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Zusammenfassung 

Chronisch entzündliche Darmerkrankungen (CED) sind immun-vermittelte rezidivierende 

Entzündungen des Gastrointestinaltrakts einschließlich Morbus Crohn und Colitis Ulcerosa. 

Das Zusammenspiel von Risikofaktoren (z. B. genetische Prädisposition, Diät, Mikrobiota) 

führt durch die gestörte intestinale Homöostase zu einer übersteigerten mukosalen 

Immunantwort. Als Risikofaktor für die Entstehung chronischer Erkrankungen (z. B. Diabetes, 

Adipositas) wird die pränatale Exposition gegenüber bestimmten maternalen Reizen (z. B. 

Adipositas) diskutiert. 

Ziel dieser Arbeit war es, den pränatalen Einfluss von maternaler Entzündung und maternaler 

Nahrungs-induzierter Adipositas (mDIO) auf die epitheliale transkriptionelle Programmierung 

des Darmepithels zu analysieren und die postnatale Entwicklung von intestinaler Entzündung 

an Mausmodellen mit genetisch-getriebener Ileitis [TnfΔARE/+(ARE)] und mit 

Natriumdextransulfat (DSS)-induzierter Colitis zu untersuchen. 

Während frühere Arbeiten zeigten, dass maternale Entzündung das epitheliale 

Genexpressionsprofil des fötalen Ileums maßgeblich verändert, zeigt diese Arbeit, dass mDIO 

das Genexpressionsprofil kaum beeinflusst. Allerdings wurde die postnatale Entwicklung einer 

genetisch-getriebenen Entzündungspathologie im terminalen Ileum (Ileitis) durch keinen der 

beiden maternalen Stimuli verändert. Nur eine Kombination von mDIO mit einer postnatalen 

Hochfettdiät (HFD) beschleunigt die Entwicklung einer Ileitis, ohne dabei den Schweregrad zu 

verändern. Die pränatale Exposition gegenüber maternaler Entzündung wirkte sich protektiv 

auf den Schweregrad der DSS-Colitis aus, wohingegen mDIO keinen Einfluss zeigte. Das 

epitheliale Genexpressionsprofil des fötalen Colons wurde dabei durch maternale Entzündung 

nicht maßgeblich beeinflusst. Mit Hinblick auf die metabolische Programmierung, steigerte 

mDIO das Körpergewicht im fötalen Stadium (17.5 dpc) unabhängig vom fötalen Genotyp (WT 

und ARE). Dabei wirkte mDIO sich protektiv in WT Nachkommen aus (Körpergewicht, 

Fettmasse, Leptin), die mit postnataler HFD gefüttert wurden. ARE Nachkommen zeigten 

dagegen eine entzündungsabhängige Resistenz gegenüber HFD, welche durch mDIO nicht 

zusätzlich moduliert werden konnte.  

Schlussfolgernd scheint die pränatale Programmierung des Darmepithels keinen 

entscheidenden Einfluss auf die intestinale Entzündung zu haben. Lediglich der Verlauf einer 

genetisch-getriebenen Ileitis (z. B. durch mDIO) wird durch pränatale Exposition gegenüber 

maternal-entzündlichen Reizen beeinflusst, nicht aber der Schweregrad. Im Gegensatz dazu 

wirkt sich maternale Entzündung protektiv auf den Schweregrad einer experimentellen Colitis 

aus.
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Abstract 

Inflammatory bowel diseases (IBD) are chronically relapsing immune-mediated disorders of 

the gastrointestinal tract such as Crohn’s disease and ulcerative colitis. The interplay of risk 

factors (e.g. genetic predisposition, diet, microbiota) disturbs the intestinal homeostasis 

resulting in an overreacting mucosal immune response. Prenatal exposure to maternal stimuli 

(such as inflammation or obesity) is linked to chronic diseases. 

The aim of this work was to investigate the effects of murine maternal inflammation or maternal 

diet-induced obesity (mDIO) on prenatal programming of the intestinal epithelium and on the 

postnatal development of intestinal inflammation using mouse models for genetically-driven 

ileitis [TnfΔARE/+ (ARE) mouse] and for dextrane sulfate sodium (DSS)-induced colitis. 

As a result, and contradictory to previously published results that show that maternal 

inflammation highly impacts the epithelial transcriptome of the fetal ileum, no extensive 

influence on the fetal intestinal epithelial transcriptome was observed by mDIO. However, the 

postnatal development of a genetically-driven pathology in the terminal ileum (ileitis) was not 

affected by either maternal stimulus alone, indicating the strong influence of the postnatal 

environment on this disease. However, mDIO in combination with a postnatal high-fat diet 

(HFD) accelerated ileitis development, but not the ileitis severity at later stages. Consequently, 

risk factors from the postnatal environment were crucial in the development of TNF-driven 

ileitis, whereas mDIO reflects a risk factor for the onset of ileitis. In contrast, the responses to 

DSS colitis susceptibility were different. Maternal inflammation attenuated the severity of DSS 

colitis, whereas mDIO did not influence colitis development. However, the fetal epithelial 

transcriptome of the colon was not affected by maternal inflammation. In the context of 

metabolic programming, mDIO increased fetal body weights (17.5 dpc) independently of the 

fetal genotype (WT and ARE), but attenuated body weight gain, mesenteric fat gain and 

plasma leptin increase in HFD-fed WT offspring. Due to postnatal inflammation, HFD-fed ARE 

offspring showed resistance to diet-induced obesity, which was not modulated by mDIO.  

In conclusion, fetal programming of the intestinal epithelium is hardly influenced by maternal 

stimuli and is not a determining factor for postnatal intestinal inflammation. Maternal 

inflammatory stimuli did not alter the severity of inflammation in a genetically-driven ileitis, but 

were able to modulate the disease onset (in case of mDIO). This is different in an experimental 

model, where maternal inflammation attenuated the severity of colitis. 
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Aims of the work 

Maternal changes during gestation (i. e. inflammation, nutrition and infection) cause alterations 

in intrauterine availability to nutrients, oxygen and hormones, thus affecting the programming 

of tissues. It has been reviewed that intrauterine programming of fetal organ systems (e. g. 

cardiovascular, metabolic, reproductive and nervous system) can be related to diseases later 

in life (hypertension, obesity, type 2 diabetes, asthma). However, the role of maternal 

inflammatory conditions such as IBD or obesity as risk factors for long-term adverse 

consequences on the offspring’s intestinal health remains poorly understood.  

This work was conducted to investigate whether maternal inflammation or maternal diet-

induced obesity (mDIO) program the fetal gut towards intestinal inflammation by using two 

mouse models of intestinal inflammation: genetically-driven CD-like ileitis (Tnf ΔARE/+mice, ARE) 

and experimentally-induced colitis (Tnf+/+mice, WT). 

Laser microdissection (LMD) microscopy was used to characterize the transcriptional 

response of the fetal epithelium. Tissue pathology and hallmarks of tissue inflammation typical 

for the TnfΔARE/+  mouse model, such as infiltration of neutrophils (Ly6G-positive cells), were 

assessed in ileal tissue sections from adult WT and ARE offspring in order to investigate 

whether prenatal exposure to maternal inflammation or mDIO influences the postnatal 

development of ileitis. Characteristics of intestinal permeability and systemic inflammation 

were addressed by analysing portal vein endotoxin and plasma TNF. Furthermore, a putative 

coherent influence of prenatal and postnatal obesity on ileitis was proven by additional 

exposure of ARE offspring to postnatal HFD. To evaluate the severity of DSS colitis, body 

weight development and disease activity indices from DSS-treated WT offspring were 

monitored.  

Metabolic programming in response to mDIO was evaluated in WT offspring that were exposed 

to a postnatal HFD feeding by monitoring offspring’s body weight, mesenteric fat mass as well 

as plasma leptin at different time points.
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1. Introduction 

1.1. Inflammatory bowel diseases 

Chronic pathologies (i. e. obesity, diabetes, cancer) are long-lasting conditions that cause the 

major morbidity and mortality across the globe. They are characterized by a complex causality, 

multiple risk factors (often shared between pathologies), long latency periods, prolonged 

course of illness and functional impairment, which make it difficult to understand their 

pathogenesis.  

Inflammatory bowel diseases (IBD) are such relapsing systemically immune-mediated chronic 

pathologies mainly affecting the gastrointestinal tract with its two main idiopathic forms, 

Crohn’s disease (CD) and ulcerative colitis (UC). 

CD and UC show distinct disease phenotypes. CD can affect the whole digestive tract 

represented by a patchy inflammation pattern of rocky appearance and UC develops in the 

large intestine continuously throughout areas. Patients mainly suffer from lower right (in CD) 

or left (UC) abdominal pain. Ulcers are deeply and transmurally located in CD, whereas in they 

reside in the mucus lining in UC. Both forms have in common that genetic abnormalities can 

cause overly aggressive T cell responses to a subset of commensal enteric bacteria. In 

addition, microbial adjuvants activate innate immune mechanisms through pattern recognition 

receptors (PRR) and subsequent NFκB activation causing the expression of proinflammatory 

cytokines (such as TNF, Il1β, IL-6 and Il-8) in active disease [1]. The overall immunologic 

phenotype of CD is driven by a Th1/Th17 response causing T cell expression and secretion of 

IFN-γ, IL-22 and IL-17 [2]. In contrast, the T cell profile in UC is more difficult to characterize. 

It is considered as an atypical Th2-like response in which natural killer T cells (NKT cells) 

produce IL-13 and IL-5 as the major response, but the concentrations of IL-4 and IL-5 which 

are elevated in a typical Th2 response may vary in UC.[1]. 

From a public health standpoint, IBD is a global health problem with increasing annual 

incidence rates especially in westernized countries during the 2nd and 3rd decade of life. In 

2013, 10.58 million prevalent cases of IBD were reported worldwide, which was a 9.6% 

increase compared to 1990 [3]. UC has an annual incidence of 0-19.2 per 100,000 inhabitants 

in North America and 0.6-24.3 per 100,000 inhabitants in Europe with a corresponding 

prevalence of 37.5-248.6 per 100, 000 and 4.9-505 per 100,000 inhabitants, respectively [4]. 

The incidence of CD is comparable to UC (0-20.2 per 100,000 in North America and 0.3-12.7 

per 100,000 in Europe [4]. Distinct incidence rates around the globe point to potential 

environmental risk factors for IBD. The incidence is higher in urban than in rural populations 

and there is a north-south gradient of IBD incidence (multivariate-adjusted Hazard Ratio for 
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women residing in southern latitudes compared to northern latitudes was 0.48 (95% CI 0.30 to 

0.77) for CD and 0.62 (95% CI 0.42 to 0.90) for UC [5]. However, the environment is not the 

only confounder for the outcome of IBD. Basic science, animal models, genetic analyses, and 

clinical trials provide some insights in the pathogenesis of IBD and already clarified that 

interactions of various risk factors contribute to IBD [1, 4, 6]. 

1.2. Risk factors contributing to the development of IBD 

There are several risk factors described for the development of IBD [4]. It is a complex interplay 

between genetic predisposition (leading to immunological abnormalities), environmental 

influences and dysbiosis of the gut microbial ecology causing the onset of IBD, whereas one 

factor alone is not sufficient to trigger IBD [4]. 

1.2.1. Susceptibility loci for genetic changes and epigenetic modifications 

The interplay between genetic predisposition and the environment became clear in genome 

wide association studies (GWAS) when susceptibility loci which are triggered by environmental 

signals (i. e. NOD2, CARD, PTPN22) were linked to disturbances in innate (i. e. intestinal 

barrier defects, Paneth cell dysfunction, impaired recognition of microbes) and adaptive (i. e. 

imbalanced effector and regulatory T cells and cytokines) immune responses [6]. In detail, 163 

susceptibility loci (30 CD-specific and 23 UC-specific) were identified. 110 loci contribute to 

both phenotypes. A recently published study reported on 38 new risk loci for IBD [7]. 

Interestingly, some risk alleles have opposite effects in CD and UC. For instance, PTPN22 and 

NOD2 are risk alleles in CD, but show protective effects against UC. 70% of IBD loci are shared 

with other immune-mediated diseases (e. g. psoriasis) and link IBD to inflammatory extra-

intestinal symptoms and autoimmune-diseases (e. g. asthma, diabetes type1) [8]. 25,075 

single nucleotide polymorphisms (SNPs) are associated with at least one of CD or UC or both. 

Gene ontology analyses of 300 prioritized genes highlight 286 GO terms and 56 pathways 

involved in cytokine production, lymphocyte activation, IL-17 production and JAK-STAT 

signalling [8]. Concordance studies in mono- and dizygotic twins revealed that IBD is familial 

aggregated. In monozygotic twins 35% (CD) and in 16% (UC) of twin pairs were concordant 

for IBD, but a low concordance was observed in dizygotic twin pairs (3% (CD) and 2% (UC)) 

[9]. As well, genetic anticipation was confirmed by earlier disease onset in offspring from IBD 

parents. Nevertheless, a large fraction of risk is driven by non-coding variation and the fact 

that susceptibility loci and low concordance rates in monozygotic twins only explain a low 

percentage of the heritability of IBD [6]. This emphasizes towards the importance of further 

mechanisms such as epigenetics and environmental factors in IBD development. 

Epigenetics may be defined as mitotically heritable changes in gene function that are not 

explained by changes in the DNA sequence. The main epigenetic mechanisms comprise DNA 
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methylation, histone modification, RNA interference, and the positioning of nucleosomes. 

Epigenetic modifications of genes can be understood as the link between genetic susceptibility 

loci and environmental influences. Thus, IBD-relevant genes are modulated by epigenetic 

modifications [10]. The most widely studied epigenetic mechanism is DNA methylation. 

Several methylation studies in monozygotic twins discordant for IBD or in patients with active 

and quiescent IBD showed that specific loci, such as TNFRSF, IL12, CARD9, MAPK, are 

differently methylated in IBD [11-15]. A prominent example of promoter hypermethylation is 

the cell-cell adhesion molecule E-cadherin (CDH-1) which is associated with a downregulation 

of CDH-1 and a long-lasting inflammation in UC [16]. Newly identified IBD loci for DNA 

methylation are reviewed by Yi et al. 2015 [17]. DNA methylation appears to be a common 

phenomenon in UC, especially in mucosal biopsies from inflamed tissue. Unlike UC, limited 

data have been reported regarding the contribution of DNA methylation in CD pathogenesis. 

Apart from genetics and epigenetics, IBD occurrence underlies a geographical pattern [5]. This 

is due to environmental shapes upon industrialization and urbanization of populations towards 

altered microbial exposures (e. g. infectious gastroenteritis, Mycobacterium infections), 

sanitation, occupations, diets (high-fat diet, breastfeeding), lifestyle behaviour (less exercise, 

smoking), medications (antibiotics) and pollution [8, 18-20]. In essence, the gut microbiome is 

important for maintaining host intestinal homeostasis. Vice versa, the host genotype clearly 

influences the microbiota composition as mentioned above. 

1.2.2. Microbiota 

The microbiota has a major impact on host energy metabolism and thus contributes to obesity, 

insulin resistance and even metabolic syndrome [21]. Regarding intestinal energy homeostasis 

microbes provide energy and nutrients by saccharolytic fermentation of non-digestible 

substrates (e. g. complex plant carbohydrates) such as short chain fatty acids (SCFA) for both, 

the host and symbiont communities. The intestinal epithelium covers 60-70% of its energy 

requirements by bacteria-derived SCFA such as acetate, propionate and butyrate indicating 

the importance of microbes in intestinal energy homeostasis. Furthermore, SCFA acidify the 

luminal environment and inhibit growth of pathogens emphasizing on the contribution of the 

microbiota on the intestinal mucosal immune homeostasis. This was also shown by local 

perfusion studies with SCFA showing improvement of ‘diversion colitis’ [22]. Despite its impact 

in energy homeostasis microbial components (such as lipopolysaccharides) are the main 

immunostimulants for the maturation and education of the mucosal immune system. For 

example, mice with a limited microbiota show reduced lymphoid subsets [23]. However, 

besides advantageous effects of the microbiota on intestinal health its promoting effects in IBD 

development are not fully clarified yet. A major hypothesis in the context of IBD development 
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is an abnormal communication between gut microbial communities and the host’s mucosal 

immune system at different levels.  

First of all, temporal, individual, dietary and drug-induced dynamics can affect the microbiota 

towards altered composition and less diversity (dysbiosis) and are tightly connected to IBD 

pathogenesis [24-26]. The general concept of dysbiosis (compositional changes of the 

microbiota) includes microbiota differences due to low biodiversity of dominant bacteria, high 

variability over time and changes in composition and spatial distribution (high concentrations 

of mucosal adherent bacteria). Dysbiosis might arise from either an enteric pathogen or a 

dysbalanced host-mediated innate and adaptive immunity or a combination of these two. 

Pathogens might benefit from a disturbed host immune response promoting bacterial 

translocation across the intestinal barrier and thus causing local and systemic inflammatory 

responses.  

Secondly, alterations of the microbial composition are as well linked to IBD pathogenesis. 

Numerous studies demonstrate a decrease in strict anaerobes and a bloom of Proteobacteria 

in the microbiota of both CD and UC patients. In IBD, the predominant bacterial phyla 

Bacteroidetes and Firmicutes are less abundant (e. g. Faecalibacterium prausnitzii, [27]), 

whereas the phyla Proteobacteria and Actinobacteria [28] are increased in abundance. Murine 

studies revealed that reduced numbers of Bacteroides fragilis (a human symbiont) might 

contribute to intestinal inflammation, as it protects from Helicobacter hepaticus-induced colitis. 

In contrast to the loss of beneficial bacteria (such as Faecalibacterium prausnitzii), mucosa-

associated Enterobacteriaceae (e. g. E. coli) were more abundant in CD patients. Intestinal 

colonization of the commensal E. coli correlates with CD-associated adherent invasive E. coli 

(AIEC). Tissue penetration of AIEC may be due to autophagy defects (ATG16L1 or IRGM) 

[29]. As well, it has to be taken into account that the microbiota of IBD patients has a closer 

contact to the mucosa. For example, mucolytic bacteria like Ruminocococcus gravus and 

Ruminococcus torques are enriched in IBD [30]. This was shown by increased bacterial 

penetration through the mucus layer in IBD biopsies (30% of the patients) compared to healthy 

control specimen (3% of the controls).  

Thirdly, the relationship of host-susceptibility loci and altered microbial composition is 

associated with IBD, but which factor is causative is not fully understood. For instance, host-

susceptibility loci NOD2, CARD9 and IRGM1 for CD are required for Mycobacteria clearance 

in the intestine and might explain the character of Mycobacteria-related CD [31]. Many host 

factors that affect commensals in IBD are linked to barrier dysfunction (e. g. tight junctions, 

mucus layer and antimicrobial peptides). A pronounced barrier dysfunction was already 

observed in mild to moderately active CD [32], but the exact mechanism between 

discontinuous tight junctions and mucosal inflammation is not fully understood. Another 
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example is a follicle-associated epithelial barrier defect in the Payer’s patches which is 

impaired in CD patients and might increase the load of commensals again activating the 

mucosal immune response [33]. Another host factor that affects bacterial composition is the 

mucus, which is significantly altered in UC patients (mucus composition and phospholipid 

content) [34]. Furthermore, antimicrobial peptides with bactericidal activities are also relevant 

in intestinal inflammation, because decreased levels of α-defensins and antimicrobial peptides 

deriving from Paneth cells are linked to ileal CD, whereas expression of β-defensins was 

reduced in colonic CD [35-37]. Unlike pathogens, commensals are crucial to promote barrier 

function. This is due to the fact that the expression of antimicrobial proteins such as 

regenerating islet-derived 3b and y and angiogenin 4 were induced in response to commensal 

contact (e. g. Bacteroidetes tethaiotaomicron) [38, 39]. In summary, all described host factors 

can contribute to bacterial invasion across the gut barrier and lead to persisting immune cell 

exposure by mucosa-associated and macrophage-residing commensal enteric bacteria. 

1.2.3. Diet 

Besides microbial changes, many epidemiological studies associate dietary factors (e. g. fibre, 

dietary fat, vitamin D) with the onset of IBD. As an example it was shown that low intake of 

dietary fibre from fruit and vegetables and a low vitamin D status are associated with the risk 

of getting IBD [40-44]. Since an obesogenic diet is a risk factor for many diseases, such as 

cardiovascular diseases, diabetes, diet induced obesity (DIO) became a global health problem 

of industrialized countries. The worldwide incidence has increased dramatically during recent 

decades and the role of dietary fat in the development of IBD became an important issue. The 

World Health Organization (WHO) estimated more than 1 billion adults to be obese and 300 

million of them are clinically obese with a body mass index (BMI) of 30kg/m2 or higher [45]. It 

was already shown that dietary fat, particularly (trans)-saturated fat might play an important 

role in the pathogenesis of IBD [46, 47]. 

This is because a feature of DIO is a systemic low-grade inflammation characterized by 

abnormal cytokine production, increased acute phase reactants and other mediators that 

activate a network of inflammatory signalling pathways [48] and linking it to chronic 

inflammatory disorders such as diabetes, cancer, or atherosclerosis. Importantly, obesity and 

IBD share common characteristics, including chronic inflammation [49, 50]. Obese humans 

and DIO mouse models exhibited up-regulated TNF and IL-6 in serum, adipose tissue, liver or 

Tnf mRNA specifically in the ileum [50-53]. Interestingly, increased Tnf mRNA was strongly 

associated with the degree of weight gain, increased fat mass, plasma glucose or insulin [54]. 

The fact that adipose tissue performs a proinflammatory transformation during both, obesity 

and IBD, points to a possible link between these two conditions [55]. In CD patients the ratio 

of intra-abdominal fat to total abdominal fat is far greater than in healthy controls [56]. 
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Mesenteric fat had been shown to be an important indicator of regional disease activity. 

“Creeping fat” has been recognized at least since the early 1930’s and was used to identify 

the most diseased regions of the gut. Creeping fat is defined as fat extending from the 

mesenteric attachment to partially cover the small or large intestine, resulting in a loss of the 

bowel-mesentery angle [57]. Diet-induced hypertrophic adipocytes are sources of 

proinflammatory cytokines including TNF, interleukin 6 (IL-6) and monocyte chemoattractant 

protein (MCP-1). They function like macrophages, surveying their environment for microbial 

products [56] and mediating innate immune responses [58]. HFD-driven activation of NFκB 

transcription in the ileum and to lesser extent in the colon was shown in an NFκBREEGFP 

reporter mouse model [54]. Interestingly, myeloperoxidase activity as a marker for intestinal 

inflammation was up-regulated in conditions of DIO, but not HFD alone [59]. However, this is 

in contrast to the observation of Gruber et al. 2013 showing in a murine model that high-fat 

diet-induced intestinal inflammation is independent of the presence of obesity [60]. 

Another aspect of how DIO can promote intestinal inflammation is the influence of HFD or 

obesity on the intestinal microbiota, which was intensely reviewed by Musso et al. [61]. 

Findings in germ-free (GF) mice being resistant to DIO and faecal transplant experiments of 

obese microbiota into GF mice [62] provide evidence that the gut microbiota integrates excess 

dietary components into adipose tissue. The fact that Tnf is not upregulated in HFD-fed GF 

mice points to interactions between HFD and the microbiota during the induction of intestinal 

inflammation. Additional evidence that HFD promotes inflammation is the fact that TLR4, a 

sensor of gram negative-derived lipopolysaccharide (LPS), is activated by HFD and links 

dietary components to innate immune mechanisms [59].  

In addition, LPS is a key mediator of obesity and intestinal inflammation. HFD increases 

intestinal permeability by affecting tight junction proteins, favouring elevated translocation of 

LPS across the intestinal barrier. LPS obviously enters the lymph nodes and circulates 

systemically via chylomicrons [63].  

In summary, animal models suggest that the interaction of HFD and microbes results in 

intestinal inflammation by increased intestinal permeability, translocation of bacterial products 

and upregulation of pro-inflammatory cytokines. 

1.2.4. Early life exposure to maternal environments 

Associations of environmental risk factors (e. g. smoking, hygiene, infections, medication) as 

well as life style factors with IBD are well described by Ananthakrishnan et al. 2015 [4] and 

Baumgart et al. 2012 [6]. However, the question at which time environmental exposures are 

most relevant for the pathogenesis of IBD remains unknown so far. The pre- and perinatal life 

is known to be a very sensitive period of life, where environmental factors may have a 

substantial programming effect towards disease onset later in life. This work puts special 
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emphasis on ‘early life exposure to inflammation and to high-fat diet’, in order to get insight in 

intrauterine risk factors that might contribute to the development of IBD. 

In this work, it is hypothesized that environmental influences are most relevant during prenatal 

development, where the developing embryo or fetus is programmed by in utero conditions in 

order to be prepared for the predicted conditions in postnatal life. It is known that maternal 

changes (i. e. inflammation, nutrition and infection) cause alterations in intrauterine availability 

to nutrients, oxygen and hormones, thus programming tissue development. It has been 

reviewed that intrauterine programming of fetal organ systems (e. g. cardiovascular, metabolic, 

reproductive, nervous system) can be related to diseases later in life (hypertension, obesity, 

type 2 diabetes, asthma) [64]. However, the consequences on intestinal programming are not 

well understood. 

A prominent example for prenatal programming is the Dutch famine in winter 1944, where 

maternal starvation caused limited intrauterine growth and was most importantly a contributor 

to coronary heart diseases as well as other chronic diseases later in life [65]. This was shown 

in a cohort study of 2414 people, born in the Dutch famine 1944. It was concluded that the 

exposure to the famine during any stage of gestation was associated with glucose intolerance. 

More coronary heart diseases, a more atherogenic lipid profile, disturbed blood coagulation, 

increased stress responsiveness and more obesity cases were observed among those 

exposed to famine in early gestation [65]. Women who were exposed to the famine in early 

gestation also had an increased risk of breast cancer indicating that especially the 

embryogenesis is highly susceptible to environmental changes. In contrast, they observed that 

people, who were exposed to the famine in mid gestation, had more microalbuminuria and 

obstructive airways disease. These findings agree well with Barker’s hypothesis supporting the 

concept of a “thrifty phenotype”, where maternal under-nutrition leads to a lower birth weight 

and to higher risks of chronic conditions in adult life [66]. 

According to this, it is hypothesized in this work that an inflammatory or obesity-related in utero 

environment may program the progeny towards increased susceptibility to IBD later in life. The 

two maternal risk factors (inflammation and diet induced obesity) will be highlighted in this 

context. These hypotheses are biologically plausible, since maternal IBD has a profound 

negative effect on gestational outcome and since there is mounting evidence linking HFD and 

diet induced obesity (DIO) to low-grade intestinal inflammation and IBD. Possible contributions 

of both maternal risk factors to the development of IBD are highlighted below. 

Prenatal exposure to maternal intestinal inflammation  

Epidemiological studies with IBD patients associate disease activity during pregnancy with 

adverse outcomes such as preterm birth, spontaneous abortion and labour complications [67, 
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68]. Getahun et al. showed in a retrospective cohort study (n= 395, 781) that IBD was 

associated with increased odds of small for gestational age, whereas only UC was associated 

with spontaneous preterm birth, preterm premature rupture of membranes and ischemic 

placental disease [69]. A Danish national birth cohort comprising 40, 640 mother-child pairs 

demonstrated that children of IBD mothers were significantly shorter at birth with a tendency 

towards decreased birth weight, however they recovered their body weight during first year of 

life [70]. This is in contrast to another IBD study, where significant lower birth weights and 

heights of IBD children lasted until 4 years of age [71]. Taken all studies together, there is no 

evidence that IBD or medication during pregnancy increases the risk of major congenital 

anomalies in children [72].  

In the context of IBD development, there are no clear mechanism of intrauterine programming 

published. An insufficient maturation of the fetal intestinal barrier is the consequence of an 

altered maternal environment, thus affecting postnatal organ development and disease 

susceptibility [73]. Recently, maternal exposure to a high-fat diet-induced intestinal 

inflammation in fetal sheep supports the hypothesis that inflammatory stimuli affect the 

susceptibility to IBD in offspring [74]. 

During gestation, the intrauterine environment influences placental immune regulation, thus 

affecting fetal tolerance. The placenta enables the exchange of nutrients and metabolites 

between fetal and maternal compartments and initiates the temporal prevalence of cytokines. 

In physiological conditions, the placental immunology is very complex and underlies temporal 

Th1:Th2 shifts according to the gestational age [75]. Maternal TReg cells are important in 

pregnancy-induced immunological shifts to sustain maternal-fetal tolerance [76-78]. In the first 

trimester of pregnancy a pro-inflammatory Th1 environment (IL1β, IL-6 and TNF) facilitates 

embryonic invasion, proper implantation and placenta formation [79]. Placental expression of 

PRRs including TLR 2 and TLR 4 on normal human chorionic villi protects against bacterial or 

viral attack [80], clearly suggesting that innate immune mechanisms contribute to the placental 

environment and maintain its complex homeostasis [81, 82]. The second trimester 

characterizes the mid pregnancy phase with a Th2 dominated anti-inflammatory environment 

(Il-4, IL-5 and IL-10) preventing fetal allograft rejection and supporting fetal development with 

materno-fetal synchrony. The third trimester is again characterized by a Th1 dominated 

immune environment finally responsible for initiating birth. Thus, under normal physiological 

circumstances maternal TReg cells and placental chemokine and cytokine production prevent 

rejection of the fetal allograft in a physiological manner. For example, murine FOXP3+TReg cell 

depletion triggers fetal resorption, decidual inflammation and abnormal spiral artery 

remodelling consistent with pathological features of preeclampsia in human pregnancy [83]. 

The fact that fetal tolerance is maintained by maternal TReg cells shows that infection and 
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inflammation-induced reductions in TReg cells have a critical potential to abrogate fetal 

tolerance with increased pregnancy complications. For instance, IBD-associated Th1 

inflammatory responses during pregnancy lead to peri- and postnatal complications including 

preterm labor and low birth weights [67, 84]. Figure 1 depicts putative immunomodulatory 

characteristics of materno-fetal crosstalk under physiological and pathological conditions. 

However, whether maternal inflammatory stimuli during pathological conditions are transmitted 

into the fetus with consequences for later disease susceptibility is not well understood. A 

potential impact of inflammatory processes during pregnancy on fetal organ functions was 

recently shown in infection models, such as endotoxin-induced chorioamnionitis [85]. Elevated 

Th1 cytokine levels by immune activation (endotoxin or bacterial infection) adversely affect 

both, the placenta and the fetus. For example, innate immune activation by low-dose endotoxin 

during early pregnancy initiates maternal TLR4 causing placental haemorrhages, hypoxia or 

fetal loss via production of TNF and TNFR [86]. Especially TNF exhibits detrimental effects on 

the placenta. Its cytotoxicity through TNFR1 activates caspase apoptosis pathways and TNF 

blocking during LPS response at late gestation prevents fetal loss [87]. Vice versa, 

recombinant TNF alone was sufficient to induce fetal and placental cell deaths [88, 89].  

In essence, infection or inflammation-induced blunted maternal TReg suppression and 

consequently increased Th1 cytokine flow into the placenta fracture fetal tolerance with ensuing 

immune mediated pregnancy complications [76] and it is plausible that this may cause a higher 

susceptibility to IBD in postnatal life.
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Figure 1 Immunoregulatory effects in the feto-maternal cross talk under physiological and inflammatory 
conditions adopted from [90]. (Left, physiological conditions) A mild proinflammatory environment causes 
fetal tolerance. Trophoblast cells constitutively secrete RANTES, and its production appeared to increase after 
the maternal-PBMCs trophoblast dialogue, accompanied by pro-inflammatory cytokines such as TNF-alpha, a low 
dose of IFN-gamma and IL-12 (necessary for uterine vascular modification), nitrite production (related to uterine 
quiescence and angiogenesis); characterizing a pro-implantatory microenvironment. This mild inflammatory 
context is a hallmark of normal implantation and could be later auto-controlled by RANTES through the modulation 
of the Teffector/TRegs lymphocyte balance: First of all, an increase in RANTES results in the elevated apoptosis of 
potentially deleterious CD3+ lymphocytes. Second, RANTES has the ability to modulate the frequency of TReg 

cells during the maternal PBMCs-trophoblast cell dialogue, as evidenced by an increase in the frequency of 
CD4+CD25+Foxp3+. Interestingly, the trophoblast-cell-line did not express CCR5, making these cells potentially 
resistant to apoptosis induced by RANTES and reflecting a potential mechanism whereby RANTES could 
selectively induce apoptosis of alloreactive maternal lymphocytes. (Right, inflammatory conditions) A 
proinflammatory environment e. g. during maternal inflammation or maternal obesity alters the dialogue between 
trophoblast cells and PBMCs altering RANTES immunomodulatory effects. Accumulating proinflammatory 
cytokines are associated with a decrease of fetal tolerance. A high frequency of TNF and subsequent binding to 
TNFR1 initiates apoptosis of placental cells via TRADD and Caspase 3, thus decreasing the number of 
CD4+CD25+Foxp3+ cells. High levels of IL-12 and IFNγ promote NK cell activation and proabortive effects by 
survival of maternal CD3+T cells. Finally, fetal tolerance is lost. 

 

Prenatal exposure to maternal diet-induced obesity and its inflammatory consequences on the 
offspring 

Since the discovery of leptin in 1995 [91, 92] adipose tissue has been assigned to a secretory 

organ with endocrine and immunological features. Most of the studies associate maternal 

obesity during pregnancy with adverse offspring’s metabolic phenotypes such as obesity and 

diabetes, but whether the susceptibility to intestinal inflammation is affected in offspring born 

by obese mothers is hardly reported. In sheep, maternal diet-induced obesity revealed 

increased gene expressions of pro-inflammatory cytokines Tnf, Il-1α, Il-1β, Il-6, Il-8, Mcp-1 and 

macrophage marker Cd11b, Cd14 and Cd68 in the fetal and offspring’s large intestine [74]. 

Increased Tlr2 and Tlr4 mRNA with corresponding NF-κB and JAK signalling point to an 

increased innate immune response upon maternal obesity. In essence, maternal obesity drives 

Th17 differentiation from naïve T cells via TGFβ and IL-6 [93], the same mechanism as in a 

CD-like inflammatory phenotype.  
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Another possible mechanism by which maternal obesity can program the offspring’s intestine 

lies in the potential to shift the microbiota. Many studies reveal diet as a contributor to the gut 

microbiome, but studies about programming effects of the gut microbiota early in life are 

generally lacking. It is clinically evident that maternal body mass index and weight gain during 

pregnancy are associated with the faecal microbiota acquisition of the infant’s favouring 

Bacteroides, Clostridium and Staphylococcus abundance on the expense of Bifidobacterium 

group in early life [94]. This is in accordance with Santacruz et al., who claim that alterations 

of maternal microbiota during pregnancy are rather due to BMI and weight gain, than due to 

dietary changes [95]. By contrast, a recent study showed that HFD (maternal or postnatal), but 

not obesity per se, structures the offspring's intestinal microbiome in the primate Macaca 

fuscata (Japanese macaque) towards dysbiosis [96]. Post weaning low-fat control diet only 

partially corrects dysbiosis by early exposure to a HFD, clearly indicating that maternal diet 

programs the intestinal microbiome. Non-pathogenic Campylobacter is less abundant in the 

juvenile gut in response to maternal HFD. This demonstrates the potential of maternal diet in 

shaping commensal microbiome communities and maturation of the intestinal immune system. 

However, besides increasing risk for gestational complications by an increased inflammatory 

in utero environment, maternal obesity as well induces metabolic programming in offspring. 

Prenatal exposure to maternal diet induced obesity and metabolic consequences on the 

offspring 

The rising prevalence of obesity especially in women of child-bearing age is a global health 

concern for both, mothers and offspring. Alterations of dietary stimuli can trigger developmental 

programming during critical periods of organogenesis and tissue development, thus 

programming disease (metabolic and cardiovascular disorders) later in life [97]. The 

considerable effect of maternal overnutrition or obesity on developmental programming is not 

limited to the in utero environment because physiological systems develop after birth. 

Extensive epidemiological data connect maternal obesity and nutrition during pregnancy to 

offspring’s risk for metabolic disease. But dynamics of the complex maternal-progeny 

relationship make it difficult to unravel whether diet, diet-induced obesity or weight gain are 

causal factors for disease programming. Another drawback is the attempt to identify the critical 

period of time that instigates a programmed phenotype. Many studies that have been reviewed 

by Alfaradhi and Ozanne et al. [98] restrict the onset of obesity to the early life period, either 

pre- or postnatal or both.  

The “thrifty phenotype” hypothesis is one theory of how maternal nutrition can program the 

offspring’s health and disease. It states that the fetal environment plays a crucial role in the 

risk for metabolic disorders. In essence, poor fetal nutrition drives metabolic adaptations to 

maximize the chance of survival in conditions of on-going nutritional deprivation. As a 
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consequence, metabolic adaptations are beneficial in continued poor postnatal conditions, but 

are detrimental in an environment characterized by high-energy food [99]. Therefore, low birth 

weight is associated with increased risk for heart disease, glucose intolerance, type 2 diabetes 

and metabolic syndrome [100-102]. Regarding maternal obesity, increased maternal BMI is 

associated to gestational diabetes and offspring’s obesity. Sibpairs discordant for maternal 

type 2 diabetes show a greater prevalence for type2 diabetes and a higher BMI [103]. One 

possible mechanism is that obese mothers transmit more ‘susceptibility genes’ to their 

offspring than normal weight mothers. Other reasons might be in utero overnutrition through 

the placenta or neonatal overnutrition through the mother’s milk. Interventional studies address 

in utero programming effects by using the same mother under different in utero conditions. For 

example, weight reduction due to maternal bariatric surgery, decreases the offspring’s risk for 

obesity. Maternal obesity and maternal diet have differential effects on fetal development 

during gestation [104]. One study claimed that maternal programming effects are rather due 

to HFD than due to diet-induced obesity [105]. In order to dissect independent contributors of 

diet and obesity the induction of obesity without altering the diet is required. In contrast to 

Howie et al., only obese rat dams fed a HFD transmitted obesity risk to their offspring, but not 

non-obese HFD rat dams [106]. 

The early postnatal period is highly vulnerable for developmental programming. Rapid 

postnatal growth in infancy following maternal undernutrition results in adult obesity. 

Overnutrition during early infancy in non-human primates elevated triglyceride levels and 

hypertrophy of adipocytes in adulthood [107]. Placental morphological changes in response to 

maternal diet-induced obesity result in increased nutrient delivery to the fetus in primates, 

sheep and humans [108]. As a result of maternal obesity, rhesus macaques showed signs of 

non-alcoholic fatty liver disease (NAFLD) in the fetal stage including triglyceride accumulation 

persisting throughout postnatal life. Interestingly, switching rhesus macaque mothers to a 

control diet between subsequent pregnancies prevented features of NAFLD [109]. Dietary 

manipulation studies in rodents confirmed the programming effects of maternal diet-induced 

obesity towards obesity, insulin resistance and hypertension [110, 111]. Crossfostering 

experiments in rats demonstrate that postnatal overnutrition contributes to the obese 

phenotype accompanied by hypertension and endothelial cell dysfunction later in life [111]. 

Interestingly, limiting maternal obesity to the gestational period caused no effects on offspring’s 

body weight or obesity, but increased lipid synthesis, serum insulin and leptin. However, the 

combination of maternal obesity during gestation and lactation plus postnatal HFD clearly 

shows an accelerated weight gain and percent fat mass [112, 113]. Table 1 represents an 

overview about maternal obesity studies that were reported in the literature. 
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Table 1 Previously conducted rodent studies about maternal obesity with different setting of maternal 
dietary exposure. A.) Exposure during gestation and lactation. B.) Maternal HFD exposure is limited to the 
gestational period.  

 

In essence, the sum of programming influences from the onset of pregnancy throughout 

weaning determines the risk for obesity or IBD later in life. However, whether exposure at 

conception, in utero or in the postnatal period primarily contributes to developmental 

programming and which factors program the developing fetus is still not clarified.  

Maternal microbiota transition and postnatal IBD development 

In the context of early life exposure to maternal inflammation or mDIO it has to be taken into 

account that a shifted maternal microbiota (due to inflammation or obesity) during perinatal 

development can contribute to an IBD-like microbiota. It is plausible that the maternal 

microbiota will be transmitted to the offspring during perinatal development, thus again 

increasing the risk for both, IBD and obesity.  

The intestinal microbiota derives from the mother and depends on the mode of delivery. After 

natural birth, the progeny’s microbiota reflects the maternal vaginal or gut microbiota, whereas 

the offspring’s microbiota consists of a large number of environmental bacteria after 

Rodent studies Maternal diet during 
gestation  

Maternal diet during 
lactation  

Offspring ‘s diet 
after weaning 

A.) Maternal dietary exposure throughout gestation and lactation: 

Buckley et al. 2005[110] Omega-6-fatty acids Chow Chow 

Nivoit et al. 2009[114] HFD/ Chow HFD/ Chow Chow 

Samuelsson et al. 
2008[115] 

HFD/ CTRLD HFD/CTRLD Chow 

Bayol et al. 2007[116] Junk food diet/CTRLD Junk food 
diet/CTRLD 

Junk food 
diet/CTRLD 

Bayol et al. 2005[117] Cafeteria diet/CTRLD Cafeteria diet/CTRLD Cafeteria diet/CTRLD 

King et al. 2014[118] Cafeteria diet/CTRLD Cafeteria diet/CTRLD Cafeteria diet/CTRLD 

Page et al. 2009[119] HFD/ CTRLD HFD/CTRLD HFD/ CTRLD 

Song et al. 2014[120] HFD/ CTRLD HFD/CTRLD HFD/ CTRLD 

Hawkes et al. 2014[121] HFD/ CTRLD HFD/CTRLD HFD/ CTRLD 

B.) Maternal dietary exposure is limited to gestational phase: Crossfostering studies 

Khan et al. 2005[111] HFD/Chow HFD/Chow  Chow 

Gorski et al. 2006[122] HFD/Chow HFD/Chow Chow 

Mitra et al. 2009[123] HFD/ CTRLD HFD/ CTRLD HFD/ CTRLD 

Shankar et al. 
2008/2010[112, 113] 

Obesogenic Liquid diet/ 
Liquid CTRLD 

Chow  HFD/ Chow 

Umekawa et al. 
2014[124] 

HFD/ CTRLD HFD/ CTRLD CTRLD 
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Caesarean sections [125]. However, the microbial colonization of the neonatal intestine is not 

fully understood. A paradigm of prenatal development is the existence of a microbiota-free 

intrauterine environment. It was thought that rupture of amniotic membranes establishes the 

naïve neonatal microbiota, with further modulation by vaginal microbial system at birth [125-

127]. Therefore, the mode of delivery (vaginal versus caesarean section) determines the 

presence of essential microbial communities, such as Escherichia-Shigella and Bacteroidetes 

and the decrease of Clostridium difficile abundance. Vaginally delivered infants adapt a 

collection of bacterial communities similar to their mother’s vagina and skin microbiota. By 

contrast Caesarean section-delivered infants acquire different and less diverse bacterial 

communities with increased risk of chronic inflammatory conditions such as coeliac disease, 

type 1 diabetes, asthma and obesity [128-131].  

Recent studies demonstrate that even uninfected placentas harbour a unique low-abundance 

microbiome existing in the basal plate (directly at the maternal-fetal interphase), mainly 

composing commensal microbiota from Firmicutes, Tenericutes, Proteobacteria, 

Bacteroidetes and Fusobacteria with a high similarity to the human oral microbiome. Variations 

of the placental microbiome are associated with remote prenatal infections (Streptococcus and 

Acinetobacter enrichment), such as urinary tract infection in the first trimester, or preterm birth 

(enriched taxon Burkholderia) and highlight on the importance to modulate the offspring’s 

microbiome later in life.  

Within the first week of life neonates represent already complex microbial communities of the 

phyla Actinobacteria, Proteobacteria, Bacteroides and much less Firmicutes with high 

fluctuation in bacterial composition until 3 years of age [125, 127, 132, 133]. Interestingly, 

Firmicutes and Tenericutes dominated in neonates with small birth weights (<1200g) [134]. 

Especially, the early neonatal microbiome is highly vulnerable to alterations through nutritional 

changes of the mother’s milk during breastfeeding. In conclusion, maternally transmitted 

inflammation-driven compositional changes of the microbiota might be an important factor 

contributing to offspring’s disease susceptibility. One example was shown in crossfostering 

studies of TRUC-mice. Garrett et al. concluded that TRUC-derived strains can elicit colitis in 

WT and Rag2 deficient mice, but that a maternally transmitted endogenous microbial 

community is required for maximal colitic inflammation [135]. Whether this is also true for other 

animal models of IBD has to be analysed further and is part of this work.  
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1.3. Prenatal gut development and lineage allocation of the epithelium 

One part of this work investigated the influence of maternal inflammation and maternal obesity 

on the murine fetal epithelium in order to evaluate a programming effect to IBD later in life. 

Organogenesis of the murine intestine and subsequent establishment of the intestinal immune 

system may be critical phases for the postnatal IBD development. 

The development of the gut occurs after gastrulation (5-7.5 dpc) [136], the phase where the 

germ layers (ectoderm, mesoderm and endoderm) are formed. After gastrulation, the 

endoderm is a simple epithelial layer underlying the mesoderm. The gut tube (endodermal 

tubulogenesis) derives from the endoderm and mesoderm at 8-9.5 dpc (Figure 2), building the 

foregut, midgut and hintgut. In this context, the duodenum derives from the foregut and midgut, 

whereas the jejunum and ileum derive from the midgut only. In contrast, colonic compartments 

are midgut and hintgut derivatives. The intestinal epithelium develops out of the endoderm, 

whose fate determinant is TGFβ-related growth factor Nodal. Duration and concentration of 

exposing growth factors are determining for the specification of anterior-posterior patterning of 

the endoderm. SOX2 and HHEX are regional determination factors for anterior endoderm, 

whereas CDX2 programs for posterior endoderm. The small and large intestine derives from 

the posterior endoderm. The endodermal gut tube is surrounded by the visceral peritoneum 

(mesoderm) and connected to the body wall by the mesentery. At 9.5-13.5 dpc the gut tube 

lengthens and increases its circumference. At 14.5 dpc the thickened epithelium is drastically 

remodelled, the previously flat luminal surface converts into finger-like epithelial projections 

with mesenchymal cores. The endoderm undergoes an extensive folding, through formation 

of clusters of mesenchymal cells (from the mesoderm) below the epithelium, which extent 

towards the center of the lumen, this creating villi. Cell dynamic studies of the early murine 

intestine reported a pseudostratified epithelium between 12.5 and 14.5 dpc that is driven by 

microtubule-actinomyosin-dependent apicobasal elongation [137], whereas previous studies 

described it as stratified [138, 139]. At 15 dpc epithelial-mesenchymal crosstalk regulates the 

differentiation of myofibroblasts and smooth muscle cells [140-142] and proliferation becomes 

less abundant at 17 dpc. Wnt/β-catenin pathways are also implicated in proliferation and stem 

cell maintenance and crypt development throughout the developing intestine [143] until 

weaning. 
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Figure 2 Early development of the intestinal epithelium adopted from [136]. (Left panel) After gastrulation 
endodermal tubulogenesis (8-9.5 dpc) occurs building the gut tube and the peritoneum (deriving from the 
mesoderm). The visceral peritoneum (mesoderm) surrounds the endoderm to enclose the gut tube and connects 
it to the dorsal body wall. Medial to lateral cross sections of the gut tube are shown. At 10.5 dpc the intestinal 
endoderm is a compact pseudostratified single layer epithelium; Villus formation initiates in a rostral to caudal 
wave at approximately 14.5 dpc, as clusters of mesenchymal cells form below the epithelium and extend toward 
the center of the lumen, creating villi. (Right panel) The cartoon depicts the crypt structure with individual cell 
types. Cells migrate out of the crypt and onto the villus as they terminally differentiate, except Paneth cells which 
develop during early postnatal development residing intercalated among the stem cells at the crypt base.  

 

The initial sign of IEC differentiation (enterocytes, goblet cells and enteroendocrine cells) can 

be observed at the same time as villi emerge, whereas Paneth cells arise with crypt formation 

around weaning (Figure 1). Notch pathways are crucial to commit IEC lineages and regulates 

the choice of absorptive versus secretory lineages. This works by reciprocal regulation 

between Hes1 and Atoh1 which is dependent on Notch activity. Notch induces stem cell-

derived Hes1 and thereby programs cells to become enterocytes via inhibition of Atoh1 [144]. 

Hes1 deficient mice display fewer enterocytes and Atoh1 overexpression, directing progenitors 

towards the secretory cell lineage [145]. Interestingly, Notch activity is not required for 

absorptive cell differentiation as its absence programs “default” progenitors towards 

enterocytes [146, 147].  

1.4. Perinatal development of immune homeostasis as a consequence of 

the microbial burden 

Birth is the event that converts a sterile fetal environment into an environment that is highly 

enriched in microbes, dietary components and other exogenous stimuli. Especially the 

microbiota initiates the maturation and education of the mucosal immune system [23]. An 

insufficiently matured immune system due to perinatal defects cannot cope with potential 

pathogens, thus increasing disease susceptibility later in life (e. g. rheumatoid arthritis, type I 

diabetes, chronic inflammation of the gut) [148, 149]. Mucosal surfaces have important barrier 

functions and play a crucial role in immunologic tolerance. Both, developmental and 

environmental signals (such as commensals) are of eminent importance in the perinatal 

establishment of the immune system, which in turn maintains mucosal tissue homeostasis and 
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induces immune tolerance later in life. In this context, Figure 2 represents an overview of how 

commensals can activate the maturation of the neonatal immune system.  

The murine prenatal intestine is sterile and characterized by absent epithelial cell proliferation 

and high expression of cathelicidin-related antimicrobial peptides (CRAMP or LL37 in humans) 

[73]. Low levels of IgA-producing plasma cells and decreasing expression of Toll-Like receptor 

4 (TLR4) induce adaptive and innate immune tolerance prior to birth. Secondary lymphoid 

structures (Peyer’s patches and mesenteric lymph nodes) and specialized epithelial cells (M 

cells) are generated before birth, but their maturation occurs after birth. The production of TReg 

cells is already initiated in the prenatal period. CD4+CD25+ TReg cells are highly abundant in 

human fetal tissue (e. g. MLN) and control T cell responses in utero and in the neonatal period 

[150]. 

At birth, microbial colonization by commensals stimulates the maturation of innate and 

adaptive immune mechanisms (Figure 3). Unlike human new-borns, who already possess a 

mature villus-crypt structure in the small intestine, murine neonates reach this stage not until 

postnatal day 10-12 [151]. In the neonatal intestinal mucosa lymphocytes differentiate (e. g. 

TReg cells, intraepithelial lymphocytes), cryptopatches and isolated lymphoid follicles are 

formed. Cryptopatches are clusters of KIT+IL-7R+THY1+ T cell progenitors in the murine 

intestinal lamina propria. Isolated lymphoid follicles are small aggregates in the lamina propria 

of small and large intestines that contain B cells, T cells, dendritic cells and stroma cells. Both, 

cryptopatches and isolated lymphoid follicles are absent in germ-free mice indicating the role 

of bacterial colonization in their development [152, 153].  

Around weaning, intestinal crypt formation starts and initiates increased proliferation, epithelial 

cell renewal and Paneth cells generation. Bacteria are the strongest immunostimulants in the 

postnatal environment and can activate an immune response via pattern recognition receptors 

(PRR), such as TLRs. In essence, alterations of the antimicrobial peptide repertoire during the 

perinatal period are associated with compositional changes of the microbiota [154, 155]. 

Rodent studies show that innate recognition of bacteria or bacterial components triggers 

epithelial expression of secreted C-type lectins Reg3g and Reg3b [38, 156]. To prevent an 

overshooting immune response of an immature immune system, minimized TLR4 expression 

and steadily increased NF-κB inhibitor induce tolerance to bacterial lipopolysaccharides and 

other pro-inflammatory stimuli [73].  

After weaning and in concert with bacterial colonization, immune cells home the intestinal 

mucosa and induce spatially reorganized adaptive and innate immune mechanisms in order 

to adapt adequately to the postnatal environmental triggers. M cells reside above innate 

lymphoid follicles and Peyer’s patches in order to facilitate antigen transport to lymphoid cells. 
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Innate cells (e. g. innate lymphoid cells (ILC), innate lymphoid tissue inducer (LTi) cells, natural 

killer cells (NK), T cells, intraepithelial lymphocytes), CD103+ dendritic cells (DC) CX3CR1+ 

macrophages, and forkhead box protein 3 (FOXP3)+ regulatory T (TReg) cells home the 

mucosa. For example, innate lymphoid cells (e. g. RORγt+ILC=ILC3) translate microbial 

signals into immunomodulatory signals of the intestine. Upon macrophage stimulation IL-1β is 

released and engages IL-1 receptor on ILC3, thus producing colony-stimulating factor2 

(CSF2). CSF2 then primes DC- and macrophage-production of TReg cell-stimulants, such as 

retinoic acid and IL-10, which in turn induce and expand TReg cells from naïve T cells [157]. 

Murine neonatal CD4+ T cells preferentially differentiate into FOXP3+ TReg cells, thus 

attenuating an overshooting immune response upon stimulation [158]. Therefore, TReg cells 

play an important role in the immunosuppression and control of Thelper (Th) cells. Their 

expressions and migrations out of secondary lymphoid structures are sensed by signals (e. g. 

commensal antigens) that derived from dendritic cells and macrophages. For example, 

Bifidobacterium infantis markedly induces FOXP3+ TReg cells in mice [159] and protects against 

NF-κB activation. Clostridium clusters IV and XIVa are suspected to take over the promoting 

role of B. infantis on colonic induction of FOXP3+TReg cells [160]. Clostridium enhances TGFβ 

and other TReg cell -inducing molecules independent of TLR2 or NOD receptor signalling. 

Another example of inducing TReg responses is shown with the microbial immunomodulatory 

molecule polysaccharide A (PSA) that derives from the commensal Bacteroides fragilis. PSA 

stimulation of FOXP3+ TReg cells via TLR2 initiates the secretion of anti-inflammatory cytokines 

(e. g. IL-10) and reduces IL-17 production. In contrast, it was shown that pro-inflammatory 

Th17 cells are induced by mucosa-attached segmented filamentous bacteria (SFB) and 

whether equivalents are existent in the human gut is not known [161, 162].  

Intestinal immune modulation can also occur via humoral immunity. Similarly to TReg cell 

induction, the establishment of humoral immunity is dependent on environmental factors. For 

example, retinoic acid causes adequate differentiation of IgA+ plasma cells and secretory IgA 

(SIgA) inhibits overshooting immune activation by microbes and luminal antigens [163]. In 

essence, SIgA reinforces the intestinal epithelium, as SIgA-coated commensals are restricted 

in colonizing epithelial surfaces, which decreases the chance of antigen penetration through 

the epithelial barrier. This in turn decreases the risk of hypersensitivity reactions and infections. 

In the prenatal gut the epithelial barrier is reinforced by maternal SIgA. This function becomes 

more relevant during breast-feeding [164]. Murine studies of colonizing germ-free mice with 

commensals revealed a transient IgA production that seems to be necessary to allow 

penetration of microbial components into the gut-associated-lymphoid tissue (GALT) [165, 

166]. Therefore, it is very likely that the intestinal SIgA response continuously adapts to 

microbial alterations.  
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Figure 3 Neonatal development of the intestinal immune system. After birth, commensals of the environment 
e.g. through mother’s milk reside the neonatal gut preparing an immunological barrier against future pathogens. 
Besides innate immune mechanisms via NOD and TLR activation (such as REG3β and γ production) adaptive 
immune responses are initiated by commensal structures, i.e. secretory IgA produced by plasma cells, which 
derive from B-cells of isolated lymphoid follicles located the subepithelial compartments. Further, innate lymphoid 
cells (ILC) secrete IL-17, which drives granulopoesis in the bone marrow, finally releasing neutrophils into the 
blood stream. On the other hand, an anti-inflammatory tone is generated by TGFβ and IL-10 secretion upon 
stimulation of intraepithelial lymphocytes (IEL) by commensals, preventing an overshooting inflammatory 
response to commensals. 

Clinical features of IBD are tightly linked to dysfunctions in the intestinal barrier and therefore 

present its emerging importance in intestinal homeostasis. The first homeostatic mechanisms 

(innate immunity) will be generated during in utero development that is highly dependent on 

maternal stimuli. Therefore, this period is critical in the establishment of a well working 

intestinal homeostasis later in life.  

1.5. The postnatal intestinal epithelium as first line of defence 

The intestinal barrier selectively separates the luminal environment (containing pathogens, 

toxins, diet and digestive enzymes) from the host and is therefore the first line of defence. It 

comprises three different compartments, the mucus layer, which is an extrinsic layer that also 

contains secretory IgA, the intestinal epithelium and the underlying gut-associated-lymphoid 

tissue (GALT). 

Particularly, the intestinal epithelium plays a crucial role in frontline defence, by harbouring 

specialized mechanisms to fulfil multiple functions, such as innate immune modulation, 

antimicrobial defence and mucus production. The intestinal epithelium is the largest mucosal 

surface of the body (~400 m2 surface area) consisting of absorptive (enterocytes) and 

secretory (goblet cells, Paneth cells, enteroendocrine cells). Intestinal epithelial cells (IEC) 

undergo a continuous cell renewal by pluripotent stem cells at the crypt bottom. Enterocytes 

maintain the host’s energy homeostasis, although they are in part capable to secrete small 

amounts of antimicrobial peptides (AMPs such as regenerating-islet derived 3b and g) and 
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support the defensive functions of highly specialized secretory IEC. Microfold cells (M cells) 

actively transport luminal antigens and intact microorganisms and mediate their presentation 

to the underlying immune system, such as dendritic cells or intestinal lymphoid structures 

(Peyer’s patches and isolated lymphoid follicles) [167]. Enteroendocrine cells secrete hormone 

regulators of digestive functions and link the enteric neuroendrine system to the central one. 

Paneth cells are uniquely specialized to produce and luminally secrete many AMPs (defensins, 

cathelicidins, C-type lectins and lysozyme). For example, pore-forming defensins and 

cathelicidins disrupt surface membranes of bacteria and C-type lectins target peptidoglycans 

in Gram+ (REG3g) and Gram- bacteria (REG3b) [168-170] enabling a broad regulation of 

commensals and pathogens. REG3 production is regulated by IEC-intrinsic recognition of 

commensal microbial signals. Regionally varying AMP production along the intestine may 

mirror anatomically restricted host-commensal interactions and their influence on IEC 

responses. For instance, Reg3g was recently described as a small intestinal factor that 

segregates microbes from the epithelial surface [171]. 

A similar function has been described for goblet cell-derived MUC2 in the colon. Goblet cells 

build a mechanical and biochemical barrier to avoid microbial contact with the epithelium and 

underlying immune cells. They are secretory IEC and produce different kinds of mucins (MUC2 

most abundant mucin [172]) forming the mucus layer a defence line against bacteria. The fact 

that MUC2–deficient mice exhibit spontaneous colitis and have a predisposition to 

inflammation-induced colorectal cancer underlines the importance of the mucus layer in 

intestinal homeostasis [173, 174]. Furthermore, goblet cell-derived products, such as trefoil 

factor 3 (TFF3) and resistin-like molecule-β (RELMβ) are also involved in mucus barrier 

functions. TFF3 crosslinks mucins and signals epithelial repair, epithelial migration and 

resistance to apoptosis [175, 176]. RELMβ supports mucin secretion and regulates adaptive 

immune mechanisms during inflammation [169, 170]. 

However, combined functions of secretory IEC (e. g. Paneth cells and goblet cells; REG3 and 

MUC2 interactions) lead to even higher antimicrobial activity [177], thus limiting the quantity 

and diversity of bacteria at the epithelial surface. These diverging functions of the epithelium 

protect the host from infections and inflammatory stimuli. Therefore, genetic defects in 

autophagy and unfolded protein responses (UPR) impair Paneth cell and goblet cell functions, 

thus increasing the disease susceptibility (possible mechanisms in IBD). Side effects of 

autophagy are the support of packaging and exocytosis of Paneth cell granules [178]. Paneth 

cells engage autophagy and UPR, thereby massively contributing to intestinal homeostasis in 

mice and their combined absence results in spontaneous disease resembling human Crohn’s 

disease [179]. This together with genetic evidence for autophagy and UPR involvement in IBD 
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provides an important link to impaired Paneth cell functions and the establishment of intestinal 

inflammation [180-182].  

Important sentinels of IEC are pattern recognition receptors (PRR). They function as frontline 

sensors for microbial encounters and integrate bacteria-derived signals into antimicrobial and 

immunomodulatory responses. Toll-like receptor (TLR), NOD (nucleotide-binding 

oligomerization domain) -like receptor (NLR) and RIG-I-like receptor (RLR) families provide 

distinct pathways for bacterial recognition [183-186].  

TLRs are located at the cell surface or at intracellular membranes and sense highly conserved 

structures from bacteria, viruses and fungi. IEC intrinsic-TLR signalling is dichotomic. TLRs 

support intestinal homeostasis via signalling through MyD88/ NF-κB signalling that includes 

the expression of cytoprotective heat-shock proteins, epidermal growth factor receptor ligands 

and TFF3 and the mitogen-activated protein kinase (MAPK) pathway [187, 188]. IEC-specific 

deletion of elements downstream of TLR, including inhibitor of NF-κB (IκB) kinase (IKK) 

complex or NF-κB essential modulator (NEMO) lead to enhanced DSS-induced or 

spontaneous colitis, indicating an important role for TLRs [189, 190].  

NOD-like receptors are of cytosolic location and reorganize foreign structures (such as 

muramyl dipeptide) associated with pathogenesis. NOD2 was the first identified susceptibility 

gene locus for CD. NOD1 and NOD2 signal via receptor-interacting protein 2 (RIP2) and 

activates NF-κB and MAPKs, whereas other NLRs (NOD-, LRR and pyrindomain-containing 3 

(NLRP3, NLRP6 and NOD-LRR- and CARD-containing 4 (NLRC4) form inflammasome 

complexes with pro-caspase 1 in order to cleave and activate IL-1β, ad IL-18. Polarized 

expression of PRRs in IEC (apical versus basolateral) may enable the discrimination between 

commensal and pathogenic signals. For example, TLR9 promotes the inhibition of NF-κB 

signalling, whereas basolateral TLR expression activates NF-κB signalling [191]. The 

complexity of microbial recognition receptors by IEC is of eminent importance to balance 

intestinal homeostasis and to switch, whenever needed, to inflammatory responses. 

The adherens junctions (AJ) and tight junctions (TJ) are important key players in adhesive 

contacts between adjacent IEC to create a tight physical barrier between the harmful luminal 

structures and the host. AJ comprise the core transmembrane protein E-cadherin (CDH-1) and 

intracellular components like p120-catenin, α-catenin and β-catenin. They fulfil multiple 

functions such as initiation and stabilisation of cell-cell adhesion, regulation of the actin 

cytoskeleton, intracellular signalling and transcriptional regulation [192, 193]. Numerous 

human and mouse studies confirmed that dysfunctions in AJ or TJ are associated with IBD 

[194, 195]. TJ protein occludin is decreased in IBD patients, whereas claudin-2 expression is 

enhanced [196, 197]. Furthermore, in chronic active UC a downregulation of occludin was 
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associated to enhanced transepithelial migration of neutrophils into epithelium and intestinal 

lumen leading to crypt abscesses [198]. CDH1 gene polymorphisms that results in a decreased 

E-Cadherin protein expression and mislocates TJ proteins is associated with CD [199]. Vice 

versa, an inflammatory milieu of the intestine causes also dysfunctions of AJ and TJ proteins 

[200]. For instance, TNF antagonizes epithelial barrier repair in active CD patients [201] and 

reduces E-cadherin expression in vitro [202]. The transcriptional inhibition of TJ by 

proinflammatory cytokines (e. g. TNF and IFNγ) and their influence on cellular redistribution 

works probably via myosin light chain kinase (MLCK)-dependent contraction of actin filaments 

[203, 204].  

1.6. Immunologic features of innate and adaptive immunity in the postnatal 

gut during IBD  

Microbial changes (e. g. microbial infection) and gene-polymorphisms (e. g. NOD2, ATG16L1) 

affecting the epithelial barrier (e. g. Mucin degradation) abrogate the tolerogenic milieu of the 

intestinal mucosa involving innate and adaptive immune responses. Disturbances of innate 

immune mechanisms comprise increased expression of the pattern recognition receptors 

TLR2 and TLR4 causing exaggerated LPS responses and abrogated abilities of dendritic cells 

to sense the production of tolerogenic TReg cell [205]. Cytosolic Nod-like receptors (NOD1 ad 

NOD2) possess caspase recruitment domains and are therefore able to induce autophagy 

[206-209]. CD- associated NOD2-polymorphisms show reduced inflammatory cytokine 

responses towards NOD-ligand muramyl dipeptide, insufficient autophagy which then fails to 

appropriately induce adaptive T cell responses and reduced transcriptional expression of anti-

inflammatory cytokine IL-10.  

A hallmark for disturbed adaptive immunity in IBD is the loss of immune tolerance due to the 

imbalance of effector T cells versus TReg cells and inducible TReg (iTReg) cells. Interestingly, two 

main opposing phenotypes, Th17 and TReg, are inversely controlled by transcription factors 

RORγT/FOXP3 [210]. In detail, the imbalance of Th cells versus TReg cells is due to a general 

switch from anti-inflammatory properties to pro-inflammatory ones. Different immune cells such 

as, CD103+ DCs, IL-22-producing CD4+ T cells and RORγt+NKp46+ lymphocytes act in concert 

to produce pro-inflammatory cytokines (IL-6, IL-12, IL-23). Together with CX3CR1+ 

macrophage-derived IL-6 and IL-1 they induce the cytokine production of Th1 (IFNγ, TNF, IL-

2) and Th17 cells (IL-17), which are important mediators of inflammation in IBD [211-214]. 

Consequently, neutrophils and IgG-producing plasma cells cause tissue destruction and organ 

dysfunction. Additional routes of clinical development in IBD are high levels of Th1-associated 

transcription factors STAT4 and T-bet that were observed in CD lesions and experimental 

colitis [215, 216]. Th17-involvement in IBD pathogenesis was also concluded by GWAS of IL23-
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R gene (a surface marker for Th17 cells) and genes involved in Th17-differentiation (IL-12B, 

JAK2, STAT3, CCR6 and TNFSF15). They were associated with the susceptibility to CD and 

partly UC [217, 218]. However, TNF-and IL-23-producing CD14+ macrophages contribute also 

to CD development, but more via IFNγ than IL-17 production [219]. 

In essence, in IBD, the interplay between disturbed innate and adaptive immunity towards pro-

inflammatory pathways causes a rapid recruitment of leukocytes and diminishes their retention 

from effector sites of the intestinal mucosa.  

1.7. Mouse models resembling human IBD 

As the clinical appearance of IBD is extremely complex and heterogeneous it is challenging to 

assess the full scope of use of IBD animal models which address scientific questions. Dozens 

of animal models have been established. Since the maintenance of mucosal immune 

homeostasis prevents uncontrolled inflammation in the gut, the epithelial interface is the 

primary target to study IBD pathogenesis. This is supported by emerging evidence showing 

that defects of epithelial integrity comprise defects in innate immune responses, epithelial 

paracellular permeability, epithelial cell integrity, as well as in the production of mucus [220]. 

Well-established mouse models that are commonly utilized are chemically-induced or genetic 

models of intestinal inflammation (Table 2). While acute chemical-induced colitis models 

incorporate features of innate biology (epithelial barrier function and immune function), the 

chronic and progressive models typically illustrate a complex interplay between innate and 

adaptive immunities [221].  

Table 2 Commonly used mouse models of IBD (adapted from [220, 221]). 

Model 
Background 

strain 
Location 

Nature of 

insult 

Nature of 

response 
Kinetics 

Immune 

cells 

involved 

DSS 
Multiple  

C57BL6 

BALB/c 

Colon Chemical 
Epithelial 

damage 
Acute 

Neutrophils, 

myeloid 

TNBS 
Multiple   

SJL        

BALB/c 

Colon Chemical 
Epithelial 

damage 
Acute  

CD45RBhi 
BALB/c 

C57BL/6 
Colon 

Immune 

deficiency 
Inflammatory Chronic  

Piroxicam/  

IL-10 KO 

129sv 

C57BL/6 

Colon 
NSAID+ 

immune 

deficiency 

Inflammatory Chronic 
Macrophages, 

CD8 T cells 

TnfΔARE/+ C57BL/6 Ileum 
TNF 

overexpression 
Inflammatory Chronic 

Macrophages, 

neutrophils, 

CD8 T cells, 

lymphocytes SAMP1/Yit 

Fc 
SAMP1 Ileum 

Immune 

activation 
Inflammatory Chronic 

Macrophages, 

neutrophils, 

lymphocytes 
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In this work the effect of maternal inflammation and maternal obesity on the postnatal 

development of intestinal inflammation was investigated by using two different mouse models, 

the TnfΔARE/+ mouse (CD-like ileitis) and the DSS colitis model. 

1.7.1. TnfΔARE/+ mouse model resembling CD-like ileitis 

Although anti-TNF treatment is a successful therapeutic target in CD pathology, TNF-specific 

molecular and cellular mode of pathogenic action is not fully understood. The deletion mutation 

in the octanucleotide adenosine uracil-rich element (ARE) of the Tnf gene stabilizes Tnf mRNA 

and subsequent elevation of TNF protein. The clinical manifestation in this mouse model is 

very similar to CD that is characterized by transmural lesions and granulomatosis. TnfΔARE/+ 

mice exhibit an age-dependent chronic ileitis and polyarthritis [222]. Onset of chronic ileitis is 

at 4 weeks of age and of colitis between 12 and 16 weeks of age [60]. Disease progression is 

characterized by splenomegaly and significant increases of secondary lymphoid structures 

such as mesenteric lymph nodes (MLN). Histopathology is highly dependent on dietary factors 

and hygiene stages and requires bacterial stimulation [60, 223, 224]. Backcrossing of TnfΔARE/+ 

mice with recombinase activating gene (RAG)-1 deficient mice abrogated ileitis, but not 

polyarthritis. This points to two different disease mechanisms, strong involvement of adaptive 

immune mechanisms (T and B cells) is relevant in ileitis, but not in polyarthritis. In detail, loss 

of CD8aa+ and enhanced CD8ab+ in intraepithelial lymphocytes (IEL) are responsible for 

chronic ileitis [222, 225, 226]. This is also demonstrated by the fact that an abrogation of CD4+ 

T cell responses led to accelerated disease, whereas MHC-I/CD8+ exclusion delayed the 

disease onset. Overall chronic ileitis in the TnfΔARE/+ mouse model is a Th1/ Th17-mediated 

inflammation. 

1.7.2. Dextrane sulfate sodium (DSS)-induced colitis model 

DSS administration in drinking water induces a reproducible acute epithelial damage 

resembling UC-like colitis in mice with clinical signs of bloody diarrhea, weight loss, ulcerations 

and infiltrating granulocytes [227-229]. It is believed that DSS is toxic to IEC, increases 

intestinal permeability and activates macrophages, thus leading to neutrophil infiltration. DSS 

treatment over several days (e. g. 7 days) triggers an acute inflammation, whereas several 

cycles of DSS exposure (e. g. 7 days followed by 14 days water) result in a more chronic 

phenotype with weight loss and increasing numbers of infiltrated neutrophils. DSS treatment 

of T cell-and B cell-deficient Rag1-/- mice showed no abrogation of colitis, demonstrating that 

the adaptive immune response is not a major target of DSS. In contrast, innate immune 

mechanisms are involved in the mode of DSS action as Tlr4-/- and Myd88-/- mice showed 

reduced susceptibility to DSS [230]. Fukata et al. showed that TLR4 and MyD88 are required 

for neutrophil recruitment into inflamed tissue regions. In addition, DSS treatment is used as 

supportive tool to study the potential role of genes which may be involved in IBD pathogenesis, 
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but do not spontaneously trigger intestinal inflammation. For example, transgenic mice 

overexpressing growth hormone exhibit enhanced survival and mucosal repair upon DSS-

induced colitis [231]. Further, inflammation–driven colorectal cancer, which was observed in 

UC patients [232, 233], could be mimicked by a chronic DSS model with one initial dose of the 

genotoxic carcinogen azoxymethan (AOM) [234] and therefore plays an essential role to study 

IBD-related colorectal cancer besides the pathogenesis of IBD. 

To bring all the aspects of this introduction together the primary objective of this work was to 

investigate whether in utero exposure to maternal inflammation and maternal diet-induced 

obesity influence the fetal epithelial transcriptome of the gut. As a secondary objective it was 

investigated whether in utero exposure to maternal inflammation or maternal obesity has a 

consequence on the outcome of postnatal intestinal inflammation. In this context it a further 

objective was to analyse whether a maternal inflammatory microbiome can shift the offspring’s 

microbiota towards a more disease-supporting microbiota with the consequence of intestinal 

inflammation. 
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2. Material and Methods 

2.1. Ethics statement for animal studies 

Mouse experiments were performed in accordance to the German guidelines for animal care 

permitted by the Regierung von Oberbayern (Bavaria, Germany, proposal numbers 55. 2-1-

54-253-163-10 and 55. 2. 1. 54-2532-43-12). Mice (C57BL/6N genetic background) were 

housed either under conventional or under specific pathogen-free conditions in groups of 3-5 

mice per cage at a 12h light/dark cycle at 24-26°C. They received fresh tap water (autoclaved 

water for SPF-mice) and diet (Ssniff Chow and customized Ssniff experimental diet and Ssniff 

HFD (see table S1 Appendix) ad libitum and were sacrificed with CO2.  

2.2. Breeding pairs for maternal inflammation studies 

For maternal inflammation studies conventionally raised TnfΔARE/+ (ARE) dams were bred at 

the age of 8 weeks with age-matched Tnf+/+ wildtype (WT) sires and vice versa (n=10-20 

breeding pairs), generating offspring from healthy WT dams (WT and ARE) and inflamed ARE 

dams (iWT and iARE) (n=6-16 each). Average age of dams at weaning stage (3 weeks after 

delivery) was 16 ± 2 weeks for WT dams and 14 ± 1 weeks for ARE dams. Figure 4 represents 

an overview of the different offspring groups. 

 

Figure 4 Offspring groups in maternal inflammation studies. 
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2.3. Breeding pairs for maternal obesity studies 

For maternal obesity studies WT dams were fed an experimental control or high-fat diet (HFD) 

from the age of 4 weeks on (see Table S1, Appendix). At 12 weeks of age dams were bred 

with ARE sires (n=12-17 breeding pairs), generating WT and ARE offspring from lean (WT and 

ARE) and obese (oWT and oARE) dams (Figure 5). At the date of delivery, control diet fed 

dams received HFD (indicated as control dietHFD dams) during breast-feeding period in 

order to synchronize fatty acid profiles during breast feeding. All dams were sacrificed either 

at 17. 5 days post conception (dpc) or at weaning time point (3 weeks after giving birth).  

 

2.4. Prenatal studies 

2.4.1. Breeding for prenatal sampling 

For maternal obesity studies breeding was performed once a week (overnight) in order to 

determine dam’s gestational age and fetal developmental stage. Breeding pairs were 

separated again for one week. Dams that were not pregnant after 2 nights of breeding were 

excluded from the study. Fetuses derived from lean WT dams (WT and ARE) or obese WT 

dams (oWT and oARE) (n= 5 each).  

2.4.2. Fetal gut sampling at 17.5 dpc 

17.5 dpc fetuses were dissected by Caesarean sectioning. Morphological criteria of fetuses 

were evaluated according to Theiler stage 25 (TS25) based on the onset of skin wrinkling, 

whiskers and eyelid closure. Fetus weight and size were measured prior to decapitation. The 

fetal gut was isolated by opening the abdomen and subsequent fixation of the stomach with 

forceps. The gut was dissected very carefully by cutting the mesentery in order to disconnect 

the intestine from the dorsal abdominal wall. The dissected gut was transferred into a petri dish 

with 1x PBS and the whole mesentery was removed in order to straighten the gut. Caecum 

Figure 5 Offspring groups in maternal obesity studies 



28 
 

and colon were separated from the small intestine. The distal third of the small intestine was 

defined as ileum. Fetal ileum and colon were embedded longitudinally with a proximal versus 

distal orientation in Optimal Cutting Temperature (O.C.T.; Sakura Finetek, Torrance, USA) and 

stored at -80°C until use, respectively.  

2.5. Postnatal studies 

All offspring were generated from both, maternal inflammation and maternal obesity breeding 

pairs.  

2.5.1. Development of genetically driven CD-like ileitis under maternal 

inflammation or obesity under conventional housing 

WT and ARE offspring were weaned 21 days after birth and received Ssniff Chow diet until 4 

weeks of age. Henceforward, diets were changed to experimental diet and/or HFD until 

sacrifice (8 or 12 weeks of age) (Figure 6). Body weight development was monitored on a 

weekly basis. Fasting blood glucose was measured in all offspring deriving from maternal 

obesity breeding pairs [60]. All Offspring were sacrificed by CO2 inhalation. Portal vein and 

abdominal aorta blood were withdrawn posthumously and centrifuged (3000g, 10min, 4°C) to 

obtain plasma. Gut sections (distal ileum and proximal colon) were fixed in 10% formaldehyde 

for 24h. Mesenteric and perigonadal fat pads were fixed in 4% formaldehyde for 24h. 

Mesenteric lymph nodes and spleen halves were stowed in ice cold RPMI (10% FCS, 1 % AA) 

until subsequent flow cytometry.  

HFD

HFDMaternal control diet

Birth

sterile

17.5 dpc 12 weeks

WT and TnfΔARE/+

8 weeks

WT and TnfΔARE/+

Weaning

Dietary switch to HFD

Maternal HFD

Figure 6 Regimen of maternal and offspring’s dietary exposure. 
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2.5.1.1. Development of genetically driven CD-like ileitis under maternal 

inflammation under specific-pathogen-free conditions 

WT and ARE offspring were weaned 21 days after birth and received Chow diet (Ssniff) until 

4 weeks of age. ARE mice were randomly fed either a Chow diet or experimental control diet 

until date of culling (12 weeks). WT mice were fed a Chow diet throughout postweaning life. 

All offspring were sacrificed by CO2 inhalation. Portal vein and abdominal aorta blood were 

withdrawn posthumously and centrifuged (3,000g, 10min, 4°C) to obtain plasma. Gut sections 

(distal ileum and proximal colon) were fixed in 10% formaldehyde for 24h. Mesenteric lymph 

nodes and spleen halves were stowed in ice cold RPMI (10% FCS, 1 % 

Antibiotics/Antimycotics) until subsequent flow cytometry.  

2.5.2. DSS colitis susceptibility studies 

WT offspring (n=6, no littermates within one group) were generated and fed a Ssniff Chow diet 

throughout post weaning life. At 12 weeks of age offspring were exposed to 1% DSS (w/v) 

(MW 36,000-50,000, MP Biomedicals, LLC France) for 7 days in their drinking water, followed 

by 8 days drinking water without DSS as recovery phase. Control animals received only 

drinking water throughout the whole experiment. During that time mice were housed in single 

cages in order to monitor stool consistency, occurrence of rectal bleeding and body weight 

daily. Disease activity index was assessed as mean score of body weight loss, stool 

consistency and rectal bleeding. After recovery, mice were sacrificed by anaesthesia and final 

exsanguination.  

In order to classify the severity of DSS colitis we evaluated the mean of 3 clinical signs: stool 

consistency (scores: 0=normal, 2=loose and 4=diarrhea), rectal bleeding (scores: 0=negative, 

2=gross bleeding, 3=bleeding>1d, 4=bleeding>2d) and weight loss, indicated as weight 

change in % on basis of initial body weight at day 0 (scores: 0=none, 1=1-5%, 2=6-10%, 3=11-

15%, 4>15%). The daily calculated mean of these scores expresses the disease activity index 

(DAI adapted by Cooper et. al. [235]). 

2.6. Histology 

2.6.1. Histopathological scoring of the distal ileum and proximal colon 

Transversal sections (5µm thickness) were cut (Microtom, Leica) from 10% formaldehyde-

fixed paraffin-embedded distal ileum and proximal colon. The histological score was 

ascertained in a blinded fashion on H&E-stained sections of the distal ileum (WT, iWT, ARE, 

iARE or WT, oWT, ARE, oARE), resulting in a score from 0 (non-inflamed) to 12 (highly 

inflamed) as previously described [236].  
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2.6.2. Mesenteric adipocyte sizes 

Five µm sections were cut from paraffin-embedded mesenteric fat tissue of WT and ARE 

offspring. H&E-stained sections were analysed using a light microscope (Leica) at 200x 

magnification. Adipocyte size measurements were performed using Axion Software (Leica). 

Individual adipocyte sizes were calculated as means out of 25 measured cells per ROI (region 

of interest). In total 3 ROIs per mouse were evaluated.  

2.6.3. Immunofluorescence analysis on paraffin-embedded and frozen sections 

of the distal ileum 

After deparaffinization of tissue sections (Leica ST5020 Multistainer system), antigen 

demasking was performed by boiling in 1x sodium citrate buffer (pH 6, 900W, 23min) or by 

Proteinase K digestion (10 µg/ml at 37°C for 14min and cool down for 10min followed by 2 

times 2min washing with 1x PBST). After cool down to RT, slides were washed 3 times in 

dH2O for 5min, followed by 5min in PBS. Frozen sections were equilibrated to room 

temperature (30min), fixed in ice cold acetone (-20°C) for 10min, followed by 30min air drying 

at RT and 3 times 5min washing in PBS.  

Paraffin-embedded and frozen sections were blocked with 50µl blocking buffer raised against 

the host species of the secondary antibody for 60min at RT in a humidified chamber. For co-

incubations of two pimary antibodies (Table 3) the respective blocking buffers were equally 

combined. For paraffin-embedded sections, diluted primary antibodies (in antibody diluent) 

raised against the antigen of interest were incubated overnight at 4°C in a humidified chamber. 

For frozen sections, primary antibodies were incubated at RT for 1-3 hours. For both, paraffin-

embedded and frozen sections fluorochrome-conjugated secondary antibodies (Table 4), were 

diluted 1:200 and incubated for 1h at RT. Nuclei were counterstained using DAPI (1:2000) in 

secondary antibody solution. Sections were visualized using a confocal microscope (Olympus 

Fluoview 1000 using the FV10-ASW software). The amount of Ly6G positive (Ly6G+) cells per 

area was counted using the Volocity® 5. 51 software (Perkin Elmer) defining the lamina propria 

as region of interest. For each individual mouse, 3 microscopic fields at a 600-fold 

magnification were quantified for mean Ly6G-positive (Ly6G+) cells per mm2. 
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Table 3 Primary antibodies 

Antigen Host Dilution Company Antigen retrieval 

Ly6G Rat 1:500 BD Pharmingen Sodium citrate buffer 

MPO Rabbit 1:200 Thermo Fisher Proteinase K 

Lysozyme Rabbit 1:2000 DAKO Sodium citrate buffer 

 

Table 4 Secondary antibodies 

Antigen Host Dilution Conjugated with Company 

Rat Goat 1:200 Alexa Fluor 546 Invitrogen 

Rabbit Goat 1:200 Alexa Fluor 594 Invitrogen 

Rabbit Donkey 1:500 Biotin Dianova 

 

In case of Lysozyme, an immunohistochemistry approach was performed after incubation with 

primary antibody. Donkey- anti-biotin antibody was incubated at RT for 30min followed by 

signal amplification with Avidin/Biotin Complex (ABC) according to the manufacturer’s 

instructions (PK-4000, Vector laboratories, USA) and 10min incubation of the tyramide 

substrate (excitation wave length at 488 nm). The amount of lysozyme-positive (Lyz+) crypts 

was calculated in relation to present crypts per power field. For each individual mouse 3 

different areas were quantified as mean number of Lysozyme-positive (Lyz+) crypts per total 

number of crypts.  

2.7. Laser microdissection (LMD) of fetal intestinal epithelial cells 

2.7.1. Cryosectioning of distal ileum and colon 

Frozen sections were generated at -20°C from fetal ileum and colon (Microm, Walldorf, 

Germany). Briefly, 1cm of the distal parts from ileum or colon were cut out of the cryoblock and 

embedded transversally in O.C.T. Eight PET-frame slides per intestinal sample (MicroDissect, 

Herborn, Germany) were treated with RNase (Sigma-Aldrich, Steinheim, Germany) before use 

and dried at RT. Twenty transversal sections (10µm) were mounted on one slide, air-dried and 

stored at -80°C for short periods of time (<7d) until laser microdissection.  

2.7.2. Hematoxylin/Eosin (H&E) staining of cryosections prior to LMD 

Each slide was stained directly before LMD microscopy, in order to visualize the epithelial layer 

of the fetal intestine (Table 5). Respective staining solutions were always prepared with respect 

to an RNase free environment. Solutions were renewed after staining of 8 slides. All staining 

solutions were stowed at RT and prepared using 0.1% DEPC (Diethylpyrocarbonate) water or 

nuclease-free water (Mol. biol. grade) as dilution reagent.  
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Table 5 H&E staining protocol for laser microdissection 

Step Treatment Time 

1.  Equilibration of cryosections to RT 2min 

2.  Fixation with 70%(v/v) EtOH 1min 

3.  Rinse with DEPC water 30sec 

4.  Harris hematoxylin 1min 

5.  Rinse with DEPC water 1min 

6.  Bluing agent 0.1% (v/v) NH4OH 30sec 

7.  Counterstaining with 2.5% Eosin (alc.) 2min 

8.  Dehydration with 96% EtOH 30sec 

9.  Dehydration with EtOH abs.  30sec 

10.  Air drying at RT 2-5min 

 

2.7.3. Laser microdissection microscopy  

Fetal intestinal epithelial cells (IEC) from ileum and colon were cut at a magnification of 630x 

using the UV laser-cutting system LMD 6000 and the Leica Application Suite software (Leica, 

Wetzlar, Germany) [237]. To avoid degradation of RNA, LMD procedure did not exceed 2h per 

slide. 100µl of lysis buffer supplied by the AllPrep® DNA/RNA Micro Kit (Qiagen, Hilden, 

Germany) were added into the lid of the tube in order to prevent loss of epithelial pieces after 

dissection. Samples were kept frozen at -80°C until DNA/RNA isolation. In total, mean areas 

of 1.6±0.15x106µm2 (ileum) and 1.5±0.19x106µm2 (colon) from ileal and colonic IEC were 

collected for total RNA isolation and subsequent analysis.  

2.7.4. RNA isolation and quality control 

All lysates were vortexed at least 30 seconds and incubated at 37°C for 10min (Peqstar, 

Peqlab, Germany). All lysates per biological sample were pooled into a 1.5ml tube. Total RNA 

was isolated using the column-based AllPrep® DNA/RNA Micro Kit (Qiagen, Hilden, 

Germany), following the manufacturer’s instructions. RNA was eluted with 14µl nuclease-free 

water into a nuclease-free tube (1st elution). As back-up elution was repeated into a new tube 

with another 14µl nuclease-free water (2nd elution). 3µl from the 1st elution were used for 

subsequent measurements of RNA quantity and quality. Remaining RNA was immediately 

frozen at -80°C until further analysis. RNA quantity was measured using the Quant-iT 

RiboGreen® RNA Assay Kit (Invitrogen, Eugene, USA). Diluted RNA (1:100 in 1xTE-buffer) 

was analysed in triplicates followed by the manufacturer’s instructions. Quantification was 

performed using the equation of the standard dilution curve. After obtaining a total RNA yield 

≥ 60ng RNA integrity measurements were performed. Quality determination of 1µl diluted RNA 

(1:10 in nuclease-free water) was performed with the Bioanalyzer 2100 (Agilent, Waldbronn, 
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Germany). Using the RNA 6000 Pico Kit (Agilent, Waldbronn, Germany) according to the 

manufacturer’s instructions. Quality threshold for microarray and preamplification procedure 

was a RNA integrity number (RIN) of 6. Total RNA (50ng) from laser microdissected fetal IEC 

were sent to the University of Wageningen in order to perform microarrays and subsequent 

data analysis.  

2.7.5. Microarray processing 

Microarrays were performed at the University of Wageningen (Mark Boekschoten, Michael 

Müller, The Netherlands). Briefly, total RNA (25ng) was labelled using the NuGEN Ovation 

PicoSL WTA V2 with the Encore Biotin Module (NuGEN Technologies, Leek, The Netherlands) 

and hybridized to Affymetrix GeneChip Mouse Gene 1.1 ST targeting 21,187 genes, 

(Affymetrix, Santa Clara, CA). Sample labelling, hybridization to chips and image scanning 

was performed according manufacturer's instructions.  

2.7.6. Microarray data analysis 

Microarray analysis was performed using MADMAX pipeline for statistical analysis of 

microarray data [238]. Quality control was performed and all arrays met our criteria. Expression 

values were calculated using robust multichip average (RMA) method, which includes quantile 

normalization. Significant differences in expression were assessed using paired Intensity-

Based Moderated T-statistic (IBMT). Genes were defined as significantly changed when the p 

value was <0. 05 and the log2-based fold change (FC) was ±1. 3. All microarray data are 

MIAME (Minimum Information About a Microarray Experiment) compliant. Significantly 

regulated gene lists were filtered, according to the control group with expression values higher 

than 50 in order to create a list of biologically relevant genes that are potent for microarray 

validation. Heatmaps and gene distance matrices (GDM) were generated using the 

MultiExperiment Viewer (TigrMEV) software. Gene Ontology (GO) terms were computed using 

the GeneRanker program (Genomatix, München, Germany) and the David tool [239]. 

Overrepresentation of biological terms were calculated and listed in the output together with 

respective p-values.  

2.7.7. Preamplification of laser microdissected low input RNA 

Depending on the RNA amount, either the 1st elution alone or pooled 1st and 2nd elutions of 

total RNA were additionally DNase digested and concentrated using the Clean and 

Concentrator Kit (Zymo Research) according to the manufacturer’s instructions. Elution 

volume was 8µl nuclease-free water. Completely clean RNA was again quantified using the 

Quant-iT RiboGreen® RNA Assay (Invitrogen, Eugene, USA). Input material of 2-6ng total 

RNA was applied to whole transcriptome preamplification using the Ovation PicoSL WTA 

System V2 kit (NuGEN, Netherlands) and following the manufacturer’s instructions. Quality of 
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preamplified cDNA was evaluated at the Bioanalyzer using RNA 6000 Nano Kit (Agilent, 

Waldbronn, Germany).  

2.8. Gene expression analysis of laser microdissected IEC or whole tissue 

sections 

Quantitative real-time PCR was performed on 10ng cDNA using the LightCycler® 480 System 

(Roche Diagnostics, Mannheim, Germany). Gene-specific nucleotide sequences and 

accession numbers were obtained from the National Center for Biotechnology Information 

(NCBI) website (http://www.ncbi.nlm.nih.gov/gene). Primer pairs (Table 6) were designed with 

the Universal ProbeLibrary (UPL) design center (Roche Diagnostics, Mannheim, Germany). 

Crossing points (Ct) were determined using the second derivative maximum method by the 

LightCycler® 480 software release 1.5.0. Data were normalized to the Ct mean of reference 

genes (18s, Rpl13a and Gapdh) and expressed as 2-ΔCt values in order to compare expression 

levels among all groups.  

Table 6 Primer sequences. Underlined genes are housekeeping genes 

Gene Forward primer Reverse primer Probe  Amplicon  

Gapdh 5’-tcc act cat ggc aaa ttc aa 5’-ttt gat gtt agt ggg gtc tcg #9 108 nt 

Rpl13a 5’-atc cct cca ccc tat gac aa 5’-gcc cca ggt aag caa act t #108 97 nt 

18s 5’-aaa tca gtt atg gtt cct ttg gtc 5’-gct cta gaa tta cca cag tta tcc aa #55 67 nt 

Afp10 5’-gca tgc tgc aaa gct gac 5’-cct ttg caa tgg atg ctc tc #63 64 nt 

Il12p40 5’-atc gtt ttg ctg gtg tct cc 5’-gga gtc cag tcc acc tct aca #78 80 nt 

Tnf 5´-tgc cta tgt ctc agc ctc ttc 5´-gag gcc att tgg gaa ctt ct #49 117 nt 

http://www.ncbi.nlm.nih.gov/gene
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2.9. Flow cytometry of T cells in spleens and mesenteric lymph nodes 

(MLNs) 

Spleen halves and MLNs were stowed in RPMI 1640 (10% FCS+ 1AA) on ice until tissue lysis. 

Tissues were sieved through a nylon cell strainer (REF352360, 100µm pore size) and washed 

with 1ml FACS buffer (PBS, 5% FCS, 2mM EDTA). Cell suspension was centrifuged (300g, 

10 min, 4°C) and resuspended in 1ml FACS buffer. A volume of 100µl was transferred into a 

well of a 96 well V-bottom microplate. Fluorochrom-conjugated antibodies (Table 7) and 20µl 

Fc(R)-Block were incubated for 15-20min in the dark (4°C). Unbound antibodies were washed 

away with 100µl FACS buffer 2 times (400g, 5min, 4°C). A volume of 100µl cell suspension 

was filled up with 900µl FACS buffer and fluorescence intensities were measured (BD LSR II, 

CA USA). Relative fluorescence intensities were analyzed with BD FACS diva software (BD 

Pharmingen, CA, USA).  

Table 7 Fluorochrome-conjugated antibodies 

 

2.10. Microbial ecology  

2.10.1. Cecal content collection and bacterial DNA extraction 

Caecal content was collected from 3 and 8 week-old offspring and snap frozen on dried ice. 

Prior to bacterial DNA extraction 100mg cecal content was diluted 1:10 with sterile PBS, 

centrifuged at 8, 000g for 5min, followed by washing pellets 3 times. Pellet was resuspended 

in 750µl sterile filtered lysis buffer (200mM NaCl, 100mM Tris (pH8), 20mM EDTA, 20mg/ml 

Lysozyme) and shaked (800rpm) at 37°C for 30min. Sterile filtered 10% SDS (85µl) and 

10mg/ml Proteinase K were added and incubated in a thermoshaker (60°C, 30min, 800rpm). 

Phenol-Chloroform-Isoamyl alcohol (Roth) (500µl) was added and cells were disrupted using 

a bead beater 4 x 30sec. After 5min centrifugation (10,000g) top layer was transferred to 500µl 

Phenol-Chloroform-Isoamyl alcohol briefly shaked, centrifuged again (4 new cycles of top layer 

transfer). DNA was precipitated by adding 2 volumes of EtOH (96-100%) at -20°C over night 

and subsequent centrifugation at full speed for 20min, washed with 70% EtOH and centrifuged 

again. DNA pellet was air-dried and resuspended with 100µl Tris buffer (10mM pH8). 100ng 

of bacterial DNA was used for PCR.  

Antigen Conjugated with: Volume/well [µl] Company 

CD3 APC-Cy7 0.4 BD Pharmingen 

CD4 PE-Cy7 0.5 BD Pharmingen 

CD8α PE 8.0 Bio-RAD 

CD8β FITC 0.4 BD Pharmingen 

CD44 APC 0.5 BD Pharmingen 



36 
 

2.10.2. Illumina Sequencing of 16S rRNA gene amplicons from caecal contents 

Amplicons of the V4 region of 16S rRNA genes were obtained after 25 PCR cycles as 

described previously [240]. They were sequenced in paired-end modus (PE200) using the 

MiSeq system (Illumina Inc., San Diego, USA). Sequences were analyzed using in-house 

developed pipelines partly based on UPARSE [241], the open source software package QIIME 

[242] and the Ribosomal Database Project [243]. Sequences were filtered at a base call 

accuracy of 99 %. Sequences containing any ambiguous nucleotide (N character) were 

discarded. The presence of chimeras was checked after dereplication using UCHIME [244]. 

Operational taxonomic units (OTUs) were picked at a threshold of 97 %. Only those OTUs 

occurring in at least one sample at abundances >0.5 % total sequences were included in the 

analysis. Sequence proportions of bacterial taxa were analyzed for significant differences 

using F-Test followed by Benjamini-Hochberg correction for multiple testing in the R 

programing environment (2008, ISBN 3-900051-07-0).  

2.11. Plasma Measurements 

2.11.1. Measurements of proinflammatory cytokines TNF, IFNγ and IL-6  

TNF, IFNγ or IL-6 were measured in abdominal aorta plasma using respective Mouse ELISA 

Ready –SET-Go!® according to the manufacturer’s instructions (eBioscience, San Diego, 

USA). A volume of 100µl total plasma was incubated for 2h at RT on microplate wells pre-

coated with anti-mouse TNF or anti-mouse IL-6 antibody, respectively. After washing and 

blocking captured antigens were incubated with Avidin/Biotin labelled anti-mouse TNF; IFNγ 

or IL-6 detection antibody, respectively. HRP-conjugated antibodies were incubated for 30min 

and substrate conversion was stopped after 15min with 2N H2SO4. The product absorbance 

of standard dilutions and plasma sample were measured at 405nm to the reference 

wavelength of 570nm. Quantification was performed using the linear equation of the standard 

dilutions.  

2.11.2. Leptin measurements 

Leptin concentrations were measured in abdominal aorta plasma using Mouse and Rat leptin 

ELISA (Biovendor, Karasek, Czech Republic). Briefly, 100µl of diluted plasma (20x in dilution 

buffer) from mothers (n=5 per group) and offspring (n=8-10 per group) were incubated in 

microplate wells pre-coated with anti-mouse leptin antibody for 1h at RT. After washing, biotin 

labelled polyclonal anti-mouse leptin antibody was added and incubated with the captured 

leptin for 1h at RT. After another washing, streptavidin-HRP conjugate was incubated for 

30min, followed by a last washing and subsequent incubation with substrate solution for 10min. 

The absorbance of the resulting yellow product was measured at 450nm wavelength to the 
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reference wavelength 630nm. Quantification was performed using the linear equation of the 

standard dilutions.  

2.11.3. Endotoxin concentration of portal vein plasma 

Endotoxin concentrations in portal vein plasma were analyzed using LAL assay (Hycult 

Biotech, The Netherlands). Plasma samples were diluted 1:50 in endotoxin-free water (EFW, 

Hycult Biotech, The Netherlands). After vortexing, and 10min incubation at 70°C, 3.03µl 

Pyrosperse was added. For standards a volume of 50µl diluted Pyrosperse (1:100 in EFW) 

was pipetted per well. Standard concentrations were prepared by serial dilutions of the highest 

concentrated standard (25µl, 10EU/ml as final conc.). Samples were spiked with 5µl 10 EU/ml 

in order to determine recovery rate of samples. LAL reagent (50µl/well) was added and colour 

formation was monitored by absorbance measurements over time (50min) at 405nm 

wavelength.  

2.12. Statistics 

Statistical analyses were performed with Graph Pad Prism version 6 (GraphPad software, San 

Diego, USA) and SigmaPlot 11. 0 (Systat Software Inc. San Jose, USA) using unpaired T-test, 

Kruskal-Wallis test followed by Dunn’s multiple comparison or ANOVA followed by pairwise 

comparisons testing (Holm-Sidak test). Data were expressed as mean ± SD. Differences 

between groups were considered significantly if p-values were <0.05 (*), <0.01 (**), <0.001 

(***). Graphs were created using GraphPad Prism version 6.00.  
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3. Results 

3.1. The severity of murine Crohn’s disease-like ileitis is dependent on the 

microbial environment and on dietary factors.  

TnfΔARE/+ mice were used to study the role of maternal inflammation and maternal obesity on 

the offspring’s ileal inflammation. It was recently published that maternal inflammation does 

not affect the severity of genetically-driven ileitis and colitis [245] under Chow dietary 

conditions in a conventional housing environment. Thereafter, we additionally considered the 

fact that certain dietary and hygienic conditions influence the genetically-driven ileitis in the 

TnfΔARE/+ mouse model.  

To test this we assessed the chronic ileitis severity in 12 week-old TnfΔARE/+ mice that derived 

from conventional or SPF-housing and received either Chow or experimental diet from 4 weeks 

of age on. We observed the highest inflammation scores of TnfΔARE/+ mice on Chow diet 

independently of the hygiene stages (Figure 7). Interestingly, experimental diet feeding 

revealed no ileitis in SPF-raised TnfΔARE/+ mice, whereas the same diet induced severe 

inflammation when mice were conventionally housed. Interestingly, Chow diet feeding under 

SPF conditions revealed 4 non-responder mice (ileitis score <1), 4 intermediate-responder 

mice (ileitis score 2-4) and 18 high-responders (ileitis score>4). Because of heterogeneous 

ileitis severity in Chow diet-fed TnfΔARE/+ mice and because of absent pathology in SPF-housed 

Figure 7 Severity of CD-like ileitis 
in response to diet and hygiene 
stage. TnfΔARE/+mice were housed 
until 12 weeks of age in different 
hygiene stages (conventional versus 
SPF conditions) on Chow or 
experimental diet, respectively. (A) 
Representative H&E-stained 
sections of the distal ileum from 12-
week old TnfΔARE/+mice. (B) 
Histopathological ileitis scores were 
blindly assessed by blindly 
assessing the degree of lamina 
propria mononuclear cell infiltration, 
crypt hyperplasia, goblet cell 
depletion and architectural distortion 
on H&E-stained sections of the distal 
ileum in TnfΔARE/+mice (n=9-26 
each).Two-Way ANOVA, ***p<0.001 
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TnfΔARE/+ mice on experimental diet further experiments were conducted in conventionally- 

raised TnfΔARE/+ mice fed an experimental diet.  

3.2. The influence of maternal inflammation on genetically-driven postnatal 

development of CD-like ileitis in TnfΔARE/+ mice 

3.2.1. TnfΔARE/+ dams are locally and systemically inflamed  

Consequences of maternal inflammation on WT and TnfΔARE/+ offspring that received a 

potsweaning experimental diet (from 4 weeks of age on) were investigated. The genetically-

driven local and systemic inflammation in ARE dams was confirmed at weaning (3 weeks 

postnatal) by significantly increased ileal histological scores (WT vs. ARE dams: 0.5±0 and 

5.2±0.5), elevated plasma TNF (WT vs. ARE dams: 2.93±1.9pg/ml and 100.3±31.58pg/ml) and 

increased relative spleen weights (WT vs. ARE dams: 3.12±0.18mg/g BW and 5.68±0.74mg/g 

BW) (Figure 8).  
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Figure 8. TNF-driven maternal inflammatory environment at weaning (3 weeks after giving birth). Local 
and systemic signs of intestinal inflammation in TnfΔARE/+ (ARE) dams confirm the maternal inflammatory 
environment. (A) Histological ileitis scores were blindly assessed on H&E-stained sections of the distal ileum 
in WT and ARE dams (n=6-9 each). Local inflammation significantly increased (B) plasma TNF (n=6-8 each) 
and (C) relative spleen weights in ARE dams, thus, highlighting on increased systemic inflammatory stages. 
Unpaired, two tailed T-test with Welch’s correction, *p<0.05, ***p<0.001. 
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3.2.2. Maternal inflammation does not change CD-like ileitis in TnfΔARE/+ mice 

Although a maternal inflammatory environment during pregnancy was confirmed, 8 week-old 

ARE and iARE offspring showed the same grade of inflammation in the distal ileum (Figure 9). 

Although systemic and local signs of postnatal inflammation were observed in spleens and 

mesenteric lymph nodes (MLNs) of ARE and iARE compared to WT and iWT offspring. 

However, offspring’s inflammation was independent of maternal inflammation (Figure 9B). 

Increased relative MLN weight served as a marker for tissue inflammation in the distal ileum, 

because it significantly correlated with the histological score (rSpearman=0.48; p=0.01).

Figure 9. Severity of CD-like ileitis is not influenced by maternal inflammation. Offspring's 
intestinal and systemic inflammation is unaffected by in utero exposure to maternal 
inflammation. (A) Representative H&E-stained sections of the distal ileum from 8-week old WT, iWT, 
ARE and iARE offspring (n=6-15 each). (B) Histological ileitis scores, relative weights of spleen and 
mesenteric lymph nodes (MLN) were significantly increased in ARE groups compared to WT offspring 
independently of the exposure to maternal inflammation. There is significant correlation between 
relative MLN weight and the histological ileitis score (rSpearman=0.48; p=0.01).Two-Way ANOVA, ***p 
<0.001. 
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Immune cell infiltration into the lamina propria and submucosa of distal ileum sections in 

response to maternal inflammation was exemplarily assessed by the number of Ly6G+ 

neutrophils (Figure 10). The strong positive correlation of infiltrated Ly6G+ neutrophils with the 

histological ileitis score (rSpearman=0.82, p=0.0019) indicated Ly6G as a reliable marker for tissue 

pathology. 

Despite increased Ly6G+ cell number in inflamed ARE and iARE mice, maternal inflammation 

did not additionally alter immune cell infiltration in both, WT and ARE offspring. Furthermore, 

ARE and iARE showed a significant loss of Lysozyme-positive (Lyz+) crypts compared to WT 

and iWT offspring. Interestingly, maternal inflammation attenuated loss of Lyz+ crypts in iARE 

offspring (ARE vs. iARE: 4±9% of crypts vs. 38±15% of crypts were Lyz+), whereas no 

changes were observed in WT offspring. In essence, the proportion of Lyz+ crypts negatively 

correlated (rSpearman=- 0.65, p=0.01) with the histological ileitis scores, but unexpectedly it was 

Figure 10 Loss of lysozyme and 
infiltration of neutrophils in 
distal ileum of TnfΔARE/+mice is 
not affected by maternal 
inflammation. (Upper panel) 
Representative microscopic 
immunofluorescence pictures 
(600x magnification) of confocal 
laser microscopy for Lysozyme 
(Lyz, green) as hallmark for Paneth 
cells and Ly6G+ neutrophils (red) 
from distal ileum in 8-week old WT, 
iWT, ARE and iARE offspring on 
experimental diet. Nuclei were 
counterstained with DAPI 
(blue).Three pictures per mouse 
were analyzed. (A) The percentage 
of Lyz+ crypts compared to total 
number of crypts was ascertained 
per mouse (n=5-6 each).Individual 
data and means are shown (Two-
Way ANOVA and Holm-Sidak 
multiple comparisons, *p<0.05, 
**p<0.01, ***p<0.001).Correlation 
analysis in TnfΔARE/+ offspring 
indicated negative associations 
between histopathological scores 
and the percentage of Lyz+ crypts 
(r Spearman=-0.65, p=0.01). (B) 
Lamina propria and submucosa 
were defined as regions of interest. 
The numbers of Ly6G+ cells per 
mm2 from all 3 pictures per mouse 
were counted. Individual data and 
means are shown (Two-Way 
ANOVA and Holm-Sidak multiple 
comparisons, *p<0.05, **p<0.01, 
***p<0.001). Correlation analysis in 
TnfΔARE/+ offspring indicated strong 
associations between 
histopathological scores and 
infiltration of Ly6G+ neutrophils 
(rSpearman=0.82, p=0.0019). 
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not consistently in both, ARE (rSpearman=0.00; p=0.33) and iARE (rSpearman=-0.92, p=0.0056) 

groups.  

A closer look into immune modulatory effects by immunophenotyping of lymphocytes from 

MLN and spleens revealed alterations of CD4+ T helper cells and CD8+ cytotoxic T cell 

subsets in response to maternal and postnatal inflammation (Figure11). This indicates a 

potential systemic and local (intestinal) shift of T cell subsets due to maternal or postnatal 

inflammation.  

In spleens, CD3+ CD4+ T cell population decreased in iWT and ARE compared to WT 

splenocytes indicating a response to maternal inflammation and postnatal inflammation, 

whereas MLN CD3+CD4 T cell populations were unaffected by both types of inflammation 

(Figure 11A). Cytotoxic CD3+CD8aa+ T cell populations were not affected by maternal or 

postnatal inflammation in both organs. It has to be mentioned, that the iWT group consisted of 

n=3 only, which was due to technical problems during flow cytometry. However, statistical 

analysis revealed no lack of power for this analysis. Interestingly, cytotoxic 

CD3+CD8ab+Tcells in MLNs and spleen were strongly reduced during postnatal inflammation 

(WT versus ARE or iWT versus iARE). This is in accordance with previously published data 

[225]. In contrast, maternal inflammation significantly increased CD3+CD8ab+ T cell 

population in iWT compared to WT MLNs, but this effect was absent in spleen. Further analysis 

Figure 11. Immunophenotyping of offspring’s mesenteric and splenic lymphocytes in response to maternal 
inflammation. (A+B) Spleen halves and MLNs were stowed in RPMI 1640 (10% FCS+ 1AA) on ice until tissue lysis. 
Fluorochrom-conjugated antibodies (Table 7) and 20µl Fc(R)-Block were incubated for 15-20min in the dark (4°C). 
Unbound antibodies were washed away with 100µl FACS buffer 2 times (400g, 5min, 4°C). A volume of 100µl cell 
suspension was filled up with 900µl FACS buffer and fluorescence intensities were measured (BD LSR II, CA USA). 
Relative fluorescence intensities of (A) CD4+, CD8aa+ and CD8ab+ T cell populations and (B) of activated CD4+, 
CD8aa+ and CD8ab+ T cells (marker CD44) were analyzed with BD FACS diva software (BD Pharmingen, CA, 
USA), n= 3-12 each. Two-Way ANOVA and Holm-Sidak multiple comparisons, *p<0.05, **p<0.01 
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of the activated CD4+ and CD8+ T cell clusters by using CD44 as indicative marker for effector 

memory T cells (Figure 11 B) showed a slight increase of CD4+CD44+ and CD8ab+CD44+ T 

cell subsets in ARE and iARE mice compared to their WT controls. Interestingly, maternal 

inflammation decreased the splenic proportion of activated cytotoxic T lymphocytes 

(CD8aa+CD44+ and CD8ab+CD44+) in WT offspring. The same tendency was observed in 

MLN residual lymphocytes. Immune suppression in response to maternal inflammation was 

not observed in ARE offspring where particularly CD8ab+CD44+T cell activation was 

increased during postnatal inflammation. Taking all findings together, maternal inflammation 

drived proportional increases especially in the CD3CD8ab+ subset with concurrently 

decreased lymphocyte activation in iWT compared to WT mice, but not in iARE compared to 

ARE offspring. This might be the reason for an absent modulatory effect of maternal 

inflammation on the histopathology of TnfΔARE/+ offspring. 

3.2.3. Maternal inflammation influences energy homeostasis in WT and TnfΔARE/+ 

offspring 

Besides comparable pathology and immune phenotypes of T helper cells and cytotoxic T cells 

between ARE and iARE mice, maternal inflammation persistently influenced the energy 

homeostasis in both, WT and ARE offspring. Significantly reduced body weights were 

observed already in 2-days old neonates lasting until 8 weeks of age (Figure 12). 

 

Figure 12. Offspring's body weight and fat depot masses in response to maternal inflammation. (A) Body 
weight was monitored weekly throughout breastfeeding period, at postnatal day (PND) 2 (n=21-26 each), 7 (n=21-
24 each) and 14 (n=8-12 each) and (B) at 8 weeks of age (n=10-18 each). Body weights, perigonadal and 
mesenteric fat masses of 8 week-old offspring were plotted according to the genotype (WT and ARE) and 
according to maternal inflammation (iWT or iARE). Unpaired T-test by Welch’s correction for measurements during 
breastfeeding; for the 8-week time point Two-Way ANOVA and Holm-Sidak multiple comparisons, *p <0.05, ** 
p<0.01,*** p<0.001. 

Both, maternal and postnatal inflammation reduced perigonadal fat masses in iWT and ARE 

compared to WT offspring, whereas mesenteric fat mass was unaffected.  
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3.2.4. Inflammation-driven shift of microbial ecology is not additionally 

influenced by early life exposure to maternal inflammation.  

The sole fact that postnatal inflammation strongly increased caecum weight between WT and 

ARE (11.01±1.48mg/g BW vs. 19.73±3.96mg/g BW; p=2.01x10-7) points to a possible 

inflammatory impact on the microbial ecology. Therefore, it was hypothesized that postnatal 

inflammation might shift microbial ecology and that maternal inflammation might be a further 

contributor. Illumina-based inventory of 16S rRNA of caecal content bacteria from 8-week old 

offspring demonstrated a shift in beta diversity due to offspring’s inflammation indicating a 

TNF-driven clustering that is related to the intestinal inflammation stage (Figure 13A+B). 

Interestingly, maternal inflammation did not induce any clustering. Unifrac distances of the PCo 

analysis were significantly higher according to the offspring’s genotype than according to 

maternal inflammation (e. g. WT vs. iWT and WT vs. ARE). Postnatal, but not maternal 

inflammation significantly changed the relative abundance of bacterial taxa on the phylum level 

(Figure 14). In detail, the phyla Firmicutes and Proteobacteria decreased, whereas the 

abundance of Bacteroidetes increased in ARE compared to WT mice. This was independently 

of maternal inflammation. Although maternal inflammation significantly decreased the relative 

sequence abundance of the taxon Clostridia, especially within the genus Clostridium XIVa, an 

overall influence of maternal inflammation on the phylogenetic makeup was absent. Taken all 

Figure 13. Microbial ecology in WT and ARE 
offspring after disease onset. (A) Alpha-diversity 
indicated as number of observed species in caecal 
contents from WT, iWT, ARE and iARE offspring at 
8 weeks of age (right, n=4-5 mice each). (B) PCoA 
analysis revealed an inflammation-driven change in 
beta-diversity between 8 week-old WT, and ARE 
groups fed an experimental diet, which is not further 
influenced by maternal inflammation (WT vs.iWT or 
ARE vs. iARE ; Two-Way ANOVA, ***p>0.0001). (C) 
Comparisons of mean phylogenetic distances 
(weighted UniFrac) supported the PCo (Prinicipal 
Coordinates) analysis. There were no significant 
changes between individual mice from the same 
group (intra-group distances, e.g. WT vs.WT) but 
between mice from different groups (inter-group 
distances, e.g. WT vs. iWT compared to WT vs. 
ARE). Distances that are related to the offspring’s 
genotype were significantly higher than distances 
related to maternal inflammation (e.g. WT vs. iWT in 
comparison to WT vs. ARE Two-Way ANOVA and 
Holm-Sidak multiple comparisons, ***p>0.0001. 
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data together, maternal inflammation elicits a marginal influence on the abundance of 

Clostridia family, especially Clostridium XIVa. 

However, in conditions of conventional housing, the severity of CD-like ileitis and the 

phylogenetic make-up of the ceacal microbiota were not influenced by maternal inflammation. 

 

Figure 14. Inflammation-driven changes of bacterial taxa in 8 week-old offspring. Relative sequence 
abundance of bacterial taxa in caecal contents from WT, iWT, ARE and iARE offspring within phylum, class and 
order/genus level. Sequence proportions were analyzed for significant differences using F-Test followed by 
Benjamini-Hochberg correction for multiple testing in the R programing environment. Data were finally analyzed 
after adjustment for multiple testing by Two-Way ANOVA and Holm-Sidak multiple comparisons testing, * p< 0.05, 
** p<0.01, ***p<0.001.  
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3.3. Fetal exposure to maternal diet-induced obesity and its potential to 

affect postnatal development of CD-like ileitis.  

Breeding experiments with high-fat diet (HFD)-fed mothers were performed in order to evaluate 

the hypothesis whether maternal obesity initiates transcriptomic alterations in the fetal 

epithelium with consequences on the postnatal susceptibility to intestinal inflammation. 

Generated offspring were exposed to HFD at different periods of life: prenatal, pre- and 

perinatal and postnatal. Non-pregnant WT mice (C57/BL6) were fed either with control (12% 

of energy from fat) or high-fat diet (HFD: 45% of energy derives from palm oil-based fat) from 

4 weeks of age on. Mating with TnfΔARE/+ (ARE) sires (C57/BL6) started at the age of 12 weeks. 

From birth on, control diet dams also received HFD, in order to equalize the HFD load in the 

breast-feeding period. Consequently, from birth on, all offspring were exposed to HFD. 

Equalization of offspring’s postnatal dietary exposure enables the follow up of in utero effects 

triggered by maternal HFD during pregnancy with regard to the postnatal development of 

genetically-driven intestinal inflammation. All offspring were sacrificed either in the prenatal 

stage (17.5 dpc) or at 8 and 12 weeks postnatal.  

3.3.1. The maternal diet-induced obesity environment during pregnancy and at 

weaning.  

Dams were sacrificed at 17.5 dpc or 3 weeks after delivery (weaning) in order to analyse the 

progeny’s grade of metabolic exposure to maternal HFD. In late gestation, HFD dams showed 

significantly increased body weights, mesenteric and perigonadal fat pad weights (mesenteric: 

104±14.74mg vs. 343±91.23mg; perigonadal: 159.00±43.16mg vs. 871±135.30mg) as well as 

increased plasma leptin when compared to control dams (Figure 15A-C). Excessive energy 

supply by HFD dams led to increased fetal weights independent of the fetus genotype (WT vs. 

oWT: 0.76±0.08g vs. 0.86±0.05g and ARE vs. oARE0.73±0.06g vs. 0.84±0.07g (Figure 15D). 

However, the fetal size was unaffected indicating the same developmental stage of all fetuses 

(WT vs. oWT: 1.86±0.12cm vs. 1.86±0.1cm; ARE vs. oARE: 1.81±0.1cm vs. 1.91±0.12cm). 

Figure 15 shows the maternal metabolic stages at 17.5 dpc and at weaning. Interestingly, the 

dietary change in control dams at birth (control diet  HFD) equalized the offspring’s metabolic 

conditions during breastfeeding period. HFD-fed control dams and HFD dams showed identical 

body weights, fat depots and plasma leptin levels at weaning indicating that both offspring 

groups were exposed to the same high-fat conditions in mother’s milk. Equalization of 

metabolic conditions between dam groups was not due to exhausted fat depots upon 

breastfeeding, because ‘unswitched’ control dams (remained on control diet during 

breastfeeding) exhibited still less body weight, fat masses and plasma leptin compared to 

‘switched’ control and HFD mothers.  
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From the inflammatory point of view 

(Figure 16), mDIO increased gene 

expression of proinflammatory 

cytokines in dam’s mesenteric and 

perigonadal adipose tissue 

(mesenteric fat; Tnf, 4.11±1.45 fold 

change (FC to CTRLD), Mcp-1, 

7.97±4.41 FC to CTRLD; 

perigonadal fat: Il-6, 4.96±1.05 FC 

to CTRLD). Due to those findings, 

maternal HFD was suspected to 

drive massive inflammatory 

changes in the placenta, the 

maternal fetal interphase. Placental gene expression of Tnf and Mcp-1 were dominantly 

induced by the fetal genotype, but were not affected by maternal HFD (Figure 16). Low 

expression levels of placental Il-6 (Ct values of 35.30 ±0.91) around detection level was most 

probably responsible for inconclusive results (strong sample separation). Therefore, a 

statistical analysis was not meaningful. In conclusion, mDIO had a pronounced impact on the 

fetal metabolism, but not on the intrauterine cytokine milieu. 

Figure 15 Metabolic differences between 
pregnant lean and HFD mothers equalize by 
postnatal HFD during breastfeeding. (A) 
MDIO increased maternal body weight during 
gestation (left) (control diet: n=5; HFD: n=3-5), 
but postnatal HFD-feeding equalized body 
weights of control dams (CTRLD) to that of HFD 
dams at weaning (right). *p<0.05, **p<0.01, 
***p<0.001. T-test and Two-Way ANOVA and 
Holm-Sidak test. (B) Mesenteric and 
perigonadal fat masses were significantly 
increased during gestation (left), but equalized 
at weaning (right) between control dams and 
HFD dams.*p<0.05, **p<0.01, ***p<0.001. (C) 
Plasma leptin levels were significantly 
increased during gestation (left), but 
comparable at weaning (right) between control 
dams and HFD dams. **p<0.01 calculated by 
student’s T-test and Two-Way ANOVA and 
Holm-Sidak test. (D) MDIO increased fetal body 
weight (left), but not fetal size (right) in both, WT 
and ARE fetuses, * p< 0.05; ** p< 0.0, 
***p<0.001, calculated by Two-Way ANOVA 
and Holm-Sidak test. 
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3.4. Establishment of a workflow for large scale targeted gene expression 

analysis from laser microdissected murine fetal intestinal epithelium.  

Whether mDIO programs the fetal gut towards altered susceptibility to genetically-driven 

intestinal inflammation was of special interest. Since Tnf overexpression in the epithelium is 

sufficient to trigger ileitis [246] it was planned to compare the fetal transcriptome of laser 

microdissected (LMD) intestinal epithelial cells in WT and TnfΔARE/+ mice in response to mDIO. 

To address this technical issue, a workflow was established to enable the comparison of global 

and targeted gene expression analysis of laser microdissected fetal IEC in order to verify future 

microarray results by qPCR [237]. 

Laser microdissection with subsequent RT-qPCR, represents the most suitable investigative 

tool for cell-specific gene expression analysis in basic and clinical research [247-249]. 

However, LMD of fetal epithelium, limits RNA yields and RNA qualities making RT-qPCR often 

unreliable. In order to avoid misinterpretation of transcriptomic analyses due to amplification 

bias, validation experiments by targeted gene expression analysis (qPCR) are required. 

Therefore, a workflow of laser microdissection from fetal IEC, RNA-isolation, -quantification 

and –quality measurements complemented by the subsequent whole transcriptome 

amplification (WTA) procedure (NuGEN Ovation PicoSL WTA V2 with the Encore Biotin 

Module; NuGEN Technologies, Leek, The Netherlands) including qPCR was established. The 

whole transcriptome amplification is a high fidelity approach by single primer isothermal 

amplification (SPIA) to especially address biological samples that are limited in quantity and 

quality, such as laser microdissected fetal IEC. This workflow was proofed on laser 

microdissected IEC of the fetal ileum versus the fetal colon.  

Figure 16 Transcriptional analysis of placental cytokines. Relative mRNA 
expression (pairwise comparisons) of cytokines Tnf and Mcp-1 from WT, oWT, ARE 
and oARE placentas measured by qPCR. *p< 0.05; **p< 0.01, ***p<0.001 calculated by 
Two-Way ANOVA and Holm-Sidak test. 
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3.4.1. Single primer isothermal amplification enables large-scale targeted gene 

expression analysis of fetal intestinal epithelial cells 

To accomplish simultaneous global and targeted gene expression, whole transcriptome 

amplification (WTA) on the basis of single primer isothermal amplification (SPIA) was 

conducted before microarray and qPCR performance of fetal IEC. In preparation, 1.5 Mioµm2 

tissue area corresponding to about 3000 murine fetal IEC were laser microdissected (Figure 

17). The total RNA yield of laser microdissected fetal IEC was comparable in ileum and colon 

(mean 69.52±6.70ng and mean 67.80±15.40ng, respectively) with a mean RNA integrity 

number (RIN) of 7.2±0.4 and 7.5±0.4 in both compartments (Figure 17C+D). Simultaneous 

gene expression analyses required about 30ng total RNA, a minimum of 25ng total RNA for 

microarray analysis and 2-5ng for targeted gene expression analysis. 

For global gene expression analysis total RNA was labelled using the NuGEN Ovation PicoSL 

WTA V2 with the Encore Biotin Module (NuGEN Technologies, Leek, The Netherlands) and 

hybridized to Affymetrix GeneChip Mouse Gene 1. 1 ST targeting 21,187 genes (Affymetrix, 

Santa Clara, CA). Sample labelling; hybridization to chips and image scanning was performed 

according manufacturer's instructions. For targeted gene expression analysis 2-5ng RNA were 

applied to the whole transcriptome amplification procedure (NuGEN Ovation PicoSL WTA V2) 

resulting in 1.15±0.53µg and 1.9±0.76µg of cDNA. This was sufficient to analyse the 

expression of averaged 51 and 93 genes in ileum and colon, respectively, in order to validate 

microarray results. Stability of reference genes (Gapdh, 18s and Rpl13a) utilized in qPCR 

procedure was guaranteed when using 2-5ng RNA as input material for WTA (Figure 17).
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Figure 17 Laser microdissection of fetal intestinal epithelial cells from ileum and colon. (A) 
Randomly selected fetus corresponding 17.5 dpc (upper left), a macroscopic view of a 17.5 dpc gut 
(upper right) and subsequent laser microdissection procedure of fetal epithelium (panel below) are 
indicated. (B) Epithelial areas of 1.59±0.15x106µm2 (mean±SD) and 1.42±0.08x106µm2 were isolated 
by laser microdissection for global and targeted gene expression analysis from ileum and colon, 
respectively. (C) Total RNA of good quality was isolated with a mean RIN of 7.20±0.40 (ileum) and 
7.52±0.41 (colon) with a representative electropherogram of RNA (Bioanalyzer 2100, Agilent). (D) 
Mean yield of ileal RNA (69.52±6.74ng) and colonic RNA (67.80±15.42ng). (E) After preamplification 
a SPIA cDNA yield of 1.15±0.53µg and 1.92±0.76µg was obtained from ileal and colonic IEC. CDNA 
quality (right) was confirmed by Bioanalyzer (Eukaryote Nano RNA Chip). (F) The corresponding 
average number of 51 and 93 measureable target genes after SPIA preamplification is depicted. (G) 
Stability of reference genes (Gapdh, 18s and Rpl13a) measured by qPCR is shown relative to the RNA 
input amount (2-6ng) into SPIA preamplification. 
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3.4.2. Epithelial expression of Muc2 and Hoxb13 discriminates fetal ileum from 

colon 

To further validate this protocol a comparative analysis exemplarily with Muc2 gene and protein 

expression was performed. Muc2 gene expression analysis of preamplified cDNA revealed 

lower expression in fetal ileum compared to colon in both methods, microarrays and qPCR. 

There is a moderate, but significant correlation between Muc2-related microarray fluorescence 

intensity and its 2-ΔCt values in qPCR. Immunofluorescence analysis biologically confirmed this 

increase of MUC2 from ileum to colon at the level of protein expression. Finding appropriate 

(early expressed) epithelial-specific markers for either of the intestinal compartments is 

challenging as many expression levels were low (array spot intensity<50, e. g. Olfr genes, 

Pept1). However, microarray fluorescence filtering (fold change±1.3, p<0.05, array spot 

intensity>50) highlighted Muc2 and Hoxb13 genes as highly expressed epithelial markers 

specific for the fetal colonic epithelium, which enables a discrimination between ileum and 

colon (Figure 18C). Muc2 expression significantly correlated with the expression of the colonic 

marker Hoxb13 [250, 251] in both, global and targeted gene expression analysis.  

 

Figure 18 Proof of concept by 
comparative analysis of Muc2 gene 
expression in fetal ileum and colon. 
(A) left: CDNA was hybridized to 
Affymetrix GeneChip Mouse Gene 1.1 
ST targeting 21,187 genes. Gene 
distance comparisons of fetal ileum 
and colon show distinct gene 
expression patterns between ileum 
and colon (all genes included). Right: 
Microarray spot intensities of Muc2 
gene significantly correlates (Pearson 
correlation r=0.53, p=0.03) with 2-ΔCt 
values of Muc2 gene expression 
measured via qPCR. Rpl13a was 
chosen as housekeeping gene. (B) 
Representative pictures of MUC2 
protein expression in the 17.5 dpc fetal 
ileum versus colon showed increased 
expression in colon compared to ileum. 
(C) Microarray data showed that Muc2 
array spot intensity strongly correlated 
with the array spot intensity of Hoxb13, 
a colonic epithelial marker (left, 
rPearson=0.99, p<0.0001) reflecting 
differences between ileal and colonic 
compartments. (D) QPCR analysis 
revealed a similar association between 
Muc2 and Hoxb13 expression. Muc2 
mRNA expression strongly correlated 
with Hoxb13 mRNA expression 
(rPearson= 0.81, p<0.0001). Those 
findings technically validate the 
workflow and the expression values 
from global gene expression analysis. 
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As a conclusion whole transcriptome preamplification in RNA samples of laser microdissected 

fetal epithelia enables both, global and targeted gene expression analyses to study the impact 

of maternal diet-induced obesity (mDIO) on the fetal transcriptome.  

3.5. Maternal diet induced obesity (mDIO) hardly influenced the epithelial 

transcriptome of the fetal ileum in WT and TnfΔARE/+ mice 

The establishment of SPIA WTA in RNA samples of laser microdissected fetal epithelia 

enables to study the impact of maternal diet-induced obesity (mDIO) on the fetal transcriptome. 

Using LMD about 50ng of good quality RNA (mean RIN=7.3) were obtained and microarrays 

were performed in cooperation with the University of Wageningen. Genes were defined as 

significantly changed with a p-value <0.05 and a log2 based fold change of ±1.3. 

Lists of significantly 

regulated genes 

were filtered, 

according to the 

control group (WT) 

with expression 

values higher than 

50. In addition, an 

inter quartile range 

(IQR) cut-off of 0.25 

was used to filter 

out genes that 

showed little 

variation between 

the conditions. All 

microarray data are 

MIAME compliant. 

Figure 19 Fetal transcriptional programming is hardly affected by maternal HFD. (A) The diagram depicts the number 
of significantly regulated genes between pairwise comparisons. Three left hand bars indicate the number of regulated 
genes compared to WT, the other bars compare groups as indicated. Data were filtered by FC±1.3, p<0.05, array spot 
intensity>50. (B) Heat map comparisons show distinct expression patterns of the top 100 up- and downregulated genes 
always in comparison to WT fetuses from control diet dams (FC±1.3, p<0.05, no intensity filtering). (C) The gene distance 
matrix shows overall similarities between groups at the level of differentially regulated genes. Black colours correspond to 
a high similarity score between samples and yellow colours show less similarity between samples. 
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The fetal epithelial transcriptome was hardly influenced by both, maternal obesity and fetal 

genotype (Figure 19)[252]. Interestingly, only 1.3% of all 21,187 genes were significantly 

regulated according to our cut-off criteria (FC±1.3, p<0.05, array spot intensity >50). Less 

genes were influenced by mDIO than by the fetal ARE genotype (7 vs. 84 genes, Figure 19A). 

In detail, mDIO differentially regulated 7 genes between WT and oWT and 21 genes between 

ARE and oARE mice. However, the fetal genotype (WT vs. ARE) influenced 84 genes. In 

addition, the factors ARE fetus genotype and mDIO acted synergistically as even more genes 

were regulated between WT and oARE (148 genes). Interestingly, 285 genes were 

differentially regulated between oWT and oARE indicating that an mDIO-exposed in utero 

environment intensified the difference between WT and TnfΔARE/+ fetuses. Heat map 

comparisons of the top 100 up and downregulated genes illustrate similar gene expression 

patterns between WT and oWT, but distinct patterns between WT and ARE or WT and oARE 

fetuses (FC±1.3, p<0.05, no intensity filtering, Figure 19B). Furthermore, gene distance matrix 

(GDM) analyses indicate that transcriptomic make-ups were clustered according to the fetus 

genotype (low distance (black)=strong similarity between WT and oWT or ARE and oARE 

groups), but not in response to maternal HFD (high distance (yellow)=little similarity between 

WT and ARE or oWT and oARE) (Figure 19C). This led to the assumption that the 

transcriptional program is dominantly regulated by the fetal genotype than by mDIO.  

Gene overlaps of top regulated genes between groups are shown in Figure 20A. Only 7 genes 

were down regulated between WT and oWT fetuses and none were up regulated. Between 

ARE and oARE fetuses, 21 regulated genes were identified to be differentially regulated, but 

they were not present in the list of regulated genes between WT and oWT comparison. This 

indicates that mDIO triggered different transcriptional programs in WT and ARE fetuses. The 

same was true for comparisons between WT and ARE or oWT and oARE. Only 18% of all 

regulated genes (15 genes) in the ARE expression pattern (compared to WT) could be as well 

identified in the oARE expression pattern (compared to oWT). This demonstrates that upon 

mDIO a different set of genes was regulated in TnfΔARE/+ compared to WT fetuses. 

Microarray data were exemplarily verified by qPCR of SPIA cDNA exemplarily with Afp (alpha 

fetoprotein) mRNA, which was significantly increased in oARE fetal IEC compared to WT and 

oWT (Figure 20B). Although Il18 and Reg3b gene expression changes were not significantly 

regulated in qPCR analysis, they also display the results of microarray analysis (Figure 20C). 

In detail, microarray and qPCR analysis show down regulated Il18 gene expression in 

response to maternal HFD (WT vs. oWT). Interestingly, this was independent of the fetal 

genotype. Reg3b up-regulated gene expression in oARE IEC (compared to WT) was as well 

observed in qPCR analysis. Despite the upregulation of Afp and Reg3b expression in oARE 

compared to WT and ARE mice at the fetal stage, this pattern was not conserved in intestinal 
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tissue of 8- and 12-week-old offspring as observed by qPCR analysis (Figure 20C). However, 

there was significant downregulation of Il18 and Reg3b in the distal ileum of TnfΔARE/+ compared 

to WT offspring, which was most probably inflammation-driven.  

 

Figure 20 Overlapping and top regulated genes in fetal intestinal epithelial cells in response to mDIO or 
fetal genotype. (A) Numbers of shared genes (indicated in red) between different gene expression patterns. The 
panel above shows heat maps of the top up- and down regulated genes between indicated groups. Cut-off criteria 
were FC±1.3, p<0.05, array spot intensity>50. (B) Microarray validation of Afp and Reg3b by qPCR. * p<0.05, ** 
p<0.01, ***p<0. 001. Two-Way ANOVA followed by Holm-Sidak multiple comparisons. (C) Epithelial gene 
expression (by qPCR) of Il18, Afp10 and Reg3b from adult ileal cryosections (n=5 each) at 8 and 12 weeks of 
age. Results are expressed at 2-ΔCTvalues in order to compare pair-wise. * p<0.05, ** p<0.01, ***p<0.001. Two-
Way ANOVA followed by Holm-Sidak multiple comparisons.  
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3.6. Maternal diet induced obesity accelerates intestinal inflammation in 

high-fat diet-fed TnfΔARE/+ mice.  

Although mDIO had no strong in utero effects on the fetal epithelial transcriptome, other tissue 

sites of the gut, e. g. submucosa might nevertheless have been existed with potential 

consequences on the postnatal development of CD-like ileitis in TnfΔARE/+ offspring. To address 

this issue, 8 and 12 week-old WT and TnfΔARE/+ offspring were generated as indicated in the 

breeding scheme above (Figures 5 and 6) and received a postweaning experimental control 

or HFD from 4 weeks of age on. Histological scoring of distal ileum sections from ARE and 

oARE offspring confirmed age-dependent disease progression independent of the 

postweaning diet (control or HFD) (Figure 21). However, mDIO effects on histological disease 

scores were different among the diets. ARE and oARE offspring weaned on a control diet 

exhibited equal histological ileitis grades at 8 and 12 weeks of age, whereas oARE offspring 

weaned on a HFD 

showed increased 

inflammation (compared 

to ARE) at 8 weeks, but 

not at 12 weeks of age. 

WT offspring exhibited 

no inflammation in the 

distal ileum at either time 

point or diet. 

Figure 21 Postnatal 
development of CD-like ileitis in 
TnfΔARE/+ offspring is accelerated 
by fetal exposure to maternal 
diet-induced obesity (mDIO). (A) 
Histological scores of H&E stained 
distal ileum sections from WT and 
ARE offspring deriving from control 
dams and HFD dams, respectively, 
was blindly ascertained resulting in 
a score from 0 (not inflamed) to 12 
(inflamed).8 and 12-week old 
offspring were fed a HFD after 4 
weeks of age. (B) Representative 
specimens of H&E stained distal 
ileum sections of HFD-fed WT, 
oWT, ARE and oARE offspring are 
shown. 
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Further investigations of distal ileum sections from HFD-fed offspring confirmed these findings. 

WT and oWT offspring showed no infiltration of Ly6G-positive (Ly6G+) cells/mm2 tissue 

(infiltrating neutrophils) into the mucosa and submucosa (Figure 22). However, ARE and oARE 

mice clearly exhibited increased numbers of Ly6+ cells, a hallmark for the grade of neutrophil 

infiltration. In detail, the numbers of Ly6G+ cells were significantly increased in 8 week-old 

oARE compared to ARE offspring, whereas neutrophil infiltration was comparable in 12 week-

old ARE and oARE offspring. This indicates that mDIO accelerated ileitis development without 

affecting its severity at later ages. 

Figure 22 Neutrophil infiltration into distal ileum of TnfΔARE/+ offspring is accelerated by maternal diet-induced 
obesity, without affecting loss of Lyzozyme+ cells in crypts. (A) Representative microscopic immunofluorescence 
pictures (600x magnification) of confocal laser microscopy for Lysozyme (Lyz, green), a hallmark for Paneth cells , and 
Ly6G+ neutrophils (red) from distal ileum in 8- and 12-week old WT, oWT, ARE and oARE offspring on postnatal HFD. 
Nuclei were counterstained with DAPI (blue). (B) Three pictures per mouse were analyzed. The percentage of Lyz+ 
crypts compared to total number of crypts was ascertained per mouse (n=5-6 each). Individual data and means are 
shown. Two-Way ANOVA and Holm-Sidak multiple comparisons, *p<0.05, **p<0.01, ***p<0.001. (C) Lamina propria and 
submucosa were defined as regions of interest. The numbers of Ly6G+ cells per mm2 from all 3 pictures per mouse were 
counted. Individual data and means are shown. Two-Way ANOVA and Holm-Sidak multiple comparisons, *p<0.05, 
**p<0.01, ***p<0.001. (D) Correlation analysis among ARE and oARE groups indicated no associations between 
histological scores and the number of Lyz+ crypts (rSpearman=-0.29, p=0.16) 
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Immunohistochemical measurements of the Paneth cell marker lysozyme (Lyz) revealed an 

inflammation-driven loss of Lyz-positive (+) crypts in TnfΔARE/+ mice (compared to WT mice). 

However, this was not affected by mDIO at either time point and the number of Lyz+ crypts did 

not correlate with the histological ileitis score (rSpearman=-0.29, p=0.16). The same was observed 

for inflammation-associated infiltration of Myeloperoxidase-positive (MPO+) cells into the distal 

ileum (rSpearman=0.22, p=0.28). There was a clear infiltration of MPO+ cells into the mucosa and 

submucosa of TnfΔARE/+ mice compared to WT mice, which was not further altered by mDIO 

indicating that MPO infiltration is a feature of genetically-driven ileitis (Figure 23). 

Figure 23 Myeloperoxidase (MPO)-positive cell-infiltration is not affected by maternal diet-induced 
obesity (mDIO). (A) Representative microscopic immunofluorescence pictures (600x magnification) of 
confocal laser microscopy for MPO+ cells (red) from distal ileum in 8- and 12-week old WT, oWT, ARE and 
oARE offspring on postnatal HFD. Nuclei were counterstained with DAPI (blue). (B) Lamina propria and 
submucosa were defined as regions of interest. The numbers of MPO+ cells per mm2 from all 3 pictures per 
mouse were counted. Individual data and means are shown (Two-Way ANOVA and Holm-Sidak multiple 
comparisons, *p<0.05, **p<0.01, ***p<0.001). (C) Correlation analysis in TnfΔARE/+ offspring indicated no 
associations between histopathological scores and infiltration of MPO+ cells (rSpearman=0.22, p=0.28). 
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The mDIO-associated increase of intestinal inflammation in 8 week-old oARE mice was also 

observed systemically (Figure 24). TNF protein in plasma was not statistically significantly 

higher in 8 and 12 week-old oARE compared to ARE mice. However, the histological ileitis 

scores in TnfΔARE/+ mice significantly correlated with systemic TNF levels (rSpearman=0.52, 

p=0.04). A closer look into 8 week-old offspring indicated slightly increased portal vein 

endotoxin in TnfΔARE/+ mice upon maternal HFD (p=0.07). Interestingly, the increase of portal 

vein endotoxin highly correlated with elevated plasma TNF in 8 week-old offspring 

(rPearson=0.91, p=0.0006). In summary, histological scoring, immunofluorescence analyses and 

systemic measurements revealed that, mDIO accelerated the development of CD-like ileitis in 

TnfΔARE/+ offspring that were challenged with a postnatal HFD, whereas mDIO alone had no 

effect on tissue pathology of TnfΔARE/+mice. 

Figure 24 The development of ileitis in TnfΔARE/+ offspring is associated with increased TNF plasma 
levels and elevated portal vein endotoxin. (A) Plasma measurements of TNF indicate a slightly, but 
not significantly increased inflammation in 8 week old oARE compared to ARE offspring. This difference 
is not observed anymore at 12 weeks of age. (B) Spearman’s correlation analysis of TNF plasma levels 
and respective histological scores (n=15) indicate a significant association between tissue inflammation 
and protein levels of systemic TNF. (C) Endotoxin levels were investigated in portal vein plasma from 8 
week old ARE and oARE mice. (D) Pearson’s correlation analysis of TNF plasma levels and 
corresponding endotoxin concentrations in portal vein plasma (n=10) highlight on a strong and significant 
association between the two parameters (rPearson=0.91, p=0.0006). 
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3.7. Maternal diet-induced obesity protects WT offspring from metabolic 

dysfunction induced by post weaning HFD.  

The fact that mDIO increased fetal weights regardless of the fetus genotype (Figure 15D) might 

point to metabolic changes in response to mDIO. Metabolic parameters were subsequently 

analyzed in WT and ARE offspring that were fed a control or HFD (Figure 25). Expectedly, an 

obesity phenotype was observed in WT offspring in response to postnatal HFD, which was 

absent in TnfΔARE/+ offspring [60]. Body weights from ARE and oARE mice were significantly 

lower compared to their WT and oWT littermates. After 12 weeks of postnatal HFD-exposure, 

WT and oWT offspring revealed a clear obesity-like phenotype, which was not yet observed 

after 8 weeks of HFD-exposure. Surprisingly, mDIO protected oWT offspring from excessive 

body weight gain. This effect was even stronger in male than in female WT offspring (Figure 

25B). The absent obesity phenotype in TnfΔARE/+ mice was also reflected by lower mesenteric 

adipose fat pad weights and partially reduced plasma leptin levels in ARE and oARE mice 

compared to their respective WT controls, demonstrating that diet-induced obesity is restricted 

to WT mice (Figure 26). 

Figure 25 Body weight development in response to mDIO and postnatal HFD. All offspring were fed a control 
diet or HFD from 4 weeks of age on. Body weights were monitored weekly until 12 weeks of age. (A) Body weights 
of WT, oWT, ARE and oARE mice on control diet (left) and HFD (right) (n=10-14 each). (B) Gender-specific 
development of body weight upon exposure to control diet or HFD (n=5-7 each).Two-Way ANOVA and Holm-
Sidak multiple comparisons, *p<0.05, **p<0.01, ***p<0.001. 
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This might be due to genetically driven-inflammation in TnfΔARE/+ offspring which drives fatty 

acid liberation from adipose tissue sites by increased TNF. Consequently, early metabolic 

priming by mDIO was restricted to WT offspring. 

Similar to the body weight differences between 12 week-old WT and oWT offspring, mesenteric 

fat masses, and plasma leptin levels were significantly decreased in response to mDIO (Figure 

26). The fact that control diet-fed WT offspring showed no alterations of body weight clearly 

indicated that a second hit by postnatal HFD is crucial for an mDIO-associated attenuation of 

an obesity-like phenotype.  

In summary, maternal diet-induced obesity during gestation had different effects in WT 

compared to TnfΔARE/+ progeny. MDIO is advantageous against the development of metabolic 

disease by limiting the fat storage capacity in WT offspring, whereas mDIO accelerates the 

development of CD-like ileitis in the genetically-susceptible TnfΔARE/+ offspring.  

3.8. Protection against DSS-induced colitis severity is attributed to maternal 

inflammation, but not to mDIO  

Since both, the sole presence of maternal inflammation and maternal diet-induced obesity 

were not sufficient to alter the severity of genetically-driven ileitis in TnfΔARE/+ offspring, this was 

also tested in a second model of intestinal inflammation, experimentally induced colitis of WT 

offspring. Therefore, 12 week-old WT offspring that derived either from healthy WT mothers 

and inflamed TnfΔARE/+ mothers (maternal inflammation, WT and iWT) or from lean WT mothers 

and HFD-fed mothers (maternal diet-induced obesity, WT and oWT) were exposed to 1% DSS 

in drinking water for 7 days. As expected, water control mice did not lose body weight and 

showed no signs of inflammation throughout the whole period of observation (% of initial body 

Figure 26 MDIO protects WT offspring from 
excessive energy storage and shows no 
metabolic influence on TnfΔARE/+ offspring. 
(A) Mesenteric fat mass was determined in 8- 
and 12-week old WT, oWT, ARE and oARE 
offspring (n= 8-13 each). (B) Plasma leptin 
concentration was measured by ELISA 
(Biovendor, Czech Republic). Two-Way 
ANOVA and Holm-Sidak multiple comparisons, 
*p<0.05, **p<0.01, ***p<0.001. 
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weight, mean range: min 99.64%-max 102.24% in WT vs. min 98.23%-max 102.83% in iWT 

and disease activity index, mean range: min 0-max 0.11 in WT vs. min 0-max 0.22 in iWT). 

Monitoring of DSS consumption confirmed comparable cumulative DSS uptake (Day1-7) in all 

treatment groups (WT vs. iWT: 0.43±0.06g vs. 0.44±0.10g DSS and WT vs. oWT: 0.47±0.10g 

vs. 0.50±0.12g DSS) (Figure 27).  

Surprisingly, maternal inflammation protected iWT offspring against DSS colitis, whereas 

mDIO did not alter disease course in oWT compared to WT offspring (Figure 28). In detail, 

during DSS exposure (day 1-7) body weights of all offspring remained stable and started to 

decrease during water recovery phase (days 7-11). Dropping body weights were comparable 

in oWT compared to WT offspring, but were less severe in iWT offspring. Thus, iWT offspring 

lost less body weight (day 10-12) and showed an earlier body weight recovery (at day 12) 

compared to WT offspring (day 14) indicating a less severe DSS colitis (Figure 28A). 

Furthermore, iWT offspring showed significantly attenuated clinical signs of colitis (diarrhea, 

weight loss and rectal bleeding) between day 10 and 13 compared to WT offspring, whereas 

oWT compared to WT offspring had the same disease activity throughout whole observation 

period (Figure 28B). The rising DAI reflects significantly more rectal bleeding, diarrhea and 

weight loss in WT compared to iWT between days 10-12. Maximum mean levels of DAI in iWT 

were 1.53±0.99 and significantly increased up to 2.61±0.70 in WT offspring. Although clinical 

signs of colitis were attenuated in iWT mice, relative spleen weights were comparable between 

WT and iWT after recovery (day 15). Overall, after recovery relative spleen weights were 

significantly increased in all DSS treated animals compared to their water control littermates, 

but there was no further effect of maternal inflammation or mDIO (Figure 28C). The same is 

true for colon lengths which showed an upward trend upon DSS treatment, but no further 

influence by maternal in utero exposure to inflammation or mDIO.  

Figure 27 Cumulative DSS exposure is equal among studies in (A) WT and iWT offspring (maternal 
inflammation) or (B) WT and oWT offspring (maternal diet-induced obesity). WT offspring (n=6, no littermates 
within one group) were generated and fed Ssniff Chow diet throughout post weaning life. At 12 weeks of age offspring 
were exposed to 1% DSS (w/v) for 7 days in their drinking water and were housed separately. Drinking water 
consumption was monitored daily and cumulatively consumed DSS dose was calculated. Unpaired, two tailed T-test 
was performed. 
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Figure 28. Maternal inflammation, but not mDIO protects offspring against DSS colitis. WT offspring (n=12), no 
littermates within one group) were fed Chow diet throughout post weaning life. At 12 weeks of age offspring were exposed to 
1% DSS (w/v) for 7 days in their drinking water, followed by 8 days drinking water without DSS as recovery phase. Control 
animals received only drinking water throughout the whole experiment. All mice were housed separately. (A) Body weight 
was monitored daily. One-Way ANOVA was performed between WT and iWT or WT and oWT for every day and expressed 
as percentage of initial body weight (day1).One-Way ANOVA was performed per day. *p<0.05, **p<0.01;***p<0.001. (B) 
Disease activity index (DAI) (Cooper et.al [176]) was assessed in order to classify the severity of DSS colitis. The DAI is the 
mean of 3 clinical signs: stool consistency (scores: 0=normal, 2= loose and 4= diarrhea), rectal bleeding (scores: 0=negative, 
2=gross bleeding, 3=bleeding>1d, 4=bleeding>2d) and weight loss, indicated as weight change in % on the basis of initial 
body weight at day 0 (scores: 0=none, 1=1-5%, 2=6-10%, 3=11-15%, 4>15%).Mann-Whitney Rank Sum Test, *p<0.05, 
**p<0.01, ***p<0.001. (C) At the end of the experiment (day 15) all mice were sacrificed and relative spleen weights as well 
as absolute colon lengths were measured. Two-Way ANOVA and Holm-Sidak multiple comparisons, *p<0.05, **p<0.01, 
***p<0.001. 
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3.9.  The epithelial transcriptome in the fetal colon is hardly affected in 

response to maternal inflammation.  

Because maternal inflammation protected iWT offspring from DSS-induced colonic 

inflammation, it was questioned whether maternal inflammation already programmed the fetal 

transcriptome of the colonic epithelium. Therefore, the transcriptomes of laser microdissected 

IEC of 17.5 dpc WT and iWT colons were analyzed. Surprisingly, microarray analysis showed 

a negligible influence of maternal inflammation on fetal colonic IEC at 17.5 dpc (Figure 29). 

Only 0.34% of all genes (73 out of 21,187 genes, Affymetrix Exon Array ST 1.1.) were 

differentially regulated (FC±1.3, p<0.05, array spot intensity>50) by maternal inflammation with 

55 up and 18 downregulated genes. Top 10 up- and downregulated genes are depicted in 

Table 8. The fact that regulation factors did not exceed FC±2 shows that the fetal transcriptome 

of the colonic epithelium was not substantially programmed by maternal inflammation. In 

conclusion, the altered DSS colitis susceptibility in response to maternal inflammation is not 

due to a profound transcriptional programming of the colonic epithelium in 17.5 dpc.  

ID FC iWT

104307 Rnu12 1.90

319181 Hist1h2bg 1.78

69036 Zg16 1.68

67532 Mfap1a 1.67

15077 Hist2h3c1 1.65

665903 Gm7846 1.60

20383 Srsf3 1.51

102462 Imp3 1.51

22209 Ube2a 1.51

66488 Fam136a 1.47

387174 Mir15a -1.44

80904 Dtx3 -1.45

76808 Rpl18a -1.49

382551 Cd300lh -1.52

19850 Rnu3a -1.52

320832 Sirpb1a -1.55

68690 1110028F11Rik -1.56

100126777 Gm20580 -1.70

100302594 Snord14e -1.95

19652 Rbm3 -1.97

Gene

Top 10 up- and dow n regulated genes betw een WT and iWT in 

17.5 dpc colonic epithelial cells

Figure 29 Fetal transcriptional programming of the 
colonic epithelium is hardly affected by maternal 
inflammation.  (A) The diagram depicts the number of 
significantly regulated genes in iWT compared to WT 
fetuses. Data were filtered by FC±1.3, p<0.05, array 
spot intensity>50. (B) Gene distance matrix shows the 
overall similarities between groups at the level of 
differentially regulated genes. Black colours correspond 
to a high similarity score between samples and yellow 
colours show less similarity between samples. 

Table 8 Top 10 up- and downregulated genes (fold 
change (FC)±1.3, p<0.05, array spot intensity>50) 
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4. Discussion 

It is known that maternal inflammatory stimuli such as inflammation and obesity affect fetal 

development and consequently the susceptibility to inflammatory processes in various organs 

including the gut [253-255]. The present work investigated the influence of maternal stimuli, 

such as TNF-driven maternal inflammation or maternal diet-induced obesity (mDIO) on the 

offspring’s risk to develop ileitis and colitis.  

4.1. Maternal inflammation has no impact on genetically-driven CD-like 

ileitis, but protects from DSS-induced colitis 

Pilot experiments of this work clearly demonstrated that both, hygienic and dietary conditions 

contributed to the onset of genetically driven CD-like ileitis in TnfΔARE/+ mice. In detail, Chow 

diet feeding in conventional and SPF conditions revealed the same grade of ileitis in TnfΔARE/+ 

mice, whereas experimental diet feeding in SPF completely protected TnfΔARE/+ mice from 

chronic ileitis. The protective effect was absent under conventional conditions highlighting that 

the interplay of diet and hygiene drives the onset of ileitis. This is supported by the fact that 

the inflammation of Chow diet-fed TnfΔARE/+ mice was abrogated in response to antibiotic 

treatment. Furthermore a re-establishment of the microbiota composition lead to recurrence of 

inflammation clearly showing that bacterial colonization of the gut plays an important role in 

disease development [224]. Most importantly, inflammation of TnfΔARE/+ mice was completely 

absent in germ-free mice. 

A certain maternal influence on the development of CD-like ileitis was already analyzed in 

previous mouse studies demonstrating that TNF-driven maternal inflammation substantially 

modulates the transcriptional profile in the fetal intestinal epithelium of the ileum [245]. 

However, maternal inflammation did not affect the onset or severity of chronic ileitis in TnfΔARE/+ 

offspring fed a postnatal Chow diet. This implies that transcriptional fingerprints in the fetal gut 

were completely overwritten by signals deriving from the postnatal environment.  

A possible proinflammatory postnatal factor that could have masked maternal inflammatory 

effects on the offspring’s intestinal inflammation might be the wheat-based Chow diet. This is 

plausible, because gluten was identified in Chow diet as a relevant factor for the induction of 

chronic ileitis in TnfΔARE/+ mice. Furthermore, a protective effect of experimental diet was 

associated with decreased expression of inflammation markers in ileal tissues [223]. Most 

importantly, gluten-fortified experimental diets again induced chronic ileitis in TnfΔARE/+ mice 

indicating that gluten drives inflammation. To avoid the situation, that the severity of 

inflammation is not modifiable due to gluten-containing Chow diet, the present study addressed 
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a possible maternal inflammatory influence on the offspring’s ileitis under conditions of 

experimental diet from week 4 on.  

Maternal inflammation in TnfΔARE/+ dams is systemically relevant as intrinsic overexpression of 

Tnf significantly elevated TNF plasma levels and might therefore influence the fetuses 

indirectly via the placenta. Whether TNF is able to cross the placenta is not fully understood. 

However, TNF suppresses lipogenesis and promotes fatty acid liberation from dam’s adipose 

tissues. This is biologically plausible either by direct TNF action in the fetuses or by indirect 

TNF effects via reduced in utero energy supply in inflamed (ARE) mothers. The catabolic effect 

of TNF might explain significantly reduced body weights in pre-, peri- and postnatal offspring. 

Although iWT and iARE offspring from inflamed mothers have a metabolic disadvantage 

compared to WT and ARE mice, the severity of CD-like ileitis in iARE offspring was not altered 

by maternal inflammation, since histological grades, the number of infiltrated neutrophils 

(Ly6G+cells/mm2) and the extent of crypt loss (% of Lyz+ crypts) in the distal ileum were 

comparable to ARE mice. This is also in line with the fact that the immune response at the site 

of inflammation was consistently unaffected by maternal inflammation in two different mouse 

models for genetically-driven ileitis and colitis inflammation [245]. In addition, equal proportions 

of CD4+ and CD8ab+T cell subsets in MLNs and spleens from ARE compared to iARE 

offspring shows that maternal inflammation has no postnatal immunomodulatory effects in the 

offspring. Interestingly increased proportions of activated (CD44+) CD8ab+ intraepithelial 

lymphocytes (IEL) were associated with the development of CD-like ileitis in the TnfΔARE/+ 

mouse model [256] and were also observed in splenic lymphocytes of iARE compared to iWT 

mice. However, this result has to be interpreted carefully due to a lack of statistical power in 

the iWT group by a limited number of samples (n=3). The same is true for CD44+CD4+ cells 

where elevated levels were observed in MLNs of ARE mice compared to WT. The fact that 

CD4+ T cells were predominantly involved into the development of colitis [257] does not argue 

against alterations in TnfΔARE/+ mice, because they are able to exhibit colitis at later disease 

stages [60]. However, maternal inflammation had no further influence on the proportion of 

activated CD8ab+ T cells and CD4+ Tcells. 

Bacterial colonization is crucial for the establishment of the offspring’s immune system. 

Therefore it was hypothesized whether maternal inflammation changes the microbial ecology 

in the offspring’s gut. Previous investigations using Chow dietary conditions showed that 

maternally-induced changes in the fetal epithelium did not cause any shifts in diversity and 

composition of caecal bacterial communities at 3 and 8 weeks of age [245]. Diet might be a 

main confounding factor for the phylogenetic make-up of the caecal content, since wheat-

based Chow diet is characterized by highly varying quality due to heterogeneity of raw products 

used for production. This speculation is supported by clear inflammation-driven shifts in beta-
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diversity between WT and ARE offspring that were fed an experimental diet which were absent 

under Chow dietary conditions. The phylum Firmicutes was more abundant under postnatal 

inflammation, whereas Bacteroidetes abundance was decreased in ARE versus WT offspring. 

This is not in line with the dysbiosis paradigm of IBD patients where Firmicutes and 

Bacteroidetes where less abundant whereas the phyla Proteobacteria and Actinobacteria [28] 

were increased in abundance. As well, a paediatric cohort of treatment-naïve CD patients 

observed a high association of the disease status with increased abundance in 

Enterobacteriaceae, Pasteurellaceae, Veillonellaceae and Fusobacteriaceae and decreased 

abundance in Erysipelotrichaceae, Bacteroidales and Clostridiales [258]. Faecalibacterium 

prausnitzii, a butyrate producer and anti-inflammatory representative of the Firmicutes was 

less abundant in CD patients and was associated with increased risk of post resection 

recurrence of ileal CD [27]. Inconsistency to the literature might be explained by species 

differences and limited transferability from humans to mice, since coprophagy behaviour of 

rodents and conventional housing conditions lead to a well-mixed and extremely robust 

phylogenetic make-up, which might be different in humans. However, maternal inflammation 

does not cause any shifts in diversity and compositions of caecal bacterial communities of 8 

week- old offspring that received an experimental diet, except the Clostridia class which was 

decreased in iWT compared to WT offspring. In essence, the conventional environment, which 

was used in this study harbours many kinds of pathogens and SFBs, fungi and worms that 

might manifest CD-like ileitis. This might overwrite the maternal impact. 

Altogether, a conclusion from maternal inflammation studies is that maternal inflammatory 

fingerprints do not persist in grownup mice and are therefore not relevant for the modulation 

of intestinal inflammation in the genetically susceptible TnfΔARE/+ mouse. This might be because 

genetically-driven disease models are hard to modulate and might therefore be critical to 

investigate maternal inflammatory influences on the development of intestinal inflammation 

[245]. As a consequence, experimental colitis was induced in healthy WT and iWT offspring at 

12 weeks of age. Interestingly, maternal inflammation protected iWT offspring from DSS colitis, 

even though the fetal colonic epithelium was hardly affected by maternal inflammation in utero. 

Only 73 genes were differentially regulated (FC±1.3, p<0.05, >50,) in iWT compared to WT 

fetuses. This is in contrast to the fetal ileum and cannot be explained so far. It might be that 

the colonic epithelium is in a “precursor stage” and basically develops upon postnatal bacterial 

colonization in the perinatal period. However, reduced initial body weights of iWT compared to 

WT offspring might primarily protect against DSS-driven loss of body weight via energy saving 

mechanisms. Taking all findings together, offspring’s genetically-driven intestinal inflammation 

seems to mask maternal inflammatory fingerprints, whereas experimental colitis was clearly 

modifiable by maternal inflammation in non-predisposed WT offspring towards disease 

protection.  
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4.2. Maternal diet-induced obesity in the context of intestinal inflammation 

Maternal diet-induced obesity (mDIO) during gestation is known to affect fetal development 

and disease susceptibility. Further, maternal gestational HFD feeding may initiate adverse 

pregnancy outcomes [259], which in terms of intestinal inflammation may be relevant to 

program the fetal gut towards chronic inflammatory responses. One aim of this work was to 

investigate whether maternal diet-induced obesity transcriptionally programs the fetal intestine 

and whether mDIO alters offspring’s severity of genetically-driven (in TnfΔARE/+ offspring) and 

DSS-induced intestinal inflammation (in WT offspring). This was the first study that included 

both, programming of the fetal epithelial transcriptome by mDIO and postnatal outcomes of 

intestinal inflammation using two different models, genetically-driven ileitis and DSS-induced 

colitis, challenged with mDIO.  

4.2.1. Fetal exposure to maternal-diet induced obesity has marginal effects on 

the epithelial transcriptome 

To investigate the influence of mDIO on the intestine WT dams were fed a control (control 

dams) or high-fat diet (mDIO dams) and mated with TnfΔARE/+ (ARE) sires. During late gestation 

mDIO dams showed significantly increased body weights, mesenteric and perigonadal fat pad 

weights and elevated plasma leptin levels when compared to control dams. As well, fetal 

progeny of both genotypes exhibited increased body weight under the influence of mDIO. 

Studies in C57BL6 mice [260], Sprague–Dawley rats [261] and Albino Wistar rats [262] also 

reported a marked increase in fetal weight associated with maternal gestational HFD, possibly 

related to increased trans-placental transport of glucose and amino acids, upregulated 

anabolic pathways and adipogenic differentiation in the offspring [260-263]. Interestingly, 

upregulation of specific placental amino acid transporter isoforms have also been reported in 

obese women giving birth to large babies [264]. While there is an ongoing debate on how 

maternal obesity and/or overnutrition in humans affects fetal growth and weight development 

[265-267], there is evidence for increased susceptibility to obesity and metabolic disorders for 

the offspring in later life [265, 266, 268, 269]. In addition, literature indicates that these effects 

of maternal HFD are further potentiated by post weaning HFD-feeding [112].  

From the inflammatory point of view, mDIO increased gene expression of proinflammatory 

cytokines in dam’s mesenteric and perigonadal adipose tissue and was therefore suspected 

to drive massive inflammatory changes in the placenta. However, placental inflammatory 

activators (Il-6, Tnf and Mcp-1 gene expression) were more affected by the fetal genotype than 

by mDIO per se. In conclusion, mDIO might have a more pronounced impact on the fetal 

metabolism, than on the in utero cytokine milieu.  
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To get insights into the transcriptional programming effect of mDIO fetal IEC were 

transcriptionally profiled. There are two reasons to investigate the fetal transcriptome 

specifically in IEC. Firstly, barrier-degrading effects of HFD [60] were considered in the fetuses 

of mDIO dams since fatty acids pass the placenta and are consequently present in the fetal 

blood. Secondly, Tnf overexpression in the adult epithelium is sufficient to trigger ileitis [246] 

and highlights on the strong involvement of the intestinal epithelium in the development of CD-

like ileitis. Microarray analysis of the fetal transcriptome from laser microdissected IEC 

revealed that mDIO does not program the ileal epithelium. Less genes were significantly 

regulated by mDIO (7 genes) than by the fetal ARE genotype (84 genes). This cannot be 

explained so far since the Tnf overexpression in the ARE genotype is not present in the 

epithelium at that stage. If this is also true for other fetal tissues needs to be investigated. The 

fact that Tnf expression levels in placentas from the same in utero environment (e. g. WT dam) 

are different between WT and ARE fetuses points to further ARE genotype-dependent 

inflammatory mechanisms beyond the intestinal epithelium. Interestingly, the mDIO-driven in 

utero environment intensifies the genotype effect between WT and ARE fetuses as 285 genes 

were differentially regulated between oWT and oARE fetuses. There seems to be an additive 

effect of the fetus genotype and the exposure to mDIO on the transcriptome of fetal IEC, 

because more genes were differentially regulated between WT and oARE (148 genes) than 

between WT and ARE (84 genes). In summary, heatmap and gene distance matrix (GDM) 

comparisons indicate that mDIO does not influence global gene expression patterns (WT vs. 

oWT and ARE vs. oARE are very similar), whereas gene patterns are different according to 

the fetal genotype (WT vs. ARE and oWT vs. oARE). 

Despite missing transcriptional programming of the fetal gut epithelium, previous publications 

have been shown that inflammatory features of fetal intestines from rats and sheep are 

vulnerable to mDIO resulting in increased intestinal inflammation and barrier permeability. In 

sheep, mDIO increased gene expressions of pro-inflammatory cytokines Tnf, Il-1α, Il-1β, Il-6, 

Il-8, Mcp-1 and macrophage markers Cd11b, Cd14 and Cd68 in the fetal and offspring’s large 

intestine [74]. Further, increased Tlr2 and Tlr4 expressions with corresponding NF-κB and Jak 

signalling points to activated innate immune responses upon mDIO. Another publication 

showed that mDIO drives Th17 differentiation from naïve T cells via TGFβ and IL-6 [93], the 

same mechanism as in a CD-like inflammatory phenotype. However, all these hallmarks were 

not observed in the murine epithelium of fetuses from mDIO dams. This is not contradictory 

since this work, unlike previously published work, focussed on the fetal epithelium. The main 

part of immune cells resides in gut-associated lymphoid tissue (GALT), which was not focus 

of this work and might explain absent inflammatory modulation by mDIO. Further, species 

differences might be relevant. 
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A closer look into the regulated gene patterns of fetal IEC revealed that mDIO influenced 

different genes in WT and ARE fetuses, respectively. None of the genes that were regulated 

between WT and oWT were regulated between ARE and oARE. The same is reflected when 

comparing regulated genes between WT and ARE or oWT and oARE. Only 18% of the 

regulated genes between WT versus ARE (=15 genes) were also identified among genes that 

were regulated between oWT and oARE. This demonstrates that mDIO affects the ARE fetus 

genotype differently to the maternal control diet. As an example, alpha fetoprotein 10 (Afp10) 

was the top up-regulated gene between oWT and oARE, but was not regulated between WT 

and ARE. Verifications of Afp10 mRNA expression in laser microdissected fetal IEC by qPCR 

confirmed these results. Afp is known to be highly expressed in yolk sac visceral endoderm, 

fetal liver, gut and kindney [270]. Its expression declines during perinatal period and is re-

expressed in response to malignant transformations into neoplastic tissues (e. g. liver, gut, and 

pancreas) [10, 11]. In this context, mDIO did not affect the Afp10 mRNA expression in adult 

ileum of WT and ARE offspring indicating that Afp10 is not involved in the pathogenesis of CD-

like ileitis of TnfΔARE/+ mice.  

In addition, gene regulation of Reg3b which was the top regulated gene between WT and 

oARE was in tendency verified by qPCR. The general success of microarray elaboration is 

fragile as many factors can influence both methodologies [271]. In essence, low array spot 

intensities for Reg3b (~10-300) might explain discrepancies of results between microarray and 

qPCR results. The antimicrobial peptide REG3B is expressed by Paneth cells and by the 

absorptive part of the epithelium. It drives host bacterial segregation and protects from 

bacterial translocation of Gram-negative species, such as Salmonella ssp. across the epithelial 

interface. Thus, elevated Reg3b expression in ARE fetuses upon mDIO might point to a 

maternal shift in microbial ecology upon HFD. But, the fact that Reg3b was as well highly 

upregulated in fetal IEC under maternal inflammation without resulting in any maternally 

driven-shifts of the offspring’s microbial ecology in the perinatal period (3 weeks after birth) 

argues against it [245]. Reg3b mRNA in the distal ileum of 8 and 12 week-old WT and ARE 

offspring confirmed previous findings that its downregulation is basically associated with 

intestinal inflammation and not with prenatal exposure to mDIO leading to the conclusion that 

transcriptional fingerprints by mDIO do not persist in postnatal life.  

The same is true for interleukin 18 (Il-18) gene expression. IL-18 together with IL-12 induces 

cell-mediated immunity upon infection with microbial products like lipopolysaccharide. In fetal 

IEC Il-18 was identified under the top down-regulated genes between WT and oWT. However, 

the influence of mDIO was not observed in intestinal tissue of 8 and 12 week-old offspring. 

Here, Il18 was downregulated in response to the offspring’s genotype (ARE compared to WT 

offspring) independently of mDIO. Interestingly and in contrast to this, a NAFLD model of mDIO 
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showed induced hepatic expression of Il-18 [272]. Nevertheless, the weakness of the study 

lies in comparing influences of Chow diet dams with dams that received a semisynthetic 

energy-enriched HFD. Furthermore, they observed not only prenatal, but also perinatal 

programming effects, since offspring were exposed to mothers control or HFD until weaning. 

These facts might complicate comparisons. It was shown in another mouse model of Type 1 

diabetes (T1D, NOD/ShiLtJ mice) that mDIO (60% energy derives from HFD) induced gut 

inflammation and induces Il18 mRNA expression in non-obese diabetic mice [273]. Because 

of the combination of mDIO with mT1D (mT1DmDIO) it is not possible to extract the pure effect 

of mDIO on the offspring’s intestinal inflammation. As seen in this work, a different set of genes 

in fetal IEC was influenced by mDIO between WT and ARE than between oWT and oARE. 

Additionally, in T1D mice a novel role for IL-18 in expanding the pool of islet-destructive T cells 

during pre-diabetes was assigned [274] and might be responsible for increased Il-18 mRNA 

expression in offspring from mT1DmDIO mothers. Since in the mT1DmDIO model there is 

nothing known about fetal Il-18 expression a disturbed glucose homeostasis during gestation 

might reveal complete different outcomes according to intestinal inflammation compared to 

studies of this work. Placentas might be additionally challenged by hyperglycaemia and the 

presence of inflammatory mediators might influence the developmental programming. 

However, this needs further investigations of placental tissues at different developmental 

stages. 

In summary, mDIO during gestation did not transcriptionally program fetal IEC in both, WT and 

TnfΔARE/+ mice. Single transcriptional fingerprints that were induced by mDIO in the prenatal 

intestine (e. g. Afp10, Il-18 or Reg3b) were not sustained in postnatal period. However, even 

though that there were no effects of mDIO on fetal IEC, there were mDIO-driven significant 

metabolic changes in the fetuses independent of the fetus genotype suggesting a certain role 

of mDIO in developmental programming occurring on sites beyond the intestinal epithelium. 

To test whether mDIO during gestation influences the susceptibility to intestinal inflammation, 

offspring were further analyzed at 8 and 12 weeks after birth.  

4.2.2. Changing control dams diet to HFD at birth equalized the offspring’s 

metabolic conditions during breastfeeding 

The change of control diet to HFD in control dams at birth is sufficient to equalize metabolic 

parameters between lean and obese mothers at weaning. 

At birth, half of the control diet dam group was fed a HFD (‘switched dams’), in order to equalize 

the energy supply and fatty acid content of breast milk to that of mDIO mothers. Consequently, 

offspring from ‘switched dams’ and mDIO dams were exposed to HFD from birth on. 

Equalization of offspring’s postnatal dietary exposure enables the follow-up of in utero effects 
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triggered by maternal HFD during pregnancy with regard to the postnatal development of 

genetically-driven intestinal inflammation. Offspring were sacrificed at 8 and 12 weeks of age. 

Interestingly, the dietary change to HFD in control dams upon date of delivery equalized the 

offspring’s metabolic conditions during breastfeeding period. Both dam groups showed 

identical body weights, fat depots and plasma leptin levels at weaning which might suggest 

that all offspring were exposed to the same energetic conditions during lactation. The 

equalized metabolic parameters between dam groups were not due to exhausted fat depots 

upon breastfeeding since ‘unswitched’ control mothers exhibit less body weight, fat masses 

and plasma leptin compared to ‘switched control’ and HFD dams.  

4.2.3. Maternal diet-induced obesity combined with postnatal HFD accelerates 

TNF-driven intestinal inflammation in TnfΔARE/+ mice.  

Although mDIO during gestation does not profoundly influence the fetal epithelial 

transcriptome, postnatal development of CD-like ileitis was altered by mDIO.  

Switching control mothers at date of delivery to a HFD enables the investigation of the mDIO 

effect that is restricted to the prenatal period. After weaning, WT and ARE offspring were fed 

a control or HFD until 8 or 12 weeks of age. As a result, 8 and 12 week-old ARE and oARE 

offspring that were housed on experimental control diet exhibited the same ileitis scores 

indicating that mDIO alone was not sufficient to alter genetically-driven ileitis in TnfΔARE/+ mice. 

Interestingly, CD-like ileitis (histological ileitis score and number of Ly6G+ cells/mm2) was 

increased in 8 week-old oARE offspring (compared to ARE) housed on a postnatal HFD, 

whereas intestinal inflammation was comparable between 12 week-old ARE and oARE 

offspring. As a conclusion, the combination of mDIO and the second hit of postweaning HFD 

accelerates CD-like ileitis, without affecting disease severity at later stages. In essence, 

neutrophil infiltration (indicated by Ly6G) was increased in the same manner as the histological 

ileitis scores, whereas MPO+ cell infiltration did not represent the mDIO effect in 8 week-old 

oARE mice. Ly6 proteins have been implicated in leukocyte differentiation, cell adhesion, cell 

migration, and cytokine production representing its strong involvement in inflammatory 

processes [275]. Ly6G expression is higher in circulating neutrophils than in bone marrow 

neutrophils and higher in cells recruited to inflamed sites. This is in line with the observation 

that neutrophil number (Ly6G+ cells) is higher in TnfΔARE/+ mice compared to WT mice. MPO 

is a key enzyme in innate immunity and defence against pathogens. It is the major protein of 

neutrophils, but it is also present in monocytes [276]. This might explain different outcomes 

between Ly6G+ cells and MPO+ cells ARE mice. Unlike Ly6G+ cell number, MPO+ cell 

number is not associated with intestinal inflammation in TnfΔARE/+ mice. However, the effect of 

mDIO on offspring’s intestinal inflammation is clearer at local than systemic sites of 

inflammation. For instance, only slightly increased portal vein endotoxin and plasma TNF in 
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oARE offspring (compared to ARE) reflect that mDIO effects are present to a lesser extent 

beyond intestinal tissues. Significant correlation (r=0.91, p=0.0006) between portal vein 

endotoxin and plasma TNF in genetically-driven intestinal inflammation demonstrates 

interconnection of intestinal permeability with systemic inflammation in CD-like ileitis. Whether 

intestinal permeability is a cause or consequence of intestinal inflammation remains to be 

elucidated. Nevertheless, the level of TNF is a hallmark for the disease severity, since there is 

a significant correlation between plasma TNF levels and the histological ileitis score in TnfΔARE/+ 

mice. In summary, kinetic experiments reveal that only the combination of mDIO with post 

weaning HFD accelerates the development of CD-like ileitis, whereas mDIO alone had no 

effect on tissue pathology. The proinflammatory effect of postweaning HFD is obviously 

uncoupled of offspring’s obesity since TnfΔARE/+ mice were protected against HFD-induced 

weight gain. Further, genetically-driven models of obesity indicated no increased intestinal 

permeability [277]. Consequently, HFD per se accelerates disease onset by increased 

intestinal permeability and immune activation (DC recruitment and Th17-response) [60]. This 

pro-inflammatory trait of HFD seems to be further accelerated in TnfΔARE/+ offspring deriving 

from mDIO dams. 

Fetal programming studies of this work were performed in order to investigate a possible 

influence of mDIO on the fetal gut epithelium. Consequently any influence of mDIO during 

gestation on immune cells in the fetal gut was not directly assessed. However, due to a limited 

exposure to antigens in utero, the germfree fetal small intestine is hardly populated with 

educated lymphocytes [152, 153]. Furthermore, cryptopatches and isolated lymphoid follicles 

are developing postnatally in mice [278]. The neonate lymphocytes have to undergo immune 

maturation upon bacterial colonization of the gastrointestinal tract and the first contacts with a 

huge variety of antigens. In contrast to the lymphocytes, enterocytes play a major role in innate 

immunity during the fetal stage, because they express a variety of defensins and pathogen 

sensing receptors [73]. Selective overexpression of TNF in the intestinal epithelium seems to 

be sufficient to trigger CD-like ileitis [246] and therefore the epithelium was suggested to play 

an important role in the pathogenesis of chronic intestinal inflammation. Therefore it was 

hypothesized that transcriptional programming might be a potential factor for the observed 

acceleration of disease onset. As a result, this work reported that mDIO hardly influenced the 

gene expression pattern in fetal IEC. A very low number of genes were regulated by mDIO 

overall. Of note, Afp and Reg3b were upregulated in oARE compared to WT and ARE fetuses. 

However, qPCR analysis of intestinal tissue of 8 and 12 week- old offspring showed that this 

pattern was not conserved. It was therefore considered as unlikely that even the main 

regulated genes in the fetal stage profoundly influenced the intestinal health in the grown up 

offspring.  
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Since HFD prolongs and aggravates chronic DSS-induced inflammatory manifestations in the 

colon [279] it was also suggested that mDIO alters the susceptibility to offspring’s DSS-induced 

colitis. However, mDIO alone had no influence on the susceptibility to DSS colitis (no 

alterations in body weight development and disease activity) in genetically non-predisposed 

WT offspring from lean and obese mothers. This is in line with the fact that mDIO alone had 

also no influence on disease severity of TnfΔARE/+ offspring. Most probably, a second hit, i.e. a 

postweaning HFD as additional pro-inflammatory trigger might shift the susceptibility to 

intestinal inflammation.  

Another aspect of an indirect pro-inflammatory feature of mDIO is the potential of maternal diet 

in shaping commensal microbiome communities and maturation of the intestinal immune 

system. Since it is clinically evident that maternal weight gain during pregnancy results in 

faecal microbiota acquisitions of the infants favouring Bacteroides, Clostridium and 

Staphylococcus abundance on the expense of Bifidobacterium group in early life [280], it might 

explain the accelerated intestinal inflammation in oARE offspring. A recent study showed that 

HFD (maternal or postnatal), but not obesity per se, structures the offspring's intestinal 

microbiome in Macaca fuscata (Japanese macaque) towards dysbiosis [96]. The fact that 

TnfΔARE/+ offspring were protected against DIO might support the hypothesis of a HFD-driven 

rather than obesity-driven dysbiosis. Whether an mDIO-driven shift in offspring’s microbial 

ecology is responsible for accelerated intestinal inflammation in HFD fed oARE offspring 

remains to be elucidated. However, a sole possible influence of mDIO on the offspring’s 

intestinal microbiome is obviously not sufficient to alter the susceptibility to intestinal 

inflammation, since ARE and oARE offspring showed the same disease severity. A disease 

relevant shift of microbial ecology might only result from the combined exposure to maternal 

and postnatal HFD.  

In conclusion, mDIO only mildly impacts on the fetal transcriptome of laser dissected intestinal 

epithelial cells. The fact that mDIO alone does not trigger genetically-driven ileitis and 

experimentally induced colitis suggests that fetal intestinal programming by mDIO alone is not 

sufficient to alter disease course. Most importantly, a second hit induced by a post weaning 

HFD accelerates the disease onset. This clearly highlights that the fetal intestine is 

programmed towards accelerated disease onset when certain environmental factors accrue.  

4.2.4. Maternal-diet induced obesity protects from metabolic dysfunction 

Increased body weights from fetuses of mDIO dams, regardless of the fetal genotype, suggest 

a possible metabolic programming. Interestingly, this early metabolic programming did not 

persist until adulthood in control diet fed Tnf+/+ and TnfΔARE/+ offspring indicating the strong 

influence of the postnatal environment on metabolic mechanisms e. g. by diet and microbial 
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exposure (see Figure 25 A). Instead, a postnatal metabolic challenge of the offspring (by 

feeding HFD) showed a clear obesity-like phenotype in WT offspring, but not in TnfΔARE/+ 

offspring. This is in accordance to previously published work, where TnfΔARE/+, but not WT mice 

were protected against DIO [60]. This was most likely due to the catabolic effects of both TNF 

overexpression and an increasing degree of inflammation. Because of this it is biologically 

plausible that maternal HFD was not able to increase postnatal body weight or adipose tissue 

mass in this mouse model. Since no changes in body weight, adipose tissue weight, or plasma 

leptin levels were detected it was unlikely that metabolic disturbances were responsible for the 

disease aggravation in oARE mice compared to ARE mice. 

Interestingly, decreased body weights, mesenteric fat masses and plasma leptin levels in oWT 

compared to WT offspring indicate that postnatal HFD in addition to mDIO during gestation 

attenuate metabolic features of offspring’s DIO, even though the exposure time to HFD was 

far longer (3 weeks) as in WT offspring. This effect was even more prominent in male than 

female offspring and shows a metabolic adaptation in response to maternal HFD exposure in 

utero. 

The considerable effect of maternal overnutrition or obesity on metabolic programming is not 

limited to the in utero environment because physiological systems develop after birth. Results 

from the fetal body weights of this work are in accordance to the ‘thrifty phenotype’ hypothesis 

[281, 282]. Fetuses from lean mothers showed significantly decreased body weights at 17.5 

dpc and were adapted to poor energy conditions before birth. Excessive metabolic responses 

to postnatal HFD in WT offspring born by a control diet mother revealed that the early perinatal 

time is a critical period where dramatic dietary changes might have long term consequences 

on offspring’s health later in life. Many studies have been reviewed by Alfaradhi and Ozanne 

[98] restricting the onset of obesity to early life, either pre- or postnatal. Despite this, only a few 

studies showed mDIO effects that were restricted to gestation and not throughout 

breastfeeding. Studies being limited to prenatal mDIO effects like crossfostering experiments 

somehow confirmed the metabolic outcome of this study. They highlight potential effects of 

postnatal overnutrition in contributing to an obese phenotype later in life. 

Discrepancies of obesity outcomes in offspring among prenatal and perinatal exposure to 

maternal obesity emphasize on adaptive outcomes of early life exposure to HFD during critical 

developmental windows [98]. For instance, control rat offspring cross-fostered to a HFD dam 

developed hypertension and endothelial dysfunction similarly to HFD rat offspring. However, 

maintaining energy rich diet after weaning, resulted in an exacerbated onset of metabolic 

syndrome features [116, 119, 123] as seen in this study. Interestingly, cross- fostering of HFD 

rat offspring to lean foster dams showed no altered body weight, but increased serum insulin 

and leptin levels indicating that mDIO-driven alterations in the hormonal regulation of food 
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intake are robust until postnatal period. Long term feeding of HFD might cause a dysregulation 

of feeding/appetite-controlling pathways in the brain. In obesity phenotypes orexigenic 

neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) are increased, 

whereas anorectic pro-opiomelanocortin (POMC) is decreased [283]. This might be due to 

disturbances in leptin and insulin that regulate their production and release [284]. Inappropriate 

levels or alterations in these hormones during a critical developmental phase might have 

permanent metabolic consequences. Neurodevelopmental effects of leptin are limited to the 

neonatal period as leptin treatment reversed the abnormalities in ARC connectivity in ob/ob 

mice in neonates, but not in adults [285]. Other studies demonstrate that exogenous leptin 

treatment during early postnatal life causes abnormal expressions of NPY, AgRP and POMC 

[286]. Such an inappropriate shift might have occurred in WT offspring from control diet dams 

that were switched to a HFD after date of delivery. In this work, WT fetuses from lean dams 

were exposed to low maternal leptin and HFD during prenatal development, but experienced 

a dramatic energetic change in the neonatal period. This might have led to an overproduction 

of leptin in order to decrease food intake. Whether this is true in WT and oWT neonates of this 

work remains to be investigated. However, leptin overproduction in WT offspring compared to 

oWT offspring was confirmed at 12 weeks of age and might be the consequence of HFD-

induced weight gain and mesenteric fat mass.  

In conclusion, both maternal inflammation and maternal diet-induced obesity do hardly 

influence the fetal epithelial gene programme, but show differences in programming the 

offspring’s susceptibility to intestinal inflammation. Maternal inflammation protects offspring 

from DSS-induced colitis, whereas mDIO had no influence on colitis susceptibility. The 

development of postnatal CD-like ileitis was not affected by both maternal stimuli alone, 

indicating that the postnatal environment is a robust modulator for intestinal inflammation, 

consequently overwriting maternal fingerprints. But, the combination of mDIO with postnatal 

HFD clearly demonstrates that mDIO ambiguously programs the offspring’s health later in life. 

Upon HFD, WT offspring were protected against the development of metabolic disorders, 

whereas genetically-predisposed offspring showed accelerated development of CD-like ileitis. 

The disease-accelerating potential of mDIO in combination with a postnatal HFD that were 

observed in the Tnf ΔARE/+ mouse model might be of high human relevance. In humans, the 

development of IBD might be accelerated in predisposed children who are born and breastfed 

from obese mothers with a subsequent hyper caloric diet throughout life.  
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6. Appendix 

Table 9 Dietary compositions 

 normal diet HFD experiments 

company ssniff ssniff 

comment "Chow" diet “experimental 
control diet” 

“high-fat diet 
(HFD)” 

order number  V1534-000 

R/M-H 
S5745-E702 S5745-E712 

metabl energy 

MJ/kg 
12.80 15.50 19.70 

micronutrients 

%kcal fat 9.00 12.00 48.00 

%kcal protein 33.00 23.00 18.00 

%kcal carb 58.00 65.00 34.00 

crude fat %weight 3.30 5.10 25.10 

crude protein 
%weight 

19.00 20.80 20.80 

crude ash 
%weight 

6.40 5.60 5.60 

crude fiber 
%weight 

4.90 5.00 5.00 

corn starch 

%weight 
36.50 47.80 27.80 

maltodextrin 
%weight 

 5.60 5.60 

sucrose %weight 4.70 5.00 5.00 

sucrose %kcal    

casein  24.00 24.00 

vitamin pre-mix  1.20 1.20 

mineral-pre-mix  6.00 6.00 

cellulose %weight  5.00 5.00 

soybean oil 
%weight 

 5.00 5.00 

palm oil %weight   20.00 

C14:0 % 0.01 0.03 0.22 

C16:0 % 0.47 0.55 8.87 

C16:1 % 0.01 0.03 0.13 

C18:0 % 0.08 0.24 1.19 

C18:1 % 0.62 1.34 8.75 

C18:2 % 1.80 2.65 4.67 

C18:3 % 0.23 0.33 0.43 

C20:0 % 0.01 0.03 0.13 

C20:1 % 0.02   

C20:2 %    

C20:4 %    

C20:5 %    

C22:0 %    

C22:5 %    

C22:6 %    

n3 %    

n6 %    

ration n6/n3    



 

92 
 

micronutrients 

l-cystin %  0.20 0.20 

cholin-chlorid % 0.29 0.20 0.20 

lysin % 1.00 1.71 1.71 

methionin % 0.30 0.75 0.75 

met+cys % 0.65 1.04 1.04 

threonin % 0.68 0.93 0.93 

calcium (mg/kg) 1.00 0.92 0.92 

phosphor (mg/kg) 0.70 0.63 0.63 

sodium (mg/kg) 0.24 0.19 0.19 

magnesium 

(mg/kg) 
0.22 0.21 0.21 

iron (mg/kg) 179.00 168.00 168.00 

aluminium (mg/kg)    

selenium (mg/kg) 0.3   

iodine (mg/kg) 2.2   

copper (mg/kg) 16   

manganese 

(mg/kg) 
69   

molybdenum 

(mg/kg) 
   

zinc (mg/kg) 94   

fluorine (mg/kg)    

cobalt (mg/kg) 2.1   
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PRR Pattern Recognition Receptors  
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Abbreviation  Explanation 

TNF Tumor Necrosis Factor 
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