�frailty model in (5.5) for the default times, i.e.

Xk := inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d,
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5.3 Laplace inversion formula for expected tranche loss

for an additive subordinator Λ = {Λt}t≥0 with limt→∞ Λt = ∞ and (independent of

Λ) i.i.d. unit exponentially distributed random variables E1, . . . , Ed. The large homoge-

neous portfolio approximation (see Proposition 5.2.1) implies that the portfolio loss Lt
converges towards 1 − exp(−Λt) for increasing portfolio size. Denoting by {Ψt}t≥0 the

family of Bernstein functions corresponding to Λ, one recognizes that

E[Lt] −→ E[1− e−Λt ] = 1− e−Ψt(1) for d→∞. (5.6)

Thus, if {Ψt}t≥0 is known explicitly, the expected loss E[Lt] can be approximated in

closed-form by 1 − exp
(
− Ψt(1)

)
. For the expected tranche losses E[Lt,j ] crucial for

evaluating CDOs, the situation is more di�cult. For Lt ≈ 1 − exp(−Λt), the expected

tranche loss E[Lt,j ] can be approximated (compare (5.2)) by

E[Lt,j ] ≈ E
[
uj − lj +

(
lj − (1− Rec)(1− e−Λt)

)+
−
(
uj − (1− Rec)(1− e−Λt)

)+
]

= uj − lj − (1− Rec)E
[(
e−Λt −

(
1− uj

1− Rec

))+
−
(
e−Λt −

(
1− lj

1− Rec

))+
]
.

(5.7)

Thus, E[Lt,j ] is decomposed into two call options with the same �ctitious underlying

exp(−Λt), but di�erent strikes 1−uj/(1−Rec) respectively 1− lj/(1−Rec). For K > 0,

de�ning

CKt (ξ) := E
[(
eξ−Λt −K

)+]
= K E

[(
eξ−log(K)−Λt − 1

)+]
= K C1

t

(
ξ − log(K)

)
,

one recognizes that the problem reduces to the computation of call options with strike

one. While there is no explicit solution for these call prices in general, it is possible to

derive their Laplace transform.

Lemma 5.3.1 (Laplace transform of call options on exp(−Λt))

For the additive�frailty setup, it holds that

L[C1
t ](z) =

1

z(z − 1)
e−Ψt(z), z ≥ 0.

Proof

The proof is analogous to the proceeding in (Mai et al., 2014, Section 3.2) and is based

on the general results in Raible (2000). �

Deriving the value of C1
t via its Laplace transform can be accomplished by means of

inverse Laplace transform algorithms. Given a non-negative function f with well-de�ned
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Laplace transform L[f ](s) for s > 0, a commonly used approach is the Bromwich inver-

sion formula (see (Widder, 1946, Theorem 7.3)), stating that

f(x) = lim
R→∞

1

2π i

∫ a+i R

a−i R
ex z L[f ](z) dz, a, x > 0. (5.8)

Conditions ensuring the validity of the formula are existence, bounded variation, and con-

tinuity of f . These conditions can be veri�ed for a given Laplace transform for instance

by applying (Sato, 1999, Proposition 28.1), which states that f is continuously di�eren-

tiable if
∫
R |L[f ](−i s) s|ds < ∞. It is well-known that (5.8) generally induces massive

numerical problems due to the oscillating behavior of exp(x z) for varying imaginary

part of the argument z. Therefore (see Weideman (2006) and the references therein),

attempts have been made to change the integration path (5.8) in a suitable manner.

One of the most famous contour transformations is the one in Talbot (1979). There, the

original path z = a+ i R,R ∈ R, is altered such that the imaginary part of z is bounded

while for the limiting cases |R| → ∞, its real part tends towards minus in�nity. As a

result, oscillations of exp(x z) are reduced and dampened by the negative real part of

z.

However, though being powerful in many applications, the validity of a given contour

transformation can be hard to check. While Talbot (1979) provides technical conditions

for his approach to be applicable, verifying them for a speci�c Laplace transform might

be hard to accomplish. The main result of the present chapter is an alternative contour

transformation in (5.8), applied to the extraction of C1
t from its Laplace transform L[C1

t ].

More precisely, it refers to the inversion of L[C1
t ] in case of the Bernstein function Ψt

in Lemma 5.3.1 being complete. Completeness of the Bernstein function means that

in the Lévy�Khintchine representation of Ψt in (2.11), the Lévy measure ν possesses a

completely monotone density in the sense of De�nition 2.3.6. The subclass of positive,

in�nitely divisible laws π which is connected to complete Bernstein functions Ψ via

L[π] = exp(−Ψ) is termed Bondesson class. An extensive list of more than 100 complete

Bernstein function is given in (Schilling et al., 2010, p. 218�277). Our Laplace inversion

theorem reads as follows (by �=(z)�, we denote the imaginary part of a complex number

z ∈ C).

Theorem 5.3.2 (Contour transformation for complete Bernstein functions)

If Ψt in Lemma 5.3.1 is a complete Bernstein function and if the Bromwich inversion

formula (5.8) is valid for C1
t , it holds for x > 0 that

C1
t (x) =

M ex a

π

∫ 1

0
=
( e−xM log v (b i−a) e−Ψt(a−M log v (b i−a))

(a−M log v (b i− a)) (a− 1−M log v (b i− a))
(b i− a)

) dv

v
,
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5.3 Laplace inversion formula for expected tranche loss

with arbitrary parameters a > 1, b > 0 and M > 2/(a x). This integral is a proper

Riemann integral as one can show that the integrand vanishes for v ↘ 0.

Proof

See (Bernhart et al., 2015, Corollary 3.5). �

Though looking complicated at a �rst glance, the expression for C1
t in the above theorem

solely comprises a single integral to be evaluated for the interval [0, 1]. The crucial steps

underlying this contour transformation are as follows.

1. First, instead of using the Bromwich contour {z(u) = a + i u : 0 ≤ u < ∞}, we
consider the transformation in Kiesel and Lutz (2011), which is given by

γ(u) = a+ u (b i− a), 0 ≤ u <∞, a, b > 0.

The main computation in Bernhart et al. (2015) consists in showing admissibility

of this contour transformation for the class of complete Bernstein functions.

2. Second, as the resulting integral is still inde�nite and, thus, subject to truncation

errors, another substitution is carried out by introducing the integration variable

v := exp(−u/M), u > 0 for constant M > 0. It can be shown that the resulting

integrand vanishes for v ↘ 0 such that it can be extended continuously at zero,

yielding a proper Riemannian integral.

Empirical analyses in Bernhart et al. (2015) point out that the choice a = 1/x, b = 2 a,

and M = 3 generally provides satisfactory results. The peculiarity of Theorem 5.3.2 is

its mathematical rigorousness in the sense that the depicted contour transformation does

not require further conditions and is indeed viable for complete Bernstein functions.

As a side remark, it should be mentioned that a more general result in this context is

actually (Bernhart et al., 2015, Theorem 3.1), which derives a Laplace inversion formula

for the density of distributions from the Bondesson class. Therefore, Theorem 5.3.2 is

stated as a corollary rather than a theorem in the respective reference. The proof of the

general �nding is very technical and lengthy and requires some preliminary results from

complex analysis. We could elaborate it in detail in the present section as it yields a

powerful numerical procedure potentially being relevant for other areas in mathematical

�nance as well. However, with the present chapter aiming at generalizing the model

in Mai and Scherer (2009c) to arbitrary additive�frailty models and combining it with

the recent results in Bernhart et al. (2015) rather than profoundly introducing the two

building blocks on their own, we omit a detailed discussion of the proof.
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Summarizing, note that for both the approximation of index CDS and CDOs by means

of the limit theorem Lt → 1 − exp(−Λt) (for d → ∞), it is very convenient to know

the Laplace transform of the additive subordinator Λ in play (at �xed points in time).

This observation explains the numerical suitability of the Lévy subordinator speci�cation

in Mai and Scherer (2009c). In this regard, due to the characterization via Bernstein

functions, additive subordinators seem to be a natural generalization allowing to easily

build new portfolio default models.

5.4 Calibration of additive�frailty models

By the preceding section, we are able to calculate expected (tranche) losses E[Lt] and

E[Lt,j ], and therefore to evaluate index CDS and CDOs for particular additive�frailty

model speci�cations. However, being given market prices of these credit derivatives, a

remaining challenge consists in calibrating the model, i.e. �nding a speci�cation con-

sistent with observed quotes. In the additive�frailty construction of default times, the

only degree of freedom is the additive subordinator Λ, such that �tting its parameters

simultaneously to both index CDS and CDOs seems to be a delicate task. As a useful

model extension, one can proceed analogously to Mai and Scherer (2009c) and provide

the vector (X1, . . . , Xd) of default times in (5.5) with a deterministic time-change, i.e.

one considers

Xk := inf{t ≥ 0 : Λh(t) ≥ Ek}, k = 1, . . . , d,

for a strictly increasing function h : [0,∞)→ [0,∞) with h(0) = 0 and limt→∞ h(t) =∞.

The crucial consequence is that the function h provides an additional degree of freedom

when �tting the model to market data, however, by Corollary 2.2.8 (respectively its

counterpart for strictly increasing transformations), does not change the dependence

structure of the default times. Put di�erently, h solely impacts the marginal distributions

of (X1, . . . , Xd), which are the input for computing E[Lt] and, thus, evaluating index

CDS. Similarly to Equation (5.6), it holds that

E[Lt] −→ E[1− e−Λh(t) ] = 1− e−Ψh(t)(1) for d→∞.

Given the function c : t 7→ Ψt(1), one can de�ne h by h(t) := c−1
(
− log

(
1− F (t)

))
for

an arbitrary strictly increasing distribution function F on [0,∞). As a consequence,

E[Lt] −→ 1− e−Ψh(t)(1) = F (t) for d→∞,
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5.4 Calibration of additive�frailty models

i.e. the expected loss E[Lt] is independent of Λ and is only impacted by the distribution

function F . This feature facilitates the consistent model calibration to index CDS and

CDOs and allows for a convenient two-step procedure:

1. Due to E[Lt] = F (t), specify the function F such that the model-induced index

CDS value equals the observed market price.

2. Having �xed F , calibrate the additive subordinator Λ to observed CDO tranche

market prices: For a given speci�cation of Λ with corresponding family {Ψt}t≥0

of complete Bernstein functions, use Theorem 5.3.2 (replacing t by h(t) in the

inversion integral) to calculate the expected tranche losses E[Lt,j ] and to evaluate

CDO tranches j = 1, . . . , J .

A possible way to specify the marginal distribution function F in the �rst step is to ori-

entate oneself towards univariate intensity-based models. When de�ning a single default

time X1 via

X1 := inf{t ≥ 0 :

∫ t

0
λsds ≥ Ek}

for i.i.d. unit exponentially distributed random variables E1, . . . , Ed and a non-stochastic,

constant default intensity λs = λ > 0, the distribution function of X1 is given by

F (t) := P(X1 ≤ t) = P(Ek ≤ λ t) = 1 − exp(−λ t). Specifying the time-change h(t) :=

c−1
(
− log

(
1 − F (t)

))
as depicted above, the index CDS value essentially becomes a

function of the default intensity λ. It can thus be determined (for instance via bisection)

such that the model-implied index CDS value is equal to the observed one in the market.

When specifying the additive subordinator Λ by calibration to market CDO quotes in

the second step, the degrees of freedom (i.e. the parameters of Λ) are generally too

sparse to perfectly replicate all CDO tranches j = 1, . . . , J, simultaneously. Thus, an

optimization routine, for instance a minimization of the mean-squared error between

model and market prices among all tranches, is necessary. However, due to the velocity

of the Laplace inversion procedure outlined in Theorem 5.3.2, the run time of such an

optimization is a matter of few seconds for many model setups (compare the calibration

of a similar model to time series in [Mai, Olivares, Schenk, Scherer (2014)]).

As a last point, we are going to illustrate the CDO pricing methodology for additive�

frailty models by applying the approximation formulas to particular Sato�frailty cop-

ulas. To begin with, assume that we have speci�ed Λ as an H-Sato subordinator

Λ = {Λt}t≥0 with Bernstein family {Ψt}t≥0,Ψt(x) = Ψ1(tH x), x, t ≥ 0, by the self-

decomposable Bernstein functions in Section 2.4.5. Adding a drift component µ ≥ 0
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to the Bernstein functions in order to gain an additional degree of freedom, we choose

Ψ1 ∈ {ΨSt+drift
α,β ,ΨIG+drift

β,η ,ΨGa+drift
β,η }, where for x ≥ 0,

ΨSt+drift
α,β (x) := µx+ β xα, α ∈ (0, 1),

ΨIG+drift
β,η (x) := µx+ β (

√
2x+ η2 − η), β, η > 0,

ΨGa+drift
β,η (x) := µx+ β log(1 +

x

η
), β, η > 0.

Under the LHP assumption in Proposition 5.2.1, the preceding section has shown that

the expected portfolio loss satis�es

E[Lt] = 1− e−Ψh(t)(1) = 1− e−Ψ1(h(t)H), t ≥ 0.

Consequently, when setting h(t) :=
(
Ψ

(−1)
1 (− log(1−F (t))

)(1/H)
for an arbitrary strictly

increasing distribution function F on [0,∞), it holds that E[Lt] = F (t), such that the

expected portfolio loss becomes independent of both the self-similarity index H and the

speci�cation of Ψ1. Furthermore, looking at the Laplace transform of the call options in

Lemma 5.3.1, one recognizes that

Ψh(t)(z) = Ψ1(h(t)H z) = Ψ1

(
Ψ

(−1)
1

(
− log(1− F (t)

)
z
)
.

As already pointed out in Section 4.3 for general Sato�frailty copulas, this expression is

invariant w.r.t. stretching/compression of the Bernstein function Ψ1. This implies that

the expected tranche loss E[Lt,j ] (which by Theorem 5.3.2 is essentially a function of

Ψh(t)) and, as a consequence, the value of a CDO tranche, are independent of manipu-

lating Ψ1 by Ψ̃1(x) := Ψ1(c x), c > 0, as well. Because of this, in the examples given

above, we can always assume w.l.o.g. that the drift µ of the Bernstein function Ψ is �xed

to one, i.e. µ = 1. All in all, the speci�cation of h allows us to �x some parameters

in the Sato�frailty portfolio default model. In this special case, the described two-step

procedure reads as follows.

1. Specify the function F such that the model-induced index CDS spread equals the

observed market price.

2. W.l.o.g., set H = 1 and µ = 1 for the H-Sato subordinator corresponding to

Ψ1 ∈ {ΨSt+drift
α,β ,ΨIG+drift

β,η ,ΨGa+drift
β,η }. For a given parameterization of the Bern-

stein function Ψ1 in concern, i.e. �xed parameters α ∈ (0, 1), β > 0, respectively

η > 0, the expected tranche loss E[Lt,j ] can be computed via Theorem 5.3.2. De-

termine the parameters such that the values of the CDO tranches j = 1, . . . , J are

consistent with the corresponding market prices.
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6 Model uncertainty for sums of random

variables

This chapter arises from the article [Mai, Schenk, Scherer (2015a)] and provides a second

practical application of exogenous shock models that strongly di�ers from the multivari-

ate default time context in the preceding paragraph. Considering the (possibly daily)

log-returns R := {Rtk}k=1,...,d of a portfolio or index, the aim is to incorporate uncer-

tainty into the stochastic model for the return distribution of the aggregated log-return

Rt1 + . . . + Rtd in a universal way. The universality of the presented approach consists

in its general applicability to arbitrary return speci�cations, demonstrating that it con-

stitutes a fundamentally new mindset towards the analysis of model risk. Section 6.1

illustrates the idea, which is based on a well-known decomposition of the (dependent)

random vector R into a deterministic function and an i.i.d. random source, and which

consists in manipulating the latter. In Section 6.2, several conditions for a reasonable

distortion are derived and stated in an axiomatic manner. Relying on the Dirichlet cop-

ula introduced in Section 3.5, Section 6.3 introduces a manipulated random source that

satis�es the required properties. A case study to illustrate the approach and incorpo-

rate model uncertainty into di�erent popular return speci�cations (e.g. i.i.d. normally

distributed log-returns {Rtk}k=1,...,d as the most basic example) is presented in Section

6.4.

6.1 Risk management in the �nancial sector

In the �nancial industry, it is a risk manager's daily routine to quantify the market

risk of a given portfolio w.r.t. a certain holding period, e.g. via the Value-at-Risk (VaR)

or by means of more elaborate risk measures1. This task is typically implemented by

modeling granular log-returns R := {Rtk}k=1,...,d for d short periods, e.g. for d = 250

1See Pérignon and Smith (2010) for a survey of VaR methods in the banking industry and Artzner

et al. (1999) for risk measures beyond VaR.
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trading days, and aggregating them to the log-return Rt1 + . . . + Rtd of the required

period, e.g. one year, which the risk measure is deduced from. There are several reasons

to do so. On the one hand, the risk manager could have a more distinct intuition about

the behavior of the portfolio in the short term and might already have an idea of which

distribution to consider for the portfolio log-return. On the other hand, testing and

quantifying this intuition by calibrating the distribution to market data demands for a

broad data basis and, thus, becomes easier (respectively possible at all) when splitting

the entire time horizon into granular time periods. Especially when using discretized

time-continuous models, choosing the optimal time horizon for the model speci�cation

�rst and extracting the return distribution for the target holding period subsequently is

a natural proceeding.

Another risk management context where a sum Rt1 + . . .+Rtd of random variables has

to be calculated is provided in Embrechts et al. (2013). In this reference, the authors

address an application in operational risk and Rt1 , . . . , Rtd represent the losses of di�er-

ent business lines or risk types w.r.t. a �xed time period. Regardless of the application

in particular, as a matter of course, the possibilities to model the vector R are manifold

and the statistical and economic veri�cation of an approach's validity is cumbersome, if

not impossible. Consequently, regulatory guidelines such as Basel III2 or the supervisory

guidance of the Federal Reserve Bank3 acknowledge the relevance of model uncertainty.

There already exists considerable work concerning this topic in risk analysis. Alexander

and Sarabia (2012) translate VaR model risk into uncertainty of the respective quan-

tile and introduce a distribution function for the latter. Bignozzi and Tsanakas (2014)

analyze residual risk, which arises from deviations between a portfolio's true loss distri-

bution and a distribution function extracted from a data set of (i.i.d.) loss observations.

In Embrechts et al. (2013), VaR bounds for sums of risks are derived in a Fréchet-type

problem, where marginal laws are given, but the dependence structure is uncertain. The

impact of small distortions of the data set on the estimation of risk measures is studied in

Cont et al. (2010). Other papers are concerned with questions in derivative pricing, see

e.g. Avellaneda et al. (1995); Schoutens et al. (2004); Cont (2006); Gupta et al. (2010);

Bannör and Scherer (2013).

2We cite from (Basel Committee on Banking Supervision, 2010, p. 2): �The reforms raise both the

quality and quantity of the regulatory capital base and enhance the risk coverage of the capital frame-

work. They are underpinned by a leverage ratio that serves as a backstop to the risk-based capital

measures, is intended to constrain excess leverage in the banking system and provide an extra layer

of protection against model risk and measurement error.�
3Compare Federal Reserve System (2011): �Model risk should be managed like other types of risk�.
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6.1 Risk management in the �nancial sector

From a structural point of view, many of the mentioned references pursue a similar line

of reasoning in terms of the Markov regression representation stated in Rüschendorf and

de Valk (1993): According to this, any d-variate random vector R = {Rtk}k=1,...,d can

be depicted as

Rtk = fk(Rt1 , . . . , Rtk−1
, Uk), k = 1, . . . , d, (6.1)

for a sequence {Uk}k=1,...,d of i.i.d. random variables with uniform distribution on the

unit interval and a set of measurable functions f = (f1, . . . , fd), fk : Rk−1 × [0, 1] → R,
k = 1, . . . , d4. Representation (6.1) separates any model for the random vector R into

a purely deterministic component f and a purely stochastic input U = {Uk}k=1,...,d.

The function f itself is found by economic and statistical reasoning and consists of both

model parameters and structural assumptions, such as dependence properties between

subsequent returns. As will be pointed out in the sequel, for most models in practice, the

k-th component of f is known explicitly. The recursive de�nition of Rtk has a natural

time-dynamic interpretation and Uk can be seen as an exogenous risk factor entering the

model in time step k. Figure 6.1 illustrates the return generation setup.

Rt1 Rt2 Rt3 Rtd. . .

U1 U2 U3
. . . Ud

Figure 6.1 Universal stochastic representation of returns {Rtk}k=1,...,d. On the one

hand, Rtk can depend on earlier returns Rt1 , . . . , Rtk−1
to account for serial

dependence. On the other hand, an exogenous, purely random input Uk
represents the uncertainty in time step k � one might think of the �random

state of nature� in period k. The stochastic model behind is described by

the choice of the function f , resp. fk, for k = 1, . . . , d.

With regards to the universal representation (6.1), the essential question in many of

the works concerning model uncertainty is: How to account for model risk w.r.t. a

speci�c model f? The characteristics of the analysis can be manifold, involving both

4The representation (6.1) is by no means unique, of course.
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6.2.1 Popular return speci�cations

identi�cation risk (determination of the correct model), parameter risk (proper choice of

parameters), and calibration risk (uncertainty due to noise in market data and inaccuracy

of calibration algorithms). However, all these branches already presuppose the use of

some structure on f . Furthermore, any model for the uncertainty w.r.t. the speci�cation

of f is itself prone to model risk.

In contrast to that, this chapter aims at deriving a universal, model-independent, and

easy-to-implement framework for the assessment of a model uncertainty charge to any

stochastic model in concern, setting it apart from previous research. We are not manipu-

lating the model function f , but rather evaluate its robustness with respect to a distortion

of the distribution function of the i.i.d. random variables {Uk}k=1,...,d. Abstractly speak-

ing, we consider the distorted model R̃ := (R̃1, . . . , R̃d), R̃k = fk(R̃1, . . . , R̃k−1, Ũk), for a

random vector Ũ = {Ũk}k=1,...,d that follows a �distorted� uniform distribution on [0, 1]d.

That is, we assume uncertainty about the i.i.d. uniform distribution of the random num-

ber generator. One key advantage of this method is its general applicability, i.e. it may

be added to virtually any existing model (and implementation thereof) in a straightfor-

ward way, as will be demonstrated in Section 6.4. This is very convenient in practice,

since our methodology can be �pulled over� an existing IT infrastructure without major

e�ort. The induced distortion of the stochastic root of the model produces a distortion

of the ultimate return variable R̃t1 + . . . + R̃td in concern without the need of a mod-

eling e�ort that is speci�c to f . This procedure intuitively prevents systematic model

mis-speci�cations when modeling the uncertainty itself, because no model-f -dependent

economic reasoning enters. Admittedly, this great level of universality comes at the cost

of e�ciency for model-speci�c questions. For instance, if it is commonly accepted that f

lies in a certain model family, then the present approach might potentially overestimate

the degree of model uncertainty. However, this only corresponds to the unavoidable

second side of the coin, whose �rst (and in our view quite appealing) side is the total

abstraction from model-dependent, economic reasoning when distorting the given model.

An illustration of this procedure's philosophy is given in Figure 6.2.

6.2 Distortion of the stochastic root

6.2.1 Popular return speci�cations

In order to implement and distort the framework in (6.1), we consider models for which

the function f can be given explicitly. Some popular models for R which are used in
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6.2 Distortion of the stochastic root

Model

f

Randomness

{Uk}k=1,...,d

Rtk = fk(Rt1 , . . . , Rtk−1
, Uk)

Return series

{Rtk}k=1,...,d

existing approaches:
altering f

our approach:
distorting U

Figure 6.2 Idea of our distortion approach: While common model uncertainty frame-

works speci�cally address the structure of f , we focus on distorting

the purely stochastic input represented by the exogenous risk factors

{Uk}k=1,...,d.

risk management for the analysis of Rt1 + . . . + Rtd and which induce a known model

function f are listed below. More information and the respective references are provided

in Alexander and Sheedy (2008).

(I) {Rtk}k=1,...,d are i.i.d. with univariate distribution function G(.):

This means that the k-th component of f is simply given by Rtk = fk(Uk) =

G−1(Uk), where G−1 is the generalized inverse of G. Popular choices for G in

practice are standard parametric models like the normal distribution, Student's t

distribution, or mixtures of normal distributions. A discrete distribution is also

a popular choice for G, because it arises in the case of a historical VaR simula-

tion, which is still among the dominantly used VaR methods applied in practice,

according to Pérignon and Smith (2010).

(II) {Rtk}k=1,...,d follow a GARCH model:

This setup is developed and applied, e.g., in Bollerslev (1986); Alexander and

Sheedy (2008). The k-th (mean-adjusted) return has the form Rtk = σk Zk for an

i.i.d. sequence {Zk}k∈Z with expected value zero and variance equal to one (called

�innovations�) and a scaling factor σk that depends on both the former realized

returns Rtk−1
, Rtk−2

, . . . and past scaling factors σk−1, σk−2, . . . In this case, just

as in (I) above, the i.i.d. innovations Zk are retrieved by applying the generalized

inverse G−1 to the exogenous risk factors Uk, k = 1, . . . , d.
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It is further natural � and possible for any R � to specify all fk such that they are

increasing (respectively decreasing) w.r.t. their k-th component, i.e. the random input

Uk. In this regard, Uk represents the random source of global economic prosperity /

depression, which is translated into the behavior of the portfolio in time step k by the

model function fk.

6.2.2 Consistency conditions for the distortion

Our aim is to derive a random number generator that returns a distorted series Ũ =

{Ũk}k=1,...,d of random variables to be used instead of the i.i.d. uniform sequence U =

{Uk}k=1,...,d in (6.1) for arbitrary d ∈ N. However, for a reasonable distortion, three

crucial structural properties of the original random vector U have to be maintained.

1. Firstly, the joint distribution of {Uk}k=1,...,d is invariant w.r.t. permutation of its

components, emphasizing the fact that U accounts for a time-homogeneous source

of risk separated from the model function f . For an i.i.d. sequence, this condition

is trivially satis�ed. For the distorted series Ũ = {Ũk}k=1,...,d, we have to make

sure that the property

(Ũ1, . . . , Ũd)
d
= (Ũσ(1), . . . , Ũσ(d)) for any permutation σ on {1, . . . , d}, (6.2)

i.e. exchangeability of Ũ (see De�nition 2.2.11), is still satis�ed.

2. Secondly, the distribution of {Uk}k=1,...,d is also invariant w.r.t. point re�ection of

all its components at u = 1/2, i.e. replacing all Uk by 1 − Uk has no in�uence

on the vector's law. This property mirrors a symmetry feature resulting from the

marginal uniform distributions of the i.i.d. random source U . On a univariate level,

it implies that deviations of the exogenous risk factor Uk from its mean value occur

in a symmetric manner, i.e. there is no bias towards large or small values, which

might be interpreted as good or bad economic conditions. On a multivariate level,

it is important that a path (U1, . . . , Ud) is as likely as the path (1−U1, . . . , 1−Ud),
meaning that there is no inherent bias towards accumulations of either �good�

or �bad� outcomes. To preserve this symmetry, we seek for a distorted sequence

{Ũk}k=1,...,d that satis�es

(Ũ1, . . . , Ũd)
d
= (1− Ũ1, . . . , 1− Ũd). (6.3)

Put another way, we require {Ũk}k=1,...,d to be radially symmetric about (1/2,. . . ,1/2)

(see De�nition 2.2.15).
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6.2 Distortion of the stochastic root

3. Last but not least, the random source U = {Uk}k=1,...,d not only generates the vec-

tor {Rtk}k=1,...,d for some �xed d, but allows for a consistent extension to higher

dimensions. Put another way, (U1, . . . , Ud) can be viewed as the initial part of an

in�nite sequence {Uk}k∈N, and the dimension d merely represents a model time

horizon at which we stop the random number generator from spitting out further

risk factors. This time horizon should be arbitrarily modi�able, re�ecting the eco-

nomic interpretation of time as a continuum. Thus, we demand that the Markov

representation (6.1) can be extended to d + 1, d + 2, . . . , while maintaining the

properties in (6.2) and (6.3). For an i.i.d. sequence satisfying these conditions,

a consistent extension is straightforward as the series {Uk}k=1,...,d can simply be

complemented by drawing further i.i.d. random variables Ud+1, Ud+2, . . . Neverthe-

less, for our distortion, we have to guarantee that it is possible to construct an

in�nite sequence {Ũk}k∈N such that

{Ũk}k∈{1,...,d} satis�es (6.2) and (6.3) for all d ≥ 2. (6.4)

According to De�nition 2.2.12, a random vector that satis�es the condition in (6.4) is

termed extendible (to an in�nite exchangeable sequence). As pointed out in De Finetti's

Theorem (see Theorem 2.2.13), the crucial consequence for an extendible random vector

{Ũk}k=1,...,d is the existence of a random distribution function F = {Ft}t∈R on R such

that, conditioned on F , the random variables {Ũk}k=1,...,d are i.i.d. with respective dis-

tribution function F . This implies that the distorted random source is embedded in a

CIID framework, which has already been considered in Chapter 5 in a completely di�er-

ent context. For a sequence of i.i.d. random variables {Vk}k∈N with uniform distribution

on the unit interval [0, 1] that are independent of F , {Ũk}k∈N can be de�ned as

Ũk : = inf{t ∈ R : Ft ≥ Vk}

= inf{t ∈ R : − log(1− Ft)︸ ︷︷ ︸
:=Mt

≥ − log(1− Vk)︸ ︷︷ ︸
:=Ek

}

= inf{t ∈ R : Mt ≥ Ek}, k ∈ N. (6.5)

With M = {Mt}t∈R being an increasing stochastic process and Ek denoting i.i.d. unit

exponentially distributed random variables5 independent of M , this setup already bears

resemblance to the additive�frailty construction in (3.22) (and, thus, to exchangeable

exogenous shock models). However, M does not necessarily have to exhibit independent

increments.

5It can easily be observed that P(Ek ≤ x) = P(Vk ≤ 1− exp(−x)) = 1− exp(−x) for x ≥ 0.
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6.2.3 Axioms for a suitable random distribution function

6.2.3 Axioms for a suitable random distribution function

By the reasoning in the previous section, the discussion about a reasonable stochastic

model for the distorted random input Ũ boils down to the speci�cation of a suitable

random distribution function F . As pointed out, by construction, Properties (6.2) and

(6.4) are ful�lled for arbitrary F . However, in order to guarantee (6.3) and further

consistency conditions, the following Axioms (A1)�(A4) for F are postulated.

(A1) The random distribution function F has mean value G(t) := E[Ft] = t for t ∈ [0, 1],

i.e. the uniform law on [0, 1] is the �average realization�.

→ In the original model, the vector {Uk}k=1,...,d is i.i.d. with uniform distribution on

[0, 1]. In the distorted setup, the random variables {Ũk}k=1,...,d are i.i.d. conditioned

on F with marginal distribution function F . Thus, the unconditional distribution

function of each Ũk is P(Ũk ≤ t) = E[Ft], t ∈ R. Axiom (A1) ensures that the

uniform distribution of the random components in the original model is maintained.

In other words, the model for Ũ may be viewed as a distortion of the original source

U , which itself constitutes the �average� realization of Ũ .

(A2) There is a single �uncertainty parameter� c̃ ∈ [0, 1] which controls our con�dence

in the original model f . For c̃ = 0, we have full con�dence in our original model.

As c̃ increases, this con�dence shrinks.

→ Axiom (A2) allows us to conveniently control the strength of the distortion; the

uncertainty parameter depends on one's risk aversion or may even be set by the

regulator.

(A3) The model for F is such that the stochastic input {Ũk}k=1,...,d has the same distri-

bution as {1− Ũk}k=1,...,d for arbitrary d, i.e. the distortion is radially symmetric

in any dimension d.

→ Axiom (A3) guarantees consistency with property (6.3). It guarantees that the

stochastic input is distorted in such a way that the dilution of the original model's

economic meaning contains no systematic bias.

(A4) The support of F should be as large as possible within the space of possible dis-

tributions on [0, 1].

→ Axiom (A4) re�ects a non-parametric nature within the present approach. The

distortion from the original model is maximally chaotic and itself �un-modeled�. It

shall guarantee that we do not neglect potential sources for model mis-speci�cation.
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6.3 Model for the distorted random source

Besides, as a practical requirement, the distorted stochastic input {Ũk}k∈N, respectively
�nite subvectors thereof, should be e�cient and accurate to simulate from. Provided the

original models f in concern can be simulated quickly from the original stochastic input

U , a rapid generation of samples for Ũ is crucial for a fast simulation of the distorted

model when replacing U by Ũ in the general representation (6.1).

6.3 Model for the distorted random source

Having stated a number of crucial properties, the overall question is: Is there a random

distribution function F such that Axioms (A1)�(A4) are satis�ed? The following theorem

shows that a Dirichlet process with parameters (c, id[0,1]) is a valid choice for F in the

sense of the postulated conditions. Furthermore, as we know (see Section 2.4.4) that in

this case, the stochastic process M appearing in (6.5) de�nes an additive subordinator,

Ũ is connected to an additive�frailty copula.

Theorem 6.3.1 (Distortion via Dirichlet copula)

Let F = {Ft}t∈R be a Dirichlet process introduced in Section 2.4.4 with parameters

(c, id[0,1]), c > 0, and de�ne {Ũk}k∈N via (6.5). Then F satis�es Axioms (A1)�(A4).

Moreover, the joint distribution function of (Ũ1, . . . , Ũd) is given by the Dirichlet copula

Cc(u1, . . . , ud) :=
d∏

k=1

c u(k) + k − 1

c+ k − 1
, u1, . . . , ud ∈ [0, 1].

Proof

We start by proving the second claim and compute the distribution function of (Ũ1, . . . , Ũd).

By Theorem 3.5.3, the survival copula of (Ũ1, . . . , Ũd) is given by Cc. As the Dirich-

let copula is radially symmetric (see Corollary 3.5.4), Cc also manifests the copula of

the random vector. For a Dirichlet process Z with parameters (c,G), it holds that

E[Zt] = G(t) for all t ∈ R. Thus, for the considered parameterization, it holds that

P(Ũk ≤ u) = E[Fu] = u for u ∈ [0, 1] and the Dirichlet copula Cc represents the distribu-

tion function of (Ũ1, . . . , Ũd).

The proof of the second claim already implies that properties (A1) (univariate marginal

distribution of the Uk) and (A3) (radial symmetry) are ful�lled. Thus, it remains to

check properties (A2) and (A4).

(A2) Having �xed the unconditional distribution function G = id[0,1] of the Dirichlet

process in order to satisfy Axiom (A1), the only degree of freedom left in modeling Ũ via
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the Dirichlet prior assumption is the parameter c > 0, which accounts for the variance of

F . It is straightforward to show that for c→∞, Cc converges to the independence copula,

while for c↘ 0, Cc equals the comonotonicity copula. Referring to the interpretation of

Ũk as random economic well-being / distress entering the model f in time step k, the

choice c <∞ introduces an increased probability for a series of either low or high values

for all Ũk. In order to satisfy (A2), we are aiming at a reparameterization involving a

single parameter c̃ ∈ [0, 1] that accounts for the severity of the distortion. This can for

instance be accomplished by a reparameterization c̃ = c̃(c) := τCc (respectively c̃ := ρCc)

based on inverting Kendall's τ (respectively Spearman's ρ) in Lemma 6.3.3 below. In this

case, c̃ → 0 means �no distortion from i.i.d.� and c̃ = 1 implies �maximum distortion�.

During the remainder of the paper, however, we stick with the parameter c for the sake

of a consistent notation.

(A4) The following lemma, derived in (Ferguson, 1973, Proposition 3), guarantees that

the support of F is a large family of distribution functions on [0, 1].

Lemma 6.3.2 (Support of a Dirichlet process Λ)

Let Z = {Zt}t∈R be a Dirichlet process with parameters (c,G). If Q is a probability mea-

sure on (R,B(R)) which is absolutely continuous w.r.t. dG, then, for arbitrary measurable

sets A1, . . . , Am ∈ B(R),m ∈ N and ε > 0, it holds that6

P
(
|dZ(Ai)−Q(Ai)| < ε for i = 1, . . . ,m

)
> 0. (6.6)

Intuitively speaking, when setting F = Z in (6.5) for a Dirichlet process Z with pa-

rameters (c, id[0,1]), Equation (6.6) states that an arbitrary absolutely continuous prob-

ability measure Q on [0, 1] can be approximated arbitrarily close by the set of potential

realizations of dZ. Regarding our intention to introduce model uncertainty in a �model-

free� way, the large support of F in the Dirichlet construction implies that we are not

putting serious structural restrictions on the distorted random vector Ũ � which could be

questioned in terms of model robustness � but rather allow for a broad range of model

distortions. �

Reparameterizing c via the concordance measures mentioned in the proof of (A2) in

Theorem 6.3.1 is substantiated by the following �nding.

6In Equation (6.6), dZ denotes the random probability measure induced by Z.
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6.3 Model for the distorted random source

Lemma 6.3.3 (Kendall's tau and Spearman's rho of Cc)

Kendall's tau and Spearman's rho of the bivariate copula Cc(u1, u2) = u[1] g2(u[2]), where

g2(u) = (c u+ 1)/(c+ 1), are given by

τCc =
2 c+ 3

3 (c+ 1)2
, ρCc =

1

c+ 1
.

Proof

The results follow from the general formulas stated in Section 3.2. For Kendall's tau, we

have

τCc = 4

∫ 1

0
u g2(u)2 du− 1 = 4

∫ 1

0
u
(c u+ 1

c+ 1

)2
du− 1

=
4

(c+ 1)2

∫ 1

0
(c2 u3 + 2 c u+ u) du− 1

=
4

(c+ 1)2

(1

4
c2 +

2 c

3
+

1

2

)
− 1

=
3 c2 + 8 c+ 6− 3 (c+ 1)2

3 (c+ 1)2
=

2 c+ 3

3 (c+ 1)2
.

Spearman's rho is given by

ρCc = 12

∫ 1

0
u2 g2(u) du− 3 = 12

∫ 1

0
u2 c u+ 1

c+ 1
du− 3

=
12

c+ 1

∫ 1

0
(c u3 + u2) du− 3 =

12

c+ 1

(1

4
c+

1

3

)
− 3

=
3 c+ 4− 3 c− 3

c+ 1
=

1

c+ 1
. �

Furthermore, by radial symmetry, the upper and lower tail-dependence coe�cients λU
and λL of Cc coincide. Using the general formula in Section 3.2, they are given by

λL = lim
u↘0

g2(u) =
1

c+ 1
= λU = 1− g′2(1−).

In addition to the ful�lled axioms, a simulation algorithm for the source of randomness Ũ ,

i.e. the copula Cc in arbitrary dimension d, is readily available from the key characteristics

of the Dirichlet process. Generally speaking, (Ferguson, 1973, Theorem 1) implies that

the random vector {Ũk}k=1,...,d in (6.5) with a Dirichlet process F = Z with parameters

(c,G) may be simulated iteratively as follows:

(1) Simulate Ũ1 ∼ G.

(2) For k = 2, . . . , d perform the following steps to simulate Ũk:
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(a) Simulate a discrete random variable N with distribution given by

P(N = i) =
1

c+ k − 1
, i = 1, . . . , k − 1, P(N = k) =

c

c+ k − 1
.

(b) If N equals k, simulate Ũk ∼ G, otherwise set Ũk := ŨN .

Applying this algorithm with G = id[0,1] yields a sample from Cc. To perform Step (2)

for a �xed k, one can (i) divide the interval [0, 1] into k non-overlapping subintervals[
0,

1

c+ k − 1

]
,
[ 1

c+ k − 1
,

2

c+ k − 1

]
, . . . ,

[ k − 2

c+ k − 1
,

k − 1

c+ k − 1

]
,
[ k − 1

c+ k − 1
, 1
]
,

(ii) draw a uniformly distributed random variable U on [0, 1], (iii) determine whether U

falls into the �rst k−1 intervals or the last one, and (iv) either set Ũk equal to one of the

previous components Ũ1, . . . , Ũk−1, or set Ũk = [(c+ k − 1)/c] [U − (k − 1)/(c+ k − 1)]

to generate an independent uniformly distributed sample on [0, 1]. Thus, sampling the

random vector Ũ = {Ũk}k=1,...,d with (survival) copula Cc can be accomplished by a

few lines of code in any programming language. The algorithm is extremely e�cient7,

the run time is of order O(d log(d)) when the involved discrete random variable N is

simulated via bisection in O(log(k)).

For the case study in Section 6.4, we have implemented this algorithm in Matlab. Aiming

at reproductability and applicability of the presented method, we present the implemen-

tation for generating n samples of the random vector {Ũk}k=1,...,d with (survival) copula

Cc in detail.

Algorithm 6.3.4 (Generating n samples of {Ũk}k=1,...,d ∼ Cc)
1 f u n c t i on U t i l d e = rD i r i c h l e tCopu l a (n , d , c )

2 Ut i l d e = ze ro s (n , d ) ;

3 Ut i l d e ( : , 1 )=rand (n , 1 ) ;

4 f o r k=2:d

5 U=rand (n , 1 ) ;

6 cum_p = [ 0 , ( 1 : ( k−1) ) /( c+k−1) , 1 ] ;
7 [~ , i d v ] = h i s t c (U, cum_p) ;

8 index =(1:n) '+( idv −1)∗n ;
9 temp=[ U t i l d e ( : , 1 : ( k−1) ) , ( c+k−1)/c ∗(U−(k−1)/( c+k−1) ) ] ;

7We have run the routine on a computer with 4 GB RAM and Intel Core 2 Quad CPU 2.4 GHz

processor, however not using parallelization. The implementation of Algorithm 6.3.4 below roughly

took 0.1 seconds to generate 100 000 samples of the 5-dimensional random vector (Ũ1, . . . , Ũ5) for

arbitrary values of c.
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6.3 Model for the distorted random source

10 Ut i l d e ( : , k ) = temp ( index ) ;

11 end

12 end

6.3.1 Alternatives to the Dirichlet process

In the beginning of Section 6.2.3, we have argued that the distorted random source

{Ũk}k∈N should be constructed via (6.5) with a random distribution function F that, by

Axiom (A1), satis�es E[Ft] = t for t ∈ [0, 1]. We proposed the Dirichlet process from non-

parametric Bayesian statistics as a natural candidate, and have shown that it satis�es all

desirable Axioms (A1)�(A4) postulated in Section 6.2.3. The present section's intention

is to outline that alternatives to the Dirichlet process are actually not easy to �nd, so

our choice was rather natural and by no means arbitrary.

By Axiom (A1), one is naturally restricted to copula models for (Ũ1, . . . , Ũd). In order

to guarantee the radial symmetry Axiom (A3), one is restricted to radially symmetric

copulas. In this regard, one choice for F that might come to one's mind originates

from the one-factor Gaussian copula (or elliptical generalizations thereof), which can be

generated via (6.5) by de�ning

Ft := Φ
(Φ−1(t)−

√
cM√

1− c

)
, t ∈ [0, 1], (6.7)

where Φ denotes the standard normal distribution function, M a standard normally

distributed random variable, and c ∈ [0, 1) the correlation parameter. By symmetry of

the normal law, the extendible Gaussian copula satis�es (A3). Being parameterized by a

single parameter c ∈ [0, 1), it additionally allows for a natural interpretation and hence

satis�es (A2). Simulation is also straightforward and e�cient. However, the crucial

disadvantage with regards to our intended use is the violation of the support condition

in (A4). Vividly speaking, the paths of {Ft}t∈[0,1] are generated by the realizations of

the single random variable M . Once M is known, i.e. M = m for some m ∈ R, F is a

deterministic distribution function on [0, 1] given by

P(Ũk ≤ t|M = m) = Φ
(Φ−1(t)−

√
cm√

1− c

)
, t ∈ [0, 1].

It is evident that the set of distribution functions generated by the possible values for m

is rather special and �small�. As visualized in Figure 6.3, the paths in the Gaussian case

follow a prede�ned structure guided by the realizations of M and are less �chaotic� than
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6.3.1 Alternatives to the Dirichlet process

the Dirichlet-type distortion. This constraint of the Gaussian copula heavily contradicts

the spirit of our model-independent distortion attempt and can itself be seen as a quite

restrictive structural assumption. The same arguments apply to the more general class

of elliptical copulas (see McNeil et al. (2005) for general elliptical distributions), which,

to the best of our knowledge, represent the only known well-understood family of distri-

bution functions for Ũ that satis�es the radial symmetry property in (A3) in arbitrary

dimension d.
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Figure 6.3 100 paths of Dirichlet process with parameters (c, id[0,1]) (left) and the Gaus-

sian path {Ft}t∈[0,1] in (6.7) (right). In both the Dirichlet and Gaussian case,

the parameter c has been set such that Spearman's rho of the random vector

(Ũ1, Ũ2) resulting from (6.5) equals 0.3.

Another strategy to �nding alternatives to the Dirichlet prior satisfying (A1)�(A4) is

the consideration of a more general class of processes for F . In Section 2.4.4, it has

been mentioned that any Dirichlet process Z can be constructed by Z = 1 − exp(−Λ)

for an increasing, right-continuous process Λ = {Λt}t∈R with independent increments

subject to certain constraints on the distribution of the increments. Furthermore, it

has been pointed out that if one neglects these constraints, the corresponding process

Z = 1− exp(−Λ) is called neutral-to-the-right prior. When setting F = Z and (in order

to ful�ll (A1)) assuming that u = E[Fu], Proposition 3.5.1 implies that the survival

copula of {Ũk}k=1,...,d from (6.5) is an additive�frailty copula with structural form

C(u1, . . . , ud) =
d∏

k=1

gk(u(k)), u1, . . . , ud ∈ [0, 1],

where the functions gk can be given explicitly in terms of the Laplace exponents of
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6.4 Empirical case study on model robustness

Λ. However, even within the larger family of neutral-to-the-right priors, Theorem 3.4.2

shows that for di�erentiable functions gk, the copula C is radially symmetric (i.e. satis�es

(A3)) if and only if it is equal to the Dirichlet copula. Summing up, when constructing the

distorted random vector Ũ via (6.5), to the best of our knowledge, the only valid choice

for satisfying Axioms (A1)�(A4) is a Dirichlet process with parameters (c, id[0,1]).

6.4 Empirical case study on model robustness

Though being easily applicable to a broad spectrum of risk models f , one might argue

that the method of distorting the source of randomness is ad hoc and not backed by

economic reasoning. Yet, we advocate the consideration of this approach for a number

of reasons: First of all, any model-f -speci�c modi�cation of f is itself a presumption

subjective to critical debates. Secondly, though having his or her own idea of how to

model and stress returns, a company's risk manager � as argued in Alexander and Sheedy

(2008) � might be restricted in �exibility, for instance by the existing IT infrastructure.

Last but not least, our analysis shows that the distortion parameter c has a universal

in�uence on a variety of popular models for f in the sense that it consistently a�ects a

given model throughout time.

6.4.1 Technical setup and data used

To make our case study reproducible, we assume that our portfolio returns follow the

S&P 500 index, for which historical data is easily available, and that we are interested in

deriving VaR forecasts for a given con�dence level and forecast time horizon. A typical

procedure for extracting these estimates is as follows:

(1) Consider a set r := {rtk}k=1,...,n of empirical return realizations (training sample).

(2) Fit a model f for the future returns Rtn+1 , Rtn+2 , . . . to r.

(3) Extract the VaR estimate for the d-step return Rtn+1 + . . .+Rtn+d
.

Di�erent variations and implementations of procedures (1)�(3) can be found in practice.

For instance, Step (2) could be modi�ed by expert opinion or risk-neutral calibration, and

Step (3) might be evaluated by either closed-form formulas or simulation, depending on

the model f in concern. In the following, however, we focus on the most basic approach

described above to illustrate the distortion e�ect in the most transparent way. Mostly
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6.4.1 Technical setup and data used

due to data availability, the training sample is chosen to have daily frequency and to

consist of at least n = 250 trading days of observations, i.e. about one year of data.

The present section indicates how to account for model uncertainty in the Dirichlet

framework using the example of VaR calculation. The core idea is very simple: Instead

of computing the VaR for Rtn+1 + . . . + Rtn+d
based on a given model f , one can de-

rive a more conservative estimate by considering the distorted sum R̃tn+1 + . . .+ R̃tn+d
,

with R̃tn+k
= fk(R̃tn+1 , . . . , R̃tn+k−1

, Ũk) and {Ũk}k=1,...,d ∼ Cc constructed by Algo-

rithm 6.3.4. By means of backtesting, one can set the distortion parameter c such

that the frequency of historically observed VaR-undershootings is lowered to a level the

company management, respectively the regulator, prescribes. Recall from, e.g., CESR

(2010), that an undershooting is de�ned as an empirically observed return that has been

worse than forecasted by the VaR, and the relative frequency of such undershootings

must not exceed the con�dence level of the VaR-measurement.

The models we implement in our case study are precisely the ones from Alexander and

Sheedy (2008). In this work, eight speci�cations of f are examined that can be divided

into the Groups (I) and (II) from Section 6.2.1. Group (I) consists of four i.i.d. models for

the log-returns, meaning that Rtn+1 , . . . , Rtn+d
are assumed to be i.i.d. with univariate

distribution functions G(m), m = 1, . . . , 4, respectively. The marginal laws comprise the

normal distribution (m = 1), a modi�ed version of the empirical distribution function,

i.e. historical simulation (m = 2), the scaled Student's t-distribution (m = 3), and a

normal mixture with two normally-distributed components (m = 4).

Group (II) consists of GARCH(1, 1)-processes for the conditional variance of the mean-

adjusted portfolio returns, see Bollerslev (1986) for details. The law of the innovations

in the conditional variance process are chosen from (scaled versions of) the i.i.d. model

distributions G(m) (denoted G(m),GARCH), yielding another four speci�cations for f . Fol-

lowing the notation in Alexander and Sheedy (2008), we classify the i.i.d. models from

Group (I) as types unconditional normal, unconditional empirical, unconditional Stu-

dent's t, and unconditional normal mixture, while using the terms conditional normal,

conditional empirical etc. when referring to the GARCH models from Group (II). A

description of the models' structure and their calibration is outlined in the respective

reference. As we are not aiming at discussing model selection and parameter estimation,

but rather focus on incorporating an uncertainty add-on into a given speci�cation, we

have adopted the �tting methodology from Alexander and Sheedy (2008) and refer to

this paper for more details.
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6.4 Empirical case study on model robustness

The time series we rely on for VaR backtesting consists of the past 25 years of daily

S&P 500 log-returns, yielding a total of 6 423 observations {rt1 , . . . , rt6 423} in the period

from November 1989 to November 2014. To derive a series of VaR forecasts and compare

them with realized returns, we proceed as follows:

(1) Estimate all models f based on the training sample {rtk}k=1,...,n. For the i.i.d. mod-

els, this means determining G(m), m = 1, . . . , 4. For the conditional models, this

implies estimating both the GARCH parameters and the innovation distributions

G(m),GARCH, m = 1, . . . , 4.

(2) Forecast the distorted d-day VaR of R̃tn+1+. . .+R̃tn+d
via a Monte Carlo simulation

by executing the following steps:

(a) Generate several samples of {Ũk}k=1,...,d with Algorithm 6.3.4.

(b.GI) Set R̃tn+k
= G−1

(m)(Ũk), k = 1, . . . , d, for each sample in the i.i.d. case.

(b.GII) Determine the innovations Z̃n+k = G−1
(m),GARCH(Ũk), k = 1, . . . , d, for each

sample in the conditional case and set R̃tn+k
= σn+k Z̃n+k according to the

GARCH parameters for σn+k. In general, σn+k depends on GARCH model

parameters as well as previous realizations R̃tn , . . . , R̃tn+k−1
.

(c) Compute the sample VaR of R̃tn+1 + . . .+ R̃tn+d
for each model.

(3) Compare the VaR estimate with the empirically observed return rtn+1 + . . .+rtn+d
.

(4) Repeat Steps (1)�(3) after shifting the time series by d observations, i.e. choose

{rt1+d
, . . . , rtn+d

} as the new training sample and proceed iteratively.

6.4.2 Conclusions of the case study

Using a training sample of size n = 250 for model estimation and considering a period

of one week (i.e. d = 5 trading days) for VaR forecasting, we end up with a total

of (6 423 − 250)/5 ≈ 1 234 distorted VaR estimates which we compare to the realized

weekly returns. We illustrate the results by means of Figures 6.4 and 6.5.

Figure 6.4 shows the resulting return histograms that are generated in each iteration,

more precisely, in Steps (1)�(2) of the methodology described above. The return dis-

tribution widens, as the disturbance of the random input leads to an accumulation of

extreme events. Due to radial symmetry of the distortion, the stylized shape of the

distributions is maintained. The impact of the Dirichlet framework on the VaR and
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6.4.2 Conclusions of the case study
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6.4 Empirical case study on model robustness

conditional Value-at-Risk (CVaR) varies among the models. For instance, the CVaR

estimates do not double in all four unconditional cases, while they roughly triple for the

conditional Student's t model. This means that the conditional Student's t model is

less robust with respect to a distortion of the stochastic input than the unconditional

models.

When looking at the distortion's in�uence on a given model over time, however, the

impact seems to be rather homogeneous. Figure 6.5 shows three lines of time-varying

VaR estimates in the unconditional normal case (corresponding to di�erent levels of

distortion) and (as a side information) further indicates the corresponding realized weekly

returns. It becomes apparent that the relative VaR increase is quite stable over time and
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Figure 6.5 Time series of observed weekly returns (circles) and corresponding 5%-VaR

estimates for the unconditional normal method (lines). The blue line indi-

cates the estimate in the undistorted case (c = ∞), the green one in the

moderately distorted case (c = 9), and the brown one for a stronger dis-

tortion (c = 4). The red �∗�-symbols indicate the observed returns that

undercut the VaR-forecast in the undistorted case.

does not seem to depend on the (time-varying) model parameters. A similar observation

can be extracted for the other models under consideration.

Last but not least, Table 6.1 shows the relative frequency of 5%-VaR violations for the

di�erent models, i.e. the number of times an observed weekly return has undershot the

VaR forecast, divided by the total number of weekly returns, w.r.t. the whole S&P 500

time series. As expected, the proportion of VaR violations decreases with increasing
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Table 6.1 Total proportion of observed weekly returns that undershot the 5%-VaR fore-

cast derived with di�erent levels of distortion.

Distortion parameter

Model c =∞ c = 9 c = 4

Unconditional normal 0.045 0.029 0.022

Unconditional empirical 0.037 0.027 0.019

Unconditional Student's t 0.050 0.030 0.026

Unconditional normal mixture 0.034 0.026 0.018

Conditional normal 0.048 0.032 0.019

Conditional empirical 0.041 0.026 0.013

Conditional Student's t 0.050 0.032 0.019

Conditional normal mixture 0.044 0.032 0.019

severity of the distortion as the estimates become more conservative. In the present

application, the undistorted estimates seem to capture the 5%-quantile of the weekly re-

turn distribution quite accurately. Nevertheless, the company-internal risk management

guidelines might prescribe a relative frequency of VaR-undershootings below the con�-

dence level applied in the VaR-computation. Such a guideline might avoid undesired

conversations with the regulator, who monitors the relative frequency and requires risk

management to review their VaR-model in case of too many undershootings. Distorting

the model according to the approach described in the present chapter might be a conve-

nient way to implement such a guideline as it is easy to implement as an add-on to the

existing model and can be justi�ed as a charge for model uncertainty.
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7 Conclusion and outlook

This thesis has extensively treated exchangeable exogenous shock models (X1, . . . , Xd),

which can be represented as

Xk = min{ZE : k ∈ E}, k = 1, . . . , d,

for 2d − 1 independent real-valued random variables ZE , ∅ 6= E ⊆ {1, . . . , d}, whose
distribution function solely depends on the cardinality of E.

The central starting point for this thesis' main �ndings and applications is Chapter 3,

which fully characterizes these models by means of the survival copula of (X1, . . . , Xd).

While Proposition 3.1.3 (p. 54) states that the survival copula necessarily has the form

C(u1, . . . , ud) =
d∏

k=1

gk(u(k)), u1, . . . , ud ∈ [0, 1],

the fundamental Theorem 3.3.1 (p. 61) establishes the converse and emphasizes that C

is a copula only if it can be associated with an exchangeable exogenous shock model.

To this end, besides explicitly deriving the stochastic model behind, C is equivalently

characterized via both inequality conditions (see Theorem 3.3.1.(ii)) and monotonicity

requirements (see Theorem 3.3.1.(iii)) for the functions gk. Moreover, Proposition 3.5.1

(p. 80) derives a second stochastic representation for an extendible subclass of exchange-

able exogenous shock models (termed additive�frailty model) based on a �rst-passage

time construction

Xk = inf{t ≥ 0 : Λt ≥ Ek}, k = 1, . . . , d,

which is parameterized by an additive subordinator Λ = {Λt}t≥0. Di�erent speci�cations

of Λ can be used to easily construct new, tractable families of multivariate distribution

functions with shock model interpretation. A possible challenge for prospective research

is to analyze whether the additive�frailty construction coincides with the class of ex-

tendible exogenous shock models. As similar results for the special case of exponentially
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distributed shocks are already available in the literature, I am con�dent this can be

achieved (though the generality of the result is probably quite demanding).

The powerful connection between the additive�frailty framework for (X1, . . . , Xd) and

the corresponding shock construction is exploited in the subsequent paragraphs. By con-

struction, the additive subordinator Λ satis�es the inequality and monotonicity require-

ments for the functions gk induced by Theorem 3.3.1.(ii)+(iii). Possibly, these conditions

are not only necessary, but su�cient to uniquely determine the process Λ. Chapter 4

addresses this question when specifying Λ as a Sato subordinator. With Sato subordina-

tors being linked to self-decomposable probability laws on the positive half-axis, the de-

scribed procedure results in Theorem 4.2.1 (p. 91) and yields two novel characterizations

of self-decomposable Bernstein functions Ψ, one in terms of monotonicity requirements

for Ψ and one in terms of multivariate distribution functions. The distribution func-

tion (termed Sato�frailty copula) is studied in detail, involving various examples, the

computation of several properties, and the comparison to the structurally surprisingly

similar class of Archimedean copulas. Concerning the monotonicity characterization of

self-decomposable Bernstein functions, a possible application we have thought of is the

analysis of the in�nitely divisible Hartman�Watson law, which is an important object

in mathematical �nance due to its appearance in the pricing of Asian options. To the

best of our knowledge, the Lévy measure of the associated Bernstein function Ψ is not

known and can thus not be used to directly determine whether Ψ is self-decomposable.

It might be worth checking whether Ψ satis�es our conditions for self-decomposability,

a task which we have brie�y worked on up to now, however not pursued in detail.

Regarding the e�ectiveness and usefulness of exchangeable exogenous shock models in

the �eld of mathematical �nance, additive�frailty models are applied in Chapters 5 and 6

in two completely di�erent contexts. Chapter 5 treats the modeling of a high-dimensional

portfolio (X1, . . . , Xd) of default times in order to price CDOs. In an additive�frailty

setup, the loss process connected to the default times can be approximated by the param-

eterizing additive subordinator Λ. The crucial result in this application is Theorem 5.3.2

(p. 122), which depicts a highly e�cient, mathematically rigorous pricing formula based

on Laplace inversion. Following the calibration procedure in Section 5.4, goodness-of-�t

tests w.r.t. CDO market tranche spreads could be executed for Sato�frailty and other

additive�frailty models. As pointed out earlier, we deliberately present the methodology

on a conceptual layer. However, we consider an empirical comparison in future research

interesting and valuable.

As a second practical application, exchangeable exogenous shock models are used in the
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6.4 Empirical case study on model robustness

context of model uncertainty in Chapter 6. Based on the �Markov regression represen-

tation� of an arbitrary random vector R = {Rtk}k=1,...,d, which yields a decomposition

Rtk = fk(Rt1 , . . . , Rtk−1
, Uk), k = 1, . . . , d, we have introduced a new philosophy for

model robustness that applies to arbitrary stochastic models. The core idea is to sepa-

rate model assumptions f from pure randomness U = {Uk}k=1,...,d and distort the latter.

This distortion, however, has to be done in a well considered way, for which we postulate

axioms. In Theorem 6.3.1 (p. 135), it is shown that an additive�frailty model based on

the Dirichlet process satis�es all postulated axioms. The methodology is �nally brought

to life by providing an e�cient simulation algorithm that is applied in a case study.

To put it in a nutshell, as hinted by this thesis' title, we provide a comprehensive analysis,

characterization, and application of exchangeable exogenous shock models. The link

to additive�frailty models provides a powerful tool in exploring new copula families,

investigating classes of additive processes, and deploying the stochastic framework in

practice.
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