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The assessment of rock-fall hazards is subject to significant uncertainty, which is not fully considered in general
practice and research. This paper reviews and classifies the various sources of the uncertainty. Taking a generic
framework for risk assessment as source, a probabilistic model is presented that consistently combines the
different types of uncertainties, in order to obtain a unified estimate of rock-fall risk. An important aspect of the

model is that it allows for incorporating all available information, including physical and empirical models,
observations and expert knowledge, by means of Bayesian updating. Detailed formulations are developed for
various types of information. Finally, two examples considering rock-fall risk on roads, with and without

protection structures, illustrate the application of the probabilistic modeling framework to practical problems.
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Introduction

In mountainous regions, infrastructure facilities and,

to a lesser degree, industry and housing are com-

monly exposed to rock-fall hazards. Transportation

infrastructure, such as roads and railways, often has

to pass through potentially hazardous areas. Conse-

quently, in mountainous regions, highly trafficked

roads are exposed to rock-fall. This became evident in

Switzerland on 31 May 2006, when a block-fall event

on the Gotthard-Autobahn (highway A2) killed two

people and led to the closure of the road for an entire

month. Notably, this road is the main north-south

transit road in Switzerland, and any closure of this

road affects the transportation of people and goods

through Europe and is associated with large societal

costs.
The responsible authorities address rock-fall risk

through a variety of different measures, including

land-use planning, appropriate choice of locations

and routes for infrastructure systems, controlled

release of rock masses, temporal closure of critical

road sections and passive protection measures, such

as galleries and flexible nets. Considering the sig-

nificant costs (and risks) associated with these

mitigation measures, it is crucial that decisions

regarding the measures are made based on a scienti-

fically sound assessment of the risks. This, in turn,

necessitates a proper assessment of the uncertainties

involved in the modeling of the frequency and

intensity of detached rocks, the possible trajectories

of falling rocks and the performance characteristics of

the mitigation measures. In this paper, we present a
framework for such an uncertainty modeling, based
on a recently formulated general risk assessment
formulation for civil and environmental systems.

As for most gravitational natural hazards, rock-
fall events are highly site-specific phenomena, with
rates of occurrence and consequences varying with
time. Frequently, useful historical data is not avail-
able, and while phenomenological (physical) models
are helpful in understanding the relevant processes,
currently they do not capture the stochastic nature of
these processes in a satisfying manner. For these
reasons, rock-fall modeling is associated with large
uncertainties, which have been considered in the past.
It has been realized that the stochastic nature of rock-
fall can only be captured by describing the release of
rock mass in terms of probabilities or frequencies,
typically using a power-law to describe the relation
between frequency and rock volume (Hovius 1997,
Hungr et al. 1999, Dussauge-Peisser et al. 2002).
However, the uncertainty associated with this model
is not generally quantified. In this paper, we will
demonstrate how this model uncertainty can be
included in the analysis. The uncertainty in the falling
process is addressed by available simulation pro-
grams by means of a simple Monte-Carlo algorithm,
whereby uncertain parameters are modeled by Nor-
mal or uniform distributions (Stephens 1998, Guzetti
et al. 2002). However, to our knowledge, no proce-
dure for consistently integrating this uncertainty with
a description of the stochastic nature of rock detach-
ment is provided in the literature. Furthermore, few
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publications deal with the quantitative analysis of the
uncertainty related to the performance of the protec-
tion measures. Exceptions include a reliability analy-
sis for protection galleries as presented in Schubert
et al. (2005) and a reliability analysis for a flexible net
as described in Roth (2002). Finally, the uncertainty
related to the consequences of rock-fall should be
included in the analysis (e.g. by the probability of
vehicles and people being present during a rock-fall
event, in a similar way as described for avalanches by
Wilhelm (1997), or using Bayesian networks as out-
lined in Straub (2005)).

Several publications have presented generic risk
assessment procedures for rock-fall hazards (Guzzetti
et al. 2003, Baillifard et al. 2003, Budetta 2004). These
methods provide integral procedures for estimating
rock-fall risk that, to some extent, account for the
uncertainties as described above. Due to the simila-
rities between rock-fall and landslide hazards, it is
also worth noting that for the latter phenomena a
number of risk assessment procedures have been
proposed (an overview is provided by Aleotti and
Chowdhury (1998), Dai et al. (2002) and Fell et al.
(2005)). While differences in the characteristics of
rock-fall and landslide prohibit the direct transfer of
the uncertainty modeling from one field to the other,
many aspects of the risk management problem are
identical. In the end, a risk management framework
must encompass all natural hazards in an integral
manner.

In this paper, we aim to extend the existing risk
assessment procedures for rock-fall using an ad-
vanced (Bayesian) approach to uncertainty modeling.
We will show that this approach ensures a mathema-
tically rigorous risk assessment and leads to optimal
decisions regarding risk mitigation actions, based on
all available information. The framework will be
presented in a general form, but its implementation
will be illustrated by the two examples that conclude
this paper.

Risk assessment framework

In this section, a generic framework for the assess-
ment of natural hazard risks based on Faber et al.
(2007) is presented and adapted to the case of rock-
fall hazards. The proposed framework is not an
entirely novel concept, rather it formalises the way
rock-fall hazard assessments have been carried out in
the past. It provides an overview of all involved
processes and aspects and ensures a systematic and
scientifically sound treatment of the uncertainties
involved at the different levels of analysis. The
ultimate goal is the computation (and optimisation)
of the risk, which is defined as the expected con-

sequences, following the utility-theory by Von Neu-
mann and Morgenstern (1945) that is commonly
accepted as the rationale for making optimal decision
under uncertainty.

While some might question the need for a novel
terminology, we feel that this facilitates a mathe-
matically rigorous approach to the computation of
the risk. Existing terms, such as vulnerability and
hazard, do not have unique definitions in the
literature (Roberts et al. 2007), and using these
terms can lead to misunderstandings, in particular
in an interdisciplinary context (the structural en-
gineer designing a protection structure might use
different definitions than the geologist). An addi-
tional advantage of the framework employed here is
that it has been developed for and is applicable to
any type of hazard on any type of engineering or
civil system.

The suggested framework is shown in Figure 1. It
is distinguished between the three main components
system exposure, system resistance and system robust-
ness, which in the case of rock-fall hazards are
illustrated in Figure 2. It is then distinguished
between direct consequences or indirect consequences,
depending on where in the system they occur.
Although not directly part of the risk assessment
(but of the risk management), actions are also
considered, i.e. potential measures influencing the
risk. The application of the different elements of the
framework for rock-fall risk assessment is treated in
the following sections.

System exposure

The system exposure describes the probability of
occurrence of the potential hazards in the considered
system. The hazard is generally described by its
location and one or several physical parameters
representative of its damaging potential. For rock-
fall hazards, the relevant parameter is typically the
volume of detached rock v or its mass m. The
exposure is uncertain, and the rock-fall volume is
modeled as a random variable V (we utilise upper
case to denote random variables and lower case to
denote deterministic variables, including realizations
of random variables). This random variable is
typically described by its annual exceedance fre-
quency Hv(v)�E[N�(v)], with N�(v) the number of
rocks per year larger than v, and E[ ] the expectation
operation. Alternatively, rock-fall volume can be
described by the annual exceedance probability
PV(v)�Pr[N�(v)]1]. Under the common assump-
tion that rock-fall follows a Poisson process, the
conditions of which are discussed later, the prob-
ability Pr[N�(v)�0] is described by the Poisson

2 D. Straub and M. Schubert
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distribution with parameter HV(v) and argument
zero. It follows that PV(v) and HV(v) are related by

PV(v)�1�e�HV(v): (1)

The use of PV(v) is appropriate for sites where only
extreme events are relevant. This is the case when
protection structures are installed or planned and the
probability of two damaging events per year can be
neglected. On the other hand, HV(v) is appropriate
for situations where each single rock-fall event has
consequences, e.g. in the case of rock-fall exposure to
an unprotected road link.

Both PV(v) and HV(v) have a reference period of
one year. Acceptable probabilities of failure events in
the built environment are typically expressed as
annual risks (e.g. Eurocode Basis of Design (2002),
Annex B, makes recommendations for acceptable
reliability in terms of reliability indexes b for a
reference period of one year). Therefore, risk assess-
ments should intend to express all probabilities and
risks as annual values (Rackwitz 2000).

To compute risk, it is beneficial to work with the
probability density function (PDF) of the maximum
annual rock-fall event, fV(v), or the annual frequency
density hV(v). These are defined as

fV(v)��
d

dv
PV(v); (2)

hV(v)��
d

dv
HV(v): (3)

In some instances, the rock-fall activity during an
alternative time period DT is of interest. If it is
reasonable to assume that rock-fall has a constant
mean rate of occurrence (i.e. if it is a homogeneous
Poisson process), one can make use of the fact that
the frequency is proportional to the considered time
period: HDT

V (v)�(DV=1 year)HV (v) and hDT
V (v)�

(DV=1 year)hV (v): From the above equations it
follows that the PDF of the maximum rock-fall
volume for any time period DT can be computed by

fDTV (v)�e�HDT
V

(v)hDTV (v): (4)

The above (and all common probabilistic rock-fall
models) is based on the assumption of rock-fall as a
Poisson process, the conditions for which are (a) that
the number of occurrences in a given time interval is
independent of the number of occurrences in a
previous time interval (memorylessness), and (b)
that the probability of more than one event in a
small time interval is order of magnitudes lower than
the probability of one event (Benjamin and Cornell
1970). In the special case of a homogeneous Poisson
process, the additional assumption (c) is that the
mean rate of rock-fall is constant with time. While
these conditions are not generally fulfilled, they
represent a reasonable approximation to the real
situation for many decision problems, as will be
demonstrated in this paper. Note that the assumption
of a Poisson process is generally not reasonable for
landslides. For this reason, the uncertainty modeling,
and consequently the risk assessment, is different for
landslide hazards.

System exposure

System resistanceDirect consequences

Indirect consequences

A
ct

io
ns

System robustness

Figure 1. A framework for engineering risk assessment (Faber et al. 2007).

1 Exposure

2 Resistance

3 Robustness

Figure 2. Illustration of system exposure, system resistance
and system robustness for the case of rock-fall hazards.

Georisk 3
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System resistance

The system resistance includes all intermediate pro-

cesses and elements that may modify (stop, reduce,

but also accelerate) the characteristics of the hazard

within the system. Generically, the resistance is

described as the probability of one or several damage

or failure events Fi (e.g. the impact of a rock on a

road or a building), dependent on the type and

magnitude of the exposure V. Generically, this can

be represented by a conditional probability PR(Fijv).
The system resistance is typically modeled by a rock-

fall simulation that computes the probability of the

rock hitting at certain locations (e.g. the road)

conditional on a rock volume. If protection structures

are present, their performance must be included in the

analysis, and in this case Fi is the event of failure of

the protection system.

System robustness

The robustness describes how the system reacts to a

damaging or failure event Fi. To model the system

robustness, it is necessary to study the possible

scenarios Kj following an initial event Fi. As an

example, the event Fi is a rock falling on a road, one

scenario Kj could be road closure but no accident,

another scenario is a collision accident followed by

road-closure. Such scenarios are best represented by

event trees (Benjamin and Cornell 1970, DeGroot

1970) or Bayesian networks (Straub 2005). To ensure

consistency in the calculation of the risk, the defini-

tion of the various scenarios Kj must be such that

either the scenarios are mutually exclusive or that the

consequences associated with different scenarios are

additive.

Consequences

Consequences are distinguished between direct con-

sequences CD and indirect consequences CID. The

former are the physical damages associated with the

system resistance, the latter may comprise physical as

well as economical, social or ecological damage, and

are sometimes referred to as follow-up consequences.

For the case of rock-fall, direct consequences, for

example, are the cost of repairing damage to the road

and protection structures. Indirect consequences, for

example, are administrative costs, societal cost of

road closure and injuries and fatalities sustained. The

distinction between direct and indirect consequences

provides information on the system characteristics.

That is, if the contribution of the indirect conse-

quences to the total risk is small, the system can be

called robust (Baker et al. 2007).

Consequences are often expressed in monetary
terms, requiring the quantification of the ‘value of
life’ (see Rackwitz 2006). In principle, other value
systems may be used (e.g. the multi-attribute utility
theory of Keeney and Raiffa (1976)), but any
optimization of decisions must be based on a trade-
off between the different attributes, thereby implicitly
assigning a value to life.

Actions

The aim of risk management is the assessment of
cost-optimal mitigation actions. To facilitate optimi-
zation of actions, uncertainty models should be
formulated as a function of possible actions. Actions
can be applied on all three levels in the system. For
example, for rock-fall on roads, the risk can be
reduced by (1) setting anchors to increase the stability
of the rock mass, thus reducing exposure occurrence
probability; (2) constructing protection systems such
as galleries or flexible nets, thereby increasing the
resistance of the system; and (3) improving visibility
for drivers on the endangered road section, reducing
the probability of drivers crashing into rocks lying on
the road, thus increasing the robustness of the system.

The classification of a specific process in the
presented categories is ambiguous. As an example,
when the focus is on a protection structure, the
exposure may be considered as being the impact
energy on that structure. In this case, the process of
falling is included in the exposure model. The frame-
work is intended as a support to structure the
problem and not as a strictly prescribed, unique
model of natural hazard risks. Thus, the ambiguous-
ness is not crucial if the definitions are applied
consistently within a specific project.

The risk is defined as the expected damage (the
consequence for the system) per reference period,
which, as discussed earlier, is generally one year.
Based on the above definitions, the risk R is, in
generic format, obtained by

R�g
V

X
F

CT(v;Fi)Pr(Fijv)hV(v)dv: (5)

The total consequences as a function of v and Fi,
CT(v, Fi), are given as the sum of the direct
consequences CD(v, Fi) and the weighted sum of the
indirect consequences CID(v, Fi, Kj) by

CT(v;Fi)�CD(v;Fi)

�
X
K

CID(v;Fi;Kj)Pr(Kjjv;Fi): (6)

Equations (5) and (6) state that the risk is an expected
value obtained by integration and summation over all
uncertain factors V, F, K. In the above formulation, it

4 D. Straub and M. Schubert
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is assumed that the exposure V is described in a
continuous state space, whereas the resistance F and
the robustness K are represented by discrete events. It
is noted that the above equation also applies if one is
interested only in the risk related to fatalities and/or
injuries, in which case CD(v, Fi) is typically zero and
CID(v,Fi,Kj) is the number of people killed or injured
during a particular scenario Fi,Kj.

By assessing the influence of various actions on
the risk and comparing this with the cost the actions,
optimal actions can be determined in accordance with
the principles of Bayesian decision theory (Benjamin
and Cornell 1970).

Modeling uncertainty in rock-fall hazards

Engineering risk assessment is generally based on a
Bayesian interpretation of probabilities (Faber and
Stewart 2003). Within this framework, it is useful to
distinguish two fundamentally different types of
uncertainties, namely epistemic and aleatory uncer-
tainties. This distinction has been considered for risk
assessment of technical systems (Apostolakis 1990,
Helton and Burmaster 1996), and increasingly for
natural hazards (Hall 2003, Apel et al. 2004, Straub
and Der Kiureghian 2007), but has been discussed
also for general geological applications by Mann
(1993). Aleatory uncertainties are interpreted as
random uncertainties, which, for a given model, are
inherent to the considered process; epistemic uncer-
tainties are related to our incomplete knowledge of
the process, often because of limited data.

Rock-fall is generally considered an inherently
uncertain process, i.e. it is not possible to determi-
nistically predict the time and the extent of the next
event. However, it is possible to describe rock-fall
using a probabilistic model, describing the frequency
with which a rock of a certain volume or larger is
detached, HV(v). As the assessment of rock-fall is
based on little data and simplified models, the
probabilistic model is subject to uncertainty itself,
which can be represented by modeling the parameters
of HV(v) as random variables. In this case, we write
HV(vju) to indicate that the model is defined condi-
tional on the values of its parameters u. This
epistemic uncertainty on u can be depicted by credible
intervals (the Bayesian equivalent to confidence
intervals) on the exceedance frequency curve, as
demonstrated in Figure 3.

The distinction between these two fundamental
types of uncertainty is relevant because aleatory
uncertainty cannot be reduced for a given model. In
contrast, epistemic uncertainty can be reduced by
collecting additional information. For this reason, a
clear identification of the epistemic uncertainties in

the analysis is crucial, as these may be reduced at a

later stage. Furthermore, neglecting epistemic uncer-

tainty, as typically occurs, can lead to strong under-

estimation of the risk (e.g. Coles et al. 2003).

Uncertainties in rock-fall exposure

As with most natural hazards, the uncertainties

related to the system exposure are large for rock-fall

hazards. In the literature, this uncertainty is generally

represented by an exceedance frequency as illustrated

in Figure 3, yet without consideration of the epistemic

uncertainty. Instead, it is (implicitly) assumed that the

frequency of an event with a certain rock volume is a

deterministic value, implying that if the site were

observed over a sufficiently long period, the exact

predicted frequency of rocks would be experienced.

Clearly, this is not the case; instead, the predicted

frequency is a best estimate of the true rate of

occurrence.
In the literature, various methods are proposed

for identifying the exceedance frequency at a specific

site. This includes (a) the analysis of historical

datasets (Hungr et al. 1999, Dussauge-Peisser 2002),

(b) empirical models which describe rock-fall expo-

sure as a function of different indicators (observable

parameters), such as topography and geology (Bu-

detta 2004, Baillifard et al. 2004), (c) phenomenolo-

gical (mechanical) models (Duzgun et al. 2003,

Jimenez-Rodriguez et al. 2006), and (d) expert

opinion (Schubert et al. 2005). All these methods

are useful in a particular context. While methods (a)

and (b) are generally more appropriate for the

analysis of larger areas with less accuracy, (c) and

(d) are more suited for the detailed analysis of a

specific site. Using an example, we will demonstrate

that a proper uncertainty modeling allows combining

E
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nc

y 
[t

-1
] 

Volume v

95% quantile*

5% quantile*

Distribution of  HV(v)
for given v due to the
epistemic uncertainty on θ

* with respect to the
epistemic uncer tainty

Eθ [HV(v)]

Figure 3. Exceedance frequency, illustrating the difference

between epistemic and aleatory uncertainty.
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the different models within a single multi-scale model
in a consistent manner.

Large-scale models (a and b) are generally based
on statistical methods. Consequently, it is mathema-
tically convenient to express the exceedance fre-
quency in a parametric format. Traditionally, a
power-law has been applied to describe the relation
between rock volume V and exceedance frequency:

HV(vju)�av�b: (7)

The parameters of the model are u�[a,b]T. The
epistemic uncertainty is included in the analysis by
modeling u as a random vector. With the PDF of u,
fU(u), the unconditional exceedance frequency is
computed as

HV(v)�g
U

fU(u)HV(vju) du: (8)

There are various sources for epistemic uncertainties
in large-scale models, preventing an exact prediction
of the exceedance frequency for a particular site as
listed in the following:

Statistical uncertainty. The parameters of the large-
scale models are derived empirically from data-sets.
Due to the limited size of these data sets, the
estimated parameters are subject to statistical uncer-
tainty.

Measurement uncertainty. Measurements and record-
ings of the geological properties are typically subject
to uncertainty, and observations of rock-fall events
are often incomplete and biased and must rely on
local experts. As an example, rocks on a road will
generally be reported and documented, but frequently
those that miss the road may not be noted.

Model uncertainty. Extrapolation of the statistical
models to areas other than those for which observa-
tions are available leads to additional uncertainty, as
the geological and topographical characteristics will
be different for these areas. GIS-based models will
take into account some of these parameters, but the
omitted parameters will lead to an uncertainty on the
model predictions.

Model uncertainty. Although the power-law is com-
monly assumed, it has not been justified by phenom-
enological considerations. Thus, that the
parametrical model accurately represents the actual
behavior is not ensured.

Spatial variability. Rock-fall frequency varies in
space. The observations represent an average over
an area and the resulting parameter values, therefore,
do not reflect the variations from the average.

Temporal variability. Rock-fall frequency varies in
time. When working with annual frequencies, the

seasonal changes do not affect the analysis, but the
frequency may change over the years or may be
dependent on extreme events (e.g. earthquakes).
However, in certain instances, e.g. when temporal
closure of the road is considered as a risk reduction
measure, seasonal variations must be explicitly ad-
dressed by the analysis.

How can these uncertainties be quantified? Sta-
tistical uncertainty can be quantified by using stan-
dard statistical methods such as Bayesian analysis
(see, e.g. Coles 2001). Measurement uncertainty can
generally be estimated when the data collection
method is known. Unfortunately, no simple analy-
tical method is available for estimating model un-
certainties. A solution is to rely on expert opinion, i.e.
to ask experts about their confidence in the models. It
is also possible to compare the model with observa-
tions that have not been used in the calibration of the
model (model validation) or to compare different
models. Furthermore, it is possible to include addi-
tional parameters in the formulation of the excee-
dance frequency (see Equation (7)). The model
uncertainties are then reduced while the statistical
uncertainties increase, but the latter can then be
estimated analytically. Coles et al. (2003) demon-
strated this for the analysis of rainfall data. The
spatial and temporal variability of rock-fall can be
analyzed quantitatively if data is available in suffi-
ciently small scale (a data-set showing the spatial
distribution of rock-falls is presented in Dussauge-
Peisser et al. (2002)). Spatial variability can be
described by the spatial correlation of the relevant
characteristics (e.g. rock-fall frequency). In most
practical cases, however, a simplified approach is
favorable, whereby smaller areas are determined
within which the spatial variability can be neglected.
Temporal (typically seasonal) variability can be
described by time-dependent parameters u in the
exceedance frequency model, corresponding to the
assumption of rock-fall following an inhomogeneous
Poisson process.

For small-scale models, the application of the
power-law is not always justified, in particular if
different mechanisms are underlying the detachment
of smaller and larger rocks. In such cases, it might be
more appropriate to utilize a non-parametric model
in which the rock volume is divided into a discrete
number of intervals (e.g. 10�50 m3) and the model
gives the annual frequency of rocks for the different
volume ranges.

Bayesian analysis and updating

For the modeling of rock-fall exposure, Bayesian
analysis is particularly useful, as it facilitates the

6 D. Straub and M. Schubert
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consistent combination of different information in a
single model. This is because the probabilistic model
can be updated when new information becomes
available. Consider the case where rock-fall exposure
at a particular location is expressed by the model
HV(vju) with uncertain parameters u. When new
information becomes available (denoted by z), the
probability distribution of the uncertain parameters
can be updated using Bayes’ theorem, which in its
general form can be written as

fU(ujz)8L(ujz)fU(u); (9)

where fU(u) is the prior probabilistic model, fU(ujz) is
the updated model and L(ujz) is the likelihood
function, which describes the new information. The
proportionality constant is obtained from the fact
that integration of fU(ujz) over the entire domain of u
must yield one. The likelihood function is propor-
tional to the probability of the observed information
given the parameters u, i.e.

L(ujz)8Pr(zju): (10)

To demonstrate the derivation of the likelihood
function, consider the case where the available
information is a set of observed detached rocks i�
1 . . . n for a specific mountain slope, which are
described by their volume vi and the time-period
DTz during which they occurred. Only rocks with a
volume larger than vth have been recorded (th�
threshold). We make the following simplifying as-
sumptions: (a) that the rock-fall follows a homo-
geneous Poisson process as discussed earlier, and (b)
that the observations are free of error (i.e. all rocks
are recorded). These assumptions hold under parti-
cular circumstances only, yet they are a reasonable
approximation to many real situations and they are
suitable for illustrative purposes. Under these as-
sumptions, the probability of observing exactly n
rocks with a volume larger than vth is given by the
Poisson distribution with parameter HV(vthju)DTz as

Pr(nju)�
[HV(vthju)DTz]

n

n!
exp[�HV(vthju)DTz]: (11)

Given that a rock with volume larger than vth has
detached, the likelihood of its volume being vi is
proportional to hV(viju)/HV(vthju) for vi5vth. As all
observations are assumed independent events, the
likelihood function is obtained by multiplying these
terms. The likelihood function representing the ob-
servation of n rocks with volumes v1 . . . vn on the
considered mountain area is then:

L(ujz)8exp[�HV(vthju)DTz]
Yn
i�1

hV(viju); (12)

where hV(viju) is the annual frequency density of V
according to Equation (3). Note that the observations
apparently must relate to the frequency density and
not the probability density because we cannot ob-
serve only the largest rock that has fallen during a
certain period, rather the observed rocks may all be
from the same time period.

Uncertainties in rock-fall trajectory

Once a rock is released, its trajectory is mainly
determined by the topography, its mode of motion
(free fall, rolling bouncing or sliding), and the
characteristics of the surfaces of the rock and the
ground. All these factors contribute to the uncer-
tainty in the prediction of the trajectory. Existing
numerical tools model this uncertainty by means of
crude Monte Carlo simulation (MCS); an overview is
provided by Guzzetti et al. (2002). There exist two- or
three-dimensional models and differences in the
physical representation of the rock � the so called
lumped mass approach represents the rock by a single
mass point, neglecting the geometry of the stone. The
rigid body approach models the stone by idealized
geometries (e.g. cylinders, spheres or a cuboidal
shape; Ettlin 2006) with varying physical and material
properties. Hybrid models combine a lumped mass
approach to simulate the free fall with a rigid body
approach to simulate the contact with the ground
surface. Finally, different models are used to simulate
the impact of the rock on the ground (Dorren 2003),
a simple approach being the use of coefficients of
restitution (Stevens 1998). The impact is the most
intricate part of the falling process, and its modeling
is associated with large uncertainties. The modeling
cannot account for the variability in the ground
material (particularly in zones covered with vegeta-
tion) and the local geometry of the ground and the
rock. These uncertainties are inherent to the model
and, therefore, can be considered as aleatory. In
addition, there is an epistemic uncertainty because
of the limited basis for estimating the model para-
meters (see e.g. Robotham et al. (1995), Azzoni et al.
(1995) and Chau et al. (2002) for an estimation of
coefficients of restitution). Additional epistemic un-
certainty is due to the simplified modeling of the slope
profile at the impact location. In many applications,
the profile surface in the models is generated from a
digital elevation model (DEM) with limited resolu-
tion and between the points provided by the DEM,

Georisk 7
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the terrain is assumed linear. If the model is two-
dimensional, the reduction to a single plane is an
additional source of epistemic uncertainty.

The outcome of a two-dimensional rock-fall
model is presented in Figure 4. In this example, the
relevant numerical result that will be utilized for risk
assessment is the PDF of the energy of the rocks
when reaching the road. This distribution should be
evaluated conditional on the rock volume, fE(ejv), for
different values of v. This can then be combined with
the distribution representing the rock detachment.
Available rock-fall analysis software typically allow
entering the detached volume as a Normal distributed
random variable, but because the volume of detached
rocks is generally not Normal distributed, results
obtained with this assumption cannot be used for risk
assessment directly.

MCS in existing rock-fall trajectory analysis tools
accounts only for the aleatory uncertainty. However,
while it is important to be aware of the additional
epistemic uncertainty associated with these models,
for most practical applications, the error associated
with neglecting this uncertainty is tolerable. This is
because in the analysis of rock-fall trajectories, unlike
in the modeling of rock-fall exposure, the probability
of extreme events is of less importance, and the
middle range of the distribution is less affected by the
epistemic uncertainties.

Uncertainty in the performance of protection structures

Protection structures, such as flexible nets or fixed
galleries, can stop the rocks, but their capacity
is limited. This capacity, denoted by R, can be

quantified in terms of the amount of energy that
the structure can absorb. R depends on the type of
structure, but also on the characteristics of the rock
beyond the impact energy. The uncertainty in the
capacity is considered by modeling R as a random
variable, represented by its PDF conditional on the
rock volume, fR(rjv). Hereby, the velocity of the rock
at the impact is determined as a function of the
energy and the volume. fR(rjv) should include both
epistemic and aleatory uncertainty related to the
structural capacity. Structural reliability analysis
can be used to evaluate fR(rjv) for a given type of
structure (Schubert et al. 2005). Alternatively, for
standard protection systems, fR(rjv) can also be
estimated from tests. However, because of their
cost, the number of tests is often limited, therefore
test results should be combined with a reliability
analysis to obtain a probabilistic estimate of the
capacity.

Uncertainties in rock-fall robustness

The robustness of the system is accounted for by
estimating the expected consequences for a given
failure event Fi, according to the second term of
Equation (6). As an example, the expected number of
fatalities and injuries is evaluated by multiplying the
probability that a number of people are present at the
location at the time of a rock-fall with the probability
that somebody is killed or injured by the rock. These
probabilities represent aleatory uncertainties. There is
an uncertainty as to the values of these probabilities,
which is of an epistemic nature (it could be reduced
by collecting additional data), but because only the
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Figure 4. Illustration of the rock-fall trajectory modelling.
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expected number of fatalities and injuries enters the
computation, the computed risk generally will not be
very sensitive to these epistemic uncertainties. In most
instances, they can be neglected, as is done in
practice.

An important part of system robustness modeling
is the assessment of so-called ‘user costs’, representing
the socio-economical costs inflicted by the temporary
disuse of the considered system, typically a transpor-
tation link. The user costs as assessed by road
authorities exhibit large differences (Nash 2003).
However, it must not be concluded that these
differences are due to epistemic uncertainty; rather,
they are caused by different model assumptions.
Therefore, this problem must be addressed by the
decision maker, who must determine the model
assumptions that represent his preferences.

Example � risk due to of rock-fall on an unprotected
road

This example demonstrates the use of Bayesian
updating for reducing model uncertainty. Consider
the case of an unprotected road that is exposed to
rock-fall events. In the first step, a parameter-based
approach to determine rock-fall frequencies is applied
with the parameters being geological and hydrologi-
cal characteristics and topography. Let us assume
that the resulting model can be described by an
annual exceedance frequency HV(v) according to
Equation (7) (power law), whose parameters are
given in Table 1 (the parameters are assumed to be
statistically independent a-priori). The model is
shown in Figure 5. This model is hypothetical, but
it represents a typical outcome of a parametric model,
such as those referenced earlier, combined with an
estimation of the epistemic model uncertainty. This
uncertainty is large, reflecting the generic nature of
such models; it is illustrated in Figure 5 by the 5%
and the 95% quantile of HV(v). Note that the
unconditional exceedance frequency shown in Figure
5 is computed according to Equation (8) and is not
equal to the curve obtained by using the mean values
of the parameter. For this reason, the model is not
linear in the log�log scale.

In a second step, expert opinion is considered.
Assume that the expert, upon looking at the assump-

tions in the parameter-based model, concludes that
the model is over-estimating the rock-fall frequency
because of local geological properties that are not
included in the model (e.g. the orientation of the
bedding is favorable). The geologist states that in his
opinion the frequency is half that predicted by the
model. Bayesian updating can be used to account for
this statement, but this requires that the uncertainty
in the geologist’s statement is quantified. The state-
ment of the geologist, which we denote by x hereafter,
is related to rocks with a volume of 0.1m3 or more.
Therefore, this statement means that the geologist’s
best estimate for x�HV(0.1m

3) is only 50% of the
one given by the model, i.e. mX�5.5 year�1, accord-
ing to Figure 5. The uncertainty related to that
statement is estimated to 50%, i.e. x having a
coefficient of variation (c.o.v.) of 0.5 and x is
represented by a Lognormal distribution. The prior
model obtained from the parameter-based approach
can then be updated with this information using
Bayes’ theorem (Equation (9)). Here, the likelihood
function is

L(ujx)� fX[HV(0:1m3ju)]; (13)

with fX[x] the Lognormal PDF with mean mX and
standard deviation sX�0.5 mX.

Using a rock-fall simulation program, it is deter-
mined that, of all rocks detached, only l�50%

actually land on the road, independent of the volume
(this represents the system resistance). The epistemic
uncertainty related to this model is neglected. The
persons responsible for freeing the road from all
rocks are now consulted. They state that during the
past five years they removed on average three to four

Table 1. Parameters describing the annual exceedance
frequency in example 1.

Parameter Mean Standard deviation Distribution

A 1.2 0.6 Lognormal

B 0.7 0.3 Lognormal

Eθ [HV
(v)]

95% quantile

5% quantile

H
V
 (

v)
 [

 y
r 

-1
 ]

Rock volume v [ m3 ]

10-1 100 101

101

100

10 -1

10-2

102

Figure 5. Exceedance frequency as obtained using the

parameters in Table 1. The through line is the uncondi-
tional model, the dashed lines represent the 5% and 95%
quantiles with respect to the uncertainty in the parameters,

respectively.
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rocks larger than 0.1m3 from the road. They remem-
ber only one rock that was larger than 1m3. This
information, which we denote by y, is used to update
the model again. The observation time is DTy�5
year, the number of rocks smaller than 1m3 during
that period is approximated by 17 (:3.5 year�1 �
5 year�1). The likelihood function for this observa-
tion is obtained by noting that, if the rock-fall events
follow a Poisson process, the number of observed
rocks is described by a Poisson distribution. It can
then be shown that

L(ujy)8 [HV(0:1m3ju)�HV(1m3ju)]17

HV(1m3ju) exp[�HV(0:1m3ju)DTyl]: (14)

The exceedance frequency model can be updated with
this information. To this end, Bayes’ theorem is
applied again, with the earlier computed posterior
distribution as the new prior distribution. The final
posterior distribution is

fq(q½x; y)8L(q½y)L(q½x)fq(q): (15)

Figure 6 shows the unconditional models of HV(v):
(a) the original model, (b) after consideration of the
geologist’s expertise and (c) after updating of the
model with the observations of the road maintenance
personnel. Note that the final model (c) is close to a
straight line in the log�log-plot of Figure 6. This
indicates a reduction of the epistemic uncertainty
when the model is updated with the additional
observations because without epistemic uncertainty,
HV(v) would be linear in a log�log-scale.

With the final exceedance frequency model, the
risk for this road segment can now be evaluated by
considering system robustness. This includes the
probability of a traffic accident because of the rocks,
the cost of road closures and traffic delay, the cost of
removing the rocks as well as the additional risk to
road maintenance personnel while removing them.
For the sake of the example, consider the case where
fatalities are the only relevant consequence. The
expected number of fatalities as a function of rock
volume can be estimated as a function of the daily
traffic volume, accounting for the event of a direct hit
of a vehicle or a pedestrian and the event of an
accident caused by a rock lying on the road. For the
considered example, the expected number of fatalities
is estimated as

CT(v)�0
CT(v)�0:01
CT(v)�0:03

v50:1m3

0:1m3Bv51m3

1m3Bv

:

The risk, i.e. the expected number of fatalities per
year, is then calculated as

R�g
V

CT(v)hV(v)dv

�0:01 �[HV(0:1m3)�HV(1m3)]�0:03 �HV(1m3)

: (16)

This risk is computed as 0.085 fatalities per year. It is
possible to reduce the risk, e.g. by installing rock-fall
protection or by partial closure of the road. The effect
of these actions can be investigated by updating the
models again, taking into account the effectiveness of
the measure. In the next example, a detailed study of
the effectiveness of a protection measure is per-
formed.

Example � reliability of a rock-fall protection gallery
In this study, a rock-fall protection gallery in the
Swiss Alps, built in 1975 is investigated. The structure
is part of a main transit route through the Alps, and
has been subjected to several rock-fall events in recent
years. In the 1970s, when many of these structures
were built in the Swiss Alps, no analytical tools were
available for modeling rock detachment or for
modeling the failing process. Decision-making was
based purely on engineering judgment. For the
considered structure, the geologist had defined a
release zone and a ‘maximum’ stone volume. To
design the protection structure, a free fall of the stone
was assumed and the corresponding energy was
calculated.

This example demonstrates the reliability assess-
ment for this protection structure. The goal of this
analysis is to establish a rational basis for determin-
ing the need to strengthen the structure. A similar
analysis can also be performed for a new structure to

Rock volume v [m3]

From the parametric model
Including expert opinion
Including observations

10-1 100 101 102

H
V

 (
v)

 [
 y

r 
-1

 ]

101

100

10-1

10-2

Figure 6. Exceedance frequency as obtained (a) using a

parameter-based model; (b) updated the model with
geologist’s expertise; (c) updated using observations from
road maintenance personnel.

10 D. Straub and M. Schubert



D
ow

nl
oa

de
d 

B
y:

 [C
D

L 
Jo

ur
na

ls
 A

cc
ou

nt
] A

t: 
05

:5
9 

24
 F

eb
ru

ar
y 

20
08

 

optimize the design. Figure 7 shows a representative

cross section of the considered area, with the identi-

fied release zones and the gallery. The gallery, which

connects two tunnels, has a length of 217 m.
Since no reliable data and no models are available

for this site, rock-fall frequency is modeled based on

expert judgment. The results of a geological investi-

gation, describing the lithology together with an

estimate of the frequency of rock-fall events, are

available for the site. The relevant release areas

comprise of limestone. It is estimated that rocks

with volume vB0.5m3 are detached with high

frequency, rocks with a volume of 0.5m3BvB5m3

with a moderate frequency, rocks with a volume of

5m3BvB10m3 with a small frequency, and larger

volumes detach only with a very small frequency. The

geologist also provides a quantitative interpretation

of the frequencies. An event is considered to have a

high frequency if it occurs daily to monthly, a

moderate frequency is understood by the geologist

as a return period between 1 and 20 years, a small

frequency as a return period between 20 and 100

years, and a very small frequency as a return period

of more than 100 years. These frequencies correspond

to rock-fall events within the entire length of the

gallery. From this information, the models in Table 2

are derived. To account for the uncertainty in the

estimates, a distribution is assigned to the occurrence

frequencies of the four categories in accordance with

the ranges stated by the geologist. For the quantita-
tive analysis, it is assumed that the uncertainty can be
characterized by Lognormal distributions.

We assume that the exceedance frequency can be
adequately represented by the power-law (Equation
(7)). To estimate the parameters u�[a,b]T, the like-
lihood function corresponding to the information
provided in Table 2 is established as:

L(u½z)8
Y4
i�1

fZ[HV(vi½u)jli; zi]; (17)

where fZ[HV (vi½u)½li; zi] denotes the Lognormal PDF
with argument HV(viju) and parameters li and zi.

Here, as an alternative to the Bayesian analysis,
maximum likelihood estimation (MLE) is applied to
determine the parameters uMLE, whereby a parameter
estimate is obtained by maximizing the log-likelihood
function:

uMLE�argmaxfln[L(u½z)]g: (18)

The full distribution of the parameters f(u) can be
approximated by a multivariate Normal distribution
with mean value uMLE and a covariance matrix equal
to the inverse of the Hessian matrix of the log-
likelihood function evaluated at uMLE (Lindley 1965).
The resulting probabilistic model of the parameters u

is provided in Table 3. The resulting exceedance
frequency is shown in Figure 8.

To model the falling process, a two-dimensional
rock-fall trajectory model is applied, with the repre-
sentative profile shown in Figure 7. The RocFall
(2001) software, based on a two dimensional model
with a lumped mass approach, is used. This software
allows modeling all input parameters as Normal
distributed random variables and performs a MC
simulation to determine the distribution of trajec-
tories and associated velocities, impact energies and
run-off distances. The analysis was repeated for
different values of the rock volume v in the range
from zero to 1000 m3, even though these models are
not realistic for large volumes. To account for the
variability in the geometry over the length of the
slope, the X and Y co-ordinates of the slope are
modeled as Normal distributed parameters (Stevens
1998). Since the investigated gallery connects two
roadway tunnel segments, rock-falls outside the range
of the gallery have no consequences for the road. The
distribution of detached rocks in the two release
zones (Figure 7) is modeled by a uniform distribution.
Additional details on the modeling, such as the
coefficients of restitutions, can be found in Schubert
et al. (2005). The outcome of the MC simulations is
the distribution of impact energy on the gallery for
given volumes, fE(ejv), in a similar way as illustrated
in Figure 4. Together with the distribution of the

875

840

805

770

735

700
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630

595

0 15010050

gallery

release area 1

release area 2
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Figure 7. Profile of the slope in the considered example.
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annual maximum rock volume fV(v) according to

Equation (2), fE(ejv) represents the load acting on the

structure.
The resistance of the structure is modeled by a

mechanical model for punching failure, as presented

in Schubert et al. (2005). For most galleries of this

type, punching failure is the predominant failure

mode. It is worth noting that in the original design,
the punching failure mode was not considered, since

it was not included in codes and standards at the

time. The gallery roof is built of reinforced concrete
and has a protective cushion layer on top of the

concrete structure, a compound of sand and gravel,

which mitigates so-called hard impacts and reduces

the energy transmitted between the rock and the
concrete. The concrete slab has a thickness of 50 cm

and the cushion layer has an average thickness of

75 cm. At the impact of the rock mass, the

protective cushion layer is plastically deformed,
thus dissipating energy of the impact, and distri-

butes the load to a larger area of the concrete slab.

According to Bucher (1997), the influence of the
dynamic impact on the stiffness of the structure can

be neglected. Hence, it is possible to separate

analysis of the structural behavior from the analysis

of the impact. A procedure for the calculation of
static equivalent loads from the dynamic structural

analysis of the impact has been formulated and

verified in tests by Montani (1996). With this
equivalent load approach, Pr(Fje, v), the conditional

probability of a gallery failure due to punching can

be calculated for given deterministic values of the

energy e and the volume v of the rock, using
structural reliability analysis (SRA) (Madsen et al.

1986). This accounts for all uncertainties in the

modeling of the gallery performance. The details
of the probabilistic modeling are given in Schubert
et al. (2005).

By noting that Pr(Fje, v)�Pr(R5ejv)�FR(ejv),
we can assess the distribution of the gallery capacity
in terms of the impact energy for given volumes v as

fR(e½v)�
dPr(F½e; v)

de
: (19)

Figure 9 shows fR(ejv) for given rock-fall volumes of
v�0.5 m3 and v�15 m3 together with the PDF of the
rock-fall energy given these volumes fE(ejv). Hereby
the marginal annual probability of the rock-fall
volume exceeding 0.5 m3 is equal to 1�FV(v�
0.5 m3)�0.72 year�1 and that exceeding 15 m3 is
1�FV(v�15 m3)�3.5 �10�4 year�1. The large var-
iance of fR(ejv) depicted in Figure 9 reflects the large
uncertainties in the modeling of the punching failure
mode.

The total annual failure probability Pr(F ) is then
assessed by calculating the expected value of the

Table 2. Summary of the geologist’s expert judgment characterized by Lognormal distributions of the frequency for the

different rock volume ranges.

Estimated frequency for range i:Zi (year
�1) (LN distributed)

Volume
range (m3)

Representative
volume (m3) Mean c.o.v. Parameters

Rock-fall 0.0�0.5 0.2 4.0 0.5 l1�1.28 z1�0.47

Rock-fall�block-fall 0.5�5.0 1.5 0.25 0.8 l2�1.63 z2�0.70
Block-fall 5.0�10.0 7 0.025 0.8 l3��3.93 z3�0.70
Block-fall�landslide 10�1000 100 0.004 0.8 l4��5. z4�0.70

Table 3. Moments of the bi-normal distribution of the
parameters of HV (v½u):

Parameter Mean Covariance

/

u�
a

b

� �
/

0:302
1:21

� �
/

9:23 10�3 3:59 10�3

3:59 10�3 1:63 10�2

� �

Eθ [HV(v)]

95% quantile

5% quantile

H
V
(v

) 
[ 

yr
-1

] 

101

100

10-1

10-2

10-3

10-4

Rock volume v [m3]
10-1 100 101 102

Figure 8. Exceedance frequency HV and the 5% and 95%
quantiles with respect to the epistemic uncertainty repre-
sented by f(u).
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probability of failure with respect to the energy and
the volume of the rocks:

Pr(F)�g
�

0

g
�

0

Pr(Fje; v)fE(e½v)fV(v) de dv: (20)

The annual probability of failure of the protection
structure, calculated from Equation (20), is Pr(F)�
6.3 �10�3 year�1. It is observed that the ori-
ginal design load (a design energy of 1717 kJ) has
an annual exceedance probability of only 3.4 �10�4

year�1, a highly conservative assumption. However,
as punching failure was not considered in the original
design, the structure almost certainly fails at that
design load. This explains why the probability of
failure is higher than the probability of occurrence of
the design load.

The decision maker, in this case the road autho-
rities, must now decide if the probability of failure of
the protection structure is acceptable. To this end, the
system robustness and the consequences associated
with these events must be evaluated to compute the
risk associated with a failure of the protection gallery.
These risks must then be compared with the cost of
improving the capacity of the structure. If a strength-
ening of the structure is found not to be economical,
then the fatality risk for people using the road must
be compared with societal acceptance criteria to
determine acceptability of road safety (Rackwitz
2000).

Concluding remarks

Rock-fall is a highly site-specific phenomenon, which
involves many parameters that vary in space and
time. It is not possible to determine all these para-
meters, and rock-fall assessment must therefore be
based on simplified physical models, empirical mod-
els and expert judgment. Inevitably, the resulting
rock-fall estimates are subject to large uncertainties.
To ensure rational decision-making, it is essential that

these uncertainties be explicitly addressed by the
models within a single framework to ensure consis-
tency. In this paper, we outlined a framework that
can deal with the various sources of uncertainty.
Existing procedures for rock-fall assessment typically
account for some of the uncertainties, but in parti-
cular, epistemic uncertainties (i.e. uncertainties re-
lated to limited knowledge) are commonly neglected.
The first example demonstrates how the explicit
modeling of epistemic uncertainties facilitates the
combination of different models and observations
using Bayesian analysis into a single rock-fall model.
Such an approach enables a consistent multi-scale
approach to modeling rock-fall hazards, which makes
maximum use of all available information from
different sources and at different degrees of detailing.

In this paper, the focus is on the representation of
uncertainties in the modeling of rock-fall hazard and
the performance of protection structures. Ultimately,
the models presented here serve to identify the
optimal set of actions, which is the one that max-
imizes the expected utility while ensuring compliance
with relevant risk acceptance criteria. As indicated by
the second example presented, the uncertainty
models, combined with mathematical tools such
as structural reliability analysis, facilitate such an
optimization. However, for certain risk mitigation
actions, more refined hazard models will be required.
As an example, when considering organizational
measures, such as temporary closure of roads or
monitoring of rock-fall activity, the model must
address the temporal variability of the rock-fall
activity.

The examples presented in this paper are based on
certain assumptions that may not hold for all
applications. In particular, approximating rock-falls
by a Poisson process will not always be a reasonable
assumption because several rocks can be detached
during a single event. A more realistic modeling may
include the distribution of the number of detached
rocks, conditional on the event of detachment.

1000100101 10000
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6.0-3

4.0-3

2.0-3

0.0

Energy e [kJ]
1 10 100 1000 10000

fE(e | v = 0.5m3)
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f
R
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f
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Figure 9. Probability density functions for the maximal annual energy and the capacity of the gallery given the rock-fall
volumes (v�0.5 m3 (left) and v�15 m3 (right)).
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However, the suitability of any assumption depends
strongly on the decision problem, i.e. on the con-
sidered risk reduction measures. Different models are
thus required for different problems and the frame-
work presented in this paper should be seen as a
guideline that must be adjusted to the specific
decision problem at hand. In this context, it is highly
relevant that the engineer in charge understands the
assumptions underlying the applied models. We hope
that this paper contributes to this understanding.
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