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ABSTRACT: To facilitate the estimation of the reliability of deteriorating structural systems 

conditional on inspection and monitoring results, we develop a modeling and computational framework 

based on Bayesian Networks (BNs). The framework enables accounting for dependence among 

deterioration at different system components, for dependence due to the structural system behavior, but 

also dependence introduced by information obtained on selected parts of the system, which effects the 

reliability estimates of other system parts. The proposed model and algorithm is applicable to aging 

structures, including offshore platforms, bridges, ships, aircraft structures, considering deterioration 

process such as corrosion and fatigue. To efficiently model dependence among component 

deterioration states, a hierarchical structure is defined. This structure facilitates the solution of the 

Bayesian model updating of the components in parallel. For illustration, a Daniels system subjected to 

fatigue is used as a case study. The computational efficiency of the proposed algorithm is compared 

with that of Markov Chain Monte Carlo and found to be orders of magnitude higher. 

 

1. INTRODUCTION 

Deterioration processes are present in all type of 

engineering structures, reducing their service life 

and affecting the safety of the environment, 

people and the structure itself. For this reason, 

significant resources have been invested to 

identify, quantify, mitigate, model and prevent 

the deterioration processes in structures. 

Predictive deterioration models are typically 

associated with significant uncertainty, and 

ideally they are used probabilistically. Such 

probabilistic deterioration models are available 

mainly at the structural component level. 

However, deterioration at different locations in a 

structural system is typically correlated, and 

system considerations should be made (Straub 

and Faber 2005). Models have been proposed to 

deal with the complexity of probabilistically 

modeling the deterioration of large systems, and 

they were applied to different types of 

applications (e.g. Guedes Soares and Garbatov 

1997, Kang and Song 2010, Straub 2011, Luque 

et.al 2014). Most of these models still present 

challenges related to their computational 

complexity, especially when the number of 

system components and available observations 

increase. 

During recent years, Bayesian models have 

been used to represent deterioration processes in 

structures (e.g. vessels, offshore platforms, 

bridges, tunnels) in a probabilistic manner. One 

of the main advantages of the Bayesian approach 

is the possibility of updating the estimations and 

model parameters as new observations become 

available. In the case of deterioration processes, 

observations of the current condition of the 

structure are easily obtained from inspections 

and monitoring systems. As a consequence, 

Bayesian models are used to quantify the impact 

of these observations on the reliability of the 

structure, to facilitate maintenance decisions and 

the planning of future inspections (e.g. Straub 

and Faber 2005, Luque and Straub 2013).  
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Recently, Bayesian Networks (BNs) have 

become popular for Bayesian modeling in 

engineering risk analysis due to their intuitive 

nature and their ability to handle many 

dependent random variables (Jensen 2001). BNs 

are a powerful framework to graphically describe 

complex probabilistic problems and efficiently 

perform Bayesian inference. The graphical 

structure of the BN is formed by nodes and 

directed links. The former represent random or 

deterministic variables, and the latter the 

conditional dependencies among nodes. For 

example, if the amount of deterioration 𝐷  is 

modeled as a function of an external random 

factor 𝑆 (e.g. load) and an internal parameter 𝑀 

(e.g. material property), then the corresponding 

BN has three nodes representing each random 

variable and two directed links pointing from 𝑆 

and 𝑀 towards 𝐷. Additionally, if an observation 

𝑍  of the deterioration state 𝐷  is potentially 

available (e.g. from an inspection), this would be 

modeled as a child of 𝐷 (Figure 1). 

Many engineering applications, including 

deterioration modeling, involve random 

processes BN, and nodes are a function of time 

or space. In this case, the BN is conveniently 

composed of a chain of sub-BNs. This type of 

BN is termed dynamic Bayesian network (DBN). 

Extending the previous BN example, we can 

model the deterioration 𝐷𝑡 at each time step 𝑡 as 

function of a time-dependent external factor 𝑆𝑡 

and a time-independent internal factor 𝑀  with 

observations 𝑍𝑡 , where 𝑡 = 1, … , 𝑇  (Figure 2). 

Each vertical “slice” of the DBN is a sub-BN 

that corresponds to a particular time step in the 

analysis. 

In this paper, a DBN at the component level 

is extended to the system level and an algorithm 

is provided to efficiently assess the reliability of 

a deteriorating system when partial observations 

of its condition are available. In the following 

section, the concept of dynamic Bayesian 

networks and its application to efficiently model 

component deterioration are presented. 

Thereafter, in Section 3, the model is extended to 

represent the complete structural system. Finally, 

section 4 presents a case study. 

 

 

Figure 1. BN deterioration model example. 

 

 

Figure 2. DBN deterioration model example. 

2. DYNAMIC BAYESIAN MODEL OF 

COMPONENT DETERIORATION 

The DBN model developed in Straub (2009) is 

used to describe the deterioration of components. 

This model includes the following elements: 

 Time-invariant model parameters 𝛉 = 𝛉0 =
⋯ = 𝛉𝑡. 

 Time-variant parameters model 𝛚0, ..., 𝛚𝑡 . 
 Deterioration model: A parametric function ℎ 

for describing the deterioration amount 𝐷 as 

a function of 𝑡 , 𝛉 , 𝛚0 , ..., 𝛚𝑡  and the 

deterioration at the previous time 𝐷𝑡−1, i.e. 

 𝐷𝑡 = 𝐷(𝑡) = ℎ(𝑡, 𝐷t−1, 𝛉, 𝛚1, . . . , 𝛚𝑡) (1) 

 Observations: Information on the condition 

of a model parameter or deterioration 𝐷𝑡 may 

be available (e.g. from inspections or 

monitoring systems). These observations are 

denoted by 𝑍𝛉,𝑡, 𝑍𝛚,𝑡, and 𝑍𝐷,𝑡, depending on 

the random variables to which they relate. 

Figure 3 shows the generic DBN 

deterioration model for a single component. Each 
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set {𝛉𝑡, 𝛚𝑡 , 𝐷𝑡, 𝑍𝛉,𝑡, 𝑍𝛚,𝑡, 𝑍𝐷,𝑡}  represents a time 

step 𝑡 of the DBN. 

 

 

Figure 3. Generic DBN of the deterioration model at 

the component level (following Straub 2009). 

 

To estimate the posterior distribution of the 

random variables in the model given a set of 

observations, several methods have been 

developed. For models with continuous or mixed 

(i.e. discrete and continuous) random variables, 

sampling-based methods are available. The most 

popular among these belong to the family of 

Markov Chain Monte Carlo (MCMC) methods. 

For BNs, MCMC using Gibb’s sampler is 

particularly effective (Gamerman and Lopes 

2006). Nevertheless, the computational cost of 

MCMC increases considerably as the number of 

observations included in the model increases 

and/or the probability of failure of interest 

decreases. This motivates the use of exact 

inference algorithms with discretized random 

variables, whose performance does not 

deteriorate with increasing amount of 

observation and which is independent of the 

magnitude of the probabilities of interest. 

However, the approach requires that all 

continuous random variables entering the 

deterioration model are discretized. For a 

description of the applied discretization approach 

see (Straub 2009).  

3. BAYESIAN NETWORK MODEL OF 

SYSTEM DETERIORATION 

One challenging aspect of modeling systems is 

the modeling and representation of the 

interrelationship among its components and the 

common factors that affect their condition. Only 

a limited number of investigations of the 

dependence among component deterioration 

states can be found in the literature (e.g. Maes et 

al. 2008, Vrouwenvelder 2004). The two most 

common mathematical representations of such 

dependence are hierarchical models and random 

field models. The latter are suitable for systems 

where dependence among component 

deterioration is a function of the geometrical 

location. Hierarchical models are suitable where 

the dependence among component deterioration 

depends on common features and common 

influencing factors. They have computational 

advantages over random fields, in particular in 

the context of DBN modeling.  

3.1. Hierarchical models 

In hierarchical models, multiple levels are used 

to group element properties (Raudenbush and 

Bryk 2008). The random variables within a level 

are interrelated through common influencing 

parameters, which are modeled at a higher level 

in the hierarchy. The random variables at the 

highest level are known as hyperparameters. As a 

simple example, Figure 4 shows a BN 

representing a set of random variables 

{𝑉1, 𝑉2, … , 𝑉𝑛} with common mean value 𝛼 . As 

long as the value of 𝛼 is uncertain, the random 

variables {𝑉1, 𝑉2, … , 𝑉𝑛}  are statistically 

dependent. The correlation between 𝑉𝑖  and 𝑉𝑗 

will depend on the distribution parameters. If the 

random variables 𝑉𝑖  conditional on 𝛼 all have 

standard deviation 𝜎𝑉, and 𝛼 has mean value 𝛼0 

and standard deviation 𝜎0 , then the linear 

correlation between any pair 𝑉𝑖  and 𝑉𝑗 , 𝑖 ≠ 𝑗, is  

𝜌(𝑉𝑖, 𝑉𝑗) = 𝜎0
2 (𝜎0

2 + 𝜎𝑉
2)⁄ . 

 

 

Figure 4. Hierarchical BN with a hyperparameter 𝛼. 
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3.2. Correlation among components 

In many instances, influencing parameters are 

not modeled explicitly, as in the example above, 

but instead models of the correlation among 

components are available. As long as the 

correlation among any pair of components is the 

same (equi-correlation) or if the correlation 

structure follows the Dunnett-Sobel class, such 

correlation can be represented by a hierarchical 

model (see e.g. Thoft-Christensen and Murotsu 

1986, Kang and Song 2009). Further details are 

presented in Luque and Straub (2015). 

3.3. DBN model of the system 

The hierarchical modeling approach is applied to 

model dependence among component 

deterioration in structures. Extending the DBN 

model of section 2 for single components, a set 

of hyperparameters 𝛂 = [𝛼𝛉, 𝛼𝛚, 𝛼𝐷0
]

𝑇
 is 

defined.  In the system model, all components 

are connected through these hyperparameters 𝛂 

(Figure 5). All random variables in the DBN are 

now indexed by the component number 𝑖 and the 

time step 𝑡 , i.e. 𝐷3,10  is the damage of 

component 3 at time step 10. 

 

 

Figure 5. DBN model of the structural system 

deterioration. 

 

In the full system model DBN of Figure 5, 

the binary random variable 𝐸𝐶,𝑖,𝑡  represents the 

condition (i.e. 𝐸𝐶,𝑖,𝑡 = 0: safe, 𝐸𝐶,𝑖,𝑡 = 1: fail) of 

component 𝑖  at time step 𝑡 . 𝐸𝐶,𝑖,𝑡  is a (possibly 

probabilistic) function of the deterioration state 

𝐷𝑖,𝑡. The binary random variable 𝐸𝑆,𝑡  represents 

the system condition (i.e. 𝐸𝑆,𝑡 = 0: safe, 𝐸𝑆,𝑡 =
1: fail) as a function of all component conditions. 

The relation between the system condition 𝐸𝑆,𝑡 

and the condition of its components 𝐸𝐶,𝑖,𝑡 , 𝑖 =
1, … , 𝑁 , is quantified by the probability of 

system failure given the conditions of its 

components. To obtain these conditional 

probabilities, a probabilistic model of the 

structural system is necessary and structural 

reliability computations must be performed in a 

pre-processing step.  

3.4. Inference algorithm 

To perform inference with the system DBN, i.e. 

to compute the probability of component and 

system failure given inspection and monitoring 

results, the forward-backward algorithm 

presented in Straub (2009) for exact inference is 

extended to the system level. It solves the 

filtering problem, i.e. it computes the posterior 

distribution of the random variables 𝛂, 𝛉𝑖 , 𝛚𝑖,𝑡 , 

𝐷𝑖,𝑡 , 𝐸𝐶,𝑖,𝑡  and 𝐸𝑆,𝑡  for all 𝑖 = 1, … , 𝑁  given the 

observations up to time 𝑡 . The algorithm is 

formulated in a recursive manner for each time 

step and exploits the property of the hierarchical 

model that all components are statistically 

independent for given hyperparameters. The 

algorithm is described in detail in Luque and 

Straub (2015). 

4. NUMERICAL INVESTIGATION 

The numerical example serves to investigate and 

illustrate the workings of the proposed model 

and inference algorithm. For validation purposes, 

the results obtained with the exact inference 

algorithm are compared to those obtained with 

two alternative methods: 1) Monte Carlo 

simulation (MCS) for the case without 

observations, and 2) MCMC for the cases with 

and without observations. The MCMC 

computations are implemented with OpenBUGS 

(Lunn et.al 2009). 
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4.1. Structural system 

For illustration purposes, we consider a Daniels 

system (Daniels 1945), which consists of a set of 

𝑁 components with independent and identically 

distributed capacities 𝑅𝑖  for 𝑖 = 1, … , 𝑁  and the 

system is affected by a random load 𝐿 (Figure 6).  

 

 

Figure 6. Daniels system. 

 

Prior to the application of the load, each 

component in the system is in one of two 

possible states: a) full capacity, or b) zero 

capacity due to a fatigue failure. For a discussion 

of this model see Straub and Der Kiureghian 

(2011). 

4.2. Deterioration model 

The system components are subject to fatigue 

deterioration, which - for illustration purposes - 

is modeled by the simple fracture-mechanics-

based crack growth model presented e.g. in 

(Ditlevsen and Madsen 1996). It uses Paris' law 

to describe the growth of the crack length 𝐷𝑖 at 

component 𝑖: 

 
d𝐷𝑖(𝑛)

d𝑛
= 𝐶𝑖[∆𝑆𝑒,𝑖√𝜋𝐷𝑖(𝑛)]

𝑀𝑖
 (2) 

where 𝑛 =  number of stress cycles; ∆𝑆𝑒,𝑖 =

(E[∆𝑆𝑖
𝑀])

1

𝑀 = equivalent stress range per cycle; 

E[∙]  is the expectation operator; ∆𝑆𝑖 =  stress 

range per cycle; 𝐶𝑖, 𝑀𝑖 = empirically determined 

material parameters. The long term distribution 

of the fatigue stress range ∆𝑆𝑖 follows a Weibull 

distribution with scale and shape parameters 𝐾𝑖 

and 𝜆𝑖 (Madsen 1997), and ∆𝑆𝑒,𝑖 is given by: 

 ∆𝑆𝑒,𝑖 = 𝐾𝑖Γ (1 +
𝑀𝑖

𝜆𝑖
)

1

𝑀𝑖 (3) 

where Γ(∙)  is the Gamma function. Using the 

initial condition 𝐷𝑖(𝑛 = 0) = 𝐷𝑖,0, the following 

analytical solution for the crack length after 𝑛 

stress cycles can be obtained from Eq. (2) as: 

𝐷𝑖(𝑛) = [(1 −
𝑀𝑖

2
) 𝐶𝑖∆𝑆𝑒,𝑖

𝑀𝑖𝜋
𝑀𝑖
2 𝑛 + 𝐷

𝑖,0

1−
𝑀𝑖
2 ]

(1−
𝑀𝑖
2

)
−1

 (4) 

4.3. Observations and probability of detection 

In this example, we only consider observations 

of the deterioration state through inspections, e.g. 

visual inspections or non-destructive evaluation 

of the fatigue hot spots. The observation 𝑍𝐷,𝑖,𝑡 is 

a binary random variable with possible states “no 

crack detection” (i.e. 𝑍𝐷,𝑖,𝑡 = 0 ), and “crack 

detection” (i.e. 𝑍𝐷,𝑖,𝑡 = 1 ). The inspection is 

defined by an exponential probability of 

detection (POD) model as a function of the crack 

length 𝐷 and a deterministic parameter 𝜉: 

Pr(𝑍 = 1|𝐷) = POD(𝐷) = 1 − exp (−
𝐷

𝜉
) (5) 

4.4. Relation between the system condition and 

its components 

Failure of the 𝑖-th component after 𝑡 time steps 

(equivalent to 𝑛 = 𝑛(𝑡)  stress cycles) occurs 

when the crack length exceeds the critical value 

𝐷𝑐 . It is expressed through the limit state 

function 𝑔𝑖,𝑡: 

 𝑔𝑖,𝑡 = 𝐷𝑐 − 𝐷𝑖,𝑡 = 𝐷𝑐 − 𝐷𝑖(𝑛) (6) 

The performance of the 𝑖-th component at 

time step 𝑡 , represented through 𝐸𝐶,𝑖,𝑡 , is 

characterized by the failure event (i.e. 𝑔𝑖,𝑡 ≤ 0) 

and the survival event (i.e. 𝑔𝑖,𝑡 > 0 ). If the 

component has not failed, it is assumed to have 

its full capacity.  

In a Daniels system, due to the 

exchangeability of the components, the 

probability of having a system failure at time 

step 𝑡 is a function only of the total number of 

component failures. To avoid a convergent 

definition of the total number of component 

failures as a child node of all component 

conditions 𝐸𝐶,𝑖,𝑡 , 𝑖 = 1, … , 𝑁 , the cumulative 

EI =  

L 

R1 R2 R3 … RN 
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number of component failures up to component 

𝑖, 𝑁𝑓,1:𝑖,𝑡 is defined as follows: 

𝑁𝑓,1:𝑖,𝑡 = ∑ 𝐸𝐶,𝑗,𝑡

𝑖

𝑗=1

= 𝐸𝐶,𝑖,𝑡 + 𝑁𝑓,1:𝑖−1,𝑡 (7) 

With this recursive definition, the total 

number of component failures, 𝑁𝑓,1:𝑁,𝑡, does not 

have a convergent relation anymore. The 

complete DBN of the Daniels system is 

presented in Figure 7.  

 

 

Figure 7. DBN of the Daniels system 

 

The conditional probability of failure of the 

system given 𝑗 failed components is given by: 

Pr(𝐸𝑆,𝑡 = 1|𝑁𝑓,1:𝑁,𝑡 = 𝑗) = Pr (∑ 𝑅𝑖

𝑛−𝑗

𝑖=1

− 𝐿 ≤ 0) (8) 

4.5. Probabilistic model for fatigue deterioration 

A Daniels system with 𝑁 = 10 components and 

𝑇 = 100  time steps is investigated. The 

probabilistic model for the fatigue deterioration 

is summarized in Table 1 and the corresponding 

discretization scheme is presented in Table 2. 

Each time step corresponds to Δ𝑛 = 105 fatigue 

stress cycles. The correlation of fatigue 

parameters among components are 𝜌𝐷0
= 0.5 , 

𝜌𝑀 = 0.6, and 𝜌𝐾 = 0.8.  

The load 𝐿  is lognormal distributed with 

coefficient of variation 𝛿𝐿 = 0.25, the capacities 

𝑅𝑖 , 𝑖 = 1, … ,10 , are independent and normal 

distributed with 𝛿𝑅 = 0.15 and the mean safety 

factor is 𝑛𝜇𝑅𝑖
𝜇𝐿⁄ = 2.9 . The resulting 

conditional probability of failure of the system 

given the 𝑗  failed components is computed 

according to Eq. (8). 

Table 1. Probabilistic model for fatigue deterioration 

in the Daniels system. 

RV Distribution Mean  StDev 

𝛼𝐷0,𝐾,𝑀 Normal 0 1 

𝐷0,𝑖 (mm) Exponential 1 1 

𝑀0,𝑖 Normal 3.5 0.3 

𝑀𝑡,𝑖 𝑀𝑡,𝑖 = 𝑀𝑡−1,𝑖  

𝑙𝑛 𝐶𝑡,𝑖 𝑙𝑛 𝐶𝑡,𝑖 = −3.34𝑀𝑡,𝑖 − 15.84 

𝐾0,𝑖 Lognormal 1.6 0.22 

𝐾𝑡,𝑖 𝐾𝑡,𝑖 = 𝐾𝑡−1,𝑖 

𝜉 (mm) Deterministic 10  

RV: Random variable. 

Table 2. Discretization scheme 

RV Interval boundaries 

𝛼𝐷0,𝐾,𝑀 𝛷−1(0: 0.2: 1) 

𝐷 
0, 𝑒𝑥𝑝 [𝑙𝑛(0.01) :

𝑙𝑛(50) − 𝑙𝑛(0.01)

78
: 𝑙𝑛(50)] , ∞ 

𝑀 
0, 𝑙𝑛 [𝑒𝑥𝑝(2.2) :

𝑒𝑥𝑝(4.8) − 𝑒𝑥𝑝(2.2)

18
: 𝑒𝑥𝑝(4.8)] , ∞ 

𝐾 
0, {0.86 ∶

2.83 − 0.86

18
: 2.83} , ∞ 

4.6. Results 

A good agreement among the three methods is 

observed at the component level. For the 

unconditional case (i.e. without observations), 

the reliability index 𝛽  calculated with the 

proposed inference algorithm is compared to the 

results obtained using MCS and MCMC for a 

single component (Figure 8) and the system 

(Figure 9). The reliability index is defined as 

𝛽 = −Φ−1[Pr(𝐸 = 𝑓𝑎𝑖𝑙)] , with Φ−1  being the 

inverse standard normal CDF. 

At the system level, the difference between 

the probability estimates from the proposed DBN 

model and the Monte Carlo methods is due to the 

discretization of the hyperparameters 𝛂  in the 

DBN. The relatively coarse discretization of 𝛼𝐷0
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𝛼𝑀 , and 𝛼𝐾  leads to an underestimation of the 

correlation in the fatigue performance among 

components. This in turn leads to an 

overestimation of the system reliability in a 

redundant system, such as the Daniels system. 

 

 

Figure 8. Reliability index 𝛽𝐶 of a single component. 

 

 

Figure 9. Reliability index 𝛽𝑆 of the Daniels system. 

 

The relevant case for the DBN model is the 

conditional case, i.e. including inspections 

results. It is assumed that one component is 

inspected every 106  cycles, i.e. after every 10 

time steps, without detecting any crack. The 

updated reliability index of the inspected 

component is considerably larger with respect to 

the unconditional case (Figure 10). The 

observation also affects the non-inspected 

components, due to the correlation defined by the 

hyperparameters (Figure 11). The reliability of 

the system is affected by the reliability of both 

the inspected and the non-inspected components 

(Figure 12). By inspection only one component 

every 10 time steps, and assuming that the 

inspections always result in a no-detection, the 

system reliability at the end of the service life 

increases from 1.1 to 2.1. 

In Figure 10 to Figure 12, the results of the 

DBN model are compared with results obtained 

by MCMC for verification. The results from two 

algorithms match well, and the slight differences 

observed in the unconditional case (Figure 9) are 

not seen here. 

 

 

Figure 10. Reliability index 𝛽𝐶  of the inspected 

component after no detection of a crack at 

inspections every 10 time steps. 

 

 

Figure 11. Reliability index 𝛽𝐶  of a non-inspected 

component given no-detection of the inspected 

component. 
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Figure 12. Reliability index 𝛽𝑆 of the system after no 

detection of a crack in all inspection times. 

5. CONCLUDING REMARKS 

A hierarchical Bayesian network to model the 

deterioration process in structural systems is 

proposed. The model includes the spatial and 

temporal relation among the system components, 

in order to assess the effect of (partial) 

observations of system components on the 

probability of system failure. An efficient 

algorithm for performing inference and 

calculating reliability estimates at the system 

level is provided. The accuracy of the model and 

the algorithm is tested using a Daniels system as 

a case study. The results are compared with two 

alternative methods (MCS and MCMC) showing 

good agreement and considerably smaller 

computation time.  

A main advantage of the proposed exact 

inference algorithm is its computational 

complexity. The system deterioration model 

presented in Figure 5 can be solved with almost 

linear complexity with respect to the time steps 

and the number of components. This property 

can be affected by the convergent links between 

the system and components, but in some cases 

this can be simplified as shown for the Daniels 

system. Additionally, the computation time is not 

affected by the number of observations used to 

update the model or the order of magnitude of 

the probability of failure. The main limitation of 

the approach is related to the discretization of the 

random variables. Depending on the size of the 

CPTs used for each node of the network, the 

algorithm can require considerable amount of 

memory resources. This requirement becomes 

more relevant if the number of hyperparameters 

or the refinement of their discretization 

increases.  

In terms of absolute total computation time, 

for the presented example, the exact inference 

algorithm takes at least one order of magnitude 

less than the time needed for MCMC using 

OpenBUGS. Although the comparison of the 

total time is not necessarily fair (due to the usage 

of different programs to solve the two methods), 

the difference in the complexity is noticeable. 

MCMC quickly becomes intractable when the 

number of components or observations increases 

whereas the computation time for the exact 

inference algorithm is almost proportional to the 

number of components and it is independent of 

the number of observations included in the 

model. Additionally, the number of samples 

MCMC needs to reasonably estimate the 

probability of failure of the system is inversely 

proportional to the magnitude of that probability 

whereas in the exact inference algorithm the 

computation time is independent of that 

probability. 

In conclusion, the efficiency and robustness 

of the proposed algorithm make it suitable to 

planning and optimizing monitoring, inspection 

and maintenance activities in an integral manner 

for structural systems. Such an approach was 

previously hindered by the computational 

limitations of sampling-based inference 

algorithms.  
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