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Abstract 
This thesis discusses possibilities to enhance the performance of modern integrated navigation 
systems that process inertial sensor measurements, GNSS measurements and observations of other 
(innovative) aiding methods. The focus is on the statistical consistency of the navigation solution, that 
is the coincidence of the true and the predicted navigation error statistics, which is an important 
precondition for the reliable functioning of innovation based fault detection and isolation methods. 
The tradeoff between consistency on the one hand, coming along with higher computational effort, 
and efficiency, required for the implementation on embedded systems, is a central point of the 
discussion. Typical navigation errors like IMU errors, gravity model errors, random vibration, GPS 
satellite clock and orbit errors, ionosphere and troposphere delays, receiver clock errors and receiver 
noise are characterized, and physically motivated models are identified. It is shown how these models 
can be efficiently integrated into the navigation filter, distinguishing between bias-like errors to be 
estimated and noise-like errors to be merely considered in a statistical sense. A further advantage of 
the error models is a simplified and less heuristic filter tuning process. Other measures to increase the 
consistency, which are the correct initialization of the filter on-ground and in-flight and the correct 
treatment of delayed out-of-sequence measurements are thoroughly discussed. Inertial navigation 
algorithms with low numerical errors even in unfavorable dynamical situations are prerequisite for 
statistical consistency, motivating the comparison of different algorithms for integrating IMU 
regarding robustness against noise and vibration. The thesis is completed with a method for the 
analytical calculation of the steady-state navigation error covariance for online plausibility tests and a 
mathematical analysis of filter destabilization mechanisms. 

In dieser Arbeit werden Möglichkeiten zur Verbesserung der Leistung moderner integrierter Naviga-
tionssysteme, die Trägheitssensormessdaten, Satellitennavigationsmessungen und Beobachtungen an-
derer (innovativer) Stützverfahren verarbeiten, diskutiert. Das Hauptaugenmerk liegt dabei auf der 
statistischen Konsistenz der Navigationslösung, sprich der Übereinstimmung von tatsächlicher und 
vorhergesagter Fehlerstatistik. Diese ist ausschlaggebend für die zuverlässige Funktion von innovati-
onsbasierten Fehlererkennungsmethoden. Dabei steht die Abwägung zwischen Konsistenz einerseits, 
verbunden mit höherem Rechenaufwand, und Effizienz andererseits, notwendig für die Anwendung 
auf eingebetteten Systemen, im Mittelpunkt der Diskussion. Typische Navigationsfehler wie Träg-
heitssensormessfehler, Erdschweremodellierungsfehler, Vibrationen, GPS Satellitenuhren- und Posi-
tionsfehler, Ionosphären- und Troposphärenverzögerungen, Empfängeruhrenfehler und Empfänger-
messrauschen werden charakterisiert und physikalisch motivierte Modelle dafür hergeleitet. Es wird 
aufgezeigt, wie diese Modelle auf effiziente Weise in den Navigationsfilter integriert werden können. 
Dabei wird unterschieden zwischen Bias-Fehlern, die geschätzt werden können, und Rausch-Fehlern, 
die lediglich statistisch berücksichtigt werden. Ein weiterer Vorteil der Modelle ist, dass das Abstim-
men des Filters vereinfacht wird und damit weniger heuristisch ist. Andere Maßnahmen zur Erhöhung 
der Konsistenz wie die korrekte Initialisierung des Filters am Boden und im Flug und die richtige 
Behandlung von verspäteten und aus der Reihe eintreffenden Messungen werden gründlich bespro-
chen. Voraussetzung für statistische Konsistenz sind Trägheitsnavigationsalgorithmen, die selbst un-
ter ungünstigen Umständen niedrige numerische Fehler aufweisen. Daher werden verschiedene Algo-
rithmen für integrierende Trägheitssensoren bezüglich ihrer Robustheit gegenüber Rauschen und Vib-
rationen untersucht. Die Arbeit wird mit einer Methode zur analytischen Berechnung der stationären 
Navigationsfehlerkovarianz z.B. für Plausibilitätstests und einer mathematischen Untersuchung, unter 
welchen Umständen ein Filter instabil werden kann, abgerundet. 
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1 Introduction 

1.1 Motivation 
The thesis on hand deals with aspects related to integrated navigation systems for aerospace 
applications, that is with the accurate and robust estimation of position, velocity and orientation of an 
aircraft for flight guidance and control purposes. 
The traditional field of navigation is presumed to be fully understood and the comprehensive theory 
is well established. Conventional navigation systems are technically mature and are widely used in all 
kinds of aircraft, for example civil transport aircraft, military aircraft and high-end general aviation 
aircraft like modern business jets. Conventional systems are predominantly freely running navigation 
grade inertial navigation systems (INS), which are solely aided by barometric height measurements to 
account for the inherently unstable height channel. Although GPS has evolved to a generally accepted 
means of navigation for safety critical applications by now, it is not before the two-thousands that 
first certified global navigation satellite navigation (GNSS) aided inertial navigation systems have been 
developed and applied in safety critical applications. Standalone GNSS receivers for area navigation, 
which are augmented by satellite based augmentation systems (SBAS), however, have already found 
their way into aeronautics and GNSS will replace the traditional terrestrial navigation aids in the 
medium term. 
It is thus legitimate to ask how this thesis can contribute to the elaborated theory of navigation about 
which everything seems to have already been said. Convincing reasons will be given shortly. 
In the last two decades new sensors that are promising for the purpose of navigation came on the 
market. Especially lower cost microelectromechanical (MEMS) accelerometers and gyroscopes have 
achieved the required maturity in the meantime to be seriously applied in small attitude and heading 
reference (AHRS) and navigation systems. The performance of the latest MEMS gyroscopes can 
indeed keep up with lower grade fiber optical gyroscopes. Moreover, multi-frequency multi-
constellation GNSS receivers with more than hundred tracking channels are available, which are rarely 
larger than two credit cards. Small, powerful embedded computing systems with low power 
consumption enable more complex algorithms. Together with the new sensors and the modern 
computing modules, new innovative aiding methods like for example image based navigation or new 
ranging methods using small laser scanners or lidar came up. This recent development opens up a 
multitude of new fields of application like unmanned aerial vehicles for civil and military applications 
or low-cost navigation systems and AHRS for low-end general aviation aircraft. 
The central fusion and assessment of the single measurements with respect to their integrity gain in 
importance and are probably more important than ever. Therefore, it is worth to have once again a 
closer look on the core algorithms of an integrated navigation system and the corresponding error 
estimation techniques. 
The thesis intends to contribute to the better understanding of the principal sensor and modeling 
error characteristics, their impact on the navigation solution error and the corresponding covariance 
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estimation of the navigation filter. The focus is to a smaller extent on the enhancement of the accuracy 
of the navigation solution in its classical sense but rather on the improvement of its statistical 
consistency. The navigation filter is said to be statistically consistent if the estimated navigation state is 
equal to the expected value of the true navigation state and the predicted covariance corresponds to 
the covariance of the true navigation state. The statistically correct prediction of the navigation state 
error covariance is prerequisite for the correct assessment of the navigation solution, which in turn is 
crucial for the reliable detection and isolation of measurement failures. 
Fault detection and isolation by an integrity monitor is an indispensable part of an integrated 
navigation system. Fault detection methods often judge the integrity of measurements by any form of 
innovation testing (for example the simple chi-square test). For this, the innovation covariance 
containing the state error covariance as well as the measurement error covariance is required as 
accurate as possible. The better the nominal system inherent errors are understood and represented 
in the navigation filter, the easier and the earlier even smaller exceptional faults can be detected. 
The applications that make use of the outputs of the navigation computer like flight guidance and 
control rely on the correctness and statistical consistency of the output values and the corresponding 
uncertainty information. The flight management in unmanned aerial systems, for example, decides 
based on the navigation state estimate covariance whether the nominal system works properly and is 
trustworthy or whether a failure exists and it has to be switched to a backup system. Particularly if 
aiding measurements are absent for longer times or if one or more navigation states cannot be 
observed by the aiding measurements for a longer period, accurate and coherent prediction of the 
statistics is essential for continuous operation. 
Navigation grade INS feature only very slow error growth because the measurement errors of the 
incorporated inertial measurement unit (IMU) are comparatively small. The errors are benign and play 
only a minor role. In contrast, the small new generation lower grade sensors are affected by larger 
errors. The nature of the encountered errors is most often not purely white, as assumed by the Kalman 
filter, but colored with different correlation times. In common navigation system designs stochastic 
measurement errors that are not estimated by the filter are mostly modeled as white noise for the sake 
of simplicity or against better judgment. Time correlated noise is substituted by white noise and the 
disregarded correlation is compensated by higher uncertainty. This might be problematic because the 
navigation solution will be severely distorted if the magnitude of the substitute white noise is assumed 
too small, resulting in persistent state error estimate offsets. Since the innovation is consequently 
affected, too, there is the risk that the integrity monitor marks aiding measurements unjustifiably as 
faulty. Otherwise, if the white noise density is chosen sufficiently large, the navigation solution will 
not be biased but one gives valuable system performance away because the predicted state error 
variance is larger than it could be. 
Therefore, due to the mentioned reasons, it is desirable that the navigation filter is designed such that 
all measurements, the inertial as well as the aiding measurements, and modeling errors like the gravity 
model error are processed in a statistically correct manner. 
Moreover, the integration of sensor measurement and modeling error models into the navigation filter 
has an interesting side effect: it can enormously simplify the filter tuning process. Filter tuning refers 
to the reasonable adjustment of the process noise and aiding measurement error covariance matrices 
by the system designer. Filter tuning is in general a difficult task and requires some experience in 
integrated navigation systems. It is an iterative process, which needs simulations on the one hand and 
real, recorded measurement data for example from flight experiments on the other hand. The system 
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designer is relieved from a great part of the filter tuning work since magnitudes and correlations of 
many errors are automatically represented by the error models. 

1.2 Contributions of the Thesis 
The basic ways to increase the statistical consistency of the navigation solution are in principal well-
known and are addressed in the respective literature. Most textbooks as well as the relevant 
certification standards are however restricted to naming only the necessity of measures but do not 
describe how to actually accomplish it since this would go far beyond the scope of the textbooks. The 
thesis goes a step beyond by elaborating the underlying theory and operationally relevant aspects 
comprehensively and consistently for typical GPS/INS integrated navigation systems. 
The derived models and methods can be used on the one hand for simulation, which is inevitable in 
the predesign phase of a new navigation system and which is in fact demanded by the certification 
regulations, and on the other hand for the real-time algorithms on the embedded system. 
Furthermore, some interesting aspects concerning the widely-used basic algorithms of an integrated 
navigation system are discussed, which cannot be found in this form and detail in the standard 
textbooks, but may help the system designer to achieve a higher level of understanding. 
For many presented methods templates are given with the formulas to be implemented in the 
embedded firmware, which underlines the operational focus of the thesis. 

The following questions and solution proposals shall be discussed in detail in this thesis: 

How to describe sensor, model and observation errors by appropriate mathematical models, 
which can be integrated into the navigation filter? 

Physically motivated models for the typical sensor measurement and modeling errors in the field of 
navigation, that is IMU errors, gravity model error, random vibration, GPS pseudorange errors 
comprising satellite clock and orbit errors, ionospheric and tropospheric errors, receiver clock error 
and receiver noise, are derived. This involves the identification of the model structure and 
subsequently the estimation of the model parameters from real data. Common analysis techniques for 
stochastical errors in time and frequency domain are used to describe their characteristics. 

How to efficiently increase the consistency of the navigation solution with reasonable 
additional computational effort? 

The following measures are proposed: 
• Accurate and robust inertial navigation algorithms. It is a prerequisite for statistical consistency that 

the numerical error of the chosen inertial navigation algorithm is many orders smaller than all other 
involved errors in all imaginable flight situations and even under unfavorable conditions like 
permanent coning and sculling motion because the numerical error is not taken into account in the 
navigation filter covariance prediction. Different algorithms for integrating IMU shall be compared 
with respect to their robustness against noise and vibration. 

• Statistically correct navigation filter initialization. The effect of a statistically incorrect initial 
covariance matrix on the filter consistency in the settling period immediately after initialization 
shall be clarified. Often, the filter is initialized with a diagonal, over-bounded navigation state error 
covariance matrix. Cross-covariances for example between the initial orientation errors and the 
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IMU bias states are mostly neglected. Algorithms for the filter initialization on ground and for the 
initialization in-flight shall be presented. 

• Proper consideration of out-of-sequence measurements. Since modern integrated navigation 
systems generally process measurements from various sources, the system has to handle different 
sample rates and different delays. Aiding observations may be only available out-of-sequence. A 
navigation filter that treats these delays and disorder in a statistically correct manner shall be derived 
in order to account for the true innovation of each new measurement. It shall be clarified under 
which circumstances the increased effort is actually necessary. 

• Navigation filter state augmentation. The core of an integrated navigation system is an error state 
space filter (for example conventional Kalman filter) that estimates the navigation state errors. The 
derived reality models of the bias-like sensor, model and observation errors shall be integrated into 
the navigation error filter by augmenting the navigation filter states by the reality model states. 
Time and cross correlations are henceforth correctly accounted for at the expense of higher 
computational effort. 

• Avoiding state augmentation of noise-like errors. A larger portion of the reality model errors are 
noise-like or are not observable. If these errors are not estimated but only considered by the 
navigation filter in a statistical sense, the computational effort can be strongly reduced. 

• Efficient reality modeling. The number of reality model states has to be decreased in order to 
increase the efficiency. The order of each reality model has to be adequately chosen such that the 
main error characteristic is well represented. It has to be carefully analyzed which errors are 
dominant and which time correlations have to be considered. The more details of the errors are 
depicted the more additional states, which in turn increases the computational costs. 
 

How to quickly assess steady-state navigation filter performance and how to encounter 
noticed stability issues? 

An efficient tool to quickly calculate the expected stationary covariance of the navigation filter given 
the process noise covariance matrix, measurement covariance matrix and the measurement frequency 
is presented. This method is convenient for the specification of integrated navigation systems at the 
very beginning of the design phase, integrated navigation accuracy predictions and for navigation data 
fusion testing. Since the navigation filter for delayed measurements tends to become unstable, a 
thorough mathematical analysis that explains the destabilization mechanisms of the Kalman filter in 
general is required and appropriate countermeasures have to be found. 

Even if the computational power of embedded computers continuously increases all presented 
measures and methods are traded off against efficiency in order to keep the numerical effort as lean 
as possible avoiding computations with minor effect on the navigation solution and save spare 
computational capacity for other tasks. 

1.3 Look at the Relevant Certification Regulations in Effect 
Since the methods to be presented are part of the safety critical avionics of an aerospace system, they 
have to meet certain requirements for certification. It is therefore worth to have a brief look at the 
relevant certification rules in effect first of all and to keep them in mind when discussing innovative 
methods. The manufacturer has to certify the navigation system according to the applicable Technical 
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Standard Orders (TSO) of the Federal Aviation Administration (FAA) or the corresponding European 
Technical Standard Orders (ETSO) of the European Aviation Safety Agency (EASA) before it can be 
applied in an aircraft. The focus of this thesis is especially on the functional requirements. 

GNSS 

The relevant TSO for stand-alone GNSS receivers are the FAA TSO-C145d, “Airborne Navigation 
Sensors Using The Global Positioning System Augmented By The Satellite Based Augmentation 
System” [1] and the FAA TSO-C146d, “Stand-Alone Airborne Navigation Equipment Using The 
Global Positioning System Augmented By The Satellite Based Augmentation System” [2]. Both 
documents refer to the Radio Technical Commission for Aeronautics (RTCA) standard DO-229D, 
“Minimum Operational Performance Standards for Global Positioning System/Wide Area 
Augmentation System Airborne Equipment” [3]. The RTCA standard specifies the minimum required 
performance and defines in detail how to verify these performance requirements in laboratory tests 
and flight evaluations. The main focus is on the integrity of the position solution. 

AHRS 

The decisive document for the certification of attitude and heading reference systems is the FAA 
TSO-C201, “Attitude and Heading Reference Systems (AHRS)” [4]. The TSO refers to the RTCA 
standard DO-334, “Minimum Operational Performance Standards (MOPS) for Strapdown Attitude 
and Heading Reference Systems (AHRS)” [5]. It targets on modern systems incorporating strapdown 
IMU sensors and also addresses the possibility to aid the system with external sensor measurements 
like GNSS. In the following some excerpts that are interesting in the context of this thesis are cited: 

• (2.1.9) “The equipment shall be designed to operate and output pitch, roll and heading data 
through all attitudes and headings. […] The AHRS shall be designed to continuously output 
data without invalidating the outputs up to at least ±70 deg/sec angular rates in each axis, at 
least ±2 g body axis longitudinal and lateral acceleration, and at least ±4 g body axis normal 
acceleration.” 

• (2.2.1.5.2) “The update rate of the pitch, roll, and if provided, heading, turn, standard turn 
bank angle, and slip shall be a minimum of 10 hertz.” 

• (2.2.1.5.3) “The latency of the pitch, roll, and if provided, heading, turn, standard turn bank 
angle, and slip, which is the interval between the motion and the time a measurement is output, 
shall be a maximum of 200 msec.” 

• (2.2.1.5.4) “The filtering of the pitch, roll, heading, and other output parameters, shall be 
defined by the manufacturer. The noise content and resulting phase delay should be 
considered.” 

• (2.2.1.5.5) “The equipment shall be designed to operate through all attitudes and headings. 
During and subsequent to rotation of the equipment through pitch angles greater than 89° or 
less than -89° the equipment shall continue to function correctly in all regards without need 
for re-initialization, caging or resetting of the equipment.” 

• (2.2.6) “The AHRS may use aiding sources, such as GNSS, air data, magnetic sensors, etc., in 
deriving AHRS outputs. […] Aiding sensors may be integral to the AHRS equipment design, 
or they may be separate components.” 
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• (2.2.6.2) “Following the detected loss of aiding, if the AHRS cannot meet the requirements of 
its current operational mode, the AHRS shall revert to a different operational mode, a 
degraded mode, or invalidate its output.” 

The standard allows to do parts of the verification by means of simulation instead of flight test 
evaluation. In the appendix of the standard it is constituted that “A very high level of confidence in 
the simulation results should be attained to bypass the flight evaluation activity. The importance of 
achieving accurate results with the simulation cannot be overstated. The simulation should account 
for all significant sources of error including: 

1. Sensor misalignment (gyro, accelerometer) 
2. Sensor scale factor (gyro, accelerometer, MSU, barometric altitude) 
3. Sensor bias (gyro, accelerometer, MSU, barometric altitude, TAS) 
4. Sensor noise (gyro, accelerometer, MSU) 
5. Sensor range limit (gyro, accelerometer) 
6. Speed-dependent noise (barometric altitude, TAS) 
7. Other known sensitivity factors to sensor error if any (e.g. g-sensitivity of gyro) 
8. AHRU installation alignment 
9. Algorithm estimations 
10. Environmental variables including 

a. Temperature ramps 
b. Vibration (including acoustically induced vibration) 
c. Weather induced actions such as horizontal and vertical wind gusts 
d. Air Data 
e. GPS Errors“ 

Moreover, it is stipulated that “The simulated signal errors are accurately modeled. The simulated 
signal errors can be validated by comparing the statistics of real sensor errors to the statistics of the 
simulated sensor errors. This comparison has to be done either in the dynamic conditions of the test 
trajectory, or in any condition ensuring that the modeled sensor errors accurately predict the error 
characteristics when used in the context of the test trajectory.” This requirement is another 
justification for the high effort that is made in this thesis to model the reality as accurate as possible. 

Integrated Navigation Systems 

The FAA TSO-C196b, “Airborne Supplemental Navigation Sensors for Global Positioning System 
Equipment Using Aircraft-Based Augmentation” [6], is the current basis for the certification of 
GPS/INS integrated navigation systems. As in the case of AHRS the standard refers to a RTCA 
document, that is the RTCA standard DO-316, “Minimum Operational Performance Standards for 
Global Positioning System/Aircraft Based Augmentation System Airborne Equipment” [7], which 
provides in detail the performance requirements and the corresponding test procedures for an 
integrated navigation system. 
In contrast to the AHRS the focus is on the position solution and not on the orientation solution. As 
with the PVT solution of stand-alone GNSS receivers, the main issue is the integrity of the position 
solution. Even if a GNSS/Baro/INS integrated navigation system and a GNSS/Baro aided AHRS 
are similar systems and mainly use the same algorithms, the standards for the integrated navigation 
system and for AHRS address different, but complementary aspects. A system that outputs the full 



 1.3 Look at the Relevant Certification Regulations in Effect 

 7 

state vector has thus to fulfill the requirements of the RTCA DO-316 standard as well as the RTCA 
DO-334 standard. The standard corresponds in large parts to the RTCA DO-229D. Specific chapters 
addressing the aircraft-based augmentation are added in the appendix. These are Appendix G, 
“Requirements for barometric altimeter aiding”, Appendix K, “Fault detection and exclusion 
references” and Appendix R, “Requirements and test procedures for tightly integrated GPS/inertial 
systems”. In the following, some interesting citations from the relevant appendix R are given: 

• (R.1) “Tightly integrated systems process and monitor pseudo ranges individually based on 
inertial information in order to prevent pseudo-range errors from causing system integrity 
violations.” 

• (R.2.2.5) “If pressure altitude aiding is used to enhance integrity, the algorithms that perform 
calibration shall [GPS 289] be designed to prevent the satellite failure itself from affecting the 
integrity of the calibration. Conventional Kalman filter integrations using a bias error state 
with no further enhancements to protect this state in a failure situation will not meet this 
requirement.” 

• (R.2.2.7) “The inertial sensors in tightly integrated GPS/inertial systems are continuously 
calibrated using GPS measurements. This means that the system can propagate the established 
position accurately if the GPS signals are lost due to any unexpected event such as interference, 
scintillation, masking, unexpected satellite failure, etc.“ 

• (R.2.2.7.1) “The horizontal coasting error distribution as a function of time should be 
evaluated under the following conditions: Inertial errors should be initialized by either 
beginning the simulation error-free and flying 60 minutes on pure inertial […]. Then GPS 
measurements should be incorporated for a calibration time of 60 minutes. […] The evaluation 
should be performed with correct or conservative gyro/accelerometer noise, correct or 
conservative gyro/accelerometer bias instability and a representative receiver clock model. 
[…] The coasting error distribution is a statistical measure and covariance propagation 
techniques may be used to determine the performance. At least 500 Monte Carlo simulations, 
including calibration and subsequent coasting, using the algorithms implemented in the system 
should be run to verify the covariance propagation model used to predict the claimed coasting 
performance.” 

• (R.3.1) “[…] The Kalman filter relies on an accurate inertial error model and known statistical 
inertial sensor error distributions as well as a linearized measurement model for GPS 
pseudoranges and the associated pseudorange error statistics.” 

• (R.3.1.1) “If one or several innovations associated with a measurement far exceed the expected 
1-sigma value, the measurement is excluded. This method provides exclusion capability for 
large steps, ramps and ramp rates. […] Slow drifts or drift rates are, however, not excluded 
and detection and exclusion of such failure types can only be provided by other methods.” 

Again, as in in the case of the AHRS, these requirements substantiate the need of high fidelity models 
of the sensor measurement and modeling errors for simulation and integration into the navigation 
filter. The Monte Carlo simulation technique will be extensively used throughout the thesis to test the 
statistical consistency of the presented methods. 
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1.4 Scope of the Thesis 
The thesis concentrates on the most relevant sensors and core algorithms of an integrated navigation 
system in order to keep the structure of the thesis clear. The discussion is focused on a system that 
comprises a simplex IMU, single frequency GPS L1 pseudorange and range rate measurement aiding 
and the corresponding data fusion algorithms. Other sensors that are usually found in integrated 
navigation systems like barometer or magnetometer are not explicitly regarded. Moreover, multi-
frequency multi-constellation GNSS navigation, which includes novel GNSS systems like Galileo, 
GLONASS or Beidou and which will play an important role in future designs, go beyond the scope 
and are hence not part of the discussion. SBAS augmentation plays only a minor role. The selected 
sensor and modeling errors should be understood as the main examples by which the identification 
and judgement process of typical navigation errors is demonstrated. 
The focus is on the increase of the statistical consistency of the navigation solution, which is required 
for the fast and reliable fault detection, isolation and recovery (FDIR), but not on the integrity 
monitoring and FDIR algorithms itself. Furthermore, hardware related aspects like redundancy shall 
not be discussed. 

1.5 Outline of the Thesis 
The thesis is organized as follows: in chapter 2, “Preliminaries”, some fundamentals of integrated 
navigation systems, which are required by the thesis, are briefly recapitulated. In chapter 3, “Reality 
Modeling”, common signal analysis and model identification methods are presented in general in the 
beginning and actual navigation errors are analyzed and identified in particular afterwards. In chapter 
4, “Efficiently Increasing Navigation Filter Consistency”, several methods to increase the accuracy 
and statistical consistency of the navigation solution are presented under the premise of efficiency. 
These are inertial navigation algorithms for integrating IMU, filter initialization on-ground and in-
flight, treatment of out-of-sequence measurements, filter state augmentation by error model states, 
Schmidt-Kalman filter for noise-like process and measurement noise and the analysis of the error 
models that have been integrated into the navigation filter. In chapter 5, “Navigation Filter 
Performance Prediction and Stability”, an analytical method for the prediction of the steady-state 
navigation error covariance matrix is presented and the mechanism how the filter can become unstable 
is mathematically analyzed. In the final chapter 6 the main aspects of the found results in this thesis 
are summarized. Additional topics and derivations for further reading have been shifted to the 
appendix but are referenced in the main document. In Figure 1-1 the outline of the thesis is graphically 
illustrated on the basis of the components and data flow of a GPS/INS integrated navigation system.  
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Figure 1-1: Graphical illustration of the outline of the thesis 
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2 Preliminaries 
In this short introductory chapter, the most important basics of integrated navigation are briefly 
recapitulated for convenience. They are the common basis for all issues throughout the thesis at hand. 

2.1 Inertial Navigation Ordinary Differential Equations 
The well-known 1st order nonlinear navigation ordinary differential equations (ODE) form the core 
of an inertial navigation system, here given in the Earth-centered Earth-fixed frame (ECEF, e -frame) 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )ω ω
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= ⋅ + − ×

= −
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(see for example [8], [9], [10]). The navigation states are the Cartesian position vector ex , the velocity 
with respect to Earth ev  and the orientation of the carrier platform’s fixed frame ( b -frame) with 
respect to the e -frame 

( )
   
   = = =   
   
   



0
, , ,

e e

e e e e eb eb eb

e e

x u

y v q q

z w

x v q  (2.2) 

Therein, the orientation is represented as quaternion ebq . ωib  is the angular rate quaternion ( )0, ibω . 
Quaternions as rotation parameters and particularly the quaternion product are introduced in section 
A.1 in the appendix. eγ  is the gravity vector, which is the sum of gravitation and centrifugal 
acceleration and is provided by an appropriate model, ieω  is the Earth rate vector and ieω  the 
corresponding quaternion. ebR  is the direction cosine matrix between b - and e -frame. The 
navigation differential equations expect the acceleration measurement ( )b tf  and the angular rate 
measurement ( )ib tω  as inputs. The navigation states are obtained by numerically integrating the 
navigation differential equations, beginning from the initial values ( )0e tx , ( )0e tv  and ( )

0ebq t  by 
means of an adequate integration scheme like 1st order Euler, 2nd order modified Euler or 4th order 
Runge-Kutta. The navigation differential equations can be alternatively defined in the local North-
East-Down frame ( n -frame) 
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with the latitude φ , longitude λ , height h , velocity nv  and orientation nbq  as navigation states 
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D  maps the latitude, longitude and height errors onto the Cartesian north, east and down directions 
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M  and N  are the Earth curvature radii in meridian and normal directions, respectively. enω  is the 
transport rate vector. 

2.2 Inertial Navigation Error Ordinary Differential Equations 
The linearized inertial navigation error ODE in e -frame with position error eδ x , velocity error eδv  
and orientation error ( )T

, ,ee ee ee eeϕ ϑ ψ=ψ
   

, which can be found for example in [10], [11] or [12] and 
are also derived in the appendix in section A.2, is given with 
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( ) T
e e ee= ∂ ∂xxΓ γ  is the gravity gradient and ( )1veckie ie

−=Ω ω  the skew symmetric matrix of the 
Earth rate vector. The −1veck  operator creates the skew symmetric matrix of the argument vector. 
The orientation error eeψ



 is defined as small angle transformation matrix 
( ) ( ) ( )3 2 1ee ee ee eeψ ϑ ϕ=R R R R

   

 that is multiplied to the erroneous direction cosine matrix ebR


 from 
left to obtain the true error-free matrix ebR , that is eb ee eb=R R R

 

. This representation is advantageous 
because platform dynamics do not influence the orientation error. The corresponding linearized 
inertial navigation error ODE in n -frame with latitude error δφ , longitude error δλ , height error 
δh , velocity error δ nv  and orientation error ( )T
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(2.7) 

The matrices 11F , 21F , 22F , 31F , 32F  and 33F  depict the effect of the Earth rate ieω , transport rate enω  
and gravity gradient nΓ  on the navigation error and are given in section A.3 in the appendix. 
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2.3 Discretization 
The continuous-time state-space models (2.6) and (2.7) have first to be converted to discrete-time 
before they can be integrated into the navigation filter. The discrete-time system matrix Φ  and input 
matrix Γ  are obtained from the corresponding continuous-time matrices F  and G  by discretization 
with the covariance propagation time T  

( )

( ) ( ) ( )

2
2 3

0

1 2
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0

! 2

1 ! 2

i
T i

n
i

i
T i

n
i

T T
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i

T T
e T T

i

∞

=

+∞

=

= = = + + +

 
= − = = + +  + 

∑

∑

F

F

F I F F

I G F G G F G

Φ

Γ




 (2.8) 

The covariance of the discrete-time input noise kQ  is related to the covariance of the continuous-
time input noise Q  by 

k T
=

Q
Q  (2.9) 

2.4 Conventional Kalman Filter 
The error of the navigation state vector is estimated by a conventional Kalman filter (CKF). In general, 
a time-variant discrete-time system model consisting of the propagation and observation equation 
forms the basis of the discrete-time CKF 

( )
( )

1 1 1 1 0,

0,
k k k k k k k

k k k k k k

WN

WN
− − − −= + ∼

= + ∼
z z Q
y H z R

Φ Γ ω ω
ν ν

 (2.10) 

Therein, z  is the state vector, Φ  is the system matrix, Γ  is the input matrix and H  is the output 
matrix belonging to the measurement y . ω  is the input noise. y  is representative for any arbitrary 
aiding observation that is corrupted by the measurement noise ν . The CKF expects the process noise 
ω  as well as the measurement noise ν  to be white and normally distributed (WN) with covariances 

kQ  and kR , respectively. 
The state and covariance propagation and update equations are [13] 
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State propagation

Covariance propagation

Kalman gain

State update

Covariance update

=

T T
k k k+K R K (short and Joseph forms)

 (2.11) 

2.5 Resampling 
Often, discrete-time models are derived for a certain, physically motivated time step size t∆ , for 
example the sample time of the inertial sensors. Since navigation error dynamics are normally small, 
it is sufficient to propagate the covariance in the navigation error filter between subsequent updates 
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with comparably low rates (for example 10 Hz). The discrete-time model has thus to be resampled to 
the filter propagation time T  before it can be applied in the framework of the navigation error filter. 
Assuming that T  is an integer multiple of the original time step size, T m t= ∆ , the down-sampling 
of the system matrices can be done by 

1

1 11

m
m

i

mm m
m i

i ij i

=

−

= == +

= =

 
= = 

 

∏

∑ ∑∏

Φ Φ Φ

Γ ΦΓ Φ Γ
 (2.12) 

Alternatively to (2.12), the system and input matrices, whose sizes are assumed to be n n×  and 1n× , 
can be combined in a matrix 

1 1n×

 
 
 0
Φ Γ

 (2.13) 

and raised to the power of m  
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1
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m
m m m i

i
n

n
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=
×

×

 
   =      

 

∑
0

0

Φ Φ ΓΦ Γ
 (2.14) 

Then, the overall system and input matrices Φ  and Γ  can be found in the upper left and right places 
of the matrix. The matrix power can be efficiently computed if the matrix is decomposed in its 
eigenvector matrix V  and diagonal eigenvalue matrix D  

1

1 1

m

m

n

−

×

 
= 

 
V D V

0
Φ Γ

 (2.15) 

The generalized Schur decomposition can be used to compute the eigenvalues and eigenvectors 
numerically. The diagonal eigenvalue matrix D  can be easily raised to the power of m . Besides the 
system matrices Φ  and Γ  the input noise covariance has to be adequately scaled by 

t
T
∆

=Q Q  (2.16) 

It has been observed that it is advantageous to transform the resampled state-space model to modal 
form in order to increase numerical stability. The transformed system, input and output matrices are 

1, ,∗ ∗ − ∗= = =D V H HVΦ Γ Γ  (2.17) 

with 
1−= V D VΦ  (2.18) 

Note that the transformation to modal form is only possible if the geometric multiplicity of all 
eigenvalues is one. Then, all eigenvectors are linearly independent and the eigenvector matrix V  is 
not singular and hence invertible. The invertibility can be simply tested by computing the determinant 
of the eigenvector matrix V . If it is zero, the modal transformation has to be skipped. 
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3 Reality Modeling 

3.1 Fundamentals of Error Analysis and Identification 

3.1.1 Motivation 

From experience, navigation sensor measurement and modeling errors are seldom pure white 
Gaussian noise. In fact, sensor and model values are affected by a mixture of time correlated noises 
with different correlation lengths, that is colored noise. The correlation lengths range from some 
sample time steps up to periods of some hours. The highly frequent constituents are actually those 
that are widely understood as noise whereas the slowly varying parts can be characterized as bias-like. 
In this chapter, fundamental methods and tools for the analysis, identification and modeling of 
stochastic errors are recapitulated. These will be later applied to the measurement and modeling errors 
that are encountered in an integrated navigation system. The derived models are used on the one hand 
in the simulation for the synthesis of more realistic measurement errors and on the other hand in the 
navigation filter in order to account for the effects of time correlated measurement noise and thus to 
improve the statistical consistency of the navigation solution. 
In the first section autoregressive moving average (ARMA) models are formally introduced. ARMA 
models and the corresponding discrete-time state-space models form the basis for the mathematical 
representation of all stochastic errors in the context of integrated navigation systems. Then, Allan 
variance and periodogram are recapped as suitable stochastic error analysis tools in time and frequency 
domain. Subsequently, the special group of stochastic errors with power-law power spectral densities 
is considered more closely. The errors of this group are for example characteristic of IMU 
measurement errors as well as of the frequency errors of oscillators. Special attention will be paid to 
the modeling of flicker noise. Finally, a modeling method for general stochastic errors with arbitrary, 
non-power-law power spectral densities is presented. It will be for example used for the analysis and 
modeling of random vibration and for the identification of the satellite clock error residual noise. 

3.1.2 Autoregressive Moving Average Model 

In order to benefit from the analysis of the errors later on, they have to be mathematically described 
in any adequate way. It turned out that ARMA models offer the most versatile way to represent 
stochastic errors in time domain. ARMA models are already discrete-time models and can thus be 
easily embedded in the digital signal processing of navigation systems. An ARMA model is a universal 
infinite impulse response (IIR) filter, which shapes white Gaussian noise at the input to colored noise 
with the desired time correlation at the output. By appropriately choosing the order and coefficients 
of the ARMA model, more or less correlated errors can be described. Even white noise and constant 
biases are covered as special cases by ARMA models. 
The higher the order of the ARMA model, the more details of the time correlated noise are 
represented. The number of states of the corresponding state-space model is equal to the model order 
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and hence, the computational effort is proportional to the model order. The order of ARMA models 
can probably be higher for simulations than for operational real-time applications on embedded 
systems with limited computational resources. The system designer has to identify the required model 
order such that the decisive characteristics are mostly represented but the number of additional states 
is as low as possible. As soon as the proper model order is found, the parameters of the model have 
to be estimated, for example, from recorded measurements. In order to incorporate the measurement 
error models later in the integrated navigation filter, the ARMA models have to be converted to state-
space form first. 
ARMA models consist of autoregressive and moving average portions. A purely moving average 
model of order q , MA( q ), is given with 

η
=

= −      ∑
0

q

i
i

y n b n i  (3.1) 

with coefficients 0b , 1b ,  , qb  and input noise η   n . The moving average model is a finite impulse 
(FIR) filter. A purely autoregressive model of order p , AR( p ), is 

η
=

= − +          ∑
1

p

i
i

y n a y n i n  (3.2) 

with coefficients 1a , 2a ,  , pa  and input noise η   n . The autoregressive model is an all-pole IIR 
filter. The combination of (3.1) and (3.2) yields the ARMA( p , q ) model 

η
= =

= − + −          ∑ ∑
1 0

p q

i i
i i

y n a y n i b n i  (3.3) 

The ARMA( p , q ) model written as state-space model in controllable canonical form is for p q≥  

( )

η

η

   
   
   + = +             
       

= + + + +          



 





 

2 1

0 2 0 2 1 0 1 0

0 1 0 0
0 0

1
0 1 0

1

0 0
p

q q

n n n

a a a

y n b b a b b a b b a n b n

z z

z

 (3.4) 

The state-space model has p  states. The output matrix has only q  non-zero entries. The first −p q  
entries of the output matrix are zero. The same considerations can be repeated for the case <p q . 
The number of states is then q . In this case all q  elements of the output matrix are non-zero but 
only the last p  column elements in the last row of the system matrix are non-zero and the first −q p  
column elements are zero. Note that here the input η   n , the output   y n  and the feed-through 0b  
are scalar. η   n  is white, Gaussian distributed noise. The state-space model can alternatively be 
represented as observable canonical form. In the following, the notation 

ω ω ω ω ω

ω ω ω ω ω

η
η

, , − −= +
= +

1 , 1

, , ,

k k k

k k ky D
z z

H z
Φ Γ

 (3.5) 

with system matrix ωΦ , input matrix ωΓ , output matrix ωH  and feed-through ωD  is generally used 
for measurement error models. The results are summarized in Template 3-1.  
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Template 3-1: State-space representation of an ARMA model 
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3.1.3 Stochastic Error Analysis 

3.1.3.1 Allan Variance 

For the characterization of the stability of oscillators and clocks the Allan variance and its variants are 
the methods of choice [14]. They are recommended in the IEEE standard 1139 [15] as preferred tool 
for the analysis of deviations from the nominal frequency of an oscillator over time. Even though the 
tools were explicitly derived for the time domain analysis of oscillator frequency noise like that of 
GNSS receivers or satellite clocks, it can be applied to all signals that are affected by colored noise, 
thus also to the measurement signals of navigation sensors like accelerometers or gyroscopes. 
The Allan variance is the sample variance of the difference of two subsequent, over the time τ  
averaged values of the signal y  

( ) ( )σ
−

+
=

= −
− ∑

1
22

1
1

1
2 1

M

avar,y i i
i

y y
M

 (3.6) 

Therein, M  is the number of averaging windows and iy  is the mean value of the thi  window 

− +
=

= ∑ ( 1)
1

1 m

i i m k
k

y y
m

 (3.7) 

with the number of samples in each window 

τ
=
∆

m
t

 (3.8) 

∆t  is the base sample time of the signal. Before the Allan variance can be computed, mean values or 
other trends have to be removed from the signal. 
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If the frequency signal y  is the time derivative of the phase signal x , it can be approximated by the 
difference quotient 

1d
d

i i i
i

x x x
y

t t
+ −

= ≈
∆

 (3.9) 

With the phase signal x , that is the integral of the frequency signal y , the mean value (3.7) can be 
expressed as 

( )11 i m i m

i

x x
y

m t
−−

=
∆

 (3.10) 

Inserted into the Allan variance (3.6) yields 

( ) ( ) ( ) ( )( )σ τ
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+ +
=

= − +
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2 2
2

2 12
1

1
2

2 2

M

avar,y i mi m i m
i

x x x
M

 (3.11) 

Usually, the Allan variance is computed with overlapping windows, which increases the number of 
used samples and hence provides smoother results 

( ) ( ) ( )σ τ
τ

−

+ +
=

= − +
− ∑

2 22
22

1

1
2

2 2

n

avar,y i m i m i
i

x x x
n m

 (3.12) 

n  is the number of signal samples. The computation of the Allan variance from the phase signal x  
is numerically much faster than the computation of the Allan variance from the frequency signal y . 
If only the frequency signal y  is available, it can be numerically integrated for example either with the 
forward Euler or the trapezoidal integration scheme (modified Euler) to obtain the corresponding 
phase signal x . In the case of IMU sensors, the acceleration measurements bf  and the angular rate 
measurements ibω  of non-integrating sensors correspond to the frequency signal y  and the velocity 
increment measurements ∆ bv  and angle increment measurements ∆ ibθ  of integrating sensors 
correspond to the phase signal x . 
Besides the Allan variance, the Modified Allan variance σ 2

mvar,y  and the Hadamard variance σ 2
,hvar y  can 

be used for the analysis of noisy time series. In contrast to the standard Allan variance, the Modified 
Allan variance can distinguish between white phase and flicker phase noise. This will later play a role 
in the analysis of GNSS receiver oscillators and satellite clock errors, but not in the analysis of IMU 
measurements because the integrated IMU signals do usually not exhibit flicker noise. The Hadamard 
variance can cope with frequency signals with drifts and is thus particularly suitable for oscillators that 
are for example influenced by temperature variations during the measurement recording. If the 
Hadamard variance is applied, the mean value and drift do not have to be removed before as has to 
be done with the normal Allan variance. 
Template 3-2 summarizes the calculation formulae of the overlapping versions of the Allan, Modified 
Allan and Hadamard variances of the signal y  from the phase signal x . 
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Template 3-2: Overview over overlapping Allan variance variants [14] 
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3.1.3.2 Periodogram 

Besides the Allan variance in time domain, the power spectral analysis of stochastic signals offers 
valuable clues to the distribution of signal power over frequency and time. The power spectral density 
(PSD) ( )yyS f  or ωyyS ( )  describes the power of the signal ( )y t  in dependence of the frequency f  or 
angular frequency ω . A periodogram is an instantaneous estimate of the PSD of a signal. A 
spectrogram additionally illustrates the change of the PSD with time. Various non-parametric and 
parametric methods can be found in the literature (for example [16], [17], [18]) to estimate the PSD 
of a signal. 
The two-sided PSD is defined by [16] 

( ) ( ) 21
lim E ,yy T

S f Y f T
T→∞

  =     
 (3.13) 

with the finite-range Fourier transform of the signal ( )y t  

( ) ( )
0

2, d
T

j f tY f T y t e tπ−= ∫  (3.14) 

The continuous-time signal y  is sampled at discrete time steps 

( ) ( )= ⇔ = ∆ = −, 0 , 1ky y t y y k t k n  (3.15) 

where n  is the number of samples and ∆t  the sampling time of the signal. The basic way to estimate 
the periodogram is to calculate the discrete Fourier transform 

π
−

−

=

= ∑
1

2

0

i k
n

n
j

k i
i

Y y e  (3.16) 

for example by Fast Fourier Transformation (FFT) and to compute the two-sided PSD subsequently 
by 

( ) ∆
=

2

yy k k

t
S f Y

n
 (3.17) 

for the frequencies 

=k s

k
f f

n
 (3.18) 
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where = ∆1sf t  is the sample rate of the signal. The variance of this basic PSD estimate can be reduced 
by means of Bartlett’s method or Welch’s method. Bartlett’s method splits the available data samples 
in smaller non-overlapping windows, computes the periodogram for each window and finally averages 
the obtained periodograms. Due to the smaller windows the frequency range of the periodogram is 
limited at low frequencies. In contrast to Bartlett’s method, Welch allows an overlap of the data 
windows and thus provides even more smoothed periodograms. Bartlett’s and Welch’s methods are 
especially interesting if the signal exhibits ergodic character. Note that the two-sided PSD yyS  is used 
throughout this thesis in lieu of the one-sided PSD yyG  if the type is not especially specified. If it is 
referred to the one-sided PSD = 2yy yyG S , this is explicitly indicated. Welch’s method is recapitulated 
in Template 3-3. 

Template 3-3: Power spectral density estimation with Welch’s method 
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3.1.4 Power-Law Noise 

3.1.4.1 Overview 

Power-law noise exhibits a PSD yyS  that is proportional to the frequency f  raised to the power of α  

( ) α
yyS f f  (3.19) 

Power-law noise is typical for the frequency variations of oscillators but can also be found in IMU 
signals. The frequency noise of an oscillator and the noise on non-integrating accelerometer and 
gyroscope measurements is usually composed of power-law noises with exponents α  ranging from 
-2 to +2, that is in sequence the random walk frequency noise, flicker frequency noise, white frequency 
noise, flicker phase noise and white phase noise with PSD 

( )
α

α
α=−


≤ ≤= 

 >

∑
2

2

1
, 0

2
0 ,

s
yy

s

h f f f
S f

f f
 (3.20) 

αh  is the gain of the noise component with αf  proportional characteristic. The nomenclature is 
chosen according to the IEEE standard 1139 [15]. The factor 1 2  is due to the fact that in the 
definition of [15] the one-sided power spectral density ( ) ( )= 2yy yyG f S f  is used instead of the two-
sided one. 
Time integration of white frequency noise (α = 0 ) results in random walk frequency noise (α = −2 ). 
Time differentiation of white frequency noise yields white phase noise (α = 2 ). This means that 
integration decreases and differentiation increases the power α  by two. In Laplace domain, integration 
corresponds to the transfer function 1 s  and differentiation to the transfer function s . Consequently, 
in order to obtain flicker frequency noise (α = −1) from white frequency noise, thus decreasing the 



 3.1 Fundamentals of Error Analysis and Identification 

 21 

power α  by one, white input noise would have to be filtered by a 1 s  transfer function. Likewise, 
for flicker phase noise (α = 1) the white input noise would have to be filtered by a s  transfer 
function. Since these transfer functions are not rational, flicker frequency noise and flicker phase noise 
cannot be simply created but have to be approximated as described in the next section. 
Power-law noise can also be classified by its color. Noise with α = −2  is called brown, noise with 
α = −1 pink, noise with α = 0  white, noise with α = 1 blue and noise with α = 2  violet. 
Table 3-1 lists the power spectral densities and the corresponding Allan and Modified Allan variances 
of the five power-law noises. The coefficients A  – E  given in the table are valid for averaging times 

( )τ π∆ 2t . In Table 3-2 the power spectral densities, exemplary realizations and the autocorrelation 
functions are given for illustration purposes. 

Table 3-1: Power spectral densities and Allan variances of power-law noise components [15] 

Noise Component PSD ( )yyS f  PSD ( )xxS f  Allan ( )σ τ2
avar,y  Mod. Allan ( )σ τ2

mvar,y  

Random walk 
frequency 

ωRWF  −
−

21
22 h f  ( )π −

−

2 41
222 h f  τ−

1
2A h  τ−

1
2A h  

Flicker frequency ωFF  −
−

11
12 h f  ( )π −

−

2 31
122 h f  τ−

0
1B h  τ−

0
1B h  

White frequency ωWF  01
02 h f  ( )π −2 21

022 h f  τ −1
0C h  τ −1

0C h  

Flicker phase ωFP  11
12 h f  ( )π −2 11

122 h f  τ −2
1D h  τ −2

1D h  

White phase ωWP  21
22 h f  ( )π 2 01

222 h f  τ −2
2E h  τ −3

2E h  

π
=

22
3

A  = 2ln2B  =
1
2

C  
( )π τ

π
+

=
2

1.038 3ln 2

4
sfD  

π
=

2

3
4

sfE  

3.1.4.2 Flicker Noise Modeling 

As has been addressed in the previous section pink flicker noise cannot be simply generated by 
integration of white noise. The bias instability of accelerometers and gyroscopes is flicker noise. 
Therefore, a shaping filter that approximates the 1 s  transfer function is searched. The filter to be 
designed is fed by white noise and outputs a random signal with a PSD proportional to 1 f . The 
following sketch is based on [19]. 
The power spectral density of the white, Gaussian input noise ( )ηη σ

20,WN  is converted by the 
shaping filter according to 

( ) ( ) η ηβσ σ= =
2 2 21

yyS f H f
f

 (3.21) 

where ( )H f  is the frequency response function of the shaping filter. 
In discrete-time a transfer function ( )H z  – represented by an adequate ARMA model – is searched 
that approximates the α β−=f f  behavior over a wide frequency range. In [19] it is shown that transfer 
functions of numerical integrators (for example backward Euler, trapezoidal) raised to the power of 
β 2  have power spectral densities that are proportional to ( ) βπ −

∆sin 2 f t  and thus approximate the 
β−f  characteristics for low frequencies adequately.  
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Table 3-2: Illustration of colored noise components 
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A general second order numerical integration scheme evaluates the integrand function f  at two 
subsequent time steps separated by the step size ∆t  and multiplies the sum of the weighted function 
values ( )− ∆1k f t t  and ( )2k f t  by ∆t  

( ) ( ) ( )( )1 2d
t

t t

f t k f t t k f tτ τ
−∆

≈ ∆ − ∆ +∫  (3.22) 

with arbitrary weighting factors 1k  and 2k . The transfer function of the general 2-point numerical 
integrator (3.22) is given with 

( ) +
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−
2 1

1
k z k

H z t
z
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and raised to the power of β 2  is further 

( )
β
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Now, a substitute ARMA( p , q ) model with transfer function 
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is searched whose impulse response   
h n  approximates the impulse response   h n  of (3.24). The 

coefficients ia  and ib  are determined by minimizing the error 

= −          
e n h n h n  (3.26) 

The coefficients can be estimated with Prony’s method [20] or the Steiglitz McBride method [21]. The 
latter turned out to yield slightly better results and is recommended. In [19] it has been found that the 
Al-Alaoui integrator [22] with =1 1 8k  and =2 7 8k  yields best results. In Table 3-3 and Table 3-4 
the estimated denominator and numerator coefficients of flicker noise ARMA models ( β = 1) with 
different model orders are listed. p  and q  are equal. = 25000N  samples have been used to represent 
the impulse response   h n . In Table 3-5 the corresponding poles of the ARMA models are given. All 
poles are real and approximate +1. The derived models are thus stable and have a steady-state solution. 
The power spectral densities of generated noise with β = 1 with orders 1 to 4 are shown in Figure 
3-1. The models with orders 1 and 2 feature deviations from the ideal 1 f  characteristic, but the models 
with orders 3 and 4 already yield acceptable results. The model of order 4 approximates the 1 f  
behavior in the low frequency range slightly better than the third order model. 
The state-space model in controllable canonical form for flicker noise is 
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Due to numerical stability it is strongly recommended to transform the state-space model from 
controllable canonical form to modal form. 

 
Figure 3-1: Power spectral densities of 1 f  noise generated with models of orders 1 to 4 

Table 3-3: Estimated AR coefficients ( 2 0.5β = , 1
1 8

k = , 7
2 8

k = , 25000N = ) 

=p q  1a  2a  3a  4a  

1 0.9997082580    

2 1.9842171974 -0.9842186842   

3 2.8964260001 -2.7931352266 0.8967092093  

4 3.7263703996 -5.1839351397 3.1887538680 -0.7311891282 

Table 3-4: Estimated MA coefficients ( 2 0.5β = , 1
1 8

k = , 7
2 8

k = , 25000N = ) 

=p q  0b  1b  2b  3b  4b  

1 0.9354143467 -0.8995190356    

2 0.9354143489 -1.6422190110 0.7070845809   

3 0.9354142380 -2.2995075441 1.8011773013 -0.4370802553  

4 0.9354057741 -2.9850466277 3.3940470875 -1.5743519333 0.2299457555 

Table 3-5: Poles of identified ARMA models ( 2 0.5β = , 1
1 8

k = , 7
2 8

k = , 25000N = ) 

=p q  λ1  λ2  λ3  λ4  

1 0.9997    
2 0.9999 0.9843   
3 0.9999 0.9973 0.8992  
4 0.9999 0.9980 0.9742 0.7025 
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3.1.4.3 Power-Law Noise Models 

Each of the power-law noises of Table 3-1 can be described by a general discrete-time state-space 
model 

{ }η

ω η
− −= + =

= +
, , 1 , 1

, , ,

, , , ,X k X X k X X k

X k X X k X X k

X RWF FF WF FP WP

D

z z

H z

Φ Γ
 (3.28) 

where η ,X k  is white, Gaussian noise, ( )2
, ,0,X k XWN ηη σ . Table 3-6 lists the system matrices and input 

noise variances for the power-law noise components on the rate signal y . Table 3-7 lists the 
corresponding system matrices and input noise variances for the power-law noise components on the 
integrated rate signal x . The forward Euler integration scheme is used for integrations. The time 
derivatives are replaced by simple difference quotients. Flicker noise is modeled according to (3.27). 

Table 3-6: System matrices and input noise variances for power-law noise on rate signal y  
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Table 3-7: System matrices and input noise variances for power-law noise on integrated signal x  
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3.1.5 General Noise 

3.1.5.1 Overview 

In the previous section special noise with power-law power spectral densities was thoroughly 
discussed. Now, the modeling of noise with more general power spectral densities is considered more 
closely. Vibrational noise on accelerometer measurements, for example, may not exhibit a power 
spectral density that follows power-law but normally has an arbitrary power spectral density with 
power at specific frequencies or smeared over wider frequency bands. 
In this section it is shown how to represent general noise by an autoregressive model. For that, the 
Yule-Walker equations, which will be presented in the beginning, have to be solved. One method to 
estimate the AR model coefficients amongst others is Burg’s method. 

3.1.5.2 Yule-Walker Equations 

It is assumed that the sampled signal   y n  can be described by an AR( p )-model (3.2). An adequate 
model order has to be chosen. The higher the order p , the more details of the power spectral density 
will be covered by the model. We limit ourselves to AR models since the estimation of ARMA models, 
especially online, is more involved. 
The autocorrelation yyr  of the data sequence   y n  is defined as 

( )  = −       , : Eyyr n m y n y n m  (3.29) 

It is assumed that the stochastic process within the current window is ergodic. Then, the 
autocorrelation yyr  is independent of the absolute time n  but depends only on the relative time 
difference m  

( )    = + = −                 E Eyyr m y n m y n y n y n m  (3.30) 

or alternatively expressed 

( ) ( )= −yy yyr m r m  (3.31) 

With (3.2) the autocorrelation sequence of a stationary AR process is consequently 
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or simplified with ηη η  =       E n n Q  
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The autocorrelation function can be written for time offsets = 0m p  and combined in a linear 
equation system 
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These equations are known as the Yule-Walker normal equations. ,p ia , 1i p=  , are the coefficients 
of an AR( p ) model. 
It can be shown that the AR coefficients of the AR( 1p − ) and AR( p ) models are related by the 
reflection coefficients pk  [17] 

− − −

− =
= + =
 = +

, 1, 1,

1 0

1, ,

0 1
p i p i p p p i

i

a a k a i p

i p

 (3.35) 

3.1.5.3 Solution Methods for the Yule-Walker Equations 

Two different classes of solution approaches can be found in the literature (for example [17] [23]), the 
correlation function estimation methods and the reflection coefficient estimation methods. The 
former directly solve the Yule-Walker equations (3.34) for the coefficients ,p ia  and the latter estimate 
the reflection coefficients pk  as defined in (3.35). The relation with the reflection coefficients is 
convenient because it enables the iterative estimation of the model coefficients, beginning with a 
simple model of order one and iterating estimation until the desired order p . In each iteration step 
the reflection coefficients pk  have to be determined again. An additional benefit is that the model 
order can be flexibly adapted because all AR models up to the order p  are available due to the 
recursion. 
Table 3-8 lists some of the common solution methods. Burg’s method is the favorable method and 
will be outlined in the following section. 

Table 3-8: Solution approaches of the Yule-Walker equations 

Class Methods 
Correlation Function Estimation Autocorrelation method (Yule-Walker method) 

Reflection Coefficient Estimation 

Forward covariance method 
Backward covariance method 
Modified covariance method 
Burg’s method 
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3.1.5.4 Burg’s method 

Burg’s method estimates the AR coefficients such that the mean value of the sample variances of the 
forward and backward prediction errors is minimized. Template 3-4 summarizes the equations of 
Burg’s method [17]. 

Template 3-4: Burg’s method 
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Update of the backward prediction error

Update of the AR parameter

Update of the input noise variance

 

3.1.5.5 Online Estimation 

Burg’s method is a batch algorithm, meaning that the AR coefficients are estimated only after all 
samples of the current estimation window are collected. Alternatively, sequential algorithms could be 
used that directly update the AR coefficient estimates immediately when a new measurement sample 
comes in. In [17] a recursive variant of Burg’s method is available. 
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3.2 Inertial Measurement Unit Error 

3.2.1 Motivation 

An IMU consists of at least an accelerometer triad and a gyroscope triad and forms the core of the 
integrated navigation system. The measured accelerations and angular rates are integrated by means 
of the inertial navigation algorithms to obtain the inertial navigation solution. Measurement errors are 
irrevocably accumulated and deteriorate the inertial navigation solution more and more. Therefore, it 
is important to consider the most influential errors to predict the uncertainty growth of the position, 
velocity and orientation solution properly. This helps to improve the statistical consistency of the 
integrated navigation solution and is particularly crucial if the navigation system runs unaided for a 
longer time. In order to incorporate the knowledge about the measurement errors into the integrated 
navigation filter, appropriate models will be derived in this section. Detailed performance and testing 
requirements are provided by IEEE, for example in [24] for single-axis laser gyroscopes. A 
standardized terminology is introduced in [25]. Thorough descriptions of the sensing technologies and 
prominent errors can for example be found in [8] [11] [26] [27]. An assessment of the most relevant 
errors of low-cost IMU is given in [28]. A good motivation for the need of stochastic IMU error 
models for the improvement of the integrated navigation solution is presented in [29] [30] [31] [32]. 

Non-integrating and integrating IMU 

It is distinguished between non-integrating and integrating sensors. Non-integrating accelerometers 
directly measure accelerations bf  whereas integrating ones output velocity increments ∆ bv . Non-
integrating gyroscopes directly measure angular rates ibω  whereas integrating ones output angle 
increments ∆ ibθ . 
The servos that are used in a mechanical sensor to keep the proof mass in its zero position can be 
analog or digital. In the former case the servo is driven by a continuous current whose instantaneous 
power is proportional to the input acceleration in accelerometers and angular rate in gyroscopes. 
Sensors with analog servos are thus generally non-integrating sensors. In the latter case short positive 
or negative pulses with constant currency and voltage and fix time length are applied to drive the 
servo. One pulse corresponds to a certain positive or negative increment of electric energy, which is 
proportional to a velocity or angle increment. The measurement is the sum of positive and negative 
pulses per sampling period. Sensors with digital servos are thus generally integrating sensors [26]. 
Accelerometers actually do not measure the acceleration w.r.t. the inertial frame  iv , but the specific 
net force of all external forces that act on the sensor’s proof mass. Non-integrating IMU 
measurements directly serve as input for the navigation differential equations in e - or n -frame (2.1) 
or (2.3), which are integrated for example with forward Euler or Runge-Kutta integration schemes. 
Integrating measurements can either be first converted to non-integrating ones and then used with 
the equations for non-integrating IMU or can be directly processed by algorithms that have been 
derived especially for integrating IMU, as will be explained later in section 4.1. 
Many sensors sample the analog measurement signal internally with a higher rate than the rate with 
which they output the sensed value (oversampling). If the sensor is non-integrating, it calculates the 
mean value of the gathered samples between two subsequent outputs 
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where τ∆  is the internal sample time and ∆t  is the output sample time. If the sensor is integrating, it 
has to be distinguished between sensors that actually measure increments due to their physical 
measurement principle 
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and those that internally sample non-integrated values with a high rate and then integrate these 
gathered measurements numerically within one output time step 
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∆ = + ∆ ∆ ∆ = + ∆ ∆ =

∆∑ ∑1 1
1 1

, ,
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t
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if for example the backward Euler integration scheme is used. Ring laser gyroscopes (RLG) are true 
rate-integrating sensors and thus belong to the first group whereas fiber optical gyroscopes (FOG) are 
rate sensors. However, these sensors often output angle increments, too, and are hence members of 
the second group. The internal sample rate is mostly between one and two Kilohertz. According to 
whatever principle the sensor works, the output accelerations (or velocity increments) are affected by 
the changing orientation of the sensor reference frame during the oversampling or integration period 
due to the angular rate of the carrier platform. This means that the measurement value cannot be 
assigned to a unique orientation of the sensor reference frame. The inertial navigation algorithms have 
to account for this matter, which is especially eminent in applications with high rotational dynamics 
and coning and sculling motion. 
The true, error-free non-integrating accelerometer measurement bf , the erroneous accelerometer 
measurement bf  and the accelerometer measurement error δ bf  are related by 

( ) ( ) ( )δ= +

b b bt t tf f f  (3.39) 

The definition is according to the sign convention of perturbations used throughout this thesis. The 
error definition of the non-integrating gyroscope measurement ibω  is analogous 

( ) ( ) ( )δ= +

ib ib ibt t tω ω ω  (3.40) 

Even if integrating IMU measurements are processed, the well-known navigation error differential 
equations for non-integrating IMU (2.6) or (2.7) are used in the navigation error filter. The non-
integrating IMU errors like biases and scale factor errors that have been estimated by the integrated 
navigation filter have to be multiplied by the sample time ∆t  before they can be used for in-flight 
calibration 

( ) ( ) ( ) ( ) ( ) ( )δ δ∆ = ∆ + ∆ ∆ = ∆ + ∆

 ,b b b ib ib ibt t t t t t t tv v f θ θ ω  (3.41) 

Consideration of other disturbing influences 

Other disturbing effects besides the sensor measurement errors have to be taken into account to 
obtain a highly accurate result. Higher grade IMU usually accommodate separate sensors for each axis. 
Due to their extent the sensors cannot be mounted at the same location in the IMU housing. This 
does not play a role for the angular rates but has to be accounted for when processing the 
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accelerometer measurements. The accelerations have to be corrected by the internal lever arms 
because of the different centrifugal accelerations at the different sensing locations. 

Non-nominal errors 

In this section models for nominal IMU measurement errors will be derived. However, non-nominal 
faults might occur and have to be detected and isolated with high probability if the specified system 
performance has to be guaranteed. A simplex IMU features three orthogonal acceleration and angular 
rate sensing axes. Due to the missing redundancy, faults cannot be autonomously detected by the 
IMU. For safety critical applications, however, fault detection (and isolation) is a relevant issue. 
Therefore, these applications make use of skew-redundant IMU (SRIMU) with more than three, not 
compulsorily orthogonal measurement axes. Accuracy and integrity are increased since the effective 
noise variance is reduced and faults can be detected because of the redundancy in each axis. In 
principal, the same fault detection and isolation mechanisms, amongst others the parity space method, 
are used as in the receiver autonomous integrity monitoring (RAIM) of satellite navigation. The 
dodecahedron (as five sided frustum with face angles of 58.28°) offers for example the optimal 
geometry for six axes configurations. If the measurements of the single axes of a SRIMU are converted 
to three orthogonal values, the same inertial navigation algorithms as with the simplex IMU can be 
used. 

3.2.2 Characteristics 

3.2.2.1 Accelerometer 

Based on [33] the non-integrating accelerometer measurement model is given with 

( ) ( ) ( ) ( ) ( )= + + + +

3b f f b f ft t t tf I S M f b ε  (3.42) 
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Other error terms like ramps ,R fb  or additional Markov noise ,M fb  are omitted in the model above 
because of their minor influence on the navigation solution but can of course be easily added to fb  if 
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required for example in highly accurate applications. Non-linearities for example of the scale factor 
and vibration rectification are contained in fε . A thorough discussion of the physical cause of the 
single errors is given in [26] for many sensor types. 
The scale factor error matrix fS  is defined as 
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Misalignment errors stem from non-orthogonal measurement axes due to imperfections of the 
assembly of the sensor triad. As shown in Figure 3-2, the misalignments can be represented by six 
independent tilt angles δϕy , δϕz , δϑx , δϑz , δψ x  and δψ y . The nomenclature is as follows: the 
subindex x , y , z  specifies the concerned axis whereas ϕ , ϑ , ψ  defines about which axis the 
concerned axis is tilted. The misalignment matrix is defined by 
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(3.45) 

(3.42) solved for the acceleration error δ bf  becomes with (3.43), (3.44) and (3.45) 
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Therein, the non-modeled error fε  is neglected. 

 
Figure 3-2: Definition of the misalignment angles  

xδψ
yδψ

xδϑ

yδϕ

zδϑ
zδϕ

x

y

z



 3.2 Inertial Measurement Unit Error 

 33 

3.2.2.2 Gyroscope 

Based on [24] the non-integrating gyroscope measurement model is analogous to (3.42) 
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t t t t tω ω ω ω ω= + + + + + +I S M A f bω ω Ψ ω ε
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In contrast to the accelerometer measurement model, the linear acceleration cross-coupling term 
( )ω



b tA f  is added to the gyroscope measurement model 
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The mounting orientation error is represented as rotation of the orthogonal triad by 
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Note that the mounting orientation error only affects the rotational but not the translational degree 
of freedom and has thus not to be considered in the accelerometer error. In accordance with (3.46), 
the angular rate error δ ibω  is 
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3.2.3 Models 

The turn-on biases 0b , bias temperature sensitivities Tb , nominal scale factor errors 0s , scale factor 
error temperature sensitivities Ts  as well as misalignment errors m  of the accelerometer and 
gyroscope and the acceleration sensitivity ωa  and mounting orientation error 

bb
ψ



 of the gyroscope 
are modeled as constant values, described by the discrete-time model 
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exemplarily for the turn-on bias. Although these errors are already small by definition, they are 
formally split into expected value z  and error δz  in order to fit into the context of the navigation 
state error filter if they shall be estimated and not only considered 

δ= +z z z  (3.53) 

Then, models for the errors of the estimated IMU error components are applied in the navigation 
filter 
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instead of the error models (3.52), which are actually the same. In common navigation system designs, 
the turn-on biases and the nominal scale factor errors are usually estimated and used for in-flight 
calibration of the raw IMU measurements whereas the remaining errors are treated as considered 
states because of their low observability. 
The velocity/angle random walk Nb , bias instability Bb , acceleration/rate random walk Kb  as well as 
quantization noise Qb  are noise-like errors and are described by stochastic models. 

Nb  is simply white noise on the acceleration/rate signals /f ω  and a random walk on the 
velocity/angle increments ∆ ∆/v θ  in case of integrating sensors. 
The bias instability Bb  is pink colored noise on the acceleration/rate signals /f ω . It is characterized 
by the PSD being inversely proportional to the frequency f . According to the IEEE standard [24] the 
bias instability noise of inertial sensors is best described by pink noise with the high frequency part 
with > 1 cf T  cut away 
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where B  is the bias instability coefficient and cT  the cut-off time constant. A first order low-pass 
filter with the continuous-time transfer function 
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is adequate to obtain the desired PSD. With the bilinear transform 
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where ∆t  is the sample time, the corresponding discrete-time transfer function becomes 
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The ARMA coefficients a  and b  of the overall transfer function ( )H z  of the low-pass filter transfer 
function ( )LPFH z  and the bias instability transfer function ( )BH z  connected in series 

( ) ( ) ( )
−

−
=

−
−

=

+
= ⋅ =

− −

∑

∑

1 ,
0, 1, 0

1
1,

,
1

1
1

q
i

B i
LPF LPF i

LPF B p
iLPF

B i
i

b z
b b z

H z H z H z
a z

a z
 (3.59) 

are obtained by convoluting the denominator and numerator polynomials 
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where the bias instability model coefficients ,B ia  and ,B ib  can be taken from Table 3-3 and Table 3-4. 
The PSD of the low-pass filtered bias instability noise are shown in Figure 3-3 for bias instability 
models of order 1 to 4 and the exemplary cut-off time constant = 1scT . 
Quantization of a continuous signal generally leads to additional white noise Qb . Quantization is 
owing to the resolution of the analog-digital converters (ADC) sampling the servo circuit current or 
voltage of analog servos or to the discrete energy amount per pulse of digital servos. If non-integrated 
acceleration/angular rate signals /f ω  are output, the quantization noise Qb  superposes with the 
velocity/angle random walk noise Nb . Since the sensor manufacturer tests and calibrates the complete 
sensor unit just as later applied in the navigation system, the quantization effect is already included in 
the specified white noise and has not to be separately considered in the accelerometer model. If the 
sensor outputs velocity/angle increments∆ ∆/v θ , the white quantization noise is on the integrated 
accelerations/angular rates and thus corresponds to acceleration/angular rate violet noise. Looking at 
the power spectrum of the acceleration/angular rate /f ω , the PSD of quantization noise is 
proportional to the frequency f  if the sensor is integrating [24] 
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and constant with frequency f  if the sensor is non-integrating 

( )
( )ω

π

π
=

22

/ , 2

sin
Q

s
f b

s s

f fQ
S

f f f
 (3.62) 

For < 1
2 sf f , the approximations 
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Figure 3-3: PSD of low-pass filtered 1 f  noise ( 1scT = ) 

and 

ω ≈
2

/ , Qf b
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 (3.64) 

hold. The acceleration/angular rate random walk Kb  is usually very low frequent with a correlation 
length in the range of hours. The white noise Nb  and the bias instability Bb  have the largest share of 
the stochastic error. 
The corresponding discrete-time state space models have been given in Table 3-6 in section 3.1.4.3. 
In the models, each of the triad axes is assumed to be independent. The input noise is white and 
Gaussian distributed and characterized by its PSD specified in ( )2

2m s Hz  for accelerometers and 
( )2
rad s Hz  for gyroscopes. Table 3-9 lists the corresponding coefficients of the different noises 

of the acceleration/rate signals /f ω . Notice that, if integrating sensors are analyzed, the velocity/angle 
increments have to be numerically differentiated at first. 

Table 3-9: PSDs of stochastic errors [24] 

Stochastic Error Type Exponent α  Coefficient αh  Unit 

Kb  Random walk 
frequency -2 π

2

22
K  ( ) ( )2

2 2radm
ss

Hz , Hz  

Bb  Flicker frequency -1 
π

2B  ( ) ( )2

2 2radm
ss

,  

Nb  White frequency 0 22N  ( ) ( )2

2 2radm 1 1
Hz s Hzs

,  

Qb  
Non-integrating White frequency 0 ∆ 22 t Q  ( ) ( )2

2 2radm 1 1
Hz s Hzs

,  

Integrating White phase +2 2 28 t Qπ ∆  ( ) ( )2 3 3

2 2radm 1 1
ss Hz Hz

,  
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3.2.4 Parameter Estimation 

The parameters K , B , N  and Q  are specified by the manufacturer. Often, the manufacturer gives 
rather conservative values if the IMU performance has to be guaranteed. The noise amplitudes of the 
device at hand are normally up to one order of magnitude lower. If particularly high accuracy is 
demanded, it is recommended to estimate the parameters again from the recorded measurements of 
the actual unit to be applied in the integrated navigation system. For that, some hours of data have to 
be recorded. During the recording time the IMU itself as well as the environmental conditions, first 
of all the temperature, have to be kept stationary. The overlapping Allan variance ( )σ τ2

avar,y i  as given 
in Template 3-2 is computed for each sensor channel. The parameter vector a  containing 

( )=T 2 2 2 2K B N Qa  (3.65) 

can be easily estimated by means of the least squares method with the vector s  of the M  available 
Allan variances ( )σ τ2

avar,y i , = 1i M , 
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and the coefficient matrix A , using Table 3-1 and Table 3-9, 
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It has to be noticed that an estimator with lower boundary constraint has to be applied, since the 
parameters to be estimated are strictly positive. Furthermore, it is advisable not to minimize the 
residuals in the classical sense of least-squares 

( ) ( )( ){ }− −
T

ˆ
ˆ ˆarg min

a
s A a s A a  (3.68) 

but to minimize the sum of the squares of the differences of the common logarithms 

( ) ( )( ) ( ) ( )( )( ){ }− −
T

ˆ
ˆ ˆarg min log log log log

a
s A a s A a  (3.69) 

Since the noise is strongly influenced by the temperature, the analysis should be repeated for different 
environmental temperatures. A temperature chamber would be ideal but alternatively, it is possible to 
adjust at least a few temperatures with the room heating and air conditioning. 
As example, the noise parameters of the gyroscopes of a Northrop Grumman LITEF µIMU-IC device 
[34] are estimated for a single temperature. The sample rate is 400 Hz. About 18 hours of measurement 
data have been recorded. The IMU was placed on a leveled plane table. The initial time period, during 
which the device temperature was transient, has been cut away. By means of a ventilator the device 
temperature was kept constant at 42 °C as illustrated in Figure 3-4. 
The black lines in Figure 3-5 show the actual overlapped Allan deviations of the angular rate 
measurements. The colored dotted lines illustrate the estimated Allan deviations of the single noise 
components and the black dotted line is the estimated overall noise Allan deviation. The x -axis 
gyroscope features only angular random walk and quantization noise. The y - and z -gyroscopes 
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additionally exhibit bias instability noise. It can be seen that the actual and the estimated Allan 
deviations coincide well. The estimated parameters of the single gyroscope triad axes are listed in 
Table 3-10. The estimated angular random walk parameters N  of the three axes are almost equal. By 
comparing them with the specified parameters (Table A-2), it can be seen that the actual performance 
of the device under consideration is almost one order of magnitude better than specified. 
The IMU error models will be integrated into the navigation filter in section 4.6.1. 

Table 3-10: Estimated parameters of Northrop Grumman LITEF µIMU-IC gyroscopes 

Parameter x  y  z  

B  °  h  n/a 0.157 0.230 

N   ° h  0.063 0.066 0.062 

Q   ° h  0.196e-5 0.251e-5 0.148e-5 

 
Figure 3-4: Temperature of Northrop Grumman LITEF µIMU-IC during measurement recording 
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Figure 3-5: Allan deviations of the Northrop Grumman LITEF µIMU-IC gyroscope triad 
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3.3 Gravity Model Error 

3.3.1 Motivation 

One of the main problems in inertial navigation is the compensation of the gravity γ . Accelerometers 
measure the specific force bf  that acts on the proof mass of the sensor. In order to calculate the 
acceleration  ev  of the platform with respect to Earth with (2.1), the accelerometer measurement has 
to be transformed from b -frame to e -frame and compensated by the gravity eγ  and the Coriolis 
acceleration. 
Several gravity models exist. Somigliana’s gravity model with Taylor series expansion as presented in 
[35] is valid for heights up to 50 km. Highly accurate applications can use the spherical harmonics 
gravity model with EGM96 or EGM2008 model coefficients. The gravity potential is described by 
superposed zonal, sectorial and tesseral surface harmonics. The accuracy of the gravity potential and 
the gravity vector depends on the degree and order of the harmonics. However, the computational 
effort increases likewise with degree and order. The gravity vector, which is the partial derivative of 
the potential, can be calculated with the formulas given in [36]. 
Especially in flight phases without aiding measurements, for example due to missing GNSS reception, 
the self-assessment of the accuracy of the pure inertial navigation solution is important. The 
measurement errors of the inertial sensors and the gravity compensation error are continuously 
integrated and lead to a gradually growing uncertainty of the navigation solution. This uncertainty has 
to be properly predicted if the navigation solution is used in safety critical functions like for example 
flight cancellation of unmanned aircraft running the risk to leave the controlled airspace. In order to 
calculate the covariance of the inertial navigation solution correctly, gravity model errors have to be 
identified and adequately modeled besides the already discussed IMU errors. 
In section R.2.2.8 of the RTCA standard DO-316, “Minimum Operational Performance Standards 
for Global Positioning System/Aircraft Based Augmentation System Airborne Equipment” [7], the 
need of an adequate gravity compensation error model is explained as follows: 
“Gravity compensation error is a significant source of position drift for two nautical miles per hour 
inertial navigation systems. Errors in the gravity models can cause errors in the integrated inertial GPS 
systems that become problematic particularly during coasting conditions. To reduce these errors, some 
form of gravity compensation algorithms must be applied. The gravity compensation error is typically 
expressed in terms of gravity deflection and gravity anomaly. […] Investigations of the distribution of 
gravity deflection and anomaly data demonstrate that the data does not form a normal distribution. 
While most of the world can be modeled assuming one-sigma deflection of 5 arc-sec, there are specific 
isolated regions where the deflections are much larger -- up to 50 arc-sec. These gravity errors do not 
produce “random” errors, as the same errors will occur on every flight over a local area. […] The 
tightly integrated system shall [GPS294] properly account for the local gravity anomalies and 
deflections such that the HPL continues to bound the system errors while operating in areas of 
increased gravity anomaly/deflections, even when coasting. Suitable mechanisms include an 
appropriate subset of the following: 

a) Over-bounding using a standard model with an elevated sigma level. 
b) Compensation using a gravity map. 
c) Adjustment of the filter parameters (e.g. increase the process noise).” 
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In section R.5.8 details about the statistical model and its validation are specified: “The effect of gravity 
disturbances can be simulated by a statistical model, one example is the Gauss-Markov Gravity Model 
(GMGM), which is generated from a series of medium order (2nd to 4th) Gauss-Markov processes. 
The statistical model includes processes of varying correlation distance. […] The SC [Statistical 
Compensation] technique is implemented by adjusting the parameters of the tightly-coupled filter to 
overbound the degree of variation of the residual […] gravity disturbances. The SC technique may 
incorporate real time adjustment of the filter parameters based on a priori knowledge.” 
In [37], it is proposed to model the residual gravity error of the precise orbit determination of satellites 
as second order Gauss-Markov process. In [11], an adequate third order stochastic gravity error model 
is presented. 
If a simple ellipsoidal normal gravity model like Somigliana is used for gravity compensation in the 
inertial navigation algorithm, the remaining uncompensated error may be described as stochastic 
process. [38] has derived a stochastic model for this gravity error. It bases upon the statistical 
description of the local spatial disturbing gravity potential T . In particular, T  is represented by a 
spatial ergodic and isotropic stochastic Markov process of nth  order with exponential autocorrelation 
function. The gravity vector error is deduced from the disturbing gravity potential model. The spatial 
process is converted into a temporal process by means of the velocity of the carrier platform. 
In this section, the state-space model of [38] for the stochastic gravity compensation error is 
recapitulated and adapted to the context of integrated navigation filter. The model represents the 
amplitude and time correlation of the error. It is two-dimensional (latitude, longitude) and valid on 
the surface of the Earth. The attenuation with height is considered by upward continuation. The Earth 
is assumed to be flat, which is adequate for correlation lengths shorter than 3000 km. The model can 
be later integrated into the navigation error filter to correctly consider the gravity error of the 
integrated navigation solution. 

3.3.2 Disturbing Gravity Potential Autocorrelation Function 

The actual gravity potential W  at the position ( )tx  is composed of the normal gravity potential U  
and the disturbing gravity potential T  

( )( ) ( )( ) ( )( )= +W t U t T tx x x  (3.70) 

The gravity disturbance vector δ nγ  is defined as difference between true gravity nγ  and the normal 
gravity model value  nγ  
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 (3.71) 

where γ  is the normal gravity, δn  and δe  are the deflections of the vertical in north and east direction 
and δγ  is the gravity disturbance. The gravity model vector  nγ  is assumed to be normal on the Earth 
ellipsoid. The true gravity vector nγ , however, is normal to the local geoid, which is as illustrated in 
Figure 3-6 an equipotential surface, constW = , with undulation height N  above the Earth ellipsoid. 
The deflections of the vertical in north and east direction δn  and δe  are shown in Figure 3-7. Note 
that the angles are defined with respect to the normal of the Earth ellipsoid. If the deflection eδ  is 
seen as a rotation about the north axis, the angle is defined in negative sense. 



3 Reality Modeling 

42 

The gravity disturbance vector δ nγ  is the gradient of the disturbing gravity potential T  with respect 
to latitude φ , longitude λ  and height h  or with respect to north, east and down directions nx , ex  
and dx  if the Earth is assumed to be locally flat 
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Therein, M  is the meridian curvature radius and N  is the normal curvature radius of the Earth 
ellipsoid. The gravity disturbance vector δ nγ  can thus be consistently derived once a model for the 
disturbing gravity potential T  has been found. The disturbing gravity potential T  is modeled as spatial 
isotropic thn  order Gauss-Markov process 
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where ( )η r  is white input noise. The corresponding autocorrelation function is [39] 
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Therein, = +2 2
n er x x is the horizontal distance. ( )Γ n  is the gamma function. σT  is the standard 

deviation of the disturbing gravity potential T . If, for example, a second order model is chosen [38], 
= 2n , then the spatial autocorrelation function becomes 

( ) ( ) βσ β −= + ⋅2 1 r
TT TR r r e  (3.75) 

Figure 3-8 shows the normalized autocorrelation function. The correlation length at which the 
autocorrelation is about 1 0.37e ≈  is given with 

2.146
β

 (3.76) 

In section B.1 in the appendix the autocorrelation function matrix δ δn n
R γ γ  of the gravity disturbance 

vector δ nγ  is derived from the autocorrelation function of the disturbing gravity potential (3.75). 

 
Figure 3-6: Gravity vectors, geoid and reference ellipsoid 
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Figure 3-7: Deflections of the vertical nδ  and eδ  

 
Figure 3-8: Normalized isotropic autocorrelation function of the disturbing gravity potential, which is 

modeled as 2nd order Gauss-Markov process, 56.1 10β −= ⋅  

3.3.3 Gravity Disturbance Model 

The continuous-time state-space model for the stochastic gravity disturbance as presented in detail in 
[38] is given by 
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The model is composed of 2nd order Gauss-Markov processes in along-track and down direction and 
a 1st order Gauss-Markov process in cross-track direction. The Gauss-Markov processes correspond 
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to the gravity disturbance vector autocorrelation function (B.8). hv  is the horizontal velocity of the 
moving carrier platform 

= +2 2
h n ev v v  (3.78) 

The flight track angle χ  is calculated by 

( )atan2 ,e nv vχ =  (3.79) 

In (3.77) the correlation distance r  has been replaced by a product of the platform velocity hv  and 
the correlation time τ . The input noise is normalized Gaussian white noise, ( ) 30,WN Iη . 
The state-space model is valid directly on the Earth ellipsoid with height = 0h  or close to the 
topography. The dampening effect of the gravity disturbance with increasing height, that is with 
increasing distance to the topography, is not included and has to be regarded by the upward 
continuation of the model, which will be described in the next section. β  as well as the standard 
deviation σT  depend on the local roughness of the terrain. In mountainous areas the correlation length 

β2.146  is shorter and the standard deviation σT  higher than in level land. 
The state-space model (3.77) with five states can be split into three smaller models in along-track, 
cross-track and downward directions. This is beneficial when the model is implemented in the 
navigation error filter because the computational effort is reduced. The along-track model is 
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the cross-track model is 
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and finally the downward model is 
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The gravity disturbance vector δ nγ  is accordingly composed of the outputs of the three models 
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with the single output matrices given as 

( ) ( )

( )

σ β β χ σ β β χ

σ β β χ

β

  
  

= ⋅ ⋅ = ⋅ ⋅   
  

   
 
 

= ⋅ ⋅  
  
 

3 3

3

00 2

0 0 , 2

0 0 0

0 0

0 0

2 6

a T h c T h

d T h

h

v v

v

v

H R H R

H R

 (3.84) 



 3.3 Gravity Model Error 

 45 

3.3.4 Upward Continuation 

In order to account for the decreasing gravity disturbance with distance to the terrain, the system 
matrices in (3.80), (3.81) and (3.82) are written as functions of the height h  [40]. The adapted state-
space models are 

( ) ( ) ( ) ( ) ( ) { }
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{ }, ,

, , ,i i i i i

n j j
j a c d

t h t h t i a c d

t h t
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 (3.85) 

The system matrices depend on h  as follows 
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Therein, h  is the normalized height and is calculated as 
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m  is a free parameter and has to be chosen adequately. 

3.3.5 Discrete-Time State-Space Model 

Next, the continuous-time model (3.85) is converted to discrete-time as described in section 2.3 so 
that it can be implemented into the integrated navigation filter 
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The linear terms are sufficient for the system matrices of the gravity disturbance model 
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The discrete-time input noise is Gaussian distributed white noise 

η  
 ∆ 

,

1
~ 0,i k WN

t
 (3.90) 

3.3.6 Parameter Estimation 

The stochastic gravity error model parameters σT  and β  shall be estimated from real gravity data. In 
the absence of the knowledge of the true gravity the accurate EGM2008 gravity model serves as 
reference for the truth. The gravity error is then defined as difference between the EGM2008 gravity 
and the WGS84 ellipsoidal gravity, which is commonly used in inertial navigation systems for gravity 
compensation. 
The National Geospatial-Intelligence Agency (NGA) already provides EGM2008 gravity anomalies 
and deflections of the vertical as global 2.5’ × 2.5’ grids [41]. The maximum degree and order of 2159 
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have been used for the computation of these grid values. The deflections of the vertical δn  and δe  
are multiplied by the normal gravity γ  to obtain the north and east gravity errors nδ γ  and eδ γ . Figure 
3-9 shows the north, east and down gravity errors n nδγ δ γ=  , e eδγ δ γ=   and δγ δγ=d  for parts of 
the Midwestern and Southern territories of the U.S. The magnitude of the error components is below 
0.08 mg. 
The discrete spatial autocorrelation functions with the discrete north offsets ,n ix  and discrete east 
offsets ,e ix , = 1i N , are computed from the grid values according to 
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where N  is the number of grid points and ( )δγ , 0, 0n j  are the grid values. 
A non-linear least squares solver allowing for boundary conditions is applied to estimate the standard 
deviation of the disturbing gravity potential σT  and the correlation length parameter β  from the 
gridded data. The cost function J  to be minimized by the solver is 
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The estimated parameters for the Midwestern and Southern territories of the U.S. are 

σ

β − −
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= ⋅
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2.39 10 m
T  (3.93) 

The corresponding correlation length is  2.146 89.8 kmβ = . Figure 3-10 shows the spatial autocorrelation 
function of the north gravity error as computed by (3.91) and the autocorrelation function with the 
estimated parameters (3.93). Figure 3-11 shows both autocorrelation functions for the east gravity 
error and Figure 3-12 the autocorrelation functions for the downward pointing gravity error. The true 
and the estimated autocorrelation functions fit well in all three directions. Note that the stochastic 
gravity error model parameters are not global but vary regionally. The standard deviation of the 
disturbing gravity potential and the correlation length depend, for example, on the roughness of the 
terrain surface. For an operational system it is recommended to repeat the parameter estimation offline 
for the different regions in which the system is intended to be operated and to file the computed 
values in a table that is accessible online by the navigation algorithm. 
The model will be integrated into the navigation filter and analyzed in section 4.6.2.  
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Figure 3-9: Difference between the EGM2008 gravity and Somigliana’s normal gravity in north, east 

and down direction in parts of the Midwestern and Southern U.S. territories 
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Figure 3-10: True (colored surface) and estimated (black mesh) autocorrelation function 

n n
Rδγ δγ  

 
Figure 3-11: True (colored surface) and estimated (black mesh) autocorrelation function 
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Figure 3-12: True (colored surface) and estimated (black mesh) autocorrelation function 

d d
Rδγ δγ  



 3.4 Random Vibration 

 49 

3.4 Random Vibration 

3.4.1 Motivation 

Under unfavorable conditions, the influence of vibrational noise on the inertial navigation error can 
exceed the influence of the inertial sensor measurement errors. In these cases, the power spectral 
density of the highly frequent vibrations might be larger than that of the IMU measurement noise and 
bias instabilities. Only if the IMU is effectively isolated from these vibrations, the IMU errors are the 
main contributing factor to the inertial navigation solution error. In this section, a method is presented 
to estimate the PSD of the accelerometer and gyroscope signals in real-time and to adapt the process 
noise model in the integrated navigation filter accordingly. 
Vibrations are superposed oscillating motions of the structure with different frequencies and 
amplitudes. They occur on the translational as well as rotational degrees of freedom. The vibration 
frequencies are usually higher than of the vehicle motion. Aerodynamic or propulsion forces and 
moments that act on the vehicle may excite the eigenmodes of the platform structure, resulting in 
small amplitude oscillations at the installation location of the IMU with frequencies close to the natural 
ones of the structure. Furthermore, imbalances of rotating shafts in engines, electric motors or other 
mechanical devices that are mounted in the vicinity of the IMU may also cause vibrations. Another 
source may be aeroacoustically generated noise. It is distinguished between vibration with distinct 
frequencies and narrow line spectra and vibrational noise with broadband spectra. 
In principal, vibrations are part of the motion of the vehicle or at least of the IMU and one cannot 
necessarily distinguish between “true” vehicle motion and vibration from the accelerometer and 
gyroscope measurements. However, there are two aspects why the system designer may nevertheless 
be interested in isolating the vibrational part from the remainder of the motion. First, if the overall 
motion of the carrier platform shall be determined, vibrations that are locally induced by a mechanical 
device in the proximity of the IMU are not characteristic for the overall motion and will hence falsify 
the inertial navigation solution. And second, more important, only the low frequent parts of the 
motion with frequencies smaller than about a fifth of the Nyquist frequency are integrated by the 
numerical integration method without loss, meaning that the accumulated numerical error actually 
corresponds to the expected truncation error of the chosen scheme. Motion parts with higher 
frequencies are sampled with too few points. If oscillations are sampled with less than five points per 
period, they may not be correctly represented after the discretization. The integration error will be 
larger than expected from the truncation order. 
Therefore, the location as well as the mounting of the IMU have to be carefully chosen. The device 
should be installed at a place where the effect of externally and internally induced structural vibrations 
is as small as possible. From simulations, for example, with the finite element method or from 
previously recorded flight data the frequencies and amplitudes of structural vibrations can be 
determined at the intended installation location. Periodograms and spectrograms of the simulated or 
recorded accelerations and angular rates help to gain insight into the distribution of signal power over 
the frequency range during the flight. Well-suited locations feature low signal power in the higher 
frequency range. Once a feasible place has been found for the IMU, the effect of random vibration is 
further reduced by mounting the IMU with suitable damping elements whose resonant frequencies 
are tuned to the predominant frequencies in order to damp most of the interfering motion energy. 
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The remaining disturbing influence can be further countered by adequate signal processing. Notch 
filters or narrow band-pass filters are one possibility to wipe out motion parts with distinct frequencies 
or narrow frequency bands with especially high interfering signal energy content. 
In an integrated navigation filter the effect of the inertial navigation errors due to insufficiently 
resolved vibrational motion in the high frequency range has to be accounted for by the process noise 
covariance matrix Q . The question arises how to tune the process noise covariance matrix in this case. 
The simplest way is to look at the power spectral densities of the accelerations bf  and angular rates 

ibω  that have been previously recorded at a representative flight. The PSDs, which usually vary over 
frequency, are substituted by white noise with constant density over frequency. The task is to find the 
amplitude of the substitute white noise such that its PSD best fits or slightly over-bounds the actual 
characteristic in the high frequency range. One possibility is to calculate the signal power by integrating 
the PSD over the considered frequency range and subsequently dividing it by the same frequency 
interval to obtain the substitute white noise with constant power spectral density but same power 
content as the original. The procedure has to be separately done for all six channels of the IMU. The 
computed white noise PSDs can be directly inserted into the process noise covariance matrix of the 
integrated navigation filter without further modifications.  
In higher sophisticated systems, the system designer can identify a model that considers the varying 
power over the frequency range. It is thus possible to concentrate signal power at certain distinct 
frequencies or frequency bands. Autoregressive models are appropriate for that purpose. The usage 
of such models has also the advantage that time correlations of the errors are described in contrast to 
the substitute Gaussian white noise assumption. The higher the chosen model order, the more details 
of the PSD can be represented. The chosen order is merely a question of computational load. In quasi-
stationary conditions, constant models are adequate. This is, for example, the case if electric motors 
or ventilators with constant revolution speeds cause the vibrations. When different regimes like high 
dynamic motion, flight in turbulence or slow flight in calm conditions alternate, an adaption of the 
model to each situation is proposed. 
Even if the vibration model is not integrated into the navigation filter, the RTCA standard DO-334 
[5] requires that vibration (including acoustically induced vibration) has to be accounted for in the 
simulation model if parts of the certification process of an AHRS are done by simulation instead of 
flight evaluation. Then, knowledge about the prevailing vibrations at the intended installation location 
and deduced from that a high fidelity model are necessary for the synthesis of the acceleration and 
angular rate measurements in the simulation. 
Finally, it has to be noted that random vibration can additionally provoke bias-like measurement errors 
besides the vibrational noise, which primarily result from the non-linearity of the scale factor and are 
characterized by the vibration rectification coefficients. These errors are however not part of this 
discussion here and will have to be analyzed in future in the ongoing research. Background 
information about the origin of vibration rectification can be found in [42] [43] [44] [45]. A brief 
overview about the effect of vibration on the inertial solution can also be read in [8] and [27]. 
First, some remarks are made about the power spectral analysis of the signals to get an insight. The 
power spectral analysis is actually not required in the algorithm of the integrated navigation system. 
Then, a real-time capable power spectral estimation algorithm and the derivation of a suitable 
autoregressive model are presented. 
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3.4.2 Power Spectral Analysis of IMU Measurements 

Periodograms of the separate IMU signals at different instants of time along the trajectory reveal the 
actual motion of the platform, mainly in the low frequency range, and superposed vibrations and 
sensor errors, mainly in the high frequency range. Due to the aliasing effect the PSD is symmetrical 
to multiples of the Nyquist frequency 2sf  as well as the sampling rate sf  as illustrated in Figure 3-13. 
The PSD cannot distinguish whether the power at frequency f  stems from signal frequencies f , −sf f  
or integer multiples of these. 
In order to separate the motion part that can be integrated without loss by the inertial navigation 
algorithm from the perturbing vibrational part of the signal, the low frequency range containing the 
motion has to be removed by means of a high-pass filter. It has to be noted that then, owing to the 
aliasing effect, not only the desired frequency range below the chosen cut-off frequency ( )ω π2c  is 
filtered but also the frequency band about the sampling frequency sf  in the range between 

( )ω π− 2s cf  and ( )ω π+ 2s cf . The same happens at 2 sf , however, the power content at this high 
frequency is assumed to be small and its influence should be small. 
The military standard of the Department of Defense MIL-STD-810G “Environmental Engineering 
Considerations and Laboratory Tests” [46] gives in section 514.6 examples for vibrational noise PSDs 
that are usually encountered in aircraft (jet/propeller aircraft, helicopter, …) at different locations 
(instrument panel, stores, …). The standard defines, amongst others, how devices like IMUs or 
integrated navigation systems to be installed in a military aerial vehicle have to be tested with respect 
to the expected vibrations for example in the laboratory in order to obtain their certification. On the 
one hand, the equipment has to resist the mechanical load induced by vibrations and shall not get 
broken under the expected vibrations. On the other hand, the navigation system has to fulfill the 
specified performance, even under these expected vibrations. Especially categories 12, 13 and 14 apply 
for installed materiel on jet, propeller and helicopter aircraft. Categories 16, 17 and 18 hold for materiel 
that is installed in the stores of jet, propeller and helicopter aircraft. Category 19 specifies the 
vibrational regime of freely flying missiles with running engine. Figure 3-14 shows the typical PSD 
that can be expected on jet aircraft (MIL-STD-810G 514.6 Category 12). Figure 3-15 illustrates the 
typical vibrational noise PSD of propeller aircraft (Category 13). Note that the high frequency 
vibrations are dampened by appropriately tuned shock absorbers and thus do not interfere the 
IMU/integrated navigation system. 

 
Figure 3-13: Exemplary power spectral density and cut-off ranges 
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Figure 3-14: Typical vibrational noise PSD for material installed on jet aircraft 

(MIL-STD-810G 514.6 Category 12, [46]) 

 
Figure 3-15: Typical vibrational noise PSD for material installed on propeller aircraft 

(MIL-STD-810G 514.6 Category 13, [46]) 

3.4.3 High-Pass Filtering of IMU Measurements 

The low frequency accelerations and angular rates are integrated by the inertial navigation algorithm 
without loss because the motion is resolved with a sufficiently high number of samples. The focus lies 
on the frequencies higher than a fifth of Nyquist where numerical errors due to under-sampling are 
expected. 
It is therefore recommended to cut off the low frequent part of the motion by means of high-pass 
filtering before the coefficients of the vibration model are estimated. The high-pass filter is 
characterized by its cut-off frequency and its rate of frequency roll-off. The higher the order of the 
filter is chosen, the higher the roll-off rate but also the phase lag. However, since the filter does not 
work in closed-loop and the phase lag does not play a role, the filter order can be chosen arbitrarily. 
The cut-off can be set very sharply, for example with a filter order of 10. In principal, only the 
numerical effort limits the order of the chosen filter. It is proposed to use a Butterworth filter. 
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The transfer function of the resulting high-pass filter takes the general form 
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H s

s a s a s a
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In Table 3-11 the denominator coefficients ′ia  of the high-pass filter transfer function HPFH  are 
calculated for filters up to order = 4n . 

Table 3-11: High-pass filter coefficients ′
ia  

n  ′0a  ′1a  ′2a  ′3a  

1 1    
2 1 2    
3 1 2  2   

4 1 + + −2 2 2 2  + + −2 2 2 2 2  + + −2 2 2 2  

 
Finally, the continuous-time high-pass filter transfer function (3.94) has to be converted to discrete-
time. This is accomplished by substituting the continuous-time integrator 1 s  by a discrete-time 
forward Euler integrator according to 
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Therein, ∆t  is the sample time. Alternatively, a bilinear transformation, which is actually a trapezoidal 
integrator of second order accuracy, could be used. The discrete-time high-pass filter transfer function 
(3.94) will generally be 
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with the numerator coefficients ib , = 0i n  and the denominator coefficients ia , = 1i n . Table 
3-12 gives the coefficients for high-pass filters up to order = 4n , where cT tω= ∆ . 

Table 3-12: Discrete-time high-pass filter coefficients ia  and ib  ( cT tω= ∆ ) 
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3.4.4 Discrete-Time State-Space Model 

Next, AR models are searched that adequately represent the PSD of the filtered IMU signals. The 
estimation of the AR model coefficients has to be real-time capable so that it can be applied in the 
integrated navigation filter. The AR model coefficients are estimated with Burg’s method, which has 
been presented in section 3.1.5.4. 
The state-space model for the translational vibrational noise in the three orthogonal directions is 
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 (3.97) 

and analogous for the rotational vibrational noise in the three orthogonal directions. The input noise 
is white and Gaussian distributed with the estimated input noise variance ηQ . 
The model coefficients are regularly updated by the online estimation algorithm, for example at every 
covariance propagation step of the navigation filter. The models are thus adjusted to the currently 
prevailing vibration regime. It is best to choose a window of the latest m  measurement samples as 
depicted in Figure 3-16. The integrated navigation filter can estimate the AR coefficients with lower 
priority in parallel to the inertial navigation solution. 
Even if the AR model coefficients are estimated only at the covariance propagation steps of the 
integrated navigation filter, the time step size of the discrete-time vibration state-space models (3.97) 
is the IMU sample time −∆ = − 1i it t t . In the propagation step of the navigation filter, however, a 
discrete-time model at the propagation rate is required. The propagation time is an integer multiple of 
the IMU sample time, −= − = ∆1k kT t t n t . The vibration state-space matrices are assumed to be 
constant between two propagation steps, =iΦ Φ , =iΓ Γ . The conversion from the IMU sample rate 
to the propagation rate is described in section 2.5. 
The model will be integrated into the navigation filter and analyzed in section 4.6.3. 

 
Figure 3-16: State propagation, covariance propagation and estimation window 
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3.5 GPS Observable Errors 

3.5.1 Satellite Clock Error 

3.5.1.1 Motivation 

Satellite navigation bases on measuring the time of flight of a radio signal between the satellite and 
user antenna. The signal travel time is determined by subtracting the broadcast time from the time of 
receipt. In order to obtain accurate range measurements, the broadcast time has to be accurately 
known. Since the signal travels with speed of light, a 1 ns time error already yields a 0.3 m range error. 
Although GPS satellites incorporate highly stable atomic cesium (CS) and rubidium (RB) clocks, the 
clock time gradually deviates from true reference (GPS) time. The control segment monitors the errors 
of each satellite clock and provides clock correction parameters in the navigation message. However, 
after applying the clock correction to the measured pseudoranges, uncompensated range errors of up 
to 4 m remain, depending on the age of the navigation message, the satellite block type and the 
activated clock in the satellite. The range error is typically bias-like with correlation length in the range 
of an hour. These bias-like range errors result in permanently biased position solutions. Pseudorange 
measurement errors are often modeled as white noise with sufficiently large variance to over-bound 
the effect of the omitted correlations. If the variance of the substitute noise is too small, the navigation 
error covariance settles too much, which leads to too optimistic statistics. This in turn can cause false 
fault detections and exclusions of measurements by the innovation based integrity monitor. 
In this section a model for the residual satellite clock error shall be identified. At first, the short and 
long term satellite clock error characteristics are analyzed by comparing the satellite clock error that is 
calculated with the parameters in the broadcast navigation message with the precise satellite clock 
error that is provided as product from the International GNSS Service (IGS) network. For that, data 
of a complete year is evaluated. Afterwards, the model structure is found and the corresponding model 
coefficients are estimated from the real data. The model will consider upload and dataset cutovers of 
the navigation message and will account for the increasing satellite clock error with elapsing time since 
the last ephemeris update. Finally, an outlook on the new navigation messages that are modulated on 
the new GPS signals will be given. It is expected that the accuracy of the satellite clock error will 
increase with the additional correction parameters, such that it will probably not be required anymore 
to augment the navigation error filter by the models presented in this section in future. In [47] [48] 
[49] [50] [51], GPS clock and orbit ephemeris errors are analyzed. In [47], standard deviations and 
Gaussian overbounds are derived for the instantaneous GPS clock and orbit errors of the IIA, IIR 
and IIR-M satellite blocks. None of the contributions presents a statistical model that describes the 
temporal correlation of the errors. 

3.5.1.2 Upload and Dataset Cutovers 

The navigation message contains, amongst others, the ephemeris data that is required to determine 
the satellite position at broadcast time and the satellite clock correction coefficients [52]. The 
navigation messages are regularly updated to reduce range errors stemming from the space segment. 
The event when a satellite begins to broadcast a new navigation dataset is called cutover. Two kinds 
of cutovers are possible, the upload cutover and the dataset cutover. An upload cutover occurs when 
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a fresh navigation dataset is uploaded to the satellite by the control segment and transmitted by the 
satellite afterwards. At a dataset cutover the navigation message is autonomously updated by the 
satellite. In this case the dataset is slightly modified with the results of the prediction computations 
that are independently performed by the satellite. The changes of the ephemeris parameters are usually 
larger at an upload cutover than at a dataset cutover. A new navigation message is indicated to the 
user by a change of the Clock Issue of Data (IODC) value and the Ephemeris Issue of Data (IODE) 
value, respectively. The IODC value is unique within the last seven days. When dealing with navigation 
datasets, it is important to distinguish between the following times. First, the time of transmission 
(TOT) is the time when the satellite starts to broadcast a new ephemeris dataset. Second, the time of 
ephemeris (TOE) is the reference time for the ephemeris parameters and third, the time of clock 
(TOC) is the reference time for the satellite clock error correction parameters. Dataset cutovers occur 
on full hour whereas upload cutovers may also occur during the hour. At normal operation, a dataset 
is continuously broadcast during a two hour transmission interval. Cutovers usually take place at 0 h, 
2 h, 4 h, … The curve fit interval, which is the validity time of the current dataset, begins right after 
the start of transmission and lasts four hours. The TOE is two hours after the TOT of the dataset. In 
order to indicate that an upload cutover has occurred instead of a dataset cutover, the TOE differs 
from the full hour in the first and second navigation datasets after the upload cutover. In this case, 
the TOE is usually 16 seconds before the full hour. The highest accuracy of the satellite position, 
velocity and clock error is obtained if the ephemeris dataset is used during the two hour interval 
around TOE. This means that the currently broadcast dataset is not applied until one hour before its 
TOE (unless an irregular upload cutover occurs in the meantime). The selection procedure for dataset 
cutovers is illustrated in Figure 3-17. The transmission of dataset 1 begins at midnight. It is broadcast 
for two hours until two o’clock am. The TOE of dataset 1 is two o’clock am, that is exactly in the 
middle of the four hour curve fit interval between midnight and four o’clock am. It would be optimal 
regarding navigation accuracy to use this dataset from one o’clock am to three o’clock am. 
Transmission of dataset 2 starts at two o’clock am and so on. Figure 3-18 shows exemplarily how an 
upload cutover may be initiated. The situation is the same as in Figure 3-17 until 3:10:32. At this time, 
the new dataset 3 is uploaded by the control segment. The new navigation data should be immediately 
applied. The TOE of the uploaded dataset is at 3:59:44 instead of 4 o’clock am to announce the 
occurred upload cutover. The TOE of the following dataset 4 is at 5:59:44 instead of 6 o’clock. 

 
Figure 3-17: Dataset cutovers 
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Figure 3-18: Upload cutover 

3.5.1.3 Standard Positioning Service Performance Standard 

The range error of the signal in space (SIS) is called User Range Error (URE) [53]. It includes all errors 
that are caused by the control and the space segment. These are predominantly non-compensated 
satellite position and satellite clock errors and inter-signal biases. The range rate error of the SIS is 
accordingly denoted as User Range Rate Error (URRE). The User Equivalent Range Error (UERE) 
is the actual ranging error that is experienced by the user when processing the pseudorange 
measurements. In addition to the URE, the UERE contains the errors stemming from the atmosphere 
and the user segment. These errors are primarily non-compensated ionospheric and tropospheric 
delays, multipath effects and receiver noise. The User Range Accuracy (URA) index is a conservative 
measure of the current URE and is transmitted by the satellites in the navigation message. The receiver 
can use the URA to judge the current SIS accuracy. The conventional URA definition that is included 
in the legacy navigation (LNAV) message, which is modulated on the L1 and L2 signals, is cited in 
Table 3-13. In the new civil navigation (CNAV) message, which is available on the L2C and L5 signal, 
further URA indices are added for better accuracies. A similar URA definition can be found in the 
SBAS standard RTCA DO-229D [3]. 
The GPS standard positioning service (SPS) performance standard [53] specifies the guaranteed 
accuracy of the SIS. The relevant accuracies of the L1 signal with C/A code are cited in Table 3-14 
for the URE and in Table 3-15 for the URRE. Looking at the nominal situation in the first row of 
Table 3-14, the expected pseudorange error is with 6 m at 95% smallest immediately after an upload 
cutover. With increasing age of data (AOD), the SIS error increases. The overall mean value of the 
SIS error over space and time is 7.8 m at 95%. 
The maximum error is 12.8 m at 95%. It will likely occur towards the end of the period between two 
subsequent upload cutovers. The URRE is with 0.006 m/s at 95% very small. Therefore, additional 
models for the range rate error are not required. 
Besides the cited performance numbers of the SIS error, the GPS SPS performance standard [53] 
gives quantitatively the characteristics of the SIS error. Figure 3-19 shows the increase of the SIS error 
95% deviation with the AOD. In nominal operation, there is about one upload cutover per day. If the 
satellite clock drifts faster than usual, the control segment can switch to more frequent upload 
cutovers, as illustrated by an exemplary realization of the SIS error in Figure 3-20. The minor steps in 
the SIS error stem from the dataset cutovers that occur regularly every two hours.  
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Table 3-13: URA index as defined in IS-GPS-200G [52] 

LNAV Message  CNAV Message 
URA Index URA Value [m]  URA Index URA Value [m] URA Index URA Value [m] 

0 2.40  -16 Use at own risk 0 2.40 
1 3.40  -15 0.01 1 3.40 
2 4.85  -14 0.02 2 4.85 
3 6.85  -13 0.03 3 6.85 
4 9.65  -12 0.04 4 9.65 
5 13.65  -11 0.06 5 13.65 
6 24.00  -10 0.08 6 24.00 
7 48.00  -9 0.11 7 48.00 
8 96.00  -8 0.15 8 96.00 
9 192.00  -7 0.21 9 192.00 

10 384.00  -6 0.30 10 384.00 
11 768.00  -5 0.43 11 768.00 
12 1536.00  -4 0.60 12 1536.00 
13 3072.00  -3 0.85 13 3072.00 
14 6144.00  -2 1.20 14 6144.00 
15 Do not use  -1 1.70 15 Do not use 

 

Table 3-14: SPS SIS URE accuracy standards [53], p.22 

SIS Accuracy Standard Conditions and Constraints 
Single-Frequency C/A-Code: 
• 7.8 m 95% Global Average URE during Normal 

Operations over all AODs 
• 6.0 m 95% Global Average URE during Normal 

Operations at Zero AOD 
• 12.8 m 95% Global Average URE during Normal 

Operations at Any AOD 

• For any healthy SPS SIS 
• Neglecting single-frequency ionospheric delay 

model errors 
• Including group delay time correction (TGD) errors 

at L1 
• Including inter-signal bias (P(Y)-code to C/A-code) 

errors at L1 

Single-Frequency C/A-Code: 
• 30 m 99.94% Global Average URE during Normal 

Operations 
• 30 m 99.79% Worst Case Single Point Average URE 

during Normal Operations 

• For any healthy SPS SIS 
• Neglecting single-frequency ionospheric delay 

model errors 
• Including group delay time correction (TGD) errors 

at L1 
• Including inter-signal bias (P(Y)-code to C/A-code) 

errors at L1 
• Standard based on measurement interval of one 

year; average of daily values within the service 
volume 

• Standard based on 3 service failures per year, 
lasting no more than 6 hours each 

Single-Frequency C/A-Code: 
• 388 m 95% Global Average URE during Extended 

Operations after 14 Days without Upload 

• For any healthy SPS SIS 
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Table 3-15: SPS SIS URRE accuracy standards [53], p.23 

SIS Accuracy Standard Conditions and Constraints 
Single-Frequency C/A-Code: 
• 0.006 m/sec 95% Global Average URRE over any 3-

second interval during Normal Operations at Any 
AOD 

• For any healthy SPS SIS 
• Neglecting all perceived pseudorange rate errors 

attributable to pseudorange step changes caused 
by NAV message data cutovers 

• Neglecting single-frequency ionospheric delay 
model errors 

 
Figure 3-19: URE variation during normal operation, one upload per day [53] 

 
Figure 3-20: URE variation during normal operation, three uploads per day [53] 

Even if the characteristic of the instantaneous variance of the URE is given at least quantitatively in 
the GPS SPS performance standard, it does not contain any information about the time correlation 
of the SIS error. The SBAS standard RTCA DO-229D provides in fact more detailed information 
about the change of the instantaneous covariance matrix, but does also not make a statement about 
the time correlation of the URE. For the statistically consistent data fusion within the navigation error 
filter, the knowledge of the time correlation is essential. 
As will be seen later by comparing the separate contributions of the satellite clock error and the orbit 
error to the URE by means of real data, it can be stated that the satellite clock error is responsible for 
the larger share of the URE. The pseudorange error owing to the satellite position error is in the range 
of one meter at high AODs. The increase of the URE variance between subsequent upload cutovers 
is mainly due to the satellite clock error whereas the orbit error depends less on the AOD of the 
ephemeris set. 
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3.5.1.4 Characteristic 

3.5.1.4.1 Broadcast Clock Error Correction 

The master control station continuously monitors the satellite clock errors, determines correction 
parameters and provides them in the navigation message. The user has to apply these parameters to 
correct the measurement. The satellite clock error is defined as 

∆ = −S St t t  (3.98) 

[52]. t  is the true GPS time and St  denotes the current erroneous satellite clock time. A clock offset 
∆ > 0St  means that the satellite clock runs faster, a clock offset ∆ < 0St  means that the satellite clock 
is slower compared to true GPS time. GPS uses a quadratic polynomial for the satellite clock error 
∆St  

( ) ( ) ( )∆ = + − + − + ∆ −

  

2

0 1 2S f f oc f oc r GDt t a a t t a t t t T  (3.99) 

The polynomial coefficients  0fa ,  1fa ,  2fa  as well as the mean group delay differential GDT  are 
contained in the LNAV message. The relativistic correction ∆ rt  can be computed from parameters in 
the navigation message. oct  is the TOC and represents the reference time of the currently broadcast 
clock correction coefficient set. The mean group delay differential GDT  has only to be applied by single 
(L1) frequency users. With the clock correction coefficients in the navigation message, the medium- 
to long-term bias, drift and drift rate of the satellite clock are compensated. Due to short-term, noise-
like clock errors and erroneous correction coefficients, there is a residual error δ∆ St  left over after 
applying the correction. The true satellite clock error ∆ St  can be decomposed into the satellite clock 
error correction ∆St  and the residual error δ∆ St  

δ∆ = ∆ + ∆

S S St t t  (3.100) 

The satellite clock error drift ∆st , which is required to correct range rate measurements, is accordingly 

( )∆ = + − + ∆

 

 

1 22s f f oc rt a a t t t  (3.101) 

Since the satellite clock error drift is observed to be nearly constant between two subsequent cutovers, 
the  2fa  coefficient is usually set to zero in the navigation message. 

3.5.1.4.2 Precise Clock Error 

Whereas real-time users have to rely on the currently broadcast correction parameters in the navigation 
message, users with post-processing applications alternatively have access to precise clock products. 
IGS is a federation of several world-wide distributed institutions that operate a network of stationary 
monitoring receivers [54]. With the centrally collected measurements, the actual satellite orbit and 
clock errors as well as ionospheric and tropospheric delays are estimated. The IGS makes the 
processed data available free of charge. Depending on the processing time, different products with 
different accuracies are distributed (Table 3-16). There are ongoing plans to supply the user also with 
precise correction information in real-time. 
It is important to note that the IGS clock products refer to the own IGS timescale and not to GPS 
time. This reference time is formed from a weighted combination of a few highly accurate atomic 
clocks within the IGS network [55]. The IGS timescale is loosely coupled to GPS time [56]. It is freely 
running but is roughly adapted once per day to reduce the deviation from GPS time. The current 
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difference between both timescales is noted as GNSS time offset (GGTO) and is provided with the 
clock products by the IGS [57]. In order to compare the broadcast satellite clock error with the precise 
clock error, the GGTO has to be applied to the IGS precise clock error. Furthermore, the relativistic 
correction ∆ rt  as well as the group delay GDT  are not contained in the IGS precise clock error and 
have thus to be added before the comparison. 

Table 3-16: Overview about IGS clock products [58] 

Product Latency Root Mean Square (RMS) Standard Deviation Sample Interval 
Ultra-Rapid 3 – 9 hr 150 ps 50 ps 15 min 
Rapid 17 – 41 hr 75 ps 20 ps 15 min 
Final 12 – 18 days 75 ps 20 ps 30 s 

3.5.1.4.3 Comparison of Broadcast and Precise Clock Errors 

Table 3-17 lists the GPS satellite constellation in the year 2012 [59]. The current and former GPS 
constellation status (OPS advisories) can be obtained from the United States Coast Guard (USCG) 
Navigation Center. Apart from PRN 24 and PRN 27, all PRNs were continuously occupied by only 
one satellite. At PRN 27, the block IIA satellite SVN 27 was decommissioned at 10/17/2012 and 
replaced by the block IIR-M satellite SVN 49. At PRN 24, several interim satellites were parked for 
short periods until finally the third block IIF satellite SVN 65 was activated on this PRN. Most of the 
satellites used the RB clock. Only PRNs 3, 9, 8, 10 and 27 until decommission applied the CS clock. 
It is obvious that the CS clocks were activated only in the older block type IIA satellites. In the 
following, the broadcast and the precise satellite clock error are compared, exemplarily for the year 
2012. For the comparison, the clock difference δ∆ St  between broadcast clock error ∆St  and precise 
clock error ∆ ,S prect  are calculated as δ∆ = ∆ − ∆

,S S S prect t t . Since the precise clock error ∆ ,S prect  is more 
accurate than the broadcast clock error ∆St  by some orders of magnitude, the precise clock error 
∆ ,S prect  is henceforth assumed to be the true satellite clock error ∆ = ∆ ,S S prect t . The final IGS clock 
product with 30 s sample interval is used for the precise clock error. Apart from block type IIA, one 
satellite of each block is analyzed. From block IIA, one satellite with activated CS clock and one with 
activated RB clock are selected. The analyzed satellites are highlighted in Table 3-17.  
In Figure 3-21, Figure 3-23, Figure 3-25, Figure 3-27, Figure 3-29 and Figure 3-31 the clock error δ∆ St  
is shown for seven subsequent days, that is the first week of 2012. The day changes at midnight are 
illustrated by the grey solid lines, the dataset cutovers every two hours by the grey dotted lines and the 
upload cutovers by the blue dotted lines. It can be seen that upload cutovers occur roughly every 24 
hours, that is once per day. Only in the case of PRN 10, the CS clock drifts faster and the master 
control station provokes interim upload cutovers. It is obvious that the clock error corrections at 
upload cutovers are more considerable than at dataset cutovers. In Figure 3-22, Figure 3-24, Figure 
3-26, Figure 3-28, Figure 3-30 and Figure 3-32 all periods of 2012 between two succeeding upload 
cutovers are considered in parallel, i.e. in upload cutover windows. The x-axis shows the AOD, which 
is the time since the last upload cutover. At time 0 the last upload cutover occurred. The grey dotted 
lines every two hours indicate the dataset cutovers. Six sample curves were randomly chosen to 
illustrate the time correlation of the error. The black dotted lines are the σ3  borders of all upload 
cutover windows. It can be observed that broadcast satellite clock errors are smallest after upload 
cutover and increase afterwards. Again, it can be seen that dataset cutover corrections are small 
compared to upload cutover corrections for satellites of type IIA, IIR-A, IIR-B and IIR-M, but are, 
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however, in the range of the upload cutover corrections for satellites of type IIF. The noise-like short 
period clock error of the block type IIF satellite seems to be smaller than those of the other block 
types. The clock errors of the oldest type IIA satellites can become largest. Many interim upload 
cutovers are necessary to correct the satellite clock error of PRN 10 with the CS clock activated. The 
steps in the σ3  line hint at frequent upload cutovers ahead of the planned time. 

Table 3-17: GPS constellation in 2012, sorted by start of operation 

Block PRN SV Start of Operation Clock Remark 
IIA 32 23 11/26/1990 RB continuous 
IIA 27 27 02/02/1992 CS Decommission at 10/17/2012, IIR-M G49 afterwards 
IIA 26 26 07/07/1992 RB continuous 
IIA 30 35 08/30/1992 RB since 08/05/2011 
IIA 9 39 06/26/1993 CS continuous 
IIA 4 34 10/26/1993 RB continuous 
IIA 6 36 03/10/1994 RB continuous 
IIA 3 33 03/28/1996 CS continuous 
IIA 10 40 07/16/1996 CS continuous 
IIR-A 13 43 07/23/1997 RB continuous 
IIA 8 38 11/06/1997 CS continuous 
IIR-A 11 46 10/07/1999 RB continuous 
IIR-A 20 51 05/11/2000 RB continuous 
IIR-A 28 44 07/16/2000 RB continuous 
IIR-A 14 41 11/10/2000 RB continuous 
IIR-A 18 54 01/30/2001 RB continuous 
IIR-A 16 56 01/29/2003 RB continuous 
IIR-A 21 45 03/31/2003 RB continuous 
IIR-B 22 47 12/21/2003 RB continuous 
IIR-B 19 59 03/20/2004 RB continuous 
IIR-B 23 60 06/23/2004 RB continuous 
IIR-B 2 61 11/06/2004 RB continuous 
IIR-M 17 53 09/26/2005 RB continuous 
IIR-M 31 52 09/25/2006 RB continuous 
IIR-M 12 58 11/17/2006 RB continuous 
IIR-M 15 55 10/17/2007 RB continuous 
IIR-M 29 57 12/20/2007 RB continuous 
IIR-M 7 28 03/15/2008 RB continuous 
IIR-M 5 50 08/17/2009 RB continuous 
IIF 25 62 05/28/2010 RB continuous 
IIF 1 63 07/16/2011 RB continuous 
 24   RB IIR-M G49, IIA G32, IIA G37, IIF G65 
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Figure 3-21: Satellite clock error of PRN 4 (IIA, RB clock), 01/01/2012 – 01/08/2012 

 
Figure 3-22: Satellite clock error between upload cutovers of PRN 4 (IIA, RB clock), 2012 

 
Figure 3-23: Satellite clock error of PRN 10 (IIA, CS clock), 01/01/2012 – 01/08/2012 

 
Figure 3-24: Satellite clock error between upload cutovers of PRN 10 (IIA, CS clock), 2012 
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Figure 3-25: Satellite clock error of PRN 13 (IIR-A, RB clock), 01/01/2012 – 01/08/2012 

 
Figure 3-26: Satellite clock error between upload cutovers of PRN 13 (IIR-A, RB clock), 2012 

 
Figure 3-27: Satellite clock error of PRN 19 (IIR-B, RB clock), 01/01/2012 – 01/08/2012 

 
Figure 3-28: Satellite clock error between upload cutovers of PRN 19 (IIR-B, RB clock), 2012 
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Figure 3-29: Satellite clock error of PRN 7 (IIR-M, RB clock), 01/01/2012 – 01/08/2012 

 
Figure 3-30: Satellite clock error between upload cutovers of PRN 7 (IIR-M, RB clock), 2012 

 
Figure 3-31: Satellite clock error of PRN 25 (IIF, RB clock), 01/01/2012 – 01/08/2012 

 
Figure 3-32: Satellite clock error between upload cutovers of PRN 25 (IIF, RB clock), 2012 
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3.5.1.5 Model 

3.5.1.5.1 Structure 

The satellite clock error ∆ St  is adequately described by the discrete-time three-state model 
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(3.103) 

with the clock bias state ∆ St
z , clock drift state ∆St

z , clock drift rate state ∆St
z  and the clock sample 

time T . WPη  is the white phase noise, WFη  is the white frequency noise, RWFη  is the random walk 
frequency noise, ωFP  is the flicker phase noise and ωFF  is the flicker frequency noise of the satellite 
clock as depicted in section 3.1.4.3. 
The initial state ∆ ,0St

z  is composed of the clock bias 0fa , drift 1fa  and drift rate 2fa , valid at the clock 
reference time oct  
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( )∆
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In order to fit into the framework of the navigation error filter, the error model of the satellite clock 
error is required since the pseudoranges have already been corrected by the broadcast satellite clock 
error (3.99). Only the difference between the true (unknown) and broadcast satellite clock error 
δ∆ = ∆ − ∆S S St t t  has to be considered in the navigation error filter. For that, the satellite clock error 
model (3.102) and (3.103) is formally perturbed with δ∆ ∆ ∆= +

S S St t tz z z  and δ∆ = ∆ + ∆

S S St t t . The 
error model is given by 
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with the initial state error 
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The satellite clock error is thus affected on the one hand by the clock correction coefficient errors 
δ 0fa , δ 1fa  and δ 2fa  and on the other hand by the noises ∆ St

ω  and ∆ St
ν . 
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3.5.1.5.2 Curve Fitting 

Neglecting the noise and considering only the correction coefficient errors in (3.105), the satellite 
clock error δ∆ St  is described by the quadratic polynomial 
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 (3.107) 

In the following, this quadratic polynomial is fit to each of the dataset cutover windows of the available 
data. The clock correction coefficient errors δ 0fa , δ 1fa  and δ 2fa  are determined by least-squares 
estimation for each window. For that, the quadratic equations of all m  samples within one window 
are stacked 
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The equation system is solved for the polynomial coefficients 

( ) 1T Tˆ f Sδ δ
−

= ∆a A A A t  (3.109) 

In Figure 3-33 and Figure 3-36 the estimated clock correction coefficient errors δ 0ˆ fa , δ 1ˆ fa  and δ 2ˆ fa  
are shown for the upload cutover windows of PRN 4 and PRN 25 in the year 2012. The satellite clock 
errors that are calculated according to (3.107) from the determined coefficient errors are illustrated in 
Figure 3-34 and Figure 3-37. In the upper plots, the clock bias at the time of the upload cutover is 
shown for the year 2012. 
By looking at Figure 3-34, it can be stated that the clock drift correction coefficient error δ 1ˆ fa  is 
correlated with the clock bias correction coefficient error δ 0ˆ fa . In fact, the dataset cutover corrections 
for IIA, IIR-A, IIR-B and IIR-M satellites are normally small. This means that the clock drift is more 
or less equal to the difference of two subsequent clock biases δ 0ˆ fa  divided by the dataset cutover 
timespan. For IIF satellites, the dataset cutover corrections are in the range of the upload cutover 
corrections. This means that the clock drift correction coefficient error δ 1fa  is less correlated with 
δ 0fa , which is confirmed by Figure 3-37. The quadratic clock drift correction coefficient error δ 2fa  
is small and can be neglected. 
In order to check the suitability of the assumed model structure and the accuracy of the estimated 
coefficients, the residuals of the clock errors are calculated by 

δ δ δ∆ = ∆ − ∆ ˆ
St S Sr t t  (3.110) 

and are plotted in Figure 3-35 and Figure 3-38 for the first week of 2012. It can be observed that the 
σ3  bounds of the residuals lie below 0.15 m. 
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Figure 3-33: Fitted satellite clock error coefficients of PRN 4, 01/01/2012 – 12/31/2012 

 
Figure 3-34: Fitted satellite clock error of PRN 4, 01/01/2012 – 12/31/2012 

 
Figure 3-35: Residual satellite clock error of PRN 4, 01/01/2012 – 01/08/2012 
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Figure 3-36: Fitted satellite clock error coefficients of PRN 25, 01/01/2012 – 12/31/2012 

 
Figure 3-37: Curve fitted satellite clock error of PRN 25, 01/01/2012 – 12/31/2012 

 
Figure 3-38: Residual satellite clock error of PRN 25, 01/01/2012 – 01/08/2012 
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3.5.1.5.3 Correction Coefficient Error 

The non-stationary behavior of the correction coefficient errors δ 0fa  and δ 1fa  between two 
subsequent upload cutovers is best described by an unsteady or even slightly unstable multi-input 
multi-output (MIMO) model that is able to represent the correlation between both parameters. The 
general model structure for a two dimensional MIMO model is given with 
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The input noise is two dimensional, white and Gaussian distributed, ( )0,dc dcWN Qη  . δ 0fa  and 
δ 1fa  are both coupled with the common state vector dcz  via the fully occupied matrix dcH . The model 
is newly initialized after each upload cutover. The upload cutover time window is generally about 24 
hours. For most applications with no or only one upload cutover during runtime, it is sufficient to 
assume that the clock correction coefficient errors are not correlated between these single upload 
cutovers. In these cases, the correlation between subsequent upload cutovers does not have to be 
considered and only the variance of the initial clock bias is of interest. Between two succeeding dataset 
cutovers, the correction coefficient errors δ 0fa  and δ 1fa  are constant. Propagation takes only place at 
the instants of dataset cutovers 

− −

−

 + == 


, 1 , 1 ,
,

, 1

dc dc i dc dc i k oc i
dc k

dc k

i t tz
z

z
Φ Γ η  th dataset cutover at

else
 (3.112) 

3.5.1.5.4 Noise 

The modified overlapping Allan deviation is computed from the residuals (3.110) with (3.12) in section 
3.1.3.1 in order to characterize the white phase noise, flicker phase noise, white frequency noise, flicker 
frequency noise and random walk frequency noise. Figure 3-39 shows the modified Allan deviation 
of the residuals of the year 2012. The blue lines belong to block IIA satellites with RB clock, the red 
lines to block IIA satellites with CS clock, the green lines to IIR-A and IIR-B satellites with RB clock, 
the cyan lines to IIR-M satellites with RB clock and the magenta lines to the new IIF satellites with 
RB clock activated. The grey dotted lines with slopes −3 2 , −1 and −1 2  serve as reference for the 
white phase noise, flicker phase noise and white frequency noise. The modified Allan deviation is 
advantageous compared to the standard Allan deviation because it is capable of resolving white phase 
noise and flicker phase noise. It can be observed that satellites of the same block and clock types have 
similar characteristics. The IIA satellites with CS and RB clocks both exhibit white frequency noise 
for averaging times up to 1000 seconds. However, as already stated in [56], the IIA satellites with RB 
clock are more stable than the IIA satellites with CS clock in the short term and additionally feature 
white phase and flicker phase noise for time intervals up to 100 seconds. The Allan deviations of the 
IIR-A, IIR-B and IIR-M satellite residuals are more or less identical. They exhibit white frequency 
noise for short averaging times and fade to flicker phase noise for larger averaging times. The clocks 
of the IIF satellites are most stable which is also proven by the Allan deviation. Their characteristics 
are similar to those of the older IIA satellites with RB clock. Flicker frequency and random walk 
frequency noise do not occur. 
The satellite clock residuals consist of white phase, flicker phase and white frequency noise 
components. An obvious way to capture the noise characteristic quantitatively is to fit the sum of 
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power law curves with exponents −3 2 , −1 and −1 2  to the modified Allan deviation curves as has 
been done for example at the identification of the IMU noise and to estimate the magnitudes of the 
three noise components. In this case, however, it turned out that the method does not yield satisfying 
results. A better approach is to substitute the white phase, flicker noise and white frequency noise by 
an overall colored noise that directly acts on the satellite clock error (3.105) according to 

δ δ ω∆ ∆ ∆∆ = +, , ,S S SS k t t k t kt H z  (3.113) 

The substitute noise ω∆ St
 in turn can be represented by an ARMA model 
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Figure 3-39: Modified Allan deviation of the residual clock error, 2012 

3.5.1.6 Parameter Estimation 

3.5.1.6.1 Correction Coefficient Error 

The parameters of the matrices of the MIMO model (3.111) are estimated with the prediction error 
method. MATLAB®’s pem function can be used to identify multi-input multi-output models. The 
prediction error method applies a numerical optimization algorithm that adapts the free model 
parameters such that the output error is minimized. The algorithm of the pem function is capable of 
handling purely stochastic processes. The function provides different search methods for the 
minimum: the subspace Gauss-Newton method, an adaptive version of the Gauss-Newton approach, 
the Levenberg-Marquardt method, a non-linear least-squares solver and the steepest decent gradient 
search method [60]. The function has been setup to select the best search method automatically. The 
prediction error method requires an initial solution. It is obtained using the subspace method 
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(n4sid). The pem function outputs the model in observable canonical form. Table 3-18 lists the 
estimated entries of the system matrices dcΦ  and Table 3-19 the entries of the input matrices dcΓ . 
The elements of the input noise covariance matrices dcQ  as well as the initial covariance matrices 

,0dcP  are listed in Table 3-20. The output matrix dcH  is a unit matrix. The feed-through matrix dcD  is 
zero. The eigenvalues of the system matrices are plotted in Figure 3-40. All eigenvalues are real and 
between 0.59 and 1.04. The second eigenvalues are close to 1, indicating asymptotically stable or 
slightly unstable models. 
Figure 3-41 shows the simulated clock error of PRN 4 between subsequent upload cutovers, Figure 
3-42 of PRN 10, Figure 3-43 of PRN 13, Figure 3-44 of PRN 19, Figure 3-45 of PRN 7 and Figure 
3-46 of PRN 25. The satellite clock error has been computed by means of the MIMO model (3.111) 
together with the model matrices and input noise variances from Table 3-18 to Table 3-20. The black 
dotted lines illustrate the σ3  boundaries that are predicted by the model whereas the grey dotted lines 
are the actual σ3  standard deviations that have been computed from the data of 2012. The simulated 
satellite clock errors agree well with the fitted satellite clock errors (compare with Figure 3-34 and 
Figure 3-37). 

Table 3-18: Estimated entries of the system matrix dcΦ  

PRN ,11dcΦ  ,12dcΦ  ,21dcΦ  ,22dcΦ  

4 9.99624869e-01 1.10325845e+03 -8.20928642e-07 9.06469102e-01 

10 7.35035731e-01 -1.34601979e+04 -2.16982982e-06 7.99964106e-01 

13 1.00751789e+00 -8.32365448e+02 3.45180782e-06 6.18607406e-01 

19 1.00119725e+00 -6.19370534e+02 2.53421074e-07 8.69268104e-01 

7 1.02434763e+00 -1.85962490e+03 -1.27960123e-07 1.00881482e+00 

25 8.00088448e-01 -2.80335083e+03 2.35903798e-06 1.05003617e+00 

Table 3-19: Estimated entries of the input matrix dcΓ  

PRN Γ ,11dc  Γ ,12dc  Γ ,21dc  Γ ,22dc  

4 5.23215084e-01 5.28052221e+03 8.29343619e-06 -1.99363523e-02 

10 3.37303781e-01 4.90796843e+03 1.99761268e-06 -7.28177104e-02 

13 7.98120569e-01 3.25956446e+03 -3.64854388e-05 2.74081669e-01 

19 7.53242344e-01 3.04808975e+03 -4.14710245e-05 2.29531441e-01 

7 6.07008971e-01 4.37829725e+03 1.71074691e-06 2.86291107e-02 

25 4.62756103e-01 4.06690103e+03 -8.13194823e-06 -5.82571478e-02 

Table 3-20: Estimated entries of the noise covariance matrix dcQ  and initial state covariance ,0dcP  

PRN ,11dcQ  ,12dcQ  ,22dcQ  ,0,11dcP  ,0,12dcP  ,0,22dcP  

4 4.52040417e-02 6.96540178e-06 1.92739998e-09 9.92496141e-02 3.19642811e-06 1.62058562e-09 

10 2.18254807e-01 3.11568879e-05 1.01772168e-08 2.78289922e-01 1.72878402e-05 7.83586184e-09 

13 1.06008692e-02 1.12416848e-06 4.43953450e-10 3.89503074e-02 7.61451551e-07 4.39397604e-10 

19 7.45240032e-03 7.60324529e-07 3.01156849e-10 3.09670337e-02 5.72349259e-07 2.56833673e-10 

7 8.08240916e-03 1.12727448e-06 3.75182852e-10 2.80125803e-02 -7.00323256e-07 0.00000000e+00 

25 7.56951025e-03 9.43954534e-07 3.19884591e-10 3.84103732e-02 -3.21865673e-08 3.84624722e-10 
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Figure 3-40: Eigenvalues of the system matrix dcΦ  

 
Figure 3-41: Simulated satellite clock error of PRN 4, 01/01/2012 – 12/31/2012 

 
Figure 3-42: Simulated satellite clock error of PRN 10, 01/01/2012 – 12/31/2012 

 
Figure 3-43: Simulated satellite clock error of PRN 13, 01/01/2012 – 12/31/2012 
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Figure 3-44: Simulated satellite clock error of PRN 19, 01/01/2012 – 12/31/2012 

 
Figure 3-45: Simulated satellite clock error of PRN 7, 01/01/2012 – 12/31/2012 

 
Figure 3-46: Simulated satellite clock error of PRN 25, 01/01/2012 – 12/31/2012 

3.5.1.6.2 Noise 

The coefficients of the ARMA model (3.114) can be estimated for example with Burg’s method 
(section 3.1.5.4). An ARMA(2,0) model is already sufficient to represent the main character of the 
satellite clock noise. Table 3-21 lists the estimated ARMA(2,0) model coefficients for the six selected 
satellites in the year 2012. The sample time of the model is = 30sT . This means that the propagation 
of the model in the navigation error filter has only to be done every 30 seconds. If another sample 
time is required, the model has to be resampled accordingly. Figure 3-47 shows the modified Allan 
deviations of the clock residuals of the year 2012 and the corresponding modified Allan deviations of 
the estimated ARMA models (dotted lines). It can be observed that there is a good coincidence 
between true and estimated deviations. 
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Table 3-21: Estimated ARMA(2,0) coefficients of the 
S

t
ω

∆
 model 

PRN 1a  2a  0b  ωη ∆tS

Q  

4 9.11883305e-01 3.24955273e-02 1 2.38435549e-04 
10 1.19301690e+00 -2.31739854e-01 1 1.00486936e-03 
13 1.03078715e+00 -1.45725295e-01 1 5.92959072e-04 
19 1.01087955e+00 -2.31270384e-01 1 3.75586419e-04 

7 9.79313042e-01 -2.00524655e-01 1 4.06296325e-04 
25 8.41701870e-01 1.15105091e-01 1 2.31494163e-05 

 
Figure 3-47: Modified Allan deviations of the estimated noise models 

3.5.1.7 Alternative Sources of Correction Coefficients 

CNAV message 

In order to increase the SPS accuracy, new CNAV messages have been introduced with the new L1C, 
L2C and L5 signals [52]. The CNAV navigation messages contain more and particularly higher 
accurate navigation data than the LNAV message on L1 and L2. The CNAV data is contemporarily 
organized in message types. The clock correction parameters  0fa ,  1fa  and  2fa  that are also contained 
in the conventional LNAV navigation message can be found in message type 30. Additionally, 
differential correction parameters δ 0fa  and δ 1fa  for the satellite clock bias and drift are broadcast in 
messages type 13 and 14, respectively. The expanded satellite clock error model (3.99) is then 

( ) ( ) ( ) ( )δ δ∆ = + + + − + − + ∆ −

  

2

0 0 1 1 2S f f f f oc f oc r GDt a a a a t t a t t t T  (3.115) 

In this case, the residual satellite clock error δ∆ St  is expected to be small, so that the satellite clock 
error model is probably not required. 
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SBAS navigation messages 

The SBAS navigation messages types 2 – 5 and type 24 “Fast Corrections” contain additional 
correction parameters with which the short-term URE can be reduced [3]. The pseudorange 
correction δρ  to be applied is computed from the transmitted pseudorange offset PRC  and the 
pseudorange rate RRC  by 

( ) ( ) ( )δρ = + −fc of of ofPRC t RRC t t t  (3.116) 

where oft  is the time of applicability of the most recent fast correction. The range rate correction 
RRC  is not contained in the navigation message but calculated by forming the difference quotient 
between the current and the previous pseudorange correction parameters 

( ) ( ) ( )−

−

−
=

−
, , 1

,
, , 1

of k of k
of k

of k of k

PRC t PRC t
RRC t

t t
 (3.117) 

Furthermore, message type 25 “Long Term Satellite Error Corrections” contains satellite clock 
correction coefficients δ 0fa  and δ 1fa . Analogous to (3.115), they can be used to reduce the satellite 
clock correction errors 

( ) ( )
( )

2

0 1 2

0 1 0

S f f oc f oc r GD

f f

t a a t t a t t t T

a a t tδ δ

∆ = + − + − + ∆ −

+ + −



  

 (3.118) 

where 0t  is the time of applicability of the long-term corrections, which is also contained in message 
type 25 and is not equal to the time of clock oct  of the GPS navigation message. By means of message 
type 7 “Fast Correction Degradation” even the standard deviation of the fast correction parameters 
can be computed and thus their degradation with time can be monitored. The covariance of the long-
term satellite clock correction coefficients can be calculated with the content of message type 28 
“Clock-Ephemeris Covariance Matrix Message”. 

3.5.1.8 Remarks 

A problem is that the satellite block type is not contained in the navigation message. Therefore, the 
navigation system needs an own database with the current SVN-to-PRN assignment. This has to be 
kept up-to-date by the operator in order to account for changes of the satellite constellation. 
Furthermore, if a new satellite comes into view, it is not known when the last upload cutover has been 
taken place. The time is required to set up the initial covariance matrices. This problem can be 
circumvented if almanac datasets of the previous days are loaded into the navigation system to evaluate 
the last upload cutover time. If the high-performance navigation system under consideration in this 
thesis is used in special applications with dedicated mission preparation like the singular launch of a 
sounding rocket, the satellite clock errors of the current satellite constellation can be analyzed in 
advance for the previous days. The SVN-to-PRN assignment as well as the model coefficients can be 
updated before the flight. Satellites with suspiciously high errors can be excluded if enough other 
satellites are available and the dilution of precision (DOP) value does not degrade too much. 
Furthermore, an optimal launch time can be chosen probably right after an upload of fresh navigation 
messages. If the navigation system is intended to be used in day-to-day operation, the models have to 
be generalized and the amount of information that is required in advance has to be kept small due to 
missing connections with appropriate information sources. The derived satellite clock error models 
will be integrated into the navigation filter in section 4.6.4. 
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3.5.2 Satellite Position Error 

3.5.2.1 Motivation 

Besides the satellite clock error, the uncorrected satellite position error contributes to the URE. As 
will be seen later, the magnitude of the orbit error is considerably smaller than of the satellite clock 
error. Splitting the position error in along-track, cross-track and radial components, it can be observed 
that the radial error in the range of a few decimeters is smallest of the three. This is because the radial 
error component is better observable by the control segment than the two other components. This is 
a pleasing matter of fact because it is just the radial error component that affects the pseudorange 
error most. The position error is mainly characterized by the orbital period and exhibits less 
degradation with time between subsequent upload cutovers compared to the satellite clock error. The 
satellite position error thus plays a secondary role in the URE. 
Analogous to the satellite clock error model, it is looked for an adequate model structure at first. Then, 
the coefficients of this model are estimated by means of the real data that has already been used for 
the identification of the satellite clock error model. Finally, a way is shown how to integrate the found 
model into the navigation error filter to consider the radial component of the satellite position error. 

3.5.2.2 Characteristic 

3.5.2.2.1 Broadcast Position 

The satellite position at broadcast time is calculated with the ephemeris parameters contained in the 
navigation message according to table 20-IV in the GPS ICD [52]. In principal, the satellite orbit is 
described by the six Kepler elements, that is the semi-major axis of the ellipse A , the eccentricity of 
the ellipse e , the inclination of the orbit i , the longitude of the ascending node Ω , the argument of 
perigee ω  and the time of perigee passage or alternatively the mean anomaly M . The argument of 
latitude Φk , the radius kr  and the inclination ki  are additionally corrected by harmonic functions with 
periods of approximately 5 hours 58 minutes 

( ) ( )
( ) ( )
( ) ( )

sin 2 cos 2

sin 2 cos 2

sin 2 cos 2

k us k uc k

k rs k rc k

k is k ic k

c c
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i c c

δ

δ

δ

Φ = Φ + Φ

= Φ + Φ

= Φ + Φ

 (3.119) 

The correction coefficients usc , ucc , rsc , rcc , isc  and icc  are also contained in the ephemeris set of 
the navigation message. A similar harmonic structure will be used later on for the position error model. 

3.5.2.2.2 Precise Position 

Besides the clock products, IGS provides precise orbit products. Contrary to the broadcast 
ephemerides, these orbit products are sampled satellite positions on the orbit at intervals of 15 
minutes. The satellite positions are specified in the e -frame of the corresponding time. Lagrange 
polynomial interpolation can be applied to calculate the satellite positions at arbitrary times in between 
the sampling points. The interpolation accuracy lies in the range of centimeters if ten nodes are used 
for the interpolation [61]. The expected accuracies and availabilities of the different orbit products are 
given in Table 3-22. 
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The satellite position that is calculated from the broadcast ephemerides actually represents the position 
of the antenna phase center (APC), which is decisive when processing pseudorange measurements. 
IGS orbit products however refer to the position of the mass center (MC) of the satellite. When 
comparing broadcast orbits with precise orbits in order to determine the position error resulting from 
broadcast ephemeris errors, the lever arm between the satellite MC and APC has to be accounted for. 
Since the lever arms are neither published by the manufacturers nor by the U.S. department of defense, 
IGS made great efforts to estimate the lever arms of the different satellite types from observations. 
The estimated lever arms are provided in the so-called annex file. The lever arm vector is specified in 
a satellite-fixed coordinate frame that is spanned by the radius vector from the satellite MC to the 
Earth center, the vector being normal on the radius vector and the vector between satellite MC and 
Sun and the third vector completing the right hand system [62]. 
Next to IGS, the National Geospatial-Intelligence Agency (NGA) provides precise orbit products 
[63]. NGA additionally offers precise ephemerides that already refer to the APC instead of the MC. 
These APC ephemerides are convenient since the lever arm correction has not to be done and the 
location vector of the satellite MC w.r.t. the Sun has not to be computed. 

Table 3-22: Overview about IGS precise orbit products [58] 

Product Latency Root Mean Square (RMS) Sample Interval 

Ultra-Rapid 3 – 9 hr 3 cm 15 min 
Rapid 17 – 41 hr 2.5 cm 15 min 
Final 12 – 18 days 2.5 cm 15 min 

3.5.2.2.3 Comparison of Broadcast and Precise Positions 

In the following, the precise and broadcast satellite positions ,e precX  and ,e brdcX  are compared and the 
position difference δ eX  is calculated as 

δ = −, ,e e prec e brdcX X X  (3.120) 

Since the satellite position error of the precise ephemerides is significantly smaller than the satellite 
position error of the broadcast ephemerides, it is assumed that the precise satellite position represents 
the true position of the satellite, = ,e e precX X , and the position difference solely stems from the 
erroneous broadcast ephemerides, meaning =

,e e brdcX X . The position error becomes e e eδ = −X X X . 
It is advantageous to split the satellite position error δ eX  into along-track, cross-track and radial 
direction because the pseudorange measurement ρ  is predominantly affected by the radial position 
error. It may thus be sufficient to consider only the radial error of the satellite, which has to be analyzed 
in more detail later on. 
For that purpose, the satellite track frame ( t -frame) is introduced in the appendix in section B.2. The 
x -axis points in the along-track direction, the y -axis in the cross-track direction and the z -axis 
completes the orthogonal right hand system in the radial direction. As in the case of the satellite clock 
error, the broadcast and precise satellite positions are exemplarily compared for the year 2012. Figure 
3-48 shows the position error of PRN 4 for the first seven days of April, that is GPS week 1682, 
Figure 3-49 the position error of PRN 10, Figure 3-50 the position error of PRN 13, Figure 3-51 the 
position error of PRN 19, Figure 3-52 the position error of PRN 7 and finally Figure 3-53 the position 
error of PRN 25. The magnitude of the radial position error lies for all satellites within the sub-meter 
range and is smaller than the satellite clock error. Since the radial error influences the ranging error in 
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first order, the control segment predominantly adapts the correction coefficients to reduce the radial 
error. The along-track error and the cross-track error are worse observable and correctable by the 
master control station. These errors thus increase up to three meters in the example. On the other 
hand, they have minor influence on the ranging error in equal measure. As could be expected, the 
position error is similar for all satellites, independent of the satellite block type and the activated clock. 
Upload cutovers are indicated by the blue dotted lines and take place roughly once per day. Dataset 
cutovers indicated by the grey dotted lines occur every two hours. The effect of upload and dataset 
cutovers is less obvious than with the clock error. It can be seen that the along-track, cross-track and 
radial position errors are characterized by 12 h period and 2 h period harmonics resulting from the 
orbital period as well as the upload and dataset cutover periods. 
In the following, it is sufficient to analyze only one of the satellites, e.g. PRN 25, to identify an adequate 
satellite position error model. 

 
Figure 3-48: Along-track, cross-track and radial position error of PRN 4, GPS week 1682 

 
Figure 3-49: Along-track, cross-track and radial position error of PRN 10, GPS week 1682 
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Figure 3-50: Along-track, cross-track and radial position error of PRN 13, GPS week 1682 

 
Figure 3-51: Along-track, cross-track and radial position error of PRN 19, GPS week 1682 

 
Figure 3-52: Along-track, cross-track and radial position error of PRN 7, GPS week 1682 
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Figure 3-53: Along-track, cross-track and radial position error of PRN 25, GPS week 1682 

3.5.2.3 Model 

3.5.2.3.1 Structure 

The along-track, cross-track and radial position errors are characterized by 12 h period and superposed 
2 h period harmonics. The amplitude and phase of the 12 h period harmonics change at upload 
cutovers. The amplitude and phase of the 2 h period harmonics change at dataset cutovers. In order 
to correctly represent the harmonic character and thus the corresponding time correlation of the 
position error, it is favorable to assume a harmonic function model whose coefficients are described 
by stochastic models instead of a pure stochastic model. Inspired by the harmonic corrections used in 
the broadcast navigation message (3.119), a superposition of sine and cosine functions with 12 h 
periods and 2 h periods, each offset by a constant, is proposed for the components of the position 
error 
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The same model structure can be applied for the cross-track error ( )δ tY t  with the coefficients ,12ya , 

,12yb , ,12yc , ,2ya , ,2yb  and ,2yc  and the radial error ( )δ tZ t  with the coefficients ,12za , ,12zb , ,12zc , 

,2za , ,2zb  and ,2zc . ,oe uct  is the time of ephemeris of the last upload cutover and ,oe dct  is the time of 
ephemeris of the last dataset cutover. The position error can alternatively be represented with 
amplitude and phase 
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Both representations can be converted into the other form with 
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It is assumed that the a  and b  coefficients, respectively, are not correlated. 

3.5.2.3.2 Curve Fitting 

First, the coefficients of the 12 h period sine and cosine functions with the amplitudes ,12xa  and ,12xb  
and the constant offset ,12xc  are fitted to the sample data 
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All available sample position errors δ δ,1 ,t t MX X  with the sample times 1 Mt t  within one upload 
cutover window with the corresponding time of ephemeris ,oe uct  are collected to form the ,12xA -
matrix and ,12xy -vector 
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The coefficients are found by least-squares estimation 
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The curve fitting is repeated for all available upload cutover windows and afterwards for the cross-
track and radial satellite position errors. In a second step, with the results of the upload cutover fitting, 
the dataset cutover fitting can be done. For that purpose, the actual position error on the left hand 
side in (3.121) is corrected by the estimated upload cutover window error 
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 (3.127) 

Again, the N  samples within common dataset cutover windows δ δ,1 ,t t NX X  are collected in the 

,2xA -matrix and the ,2xy -vector 
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Like in the first step, the coefficients of the 2 h period harmonics are obtained by least-squares 
estimation 
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Figure 3-54 exemplarily illustrates the position error δ tX  of PRN 25 (blue) and the fitted position 
error δ ˆ

tX  (red) for April 1 & 2, 2012. In Figure 3-55, the along-track error coefficients ,12ˆ xa , ,12
ˆ

xb , 

,12ˆ xc , in Figure 3-56 the cross-track error coefficients ,12ˆ ya , ,12
ˆ

yb , ,12ˆ yc , in Figure 3-57 the radial error 
coefficients ,12ˆ za , ,12

ˆ
zb , ,12ˆ zc , in Figure 3-58 the along-track error coefficients ,2ˆ xa , ,2

ˆ
xb , ,2ˆ xc , in 

Figure 3-59 the cross-track error coefficients ,2ˆ ya , ,2
ˆ

yb , ,2ˆ yc  and finally in Figure 3-60 the radial error 
coefficients ,2ˆ za , ,2

ˆ
zb , ,2ˆ zc  are shown for April 2012. In Figure 3-61, the residual position error 

δ δ= − ˆ
t t tr X X  is plotted. It can be seen that the residual radial position error ,t zr  does not exceed 

some centimeters. 

 
Figure 3-54: True position error and fitted position error of PRN 25, April 1 & 2, 2012 
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Figure 3-55: Estimated along-track error 12 h coefficients of PRN 25, GPS week 1682 

 
Figure 3-56: Estimated cross-track error 12 h coefficients of PRN 25, GPS week 1682 

 
Figure 3-57: Estimated radial error 12 h coefficients of PRN 25, GPS week 1682 
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Figure 3-58: Estimated along-track error 2 h coefficients of PRN 25, GPS week 1682 

 
Figure 3-59: Estimated cross-track error 2 h coefficients of PRN 25, GPS week 1682 

 
Figure 3-60: Estimated radial error 2 h coefficients of PRN 25, GPS week 1682 
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Figure 3-61: Residual position error of PRN 25, GPS week 1682 

3.5.2.4 Parameter Estimation 

It is proposed to describe the stochastic behavior of each position error coefficient by separate 
stationary ARMA( p ,0) models. This makes in total 18 models. The model structure for the a  
coefficients is given with 
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and for the b  coefficients 
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and finally for the c  coefficients 
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The AR coefficients are determined by means of MATLAB®’s system identification toolbox with the 
versatile armax function. Data of the complete year 2012 is evaluated. It has been revealed that a 
model order of = 2p  already yields satisfactory results. The estimated coefficients and input noise 
covariance matrices are listed in Table 3-23 to Table 3-28. A suitable general model for all satellites 
can be found by computing the mean values of each coefficient and covariance. The relation between 
the AR coefficients and the system matrices is given in Template 3-1. All feed-through gains D  are 
one.  
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Table 3-23: Estimated ARMA(2,0) model coefficients for 12 h along-track error 

PRN 
,12xa  ,12xb  ,12xc  

1a  2a  Q  1a  2a  Q  1a  2a  Q  

4 4.669e-01 1.993e-01 3.414e-02 5.192e-01 2.714e-01 3.544e-02 9.716e-02 1.426e-01 4.004e-01 

10 4.801e-01 1.542e-01 7.459e-02 4.934e-01 2.067e-01 8.909e-02 2.148e-01 2.410e-01 9.105e-01 

13 -7.041e-03 2.416e-04 3.102e-01 1.303e-01 7.188e-02 4.282e-02 2.098e-01 1.727e-01 5.975e-01 

19 4.950e-01 3.188e-01 1.728e-02 4.330e-01 2.745e-01 1.856e-02 3.247e-01 2.450e-01 4.517e-01 

7 5.040e-01 3.335e-01 1.047e-02 5.277e-01 2.492e-01 1.141e-02 2.668e-01 1.413e-01 2.946e-01 

25 7.403e-01 1.407e-01 1.291e-02 6.722e-01 2.466e-01 1.265e-02 2.614e-01 1.077e-01 3.039e-01 

Table 3-24: Estimated ARMA(2,0) model coefficients for 12 h cross-track error 

PRN 
,12ya  ,12yb  ,12yc  

1a  2a  Q  1a  2a  Q  1a  2a  Q  

4 3.911e-01 3.055e-01 9.985e-02 3.034e-01 3.188e-01 1.270e-01 4.604e-01 2.916e-01 3.436e-03 

10 2.300e-01 2.854e-01 2.891e-01 2.731e-01 2.899e-01 3.264e-01 2.896e-01 2.124e-01 1.133e-02 

13 5.171e-01 3.617e-01 9.037e-02 5.472e-01 3.316e-01 8.094e-02 1.174e-01 9.717e-02 2.464e-03 

19 4.080e-01 4.011e-01 1.636e-01 5.554e-01 3.296e-01 9.241e-02 3.349e-01 2.115e-01 1.714e-03 

7 5.178e-01 3.122e-01 8.637e-02 4.801e-01 2.812e-01 1.068e-01 5.097e-01 1.870e-01 1.018e-03 

25 4.142e-01 1.433e-01 8.543e-02 2.728e-01 6.853e-02 8.229e-02 4.780e-01 2.889e-01 1.461e-03 

Table 3-25: Estimated ARMA(2,0) model coefficients for 12 h radial error 

PRN 
,12za  ,12zb  ,12zc  

1a  2a  Q  1a  2a  Q  1a  2a  Q  

4 5.362e-01 2.253e-01 7.677e-03 4.398e-01 1.206e-01 8.147e-03 2.149e-01 1.757e-01 2.799e-03 

10 5.950e-01 7.723e-02 1.726e-02 5.482e-01 1.521e-01 1.618e-02 2.837e-01 3.283e-01 8.402e-03 

13 2.683e-01 2.283e-01 7.956e-03 2.211e-01 1.682e-01 1.084e-02 6.220e-02 3.480e-02 8.563e-03 

19 5.686e-01 1.472e-01 1.932e-03 5.025e-01 2.740e-01 3.017e-03 2.957e-01 1.108e-01 3.058e-03 

7 5.935e-01 2.545e-01 2.453e-03 5.072e-01 4.136e-01 1.875e-03 2.754e-01 1.302e-01 1.473e-03 

25 6.966e-01 2.586e-01 1.841e-03 6.661e-01 2.720e-01 1.871e-03 4.000e-01 1.643e-01 1.592e-03 

Table 3-26: Estimated ARMA(2,0) model coefficients for 2 h along-track error 

PRN 
,2xa  ,2xb  ,2xc  

1a  2a  Q  1a  2a  Q  1a  2a  Q  

4 -3.072e-01 -5.469e-02 8.973e-03 4.488e-01 -3.128e-01 6.008e-02 6.027e-01 3.995e-02 6.598e-02 

10 -1.069e-01 -8.063e-02 1.497e-02 9.037e-02 1.657e-01 4.768e-02 5.490e-01 8.652e-03 1.444e-01 

13 -6.459e-01 -4.165e-01 7.841e-03 5.462e-02 1.543e-01 5.582e-02 3.665e-01 1.042e-01 5.425e-02 

19 -4.982e-01 -3.702e-01 9.529e-03 1.516e-01 9.602e-02 4.802e-02 4.948e-01 5.335e-02 7.212e-02 

7 -5.855e-01 -3.014e-01 8.674e-03 -1.508e-03 2.349e-01 5.389e-02 4.344e-01 8.347e-02 5.763e-02 

25 -2.258e-01 -5.266e-03 7.388e-03 -6.052e-02 4.309e-01 3.065e-02 5.055e-01 3.408e-02 4.698e-02 
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Table 3-27: Estimated ARMA(2,0) model coefficients for 2 h cross-track error 

PRN 
,2ya  ,2yb  ,2yc  

1a  2a  Q  1a  2a  Q  1a  2a  Q  

4 -1.109e-01 -3.666e-01 4.525e-03 -5.059e-03 -6.837e-02 1.667e-02 3.629e-01 -3.147e-01 2.235e-02 

10 -2.237e-01 -3.534e-01 8.106e-03 -2.118e-01 -3.193e-01 8.964e-03 2.854e-01 -2.446e-01 3.476e-02 

13 -4.362e-02 -2.685e-01 2.931e-03 -1.160e-02 -1.197e-01 7.326e-03 4.782e-01 -3.197e-01 1.325e-02 

19 -8.271e-02 -2.875e-01 3.790e-03 -5.697e-01 -6.619e-01 4.677e-03 4.124e-01 -2.524e-01 1.812e-02 

7 -1.763e-01 -3.648e-01 3.061e-03 -2.795e-01 -3.721e-01 5.775e-03 4.431e-01 -2.792e-01 1.365e-02 

25 -1.500e-01 -3.304e-01 4.056e-03 -2.342e-01 -3.905e-01 4.541e-03 2.947e-01 -2.093e-01 1.787e-02 

Table 3-28: Estimated ARMA(2,0) model coefficients for 2 h radial error 

PRN 
,2za  ,2zb  ,2zc  

1a  2a  Q  1a  2a  Q  1a  2a  Q  

4 -4.707e-01 2.931e-01 2.571e-03 -5.013e-01 3.639e-01 1.763e-04 5.634e-01 -1.500e-01 6.532e-04 

10 -5.283e-01 2.974e-01 2.840e-03 -5.949e-01 2.931e-01 1.233e-04 6.077e-01 -2.408e-01 7.601e-04 

13 -7.429e-01 1.048e-01 2.508e-03 -7.145e-01 1.229e-01 1.896e-04 4.477e-01 -1.472e-01 2.982e-04 

19 -4.645e-01 3.388e-01 3.029e-03 -6.548e-01 2.418e-01 9.093e-05 4.072e-01 -9.986e-02 2.782e-04 

7 -7.045e-01 1.076e-01 3.398e-03 -8.191e-01 7.400e-02 1.331e-04 5.849e-01 -1.457e-01 3.473e-04 

25 -6.373e-01 1.707e-01 2.877e-03 -5.618e-01 2.844e-01 1.873e-04 2.897e-01 -1.608e-01 1.124e-03 

 

3.5.2.4.1 Measurement Equation 

The linearized pseudorange measurement error δρ  is given with 
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The focus is here on the contribution of the satellite position error δ eX . Since the effect of the along-
track error and the cross-track error on the pseudorange error δρ  is smaller than of the radial error, 
the along-track and cross-track error components are neglected. With (B.10) and (3.121) the position 
error δ eX  becomes 
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The linearized pseudorange error equation (3.133) can then be written as 
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with the abbreviations defined as follows 
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Most applications run less than 24 hours. Therefore, at most one upload cutover will occur during the 
operation. In this case, the correlation of the 12 h period coefficients between subsequent upload 
cutovers does not have to be considered. These coefficients can be assumed as random constants that 
realize independently from upload cutover to upload cutover with given variance. Only for the 2 h 
period harmonics, the identified models will be used to describe the time correlation between dataset 
cutovers. With the output equations of the models (3.130), (3.131) and (3.132) for the 2 h period 
harmonics, the pseudorange error becomes 
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The derived satellite position error models will be applied to the integrated navigation filter in section 
4.6.5. 
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3.5.3 Ionosphere Error 

3.5.3.1 Motivation 

The ionosphere is the layer of the atmosphere of the Earth between 70 km and 1000 km above the 
Earth ellipsoid. It is characterized by a large amount of ions and free electrons. Ultraviolet sun rays 
partly ionize the air molecules in this layer and produce on the one hand O+H+ ions in the topside 
region, O+ ions in the F region and O2

+NO+ ions in the E region and on the other hand free electrons. 
The density of electrons is highest in the F region at a height of about 300 km to 350 km. A typical 
free electron density profile is shown in Figure 3-62. 
Especially the free electrons influence the propagation speed of electro-magnetic signals. The 
ionospheric delay of the ranging code along the signal path from the satellite to the receiver is 

( )ρ
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where X  is the satellite position, x  the user position, en  the number of free electrons in a square 
meter about the wave and s  the line-of-sight parameter [64]. The integrated carrier phase advance 
∆Φ iono  is accordingly 
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The number of free electrons and hence the ionospheric delay depend on the daily insolation. It is 
lowest at night and increases during the day. It reaches its maximum roughly at 14:00 local time. In 
the northern hemisphere it is lower in winter and higher during summer. Furthermore, it is affected 
by the solar activity. In periods with high activity with many solar flares and eruptions and subsequent 
solar winds the ionospheric delays are usually higher than in calm periods. 
Ionospheric pseudorange delays of 3 m after midnight and 15 m at early afternoon are observed for 
satellites in zenith [64]. The ionospheric delay of satellites with low elevation between 0 and 10 degree 
can be as high as 45 m during the day due to the long path of the signal through the ionosphere. 
Because of the dispersive character of the refraction n  in the ionosphere, dual frequency receivers, 
which track, for example, simultaneously GPS L1 and L5 spreading codes, can accurately determine 
the ionospheric delay from the difference of both pseudorange measurements. Even if the code is not 
accessible on the second signal as in the case of GPS L1 and L2 and only the carrier phase of the 
second signal can be tracked, the receiver can still determine the ionospheric delay by comparing the 
integrated carrier phase measurements. Single frequency users, however, have to rely on a model to 
compensate for the ionospheric delays on the pseudorange measurements to the satellites in view or 
have to estimate them by means of the integrated navigation filter. 
In the following, three popular ionospheric delay models, that are the GPS Klobuchar model, the 
NeQuick2 model serving as basis for the Galileo broadcast correction model (NeQuickG) and the 
Total Electron Count (TEC) maps as for example provided by IGS are presented and compared. It is 
discussed how to integrate the ionospheric pseudorange error into the navigation error filter. 
In section B.3 in the appendix, the ionospheric shell substitution and the calculation of the obliquity 
factor that are used by the Klobuchar model and TEC maps are described. 
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Figure 3-62: Typical free electron density profile of the ionosphere 

3.5.3.2 Ionospheric Delay Models 

3.5.3.2.1 Klobuchar 

The Klobuchar model was originally presented in [65]. It is the officially proposed broadcast 
correction model for GPS single frequency users [52]. The model first calculates the total electron 
contents and hence the vertical path delays at the ionospheric pierce points (IPP) and then maps them 
by means of the obliquity factors onto the slanted line-of-sight directions to obtain the actual delays 
along the signal paths from the satellites to the user. 
The model uses the local time to account for the current elevation of the Sun. The amplitude and the 
time phase of the vertical delay are each described by third order polynomials of the geomagnetic 
latitude of the IPP. The seasonal displacement between northern and southern hemisphere is covered 
by the coefficients of the polynomials. The coefficients α = , 0 3i i  and β = , 0 3i i  are contained 
in the broadcast navigation message. With the Klobuchar model about 50% of the ionospheric error 
can be corrected [64]. 

3.5.3.2.2 NeQuick2 / NeQuickG 

The NeQuick2 model is a more realistic model of the ionosphere than the Klobuchar model because 
it does without the shell substitution and considers the actual free electron density profiles over height 
like the International Reference Ionosphere (IRI) [66]. The ionospheric delay along the signal path is 
obtained by computing the integral (3.138). The original model was presented in [67]. Since then, the 
model has experienced some modifications up to the present form [68]. It is recommended by the 
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International Telecommunication Union (ITU) as standard ITU-R P.531 for the analysis of radio wave 
propagation that is affected by the ionosphere [69]. Moreover, the model is proposed as standard 
broadcast correction model for single frequency Galileo users in slightly modified form, NeQuickG 
[70]. A preliminary analysis study comparing the Klobuchar and NeQuickG models is presented in 
[71] [72]. 
A detailed description of the model can be found in [73]. Meanwhile, the European Union has 
published a first version of the official NeQuickG document [74], too. The NeQuick2 model uses 
continuous functions to describe the electron density profiles. In detail, the profile is separated in five 
Epstein layers for the E and F regions, that is for the bottom part of E, top part of E, bottom part of 
F1, top part of F1 and for F2 and a function for the topside region. The model requires the ionosonde 
parameters 0 2Ff  and (3000) 2FM  as input. These values can be stored as worldwide grids for each month 
of the year. The values can be taken from the recommendation ITU-R P.1239 [75]. The required 
values can be obtained by linear interpolation with position and time. Furthermore, the monthly mean 
sunspot number 12R  or, alternatively, the 10.7F  solar radio flux are required. Since there is an empirical 
relation between both values, they can be interchangeably used 

−= + + ⋅ 4 2
10.7 12 1263.7 0.728 8.9 10F R R  (3.140) 

and 

( )= − + + −12 10.7408.99 167271.8 1123.6 63.7R F  (3.141) 

respectively. In Figure 3-63, the course of the sunspot number 12R  is plotted for the years 2001 to 
2014. It can be seen that the daily sunspot number varies strongly but the monthly smoothed values 
follow a long term trend. This trend corresponds to the solar cycle with a period of about 11 years. In 
Figure 3-64, the sunspot number 12R  is shown for the year 2012. 
Figure 3-65 shows the electron density profiles that have been calculated with the NeQuick2 model 
for the position N47° E11° and 0 m height at four hours of the day 06/22/2012 with two different 
sunspot numbers. As expected, it can be observed that the densities are higher during day than at 
night. The sunspot number influences the magnitude as well as the shape of the electron density 
profiles. 
The Galileo SIS [70] prescribes to replace the monthly mean sunspot number 12R  by the effective 
ionization level zA , which actually constitutes the main difference between the NeQuick2 and the 
NeQuickG model 

µ µ= + + 2
0 2 2z i i iA a a a  (3.142) 

Therein, µ  is the modified dip latitude [76] 

µ
φ

=tan
cos

I  (3.143) 

I  is the true magnetic inclination angle. This angle can for example be calculated by means of the 
World Magnetic Model (WMM). It has to be noted that the Earth magnetic field changes slowly with 
time. Therefore, the stored WMM coefficients have to be updated every five years. The parameters 

0ia , 1ia  and 2ia  are contained in the Galileo broadcast navigation message. 



 3.5 GPS Observable Errors 

 93 

 
Figure 3-63: Daily, monthly mean and smoothed monthly mean sunspot number 12R . Data from [77] 

 
Figure 3-64: Daily, monthly mean and smoothed monthly mean sunspot number 12R  during 2012 [77] 

 
Figure 3-65: NeQuick2 electron density profiles at 06/22/2012, at N47° E11° 
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3.5.3.2.3 TEC Map 

Amongst others IGS provides global TEC maps that are suitable for computing the vertical 
ionospheric delay ρ∆ , ,iono v i  [58]. The TEC value is the integral of the vertical electron density profile 
over height 

( )
∞

= ∫
0

deN n h h  (3.144) 

According to (3.138) the vertical path delay is related to the TEC value at the IPP by 
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Again, the slant delay is calculated from the vertical delay with (B.19). The TEC values are supplied in 
grids with 5 degree longitudinal, 2.5 degree latitudinal and 2 hour time resolution. The TEC values at 
the IPP are obtained by linear interpolation of the gridded TEC values in position and time. The TEC 
maps are generated by fusion of the dual frequency measurements from the worldwide IGS network 
of stationary GPS receivers. IGS provides two types of maps, a rapid and a final ionospheric TEC 
grid. The former is available after 24 hours, is daily updated and has an accuracy of 2 – 9 TECU (TEC 
units). The latter is available after eleven days, is weekly updated and has an accuracy of 2 – 8 TECU. 
One TECU is defined as 1016 electrons per square meter [64]. Considering the L1 signal with frequency 

=1 1575.42 MHzLf , the corresponding errors are 0.33 – 1.46 m and 0.33 – 1.30 m, respectively. It can 
be observed that the difference between the rapid and the final TEC maps is comparatively small. The 
effective height of the substitute spherical shell above the Earth ellipsoid Ih  is assumed to be 350 km. 
Because of the delayed availability of the TEC maps, the model is less suited for real-time navigation 
systems but rather for accurate post-processing analysis. For systems that are operated daily without 
user interactivity frequent uploads of new TEC data are out of question, for example, due to a missing 
connection to adequate databases. However, for special missions and well-planned events like the 
launch of a sounding rocket the operating point in time is usually exactly known beforehand and it is 
imaginable to upload the latest available TEC maps from the previous day. Although changes of the 
ionosphere are more mid- to long-term by their nature, the variation of the ionospheric delay during 
the previous days should be carefully monitored because incidents like for example sudden eruptions 
of the Sun and subsequent solar winds can severely distort the ionospheric signal delay. 
Alternatively, SBAS like the North American Wide Area Augmentation System (WAAS) or the 
European Geostationary Overlay Navigation System (EGNOS) offer gridded TEC values in the 
navigation message. In principal, the RTCA standard DO-229D [3] specifies the SBAS navigation 
messages containing ionospheric correction data. These are the message type 18 “Ionospheric Grid 
Point Masks” and the message type 26 “Ionospheric Delay Corrections”. The adaption to EGNOS 
can be found in [78]. However, SBAS is not available worldwide but only in the dedicated reception 
areas.  
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3.5.3.2.4 Comparison of Klobuchar, NeQuick2 and TEC Map 

In order to assess the accuracy, the three presented models are exemplarily analyzed at 06/22/2012. 
A stationary user with a GPS receiver is supposed to be located at N47° E11° and 0 m height. The 
Klobuchar model uses the coefficients that were broadcast at that day. Since the Galileo broadcast 
navigation message had not yet been activated at this date, the monthly mean sunspot number 12R  is 
used as input for the NeQuick2 model. For the TEC map model the final IGS TEC maps were chosen. 
According to Figure 3-64 the monthly mean sunspot number was 75. The daily sunspot number was 
below 20 and thus very low at this day. The situation is evaluated at two different hours: first one hour 
after noon at 1pm (UTC) and second in the evening at 7pm (UTC). The corresponding GPS sky plots 
are given in Figure 3-66 and Figure 3-69. 
In Figure 3-67 the ionospheric path delays of the satellites in view are shown for a two hour period 
beginning at 1pm. It is suggested to take the TEC map results as reference for the other models since 
their error is expected to be lowest of all three models. It can be observed that all three models match 
quite well. Although the magnitudes of the NeQuick2 model delays seem to be too low, which is 
probably due to a higher solar activity than assumed, they correspond qualitatively slightly better to 
the TEC map model than the Klobuchar delay magnitudes do. In Figure 3-68 the vertical path delays 
are shown. Obviously, the variability of the delay with time is much smaller. This is because the slant 
effect is removed. Again the magnitudes of the delays of the Klobuchar and NeQuick2 models seem 
to be too low. Whereas the TEC map and the Klobuchar model readily provide the vertical delay, the 
vertical delay of the NeQuick2 model has been computed from the slant delay using (B.15). 
Figure 3-70 shows the ionospheric delays and Figure 3-71 the vertical ionospheric delays for 7pm. 
The magnitudes are smaller than at 1pm. The delays of the NeQuick2 model resemble the TEC map 
delays more than the Klobuchar model delays. The vertical delays of the Klobuchar model are too 
low and particularly decrease with progressing time towards dusk, which indicates that the Klobuchar 
model might have a shortcoming at night. 
In order to get a better understanding of the global situation, worldwide maps of the vertical delay at 
1pm are given in Figure 3-72 for the TEC map model, in Figure 3-73 for the Klobuchar model and 
in Figure 3-74 for the NeQuick2 model. The corresponding maps at 7pm are shown in Figure 3-75, 
Figure 3-76 and Figure 3-77. The NeQuick2 model is capable to represent the typical form of the 
maximum delay area, where the Sun is in zenith, with two separate maximum zones in the north and 
in the south. However, the maximum delays seem to be exaggerated suggesting that the sunspot 
number input parameter is actually lower than originally assumed.  
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Figure 3-66: GPS sky plot at N47° E11°, 06/22/2012, 1pm (UTC) 

 
Figure 3-67: Comparison of ionospheric delays at N47° E11°, 06/22/2012, 1pm (UTC), 12 100R =  

 
Figure 3-68: Comparison of vert. ionospheric delays at N47° E11°, 06/22/2012, 1pm (UTC), 12 100R =  
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Figure 3-69: GPS sky plot at N47° E11°, 06/22/2012, 7pm (UTC) 

 
Figure 3-70: Comparison of ionospheric delays at N47° E11°, 06/22/2012, 7pm (UTC), 12 100R =  

 
Figure 3-71: Comparison of vert. ionospheric delays at N47° E11°, 06/22/2012, 7pm (UTC), 12 100R =  
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Figure 3-72: Worldwide TEC map vertical ionospheric delay [m]  at 06/22/2012, 1pm (UTC) 

 
Figure 3-73: Worldwide Klobuchar vertical ionospheric delay [m]  at 06/22/2012, 1pm (UTC) 

 
Figure 3-74: Worldwide NeQuick2 vertical ionospheric delay [m]  at 06/22/2012, 1pm (UTC), 12 100R =  
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Figure 3-75: Worldwide TEC map vertical ionospheric delay [m]  at 06/22/2012, 7pm (UTC) 

 
Figure 3-76: Worldwide Klobuchar vertical ionospheric delay [m]  at 06/22/2012, 7pm (UTC) 

 
Figure 3-77: Worldwide NeQuick2 vertical ionospheric delay [m]  at 06/22/2012, 7pm (UTC), 12 100R =  
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In order to get an even better understanding of the magnitudes as well as the spatial and time variability 
of the ionospheric delay, the flight of the SHEFEX 2 sounding rocket is considered [79]. It took place 
at June 22, 2012 at 19:18 UTC time (21:18 local time). The launch site was Andenes on the island of 
Andøya, Norway. Figure 3-78 illustrates the motion of the IPPs during the 480 seconds long flight. 
The PRN numbers mark the beginning of the pierce point ground tracks at launch. The color depicts 
the vertical ionospheric delay in meters, which has been calculated from final IGS TEC maps at lift-
off time. Since the launch was in the evening and the zenith of the Sun is somewhere in the west, the 
highest vertical ionospheric delays occur in the lower left corner of the figure. 
Figure 3-79 shows the ionospheric delays and Figure 3-80 the corresponding vertical ionospheric 
delays of the signals from the satellites in view as calculated with the three models. The NeQuick2 
model uses again the sunspot number =12 100R . As in the previous stationary example the 
ionospheric delay of the NeQuick2 model seems to be underestimated. Also, as in Figure 3-71, the 
vertical delay of the Klobuchar model is too low. At lift-off time it has already reached the model’s 
absolute minimum delay of 1.5 m, which corresponds to the vertical delay that is generally assumed 
by the model for night. An interesting effect can be observed in the delays of the NeQuick2 model 
that cannot be detected in the delays of the other two models. The vertical delays decrease 
continuously with time, reach a minimum and increase afterwards again. This is due to the height 
profile of the flight trajectory. Because of the large flight height of the sounding rocket of up to 
170 km, the signal path length through the ionosphere is appreciably shortened and only free electrons 
in the upper part of the ionosphere affect the satellite signal propagation. This effect can even not be 
represented by the precise TEC map model. This is an advantage of the NeQuick2 model that works 
with electron density profiles over height and integrates exactly the electron density along the signal 
path and a disadvantage of the models that substitute the extent of the ionosphere with height by a 
thin shell. In order to emphasize the effect of the flight height and changing line-of-sight geometry on 
the effective ionospheric delays, Figure 3-81 and Figure 3-82, respectively, show the ionospheric delays 
that are computed for the launch site for the same time. The delays are much less dynamic and all 
three models yield at least qualitatively similar results. The variability of the vertical delays with time 
during the 480 seconds long flight is quite low and can be approximated as quasi-constant. 
Additionally, the differences between the separate vertical delays are small. The vertical delays of the 
TEC map model lie, for example, between 2.3 m and 2.65 m. 

 
Figure 3-78: Ground tracks of pierce points and TEC map vertical ionospheric delay in meters 
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Figure 3-79: Comparison of ionospheric delays along flight trajectory 

 
Figure 3-80: Comparison of vertical ionospheric delays along flight trajectory 

 
Figure 3-81: Comparison of ionospheric delays at launch site 
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Figure 3-82: Comparison of vertical ionospheric delays at launch site 

3.5.3.3 Estimation of the Sunspot Number 

As has been revealed in the comparison of the different ionospheric models in section 3.5.3.2.4, there 
is a good qualitative agreement of the TEC map and the NeQuick2 model. Quantitatively, offsets of 
some meters between the TEC map and NeQuick2 ionospheric delays have been observed. The 
magnitude of the NeQuick2 ionospheric delay depends very much on the sunspot number 12R  input 
parameter. Therefore, it is proposed to estimate the sunspot number 12R  by the navigation filter to 
adapt the NeQuick2 model output to the actual ionospheric situation. This is an obvious approach 
because the sunspot number 12R  is also the parameter that is replaced by the effective ionization level 

zA  in the NeQuickG model and the currently valid value is broadcast in the Galileo navigation 
message. 
As usual, a discrete-time model for the sunspot number error δ 12R  is required for the integration into 
the navigation error filter. It is assumed that the sunspot number error changes only very slowly with 
time, such that a simple random walk model is considered adequate 
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The power spectral density of the normally distributed, white input noise ( )ηη σ
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be selected in the range of one per hour. Furthermore, the Jacobian of the pseudorange error δρ i  with 
respect to the sunspot number error δ 12R  is necessary for the pseudorange observation error equation 
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From the equations of the NeQuick2 model it becomes clear that it is not possible to calculate the 
Jacobian ρ∂ ∂



12i R  analytically. As workaround, it has to be evaluated numerically. In Figure 3-83, 
the dependence of the TEC value (and thus of the ionospheric delay on the pseudorange 
measurement) on the sunspot number is exemplarily illustrated for a stationary receiver at N47° E11° 
and 0 m height at June 22, 2012 for different times of day. It can be clearly seen that the curves are 
nearly linear without extreme values and there is nothing to be said against approximating the Jacobian 
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by a difference quotient. The NeQuick2 model provides a mathematically non-linear function of the 
sunspot number 12R  for the ionospheric delay ρ∆ iono  

( )ρ∆ = 

 12iono f R  (3.148) 

The wanted difference quotient 

( ) ( )ρ + − −∂
≈

∂


 

12 12

12

10 10

20

f R f R

R
 (3.149) 

is hence obtained by evaluating the NeQuick2 model for the sunspot numbers 12 10R +  and 12 10R − . 
The initial value ( )

12 0R t  could be taken from Figure 3-63. The initial covariance of the sunspot 
number error should be set to a value in the range of one to two decades, for example 

( )δ  = 
2 2
12 0E 10R t  (3.150) 

In contrast to the estimation of the vertical ionospheric delays of the single IPPs, only one additional 
state instead of the number of parallel receiver channels has to be estimated by the navigation filter. 
Furthermore, the user does not have to worry about the correlation of the separate vertical delays. In 
terms of numerical efficiency, this approach is hence promising. It will be further analyzed in section 
4.6.6. 

 
Figure 3-83: Dependence of the TEC value on the sunspot number 12R  at N47° E11° and 0 m height, 

06/22/2012. The dotted curves are linear and serve as reference 
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3.5.4 Troposphere Error 

3.5.4.1 Motivation 

The troposphere is the lowest layer of the atmosphere of the Earth. It contains about 90% of the air 
and almost all water vapor of the atmosphere. At mid latitudes the troposphere ranges from ground 
to about eleven kilometers height. 
Analogous to the free electrons of the ionosphere the refraction and hence the propagation speed of 
the satellite signals is reduced by the air and water molecules in the troposphere. In contrast to the 
ionosphere, the effect is non-dispersive in the frequency range of GNSS signals and influences the 
carrier wave and spreading code propagation likewise. The pseudorange delay can range from about 
2.5 m for satellites at zenith up to 25 m for satellites at elevation angles of five degrees [64]. It is 
distinct between the hydrostatic delay caused by the dry air and the wet delay caused by the water 
vapor contained in the air for example as clouds. 
Usually, there are different models for the hydrostatic and wet delays. Most often, the zenith delays 
are computed at first and are subsequently projected onto the actual line of sight by means of mapping 
functions to account for the slant effect, which is the longer travel time through the troposphere of 
signals from lower elevated satellites. Models and mapping functions consider seasonal effects or 
expect the actual temperature and pressure as inputs. 
The hydrostatic delay can be well modeled and almost completely removed, for example, with the 
Saastamoinen zenith delay model [80] and the Niell mapping function [81]. The wet delay, however, 
is more difficult to describe since it mainly depends on turbulent fluctuations of the water vapor with 
eddies of different scales, which may strongly vary locally and with time. This effect cannot be 
adequately accommodated by a simple, global model. Figure 3-84 exemplarily shows the height 
profiles of the temperature, air pressure, wind speed and relative humidity measured by four German 
radiosondes at Stuttgart (N48.83° E9.20°, station number 10739), Kümmersbruck (N49.43° E11.90°, 
station id ETGK, station number 10771), Idar-Oberstein (N49.70° E7.33°, station id ETGI, station 
number 10618) and Meiningen (N50.56° E10.38°, station number 10548) at noon of April 23, 2013. 
It can be observed that the static values, that is the temperature and the air pressure, are very similar 
at all four locations. Even the wind speed profiles are similar. The relative humidity, however, varies 
much over height and location. 
In section B.4.1 in the appendix, common zenith delay models are presented. The required 
temperature, static pressure and water vapor values of the standard atmosphere are given in section 
B.4.2. Common mapping functions to account for the slant effect are summarized in section B.4.3. In 
contrast to the ionosphere, the pierce points of the line of sights to the satellites in view through the 
troposphere are in close vicinity of the user antenna. It can be assumed that all pseudorange 
measurements are affected by the same zenith delay. The single tropospheric delays solely differ 
because of the different obliquity factors. 
The tropospheric residual error after application of the models for the hydrostatic and wet delays on 
the pseudorange measurements is mainly due to the non-modeled water vapor fluctuations, has 
stochastic nature and can be described by a spatiotemporal stochastic process. The magnitude of the 
residual delay is in the range of ten centimeters for satellites in zenith and up to 1.20 m for low 
satellites. 
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In this section, a stochastic model is derived that represents the time correlation of the tropospheric 
residual error and that can be integrated into the navigation error filter. The stochastic model bases 
upon the spatial structure function of atmospheric turbulence. The spatial stochastic process is 
converted to a temporal process using the frozen troposphere model assumption. The corresponding 
power spectral densities are derived and from that, an adequate ARMA model is searched. 

 
Figure 3-84: Atmospheric data from radiosondes in Germany at 04/23/2013 [82] 

3.5.4.2 Characteristic 

The tropospheric zenith path delay is exemplarily shown for Warnemünde in the year 2012 in Figure 
3-85. Warnemünde is part of the IGS reference receiver network (id: warn). Besides the satellite and 
ionosphere products, IGS provides estimated tropospheric zenith path delays at the locations of the 
monitoring receiver stations sampled in five minute intervals. The accuracy is in the range of some 
millimeters and the IGS zenith path delays are thus close to reality. Next to the IGS zenith path delay, 
the modeled wet, hydrostatic and combined delays are plotted, using the UNB3 model. The 
hydrostatic delay is about 2.3 m and does not vary much over the year. The wet delay is smaller than 
two decimeters and features a stronger seasonal dependence. It is largest in summer. It can be seen 
that the UNB3 model represents the actual tropospheric zenith path delay quite well. In Figure 3-86, 
the difference between the IGS and the UNB3 tropospheric zenith path delay is shown for the year 
2012. The standard deviation is in the range of some centimeters. 
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Figure 3-85: IGS and UNB3 tropospheric zenith path delay 

 
Figure 3-86: Residual tropospheric zenith path delay at Warnemünde at 2012 

3.5.4.3 Power Spectral Density of the Tropospheric Residual Error 

In section B.4.4 in the appendix the atmospheric turbulence structure function is given. It is converted 
to an autocorrelation function. The autocorrelation function of the zenith delay, which corresponds 
to the structure function (B.50), is according to (B.44) 

( ) ( ) ( )δρ δρ δρτ τ= −
, , ,

1
0
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R R D  (3.151) 

The (two-sided) PSD function ( )δρ ω
,tropo z

S  is obtained by Fourier transformation of the 
autocorrelation function. The autocorrelation function is an even function. Using the linearity 
property and a table of Fourier (cosine) transform pairs, the PSD as function of the angular frequency 
ω  is given by 
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[83]. Γ  is the gamma function. The PSD of the small scale eddies ( )δρ ω
, ,tropo z s

S  with = 5
3p  is, omitting 

the term with the Dirac function that contributes only for zero frequency, 
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The PSD function of the large scale eddies ( )δρ ω
, ,tropo z l

S  with = 2
3p  is accordingly described by 
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Before the PSDs of the small and large scale noises can be summed, the small scale noise has to be 
high-pass filtered to cut off the low frequencies whereas the large scale noise has to be low-pass filtered 
to cut off the high frequencies. Simple first order filters should be sufficient. The PSD of the small 
scale noise is then, multiplied by the squared magnitude of the transfer function of the high-pass filter 
in frequency domain 
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and of the large scale noise 
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The cut-off time constant of the filters is chosen as 

=
,
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The superposed PSD functions contain the small scale as well as large scale effects and are illustrated 
in Figure 3-87 

( ) ( ) ( )δρ δρ δρω ω ω= +
, , , , ,tropo z tropo z s tropo z l

S S S  (3.158) 

The dotted lines represent the PSDs of the unfiltered small and large scale noises. 

 
Figure 3-87: Large scale, small scale and overall PSDs of the tropospheric zenith residual error 
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3.5.4.4 Model 

In this section a discrete-time model is searched that shapes white Gaussian input noise in such a way 
that the PSD of its output approximates the characteristic shown in Figure 3-87 as best as possible. 
Since the single noise components follow power-law, the method that has been applied for the 
derivation of the flicker noise model in section 3.1.4 can here be used again. 
In the end, there is a state-space model for the small scale eddies with power β = 8 3  
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of size p  with the system matrices and input noise 

( )
( ) ( ) ( )π

δρ
η

   
   
   = = = ∆   
       

= ∆ + +

 Γ 
 ∆ 
 



 









4
3

4
3

5
3,

,

,0

, ,2 ,1

, ,0 , ,1 ,0 ,1

52 8
3 6

0 1 0 0
0 0

, ,
0 1 0

1

, ,

sin
0,

A h

tropo z

s s s s

s p s s

s s p s s p s s s

v
H

s

D t b

a a a

t b b a b b a

C
WN

t

H

Φ Γ

 (3.160) 

and a state-space model for the large scale eddies with power β = 5 3  
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of size p  with the system matrices and input noise 
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(3.162) 

The ARMA model coefficients for the small scale noise, which have been estimated as described in 
section 3.1.4.2, are listed in Table 3-29 and Table 3-30 for orders of up to four. The ARMA model 
coefficients for the large scale noise are given in Table 3-31 and Table 3-32. The PSDs of the noise 
that has been created with the models (3.159) and (3.161) with the coefficients as given in the tables 
is shown in Figure 3-88. It can be seen that there is a good accordance between the PSDs even for 
low orders.  
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Table 3-29: Estimated small scale noise AR coefficients ( 2 4 3β = , = 1
1 8

k , = 7
2 8

k , = 5000N ) 

=p q  1a  2a  3a  4a  

1 1.000000000000    

2 1.896312815819 -0.896312815819   

3 2.514836545091 -2.043199403568 0.528362858477  

4 3.081137891912 -3.400849974586 1.556351190900 -0.236639108227 

Table 3-30: Estimated small scale noise MA coefficients ( 2 4 3β = , = 1
1 8

k , = 7
2 8

k , = 5000N ) 

=p q  0b  1b  2b  3b  4b  

1 0.836907392 0.438241290    

2 0.836907392 -0.311884971 -0.150097990   

3 0.836907392 -0.829525253 0.021027395 0.044867567  

4 0.836907392 -1.303459121 0.435125934 0.056181761 -0.011406248 

Table 3-31: Estimated large scale AR coefficients ( 2 5 6β = , = 1
1 8

k , = 7
2 8

k , = 5000N ) 

=p q  1a  2a  3a  4a  

1 0.998991567178    

2 1.652113804552 -0.652285982097   

3 2.208253703943 -1.499586410542 0.291306160245  

4 2.748152964506 -2.610275499932 0.959021480961 -0.096902902531 

Table 3-32: Estimated large scale MA coefficients ( 2 5 6β = , = 1
1 8

k , = 7
2 8

k , = 5000N ) 

=p q  0b  1b  2b  3b  4b  

1 0.894691636 -0.041702127    

2 0.894691636 -0.626045130 -0.053214229   

3 0.894691636 -1.123618847 0.230978647 0.040578924  

4 0.894691636 -1.606662200 0.764661598 -0.026644184 -0.018360797 

 
Figure 3-88: Approximated small and large scale PSDs (order 1 – 4) 
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Next, the short distance noise has to be high-pass filtered and the large distance noise has to be low-
pass filtered, respectively. The continuous-time transfer function of the first order high-pass filter is 

( )
π
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c
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c

T s
H s

T s
 (3.163) 

The continuous-time transfer function is converted into a discrete-time one by means of the bilinear 
transform 
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where ∆t  is the sample time. The discrete-time transfer function of the high-pass filter is thus 
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and consequently the ARMA model of the high-pass filter 
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The state-space model (3.160) and the high-pass filter are connected in series, yielding the overall 
model for the short distance noise 
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The continuous-time transfer function of the low-pass filter is given with 
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With the bilinear transform (3.164), the corresponding discrete-time transfer function becomes 
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and finally the ARMA model of the low-pass filter 
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 (3.170) 
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The state-space model (3.162) and the low-pass filter are connected in series, yielding the overall model 
for the large distance noise 
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The outputs of both models (3.167) and (3.171) are superposed 

δρ δρ δρ= +, , , , , , , ,tropo z k tropo z s k tropo z l k  (3.172) 

in order to obtain the complete tropospheric zenith residual error. Finally, the zenith delay has to be 
mapped onto the single line-of-sight directions. For that, the same mapping function as for the 
deterministic wet delay model can be used 

( )δρ ζ δρ=, , ,tropo k w tropo z km  (3.173) 

The derived model can be simplified if the model for the short distance regime with <r H  is omitted. 
It has to be noted that an adequate dampening of the tropospheric wet delay error with height has to 
be additionally introduced in order to account for the decreasing water vapor in the air with increasing 
height. The tropospheric wet delay residual error is illustrated by means of an example. Figure 3-89 
shows an exemplary realization of the stochastic wet delay for = 10 m sv  and Figure 3-90 the PSD. 
The solid lines belong to the periodograms that have been calculated from the actual realization. The 
dotted lines are the theoretical PSD curves. Figure 3-91 and Figure 3-92 are the corresponding figures 
of the stochastic wet delay for = 250 m sv . 4th order models have been used for the simulation. 
Due to the comparatively low cost-benefit ratio of the derived model it will not pursued and not 
integrated into navigation filter. 

3.5.4.5 SBAS Tropospheric Error Standard Deviation 

The RTCA standard DO-229D [3] and RTCA standard DO-316 [7] suggest to model the tropospheric 
zenith residual error as white Gaussian noise 

δρδρ η=
, ,, , tropo z ktropo z k  (3.174) 

where ( )δρη σ

,

20,
tropo z TVEWN  with the standard deviation 

σ = 0.12 mTVE   (3.175) 

In the test procedures for tightly integrated GPS/inertial systems in appendix R in [7] it is 
recommended to model the tropospheric residual error as first-order Gauss-Markov process with a 
correlation length of 30 minutes to adequately represent the pass-through of a typical storm system 
[GPS 297]. 
The statistical distribution of the residual error of the UNB3 tropospheric model has been thoroughly 
analyzed in [84]. It is concluded that the error can be assumed to be normally distributed with a 
standard deviation that depends on the current tropospheric wet delay 

δρ
σ

 
= +     

 
,0.01 3.22 m

3.53
w z

TVE  (3.176) 

However, no statement is made about the time correlation of the residual error. 
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Figure 3-89: Tropospheric wet delay residual error realization for 10 m/sv =  

 
Figure 3-90: PSD of the tropospheric wet delay residual error for 10 m/sv =  

 
Figure 3-91: Tropospheric wet delay residual error realization for 250 m/sv =  

 
Figure 3-92: PSD of the tropospheric wet delay residual error for 250 m/sv =  
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3.5.5 Receiver Clock Error 

3.5.5.1 Motivation 

A precise clock, that is frequency generating oscillator, is fundamental for the proper functioning of 
any GNSS receiver. Basically, satellite navigation makes use of the time of flight measurements of the 
radio signals between the satellites and the user antenna. All frequencies that are required by the GNSS 
receiver for the down-conversion of the carrier frequency, for the numerically controlled oscillators 
(NCO) steering the carrier and code replica generation and for the interrupts needed by the navigation 
processing are derived from a central precise crystal oscillator with a nominal frequency in the range 
from 10 to 50 MHz. 
Figure 3-93 shows a schematic of a typical HF frontend and the digital signal processing (DSP) part. 
The received satellite signal is down-converted from carrier frequency to intermediate frequency by 
three subsequent stages, sampled by the ADC and finally forwarded to the tracking channels in the 
DSP. The three frequencies 

1LOf , 
2LOf  and 

3LOf  as well as the reference frequency for the clock 
generator in the DSP are derived from the central reference oscillator reff  by the frequency synthesizer. 
The highest required frequency for the first down-conversion stage (here 1.4 GHz) is generated by a 
phase lock loop (PLL) that controls the frequency of a voltage controlled oscillator (VCO). All other 
lower frequencies are generated by appropriate frequency division. In this design example, the sample 
frequency sf  for the ADC and the carrier and code NCOs are provided by the clock generator within 
the DSP. Since ADC and NCOs are steered by the same frequency, a new correlation value can be 
computed with each input sample. The reference oscillator frequency error δ reff  plus the frequency 
error of the VCO δ vcof  affect the intermediate frequency, resulting in a slightly shifted intermediate 
frequency and sampling frequency. The effective influence of the overall oscillator error on the 
tracking loops is considered by the frequency error inputs in the phase and delay lock loops as shown 
in Figure 3-115. 

 
Figure 3-93: HF frontend, frequency synthesizer and DSP of a Zarlink GP2015-based receiver [85] [86] 
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Oscillator types 

Different kinds of oscillators are typically found in GNSS receivers, depending amongst others on the 
accuracy requirement. All applied oscillators use quartz crystals (X) as resonator. It is distinct between 
simple crystal oscillators (XO), temperature compensated crystal oscillators (TCXO), voltage 
controlled crystal oscillators (VCXO) and oven controlled crystal oscillators (OCXO). The frequency 
stability of quartz oscillators is mainly affected by temperature variations, vibrations and ageing. XOs 
are low cost and cheap and get along without any temperature compensation. TCXOs largely 
compensate frequency errors due to temperature variations by means of a temperature sensor and an 
electronic circuitry. VCXOs feature the possibility to control the oscillation frequency by an applied 
voltage. OCXOs are the most precise of the oscillators that are applied in mobile GNSS receivers. 
The temperature of the OCXO quartz is precisely controlled by a crystal oven and thus kept within a 
very narrow temperature range. OCXOs are very precise with stabilities less than 1 part per billion 
(ppb). They are generally more expansive, larger of size and consume more power than TCXOs and 
VCXOs. 

Oscillator errors 

It is distinct between bias-like and noise-like oscillator errors or in clock typical words, between the 
drift and the short-term stability [87]. The drift is defined as the systematic change in frequency due 
to ageing and environmental factors. Ageing designates the long-term change of the frequency in the 
range of years due to material changes. The decisive environmental factor is the temperature that 
causes a slow drift when changing. Depending on the age of the crystal and the current temperature 
T , a certain frequency f , which is offset from the nominal local oscillator frequency LOf , will appear 
when the oscillator is powered and may slowly change with temperature afterwards. 
The temperature influence on the oscillator frequency primarily depends on the cutting angle of the 
crystal. The typical trend of the frequency deviation δ f  with temperature T  can be well described by 
a cubic polynomial with the Bechmann coefficients a , b , c  

( ) ( ) ( )δ
= − + − + −

2 3

0 0 0
LO

f
a T T b T T c T T

f
 (3.177) 

where 0T  is the reference temperature. Due to imperfections at production the calibration values a , 
b , c , which are implemented as constants in the electronic circuitry of a TCXO, deviate from the 

true coefficients a , b , c  and the resulting errors δ a , δb , δc  cause a drift when the temperature 
changes. Uncompensated and compensated frequency deviations are exemplarily illustrated in Figure 
3-94. 
The short-term, noise-like errors feature shorter correlation times. They are mainly thermal noise as 
well as acceleration and random vibration induced frequency errors. The thermal noise can be best 
characterized by its power spectral density. Accelerations and vibrations can strain the crystal, which 
leads to frequency deviations. There is typically a predominant direction, described by the acceleration 
sensitivity vector fm , in which the frequency deviation δ f  due to the specific force bf  on the crystal 
is maximum. The normalized frequency deviation due to acceleration is given as 

( )δ
= +T T

f b nb n
LO

f
f

m f R γ  (3.178) 
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The effect is linear for accelerations up to 50 g [87]. Most often, the predominant direction is not 
known and only a scalar sensitivity fm  is given in the datasheet of the oscillator. Then, the error is 
assumed to be isotropic 

δ
= + T

f b nb n
LO

f
m

f
f R γ  (3.179) 

Frequency errors due to vibrations have basically the same origin, only that the signal power is at 
higher frequencies, either at distinct frequencies if the vibration has harmonic character or spread over 
a broader frequency band if the vibration has more random character. Random vibration is as in the 
case of the thermal noise best described by its power spectral density.  
Table 3-33 lists some of the key performance parameters as typically given in the specification of a 
TCXO that is adequate for GNSS receivers. As example, the Rakon IT225B TCXO has been chosen. 
In order to compare the performance of different oscillators more easily, the IEEE standard 1139-
2008 [15] recommends which parameters shall be given in the specification. 

 
Figure 3-94: Oscillator frequency error characteristics with respect to temperature changes [87] 

Table 3-33: Specification Rakon IT225B [88] 

Nominal frequency 10 MHz   
Frequency stability over temperature ±2 ppm ±599.5 m/s 
Temperature range -30 – 75 °C   
Frequency slope of perturbations 0.5 ppm/°C 149.9 m/s/°C 
Root Allan variance 1.0 ppb 0.3 m/s 
Long-term stability (drift over one year) ±1.0 ppm 299.8 m/s 
G sensitivity 2.0 ppb/g 0.6 m/s/g 

Influence of the oscillator frequency error on the pseudorange measurements 
Frequency errors of the carrier NCO lead to a biased estimation of the Doppler carrier frequency and 
thus affect the range rate measurements. Frequency errors of the code NCO lead to a biased 
estimation of the Doppler code chip rate and, integrated over time, end up in biased pseudorange 
measurements. The focus of this section is on the delay lock loop (DLL) and the resulting pseudorange 
errors. The influence of the oscillator error on the PLL is more complex because not only the carrier 
NCO is concerned but also the down-conversion of the carrier in the HF frontend. 
Since simultaneous measurements to the satellites in view are likewise affected by the oscillator error, 
the expected receiver clock bias and drift can be well estimated together with the position and velocity 
by the snapshot least-squares solver or by the integrated navigation filter. The stochastic component 
of the frequency error, which corresponds to the colored phase noise of the oscillator, however, 
cannot be estimated but influences the accuracy of the pseudorange measurements. 

T

fδ

0

Uncompensated
frequency

Compensated
frequency of TCXO



3 Reality Modeling 

116 

Receiver clock error model 

In this section a two-state clock error model, which also considers the stochastic noise parts of the 
frequency noise, is presented. The model can be later integrated into the navigation error filter. It is 
remarked that the oscillator noise is part of the receiver noise and is thus estimated by the receiver 
with the carrier-to-noise ratio 0C N . If the pseudorange measurement noise is derived from the 0C N  
value that is output by the receiver the oscillator phase noise does not have to be separately considered 
(see section 3.5.6). The RTCA standard DO-316, “Minimum Operational Performance Standards for 
Global Positioning System/Aircraft Based Augmentation System Airborne Equipment” [7], requires 
in section R.2.2.4 that “The receiver clock frequency random walk 1-sigma shall [GPS 286] not exceed 
1 feet/s/sqrt(s) under steady state thermal conditions. The frequency drift shall [GPS 287] not exceed 
3 ppm/°C under transient thermal conditions.” It is noted that “A significantly lower temperature 
sensitivity than 3 ppm/°C would require the use of an oven-controlled crystal oscillator (OCXO) and 
exclude the use of a temperature compensated crystal oscillator (TCXO) in the GPS receiver.” 
Concerning the integrity of the integrated navigation solution, it is stated that “If receiver clock aiding 
is used to enhance integrity, the algorithms that perform calibration shall [GPS 288] be designed to 
prevent the satellite failure itself from affecting the integrity of the calibration. Conventional Kalman 
filter integrations using clock states for offset and drift rate with no further enhancements to protect 
these states in a failure situation will not meet this requirement.” 

3.5.5.2 Model 

The two-state continuous-time receiver clock error model is given with 
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 (3.180) 

where ∆ Rt  is the receiver clock bias. The white phase noise WPη , flicker phase noise ωFP , white 
frequency noise WFη , flicker frequency noise ωFF  and the random walk frequency input noise RWFη  
are the short-term thermal noise components of the oscillator. The frequency noises are given in s s  
and the phase noises are in s . They have to be converted from the nominal local oscillator frequency 

LOf  to the actual code chip rate codef  with the scaling factor code LOf f . That is because the frequency 
noise is divided just as the nominal frequency in an ideal frequency divider. Moreover, the linear 
temperature calibration error δ a  and the isotropic acceleration dependent error are considered. 
Higher order terms are combined in ε . The normalized temperature and acceleration dependent 
errors have to be scaled by the nominal code chip rate codef . The turn-on frequency offset due to 
ageing is contained in ∆ ,0Rt . The initial clock bias ∆ ,0Rt  depends on how the receiver calculates the 
pseudorange from the code delay measurement and can be large. The power spectral densities of the 
separate noise components feature power law behavior, as discussed in section 3.1.4. 
The discrete-time correspondent of (3.180) is straightforward 
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Be aware not to mix up the clock error Rt∆ , propagation sample time T∆  and temperature T . 
Discrete-time models for the white frequency noise ωWF , flicker frequency noise ωFF , random walk 
frequency noise ωRWF , white phase noise ωWP  and the flicker phase noise ωFP  are according to Table 
3-7 in section 3.1.4.3. Note that the difference quotients of the white and flicker phase noises ωWP  
and ωFP  have to be added to the clock drift output equation. The parameters αh , { }α = − 2, , 2 , are 
to be estimated from the phase noise power spectral density ( )φS f  from recorded oscillator voltages 
or from available specifications from the manufacturer. How to determine these parameters is shown 
in the next section. The short-term noises on the receiver clock bias and drift are part of the 
pseudorange and range rate measurement noises that will be discussed in section 3.5.6. They are 
affected by the tracking filters. In this section, only the long-term, random walk influences on the 
receiver clock bias and drift are of interest. Therefore, the influence of the white and flicker phase 
noises ωWP  and ωFP  on the receiver clock bias and drift and of the white and flicker frequency noises 
ωWF  and ωFF  on the receiver clock drift are omitted. The output equations of (3.181) simplify to 
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neglecting also the temperature and acceleration effect. Fortunately, the difference quotients in the 
clock drift output equation, which are difficult to handle, can thus be avoided, too. 

3.5.5.3 Parameter Estimation 

The IEEE standard 1139-2008 [15] proposes to characterize the short-term stability of oscillators 
either in time domain with the (overlapping) Allan deviation ( )σ τ,yavar  of the fractional frequency 
= LOy f f  or in frequency domain with the two-sided PSD of the phase deviations ( )φS f . If the short-

term stability shall be estimated from recorded oscillator voltages, the overlapping Allan deviation is 
the first choice. Before the Allan deviation can be calculated, the systematic drift has to be removed 
from the fractional frequencies. Alternatively, the Hadamard deviation can be applied being insensitive 
to drifts. If specifications of the phase PSDs ( )φS f  are available from the manufacturer, these can be 
directly used to derive the model parameters. Here, the second variant is presented. The single 
sideband spectral density ( )SSBS f , which is often found in the manufacturer’s datasheets, corresponds 
to the two-sided spectral density of the phase deviations ( )φS f  

( ) ( )φ=SSBS f S f  (3.183) 

Novatel’s OEM628 receiver uses a 20 MHz VCXO (Filtronetics ON-169A) and DLR’s Phoenix GPS 
receiver bases upon a 10 MHz TCXO (Rakon IT225B). The specification of the phase deviation PSD 
of both oscillators is given in Table 3-34. It has to be noted that the phase noise of the VCO in the 
frequency synthesizer has to be additionally considered. In the case of the Zarlink GP2015, the noise 
of the incorporated VCO is much higher than the noise of the external Rakon IT225B reference 
oscillator [85]. Since the bandwidth of the frequency synthesizer PLL is rather high (15 kHz for the 
Zarlink GP2015), the filter effect of the PLL can be neglected. The PLL thus follows directly the 
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frequency of the reference oscillator and adds the noise of the VCO straight. For the illustration of 
the identification approach, the focus is here on the reference oscillator. The phase noise of the VCO 
can be obtained in the same way and has simply to be added to the noise of the reference oscillator. 
The PSD of the phase deviation ( )φS f  is given by 

( )
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where 
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is the PSD of the fractional frequency noise. From the given PSD ( )φS f , for example taken from the 
performance specification of the oscillator, the parameter vector a  containing 

( )− −=T
2 1 0 1 2h h h h ha  (3.187) 

can be easily estimated by means of the least squares method with the vector s  of the n  available 
PSD values ( )φ iS f , = 1i n , 

( ) ( )( )φ φ= 
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and the coefficient matrix A  with the corresponding frequencies 
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As was done with the IMU parameter estimation, the sum of the squares of the differences of the 
common logarithms shall be minimized by the estimator 

( ) ( )( ) ( ) ( )( )( ){ }− −
T

ˆ
ˆ ˆarg min log log log log

a
s A a s A a  (3.190) 

Due to numerical reasons it is advisable to estimate the parameters scaled by the squared nominal 
oscillator frequency, α α= 2

LOh f h , since the parameter values αh  are very small. 
The parameters that have been estimated for the ON-169A and IT225B oscillators are listed in Table 
3-35. The specified, estimated and realized PSDs of the fractional frequency of the ON-169A 
oscillator are plotted in Figure 3-95 and the corresponding PSDs of the phase deviation in Figure 
3-96. Figure 3-97 shows a typical realization of the clock drift of the ON-169A oscillator and Figure 
3-98 illustrates six exemplary curves of the clock bias. Figure 3-99 to Figure 3-102 are the 
corresponding figures for the IT225B oscillator.  
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Table 3-34: Phase deviation power spectral density specifications of ON-169A and IT225B oscillators 

Frequency   Hzf  

Two-sided PSD φ   dBc HzS  ( = SSBS ) 

Filtronetics ON-169A [89] Rakon IT225B [88] 
VCXO (Novatel OEM628) TCXO (Phoenix GPS) 

0.1 -24  
1 -56 -55 

10  -85 
100 -81 -110 

1000 -102 -125 
10000 -102 -140 

Table 3-35: Estimated parameters for ON-169A and IT225B oscillators 

Parameter Unit ON-169A IT225B 

−2h  2Hz Hz  6.825177804170940e-07 7.392439921073599e-10 

−1h  2Hz  2.095611517694396e-11 5.348045043004299e-06 

0h  2Hz Hz  1.266266277147555e-05 1.912900765736840e-07 

1h  2 2Hz Hz  4.759222884490891e-07 2.955711832121236e-10 

2h  32Hz Hz  1.328758637139857e-11 7.829645179372844e-20 

 
Figure 3-95: Fractional frequency power spectral density of the ON-169A oscillator 

 
Figure 3-96: Phase deviation power spectral density of the ON-169A oscillator  
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Figure 3-97: Exemplary clock drift of the ON-169A oscillator 

 
Figure 3-98: Six exemplary clock bias curves of the ON-169A oscillator and predicted 3σ  boundaries 

 
Figure 3-99: Fractional frequency power spectral density of the IT225B oscillator 

 
Figure 3-100: Phase deviation power spectral density of the IT225B oscillator 
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Figure 3-101: Exemplary clock drift of the IT225B oscillator 

 
Figure 3-102: Six exemplary clock bias curves of the IT225B oscillator and predicted 3σ  boundaries 

3.5.5.4 Example: Novatel OEM628 

In order to verify the results, laboratory tests with a Novatel OEM628 GNSS receiver [90] 
incorporating the ON-169A oscillator and a Spectracom GSG-5 GNSS signal simulator have been 
done. A stationary user antenna position has been used for the analysis. All errors like ionosphere and 
troposphere delays have been switched off. It is assumed that the oscillator error of the signal 
simulator is at least one magnitude lower than that of the GNSS receiver, such that the resulting clock 
error primarily stems from the receiver. Correction of the pseudorange measurements with the 
estimated clock error in the receiver has been deactivated. The carrier-to-noise ratio is set to constant 
49 dB/Hz in all channels. Figure 3-103 shows the position error of the PVT solution. It is below 4 
cm in horizontal direction and remains well below 15 cm in vertical direction during the simulation 
time. In Figure 3-104 the velocity error is plotted. It is lower than 3 cm/s in horizontal direction. The 
estimated receiver clock bias and drift are illustrated in Figure 3-105. It has to be noted that the receiver 
clock noise is filtered by the tracking loops in contrast to the pure receiver clock error shown in Figure 
3-97. Therefore, higher frequencies above the tracking loop bandwidth are suppressed. The 
magnitudes and time correlation agree quite well if the filtering effect is taken into account. In Figure 
3-106, the constant clock drift has been removed. The receiver clock bias characteristic in the upper 
subplot is as expected from the previous parameter estimation. The pseudorange measurements to 
the satellites in view are corrected by the estimated receiver clock bias in order to obtain the 
pseudorange residuals. They are shown in Figure 3-107. The additionally plotted 3σ  standard 
deviations are output by the receiver. Since the carrier-to-noise ratio is equal for all measurements, all 
standard deviations are the same. The standard deviations match well to the actual pseudorange errors. 
It can be observed that the single pseudorange residuals are not noticeably correlated among each 
other. It is concluded that the pseudorange measurements can be handled as statistically independent. 
The range rate residuals are given in Figure 3-108. As is the case with the pseudorange residuals, the 
range rate residuals are not correlated. 
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Figure 3-103: Position error 

 
Figure 3-104: Velocity error 

 
Figure 3-105: Receiver clock bias and drift error 
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Figure 3-106: Detrended receiver clock bias and drift error 

 
Figure 3-107: Pseudorange residuals and 3σ  standard deviations (dotted lines) as output by the 

receiver 

 
Figure 3-108: Range rate residuals  
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3.5.5.5 Remarks on the Integration in the Navigation Filter 

It has to be noted that some GNSS receivers adjust the NCO frequency according to the currently 
estimated receiver clock drift of the computed PVT solution or correct the raw pseudorange 
measurements with the estimated receiver clock bias continuously or from time-to-time if a specified 
threshold (for example 1 millisecond) is exceeded. If the receiver uses a VCXO like Novatel’s 
OEM628, the receiver can also continuously adapt the frequency steering voltage of the oscillator. 
The understanding of this behavior is critical for the performance of the integrated navigation system 
from different aspects. First, sudden pseudorange measurement errors like for example due to the 
malfunction of a satellite will deteriorate the internally estimated PVT solution including the receiver 
clock error if the receiver autonomous integrity monitor (RAIM) does not reliably detect and isolate 
this error with the predicted probability (if RAIM is available at all). This can lead to an additional bias 
on the pseudorange measurements besides the corrupted measurement of the malfunctioning satellite. 
The integrity monitor of the integrated navigation system must be able to cope with this special 
situation. Second, the integrated navigation filter has to be aware that there might be sudden steps in 
the pseudorange measurements. The system has to detect and appropriately react on occurring steps. 
Otherwise, if the estimated receiver clock bias and drift are already settled and the corresponding 
covariances are accordingly small, these measurements will henceforth be refused by innovation based 
integrity monitors because the actual innovation is much larger than expected, hence violating the 
statistics. In high-end receivers the automatic correction of the raw pseudorange and range rate 
measurements can be disabled. Due to the ageing of the crystal oscillator the influence of the phase 
noise can grow with time. In cases requiring very high accuracy, the oscillator should be recalibrated 
at regular intervals. Alternatively, the noise statistics upon which the navigation error filter bases can 
be adapted accordingly. The receiver clock error model will be integrated into the navigation filter in 
section 4.6.7. 



 3.5 GPS Observable Errors 

 125 

3.5.6 Receiver Noise 

3.5.6.1 Motivation 

For the statistically correct fusion of the pseudorange and range rate measurements within the 
integrated navigation filter the knowledge of the variances and correlations of the single measurement 
errors amongst each other and with time is important. Often, receivers do not output standard 
deviations of the raw measurements, but provide only rudimentary statements about the expected 
error of the PVT solution. In this case the user has to assess the current magnitudes of the 
measurement noises himself. 
Under favorable environmental conditions the thermal noise constitutes the main part of the 
measurement noise. Besides, the noise of the NCOs and the quantization noise of the ADC play a 
role. Under unfavorable conditions multipath or other interferences may exceed the thermal noise. 
Since the focus lies on applications for aircraft and on nominal operation, these disturbances are not 
considered. 
[64] and [91] give approximations for the standard deviations of the pseudorange and carrier phase 
measurement noise in dependence on the carrier-to-noise ratio and the tracking loop filter bandwidths. 
However, these formulas are derived for one certain discriminator and tracking loop structure. If other 
designs are implemented in the GNSS receiver, the resulting measurement noises may turn out to be 
different. Moreover, no statement is made about the correlations of the measurements among each 
other and with time. 
Providing that the user has insight into the tracking loop filter design and knows the selected filter 
parameters, he can exactly predict the expected measurement noise variances and the corresponding 
correlations if assumptions are made about the noise of the incoming signal at the antenna input and 
the other noise sources. Various tracking loop filter designs and discriminator variants can be found 
in the literature. Therefore, the approach is exemplarily outlined by means of a common design – a 
third order frequency-assisted PLL and a carrier-aided DLL. The provided statements can however 
be analogously derived for any other arbitrary filter structure. 

3.5.6.2 Satellite Signal Model 

A general receiver structure is shown in Figure 3-109. First, the GNSS signal is fed through a low 
noise amplifier to increase the signal amplitude. Second, the signal carrier frequency f  is down-
converted to the lower intermediate frequency IFf  and subsequently digitized by an ADC with the 
sample rate sf . The ADC additionally steers the automatic gain control that adapts the signal amplitude 
before sampling such that the ADC solution is optimally used. The digital signal samples are processed 
by the tracking channels, which generate the pseudorange, range rate and carrier phase measurements 
and extract the navigation data. In the final navigation processing block the actual PVT solution and 
corresponding covariances are computed from the raw measurements. All required local frequencies 
and sample rates are derived from the reference frequency reff  of a common stable oscillator by the 
frequency synthesizer. 
The signal at the antenna input at reception time t  is mathematically described by 

( ) ( ) ( ) ( ) ( )( ) ( )τ τ π φ η= − − + +cos 2s t A c t d t f t t t  (3.191) 



3 Reality Modeling 

126 

Therein, A  is the peak amplitude of the unmodulated carrier wave. c  is the ranging code and d  the 
navigation data that are modulated on the carrier signal. τ  is the true travel time of the signal and 

τ−t  the true broadcast time at the satellite antenna. f  is the frequency and φ  the phase of the carrier 
signal at reception time. η  is the thermal noise. It is assumed to be white and Gaussian distributed 
with two-sided power spectral density 0N  in Watts/Hertz. The power of the unmodulated carrier 
signal C  is proportional to the squared root mean square amplitude 2A  

 
=  
 

2

2

A
C  (3.192) 

The amplitude A  is thus expressed by the signal power C  

= 2A C  (3.193) 

The quotient of the unmodulated carrier signal power C  and the noise power spectral density 0N  is 
the carrier-to-noise ratio 0C N , which is a common measure for the quality of the received signal. 
( )s t  actually consists of a mixture of the signals of all satellites in view. However, since the signal of 

a certain satellite can be uniquely identified later in the correlator, it is sufficient to write the formulas 
for one single satellite. 
The incoming signal passes several mixer and band-pass filter stages in the receiver’s frontend. In the 
end, the down-converted continuous-time signal at the output of the frontend is given with 

( ) ( ) ( ) ( ) ( )( ) ( )τ τ π φ η′ ′ ′= − − + +2 cos 2 IFs t C c t d t f t t t  (3.194) 

′IFf  depicts the intermediate carrier frequency of the signal after the last mixer stage. The white, 
Gaussian distributed noise is now band-limited 

( ) ( )( )η′  00,t WN B N t  (3.195) 

with variance ( )ησ =2
0B N t . B  is the effective bandwidth of the baseband equivalent band-pass filter 

and is specified in Hertz. 
A low-resolution ADC finally samples the down-converted signal (3.194) with the intermediate carrier 
frequency ′IFf  with the sampling rate sf . Automatic gain control amplifiers in the frontend adapt the 
signal magnitude and thus ensure that the range of the ADC is optimally used. The discrete-time signal 
after ADC sampling is described by 

( )π φ η= + +,2 cos 2k k k IF k k k ks C c d f t  (3.196) 

The effective intermediate frequency of the digitized signal ,IF kf  results from the frequency of the 
analog signal ′IFf  and the sampling rate sf  due to the aliasing effect 

′= −, ,IF k IF k sf f f  (3.197) 

The power and variance of the noise ηk  is ησ =2
, 0,k kB N . The signal-to-noise ratio (SNR) after ADC 

sampling is the quotient of the carrier power C  and the noise power ησ
2
,k  in Watts/Watts 

ησ
= =

2
0,,

k
kk

C C
SNR

B N
 (3.198) 

The discrete-time signal is then forwarded to the correlator. Zarlink’s GP2015 is a typical integrated 
circuit frontend for GPS L1 signals [85]. 
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Figure 3-109: General receiver structure 

3.5.6.3 Correlator Model 

Figure 3-110 shows the hardware signal processing part of a tracking channel. The digital signal ks  is 
first multiplied with a replica of the carrier wave, which is generated by the carrier NCO, to obtain the 
in-phase branch and a 90 degree phase delayed replica to obtain the quadrature branch. Second, the 
in-phase and quadrature signals are correlated with the early, prompt and late replica of the ranging 
codes of the different satellites that have been identified in the signal mix in the acquisition. The replica 
code generator is triggered by the code NCO. With the number of summed samples m , the signal-
to-noise ratio can be adjusted in accordance with the expected dynamics of the platform on which the 
receiver is applied. 
The obtained in-phase and quadrature signals  ,E kI ,  ,P kI ,  ,L kI ,  ,E kQ ,  ,P kQ  and  ,L kQ  are then fed into the 
discriminators to estimate the current frequency offset between the digitized signal and the carrier 
replica and the current code chip offset between the ranging code that is modulated on the incoming 
signal and the local code replica. Zarlink’s GP2021 is an example for a twelve channel correlator for 
GPS L1 signals [92]. 
The prompt in-phase correlator output is [91] 

( ) ( ), ,

2
sinc cos

2 PP k s k k k I k

C
I f T R f Tτ δ δφ η= +  (3.199) 

The output of the prompt quadrature phase correlator is analogous to the in-phase correlator output, 
only that the cosine of the phase error is replaced by the sine 

( ) ( ), ,

2
sinc sin

2 PP k s k k k Q k

C
Q f T R f Tτ δ δφ η= +  (3.200) 

T  is the integration time of the correlator. ( )δsinc kf T  is the cardinal sine function which is defined 
as 

( ) ( )π δ
δ

π δ
=

sin
sinc k

k
k

f T
f T

f T
 (3.201) 

( )τ kR  is the autocorrelation function of the spreading code, where τ k  is the chip lag between the 
incoming and the replica codes. In the case of the C/A code of GPS the autocorrelation function is 
given with 

( ) τ τ
τ

τ
 − ≤=  >

1 , 1
0 , 1

k k
k

k

R  (3.202) 
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Note that the autocorrelation function is slightly altered by the frontend band-pass filter. Since the 
changes are only small, the effect is neglected here. δ kf  is the difference between the currently 
estimated intermediate carrier frequency  ,IF kf  and the true intermediate carrier frequency of the 
incoming signal ,IF kf  

, ,k IF k IF kf f fδ = −  (3.203) 

δφk  represents the corresponding difference between the phases of both signals 

k k kδφ φ φ= −  (3.204) 

The in-phase and quadrature phase noises are white and normally distributed and have the covariance 

2 2
, , 0,E E

2P P

s
I k Q k k

T f
BNη η   = =     (3.205) 

Since receivers often output a current estimate of the carrier-to-noise ratio, it is suitable to scale the 
correlator equations by the square root of the noise variance 

0,

2
s kT f BN

 (3.206) 

Then, the scaled early, prompt and late in-phase correlator outputs are 

( ) ( ), 0 ,2 sinc cos
2 E

s EL
E k k k k I kk

f
I C N T R f T

B
τ δ δφ η

∆ 
= − + 

 
  (3.207) 

( ) ( ) ( ), 0 ,2 sinc cos
P

s
P k k k k I kk

f
I C N T R f T

B
τ δ δφ η= +  (3.208) 

( ) ( ), 0 ,2 sinc cos
2 L

s EL
L k k k k I kk

f
I C N T R f T

B
τ δ δφ η

∆ 
= + + 

 
  (3.209) 

The scaled early, prompt and late quadrature phase correlator outputs are 

( ) ( ), 0 ,2 sinc sin
2 E

s EL
E k k k k Q kk

f
Q C N T R f T

B
τ δ δφ η

∆ 
= − + 

 
  (3.210) 

( ) ( ) ( ), 0 ,2 sinc sin
P

s
P k k k k Q kk

f
Q C N T R f T

B
τ δ δφ η= +  (3.211) 

( ) ( ), 0 ,2 sinc sin
2 L

s EL
L k k k k Q kk

f
Q C N T R f T

B
τ δ δφ η

∆ 
= + + 

 
  (3.212) 

∆EL  is the chip spacing between the early and the late correlator. It is usually 0.5 or smaller in modern 
receivers which are more robust against multipath. The noise of the early, prompt and late branches 
of the in-phase as well as quadrature phase correlators is now normalized 

( ) { } { }η η η  = ∀ ≠ = =  , ,0,1 , E 0 , , , , ,
i i iX X l X kWN k l X I Q i E P L  (3.213) 

Although the noise of the in-phase and quadrature correlators stem from the same thermal noise on 
the input signal, it is assumed that the in-phase and quadrature noise are not correlated 

{ }η η  = ∀ = , ,E 0 , , , ,
i iI l Q k k l i E P L  (3.214) 
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However, the early, prompt and late noises are correlated according to [93] 

( ), ,

, ,

, ,

E 1

E 1
2 2

E 1
2 2

E L

E P

P L

I k I k EL EL

EL EL
I k I k

EL EL
I k I k

R

R

R

η η

η η

η η

  = ∆ = − ∆ 
∆ ∆   = = −    
∆ ∆   = = −    

 (3.215) 

The carrier-to-noise ratio has to be inserted in the formulas with the unit Hz. If the value is given in 
dB-Hz , it has to be converted at first by 

[ ]0 dB-Hz

10

0

Hz 10
C NC

N
=    (3.216) 

The receiver estimates the current carrier-to-noise ratio from the prompt in-phase and quadrature 
phase samples. The estimate contains already all noise sources like the thermal noise, the clock noise 
or the quantization noise. They do not have to be considered separately. 

 
Figure 3-110: Correlator 

3.5.6.4 Discriminators 

The correlator outputs the accumulated early, prompt and late in-phase and quadrature samples  ,E kI , 


,P kI ,  ,L kI ,  ,E kQ ,  ,P kQ  and  ,L kQ . Discriminators are used to extract the phase error δφk , frequency error 
δ kf  and code error δτ k  from the early, prompt and late in-phase and quadrature phase correlator 
outputs. Common discriminators are listed in [64]. 
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3.5.6.4.1 Phase 

A popular discriminator for the phase error δφk  is the two-quadrant arctangent discriminator 

φ =






,
,

,

arctan P k
k

P k

Q
d

I
 (3.217) 

which requires the prompt in-phase and quadrature phase correlator outputs. The phase discriminator 
is a non-linear function of the in-phase and quadrature phase samples  ,P kI  and  ,P kQ . In order to be 
able to use the discriminator later in the linear tracking loop filter, it has to be linearized. For that, the 
involved values are replaced by the sums of noise-free values and pure noise 

φφ

η
η

η
+

+ =
+

, ,
, ,

, ,

arctan P

P

P k Q k
k d k

P k I k

Q
d

I
 (3.218) 

where φ φ
 =  


, ,Ek kd d ,  =  


, ,EP k P kQ Q  and  =  


, ,EP k P kI I . With the first order Taylor series expansion 
of the arctangent function, the discriminator can be rewritten as 

φφ η η η+ = + − +
+ +

, , ,
, , , ,2 2 2 2

, , , , ,

arctan . . .
P P

P k P k P k
k d k Q k I k

P k P k P k P k P k

Q I Q
d h o t

I I Q I Q
 (3.219) 

When the expected values of the prompt correlator outputs (3.208) and (3.211) are inserted, it can be 
seen that the discriminator directly represents the carrier phase error 

( ) ( ) ( )
( ) ( ) ( )

0,
,

, 0

2 sinc sin
arctan arctan

2 sinc cos

k k kP k k
k k

P k k k kk

C N T R f TQ
d

I C N T R f T
φ

τ δ δφ
δφ

τ δ δφ
= = =  (3.220) 

The phase discriminator noise is, considering only the linear terms in (3.219) 

φ
η η η−

+ +


, ,
, , ,2 2 2 2

, , , ,
P P

P k P k
d k Q k I k

P k P k P k P k

I Q

I Q I Q
 (3.221) 

The variance of the discriminator noise is calculated by 

( )

2 2 2 2
, , , , , , , ,2

, , 22 2
, ,

E E E
E P P P PP k Q k P k I k P k P k Q k I k

d k d k

P k P k

I Q I Q
Q

I Q
φ φ

η η η η
η

     + −      = =  +
 (3.222) 

With (3.213) and (3.214), the variance simplifies to 

φ φ
η = =  +

2
, , 2 2

, ,

1
Ed k d k

P k P k

Q
I Q

 (3.223) 

With the correlator outputs (3.208) and (3.211), the denominator becomes 

( ) ( ) ( )τ δ+ =2 2 2 2
, , 02 sincP k P k k kk

I Q C N T R f T  (3.224) 

The cardinal sine function can be approximated by one, ( )δ ≈2sinc 1kf T , since the frequency 
deviation δ kf  is assumed to be small if the tracking loops are settled. The same is valid for the square 
of the correlation function. It can be replaced by one, ( ) ( )τ τ= − ≈

22 1 1k kR , because the code 
deviation τ k  is small. Hence 

( )+ ≈2 2
, , 02P k P k k

I Q C N T  (3.225) 
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The phase discriminator noise variance finally becomes 

( )φ
≈,

0

1
2d k

k

Q
C N T

 (3.226) 

3.5.6.4.2 Frequency 

The difference quotient of subsequent phase discriminators φ ,kd  and φ −, 1kd  can be simply used as 
frequency discriminator 

φ φ − −

−

 −
= = −  

 

   



 

, , 1 , , 1
,

, , 1

1
arctan arctank k P k P k

f k
P k P k

d d Q Q
d

T T I I
 (3.227) 

The values are separated in the expected values and noise 

η η
η

η η
− −

− −

 + +
+ = −  + + 

, , , 1 , 1
, ,

, , , 1 , 1

1
arctan arctanP P

f

P P

P k Q k P k Q k
f k d k

P k I k P k I k

Q Q
d

T I I
 (3.228) 

The expected value of the frequency discriminator is the difference quotient of the phase error 

( )δφ δφ−
−

−

 
= − = −  

 

, , 1
, 1

, , 1

1 1
arctan arctanP k P k

f k k k
P k P k

Q Q
d

T I I T
 (3.229) 

and the frequency discriminator noise is 

η η η η η− −
− −

− − − −

 
− − +  + + + + 



, , , 1 , 1
, , , , 1 , 12 2 2 2 2 2 2 2

, , , , , 1 , 1 , 1 , 1

1
f P P P P

P k P k P k P k
d k Q k I k Q k I k

P k P k P k P k P k P k P k P k

I Q I Q

T I Q I Q I Q I Q
 (3.230) 

Analogous to (3.223), the variance of the frequency discriminator noise is given with 

η
− −

 
 = = +    + + 

2
, , 2 2 2 2 2

, , , 1 , 1

1 1 1
E

f fd k d k
P k P k P k P k

Q
T I Q I Q

 (3.231) 

and with the signal power (3.225) it is approximated by 

( )
≈, 3

0

1
fd k

k

Q
C N T

 (3.232) 

if it is assumed that the carrier-to-noise ratio does not change much between the subsequent correlator 
time steps. 

3.5.6.4.3 Code 

For the determination of the code error τ  the quasi-coherent dot product power is proposed 

( ) ( )τ
 = − + − 

     

, , , , , , ,

1
k E k L k P k E k L k P kd I I I Q Q Q

N
 (3.233) 

The scale factor N  can be the current signal power + 

2 2
, ,P k P kI Q  or a constant that represents the mean 

signal power. Separation of the involved values in expected values and noise gives 

( )( )
( )( )

, , , , , , , ,

, , , , , ,

1
E L P

E L P

k d k E k I k L k I k P k I k

E k Q k L k Q k P k Q k

d I I I
N
Q Q Q

ττ η η η η

η η η

+ = + − − +
+ + − − + 



 (3.234) 
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where τ τ
 =  


, ,Ek kd d . With the expected values of the correlator outputs (3.207) – (3.212), the 
expected code discriminator value becomes 

( ) ( ) ( )τ δ τ τ τ
 ∆ ∆   

= ⋅ − − +    
    

2
, 0

1
2 sinc

2 2
EL EL

k k k k kk
d C N T f T R R R

N
 (3.235) 

Inserting the correlation function (3.202) and approximating ( )δ ≈2sinc 1kf T  yields 

( ) ( )τ τ τ τ
 ∆ ∆

≈ ⋅ + − − − 
 

, 0

1
2 1

2 2
EL EL

k k k kk
d C N T

N
 (3.236) 

Moreover, the absolute code deviation τ k  is assumed to be small under settled conditions so that it 
is definitely smaller than half of the early late correlator spacing, τ < ∆ 2k EL . The lag of the late 
correlator is consequently positive and the lag of the early correlator is negative and the difference of 
the absolute values in (3.236) can be replaced by 

τ τ τ τ τ
∆ ∆ ∆ ∆ 

+ − − = + − − + = 
 

2
2 2 2 2
EL EL EL EL  (3.237) 

The code discriminator approximation (3.236) becomes 

( ) ( )τ τ τ≈ ⋅ −, 0

1
4 1k k kk

d C N T
N

 (3.238) 

With the small code deviation assumption, τ τ ≈ 0k k  is valid 

( )τ τ≈ ⋅, 0

1
4k kk

d C N T
N

 (3.239) 

The code discriminator τ ,kd  thus depends linearly on the code deviation τ k . It is multiplied by the 
gain 

( )
τ

= ⋅ ≈, 0

1
4 2d k k

K C N T
N

 (3.240) 

The code discriminator noise considering only linear terms is 

( ) ( ) ( ) ( )
τ

η η η η η η η − + − + − + − , , , , , , , , , , , , ,

1
E L E L P Pd k P k I k I k P k Q k Q k E k L k I k E k L k Q kI Q I I Q Q

N
 (3.241) 

The variance of the code discriminator noise is calculated by 

( )
( )

( ) ( )
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2 2 2 2
, , , , , , ,2
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η η
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   + − − −   

 (3.242) 

With (3.213) and (3.215), the variance simplifies to 

( )( ) ( )( ) ( ) ( )2 22 2
, , , , , , ,2

1
2 1 2 1d k P k EL P k EL E k L k E k L kQ I R Q R I I Q Q

Nτ

 = − ∆ + − ∆ + − + −  
 (3.243) 
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The correlation function (3.202) is inserted 

( ) ( ) ( )2 22 2
, , , , , , ,2

1
2d k EL P k P k E k L k E k L kQ I Q I I Q Q

Nτ

 = ∆ + + − + −  
 (3.244) 

With (3.225) and the early and late correlator outputs (3.207), (3.209), (3.210) and (3.212) and the 
assumptions ( )δ ≈2sinc 1kf T  and ( ) ( )τ τ= − ≈

22 1 1k kR , the code discriminator noise variance is 
approximated by 

( ) ( )
2

, 0 02

1
4 2

2 2
EL EL

d k EL k kk k
Q C N T C N T R R

Nτ
τ τ

  ∆ ∆    ≈ ∆ + − − +    
      

 (3.245) 

or with the correlation function (3.202) inserted 

( ) ( )
2

, 0 02

1
4 2

2 2
EL EL

d k EL k kk k
Q C N T C N T

Nτ
τ τ

  ∆ ∆
 ≈ ∆ + + − − 
   

 (3.246) 

With (3.237), the variance reduces to 

( ) ( )( )2
, 0 02

1
4 8d k EL kk k

Q C N T C N T
Nτ

τ≈ ∆ +  (3.247) 

and can finally be approximated by 

( ), 02

4 EL
d k k

Q C N T
Nτ

∆
≈  (3.248) 

if again the code error τ k  is assumed to be small, τ ≈2 0k . 

3.5.6.4.4 Cross-Correlation 

For the state-space model of the closed tracking loops, the cross-correlations between the phase 
discriminator noise 

φ
ηd , the frequency discriminator noise η

fd  and the code discriminator noise 
τ

ηd  
will be required. From (3.221) and (3.230), the cross-correlation between 

φ
ηd  and η

fd  is derived 
analogous to (3.222) and (3.223) as 

φ
η η  =  +, , 2 2

, ,

1 1
E

fd k d k
P k P kT I Q

 (3.249) 

and becomes with (3.225) 

( )φ
η η  ≈ , , 2

0

1
E

2fd k d k

k
C N T

 (3.250) 

The cross-correlation between 
φ

ηd  and 
τ

ηd  is with (3.221) and (3.241) 
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 (3.251) 

With (3.213) and (3.215), the cross-correlation simplifies to 

( ) ( )
φ τ

η η
− + −

  =  +
, , , , , ,

, , 2 2
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1
E P k E k L k P k E k L k

d k d k
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N I Q
 (3.252) 
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The numerator is just the expected value of the quasi-coherent dot product power discriminator 
(3.233). It can be approximated by (3.239). The denominator is the expected signal power (3.225). The 
cross-correlation thus becomes approximately 

φ τ

τ
η η  ≈ , ,

2
E k

d k d k N
 (3.253) 

The remaining cross-correlation between η
fd  and 

τ
ηd  is with (3.230) and (3.241) 
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 (3.254) 

Compared with (3.251), the cross-correlation is analogous to (3.253) 

τ φ τ

τ
η η η η   = ≈   , , , ,

21
E E
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k
d k d k d k d kT T N

 (3.255) 

Since the code deviation τ k  is small, the cross-correlations (3.253) and (3.255) can be assumed to be 
zero. 
Furthermore, the correlations 

φ
η η−
 
 , 1 ,E

fd k d k , η η−
  , 1 ,E

f fd k d k  and 
τ

η η−
  , 1 ,E

fd k d k  between two 
subsequent correlator time steps are necessary for the state-space model of the closed tracking loop. 
The first cross-correlation is derived as 

( )φ φ
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 (3.256) 

The second correlation and its approximation are given with 

( )φ
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   = − ≈ −   , 1 , , , 3
0 1

1 1
E E

2f f fd k d k d k d k
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 (3.257) 

and finally the third correlation is 

τ φ τ

τ
η η η η−

   = ≈   , 1 , , ,

21
E E

f

k
d k d k d k d kT T N

 (3.258) 

3.5.6.5 Tracking Loop Model 

3.5.6.5.1 Structure 

The discriminator outputs are fed into the PLL filter to estimate the current intermediate frequency 
of the incoming signal ,ÎF kf  on the one hand and into the DLL filter to estimate the current ranging 
code rate τˆk  on the other hand. The estimated frequency is used to steer the NCO of the carrier signal 
replica and the estimated code rate adapts the NCO of the code replica. Mathematically spoken, the 
NCOs are numerical integrators. The phase lock and delay lock (control) loops are closed via the 
correlation of the incoming signal with the signal replica. The overall structure of the tracking loops 
is illustrated in Figure 3-111. 
For the PLL and DLL IIR filter from zeroth to third order are applied. The poles of the closed loops 
are chosen such that the filtered noise is as low as possible, but the filter does not constrain the signal 
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dynamics owing to the actual motion of the receiver. The effective cut-off frequencies of the filters 
thus have to be selected in accordance with the expected dynamics of the carrier platform. 
Tracking loops are generally designed in continuous-time and transformed to discrete-time afterwards. 
For this purpose, the continuous-time integrator is replaced by a forward Euler, backward Euler or 
trapezoidal discrete-time integrator. The latter method is also known as bilinear transformation. 
For the design of the tracking loops, a simple linear model is used. The structure of the PLL and the 
DLL is principally the same. The discriminator is represented by a linear gain, the NCO by an 
integrator and the tracking loop filter by the transfer function ( )F s . The closed-loop transfer function 
including discriminator gain, tracking loop filter transfer function and NCO integrator is ( )H s . 

 
Figure 3-111: Tracking loop structure 

3.5.6.5.2 Frequency-Assisted Phase Lock Loop 

The block diagram of the third order PLL that is assisted by a second order frequency lock loop (FLL) 
is shown in Figure 3-112. A specialty of the controller design is that the plant is a simple integrator, 
which is the carrier NCO. The poles of the closed loop transfer function can hence be arbitrarily 
placed by the user. 
The continuous-time transfer function of the PLL filter 

( ) ( ) ( )φ φ φφ = s F s d s  (3.259) 

is given by 
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+ +
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The continuous-time transfer function of the FLL filter 

( ) ( ) ( )φ =

f f fs F s d s  (3.261) 

is given by 
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+
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The combined PLL/FLL filter is obtained by superposing the outputs of both single filters 
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The closed-loop transfer function including the carrier NCO integrator and phase and frequency 
discriminators is given by 

( )
( ) ( )
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 (3.264) 

For the implementation in program code, the continuous-time tracking loop transfer function is 
discretized next. This is accomplished here by replacing the continuous-time integrators by simple 
forward Euler integrators 

= − + −          1 1y n y n T u n  (3.265) 

or Z-transformed 
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 (3.266) 

The frequency-assisted PLL of Figure 3-112, now with discrete-time integrators and a difference 
quotient instead of the derivative, is shown in Figure 3-113. 
The discrete-time correspondent of the closed-loop transfer function ( )H s  of (3.264), represented as 
discrete-time state-space model, is 
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where the state vector is defined as 
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 (3.268) 

Therein, the last element , 1kzφ −  is the estimated carrier phase error of the previous time step. It is 
required for the frequency discriminator difference quotient. The estimated carrier phase error output 
equation is given with 

( ) ,1 0 0 0k PLL k

φ

δφ = z

H


 
(3.269) 

The estimated carrier frequency error output equation is 

( )0, , 0, ,

1 1
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φ φφ φδ η
π π

= − +z
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(3.270) 

Usually, the filter coefficients are chosen as 
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3 2
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where φω0,  is the natural frequency of the PLL part and ω0,f  is the natural frequency of the FLL part. 
The poles of the PLL transfer function lie on the negative real part axis and on lines with inclination 
± 3  in the stable left hand side of the complex plane and move with varying φω0, . The poles of the 
FLL transfer function lie on lines with inclination ± 2  and move with varying 0,fω . The locations of 
the poles are illustrated in Figure 3-114 for different frequencies. If the filter coefficients are chosen 
according to (3.271), the 3dB bandwidth PLLB  (cut-off frequency specified in Hz) of the third order 
PLL part is 0,5 6PLLB φω=  [64]; the corresponding relation of the second order FLL part is 

0,4 3 2FLL fB ω= ⋅ . 
Since the filter has been designed in continuous-time, but the filter has to be converted to discrete-
time by means of the forward Euler integrator, the locations of the poles and hence the stability of 
the filter has to be additionally proven in discrete-time. In the case of the discriminators (3.220) and 
(3.229), the gains 

φdK  and 
fdK  are one. 

 
Figure 3-112: Continuous-time frequency-assisted PLL 

 
Figure 3-113: Discrete-time frequency-assisted PLL 
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Figure 3-114: Poles of the continuous-time filter loop transfer function 

3.5.6.5.3 Carrier-Aided Delay Lock Loop 

The task of the DLL is to align the code replica with the code of the incoming signal to obtain the 
pseudorange measurement. If the PLL is in lock, the expected code delay can be calculated by means 
of the estimated intermediate frequency of the carrier wave and used as feed-forward for the DLL. 
The DLL controller then only has to diminish the residual error that stems for example from the 
limited frequency resolution of the NCOs and a zeroth order tracking loop is therefore sufficient. The 
structure of the carrier-aided DLL together with the third order frequency-assisted PLL of the 
previous section is illustrated in Figure 3-115. 
The discrete-time state space model of the closed-loop DLL is 
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  (3.272) 

,ÎF kf  is the current estimate of the intermediate frequency of the PLL. ( ), 1ÎF k IFr f f− −  is the feed-forward 
branch of the DLL controller. Therein 

= code

carrier

f
r

f
 (3.273) 

is the relation between the nominal code chip rate codef  and the carrier signal frequency carrierf . In the 
case of the GPS L1 signal and C/A code, the code rate is 1.023 MHzcodef = , the carrier frequency is 

1575.42 MHzcarrierf =  and the relation r  is hence = 1 1540r . It scales the estimated frequency 
deviation of the carrier down to code frequency. The filter coefficient 0,a τ  corresponds to the natural 
frequency of the DLL 0,τω . It is related to the 3dB bandwidth DLLB  by 0, 4 DLLBτω =  [64]. (3.274) 
becomes 
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3.5.6.5.4 Complete Tracking Loop 

The overall tracking loop model is composed of the frequency-assisted carrier tracking loop model 
(3.267) and the code tracking loop model (3.272) 
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(3.275) 

The covariance propagation equation is given with 

−= + =T
1 0, 0k k kP P Q PΦ Φ  (3.276) 

where the process noise covariance matrix kQ  is composed of 
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The cross-correlations between the discriminator noises have already been derived and are given in 
(3.250), (3.253) and (3.255). Solely the correlation between the state and the frequency discriminator 
noise remains to be addressed. It is 

( )φ φ τ τ
η η η η η− − − −

   = + + +   , 1 , 1 , 1 , 1 ,E E
f f f fk d k k d d k d d k d d k d kz zΦ Γ Γ Γ  (3.278) 

As has been seen in section 3.5.6.4.4, the discriminator noises of the previous time step and the 
frequency discriminator noise of the current time step are correlated 

φ φ τ τ
η η η η η η η− − −

      = + +      , , 1 , , 1 , , 1 ,E E E E
f f f f f fk d k d d k d k d d k d k d d k d kz Γ Γ Γ  (3.279) 

With (3.256), (3.257) and (3.258), the cross-correlation is approximated by 
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Comprehensive simulations, however, have revealed that the cross-correlations are quite small and 
can normally be neglected. The process noise covariance matrix kQ  can be well approximated by 

φ φ φ τ τ τ
≈ + +T T T

, , ,f f fk d d k d d d k d d d k dQ Q QQ Γ Γ Γ Γ Γ Γ  (3.281) 

The propagation has to be done with the integration time T  of the receiver. It would be best to run 
the propagation within the navigation processing task onboard of the receiver. However, this is a very 
high computational burden and often not feasible since the user does not have access to the navigation 
algorithm on the receiver processor. The sample rate of the pseudorange and range rate measurements 
is usually between 1 and 10 Hertz. If the carrier-to-noise ratio does not change too fast with time, it 
is sufficient to assume a quasi-stationary state. Then, stationary solutions can be computed at the 
instances of pseudorange and range rate measurements. In order to obtain the stationary covariance 
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= constsP , which is established after some settling time under stationary conditions, the Sylvester 
equation 

− − =1 T
s sP P QΦ Φ  (3.282) 

has to be solved. It is mathematically rewritten by using the Kronecker product and vec-operator 

( ) ( ) ( )−⊗ + ⊗ =1
5 5 vec vecsI I P QΦ Φ  (3.283) 

and solved 

( ) ( ) ( )−−= ⊗ + ⊗
11

5 5vec vecsP I I QΦ Φ  (3.284) 

 
Figure 3-115: Discrete-time frequency-assisted PLL and carrier-aided DLL 

3.5.6.5.5 Pseudorange and Range Rate Measurement Variances 

The pseudorange measurement variance, which is required for the pseudorange innovation in the 
integrated navigation filter, is given with 
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The range rate measurement variance is 
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 (3.286) 

The noise of the pseudorange and range rate measurements to the different satellites in view is 
assumed to be independent. 
The receiver noise model will be integrated into the navigation error filter and further analyzed in 
section 4.6.8. 
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4 Efficiently Increasing 
Navigation Filter Consistency 

4.1 Inertial Navigation Algorithms 

4.1.1 Motivation 

As has been described in section 3.2, integrating IMU measure time integrals of accelerations ( )b tf  
and angular rates ( )ib tω  between two subsequent sample times. Since the conventional strapdown 
algorithms like (2.1) or (2.3) require the accelerations bf  and angular rates ibω  as input instead of the 
increments ∆ bv  and ∆ ibθ , special algorithms for integrating IMU are necessary. 
In this section, different strapdown navigation algorithms for integrating IMU are presented and 
compared with respect to numerical accuracy, robustness against noise and vibrations. These are the 
well-established dual frequency algorithms for orientation, the conversion-integration-extrapolation 
(CIE) algorithms and a novel approach, which – due to its inherent ability to propagate navigation 
states at the same frequency as the integrating IMU is providing measurements – will be called single 
frequency approach. In line with the accuracy vs. efficiency trade-off it is discussed in which cases 
higher order integration algorithms, coming along with higher computational expense, are justified 
and when it is sufficient to revert to a simpler, less demanding algorithm. 

4.1.2 Simple Averaging Algorithm 

The inertial navigation differential equations (2.1) or (2.3) can be applied with integrating IMU 
measurements if the required non-integrating IMU inputs are obtained by forming average 
accelerations and angular rates from the increments that are output by the integrating IMU 

( ) ( ) ( ) ( ) ( ) ( ), ,
,b ib

b ib

t t t t t t
t t t t

t t

∆ − ∆ ∆ − ∆
= + ∆ = + ∆

∆ ∆

v
f

θ
ω   (4.1) 

The approach is illustrated in Figure 4-1. The calculated accelerations and angular rates are however 
only of 0th order accuracy. High order integration schemes (like 4th order Runge-Kutta) are useless if 
inputs are of low accuracy. 

 
Figure 4-1: Averaging approach  
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4.1.3 Dual Frequency Algorithms for Orientation 

Besides this simple averaging algorithm inertial navigation experts have derived dual frequency 
strapdown algorithms particularly for the orientation, [94], [95], [96], [97], [98] and [99]. These 
algorithms are “dual frequency” because the output rate of the propagated orientation state is lower 
than the IMU measurement input rate by factor three or four. The orientation is represented by 
Laning-Bortz parameters [100], which are well suited for handling angle increments as provided by an 
integrating gyroscope. Background information can be found in section C.1.1 in the appendix. 
Template 4-1 lists Miller’s, Lee’s and Gusinsky’s dual frequency algorithms. Miller’s algorithm needs 
three measurement inputs for one orientation output and Lee’s and Gusinsky’s algorithms require 
four inputs for one output value. The 3:1 and 4:1 integrating gyroscope measurement sampling is 
illustrated in Figure 4-2. The Laning-Bortz orientation vector ibσ  can be converted into an orientation 
quaternion ibq  by 

 
=   
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Template 4-1: Dual frequency algorithms 
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Figure 4-2: 3:1 and 4:1 sampling of the integrating gyroscope. t∆  is the output sample time 
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4.1.4 Conversion-Integration-Extrapolation Algorithms 

4.1.4.1 Conversion from Integrating to Non-Integrating IMU Measurements 

The error order of the averaging algorithm can be increased by using higher order conversion schemes 
instead of the 0th order averaging (4.1) to convert the velocity increments ∆ bv  and angle increments 
∆ ibθ  of integrating IMU to accelerations bf  and angular rates ibω  of non-integrating IMU. In the 
following, higher order conversion formulae will be derived by means of Taylor series expansion. 
Measured angle increments over different epochs in the past or in the future are defined as follows 
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2

d , d , d , d
t t t t t t t
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The sum of two subsequent increments ib
−−∆θ  and ib

−∆θ  is defined as 
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∆ = = ∆ + ∆∫θ ω θ θ  (4.4) 

The sequence of the single measurements is illustrated in Figure 4-3. The same definitions are valid 
for the integrating accelerometer measurements −−∆ bv , −∆ bv , +∆ bv , ++∆ bv  and =∆ bv . The integrating 
measurements (4.3) and (4.4) are expanded in Taylor series considering terms up to 4th order 
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 (4.5) 

Now, different linear combinations of these angle increments can be formed and solved for the 
angular rate ibω . Depending on the number of involved measurements, different orders of the 
accuracy can be achieved. 

 
Figure 4-3: Integrating IMU measurement sequence 

1 left / 1 right 

1st order accuracy can be attained if two central measurements are used for the conversion. The Taylor 
series expansions of +∆ ibθ  and −∆ ibθ  written in matrix vector form 
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are solved for the angular rate and its derivative 
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The 1st order conversion formulae for the acceleration and angular rate are hence given by 
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The conversion is termed “1 left / 1 right” and is illustrated in Figure 4-4. 

 
Figure 4-4: 1st order conversion: “1 left / 1 right” 

2 left / 1 right 

2nd order accuracy can be attained if the two central measurements +∆ ibθ  and −∆ ibθ  and one additional 
measurement of the past, ib

=∆θ , are used for the conversion. The corresponding Taylor series 
expansions are written in matrix vector form 
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and solved for the angular rate and its derivatives 
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The 2nd order conversion formulae for the acceleration and the angular rate are finally 
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The conversion is termed “2 left / 1 right” and is illustrated in Figure 4-5. Other linear combinations 
involving further measurements can be derived and are summarized in Template 4-2. Therein, 
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Figure 4-5: 2nd order conversion: “2 left / 1 right” 
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Template 4-2: Integrating IMU conversion formulae 
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The different conversion methods shall be analyzed by simulation. The converted integrating IMU 
values are compared to the non-integrating IMU values. The conversion method is the better, the 
smaller the error. First, the conversions are applied to error-free IMU measurements. This analysis 
should reveal that the accuracy of the conversion increases with the order of the conversion method. 
The Generic Lissajous trajectory (section E.1.1) is used to generate the integrating IMU measurements 
by numerical integration. In Figure 4-6, the conversion errors of the accelerometer measurements are 
plotted. It can be stated that the errors of the conversion methods are compliant with the 
corresponding truncation orders. The errors of the central conversion schemes are generally smaller 
than of the non-central ones of same order. Measurements, however, are always affected by noise of 
different colors. The conversions are hence repeated with noisy measurements. For that, pure white 
Gaussian distributed noise, that is velocity/angle white noise, is added to the error-free integrating 
IMU measurements. The results are illustrated in Figure 4-7 for accelerometer measurements with 
three different noise standard deviations fσ . It can be observed that the central integrating IMU 
conversions provide better results than the non-central conversions and that the influence of the 
conversion scheme order is much smaller compared to the error-free case even with the very low 
noise. If non-central IMU conversions have to be used in order to keep up real-time capability, it is 
recommended to use “1 left”, “2 left” or “3 left / 1 right” conversions. The 3rd order conversion “4 
left” provides worst results. This is an indication for lower robustness against noise. 
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Figure 4-6: Conversion of error-free integrating accelerometer measurements 

 
Figure 4-7: Conversion of noisy integrating accelerometer measurements 

4.1.4.2 Conversion-Integration-Extrapolation 

After having converted the integrating IMU measurements to non-integrating values with an 
appropriate method from the previous section, the inertial navigation ODE (2.1) or (2.3) for non-
integrating IMU can be used to calculate the navigation solution. It can be chosen from different 
numerical integration schemes with different accuracy orders (for example forward Euler, modified 
Euler, Runge-Kutta). If conversions are used that are not real-time capable the solution can only be 
computed with a delay of some sample times and has then to be extrapolated to the current time. The 
processing sequence is depicted in Figure 4-8. 
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The order of the overall error is primarily defined by the lowest order component. If, for example, a 
low order conversion is connected in series with a high order integrator, the order of the complete 
approach is still low and vice versa. It is recommended to choose the order of the integrating IMU 
conversion in correspondence to the truncation order of the applied integration scheme. If the 
navigation differential equations are integrated, for example, with forward Euler, a 0th order or 1st 
order conversion is appropriate. In the following, suitable combinations of conversion and integration 
methods are presented. 

 
Figure 4-8: Processing sequence of a Conversion-Integration-Extrapolation (CIE) algorithm 

Forward Euler CIE 

This approach is the simplest CIE algorithm. It is of 0th order accuracy and was presented as averaging 
approach in 4.1.2. The method is real-time capable and extrapolation is not required. The method is 
illustrated in Figure 4-9. s  represents the non-integrating sensor input, ( )TT T,b ib=s f ω , and ∆S  is the 
integrating sensor input, ( )TT T,b ib∆ = ∆ ∆S v ω . 

 
Figure 4-9: ”1 left” conversion and forward Euler integration 

Single Frequency 1st Order CIE 

The accuracy can be increased if the forward Euler integrator is replaced by a modified Euler integrator 
that evaluates the derivatives at kt  and ∆+ 2
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It can be shown that the second conversion whose validity time is assumed in the middle of the 
sampling interval at ∆+ 2

t
kt  is of 1st order accuracy instead of 0th order of the conversion (4.1) whose 

validity time is assumed to be at kt . The modified Euler integrator is 
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The method is of 1st order accuracy, real-time capable and extrapolation is not required. The method 
is illustrated in Figure 4-10. It has to be noted that the method is a single frequency algorithm meaning 
that the input rate is the same as the output rate. 

 
Figure 4-10: “1 left / 1 right” conversion and modified Euler integration 

Modified Euler CIE 

The modified Euler integrator is a dual frequency integrator. The input rate is twice the output rate. 
For both required derivatives at kt  and ∆+ 2

t
kt  the central “1 left / 1 right” conversion schemes (4.8), 

which are particularly robust against noise, are selected 
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The integration is accomplished with the modified Euler integrator scheme (4.13). The algorithm is 
of 1st order accuracy, real-time capable and extrapolation is not required. The method is illustrated in 
Figure 4-11. 

 
Figure 4-11: “1 left / 1 right” conversion and modified Euler integration 

Runge-Kutta CIE 
The Runge-Kutta integrator is of 4th order accuracy and is like the modified Euler integrator a dual 
frequency integrator. 3rd order “2 left / 2 right” conversions are applied for the measurements at the 
three subsequent time steps 
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The Runge-Kutta integration scheme is 
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The method is not real-time capable. The solution is calculated with a delay of one sample time step 
(two IMU cycles) and afterwards extrapolated to the current time 

( ) ( ) ( )+ = + ⋅ ∆

1k k kt t t tz z z  (4.17) 

The method is illustrated in Figure 4-12. 

 
Figure 4-12: “2 left / 2 right” conversion with Runge-Kutta integration 

4.1.5 Single Frequency Approach 

Instead of converting integrating IMU measurements and solving the strapdown inertial navigation 
ODE (2.1) or (2.3) with an appropriate numerical integration scheme, an algorithm is sought that can 
directly process integrating IMU measurements. Unlike the dual frequency approach the algorithm 
shall work with one single frequency, that means output a solution for each input, and provide 
position, velocity and orientation. This simplifies the implementation of the algorithm. In the 
navigation difference equations to be derived, integrating IMU measurements of the epochs − ∆  ,t t t  
and + ∆  ,t t t  shall be used to compute the solution at the current time + ∆t t , as illustrated in Figure 
4-13. 
The derivation of the single frequency approach has been presented in [101] and is repeated in the 
appendix in section C.1.2. In [101], the direction cosine matrix is used to represent the orientation. 
Here, the orientation difference equation is alternatively derived for quaternions. The equations of the 
single frequency approach are summarized in Template 4-3. The orientation is of 3rd order accuracy. 
The equations can be alternatively derived for the n -frame with the latitude φ , longitude λ , 
height h , velocity nv  and orientation quaternion nbq  between n - and b -frame as states. They are 
given in Template C-1 in section C.1.2 in the appendix. 

 
Figure 4-13: Involved measurements of the single frequency approach  
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Template 4-3: Single frequency approach (e-frame, 3rd order orientation) 
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4.1.6 Numerical Analysis 

In this section the performance of the CIE algorithms, the single frequency approach and the dual 
frequency algorithms is analyzed by means of numerical simulation. Especially accuracy, robustness 
against vibrations and robustness against noise are considered. At the end recommendations for 
different environments are given. Table 4-1 lists the inertial navigation algorithms to be compared. 
The Generic Lissajous scenario (section E.1.1) is used. 

Table 4-1: Algorithms to be compared 

Name Conversion Integration Extrapolation 
Forward Euler CIE (Forw. Euler) 1 left (0th order) Forward Euler (1st order) no 

Single Frequency CIE (Single Freq. CIE) 
1 left / 1 right (1st order) 
1 central (1st order) Modified Euler (2nd order) no 

Modified Euler CIE (Modified Euler) 1 left / 1 right (1st order) Modified Euler (2nd order) no 

Runge-Kutta CIE (Runge-K.) 2 left / 2 right (3rd order) Runge-Kutta (4th order) 2 IMU time steps 

Single Frequency approach, e-frame, 3rd order (Single Freq.) 

Lee (orientation only) 

Gusinsky (orientation only) 
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Accuracy 

First, the accuracy of the algorithms is analyzed by processing error-free IMU measurements. Figure 
4-14 shows the position error and Figure 4-15 the orientation error for the different algorithms to be 
compared. 
It can be seen that the accuracy of the methods corresponds to their theoretical truncation order. The 
height error at the end of the trajectory is in the range of 106 m with the Forward Euler CIE method, 
101 m with the Single Frequency CIE and Modified Euler CIE methods, 10-1 m with the Single 
Frequency approach and 10-5 m with the Runge-Kutta CIE method. The orientation error is in the 
range of 10-1 deg with the Forward Euler CIE method, 10-5 deg with the Single Frequency CIE and 
Modified Euler CIE methods, 10-7 deg with the Single Frequency approach and 10-10 deg with the 
Runge-Kutta CIE, Lee and Gusinsky methods. 

Vibrations 

The IMU may be exposed to vibrations. To analyze the robustness of the algorithms against 
vibrations, the error-free kinematic trajectory is superimposed by vibrations represented by sine 
functions with amplitudes of 1 µm on the position and 1 mdeg on the orientation, respectively, and 
distinct frequencies between 10 – 215 Hz. In Figure 4-16, the root mean squares of the position errors 
and in Figure 4-17 the root mean squares of the orientation errors after 300 seconds are shown for 
different vibration frequencies. 
The position error increases with vibration frequency with all methods. As expected, the position error 
of the Forward Euler method is largest for all vibration frequencies. The position errors of the Single 
Frequency CIE, Modified Euler CIE and Runge-Kutta CIE methods vary with frequency. The 
magnitudes of the variations behave in accordance with the order of the methods. The position error 
of the Single Frequency approach does not exhibit these variations but grows monotonously with 
vibration frequency. The characteristics of the orientation errors are principally similar to the position 
errors. Lee and Gusinsky are very robust against vibrations. The large orientation error peaks of the 
Lee method at 100 and 200 Hz are remarkable. 
Note that the error particularly grows if the frequency and phase of the vibration are prevalent and 
stable for a longer period. In reality, this is rarely the case. This simulation rather reveals inherent 
shortcomings of some methods, which are less apparent when processing real data. 

Measurement Noise 

Next, the IMU measurements are affected by velocity/angular random walk noise N . Very low noise 
level are chosen: the power spectral density of the accelerometer noise is 1 µg/ Hz , the power 
spectral density of the gyroscope noise is 1 mdeg/ h . The assumed noise levels are in the range of 
highly performant navigation grade IMU. The position errors of the different approaches along the 
one hour long Generic Lissajous trajectory are plotted in Figure 4-18. The corresponding orientation 
errors are illustrated in Figure 4-19. It is remarkable that all methods except for the Forward Euler 
CIE algorithm feature the same position error curves. The same is valid for the orientation errors. 
The orientation errors of Lee and Gusinsky differ from the Runge-Kutta CIE method but are of the 
same order. The example clearly demonstrates that even low-level noise overrides the theoretical 
numerical truncation order of the methods. The 1st to 4th order methods yield same results, only the 
navigation errors of the 0th order algorithm are worse. 
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Figure 4-14: Position error 

 
Figure 4-15: Orientation error 

 
Figure 4-16: Influence of vibrations on position error after 300 s 
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Figure 4-17: Influence of vibrations on orientation error after 300 s 

 
Figure 4-18: Influence of velocity random walk noise on the position error 

 
Figure 4-19: Influence of angular random walk noise on the orientation error 
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4.1.7 Conclusion 

The simple averaging algorithm (4.1.2) is suitable for processing highly noisy measurements. In fact, 
high noise destroys the accuracy that is achievable by more sophisticated, higher order methods like 
the CIE methods. 
For less noisy measurements the CIE methods (4.1.4) as well as the Single Frequency approach (4.1.5) 
provide more accurate results with comparably low additional effort. By appropriately combining 
conversion and integration, the CIE algorithms can be optimally adopted to the operational 
environment. Central integrating IMU conversion schemes offer high robustness against vibration 
and noise. Especially the Single Frequency 1st order CIE uses the same measurements and works with 
the same rate as the simple averaging algorithm, but provides a higher error order. Therefore, this 
algorithm should be always preferred to the averaging algorithm. Indeed, this algorithm is a good 
tradeoff between accuracy increase on the one hand and additional effort on the other hand. 
The Single Frequency approach is a veritable alternative to CIE algorithms and the dual frequency 
algorithms (4.1.3). It is highly accurate, robust against vibrations and noise and can be used in all 
operational environments without adoptions. The single frequency approach captivates by its high 
error order and by its single sample rate. 
The Lee and Gusinsky dual frequency algorithms revealed higher accuracy and higher robustness 
against noise compared to the Single Frequency approach. These algorithms are computationally very 
efficient. A disadvantage is that the algorithms provide only an output value every fourth input 
measurement value. Therefore, a combination of the dual frequency orientation algorithms, 
augmented by interim orientation extrapolation for example with the Single Frequency 1st order CIE, 
together with the position and velocity propagation equations of the Single Frequency approach would 
be a good possibility. 
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4.2 Navigation Filter Initialization 

4.2.1 Motivation 

At navigation system start-up the expected values of position, velocity and orientation as well as the 
corresponding error covariances are required to initialize the integrators of the inertial navigation 
equations and the navigation error filter. It is distinguished between stationary and in-flight 
initialization. 
The stationary initialization is the easiest and most accurate way to set up the navigation filter. The 
carrier platform is kept at rest during the initialization period. The initial position is either known 
because the carrier platform is at a surveyed point or is provided by the GNSS receiver, the initial 
velocity is zero by definition and the initial orientation angles are obtained by observing Earth’s gravity 
and angular rate. It has to be paid attention that disturbing motion caused for example by wind gusts 
or service operations may degrade the accuracy particularly of the initial orientation angles. After 
initialization, before takeoff or launch, the navigation filter may switch to interim modes like the zero 
velocity update mode or heading angle aiding mode to bound the navigation error growth if the 
observability (especially of the heading angle error) is constrained due to missing motion. 
The in-flight initialization is very important from an operational point of view. In order to increase 
the availability of the navigation system, it has to be capable to restart and reinitialize after a service 
interruption. This might be the case if the navigation system has to be rebooted after a short power 
failure or a hang-up of the embedded computing module. It is necessary that reliable navigation 
information is provided to the flight guidance and control again as soon as possible after the 
interruption. In the in-flight initialization phase, it has to be accounted for that the carrier platform 
moves and is not stationary. 
The RTCA standard DO-334, “Minimum Operational Performance Standards (MOPS) for 
Strapdown Attitude and Heading Reference Systems (AHRS)” [5], gives the requirements for the 
stationary initialization in section 2.2.1.2, “The equipment shall start and provide valid attitude outputs 
within 3 minutes after normal rated power is applied. […] For heading category H1 [which is related 
to non-magnetic heading determination by gyrocompassing with an accuracy of 2° under dynamic and 
flight conditions], the equipment shall start and provide valid heading output within 10 minutes after 
normal rated power is applied, when operating in latitudes less than ±60°.” Additionally, it is required 
in section 2.2.1.3 that “In-flight or in-motion alignment should be supported. When supported, 
restrictions on the conditions where in-motion alignment is available and the subsequent performance 
that is provided shall be specified.” 
The initial position, velocity and orientation error covariance matrix is usually set up with a diagonal 
matrix. The diagonal elements are chosen conservatively large because it is assumed that the filter will 
estimate the correct covariance in the initial settlement phase. The correlation between the single 
position and velocity components as well as the orientation angles are mostly neglected. Moreover, 
the correlation between the initial orientation angle errors and the accelerometer turn-on biases, which 
is negative since both errors are only observable in linear combination, is not considered. 
In this section, methods for the stationary and in-flight initialization are presented. The focus is put 
on the estimation of the initial orientation angles and the corresponding, statistically correct covariance 
since the initial position and velocity are easily obtained from the GNSS receiver. Furthermore, the 
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correlation between the orientation angles and the IMU errors like turn-on biases, scale factor errors 
and misalignments will be considered. It will be analyzed if a statistically correct initial covariance 
matrix is beneficial compared to a diagonal substitute covariance matrix. The importance of the 
statistically correct initialization for consistency is outlined in [102]. 

4.2.2 Stationary Navigation Filter Initialization 

4.2.2.1 Orientation Angle Expected Values 

The derivation of the formulas for the orientation angle expected values is given in the appendix in 
section C.2.1. The roll angle ϕnb  and the pitch angle ϑnb  are calculated as 

( ) ,, ,atan2 , [ )nb b y b zf fϕ π π= − − ∈ −  (4.18) 

,,

2 2
arcsin b x

nb

f π πϑ
γ

 = ∈ −  
 (4.19) 

The heading angle ψ nb  is found by calculating the double-argument arctangent 

(
)

, ,

, , ,

atan2 cos sin ,
cos sin sin cos sin [ , )

nb ib y nb ib z nb

ib x nb ib y nb nb ib z nb nb

ψ ω ϕ ω ϕ
ω ϑ ω ϕ ϑ ω ϕ ϑ π π

= − +
+ + ∈ −



 (4.20) 

It is remarkable that only the entries of the measured angular rate vector ibω  are required for the 
gyrocompassing, but not the Earth rate ωie . 

4.2.2.2 Orientation Angle Error Equations 

In order to determine the errors of the estimated initial roll, pitch and heading angles, the orientation 
angle error equations for δϕ

nb , δϑ
nb  and δψ

nb  have to be derived. 
The true, error-free roll angle ϕnb  and the erroneous roll angle ϕ

nb  are according to (4.18) 

( ) ( )ϕ ϕ= − − = − −
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Perturbation of both sides of the equation above yields 
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Using the derivative of the arctangent function [103] 
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the linearized roll angle error is 
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 (4.24) 

The true, error-free pitch angle ϑnb  and the erroneous pitch angle ϑ
nb  are from (4.19) 

, ,arcsin , arcsinb x b x
nb nb

f f
ϑ ϑ

γ γ
= =







 (4.25) 
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Using the definition of the arcsine derivative [103] 

=
− 2

d 1
arcsin

d 1
x

x x
 (4.26) 

the linearized pitch angle error δϑ
nb  is then, analogous to the roll angle error δϕ

nb  (4.24), 
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 (4.27) 

Usually, the gravity model error δ nγ  is very small compared to the acceleration error δ bf . 
The true, error-free roll angle ψ nb  and the erroneous heading angle ψ

nb  are according to (4.20) 
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The linearized heading error δψ
nb  is 
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Using again (4.23), the derivatives are 
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and 
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Note that the roll angle error δϕ
nb , pitch angle error δϑ

nb  and heading error angle δψ
nb  are not the 

orientation errors ϕ
nn , ϑ

nn  and ψ
nn  that are used in the navigation error equations (2.7) within the 

navigation filter. The relationship between the angle errors δϕ
nb , δϑ

nb  and δψ
nb  and the orientation 

error vector ( )ϕ ϑ ψ=
   

T
, ,nn nn nn nnψ  is given with 
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The orientation error 
nnψ  depends on the acceleration error δ bf , the angular rate error δ ibω  and the 

gravity model error δ nγ . The dependence is expressed with the general mapping matrices fH , ωH  
and γH  

ω γδ δ δ= + +
nn f b ib nH f H Hψ ω γ  (4.33) 

which are specified by 
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4.2.2.3 Orientation Angle Error Covariance 

Assuming that the mean value of the orientation error is zero, =  E 0nnψ , the orientation error 
covariance is simply the expectation value of the dyadic product of the orientation error vector 

( )  =    

TCov Enn nn nnψ ψ ψ  (4.37) 

Inserting the orientation error equation (4.33) and presuming that all three errors are not cross-
correlated, that is δ δ  = 

TE 0b ibf ω , δ δ  = 
TE 0b nf γ  and δ δ  = 

TE 0ib nω γ , gives 

ω ω γ γδ δ δ δ δ δ       = + +        

T T T T T T TE E E Enn nn f b b f ib ib n nH f f H H H H Hψ ψ ω ω γ γ  (4.38) 

Furthermore, the correlation of the orientation error 
nnψ  and the acceleration error δ bf  

δ δ δ   =   

T TE Enn b f b bf H f fψ  (4.39) 

as well as the correlation of the orientation error 
nnψ  and the angular rate error δ ibω  

ωδ δ δ   =   

T TE Enn ib ib ibHψ ω ω ω  (4.40) 

are later required for the initialization of the navigation error filter. The cross-covariances between the 
orientation error vector and the explicit IMU errors (turn-on biases, scale factor errors and 
misalignments) are given in section C.2.2 in the appendix. 
Furthermore, in order to reduce the influence of noise-like IMU errors, the IMU measurements have 
to be averaged over a certain timespan. As described in section C.2.3 in the appendix this can be done 
recursively, updating the averaged IMU measurements with each new sample. Averaging can thus be 
cancelled if the variances of the averaged values go below a given upper boundary.  
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4.2.2.4 Pre-Flight Calibration of Downward Gyroscope Error 

The downward angular rate component (in the direction of the gravity vector) is not required for the 
initialization of the orientation angles, in particular not for the heading angle nbψ . This can be easily 
verified with equation (4.20) for a horizontally leveled platform with 0nbϕ =  and 0nbϑ = . It can be 
seen that ,ib zω  is not required in this equation. The bias-like gyroscope errors in downward direction 
can therefore be pre-flight calibrated. This is pretty advantageous because it is just this component of 
the rotational degrees of freedom that is worst observable during flight. The downward angular rate 
component is given with 

,

T
sin

sin cos
cos cos

n z

nb

ib nb nb ib

nb nb

ϑ
ω ϕ ϑ

ϕ ϑ

− 
 =   
 

ω  (4.41) 

It is equal with 
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If the pre-flight calibration is done after the recursive averaging of the angular rate measurements, all 
noise-like errors have been removed and only the bias-like error components remain. With the 
observation matrix 
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and covariance matrix 
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and gain matrix 

( ) 1T T
ω ω ω ω ω

−
=K P H H P H  (4.45) 

the calibration values for turn-on bias 0,ωb , scale factor error 0,ωs  and misalignments ωm  and the 
corresponding covariance are estimated with 
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All other bias-like errors are neglected here but can be easily added in the same manner if required. 
Note that the covariance matrix now also has off-diagonal entries representing the negative 
correlations between the single errors due to the inability to uniquely separate the errors. This cross-
correlations should be considered in the initial covariance matrix of the navigation filter. 
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4.2.2.5 Template 

The equations for the expected values of the roll angle ϕ
nb , pitch angle ϑ

nb  and heading angle ψ
nb  

are summarized in Template 4-4. The required mean values of the accelerometer and gyroscope 
measurements, the corresponding covariances and the cross-covariances of the averaged sensor values 
and the single sensor error components can be found in Template 4-5. The orientation error 
covariance and the cross-covariances between the orientation error and the accelerometer error, 
gyroscope error and gravity model error are recapitulated in Template 4-6. The required sensitivities 
are given in Template 4-7. 

Template 4-4: Orientation angle expected values 
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Template 4-6: Orientation error covariance and IMU error cross-covariances 
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Template 4-7: Orientation error sensitivities 
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4.2.2.6 Example 

The General Aviation Aircraft scenario (section E.1.2) and IMU 4 as specified in Table E-5 are used 
for the example. The sample rate is 100 Hz. The inertial navigation algorithm is initialized during the 
first 60 seconds of the trajectory in which the aircraft is still at standstill. After the initialization period 
the integrated navigation solution is computed for 120 seconds using 1 Hz pseudorange measurements 
to six satellites in view. Take-off time is at June 22, 2012 at 7pm. The predicted covariance of the 
orientation error is compared with the actual covariance that is calculated from 500 Monte Carlo runs. 
Figure 4-20 shows the σ3  standard deviations of the roll, pitch and heading angle errors using the 
formulas of the previously given templates. The blue dotted lines are the predicted σ3  standard 
deviations and the grey dotted lines represent the σ3  boundaries as actually realized in the Monte 
Carlo simulation. There is a good coincidence between predicted and true statistics. In Figure 4-21, 
the standard deviations of the orientation errors are shown when the correlations between the IMU 
and orientation errors are neglected at filter initialization at second 60. The black lines are the reference 
standard deviation of the first case, which considers the initial correlations. It can be seen that the roll 
and pitch angle error standard deviations are underestimated between second 60 and second 130. 
Later on, after second 140, the predicted standard deviations of the roll and pitch angle errors indeed 
correspond to those of the first case, but the actual standard deviations are slightly larger than the 
predicted ones. The predicted and true standard deviations of the heading angle error are statistically 
consistent but larger than in the first case. In Figure 4-22, the initial correlations are neglected as in 
the previous case and additionally the fully populated initial orientation error covariance matrix is 
substituted by an over-bounded diagonal covariance matrix. The initial roll and pitch angle error 
uncertainties are chosen as 0.1° and the initial heading angle uncertainty as 1° (1σ  values). It can be 
observed that it takes some time until the orientation angle errors settle to the values of the first case. 
The roll and pitch angle errors are settled roughly at second 140. However, as in the second case, the 
standard deviations are slightly larger than in the first case after second 140. The heading error is worse 
observable and does not go down to the standard deviation of the first case until second 180. Figure 
4-23 depicts the correlation between the single orientation errors for the first case considering the 
initial correlations (blue), the second case not considering the initial correlations (red) and the third 
case not considering the initial correlations and with over-bounded diagonal initial orientation error 
covariance matrix (green). The correlation between the separate orientation errors is zero in the 
initialization period except between the roll and the heading angle errors. At the end of the simulation, 
the correlations of all three cases are at least qualitatively the same. Figure 4-24 illustrates the cross-
correlation between the orientation angle errors and the turn-on biases of the accelerometer for the 
three cases. The roll and pitch angle errors are considerably correlated with the turn-on biases of the 
accelerometer triad. In the second and third cases, the correlations are established in the first 60 
seconds after initialization. Figure 4-25 finally shows the cross-correlation between the orientation 
errors and the gyroscope turn-on biases for the three cases. In contrast to the accelerometer turn-on 
bias, the heading angle error is mainly affected. It is confirmed that the roll and pitch angles are not 
affected by gyroscope errors. The aircraft is horizontally leveled during initialization and the IMU z-
axis points in down direction. Since only the x - and y -axes components of the angular rate go into 
the heading angle, the z -axis gyroscope bias does not influence the heading angle, too. The influence 
of the gyroscope scale factor error and the accelerometer and gyroscope misalignments is small and 
can be neglected. 
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Figure 4-20: Orientation error 3σ  boundaries (blue: predicted, grey: Monte Carlo simulation) 

 
Figure 4-21: Orientation error 3σ  boundaries without consideration of correlations (blue: predicted, 

grey: Monte Carlo simulation, black: reference) 

 
Figure 4-22: Orientation error 3σ  boundaries with diagonal covariance initialization (blue: predicted, 

grey: Monte Carlo simulation, black: reference) 
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Figure 4-23: Orientation error correlation 

 
Figure 4-24: Orientation error and accelerometer turn-on bias correlation 

 
Figure 4-25: Orientation error and gyroscope turn-on bias correlation 
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4.2.3 In-Flight Navigation Filter Initialization 

4.2.3.1 Orientation Angle Expected Values 

The more challenging task is to initialize the orientation angles during flight, for example if the 
navigation system has been rebooted after a failure. Initial values for position and velocity and the 
corresponding covariances are easily obtained from the GNSS receiver. A stationary alignment for the 
initial orientation angles is out of question since the aircraft is moving in the initialization phase. Even 
if the aircraft flies straight and leveled, disturbances like aerodynamic turbulence may change the 
orientation of the platform during initialization and distort the estimated orientation angles and the 
corresponding covariance. 
The Three-Axis Attitude Determination (TRIAD) method, which was originally presented by Black 
[104] for satellites and was, for example, applied by [105], will be used in the following for the in-flight 
orientation initialization. The roll angle ϕnb , pitch angle ϑnb  and heading angle ψ nb  are estimated by 
means of two arbitrary vectors that are simultaneously observed in the n - and in the b -frame. It will 
be clarified later which vectors come into question for the in-flight orientation initialization. We start 
the derivation with two general vectors a  and b  given in the n - and b -frames 

,
,

n b

n b

a a
b b

 (4.47) 

The vectors do not have to be orthogonal but must not be co-linear. Then, the transformation matrix 

nbR  is given with 
1 T T

nb
− −= =R A B B A  (4.48) 

where 

( )
( )

, ,
, ,

n n n n n n

b b b b b b

= = ×
= = ×

A a b c c a b
B a b c c a b

 (4.49) 

are the non-orthogonal spaces spanned by the vectors na  and nb  and by the vectors ba  and bb , 
respectively. The c  vectors are introduced as abbreviation for the cross products. The second equality 
in (4.48) is valid since transformation matrices belong to the SO(3) group, meaning that 

T
3nb nb=R R I .The Euler angles ϕnb , ϑnb  and ψ nb  can be calculated from the entries of the transformation 

matrix nbR  by 

( )

( )

,32 ,33

,31

,21 ,11

atan2 ,

arcsin

atan2 ,

nb nb nb

nb nb

nb nb nb

R R

R

R R

ϕ
ϑ
ψ

=
= −

=

 (4.50) 

The question how the entries of the transformation matrix ,nb ijR  relate to the vectors a  and b  is 
explained in the following. We consider the first variant in (4.48), now with erroneous values 

−=


 

1
nbR A B  (4.51) 

The inverse of the B  matrix is calculated and abridged with 

( )
( )
( )
( )

T
T

T1 T

TT

1
:

det

b b
b

b b b

b
b b

−

 ×   
  = × =        ×

 

b c u
B c a v

B wa b









  









 (4.52) 
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Inserting into the direction cosine matrix (4.51) yields 

= + +




   

T T T
nb n b n b n bR a u b v c w  (4.53) 

The explicit orientation angle equations (4.50) then become 

( )
( )
( )

, , , , , , , , , , , ,

, , , , , ,

, , , , , , , , , , , ,

atan2 ,

arcsin

atan2 ,

nb n z b y n z b y n z b y n z b z n z b z n z b z

nb n z b x n z b x n z b x

nb n y b x n y b x n y b x n x b x n x b x n x b x

a u b v c w a u b v c w

a u b v c w

a u b v c w a u b v c w

ϕ

ϑ

ψ

= + + + +

= − − −

= + + + +







 

        



   

 

        

 (4.54) 

4.2.3.2 Orientation Error Equations 

In this section the orientation error equations are derived. 
The linearized roll angle error δϕ

nb  depends on the errors of the six involved vectors 

ϕ ϕ ϕ ϕ ϕ ϕ
δϕ δ δ δ δ δ δ

∂ ∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂



T T T T T T
~ ~ ~ ~ ~ ~

nb nb nb nb nb nb
nb n n n b b b

n n n b b b

a b c u v w
a b c u v w

 (4.55) 

Using the derivative of the double-argument arctangent function (4.23), the Euler angle equations 
(4.50) and the explicit Euler angle equations (4.54), the single derivatives are 

T

T 2 2
,32 ,33~

, ,33 , ,32

0
1

0 ,nb

n nb nb
b y nb b z nb

R R u R u R

ϕ
 

∂  =  ∂ +  − 
a

 

 

 

 ϕ
 

∂  =  ∂ +  − 



 







T

, ,33T 2 2
,32 ,33~

, ,32

0
1nb

n z nb
b nb nb

n z nb

a R
R R

a R
u

  

ϕ
 

∂  =  ∂ +  − 
 

 

 

T

T 2 2
,32 ,33~

, ,33 , ,32

0
1

0 ,nb

n nb nb
b y nb b z nb

R R v R v Rb

 

ϕ
 
 ∂

=  ∂ +  − 



 







T

, ,33T 2 2
,32 ,33~

, ,32

0
1nb

n z nb
b nb nb

n z nb

b R
R R

b R
v

 

(4.56) 

ϕ
 

∂  =  ∂ +  − 
 

 

 

T

T 2 2
,32 ,33~

, ,33 , ,32

0
1

0 ,nb

n nb nb
b y nb b z nb

R R w R w Rc
 
ϕ

 
∂  =  ∂ +  − 



 







T

, ,33T 2 2
,32 ,33~

, ,32

0
1nb

n z nb
b nb nb

n z nb

c R
R R

c R
w

  

The linearized pitch angle error equation δϑ
nb  is analogous 

ϑ ϑ ϑ ϑ ϑ ϑ
δϑ δ δ δ δ δ δ

∂ ∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂



T T T T T T
~ ~ ~ ~ ~ ~

nb nb nb nb nb nb
nb n n n b b b

n n n b b b

a b c u v w
a b c u v w

 (4.57) 

With the derivative of the arcsine function (4.26), the Euler angle equations (4.50) and the explicit 
Euler angle equations (4.54), the single derivatives are 

ϑ  
∂ −  =  ∂ −  

 


T

T 2
~ ,31 ,

0
1

0 ,
1

nb

n nb b x
R ua

 ϑ
 

∂ −  =  ∂ −  
 



T

,

T 2
~ ,31

1
0

1 0

n z
nb

b nb

a

Ru
  

ϑ  
∂ −  =  ∂ −  

 


T

T 2
~ ,31 ,

0
1

0 ,
1

nb

n nb b x
R vb

 ϑ
 

∂  −
=  ∂ −  

 




T

,

T 2
~ ,31

1
0

1 0

n z
nb

b nb

b

Rv
 (4.58) 

ϑ  
∂ −  =  ∂ −  

 


T

T 2
~ ,31 ,

0
1

0 ,
1

nb

n nb b x
R wc

 ϑ
 

∂ −  =  ∂ −  
 



T

,

T 2
~ ,31

1
0

1 0

n z
nb

b nb

c

Rw
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The linearized heading angle error equation δψ
nb  is finally 

ψ ψ ψ ψ ψ ψ
δψ δ δ δ δ δ δ

∂ ∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂



T T T T T T
~ ~ ~ ~ ~ ~

nb nb nb nb nb nb
nb n n n b b b

n n n b b b

a b c u v w
a b c u v w

 (4.59) 

with the derivatives 

ψ
− 

∂  =  ∂ +  
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, ,21
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,21 ,11~
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T 2 2
,21 ,11~
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nb

b nb nb

a R a R

R Ru
  

ψ
− 
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, ,21

, ,11T 2 2
,21 ,11~

1
,

0

b x nb
nb

b x nb
n nb nb

v R
v R

R Rb
 

ψ
 −
 ∂

=  ∂ +  
 

 

 

 

T

, ,11 , ,21

T 2 2
,21 ,11~

1
0
0

n y nb n x nb
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b nb nb

b R b R

R Rv
 

(4.60) 

ψ
− 

∂  =  ∂ +  
 





 





T

, ,21

, ,11T 2 2
,21 ,11~

1
,

0

b x nb
nb

b x nb
n nb nb

w R
w R

R Rc
 

ψ
− 

∂  =  ∂ +  
 

 

 

 

T

, ,11 , ,21

T 2 2
,21 ,11~

1
0
0

n y nb n x nb
nb

b nb nb

c R c R

R Rw
  

With (4.32), (4.55), (4.57) and (4.59), the orientation error vector 
nnψ  is written as 

( ) ( ) ( )3 2 3

0 0
0 0
0 0

n n n b b b

nbnn

nn nn nb nb nb nb

nn nb

a n b n c n u b v b w bψ ψ ψ ψ ψ ψ

δϕϕ
ϑ ψ ϑ ψ δϑ
ψ δψ

δ δ δ δ δ δ

      
      = = + +                  

= + + + + +

R R R

C a C b C c C u C v C w

ψ




     

 

 (4.61) 

where the coefficient matrices are defined as follows 

ψ

ϑ ψ ψ
ϕ ϑ ψ

ϑ ψ ψ
ϑ

−     ∂ ∂ ∂     = + +     ∂ ∂ ∂    −     

  

  



T T T
~ ~ ~

cos cos sin 0
cos sin cos 0

1sin 0
n

nb nb nb
nb nb nb

a nb nb nb
n n n

nb

C
a a a

  

ψ

ϑ ψ ψ
ϕ ϑ ψ

ϑ ψ ψ
ϑ

−     ∂ ∂ ∂     = + +     ∂ ∂ ∂    −     

  

  



T T T
~ ~ ~

cos cos sin 0
cos sin cos 0

1sin 0
n

nb nb nb
nb nb nb

b nb nb nb
n n n

nb

C
b b b

  

ψ

ϑ ψ ψ
ϕ ϑ ψ

ϑ ψ ψ
ϑ

−     ∂ ∂ ∂     = + +     ∂ ∂ ∂    −     

  

  



T T T
~ ~ ~

cos cos sin 0
cos sin cos 0

1sin 0
n

nb nb nb
nb nb nb

c nb nb nb
n n n

ab

C
c c c

 (4.62) 

ψ

ϑ ψ ψ
ϕ ϑ ψ

ϑ ψ ψ
ϑ

−     ∂ ∂ ∂     = + +     ∂ ∂ ∂    −     

  

  



T T T
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cos cos sin 0
cos sin cos 0

1sin 0
b

nb nb nb
nb nb nb

u nb nb nb
b b b

nb

C
u u u

  

ψ

ϑ ψ ψ
ϕ ϑ ψ

ϑ ψ ψ
ϑ

−     ∂ ∂ ∂     = + +     ∂ ∂ ∂    −     

  

  



T T T
~ ~ ~

cos cos sin 0
cos sin cos 0

1sin 0
b

nb nb nb
nb nb nb

v nb nb nb
b b b

nb

C
v v v

  

ψ

ϑ ψ ψ
ϕ ϑ ψ

ϑ ψ ψ
ϑ

−     ∂ ∂ ∂     = + +     ∂ ∂ ∂    −     

  

  



T T T
~ ~ ~

cos cos sin 0
cos sin cos 0

1sin 0
b

nb nb nb
nb nb nb

w nb nb nb
b b b

nb

C
w w w

  

The equation for the orientation error vector 
nnψ  (4.61) depends on the error vectors δ bu , δ bv  and 

δ bw . They are derived next. For this purpose the equation for the inverse of the B  matrix (4.52) with 
the determinant ( ) ( )= × 

 

Tdet b b bB a b c  is perturbed on the left and right hand sides 
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( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

δ δ

δ δ δ
δ δ δ

δ δ

− −

  + × +  
 
 + = + × +   + + × +     + × +   
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T1 1
T

T

1
b b b b

b b b b

b b b b b b

b b b b

b b c c

B B c c a a
a a b b c c

a a b b

 (4.63) 

Bringing the denominator to the left side, expanding the cross products, neglecting bilinear error terms 
and assuming that ( ) −× 

 

T 1
b b ba b c B ( )= × × × 

   , ,b b b b b bb c c a a b  yields an equation that is linear in 
the error terms 

( ) ( ) ( )
( )
( )
( )

δ δ δ δ

δ δ
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δ δ

− − −× + × + × + ×
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 (4.64) 

Next, the error matrix δ −1B  is isolated 

( )

( )
( )
( )

( ) ( ) ( )
( )

δ δ
δ δ δ

δ δ δ

δ δ

− −

 × + ×  × + × + × × + × − × × × + × 
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b b b b

b b b b b b

b b b b
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B c a c a B
a b c a b c

a b a b

 (4.65) 

The searched error vectors δ bu , δ bv  and δ bw  are just the row vectors of the error matrix δ −1B  

δ
δ δ

δ

−

 
 

=  
 
 

T

1 T

T

:
b

b

b

u
B v

w
 (4.66) 

The determinant is again replaced, the cross products in the first term are substituted by matrix 
products and the inverse −



1B  matrix is replaced by the  bu ,  bv  and  bw  vectors. Then, the linearized 
equations for δ bu , δ bv  and δ bw  are 

b b b b b b

b b b b b b

b b b b b b

b u a b u b b u c b

b v a b v b b v c b

b w a b w b b w c b

δ δ δ δ
δ δ δ δ
δ δ δ δ

+ +
+ +
+ +

u C a C b C c
v C a C b C c
w C a C b C c







 (4.67) 

where the coefficient matrices are given with 

( )
( )

T

detb b

b b b

u a

− ×
=

u b c
C

B







 
( ) ( )
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T
1veck
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b b b b
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− − ×
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( ) ( )
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T 1
3 veck
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b b b

u b

−− −
=

I u a c
C
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( )
T 1veck

detb b

b b b
v b

−

=
v a c

C
B

 



  

( ) ( )
( )

T 1
3 veck

detb b

b b b

u c

−−
=

I u c b
C

B







 
( ) ( )
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1 T 1veck veck
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b b b b
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− −− −
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 (4.68) 

( ) ( )
( )

T
1veck

detb b

b b b b

w a

−− − ×
=

b w b c
C

B
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( ) ( )
( )

1 T 1veck veck

detb b

b b b b
w b

− −+
=

a w a c
C

B

  



  

( )
( )

T 1veck

detb b

b b b

w c

−−
=

w a b
C

B







  

The orientation error vector 
nnψ  (4.61) can thus be expressed with the δ ba , δ bb  and δ bc  error 

vectors instead of the δ bu , δ bv  and δ bw  error vectors 

ψ ψ ψ ψ ψ ψδ δ δ δ δ δ+ + + + +




n n n b b bnn a n b n c n a b b b c bC a C b C c C a C b C cψ  (4.69) 

with the additional coefficient matrices 

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b

a u u a v v a w v a

b u u b v v b w w b

c u u c v v c w w c

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

= + +
= + +
= + +

C C C C C C C
C C C C C C C
C C C C C C C

 (4.70) 

The derivation is concluded by inserting the linearized error of the c  vectors into (4.69) 

( ) ( )
( ) ( )

1 1

1 1

veck veck

veck veck

n n n n n

b b b b b

δ δ δ

δ δ δ

− −

− −
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− +

c b a a b
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 (4.71) 

yielding 

δ δ δ δ= + + +
 n b n bnn a n a b b n b bH a H a H b H bψ  (4.72) 

with the four coefficient matrices 

( ) ( )
( ) ( )

ψ ψ ψ ψ

ψ ψ ψ ψ

− −

− −

= − = +

= − = +









1 1

1 1

veck veck

veck veck
n n n n n n

b b b b b b

a a c n b b c n

a a c b b b c b

H C C b H C C a

H C C b H C C a
 (4.73) 

4.2.3.3 Orientation Error Covariance 

For the initialization of the navigation error filter the covariance matrix of the initial orientation error 
(4.72) is required. It is given by 

T T T T T

T T T T

T T T T

E E E

E E

E E

n n b b

n n b b

b b b b

nn nn a n n a a b b a

b n n b b b b b

a b b b b b b a

δ δ δ δ

δ δ δ δ

δ δ δ δ

     = +     
   + +   
   + +   

H a a H H a a H

H b b H H b b H

H a b H H b a H

ψ ψ
 

 (4.74) 

Therein, it is assumed that the vector pairs δ na /δ ba , δ nb /δ bb  and δ na /δ nb  are statistically 
independent but δ ba  and δ bb  may be correlated. Besides the orientation error covariance itself, the 
cross-covariances between the orientation error 

nnψ  and the observation vector errors 
δ na , δ nb , δ ba  and δ bb  are needed if models of the observation vector errors are incorporated into 
the navigation error filter. The single cross-covariances are 

T T

T T

T T

T T

E E

E E

E E

E E

n

n

b

b

nn n a n n

nn n b n n

nn b a b b

nn b b b b

δ δ δ

δ δ δ

δ δ δ

δ δ δ

   =   
   =   
   =   
   =   

a H a a

b H b b

a H a a

b H b b

ψ

ψ

ψ

ψ









 (4.75) 
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4.2.3.4 Integrated Acceleration Observation 

Expected Value 

In the previous sections the initial orientation angles and the corresponding covariances have been 
derived for two general vector observations a  and b . Now, the method shall be concretized for the 
in-flight orientation initialization application. In this section the first of the two vector observations is 
presented: the integrated acceleration observation. 
In the case of the stationary initialization the acceleration nv  on the left hand side and the velocity nv  
on the right hand side of the velocity differential equation (C.35) could be set to zero due to the 
stationary assumption. This is not possible in the case of the in-flight initialization because the velocity 

nv  cannot be kept constant such that the acceleration nv  is strictly zero during the whole initialization 
period. The velocity differential equation (C.35) solved for the acceleration nb bR f  becomes 

( )2nb b n n ne ie en n= − + + ×R f v R vγ ω ω  (4.76) 

In contrast to the stationary initialization case none of the terms vanishes. Indeed, the left hand side 
as well as the right hand side changes with time during the initialization period. The change of the 
direction cosine matrix nbR  with time due to orientation changes of the aircraft in the initialization 
phase is expressed on the one hand by the change of the n -frame with time, 

0nnR , and on the other 
hand by the change of the b -frame with time, 

0b bR , starting from the initial direction cosine matrix 

0 0n bR , 

( ) ( ) ( )
0 0 0 0nb nn n b b bt t t=R R R R  (4.77) 

Inserting the split transformation matrix in (4.76) and multiplying with 
0 0

T
nn n n=R R  from left yields 

( )
0 0 0 0

2n b b b b n n n n ne ie en n = − + + × R R f R v R vγ ω ω  (4.78) 

Next, both sides of the equation are integrated with time t , beginning with the initial time 0t , 

( )
0 0 0 0

0 0

d 2 d
t t

n b b b b n n n n ne ie en n
t t

τ τ = − + + × ∫ ∫R R f R v R vγ ω ω  (4.79) 

With the integration by parts rule [103] 

( ) ( ) ( ) ( ) ( ) ( )d d
b b

b

a
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f x g x x f x g x f x g x x′ ′ = − ∫ ∫  (4.80) 

the first term of the integral of the right hand side becomes 
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0

0
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t
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t
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τ

 = − 

= − −

∫ ∫

∫

R v R v R v

R v v R Ω v





 (4.81) 

With (4.81) the integral on the right hand side of (4.79) becomes 

( ) ( )

( ) ( )

0 0 0 0

0 0

0 0 0

0

0

0

d 2 d

2 d

t t

n n n n n n n n n n n n ne ie en n
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t
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t

t

t

τ τ

τ

 − − + − + + × 

 = − + − + + − × 

∫ ∫

∫

R v v R Ω v R R v

R v v R R v

γ ω ω

γ ω ω ω
 (4.82) 
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With 
0 0 0

T
en n n n n en− = Rω ω ω , the integral further simplifies to 

( ) ( )
0 0 0 0

0

T
0 2 d

t

n n n n n n n ne ie n n en n
t

t τ − + − + + × ∫R v v R R R vγ ω ω  (4.83) 

The differential equations of the three direction cosine matrices ( )nb tR , ( )
0nn tR  and ( )

0b b tR  are 
given with 

( ) ( ) ( ) ( ) ( ) ( )
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 (4.84) 

where 

( ) ( )( )
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ω

ω

 (4.85) 

It is assumed that the Earth rate ieω  and the transport rate 
0enω  only have minor influence due to 

the short initialization time and can therefore be neglected, that is 0ie =ω , 
0

0en =ω . Then, 
0n nR  does 

not change with time and is simply 
0 3n n =R I . Furthermore, the gravity can be assumed to be constant, 

that is 0n =γ . Thus, the integrated acceleration observation equation is finally 

0 0 0 0n b b n=R a a  (4.86) 

where 

( )
( )( ) ( ) ( )
( )

0 0

0

0 0

0 0 0 0

0

0 0

,0 0

d

1
, 1,

2

t

b b b b
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b b b b

b b b b ib ib b b b b
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q

q q t q q t

t t

τ

ω ω

=

=

= − =

= − − ⋅ −

∫a R f

R R

0

a v v γ



   
 



 (4.87) 

The matrix differential equation for 
0b bR  has been replaced by the corresponding quaternion 

differential equation. The quaternion differential equation as well as the acceleration integral are 
computed by means of a numerical integration scheme, for example 4th order Runge-Kutta. 
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Error Equations 

In order to compute the orientation error vector nnψ


 according to (4.72), the error vectors 
0nδa  and 

0bδa  of the vectors 
0na  and 

0ba  in (4.86) are required. First, the 
0nδa  vector is derived. 

The 
0na  vector in (4.87) is perturbed 

( )
0 0 ,0 ,0 0n n n n n n n t tδ δ δ+ = + − − − ⋅ −a a v v v v γ    (4.88) 

Assuming that ( )
0 ,0 0n n n n t t= − − ⋅ −a v v γ    results in the error vector 

( )
0 0n n n tδ δ δ= −a v v  (4.89) 

The time derivative of the 
0ba  vector in (4.87) 

0 0b b b b=a R f  (4.90) 

is perturbed on the left and right hand sides 

( )
0 0 0 0 0

b b b bb b b b
δ δ+ = +a a R R f f

 




   (4.91) 

The small angle rotation matrix 
0 0b b

R


 between the true initial 0b -frame and the assumed initial 0b -
frame is replaced by 

0 0
3 . . .

b b
h o t+ +I Ψ



 

( ) ( )
0 0 0 0 0

3 . . .b b b bb b b b
h o tδ δ+ = + + +a a I R f fΨ

 




   (4.92) 

Neglecting bilinear and higher order error terms and assuming that 
0 0

b bb b
=a R f






  yields 

( )0 0 0 0 0

1veckb b bb b b b b b
δ δ−− +a R f R fψ

  





  (4.93) 

Perturbing the direction cosine matrix differential equation for 
0b bR  in (4.84) with 

0 0 0 0
b b b b b b

=R R R
 

 
makes 

( ) ( )
0 0 0 0 0 0 0 0 0 0 0 0

,0 ,0ib ib ib ibb b b b b b b b b b b b b b b b
δ δ+ = + − +R R R R R R Ω Ω Ω Ω R R

       

     (4.94) 

Assuming that 
0 0 0

,0ib ibb b b b b b
= −R R Ω Ω R

  

    leads to the matrix differential equation 

( ) ( )
0 0 0 0 0 0 0 0

T
,0 ,0 ,0

21

ib ib ib ibb b b b b b b b b b
δ δ= + − +R R R Ω R Ω Ω Ω R

ΩΩ

    

  





 
(4.95) 

and collapsed to the three orientation errors 

( )
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

1 2 1 2

1 2 1 2 0

1 2 1 2

0

0 , 0
0

z y x x

z x y y

y x z z

b b b b

b b b b b b b b

b b b b

t

ϕ ϕω ω ω ω
ϑ ω ω ϑ ω ω

ω ω ω ωψ ψ

      − −
      

= = − + − =      
      − −      

ψ ψ




   

 









 (4.96) 

If the bilinear error terms are neglected, the differential equation simplifies to 

0 0 0 0 0
,0 ,0ib ib ibb b b b b b

δ δ− + −Rψ Ω ψ ω ω
  





  (4.97) 

(4.93) and (4.97) are combined in a state-space model 
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( )

( )

0 0 00

0 0 0 0 0

0 0

0

0 0 0 0

1

,0
,0

,0

3 6 1
,0

00 veck 0
00

0

b b b bbb b b

ibibb b b b b bib

b b

b
b b b b

δ δ δ
δδ

δ δ
δ

−

×

      −    = + −                 −      
   

= =      
   

Ra aR f f
R

a a
a I 0

ωψ ψ ωΩ

ψ ψ





 



 









 (4.98) 

The discrete-time version of the state-space model with sample time t∆ is given by 

( )

( )

0 00

0 0 0 0

0

0

0

0

0 0

1
, , 13 , 1, 1

, , 13 ,0

, 1 , 1

,0, 1, 1

,

, 3
,

veck

0

0 0
0

0

b k b kb kb b k

b b k b b kib

b b k b k

ibib kb b k

b k

b k
b b k

t

t

t

tt

δ δ

δ
δδ

δ δ
δ

−
−−−

−

− −

−−

    −∆
 =       + ∆    
∆    

+ −      ∆∆    
 

=   
 

a aI R f

I
R f

R

a a
a I

ψ ψΩ

ωω

ψ



 











0

0 0

,0

6 1
,0

b

b b
×

 
=  

 
0

ψ


 (4.99) 

Augmentation by IMU Measurement Error Models 

Neglecting the temperature dependent bias ,T fb  and scale factor error ,T fs  as well as the quantization 
noise ,Q fb  and considering only the turn-on bias 0,fb , scale factor error 0,fs , white noise ( ),N f tb , bias 
instability ( ),B f tb  and the misalignments fm , the accelerometer error model (3.46) can be written as 

, ,

, ,

, ,

0, , 0, , 1
3

0, , 0, , 1
3

, , 16

, , 1

, , 1

, , 1

, 1

0
0 0 0

0
00

00
00

f x f x

f y f y

f z f z

f k f k

f k f k

f k f k

B k B k BB

BB k B kB

BBB k B k

f
f k

−

−

−

−

−

−

−

                    = +                    

b bI
s sI
m mI
z z
z z
z z

z

ΓΦ
ΓΦ

ΓΦ

Φ




,

,

,

0,

, 1 0,

, 1

,0
1, 1

1, 1

1
, 1

,

f

f x

f y

f z

f

N k f

B k f
f

pB k

pB k

p
f k

f

η
η
η

−

−

×−

×−

×
−

           =                  

b
s
m

z 0
0
0

η

η
Γ





 
(4.100) 

( ), 3 , , , 3 ,

0 0
diag

0 0
f

B B

b k b k M k B f k B f k

B B

f f

D
D

D
δ

   
   = +      
   

H
f I f F H z I

H

H D

η

 

 
 

0,fb , 0,fs  and fm  are modeled as random constants. The bias instabilities on the x -, y - and z -axis 
are represented by the models (3.27). An analogous model can be set up for the gyroscope 
measurement error 

, , 1 , 1

, , ,

k k k

ib k k k

ω ω ω ω ω

ω ω ω ωδ
− −= +

= +

z z

H z D

Φ Γ η

ω η
 (4.101) 

The state-space model for the 
0 ,b kδa  vector (4.99) is augmented by the accelerometer error model 

(4.100) and the gyroscope error model (4.101) 
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( )0 0
0 0

0 0 0 0
0

0
0

1
, , 13 , 1, 1 , 1

, , 13 ,0 , 1

, , 1

, ,

,
, 1

veck 0

0 0

0 0 0
0 0 0

b
b

b k b kb k fb b k b b k

b b k b b kib b b k

f k f kf

k k

a k
a k

t t

t t ω

ω ωω

δ δ−
−−− −

−−

−

−

−

   −∆ ∆
  
 + ∆ ∆  =   
        

a aI R f R H

I R H
z z
z z

z

ψ ψΩ

Φ
Φ

Φ

 

 









( )
00

0 00

0

1

,0, 1 3 1

, 1 3 1,0,0 ,0, 1

,0, 1 ,0

,0,0

, 1

0 0
0

,
00
00

b

bfb b k

f k b bb b k

fk ff

a k

t

tt ω ω ω ωω

ω

ωωω

δ
− ×

− ×−

−

−

 
 
 
 
  
 

 ∆    
       ∆ +∆      + − =                       

aR D 0
0H z DR D
zz
zz

ψη η
ηΓ

Γ

Γ









 (4.102) 

( )
0 0

0

, 3 ,0 0 0
b

b

b k a k

a

δ =a I z

H


 
 

Covariance 

For the orientation error covariance (4.74) the covariances of the 
0nδa  and 

0bδa  vectors are required 

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

T
, , , , ,0

T T T
, , , , 1 , 1 , 1 , 1 1 , 1

T T
, , , ,

E :

E :

E :

n

b b a b a b b bb b

b b a bb

n k n k a k v k v

a k a k z k a k z k a k a k k a k

b k b k a k a z k a

δ δ

δ δ

− − − − − −

  = = + 
  = = + 
  = = 

a a P R R

z z P P Q

a a P H P H

Φ Φ Γ Γ  (4.103) 

,v kR  is the covariance matrix of the velocity measurement. It is assumed that the error of the velocity 
measurement is not correlated with time but purely white. The initial covariance is 

0,0,

0,0,

0
,0 ,0 ,0 ,0

,0

0 0 00 0 0
0 0 0 0 0 00 0 0
0 0 , ,

0 0 00 0 0
0 0

0 0 0 0 0 0 0 0

f

f

a f fb

f

bb

SS
z z z z

MM
z

ω

ω

ω

ω

ω

  
    
    = = =    
         

   

QQ

QQ
P P P P

QQ
P

 (4.104) 

4.2.3.5 Magnetic Field Observation 

Besides the integrated acceleration observation (4.86) a second vector pair is required to apply the 
TRIAD method. If a magnetometer is available, the magnetic field vector bm , measured in the body-
fixed frame, could be compared to the expected vector nm  provided, for example, by the World 
Magnetic Model (WMM), given in the local north-east-down frame. The vector observation at the 
initial time 0t  is given with 

0 0 0 0n b b n=R m m  (4.105) 

If the magnetic field measurement at the current time t  and not at the initial time 0t  is used, the 
vectors have additionally to be transformed to the initial 0n - and 0b -frames, respectively, 

0 0 0 0

0 0

n b b b b n n n

b n

=R R m R m

b b
 

 
(4.106) 
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0n nR  is again assumed to be the identity matrix, 
0 3n n =R I . For the right hand side simply holds 

0 0
,n n n nδ δ= =b m b m

  (4.107) 

The perturbation and linearization of the 
0bb  vector yields 

( ) ( )
0 0 0 0 0

3 . . .b b b bb b b b
h o tδ δ+ = + + +b b I R m mΨ

 



  (4.108) 

which gives with 
0 0

b bb b
=b R m





  the linear error vector 

( )0 0 0 0 0

1veckb b bb b b b b b
δ δ−− +b R m R mψ

  



  (4.109) 

The covariances are accordingly 

0 0

T TE En n n nδ δ δ δ   =   b b m m  (4.110) 

and 

( ) ( )0 0 0 0 0 0 0 0

0 0

T
T 1 T 1

T T

E veck E veck

E

b b b bb b b b b b b b

b bb b b b

δ δ

δ δ

− −   =   
 +  

b b R m R m

R m m R

ψ ψ
   

 

 

 (4.111) 

Note that the 
0bδa  vector of the integrated acceleration observation (4.99) and the 

0bδb  vector of the 
magnetic field observation (4.109) are correlated, that is to say by 

( ) ( )0 0 00 0

0 0

TTT 1
, , , 3 ,,

E 0 0 0 veck
b ab

b b

b k b k a z k b kb b k

ψ

δ δ −  = − a b H P I R m

H








 
(4.112) 

This correlation has to be considered when the covariance of the initial orientation angle error is 
computed according to (4.74). 
However, magnetic field measurements have to be regarded with caution because they are often 
subject to electro-magnetic interferences in the environment of the sensor. Before magnetic field 
sensors can be reliably used, they have to be calibrated right at the intended installation location in the 
aircraft with all systems in the surrounding that might potentially disturb switched on. Special 
calibration chambers are required in which the magnetic field can be actively controlled, which 
however limits the maximum size of the carrier platform. 

4.2.3.6 Template 

The equations for the orientation angle expected values from two arbitrary vector observations are 
summarized in Template 4-8. The corresponding covariance and cross-covariances are listed in 
Template 4-9 and the required matrices in Template 4-10 and Template 4-11. Template 4-12 gives the 
equations for the integrated acceleration observation. Template 4-13 recapitulates the magnetic field 
observation.  
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Template 4-8: Orientation angle expected values from two vector observations 

( )
( )

= × = ×

= = =

= = =

=

= ×

 

 

 

   



 

 

 



 

 

 

0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0

0 0 0

0 0 0 0

0 0 0

0 0

, , ,

,

, ,

, ,

, ,

1
,

n n b b

n n n b b b

n n n
n n n

n n a n

bb b
b b b

n n n n

n n n

b b b bD

a b a b

c a b c a b

a b c
a b c

a b a b
ba c

a b c
a b a b

A a b c

u b c v

Input vectors

Scaling

Direction cosine matrix

( ) ( )

( )

( ) ( )
( )

ϕ ϑ

ψ

−

−

= × = ×

 
 

= = × 
  
 
=

= = −

=

0 0 0 0 0 0

0

0 0 0 0

0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

T

1 T T

T

1

,32 ,33 ,31

,21 ,11

1 1
,

atan2 , , arcsin

atan2 ,

b b b b b

b

b b b b

b

n b

n b n b n b n b n b

n b n b n b

D D

D

R R R

R R

c a w a b

u

B v a b c

w

R A B

Orientation angles  
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Template 4-9: Orientation error covariance 

0 0 0 00 0

0 0

0 00 0

0 0
0 0 0 00 0

0 0

T T
2 2

T

T T
2 2

1 1
E E

1
E1 1

E E

E

n n

b b

b b

a n n b n n

n n
a b b b

n na b b b b b

n n

n

δ δ δ δ

δ δ
δ δ δ δ

   = =   
 =  

   = =   

P a a P b b
a b

P a b
a bP a a P b b

a b

ψ














Scaled observation vector covariances

Orientation error covariance

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T T T T T

T T
n n n b b b n n n b b b

b b b b b b b b

n nn a a a a a a b b b b b b

a a b b b b a a

  = + + + 
+ +

H P H H P H H P H H P H

H P H H P H

ψ


 

Template 4-10: Required matrices 1 

T T T
n~ ~ ~

T
~

cos cos sin 0
cos sin cos 0

1sin 0
cos cos sin
cos sin cos

sin 0

n

n

nb nb nb
nb nb nb

a nb nb nb
n n

nb

nb nb nb
nb nb

b nb nb nb
n

nb

ψ

ψ

ϑ ψ ψϕ ϑ ψ
ϑ ψ ψ

ϑ
ϑ ψ ψϕ ϑ
ϑ ψ ψ

ϑ

−     ∂ ∂ ∂     = + +
     ∂ ∂ ∂−     

−   ∂ ∂   = +
   ∂−   

C
a a a

C
b

  

  



  

  



T T
~ ~

T T T
~ ~ ~

T
~

0
0
1

cos cos sin 0
cos sin cos 0

1sin 0
cos cos s
cos sin

sin

n

b

nb

n n

nb nb nb
nb nb nb

c nb nb nb
n n n

ab

nb nb
nb

u nb nb
b

nb

ψ

ψ

ψ

ϑ ψ ψϕ ϑ ψ
ϑ ψ ψ

ϑ
ϑ ψ ϕ
ϑ ψ

ϑ

  ∂ +
 ∂ ∂
 

−     ∂ ∂ ∂     = + +
     ∂ ∂ ∂−     

−  ∂ = +
  ∂− 

b b

C
c c c

C
u

  

  



 

 



T T
~ ~

T T T
~ ~ ~

in 0
cos 0

10
cos cos sin 0
cos sin cos 0

1sin 0
cos cos
cos sin

s

b

b

nb
nb nb

nb
b b

nb nb nb
nb nb nb

v nb nb nb
b b b

nb

nb nb

w nb nb

ψ

ψ

ψ ϑ ψ
ψ

ϑ ψ ψϕ ϑ ψ
ϑ ψ ψ

ϑ
ϑ ψ
ϑ ψ

   ∂ ∂   +
   ∂ ∂

  
−     ∂ ∂ ∂     = + +

     ∂ ∂ ∂−     

=
−

u u

C
v v v

C





  

  



 

 

( ) ( )
___________________________________________________________________________________

T T T
~ ~ ~

T 11 1

sin 0
cos 0

1in 0

veck
b b b b

nb
nb nb nb

nb
b b b

nb

u a b b b v a b b bD D

ψϕ ϑ ψ
ψ

ϑ

−

−     ∂ ∂ ∂     + +
     ∂ ∂ ∂

    

= − × = − ×

w w w

C u b c C c v b







( )( )
( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

( )
__________________

T

T 1 T 11 1
3

T 1 1 T 11 1
3

T11

1 T 11

T 11

veck veck

veck veck veck

veck

veck veck

veck

b b b b

b b b b

b b

b b

b b

b

u b b b b v b b b bD D

u c b b b v c b b b bD D

w a b b b bD

w b b b b bD

w c b b bD
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− − −

−

− −

−

= − − =

= − = − +

= − + ×
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= −

c

C I u a c C v a c

C I u a b C a v a b

C b w b c

C a w a c

C w a b
_________________________________________________________________

_________________________________

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b

a u u a v v a w v a

b u u b v v b w w b

c u u c v v c w w c

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

= + +
= + +
= + +

C C C C C C C
C C C C C C C
C C C C C C C

( ) ( )
( ) ( )

__________________________________________________
1 1

1 1

veck veck

veck veck
n n n b b b

n n n b b b

a a c n a a c b

b b c n b b c b

ψ ψ ψ ψ

ψ ψ ψ ψ

− −

− −

= − = −

= + = +

H C C b H C C b

H C C a H C C a
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Template 4-11: Required matrices 2 

ϕ

ϕ

ϕ

ϕ

∂
=

∂ + −

∂
=

∂ + −

∂
=

∂ + −

∂
=

∂
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T
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~
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0
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∂ −
=

∂ −
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,
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,
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∂
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Template 4-12: Integrated acceleration observation 

Expected Values 

0na  ( )
0 , , ,0 0n k n k n n kt t= − − ⋅ −a v v γ    

0ba  

( )( ) ( ) ( )
( )

0 0 0 0
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0 02
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q q t q q t

q

ω ω

τ

= − =

=

= ∫
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Covariances 
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T T
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Template 4-13: Magnetic field observation 
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4.2.3.7 Example 

The in-flight initialization is demonstrated by means of an example. The same setup as in the example 
of the stationary initialization in section 4.2.2.5 is chosen. The navigation system shall be initialized in 
flight at second 375. The initialization period is five seconds. After five seconds, that is at second 380, 
the initial orientation at second 375 is calculated, the navigation filter is initialized with the estimated 
orientation and re-launched from second 375. The magnitude of the acceleration is shown in Figure 
4-26. It can be seen that the acceleration is above one g during the initialization period. The 
corresponding orientation angles are illustrated in Figure 4-27. The roll angle is about 20° and pitch is 
slightly negative in the beginning. The initial orientation angles are estimated with the integrated 
acceleration observation on the one hand and magnetic field observation on the other hand. The 
sample rate of the velocity measurement is 5 Hz. The velocity measurement error is assumed to be 
purely white noise with 0.1 m/s standard deviation. The sample rate of the magnetic field 
measurement is 100 Hz. The magnetic field measurement error is assumed to be purely white noise 
with 5.4 nT Hz  standard deviation. The IMU is affected by velocity/angular random walk noise, 
turn-on bias, scale factor error and misalignments. Figure 4-28 shows the 3σ standard deviations of 
the orientation angles. The black solid line is the standard deviation as predicted by the integrated 
navigation filter. The grey dotted line represents the actual standard deviation from 500 Monte Carlo 
runs. Although the correlation of the measurement errors due to twice processing the same 
measurements once in the initial orientation angle estimation and once on the integrated navigation 
filter has been neglected, there is a very good statistical coherence. 

 
Figure 4-26: Acceleration magnitude 
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Figure 4-27: Orientation angles 

 
Figure 4-28: Orientation error 3σ boundaries with consideration of the correlation (blue: predicted, 

grey: Monte Carlo simulation) 

4.2.4 Conclusion 

It has been shown how the initial orientation angle values and the corresponding covariance can be 
estimated if the aircraft is stationary or in flight. The bias-like IMU measurement errors, first of all the 
turn-on biases, affect the initial orientation angles. It can be seen that the estimated orientation angles 
and sensor errors are partially correlated. If this correlation is considered at the initialization of the 
navigation filter covariance matrix, the statistics are perfectly fulfilled immediately from the beginning. 
If the correlations are neglected and a diagonal and of course over-bounded orientation error 
covariance is chosen, the predicted roll and pitch angle error standard deviations will nevertheless 
settle quite fast to the true values, but the heading angle error might take longer to do so if the heading 
observability is not increased for example with a fine alignment maneuver. In this case accuracy is 
given away. As by-product, the downward pointing gyroscope error component can be calibrated 
during stationary initialization since this component does not go into the orientation angle estimates. 
For in-flight initialization, the integrated acceleration observation and a magnetic field measurement 
have been used to estimate the initial orientation. Simulation results have revealed that this 
initialization method works well even if the aircraft is accelerating during the initialization period. The 
acceleration direction can even change during the initialization process. 
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4.3 Out-of-Sequence Measurements 

4.3.1 Motivation 

Integrated navigation systems feature various sensors with different sample rates and measurement 
processing times. Accelerometer and gyroscope measurements are integrated and fused with external 
aiding measurements to reduce the accumulating navigation state errors. Common aiding sensors are, 
for example, GNSS receivers, barometer, magnetometer, cameras, radar altimeter or laser scanner. 
The most eminent aiding sensor is certainly the GNSS receiver, which provides highly accurate 
absolute position and velocity or range and range rate measurements to the satellites in view, 
respectively. The output rate is usually between one and ten Hertz. Depending on the number of 
tracked satellites, the raw data processing can take up to 200 ms time. The RTCA DO-229D standard 
[3], which is effective for certified airborne GNSS receivers, actually requires maximum output delays 
of less than 200 ms in section 2.1.2.6.2. This comparatively long time interval is due to the amount of 
signal processing tasks that are necessary from the extraction of the actual measurements, the 
broadcast time of the signal, carrier frequency and phase angle from the correlators to the output of 
the readily computed PVT solution. Additional time is consumed when the data is transferred from 
the receiver interface to the navigation computer interface. In high dynamic applications, the 
navigation state can significantly change between the actual instant of the measurement and the 
moment when the processed measurement is available at the data fusion filter on the navigation 
computer. 
Other aiding sensors like the barometric height sensor with shorter measurement processing times 
may deliver inputs in the meantime between the actual instant of a GNSS measurement and its arrival 
at the navigation filter. Processing these height measurements before the awaited GNSS measurement 
is available requires special out-of-sequence measurement algorithms. Other aiding methods like 
terrain aided navigation or image aided navigation, which are particularly applied when GNSS 
reception fails, usually have to process large amounts of data in real time. Methods that extract absolute 
or relative position information from surface range measurements with synthetic aperture radar (SAR) 
or laser scanner make use of high sensing frequencies in the range of Kilohertz. Dead reckoning aiding 
methods that use optical flow information have to evaluate a series of subsequent camera images to 
determine the flow vectors and the corresponding estimation covariances. In both cases, the 
processing of the collected raw data is very time consuming and the effective output delays may be 
even longer than those of the PVT solution of a GNSS receiver. 
Figure 4-29 shows an example where the measurements of two sensors 1y  and 2y  are fused to obtain 
the state estimate ẑ  of the true state z . Measurement 1y  arrives regularly every fifth base time step 
at times − − 2 1, , , ,k k kt t t . It comes in without delay and can be directly processed by the filter. 
Measurement 1,ky  at time step kt , which is related to the true state kz , for example, is immediately 
applied to obtain the state estimate +ˆ kz . The second measurement 2y  is, however, delayed by seven 
base time steps. The measurement 2, jy , which is made at time jt  and which is related to the true state 

jz , is not available before the current time kt  and not before the current measurement of the first 
sensor 1,ky  has been processed. Since the measurements −



1, 1ky  and 1,ky  have already been 
incorporated into the filter to estimate +

−1ˆ kz  and +ˆ kz , the measurement 2, jy  arrives out-of-sequence at 
the current time kt . The innovation cannot be calculated by simply comparing the sensed value 2, jy  
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with the expected value from the current state estimate ( )+2 ˆ kh z  because +ˆ kz  does not describe the 
platform state jz  at time jt  seven time steps before the current time kt  but the platform state kz , 
which may have appreciably changed in the meantime. On the other hand, the measurement 2, jy  can 
also not directly be compared with the past state estimate −ˆ jz  because this estimate does not contain 
the information of the measurements −



1, 1ky  and 1,ky  that have been processed by the filter meanwhile. 
The calculated innovation would not represent the innovative content of the measurement 2, jy  
correctly. 
In the following, three different methods are presented that can be used to handle out-of-sequence 
measurements in the navigation filter properly: First, the state backward propagation method that has 
been extensively analyzed by Bar-Shalom for tracking filters [106], second the measurement prediction 
method presented for example in [107] and last the history state update method. In the first method, 
the current state estimate +ˆ kz  and the corresponding state error covariance kP  are back-propagated to 
the validity time jt  of the out-of-sequence measurement 2, jy  before the innovation is computed. In 
the second method, not the state estimate +ˆ kz  is back-propagated but the measurement 2, jy  is forward-
propagated from the validity time jt  to the current time kt  using the state difference between −ˆ jz  and 

+ˆ kz . In the third method, the state estimate ˆ jz  and the covariance jP  are updated together with the 
current state when new measurements are available. All three methods base upon the same basic 
principle of the fusion of a delayed measurement, which will be explained in section 4.3.3. In the end, 
all three methods are compared with each other and the commonalities as well as the differences are 
outlined. It is shown how more than one delayed out-of-sequence measurement in parallel are treated. 
Finally, a subtleness concerning filter stability is addressed. 

 
Figure 4-29: Delayed out-of-sequence measurement 

4.3.2 Synchronization Concept 

The various sensors of an integrated navigation system may work as master or slave. When operating 
as master, the sensor autonomously outputs measurements with a fix sample rate, which bases upon 
the frequency of its own oscillator. The measurements are stamped with the own sensor time, which 
can be the accumulated time since power-on, for example. Although the sensor acts independently of 
the navigation computer, the sensor clock may be synchronized with the central master clock of the 
system. For that purpose, the sensor may be supplied by a synchronization signal that is derived from 
the master oscillator. The measurements may still be triggered by the freely running sensor oscillator 
but the time stamping is now adjusted to the master time. Measurements that are tagged with 
timestamps from a common time base ease the fusion in the central navigation filter. In slave mode, 
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the navigation computer actively polls new measurements from the sensor by transmitting a polling 
signal. The navigation computer can request measurements from several sensors at the same moment. 
Simultaneously valid measurements are favorable for the data fusion in the integrated navigation filter. 
It is also possible that the polling signal is transmitted with a lower rate than the desired measurement 
rate (for example only once per second) and the interim measurement samples are derived from the 
sensor oscillator. The drift of the local time relative to the master time during this short period is 
negligible. If the system developer can influence the design of the integrated navigation system 
hardware, it is recommended to operate the sensors in slave mode and to timestamp all measurements 
with the same timescale. The GNSS receiver is often the most accurate time source in an integrated 
navigation system. Since the receiver is capable of estimating its own clock error as by-product of the 
position and velocity solution, the current absolute GPS time can be determined with an accuracy of 
ten to hundred nanoseconds. Moreover, since time stability is a central requirement, GNSS receivers 
generally incorporate crystal oscillators with higher time stability than run-of-the-mill quartz oscillators 
as already discussed in section 3.5.5. Therefore, it is reasonable to engage the GNSS receiver as master 
clock of the integrated navigation system. 
Principally, two different scenarios amongst others are imaginable to handle time delays of sensor 
measurements. In the first case, a sensor indicates to the navigation computer when it takes a new raw 
measurement. The navigation computer reacts on the signal by remembering the current system time, 
state estimate and covariance and then waits until the actual measurement values are provided by the 
sensor. Or if the sensor is operated in slave mode, the navigation computer can simply remember the 
time when it polls the new measurement from the sensor. In the second case, a separate I/O controller 
manages the communication with the sensors. It is synchronized with the master clock, polls and 
receives sensor measurements and stamps all returned sensor values with the consistent measurement 
time. The measurement value and the corresponding timestamp are forwarded to the navigation 
computer as soon as the value is available. The navigation computer hence receives the measurement 
and timestamp all at once bundled in a single message but delayed by the processing and summed 
communication times. 

4.3.3 Delayed Measurement Update 

The principle upon which the state backward propagation, the measurement prediction and the history 
state update methods base is the processing of a single delayed measurement in the filter as illustrated 
in Figure 4-30. The measurement  jy , which is valid at time jt , is not available before the current time 

kt  and shall be used to obtain the optimal estimate of the current state +ˆ kz . The measurement  jy  is 
related to the true state at time jt  by 

= +

j j j jy H z ν  (4.113) 

Therein, jH  is the observation matrix and jν  the measurement noise. jν  is assumed to be zero mean, 
white and Gaussian distributed with covariance jR , ( ) 0,j jWN Rν . 
In order to find the innovative content of the measurement  jy , it has to be properly associated with 
the current a priori state estimate −ˆ kz . As has been introductorily discussed and will be elaborated in 
the later sections, this can be done by propagating the state estimate back from the current time kt  to 
the measurement time jt  or vice versa by predicting the measurement from the measurement time jt  
to the current time kt . Independently of the chosen method, a state estimate ,ˆ j kz  that is valid at the 
measurement time jt  and that contains all preceding information up to the current time kt  will result. 
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Figure 4-30: Delayed measurement 

With this state estimate ,ˆ j kz  and the corresponding covariance δ δ =  
T

, , ,Ej k j k j kP z z , the innovation 

,j ks  and innovation covariance ,j kS  at time jt  can be formed, using the observation matrix jH  and 
measurement covariance jR , each valid at time jt , 
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 (4.114) 

With the innovation ,j ks  and the Kalman gain kK , which has yet to be determined for optimal fusion, 
the newest a priori state estimate −ˆ kz  is updated to get the best available estimate of the state at the 
current time +ˆ kz  

( )+ − −= + = + −, ,ˆ ˆ ˆ ˆk k k j k k k j j j kz z K s z K y H z  (4.115) 

The estimated state error after the update δ + += − ˆk k kz z z  will be 
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With the observation equation (4.113) the estimated posterior state error finally becomes 
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Assuming that the mean value of the estimated state error is zero, δ +  = E 0kz , the covariance of the 
estimated state error after the update is 

δ δ+ + + =  
TEk k kP z z  (4.118) 

With the state error update relation (4.117) the covariance matrix is further 
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Since the measurement noise jν  is not time correlated and the measurement  jy  has not yet been 
processed and has thus not influenced the a priori state estimate error δ −

kz  at the current time kt , δ −
kz  

as well as δ ,j kz  are not correlated with the measurement noise jν , meaning 

δ δ−   = =   
T T

,E 0 , E 0k j j k jz zν ν  (4.120) 

The covariance matrix (4.119) simplifies to 

( )δ δ δ δ+ − − −   = − − + +   
T T T T T T
, , ,E Ek k k j k j k k j j k k k j j j k j kP P z z H K K H z z K R H P H K  (4.121) 

The cross-covariance between the current a priori state estimate error δ −
kz  and the error of the state 

estimate δ ,j kz  is defined as 

δ δ− − − − = = 
T T

,: E , :jk j k k kj jkP z z P P  (4.122) 

Note that the cross-covariance −
jkP  is normally not zero because the state ,ˆ j kz  is either obtained by 

back-propagation of −ˆ kz  or by measurement prediction, which involves the difference between the 
state estimates −ˆ kz  and +ˆ jz  and is thus related to −ˆ kz . With the definition of the cross-covariance matrix 

−
jkP  in (4.122) and the innovation covariance matrix ,j kS  given in (4.114) the covariance update 

equation (4.121) becomes 
+ − − −= − − +T T T

,k k kj j k k j jk k j k kP P P H K K H P K S K  (4.123) 

This is Joseph’s form of the covariance update equation. Next, the question arises how the Kalman 
gain has to be calculated in order to obtain an optimal result, that is minimum covariance matrix +

kP  
after the update. Like in the derivation of the conventional Kalman filter, the trace of the updated 
covariance matrix +

kP  shall be minimized. The trace of +
kP  differentiated with respect to kK  is 

( ) T
,

!trace
2 2 0

k

kj j k j k
k

+
−

∂
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∂

P
P H K S

K
 (4.124) 

The optimal Kalman gain is then 
T 1

,k kj j j k
− −=K P H S  (4.125) 

An alternative and shorter form of the covariance update equation (4.123) can be found when the 
Kalman gain (4.125) is inserted into (4.123) 

T 1 T 1 T 1 1
, , , , ,k k kj j j k j jk kj j j k j jk kj j j k j k j k

+ − − − − − − − − − −= − − +P P P H S H P P H S H P P H S S S j jk
−H P  (4.126) 

Cancelling the double terms in (4.126) yields the shorter, but not symmetry conserving form of the 
covariance update equation 

+ − −= −k k k j jkP P K H P  (4.127) 

The Kalman filter update equations for delayed measurements are now readily derived and are 
recapitulated in Template 4-14. The Kalman filter propagation equations are not affected by the 
delayed processing of the measurement and are hence the same as in the CKF. The required inputs 
are 

−
, ,ˆ , ,j k j k jkz P P  (4.128) 
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The update procedure is the same for the state backward propagation, measurement prediction and 
history state update methods. The three methods merely differ in how the state estimate ,ˆ j kz  and the 
corresponding covariance ,j kP  containing all information up to the current time kt  as well as the cross-
covariance matrix jkP  are determined. 

Template 4-14: Kalman filter update for delayed measurements 
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4.3.4 State Backward Propagation 

The a priori state estimate −ˆ kz  and the corresponding covariance matrix −
kP  are back-propagated from 

the current time kt  to the measurement time jt  to obtain the state estimate ,ˆ j kz  and covariance ,j kP  
that are relevant for forming the innovation ,j ks  and ,j kS  in (4.114). Additionally, the cross-covariance 

−
jkP  between the back-propagated state ,ˆ j kz  and the current state estimate −ˆ kz  is required. The method 

has been elaborated in detail by Bar-Shalom et al. for usage in tracking filters [106]. The derivation is 
given in section C.3.1 in the appendix. The method is summarized in Template 4-15. 

Template 4-15: State backward propagation method 
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4.3.5 Measurement Prediction 

Alternatively, instead of propagating the state estimate back from the current time kt  to the 
measurement time jt , the measurement  jy  can be predicted from the measurement time jt  to the 
current time kt  in order to find a relation between the measurement and the newest state estimate 

−ˆ kz . A sketch of the derivation of the propagation and update equations of the measurement prediction 
method can be found in section C.3.2 in the appendix. 
The computation of T

kj j
−P H  with the measurement prediction method for the case when the 

measurement validity time is already known is recapitulated in Template 4-16. The final update when 
the measurement value is available is done with the Kalman filter update step for delayed 
measurements according to Template 4-14. 

Template 4-16: Measurement prediction method 
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4.3.6 History State Update 

As has been revealed in section C.3.2 in the appendix, the measurement prediction approach simply 
takes the old state and covariance estimates for the innovation of the measurement  jy  without 
considering the corrections of newer measurements later than the measurement at time jt . It has been 
discussed that the method is statistically not correct, predominantly when the filter is not stationary. 
It would be better to update the old state and covariance estimates simultaneously to the current state 
estimate. 
It will be seen that the history state update method is especially good for the usage in an embedded 
system because of the distributed computational effort. In the state backward propagation method 
many computations have to be carried out in the instant when the measurement is available. In the 
history state update method the state and covariance that will be used for the innovation of the 
measurement  jy  are continuously updated whenever new information from other sensors is available. 
The basic idea of the history state update method is to augment the state vector by a replica of itself 
in the moment when a new measurement is signaled or polled. In the ensuing waiting period, this 
augmented part of the state vector is not propagated but only updated by the innovation of the newer 
measurements. As soon as the sensed value of the measurement  jy  is actually available, the 
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continuously updated history state and corresponding covariance can be directly used to compute the 
innovation of  jy . 
At the instant of the new measurement the current state estimate vector −ˆ jz  is temporarily augmented 
by a copy of itself, − −=,ˆ ˆj j jz z , yielding a vector with twice the number of states 

− −

− −

   
=      

   ,

ˆ ˆ

ˆ ˆ
j j

j j j

z z

z z
 (4.129) 

The same is done with the state estimate error covariance matrix. The current covariance matrix −
jP  

is extended by a copy of itself, ,j j j
− −=P P , giving 

− − − −

− − − −

   
=      

   ,

j jj j j

jj j j j j

P P P P

P P P P
 (4.130) 

The state estimate −ˆ jz  and the history state −
,ˆ j jz  are equal and thus fully correlated. Therefore, the off-

diagonal matrices that describe the cross-covariance between the state estimate and the history state 
estimate are also filled with the state estimate error covariance matrix, − −=jj jP P . 
Henceforth, the history state vector augmentation is retained and is removed not before the actual 
sensor value has been processed by the filter. In the meantime, the augmented state vector and the 
corresponding covariance matrix are propagated and updated by other newer measurements. All 
information that is collected by the filter until the current time kt  is likewise used to correct the current 
state estimate as well as the old history state at time jt . The history state for the innovation is thus 
automatically kept up-to-date. The propagation and update equations of the history state update 
method are derived in detail in section C.3.3 in the appendix. The history state update method is 
summarized in Template 4-17. In contrast to the measurement prediction method of Template 4-16, 
the history state ,ˆ j iz  and covariance ,j iP  are additionally updated at an interim update step. 

Template 4-17: History state update method 
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e "Kalman filter update for delayed measurements"  
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4.3.7 Comparison of the Three Methods 

In Table 4-2, all three methods are arranged side by side to emphasize the commonalities and the 
differences. The common parts are black whereas the differences are in red. All methods have in 
common that they are initialized as soon as a new measurement is indicated to the navigation filter 
and that thereupon the state estimate and covariance are periodically propagated and updated 
whenever interim measurements are available. Finally, the state estimate and covariance are updated 
with the actual delayed measurement value. The propagation, interim update and final update of the 
state ẑ  and covariance P  are the same in all three cases. Even the initialization, propagation and 
interim update of the cross-covariance ijP  are equal for all methods. Merely in the cases of the state 
backward propagation and measurement prediction it is possible to calculate only the smaller matrix 

T
ij jP H  instead of the matrix ijP  itself, which saves some computational effort but implies that jH  is 

already available and does not depend on the current state estimate. The single difference between the 
measurement prediction and the history state update methods is that the history state estimate and the 
corresponding covariance are updated by interim measurements in the state history update method in 
contrast to the measurement prediction method. If no interim updates occur, both methods are equal. 
In the state backward propagation method the history state and covariance can be calculated not 
before the actual measurement value has been arrived. However, the required transition matrices 

kjΦ , kjΓ  and kjΓ  can be initialized and already propagated and updated in the meantime between the 
measurement validity time jt  and the measurement delivery time kt . 
If a new measurement is notified beforehand, the required computations can be well distributed over 
the waiting timespan, which is advantageous for the implementation on embedded systems. If the 
timestamp and measurement value pair arrive without preceding notification, all computations have 
to be caught up in the moment of the data arrival, which causes high computational load. Therefore, 
if technically realizable, measurement notification together with the history state update method are 
recommended. 
In Figure 4-31 the preferred processing sequence is illustrated. The upper timeline represents the 
propagation and update of the core navigation state estimate (thin arrows) and the corresponding state 
error covariance (thick arrows). The thin black vertical lines visualize the state propagation time steps 
and the thick black vertical lines indicate the covariance propagation time steps. As soon as the new 
measurement is indicated (yellow arrow), the state estimate vector and the state error covariance are 
temporarily copied to the lower timeline and the state error cross-covariance matrix is created. Since 
the new measurement can be taken at any arbitrary time between two subsequent propagation steps, 
the last state and covariance may have to be separately propagated from the last propagation time to 
the validity time of the new measurement. In the sequel, the temporary state, covariance and cross-
covariance matrix are hold until the actual measurement value is available. The latter is propagated 
together with the core covariance. Whenever interim measurements are available, the innovation is 
applied on the one hand to the core state and covariance in the upper timeline and on the other hand 
to the temporary history state, covariance and cross-covariance in the lower timeline. Updates are 
indicated by the vertical green lines and the green check marks. If interim updates are pending, the 
state and covariance propagation time step sizes are accordingly reduced to provide the current 
estimates at the validity time of the interim measurement for the innovation. In this manner one or 
more interim measurements can be processed in the waiting time for the delayed measurement value. 
Finally, when the value has been arrived, the temporary state, covariance and cross-covariance are 
used to form the statistically correct innovation to be applied to the core state estimate and covariance. 
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This can be done immediately at the arrival of the sensor data or not before the next regular covariance 
propagation step. After the final update the lower temporary timeline is closed again until the next 
delayed measurement is signalized. 

 
Figure 4-31: Processing sequence of a delayed measurement with additional interim updates 

4.3.8 Stability Problem 

A subtleness concerning the stability of the covariance propagation and update, which is inherent to 
all presented methods for delayed measurements, has to be addressed. Since −

jkP  is used in the final 
covariance update + − −= −k k k j jkP P K H P , but the transposed covariance −

kjP  is used in the according 
Kalman gain equation ( ) 1T T

,k kj j j j j k j

−−= +K P H R H P H , the covariance propagation and update are 
numerically unstable, meaning that numerical errors are not dampened but enhanced. This may 
corrupt the positive definiteness requirement of covariance matrices and lead to the collapse of the 
covariance solution. The reason for that will be explained later in section 5.2.7. Numerical stabilization 
or the use of Joseph’s form are mandatory. 

4.3.9 Processing more than one Delayed Measurement 

In an integrated navigation system measurements of various sensors are usually processed. There may 
be more than one sensor that provide their sensed values only with appreciable delay. In principal, 
sensors can take and deliver measurements concurrently and independently of each other. The 
question arises how the filter can appropriately handle situations where two or more measurements 
are simultaneously delayed. The equations of the filter with more than one delayed measurement are 
summarized in Template 4-18. In the template it is assumed that the measurement of sensor 1 is taken 
at time 

1j
t . At this instant the filter already waits for the delayed measurements of the sensors 

{ }2, , M . In contrast to the Template 4-17 for a single delayed measurement, the cross-covariances 
between the history state of sensor 1 and the history states of the other delayed sensors have to be 
initialized. At interim updates of uninvolved measurements, the cross-covariances between the 
currently installed history states { }1, , M  have to be additionally updated. At the final update, when 
the measurement value of sensor 1 arrives, the cross-covariances between the history states of the 
remaining { }2, , M  sensors have to be accordingly updated for use in their upcoming final updates.  

New
measurement

Measurement
available

Interim
update

Interim
update

State

Covariance

Temporary state
Temporary covariance
Temporary cross-covariance
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Table 4-2: Comparison of the three methods for the processing of delayed measurements 
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Template 4-18: History state update method with more than one delayed measurement 
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4.3.10 Example 

The Generic Lissajous scenario (section E.1.1) is used as example to demonstrate the measurement 
prediction and history state update methods. IMU 1 and IMU 2 (Table E-5) with 100 Hz sample rates 
are compared. The IMU measurements are solely affected by velocity/angular random walk noise N  
and turn-on biases. All other IMU errors are set to zero. A generic GPS receiver provides pseudorange 
measurements to six satellites in view (section E.2.2). Additionally, barometric height measurements 
are available. Both the pseudorange and barometric height measurements are only falsified by white 
Gaussian noise. The standard deviations of the measurement noise vary with time as shown in Figure 
4-33. The filter performance is analyzed by comparing the predicted covariance with the covariance 
of the actually realized navigation state error of 150 Monte Carlo runs. The IMU measurements are 
not delayed. The IMU sample rate serves as base rate of the navigation system. The pseudoranges and 
barometric height are provided with the same rate. Three different rates will be compared, that is 0.2 
Hz, 0.5 Hz and 1 Hz. The pseudorange measurements are delayed by 0.97 s and 0.15 s, respectively, 
whereas the barometric height measurements are on time. The measurement sequence is illustrated in 
Figure 4-32. The non-delayed barometric height measurement values arrive in the waiting time for the 
GPS measurements, shortly, that is 0.01 s, before these become available. In the first case, the less 
accurate IMU 1 is used, the aiding rate is 0.2 Hz and the GPS delay is 0.97 s. Initially, the measurement 
prediction method is used without stability enhancement. The resulting position error is shown in 
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Figure 4-34. It can be observed that the solution becomes unstable at second 95, emphasizing the 
urgent necessity of additional stabilization, which will thus be applied henceforth. The position and 
orientation errors with stability enhancement are plotted in Figure 4-35 and Figure 4-36. The blue 
curves belong to the solution using neither measurement prediction (MP) nor history state update 
(HSU), the red curves to the solution using MP but not HSU and the green curves to the solution of 
the HSU method. The continuous lines are the σ3  standard deviations as predicted by the filter 
whereas as the dotted lines are the actual σ3  standard deviations as result of the Monte Carlo 
simulation. The following can be stated: without any method, the predicted and actual variances do 
not match. In fact, the actual variances are larger than the predicted, which is dangerous. This is 
especially true in the first settling period immediately after initialization when the variances change 
strongly with time. If the MP method is applied, the results become more consistent but still differ 
primarily in the settling period. Only with the HSU method, predicted and actual variances coincide 
well, which means that the filter provides a statistically consistent solution. The difference between 
predicted and actual covariances declines if the navigation state error covariance does not change 
significantly due to process noise or other intermediate updates between measurement validity and 
arrival times. The navigation error dynamics are usually low and decoupled from the platform 
dynamics. If the aiding measurement variances are essentially constant during a longer period, the 
navigation filter will reach steady-state and the posterior covariances will become virtually constant. 
The distribution and exchange of uncertainty amongst the different error states, which results in more 
extensive changes of the covariances with time, takes place mainly in the settling period shortly after 
initialization. The change of the covariance between validity and arrival time is reduced if 

• the IMU process noise is decreased (by using a higher grade IMU) 
• the aiding measurement delay is decreased 
• the aiding measurement rate is increased 

Furthermore, the covariance mismatch diminishes if the variance of the delayed aiding measurement 
is large and its corresponding innovation low because the measurement then influences the solution 
only little. The previous statements shall be proven by the next simulations. In Figure 4-37 and Figure 
4-38, the GPS pseudorange rate has been increased to 0.5 Hz. The covariance mismatch is still 
observable but turns out to be smaller. In Figure 4-39 and Figure 4-40, the GPS pseudorange rate is 
further raised to 1 Hz. Only the solution without MP and HSU is shown (as will also be done in the 
subsequent figures). Compared to the previous cases, the difference between the predicted and actual 
variances is further reduced. Figure 4-41 and Figure 4-42 show the results if the GPS measurement 
delay is only 0.15 s instead of 0.97 s. In Figure 4-43 and Figure 4-44, the aiding measurement error 
variance has been increased to about 5 m. Finally, IMU 1 is replaced by the more accurate IMU 2. In 
Figure 4-45 and Figure 4-46, it can be seen that the reduced process noise covariance leads to an 
increased statistical consistence even without MP and HSU. 

 
Figure 4-32: Measurement sequence 

GPS
measurement

Barometric height 
measurement

GPS measurement 
available

0 0.14 0.15

t
0 0.96 0.97Simulation 1:

Simulation 2:
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Figure 4-33: Variation of peudorange and barometric height standard deviations with time 

 
Figure 4-34: Instability of the position error without stability enhancement 

 
Figure 4-35: Position error (IMU 1, 0.2 Hz update rate, 0.97 s GPS delay) 
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Figure 4-36: Orientation error (IMU 1, 0.2 Hz update rate, 0.97 s GPS delay) 

 
Figure 4-37: Position error (IMU 1, 0.5 Hz update rate, 0.97 s GPS delay) 

 
Figure 4-38: Orientation error (IMU 1, 0.5 Hz update rate, 0.97 s GPS delay) 
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Figure 4-39: Position error (IMU 1, 1 Hz update rate, 0.97 s GPS delay) 

 
Figure 4-40: Orientation error (IMU 1, 1 Hz update rate, 0.97 s GPS delay) 

 
Figure 4-41: Position error (IMU 1, 0.5 Hz update rate, 0.15 s GPS delay) 
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Figure 4-42: Orientation error (IMU 1, 0.5 Hz update rate, 0.15 s GPS delay) 

 
Figure 4-43: Position error (IMU 1, 0.5 Hz update rate, 0.97 s GPS delay, ≈5 m error) 

 
Figure 4-44: Orientation error (IMU 1, 0.5 Hz update rate, 0.97 s GPS delay, ≈5 m error) 
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Figure 4-45: Position error (IMU 2, 0.5 Hz update rate, 0.97 s GPS delay) 

 
Figure 4-46: Orientation error (IMU 2, 0.5 Hz update rate, 0.97 s GPS delay) 

4.3.11 Conclusion 

The measurement prediction and history state update methods should be used if different aiding 
measurements with large delays and considerably changing variances are fused and the IMU is low 
grade with high measurement errors. The application of one of the methods is especially reasonable 
in the settling period after initialization. The history state update method outperforms the 
measurement prediction method. Therefore, the history state update method is favored over the 
measurement prediction method, particularly since the computational load is not much higher. The 
increased effort of the history state update method can be spared if the process noise is low (higher 
grade IMU), the aiding measurement delays are short and there are many different aiding 
measurements with preferentially high sampling rates and quasi-stationary measurement variances. If 
the measurement prediction or history state update methods are applied, then stability enhancement 
is compulsory since the methods are innately unstable. Since the measurement prediction and history 
state update methods can be easier implemented on embedded systems, these algorithms are preferred 
to the state backward propagation method. 
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4.4 Navigation Filter State Augmentation 

4.4.1 Motivation 

The CKF (2.11) presumes white and Gaussian distributed process and measurement noises. 
Optimality, meaning minimal traces of the state error covariance matrices, and statistical consistency 
are only achieved if these noise requirements are not violated. 
As has been seen in the reality modeling chapter (chapter 3), the stochastic errors of measurements 
that are processed by an integrated navigation filter are hardly ever purely white but most often contain 
colored, that is time correlated components. Adequate models describing the main error 
characteristics have been derived in the reality modeling chapter for measurements and modeling 
residuals. All these models have in common that they filter white and Gaussian distributed input noise 
to get time correlated output noise with the desired PSD. All of them can be represented in state-
space form and are thus well suited for the integration in a CKF based navigation error filter. 
In this section, it is demonstrated how available information about nominal sensor errors, existing in 
form of dynamic stochastic models, can be incorporated into the integrated navigation filter. 

4.4.2 Kalman Filter State Augmentation 

The self-evident way to regard time correlated measurement errors in the filter is to augment the core 
navigation error model (2.6) or (2.7) for position, velocity and orientation with the identified models 
of these errors. The Kalman filter thus estimates the measurement error states in addition to the 
original navigation error states. It is for example common to expand the navigation error state vector 
with states for the turn-on biases and scale factor errors of the accelerometers and gyroscopes. The 
additionally estimated values are used to calibrate the measured accelerations and angular rates in-
flight. 
The sensor error components with different correlation time lengths are separately modeled and 
superposed to obtain the overall measurement error. The gyroscope error is for example composed 
of the turn-on bias, scale factor error, misalignment error, bias instability and angular random walk, 
amongst others. Therefore, the state-space model (2.10) is generalized for q  instead of one process 
noise and r  instead of one measurement noise 
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=

=

= +

= +

∑

∑

z z

y H z

Φ Γ ω
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 (4.131) 

Each process noise iω  comes along with its own input matrix iΓ  to account for the fact that each 
accelerometer and gyroscope channel may have its own error models. Each of the q  process noises 
is described by a distinct linear discrete-time state-space model of the form 
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H z D

Φ Γ η η

ω η





 (4.132) 

The output iω  is the actual measurement error which, in turn, is input of the navigation state error 
model (4.131). The process noise models are in general time-invariant. Furthermore, it is assumed that 
the input noises of the different process noise models are not correlated 
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ω ω
  = ∀ ≠ ∀ 

T
, ,E 0 ,

i jk k i j kη η  (4.133) 

Likewise, each of the r  measurement noises is represented by a linear discrete-time time-invariant 
state-space model 
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 (4.134) 

The same assumptions as for the process noise models are valid 

ν ν
  = ∀ ≠ ∀ 

T
, ,E 0 ,

i jk k i j kη η  (4.135) 

Moreover, the input noises ωi
η  of the process noise models are not correlated with the input noises 

ν i
η  of the measurement noise models 

ν ω
  = ∀ 

T
, ,E 0 , , ,

i jk l i j k lη η  (4.136) 

Note that the state-space models generally have a direct feed-through ω ν/D  if the underlying stochastic 
process is described by an AR(MA) model that has been converted either in controllable or observable 
canonical form. Non-correlated white process and measurement noise as required by the CKF can 
actually be handled as a special case of the presented state-space models by setting / 0ω ν =Φ , / 0ω ν =Γ , 

ω ν =/ 0H  and ω ν =/ /q rD I . In contrast, fully time correlated biases are accounted for with ω ν =/ /q rIΦ , 

ω ν =/ 0Γ , ω ν =/ /q rH I  and ω ν =/ 0D . 
The navigation error model (4.131), the process noise models (4.132) and the measurement noise 
models (4.134) are put together to get the combined model 

1

1 11

1 11

1 1, 1 , 1 1

, , 1

, , 1

, , 1

, , 1

,
, 1

0

0

0 0

0

0

0 0

0
: :

q

q qq

r rr

k k q kk k

k k

k k

k k

k k

a k
a k

ω ω

ω ωω

ω ωω

ν νν

ν νν

− − − −

−

−

−

−

−

   
   
   
   
   
   = ⋅
  
  
  
  
  

   
= =

H Hz z
z z

z z

z z

z z

z

Φ Γ Γ

Φ

Φ

Φ

Φ

Φ



 



 







1

1

1

1

1

1, 1 , 1

, 1

, 1

, 1

, 1

, 1

, 1

0

0

0

0

0

0

0
:

:

q

q

q

r

r

k q k

k

k

k

k

a k

a k

ω ω
ω

ω

ω
ω

ν
ν

ν
ν

− −

−

−

−

−

−

−







 
 
 
 
 
 



 
  
  
  
  
  + ⋅   
  
  
       

  =
=

D DΓ Γ
η

Γ

η
Γ

η
Γ

η
Γ

η
Γ













  

(4.137) 
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with the augmented system matrix aΦ , input matrix aΓ , observation matrix aH  and feed-through 
matrix aD . The augmented system model, which serves as basis for the CKF (2.11), is 

, , 1 , 1 , 1 , 1

, , ,

a k a k a k a k a k

k a k a k a a k

− − − −= +

= +

z z

y H z D

Φ Γ η

η

 (4.138) 

This is actually a special form of a state-space model for a Kalman filter: the process noise as well as 
the measurement noise originate from the same source at first glance. In the respective literature the 
Kalman filter is derived for independent process noise and measurement noise sources that are not 
correlated with each other. Therefore, it is worth addressing this special form of the Kalman filter 
briefly. First, let us again have a look at the Kalman filter update equations. Since the prior state 
estimate −

,ˆ a kz  immediately before the update is not correlated with the noise ,a kη , which means 
δ −  = 

T
, ,E 0a k a kz η  (indeed the prior state estimate −

,ˆ a kz  is correlated with the noise −, 1a kη  of the earlier 
time step −1kt ), the state and covariance update are the same as in the CKF, now with the measurement 
noise = ,k a a kDν η  with covariance = T

a a a aR D Q D  with  =  
T

, ,Ea a k a kQ η η . 
Second, an eye is cast over the propagation equations. Here, the situation turns out to be other than 
in the CKF. In order to see the difference, the prior state error covariance −

,a kP  is derived again. For 
that purpose, the prior state estimate error δ − −= −, , ,ˆa k a k a kz z z  is calculated. True state propagation and 
estimated state propagation, respectively, are 
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 (4.139) 

The state error δ −
,a kz  is found by subtracting both propagation equations 

δ δ− +
− − − −= +, , 1 , 1 , 1 , 1a k a k a k a k a kz zΦ Γ η  (4.140) 

The prior covariance matrix −
,a kP  is then 
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 (4.141) 

Compared to the CKF covariance propagation, the cross-covariance matrix δ +
− −  

T
, 1 , 1E a k a kz η  is not 

zero. In order to determine this cross-covariance matrix, the estimated state after the update +
−, 1ˆ a kz  is 

required 

( )+ − −
− − − − − −= + −

, 1 , 1 1 1 , 1 , 1ˆ ˆ ˆa k a k k k a k a kz z K y H z  (4.142) 

Inserting the observation equation of (4.138) yields further 

( )+ − −
− − − − − − − −= + + −, 1 , 1 1 , 1 , 1 , 1 1 , 1ˆ ˆ ˆa k a k k a k a k a a k k a kz z K H z D H zη  (4.143) 

The posterior state error δ + +
− − −= −, 1 , 1 , 1ˆa k a k a kz z z  is consequently given with 

( )δ δ+ −
− − − − − −= − −, 1 1 , 1 , 1 1 , 1a k n k a k a k k a a kz I K H z K D η  (4.144) 

The wanted cross-covariance thus becomes 
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since the prior state estimate error δ −
−, 1a kz  is not correlated with the noise −, 1a kη , T

, 1 , 1E 0a k a kδ −
− −  = z η . 

The covariance after the propagation (4.141) is finally 
T T

, , 1 , 1 , 1 , 1 , 1

T T T T
, 1 1 , 1 , 1 1 , 1

a k a k a k a k a k a a k

a k k a a a k a k a a k a k

− +
− − − − −

− − − − − −

= +

− −

P P Q

K D Q Q D K

Φ Φ Γ Γ
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 (4.146) 

In comparison with the CKF, we see that two additional terms appear in the covariance propagation 
equation. Note that the extended covariance propagation equation (4.146) applies only in the first 
propagation step immediately after the last update. If interim propagation steps without preceding 
update are executed, for example in a longer period between two subsequent aiding measurement 
samples, the regular covariance propagation equation of the CKF is valid. It is advisable to calculate 
the term T

, ,a k k a a a kK D QΦ Γ  to get a better understanding which measurements are concerned 

( )ν ν ν ν ν ν= 

1 1 1

T T T
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r r ra k k a a a k a k kK D Q K D Q D QΦ Γ Φ Γ Γ  (4.147) 

This means that the extended covariance propagation equation (4.146) has only to be applied if the 
input and feed-through matrices ν i

Γ  and ν i
D  of the measurement noise models that have been 

involved in the preceding update are both not zero. In the special case of a constant bias the extended 
covariance propagation is thus not required. The same holds for pure white measurement noise. The 
covariance propagation equations are recapitulated 
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 (4.148) 

Template 4-19 summarizes the equations of the modified Kalman filter that bases upon the state-
space model (4.138). 
In section C.4 in the appendix it is exemplarily shown how to augment the navigation state vector by 
states for the estimation of IMU turn-on biases and scale factor errors.  
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Template 4-19: Augmented state Kalman filter 
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4.5 Schmidt-Kalman Filter for Noise-Like Errors 

4.5.1 Motivation 

Constant or bias-like measurement errors with long correlation time lengths can be well estimated by 
the navigation filter using state augmentation as in the previous section, provided that they are 
observable. The turn-on biases and scale factor errors of the accelerometers and gyroscopes or the 
clock bias and drift of the GNSS receiver are typical errors to be estimated by the navigation filter. 
On the other hand, noise-like stochastic errors with short correlation times are difficult to observe by 
the navigation filter. Think for example of the accelerometer and gyroscope bias instabilities or of the 
small bias-like misalignments, which can hardly be observed by the filter. Due to the lack of 
observability, in many cases it does not make sense to augment the navigation error model by models 
for these errors in order to let them be determined by the filter. This would primarily inflate the 
dimension of the filter and rapidly increase the computational effort but would bring only little 
additional benefit. 
In this case, a good way is to distinguish between states that shall be estimated and states that shall 
not be estimated but whose influence on the states to be estimated shall be considered at least. The 
former are designated as the estimated states. The latter are the so called considered states. Only their 
statistical influence on the estimated states is considered but their expected values are not estimated. 
In this section, the Schmidt-Kalman filter is introduced as versatile tool for problems with a mixture 
of states to be estimated and states to be considered and is adapted to the navigation filter context. 

4.5.2 Schmidt-Kalman Filter 

The Kalman gain matrix of Template 4-19 can be split into three parts 
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 (4.149) 

,z kK  relates the innovation of the measurement  ky  to the navigation state error, ω ω

1, ,qk kK K  are the 
correction factors of the process noise model states and ν ν

1, ,rk kK K  the correction factors of the 
measurement noise model states. The Kalman gain matrices of the process and measurement noise 
model states that shall only be considered are set to zero. The Kalman gains of the navigation state 
and the process and measurement noise model states that shall be estimated remain. The innovation 
of the aiding measurement  ky  is thus only distributed among the estimated states but not among the 
considered states. It is important to notice that the second form of the covariance update equation in 
(2.11), Joseph’s form, has to be compulsorily used instead of the short form ( )+ −= −, , ,aa k n k a k a kP I K H P  
when the Kalman gain matrix entries of the considered states are set to zero. The reason for that is 
that the assumptions made during the conversion from Joseph’s form to the short form are not valid 
in the case with mixed estimated and considered states. The following equalities  
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hold for both cases whereas the further simplification with − − =T 1
, ,a k a k k kP H S K  
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is only possible in the case of the nominal Kalman filter without considered states. In the filter with 
estimated and considered states 

− −− + ≠T 1 T T
, ,a k a k k k k k k kP H S S K K S K 0  (4.152) 

because − − ≠T 1
, ,a k a k k kP H S K . The matrix − −T 1

, ,a k a k kP H S  can actually have non-zero entries in the rows 
belonging to the considered states. 
If the integrated navigation filter uses Joseph’s form of the covariance update equation innately, it can 
be easily switched from state estimation to state consideration and back. This might be advantageous 
in the early phase shortly after initialization when the filter settles and the state estimates are adjusted 
considerably. Some of the nuisance states could be treated as considered states in the beginning such 
that the filter modifies only the remaining states. When the main adjustment after initialization has 
accomplished, the initially considered states can be changed to estimated states. 
The augmented state covariance matrix can obviously become quite large. Hundred or more states are 
not unusual when models for the accelerometer, gyroscope, GNSS and barometer measurements and 
other sensors are incorporated into the integrated navigation filter. Although the performance of 
processors increases steadily, the computational effort may be problematic on smaller embedded 
systems. The covariance propagation involves most of the operations of the filter. The number of 
multiplications depends on the number of states to the third power. 
The numerical effort can be reduced if the covariance matrix is partitioned in the core navigation error 
block, process noise blocks and measurement noise blocks and if the propagation, Kalman gain and 
covariance update equations are expanded accordingly. Parts of the update equations that contain the 
zeroed Kalman gains of the considered states fall away and do not have to be calculated. Furthermore, 
due to the symmetry of the covariance matrix, only the upper or lower triangular of the covariance 
matrix has to be calculated. This adapted form of the Kalman filter is known as Schmidt-Kalman filter 
[13] [108]. The Schmidt-Kalman filter approach was originally presented in [109]. A good introduction 
of the usage of a Schmidt-Kalman filter for integrated navigation can be found in [27] or [110]. The 
covariance matrix of the augmented state vector −
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contains the navigation error state covariance −
,zz kP , the covariances and cross-covariances of the 

process noises ω ω
−

,s j kP  and measurement noises ν ν
−

,t j kP  and the cross-covariances between the 
navigation error states and the process noise states ω

−
,sz kP  and measurement noise states ν

−
,tz kP , 

respectively. Expanding the short form of the covariance update equation in (2.11) yields 
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The Kalman gains of the considered process and measurement noise states ω ,s kK  and ν ,t kK  are set to 
zero. The expanded covariance update equations (4.154) simplify to 
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Expanding the covariance propagation equations without preceding update in (4.148) yields 
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 (4.156) 

The states of the separate process and measurement noise models are not correlated among each other 
in the beginning, that is 

ω ω ν ν ω ν= = = ≠ ≠,0 ,0 ,00, 0, 0, ,
s j t j s j

s j t jP P P  (4.157) 

Since these cross-covariances are subsequently not altered by the covariance update (4.155) and no 
uncertainty is added at the covariance propagation step (4.156), they always remain zero. The 
covariances ω ω

−
,s s kP  and ν ν

−
,t t kP  are in general unequal zero in the beginning. Additionally, uncertainty 

is added in the covariance propagation step. However, the covariances are not modified by the filter 
update. Hence, the distinction between a priori and a posteriori matrices becomes superfluous 
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The simplified covariance update equations (4.155) are consequently 
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The covariance propagation equations (4.156) reduce to 
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Next, the covariance propagation equation with preceding update in (4.148) is addressed. For that, the 
additional term that has been elaborated in (4.147) is picked up again. Inserting the split Kalman gain 
(4.149) into (4.147) and setting the Kalman gains of the considered states zero yields 

ν ν ν ν ν ν 
 =  
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We can see that solely the cross-covariances ν
−

,tz kP  are affected. Therefore, if an update has occurred 
immediately before the upcoming propagation step, the corresponding cross-covariance propagation 
equation for ν

−
,tz kP  in (4.160) has to be replaced by 

ν ν ν ν ν ν
− +

− − − −= −T T
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Expanding the innovation covariance equation in (2.11) gives 
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 (4.163) 

The measurement covariance matrix is abbreviated as 

( )T T
,1 i i i i i i i

r

k ki ν ν ν ν ν ν ν=
= +∑R H P H D Q D  (4.164) 

The equation for the Kalman gain of the estimated states becomes 
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z k zz k k z k ki
K P H P H S  (4.165) 

Finally, Joseph’s form of the covariance update equation (4.159) is given for the sake of completeness. 
It is analogously found by inserting the matrices (4.137) in Joseph’s form of the covariance update 
equation in (2.11), setting the Kalman gains of the considered process and measurement error models 
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zero and then expanding the equation. Merely the update equation of the navigation error covariance 
changes, all other covariance update equations are the same as in the short form 
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 (4.166) 

The integrated navigation filter usually processes more than one aiding measurement, for example 
position, velocity, GNSS pseudorange and range rate, barometric altitude, magnetic field or 
orientation measurements. Separate error models describe the time correlated noises of the different 
measurements. Only those error models that are related to the currently processed measurement are 
to be used in the equations for the measurement covariance kR , innovation covariance kS , Kalman 
gain kK  and navigation error state covariance +

,zz kP . The measurement error models that are not 
involved in the current update are treated like the process noise cross-covariances ω

−
,sz kP , that is only 

their cross-covariance with the navigation error state ν
−

,tz kP  must be updated according to 

( )ν ν
+ −= −, ,t tz k n k k z kP I K H P  (4.167) 

The corresponding presuppositions are summarized in Template 4-20, the covariance propagation 
equations in Template 4-21 and the covariance update equations in Template 4-22. 

Further information 

In the appendix in section C.5.1 it is shown how the Schmidt-Kalman filter for time-correlated 
measurements corresponds to a Kalman filter for state cross-correlated measurements. Moreover, 
Template C-2 in section C.5.2 in the appendix gives the equations of the Schmidt-Kalman filter for 
out-of-sequence measurements. 

Template 4-20: Models and presuppositions 
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Template 4-21: Propagation equations 
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Template 4-22: Update equations 
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4.6 Integration of Reality Models into Navigation Filter 
In this section, the reality models for the IMU errors, gravity model error, random vibration, satellite 
clock error, satellite orbit error, ionosphere error, receiver clock error and receiver noise, which have 
been derived in chapter 3, are integrated into the navigation error filter one after another. Bias-like 
errors are integrated according to section 4.4 and noise-like errors that shall only be statistically 
considered are integrated according to section 4.5. For each error, it is analyzed how the error affects 
the integrated navigation solution error. Recommendations are given which error components shall 
be regarded in the navigation error filter and which model order is necessary to represent the main 
characteristic of the error on the one hand but to keep the additional computational effort as low as 
possible. 

4.6.1 Inertial Measurement Unit Errors 

Turn-on biases, scale factor errors and misalignment errors can be straightforwardly integrated into 
the navigation error filter since they are modeled as constants. The turn-on biases will be usually 
estimated. The misalignments are generally only considered. The scale factor errors are estimated or 
considered depending on the magnitudes of the measurement signals. If for example the carrier 
platform is excited by high monotonous angular rates like in a spinning missile, it is recommended to 
estimate the scale factor errors, too. 
The focus here is on the bias instability as noise-like error and misalignments as bias-like errors, which 
shall be considered but not estimated by the navigation filter. Their influence on the integrated 
navigation solution shall be clarified by means of an example. 
The General Aviation Aircraft scenario (section E.1.2) is chosen for the analysis. IMU 1 and IMU 2 
(Table E-5) with 100 Hz sample rate are compared. The IMU measurements are solely affected by 
velocity/angular random walk noise N  and bias instability noise B  or misalignment errors, 
respectively. All other IMU errors are set to zero. A generic GPS receiver provides 1 Hz pseudorange 
measurements to six satellites in view, which are only falsified by white Gaussian noise with 2 m 
standard deviation (section E.2.2). The filter performance is analyzed by comparing the predicted 
covariance with the covariance of the actually realized navigation state error of 100 Monte Carlo runs. 
The effects of the bias instability error and misalignments are separately analyzed. First, the IMU 
measurements are only corrupted by velocity/angular random walk noise N  and bias instability noise 
B . The bias instability noise is generated by a 4th order model (3.27). Second, the IMU measurements 
are affected by velocity/angular random walk noise N  and misalignment errors. Contrary to the IMU 
specifications, the misalignment angles are randomly drawn with unitary standard deviation of 0.5 
mrad. 

Neglecting the bias instability 

In the first case, lower grade IMU 1 is used. Figure 4-47 shows the position and orientation errors of 
the navigation solution if the bias instability of the accelerometers and gyroscopes is neglected and 
only the white noise is properly accounted for in the process noise covariance matrix. The blue dotted 
lines represent the 3σ standard deviations as predicted by the filter. The grey dotted curves are the 
true 3σ  standard deviations provided by the Monte Carlo simulation. As expected, the actual 
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deviations are much larger than the predicted ones. This situation is dangerous since valid aiding 
measurements could be rejected by the integrity monitor. 
In a further simulation run, IMU 1 is replaced by the higher grade IMU 2. The bias instability input 
noise spectral density B  of the gyroscopes is about one fiftieth of IMU 1. As can be seen in Figure 
4-48, the influence of the bias instability is much smaller than with IMU 1. In fact, the influence of 
the bias instability depends on the ratio of white noise spectral density over bias instability input noise 
spectral density N B . It can be concluded that the bias instability has only to be considered if this 
ratio exceeds a certain limit. For IMU 1, the ratio N B  is about 3.1 for the gyroscopes and 0.7 for the 
accelerometers. For IMU 2, the ratio N B  is about 42 for the gyroscopes and 5 for the accelerometers. 

High order bias instability model 

Next, six 4th order bias instability models for each of the three accelerometer and gyroscope axes are 
incorporated into the integrated navigation filter. The models in the navigation error filter are 
principally the same models that have been used for the synthesis of the measurements in the 
simulation. The predicted and actual covariances should perfectly match now. This is in fact confirmed 
by Figure 4-49. Merely the actual standard deviation of the heading error nnψ



 deviates slightly. This is 
probably due to the too low number of Monte Carlo runs. It is interesting to observe that the obtained 
standard deviations are smaller than the actually realized standard deviations in the first case where 
the bias instability model has been neglected. The predicted standard deviations are slightly larger than 
the predicted standard deviations of the first case. 

Low order bias instability model 

In order to noticeably lower the computational load, it is analyzed if a 1st order model with only two 
states can already represent the main portion of the bias instability noise effectually. The results are 
plotted in Figure 4-50 for IMU 1 and in Figure 4-51 for IMU 2. It seems that the results with the 1st 
order models do not deviate much from those of the 4th order models. For IMU 2, the 1st order model 
should be actually adequate. 

Neglecting the time correlation of the bias instability 

The numerical effort could be dramatically lowered if the time correlation is neglected and the bias 
instability is approximated by white noise. Then, the corresponding covariance can be computed 
offline with the 4th order model and only the process noise covariance matrix has to be adequately 
adjusted. However, as demonstrated by the position and orientation errors in Figure 4-52, the true 
standard deviations exceed the predicted ones. This is especially true for the position error. It can be 
concluded that it is not advisable to neglect the time correlation of the bias instability noise. 

Neglecting misalignment cross-correlations 

After having analyzed the bias instability, the influence of misalignment errors is considered next. IMU 
2 is used for this analysis. As with the bias instability, the time correlation of the misalignments is 
initially neglected by the navigation filter. Only the covariance of the misalignments is considered. The 
resulting position and orientation errors are illustrated in Figure 4-54. It can be seen that the actual 
navigation error standard deviations are clearly larger than the predicted ones. 
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Consideration of misalignment cross-correlations 

Finally, the time correlation of the misalignments is additionally considered by the integrated 
navigation filter. In Figure 4-53, the corresponding navigation errors are shown. It is observable that 
the actual and predicted statistics coincide well. 

Conclusion 

In terms of the bias instability, it has been revealed that low order bias instability models are already 
adequate to represent this noise. If 1st order bias instability models are applied, only six additional 
cross-covariances of dimension 2n×  have to be additionally considered by the filter, where n  is the 
dimension of the navigation state vector to be estimated. The bias instability covariance can be 
assumed to be constant and does not have to be propagated by the filter. 
The consideration of the bias instability by the navigation error filter is only necessary if the ratio of 
the white noise density to bias instability input noise density N B  is low. This is most often the case 
with low grade IMU and less often with high grade IMU. 
The bias-like misalignment errors, however, should be always considered by the integrated navigation 
filter. Their integration into the navigation error filter is straightforward. Only six additional cross-
covariances of dimension 1n×  have to be propagated by the filter. The misorientation of the complete 
gyroscope triad with respect to the reference frame should be considered in the same manner. It has 
to be kept in mind that the navigation system is not operated as an end in itself. The orientation angles 
are required by the flight guidance and control system and other important subsystems. Therefore, 
the orientation of the IMU reference axes and the corresponding uncertainty is of particular 
importance. The correct statistical consideration of internal axis misalignments and IMU installation 
angle errors plays an important role especially for other navigation sensors that require the relative 
orientation with respect to the IMU axes like cameras of image aided navigation systems. 
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Figure 4-47: Position and orientation error and 3σ  boundaries as predicted by filter (blue dotted 

lines) and from Monte Carlo simulation (grey dotted lines) if bias instability is not considered (IMU 1) 

 

 
Figure 4-48: Position and orientation error and 3σ  boundaries as predicted by filter (blue dotted 

lines) and from Monte Carlo simulation (grey dotted lines) if bias instability is not considered (IMU 2) 
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Figure 4-49: Position and orientation error and 3σ boundaries as predicted by filter (blue dotted lines) 
and from Monte Carlo simulation (grey dotted lines) if 4th order bias instability model is used (IMU 1) 

 

 
Figure 4-50: Position and orientation error and 3σ boundaries as predicted by filter (blue dotted lines) 
and from Monte Carlo simulation (grey dotted lines) if 1st order bias instability model is used (IMU 1) 



 4.6 Integration of Reality Models into Navigation Filter 

 215 

 

 
Figure 4-51: Position and orientation error and 3σ boundaries as predicted by filter (blue dotted lines) 
and from Monte Carlo simulation (grey dotted lines) if 1st order bias instability model is used (IMU 2) 

 

 
Figure 4-52: Position and orientation error and 3σ boundaries as predicted by filter (blue dotted lines) 
and from Monte Carlo simulation (grey dotted lines) if 4th order bias instability model is used, but time 

correlation is neglected (IMU 1) 
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Figure 4-53: Position and orientation error and 3σ boundaries as predicted by filter (blue dotted lines) 

and from Monte Carlo simulation (grey dotted lines) if misalignments are not considered (IMU 2) 

 

 
Figure 4-54: Position and orientation error and 3σ boundaries as predicted by filter (blue dotted lines) 

and from Monte Carlo simulation (grey dotted lines) if misalignments are considered (IMU 2) 
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4.6.2 Gravity Model Error 

The effectiveness of the application of a stochastic gravity error model on the accuracy of the inertial 
navigation solution shall be demonstrated by means of an example. For that, a flight across the Alps 
in south-west direction starting from Salzburg is analyzed. The flight is carried out straight and leveled 
with constant height and velocity ( )= − −T 75, 150, 0 m snv . The ground track and the gravity error 
of the ellipsoidal gravity model with respect to the EGM2008 model in down direction δγ n  are shown 
in Figure 4-55. The navigation error covariance is propagated once with and once without considering 
the gravity error. 

 
Figure 4-55: Ground track of the analyzed flight trajectory across the Alps from Salzburg in south-west 

direction. The color indicates the normal gravity error w.r.t. EGM2008 

The inertial navigation solution is computed using Somigliana’s gravity formula. Since the focus is on 
the influence of the gravity model error, inertial measurements are freely integrated without external 
aiding (even the barometer aiding of the unstable height channel is omitted) and it is assumed that the 
accelerometers and gyroscopes are solely affected by white noise. Furthermore, the initial state is 
perfectly known with zero covariance. The inertial sensors are navigation grade with velocity/angular 
random walk power spectral densities 8 µg Hz  and 0.0025 ° h , respectively. 
The stochastic gravity error model parameters that have been estimated for the Alps region as had 
been done before for the U.S. territories are 

σ β − −= = ⋅2 2 5 115.6167 m s , 3.14 10 mT  (4.168) 

Note that the standard deviation of the disturbing gravity potential σT  is almost three times higher 
than in the Midwestern and Southern U.S. territories. The corresponding correlation length is 

β = 68.3 km2.146   and is thus, as expected, shorter than in the Midwestern and Southern U.S. territories. 
This is due to the higher gravity variations in mountainous regions. 
In the case in which the gravity error is considered, the navigation error filter uses the propagation 
step of the Schmidt-Kalman filter for colored process noise (Template 4-21). Figure 4-56 shows the 
position, velocity and orientation errors of ten Monte Carlo runs and the propagated standard 
deviations with and without consideration of the gravity error. Note that the gravity error is the same 
in all Monte Carlo runs and only the IMU measurement noise is truly random. The error trends of the 
Monte Carlo runs are therefore similar. It can be observed that the height error is affected more 
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severely than the horizontal position errors. This is due to the instability of the height channel. The 
magnitudes of the horizontal position errors after one hour are as expected for the navigation grade 
class. The gravity error influences the translational as well as rotational navigation states. The predicted 
covariance that considers the gravity error seems to match the actual (unknown) covariance better 
than the predicted covariance without gravity error consideration. The predicted covariance that does 
not consider the gravity error seems to be too optimistic. The height channel prediction with gravity 
error consideration might be slightly too conservative. 
Figure 4-57 shows the true gravity errors in north, east and down directions along the flight path at 
height = 0h  and a realization of the applied stochastic gravity error model. It can be seen that the 
magnitude as well as the time correlation coincide qualitatively well. Therefore, the stochastic model 
with the chosen parameters represents the effect of the gravity model error quite well. 

Conclusion 

The combination of a simple normal gravity model like Somigliana with a stochastic model for the 
uncompensated residual error makes sense if the navigation system shall be able to operate longer 
time spans without external aiding measurements. This is especially interesting for navigation grade 
IMU that are innately capable of bridging longer unaided flight periods due to their low measurement 
errors. In these periods, the residual gravity error can have a considerable influence on the accuracy 
of the inertial navigation solution. Tables of standard deviations and correlation length parameters for 
different regions of the world or for the intended area of operation can be stored on the navigation 
system. Alternatively to the Somigliana gravity model and stochastic model for the uncompensated 
gravity error, the EGM2008 model can be used with sufficiently high degree and order. It is an 
advantage of the EGM model that gravity values can be directly calculated for all heights without the 
need of any height continuation. The effort to compute gravity values in real-time might however be 
too high for embedded systems. Alternatively, pre-processed tables of gravity model errors can be 
filed in the storage of the navigation system. Then, the current gravity value has only to be linearly 
interpolated from the table during run-time. Table values can also be computed for different heights, 
depending on the expected envelope of the application. 
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Figure 4-56: Inertial navigation errors and predicted 3σ  standard deviations w/o gravity error model 

(dotted) and with gravity error model (dashed) at height 0h =  

 
Figure 4-57: True gravity errors (red) and stochastically modeled gravity errors (blue) at height 0h =  
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4.6.3 Random Vibration 

The General Aviation Aircraft scenario (section E.1.2) is used as example to demonstrate the effect 
of random vibration on the navigation state estimation error. IMU 3 (Table E-5) with 200 Hz sample 
rate is selected. The IMU measurements are solely affected by velocity/angular random walk noise N  
and additional vibrational noise. All other IMU errors are set to zero. A generic GPS receiver provides 
1 Hz pseudorange measurements to six satellites in view, which are only falsified by white Gaussian 
noise with 2 m standard deviation (section E.2.2). The filter performance is analyzed by comparing 
the predicted covariance with the covariance of the actually realized navigation state error of 100 
Monte Carlo runs. 

Generation of colored noise with specified PSD 

The red curve in Figure 4-59 represents the desired normalized PSD of typical vibrational noise. It 
has a steep increasing slope at 40 Hz, a constant level of 45 dB/Hz between 40 and 70 Hz and drops 
off with 21 dB/Hz per decade for frequencies higher than 70 Hz. The accelerometer vibrational noise 
is obtained by scaling the normalized PSD with the accelerometer white noise PSD, the gyroscope 
noise accordingly by using the gyroscope white noise PSD for scaling. The generation of colored noise 
with the specified PSD S  begins with the discretization of S  in the range between 0 Hz and 
the Nyquist frequency ( )1 2f t= ∆  with 2N  samples, yielding the samples kS  at frequencies 

( )kf k N t= ∆ , = 1 2k N . N  is the number of required samples in time domain and ∆t  is the sample 
time of the IMU. Then, 2N  complex-valued noise samples kZ  have to be created in the frequency 
domain with amplitude ∆kS t  

π η=
∆

2 kik
k

S
Z e

t
 (4.169) 

where ηk  is white uniformly distributed noise, that is ( )0,1k WUη  . Next, the array of complex noise 
samples is extended to satisfy symmetry according to 

{ }∗ ∗=  1 10, , , , , ,k k kZ Z Z Z Z  (4.170) 

Therein, ∗
kZ  is the conjugated complex of kZ . The searched noise in time domain is finally obtained 

by transforming the extended complex noise (4.170) from frequency to time domain by inverse DFT 
and scaling with N  

( )1
,vib k kN Zω −=   (4.171) 

Figure 4-58 shows realizations of the vibrational noise on the accelerometer measurements and on 
the gyroscope measurements. The oscillating character of the generated vibrational noise is well 
observable. This is due to the quite narrow frequency band (40 to 70 Hz). The realized noise is more 
or less negatively correlated noise. The corresponding normalized PSD of the realizations is illustrated 
by the blue curve in Figure 4-59. Generally, the effect of negatively correlated noise on the navigation 
state estimation error is smaller than of positively correlated noise since subsequent samples are 
averaged by the integration. 
First, the vibrational noise is not considered by the navigation filter. The process noise covariance 
matrix considers only the white sensor noise of the accelerometers and gyroscopes. The effect of the 
random vibration is thus neglected. Second, the vibrational noise is considered in the navigation filter 
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with magnitude and time correlation. For that, the IMU signals are high-pass filtered with a fifth order 
Butterworth filter. The coefficients of ARMA(1,0), ARMA(3,0) and ARMA(7,0) models are online 
estimated with Burg’s method. The estimated vibration noise models are then integrated into the 
navigation filter as described in section 4.5. The window size is 400 samples. Third, only the current 
covariance of the estimated ARMA models is taken, but the vibrational noise is assumed to be white 
and the time correlation is neglected. Fourth and lastly, the vibrational noise is simply encountered by 
increased constant process noise without online model estimation. 
Figure 4-60 shows the position error and Figure 4-61 the orientation error for the first case when the 
vibrations are not considered by the navigation filter. Besides the results of an arbitrarily selected run, 
the true σ3  standard deviations of all Monte Carlo runs are plotted as grey dotted lines and the σ3  
standard deviations that are predicted by the navigation filter as blue dotted lines. It can be observed 
that the actual navigation state errors are much larger than pretended by the predicted statistics of the 
filter. This situation is dangerous since the predicted error covariance is too optimistic. The filter runs 
the risk to reject aiding measurements due to wrong innovation statistics. In Figure 4-64 and Figure 
4-65 the position and orientation errors are shown for the second case with online estimated 
vibrational noise models. The higher the order of the model, the better is the coincidence of predicted 
and true error statistics. The seventh order model actually predicts the true error statistics quite well 
and produces a statistically consistent solution. It is a positive fact that the true error bounds are 
smaller than the predicted error bounds in all cases. In Figure 4-64 and Figure 4-65 the position and 
orientation errors of the third case, in which the time correlation is neglected, are illustrated. The result 
of the first order model is similar to that of the previous case with consideration of the time 
correlation. The difference to the previous case appears more clearly with the third and seventh order 
models. The results are less consistent than with consideration of the time correlation. However, all 
results are again conservative with respect to the predicted and true error bounds. In Figure 4-66 and 
Figure 4-67 the position and orientation errors of the fourth case are plotted. The increased constant 
process noise covariance is obtained by scaling the velocity/angular random walk noise of the IMU 
once with factor 10 and once with factor 1000. Factor 10 seems to be too small since the actual 3σ  
standard deviations are larger than the predicted ones. Factor 1000 is in contrast too large since the 
predicted 3σ  standard deviations are noticeably larger than the actual ones. 

Conclusion 

The analyzed random vibration primarily exhibits negatively correlated noise. This is because vibration 
consists in fact of superposed sinusoidal motion with different frequencies and amplitudes. The 
negative correlation effect comes from the insufficient sampling of the highly frequent oscillations. 
Owing to the negative correlation character of vibrational noise the identification time span of Burg’s 
method can be quite short, for example one covariance propagation time step. 
It turned out that the identification of the vibrational noise works fine and yields accurate and 
statistically consistent results if the model order is chosen sufficiently large. It is advantageous that the 
filter provides conservative results even if low order noise models are used, meaning that the predicted 
error statistics are larger than the actual ones. It is an interesting method for highly accurate navigation 
systems where the accuracy of the navigation solution is the decisive design criterion. The method 
implies higher computational load. 
If no vibration identification is applied but only the process noise covariance is increased accordingly, 
satisfactory results can be obtained if the process noise covariance matrix is not too small. The process 
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noise tuning can be accomplished by means of simulations that also represent vibrations adequately 
and by analyzing recorded flight data with the IMU installed on the platform at the intended location. 
This procedure is laborious and especially difficult if the vibrations change during operation or if the 
navigation system is applied as black box on different platforms with different dynamics and 
vibrational noise. As a rule of thumb the process noise covariance should be tuned rather too large 
than optimal to obtain a robust navigation solution. The predicted error standard deviations then 
over-bound the actual ones, accepting that accuracy is given away in favor of robustness. 
If a suitable constant process noise covariance matrix can be found, it is favored over the vibrational 
noise estimation method due to the lower complexity and computational effort. Moreover, if 
robustness for example in safety critical applications is the main design criterion, the constant 
covariance matrix with over-bounding is also preferred. Otherwise, if the vibrational noise is estimated 
online, the system designer does not have to bother with the tuning of the process noise covariance 
since it is automatically adapted by the algorithm. Furthermore, the time correlation is considered 
correctly. 
A final remark: the identified noise models also represent parts of the IMU measurement errors. 
Sensor errors with short correlation lengths like the acceleration/angular rate white noise hence do 
not have to be considered separately. Only those errors whose correlation lengths are longer than the 
chosen identification time span of Burg’s method, like biases or in-run bias instabilities, have still to 
be accounted for with extra models. 

 
Figure 4-58: Vibrational noise on x-axis acceleration and angular rate 
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Figure 4-59: Vibrational noise on accelerations 

 
Figure 4-60: Position error without vibration model 

 
Figure 4-61: Orientation error without vibration model 
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Figure 4-62: 3σ  standard deviations of the position error with vibration models of different order. 
The colored dotted lines represent the predicted standard deviations, the grey and colored dotted 

lines the actual standard deviations of the Monte Carlo simulation 

 
Figure 4-63: 3σ  standard deviations of the orientation error with vibration models of different order. 

The colored dotted lines represent the predicted standard deviations, the grey and colored dotted 
lines the actual standard deviations of the Monte Carlo simulation 
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Figure 4-64: 3σ  standard deviations of the position error with vibration models of different order, 

only covariance. The colored dotted lines represent the predicted standard deviations, the grey and 
colored dotted lines the actual standard deviations of the Monte Carlo simulation 

 
Figure 4-65: 3σ  standard deviations of the orientation error with vibration models of different order, 
only covariance. The colored dotted lines represent the predicted standard deviations, the grey and 

colored dotted lines the actual standard deviations of the Monte Carlo simulation 
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Figure 4-66: 3σ  standard deviations of the position error without vibration model but over-bounded 

process noise. The colored dotted lines represent the predicted standard deviations, the grey and 
colored dotted lines the actual standard deviations of the Monte Carlo simulation 

 
Figure 4-67: 3σ  standard deviations of the orientation error without vibration model but over-

bounded process noise. The colored dotted lines represent the predicted standard deviations, the 
grey and colored dotted lines the actual standard deviations of the Monte Carlo simulation 
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4.6.4 Satellite Clock Error 

The dataset cutover model (3.111) and the noise model (3.114) are integrated into the navigation filter 
as considered states. The General Aviation Aircraft scenario (section E.1.2) is used as example to 
demonstrate the influence of the satellite clock error on the integrated navigation solution. IMU 3 
(Table E-5) with 100 Hz sample rate is selected. The IMU measurements are solely affected by 
velocity/angular random walk noise N . All other IMU errors are set to zero. A generic GPS receiver 
provides 5 Hz pseudorange measurements. Start time is at 7pm, June 22, 2012 (section E.2.2). Besides 
the satellite clock error, the GPS raw measurements are only affected by white Gaussian noise with 
standard deviation σ = 5 m  in order not to be distracted from other error influences. 
At sensor data generation the true satellite clock error is computed from precise ephemerides. In the 
navigation filter the satellite clock error correction is computed from the correction coefficients of the 
broadcast navigation message. The satellite clock errors at June 22 are shown in Figure 4-68, Figure 
4-69 and Figure 4-70 for the IIA, IIR-A/B and IIR-M satellites that are in view at 7pm. The large 
error growth of PRN 30 over the course of the day is noticeable. The dataset cutovers occur every 
two hours and are indicated by the grey dotted lines. The upload cutovers are marked by the colored 
dotted lines. The TOE of the last upload cutovers are also listed in Table 4-3. 

Neglect of the residual satellite clock error 

The navigation system uses the six satellites with the highest elevation angles. These are PRN 16, PRN 
21, PRN 30, PRN 6, PRN 18 and PRN 29. PRN 29 is exchanged by PRN 3 after about 410 seconds. 
In the first simulation the residual satellite clock error is not considered. The corresponding position 
error is plotted in Figure 4-71. As can be easily seen, the predicted position error statistics and the true 
error do not match. An innovation based integrity monitor would have detected the mismatch and 
would probably have refused the pseudorange measurements. 

Consideration of the residual satellite clock error by derived models 

If, however, the satellite clock errors are considered in the navigation error filter, the predicted position 
error variances are increased and the actual errors lie within the expected σ3  bounds, as shown in 
Figure 4-72. The remarkable increase of the standard deviation at about 410 seconds after start is due 
to the exchange of a IIR-M satellite with lower residual satellite clock error by an older IIA satellite 
with larger residual clock error. 

Consideration of the residual satellite clock error by derived models, neglecting time 
correlation 

In the next simulation, the instantaneous variances of the residual satellite clock errors as predicted by 
the derived models are considered by the navigation filter but not the time correlation. This means 
that the cross-covariances between the navigation error states and the satellite clock error model states 
are not accounted for. The position error is plotted in Figure 4-73. Since the residual satellite clock 
error has predominantly bias-like character, the white noise assumption is not adequate. Therefore, 
the predicted standard deviations of the position error components are still too optimistic. Only the 
height error lies now within the predicted σ3  bound. 
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Consideration of the residual satellite clock error by over-bounded white noise 

Alternatively, the residual satellite clock errors are not considered but encountered by over-bounded 
white noise on the pseudoranges. The resulting position error is shown in Figure 4-74 for an assumed 
standard deviation of 10 m. The actual position error lies now indeed within the predicted σ3  bounds, 
but performance is given away. This can be confirmed if the predicted standard deviations of the 
position error components at the end of the trajectory are compared. In the case when the errors are 
considered by models the position error standard deviations are 2.3 m in northern direction, 1.3 m in 
eastern direction and 0.65 m in height direction. In the case when the errors are over-bounded by 
white noise the corresponding position error standard deviations are 4 m, 3.6 m and 0.85 m. Moreover, 
the designer has to decide for a proper tuning. If models are used, the error is automatically considered 
without the need for tuning. 
If measurements of more than six satellites are available, the effect of the satellite clock errors might 
be smaller because the clock errors of the single satellites are positive or negative and may hence 
compensate themselves. If only four satellites are used and these satellites are accidentally the older 
IIA satellites (because these satellites currently have, for example, the highest elevation), the effect of 
the satellite clock errors on the estimated position error is appreciably larger. 

Table 4-3: TOE of last upload cutovers at 06/22/2012, 7pm, of satellites in view 

PRN GPS second hh:mm:ss PRN GPS second hh:mm:ss PRN GPS second hh:mm:ss 

3 467984 9:59:44 13 453584 5:59:44 5 n/a n/a 
6 431984 23:59:44 16 489584 15:59:44 7 496784 5:59:44 
8 431984 23:59:44 18 439184 1:59:44 29 439184 1:59:44 

26 496784 5:59:44 19 424784 21:59:44    
30 489584 15:59:44 21 431984 23:59:44    

 
Figure 4-68: Satellite clock errors of IIA satellites at 06/22/2012. The dotted lines mark upload 

cutovers 
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Figure 4-69: Satellite clock error of IIR-A and IIR-B satellites at 06/22/2012 

 
Figure 4-70: Satellite clock error of IIR-M satellites at 06/22/2012 

 
Figure 4-71: Position error with predicted 3σ  boundaries (dotted) if the clock error is not considered 
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Figure 4-72: Position error with predicted 3σ  boundaries (dotted) if the clock error is considered 

 
Figure 4-73: Position error with predicted 3σ  boundaries (dotted) if only the clock error variance is 

considered, but the time correlation is neglected 

 
Figure 4-74: Position error with predicted 3σ  boundaries (dotted) if noise variance is over-bounded 
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4.6.5 Satellite Position Error 

The example of the previous section is picked up again to exemplify the effect of the satellite orbit 
errors on the integrated navigation solution. The same conditions as for the satellite clock error 
example hold. This time, the take-off is at 18:40 (GPS time). PRNs 3, 6, 18 and 21 are used for the 
solution. The satellite orbit errors in along-track, cross-track and radial directions at June 22 are shown 
in Figure 4-75 for the IIA and in Figure 4-76 for the IIR-A/B and IIR-M satellites that are in view at 
7pm. The dataset cutovers occur every two hours and are indicated by the grey dotted lines. The 
upload cutovers are marked by the colored dotted lines. In Figure 4-77, the orbit error components 
and the predicted σ3  standard deviations of the four used satellites are plotted. Cutovers take place 
at second 1200. It can be seen that the variances of the radial error components are minimum at 
cutover. The modeled variances seem to fit quite well to the actually realized orbit errors. 
Besides the satellite orbit errors, the GPS raw measurements are only affected by white noise in order 
not to be distracted from other error influences. The true satellite positions are computed from precise 
ephemerides at sensor data generation. In the navigation filter the satellite positions are computed 
from the broadcast ephemerides of the navigation message. 

Neglect of the residual satellite position error 

In Figure 4-78, the position error of the integrated navigation solution is plotted for the case when 
the satellite orbit errors are not considered by the navigation error filter. The predicted σ3  standard 
deviations are the red curves. It can be observed that the influence of the satellite orbit errors on the 
navigation state errors is smaller than of the satellite clock errors. In this example, mainly the lateral 
position errors are affected by the satellite orbit errors. Especially the north direction error violates 
the predicted statistics. 

Consideration of the residual satellite position error by derived models 

If the satellite orbit errors are, however, considered by the navigation error filter, as illustrated in 
Figure 4-78 by the green σ3  boundaries, the situation is improved since the predicted variances of 
the position error components are slightly increased. 
Generally, it can be stated that the effect of the satellite position error model is comparatively small. 
Orbit errors most often compensate one another. The high modeling effort and additional 
computational load in contrast to the performance improvement is likely not justified in the most 
applications. 
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Figure 4-75: Along-track, cross-track and radial orbit errors of IIA satellites 

 
Figure 4-76: Along-track, cross-track and radial orbit errors of IIR-A, IIR-B and IIR-M satellites 
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Figure 4-77: Along-track, cross-track and radial orbit errors of used satellites 

 
Figure 4-78: Position error, orbit error not considered (red), orbit error considered (green) 

4.6.6 Ionosphere Error 

The estimation of the sunspot number is demonstrated by means of a simulation example. For that, 
the solution of a stationary integrated navigation system at N47° E11° at 0 m height is analyzed. The 
system is initialized at June 22, 2012 at 7pm. IMU 3 (Table E-5) is chosen as inertial sensor. The IMU 
sample rate is 100 Hz and the GPS sample rate is 1 Hz. The IMU error model considers solely 
velocity/angular random walk noise and turn-on biases. The receiver clock model bases upon the 
specification of the Rakon IT225B oscillator in section 3.5.5. The eight satellites with the largest 
elevation angles are used in the navigation error filter (compare with the sky plot in Figure E-12). The 
initial state errors are randomly drawn according to the given initial covariance 0P . 
The ionospheric delay ρ∆ iono  is the only error on the pseudorange measurements besides the receiver 
clock error ∆ Rc t  and additional white measurement noise with a standard deviation of 0.75 m. The 



4 Efficiently Increasing Navigation Filter Consistency 

234 

ionospheric delay of the precise TEC map serves as reference and is used in the measurement synthesis 
in the simulation. The realized clock error is shown in Figure 4-79. 
First, the ionospheric delay is compensated with the Klobuchar model. The navigation state errors are 
shown in Figure 4-80 together with the predicted σ3  bounds. The estimated receiver clock bias error 
δ∆ Rc t  and drift error δ∆Rc t  are plotted in Figure 4-81. It can be observed that the realizations of the 

latitude error δφ  and height error δh  are apparently larger than the σ3  bounds, which indicates that 
the non-compensated ionospheric residual error δρ iono  mainly affects the position solution. The 
receiver clock bias is also biased just as the position error. This situation is dangerous because the 
integrity monitor might reject the GPS measurements due to the too optimistic covariance estimate. 
Second, the ionospheric delay is compensated with the NeQuick2 model. The sunspot number 12R  
is estimated by the navigation filter. The navigation state errors and the receiver clock errors are given 
in Figure 4-82 and Figure 4-83, respectively. The initial sunspot number value ( )12 0R t  has been set to 
90 and its initial standard deviation has been chosen as 30. Figure 4-84 shows the error of the sunspot 
number δ 12R  with respect to the initially assumed number. It can be seen that the actual navigation 
state errors and the receiver clock error now fit much better to the predicted statistics. Furthermore, 
the actual position errors are smaller than in the previous case with Klobuchar model compensation. 
The sunspot number settles slowly with time. The correlation coefficients ρ  between the height error 
δh , receiver clock bias error δ∆ Rc t  and sunspot number error δ 12R  are illustrated in Figure 4-85. As 
expected, the height error and the receiver clock bias error are positively correlated whereas the height 
error and the sunspot number error as well as the receiver clock bias error and the sunspot number 
error are negatively correlated. The filter can slowly resolve the correlation between the three states as 
the satellite constellation and the ionosphere change steadily with time. The filter cannot distinct 
between the common component of the initial height error projected onto the line-of-sight directions 
and the initial receiver clock bias. This effect is especially dominant if the elevation angles of the 
currently used satellite constellation do not differ much. The same is valid for the initial height error 
and sunspot number error and the receiver clock error and the sunspot number error since the 
ionsopheric errors on the single line-of-sight ranges are strongly correlated with each other. 
Corresponding to the decrease of the correlation, the height error and the receiver clock bias error 
settle more slowly as in the previous case due to the additional correlated state. In fact, the smallest of 
the initial variances of the three errors sets the level to which the other two, more uncertain errors will 
settle in the initial period. The initial variances of all three errors have been chosen well-balanced in 
this example. 

 
Figure 4-79: Realization of the receiver clock error  
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Figure 4-80: Navigation state estimation error with Klobuchar model ionospheric delay compensation 

 
Figure 4-81: Receiver clock estimation error with Klobuchar model ionospheric delay compensation 

 
Figure 4-82: Navigation state error with NeQuick2 model and estimation of the sunspot number 
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Figure 4-83: Receiver clock error with NeQuick2 model and estimation of the sunspot number 

 
Figure 4-84: Sunspot number 

 
Figure 4-85: Correlation between height, receiver clock error and sunspot number 

4.6.7 Receiver Clock Error 

The navigation state error model is augmented by the two-state model (3.181) for the receiver clock 
bias and drift. The random walk frequency, flicker frequency and white frequency noise with bias-like 
effect on the receiver clock bias are considered as colored process noises using (3.28). The noise-like 
influences of the flicker and white phase noise are handled as receiver noise, which will be discussed 
in the next section. Furthermore, it is analyzed if it is sufficient to simply add adequately tuned white 
process noise to the two receiver clock error states instead of noise models. The analysis is done by 
means of the first 180 seconds of the General Aviation Aircraft scenario of section E.1.2, using IMU 
3 (Table E-5) with 100 Hz sample rate. Take-off date is June 22, 2012 at 7pm. The navigation solution 
is aided by 1 Hz pseudorange measurements, which are exclusively affected by white Gaussian noise 
with 2 m standard deviation. It is assumed that the receiver works with an ON-169A oscillator with 
the model parameters given in Table 3-35. Besides the random walk frequency, white frequency and 
flicker frequency noise, a constant receiver clock drift with 5 m/s standard deviation is added to the 
receiver clock error. The flight is segmented into three subsequent periods. In the first period between 
second 0 and second 60 six satellites are used. In the second period between second 60 and second 
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120 only three satellites are tracked and in the third period between second 120 and second 180, again 
five satellites are available to aid the integrated navigation solution. The minimum elevation mask is 
set to five degree. Satellites with lowest elevation angles are selected in this exemplary simulation. The 
corresponding sky plot can be found in Figure E-12. The flicker frequency noise is synthesized with 
a fourth order pink noise model. In the filter itself, only a first order model is applied. The predicted 
standard deviations are compared with the true error statistics from 200 Monte Carlo runs. 
The 3σ  position error boundaries are shown in Figure 4-28. The receiver clock bias and drift errors 
are illustrated in Figure 4-87. The predicted standard deviations are represented by the black dotted 
lines and the actual standard deviations from the Monte Carlo runs by the grey dotted lines. There is 
a good coincidence between predicted and true error statistics. In the periods with six and five satellites 
the position error growth is limited whereas it is unbounded in the interim period with only three 
satellites. That is as expected since at least four satellites are required to compute a unique PVT 
solution. In Figure 4-87, the height error of Figure 4-28 is additionally plotted in red. It can be clearly 
seen that both errors are negatively correlated, which means that the filter cannot uniquely distinct 
between height error and receiver clock error. Since the height is an important and safety critical input 
for flight guidance, the height error should be as small as possible. Therefore, it is important to 
accurately model the receiver clock error in order to support the filter in distinguishing between both 
errors. As will be seen, the minimum (and statistically correct) height error is only possible if the 
receiver clock error is correctly considered by the filter. 
Next, the random walk frequency, flicker frequency and white frequency noise are not depicted by the 
models but replaced by simple substitute white noise on both receiver error states, represented by a 
diagonal process noise covariance matrix, as is often encountered in integrated navigation filter 
designs. Here, three different process noise covariances 

( ) ( ) ( )2 2 2 2 2 2

2 4 2 4 2 4

2 2 2 2 2 2m m m m m m
1 2 3s s s s s s

diag 1 , 1 , diag 0.1 , 0.1 , diag 0.01 , 0.01= = =Q Q Q  (4.172) 

are analyzed. The position error standard deviations are illustrated in Figure 4-88 and the 
corresponding receiver clock error standard deviations in Figure 4-89. The solid lines are the predicted 
and the dotted lines the actual 3σ  standard deviations of the Monte Carlo simulation. The black 
dotted lines represent the reference standard deviations of the first case with noise models. It is 
observable that mainly the height error and less the translational position errors are affected. With the 
process noise covariances 1Q  and 2Q  the height error is larger than in the first case. With the 
covariance 3Q  the predicted height error is smaller. There is a good coincidence between predicted 
and true standard deviations in the case of the large clock error process noise covariance. However, 
the uncertainty of the receiver clock bias and thus of the height error is much larger than with the 
correct receiver clock error model. In the second case, the predicted and true standard deviations 
match less, but at least the predicted standard deviation is larger than the true one, which is 
conservative and less problematic. In the case of the smallest clock error process noise covariance, 
the predicted standard deviation is smaller than with correct clock error model and moreover the 
predicted standard deviation is smaller than the true one, which is dangerous. In summary, the larger 
the noise, the better is the coincidence and the true noise standard deviation is smaller or equal than 
the predicted. In contrast, if the noise is chosen too small, the predicted error is smaller than the actual. 
This means that a trade-off between robustness on the one hand and accuracy primarily of the height 
error on the other hand has to be done. It can be stated that it is not easy to correctly tune the process 
noise covariance and it is therefore recommended to model the receiver clock errors.  
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Figure 4-86: Position error and 3σ  boundaries as predicted by filter (blue dotted) and from Monte 

Carlo simulation (grey dotted) if the receiver clock noise is considered 

 
Figure 4-87: Receiver clock error and 3σ  boundaries as predicted by filter (blue dotted) and from 
Monte Carlo simulation (grey dotted) if the receiver clock noise is considered. The red line is the 

height error 

 
Figure 4-88: Position error and 3σ  boundaries as predicted by filter (solid) and from Monte Carlo 

simulation (dotted) if substitute white receiver clock error process noise is used 
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Figure 4-89: Receiver clock error and 3σ  boundaries as predicted by filter (solid) and from Monte 

Carlo simulation (dotted) if substitute white receiver clock error process noise is used 

4.6.8 Receiver Noise 

The first 600 seconds of the Generic Aviation Aircraft scenario of the previous section are used to 
demonstrate how the receiver noise is considered in the integrated navigation filter. The sample time 
of the tracking loop simulation is 2 msT = , which is just the integration and dumping timespan of 
the correlators. The bandwidth of the PLL is initially set to = 8 HzPB , the bandwidth of the frequency 
assistance to = 4 HzFB  and the bandwidth of the DLL to = 1HzCB . 
Figure 4-90 exemplarily shows the carrier-to-noise ratio of satellite PRN 16 that is assumed for the 
simulation of the satellite signal. The simulated prompt in-phase and quadrature samples PI  and PQ  
are shown in a plane in Figure 4-91 and dependent on the time together with the early and late in-
phase and quadrature samples EI , LI , EQ  and LQ  in Figure 4-92. It can be seen that the mean values 
of the quadrature samples are zero whereas those of the in-phase samples are unequal zero. The 
prompt in-phase correlator output values PI  are larger than the early and late in-phase correlator 
output values EI  and LI , which are equal in the mean. Figure 4-93 shows the outputs of the phase, 
frequency and code discriminators dφ

 , fd  and dτ
  and the corresponding σ3  standard deviations. 

The code discriminator dτ
  is scaled with the actual low-pass filtered signal power 2 2

P PN I Q= +  . The 
cut-off time constant of the low-pass filter is chosen as = 0.25 scT . In Figure 4-94 the noise of the 
carrier, range rate and pseudorange measurements and the corresponding σ3  standard deviations are 
illustrated. It can be observed that the noise standard deviations clearly depend on the current carrier-
to-noise ratio. Figure 4-95 shows the autocorrelation of the simulated carrier phase, range rate and 
pseudorange measurement noises. The correlation length of the carrier phase is less than 0.1 s. The 
autocorrelation of the range rate noise is virtually zero. The pseudorange measurement noise, 
however, features noticeable correlation with time with the chosen filter parameters. If the output 
sample rate of the GPS receiver is chosen as 5 Hz, the pseudorange measurements are correlated 
about 40%. If the GPS receiver rate is 1 Hz, the measurements are not correlated. In this case, the 
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correlation of the receiver noise does not have to be considered in the integrated navigation filter, 
which is favorable due to the lower implementation effort and computational load. The resulting 
position error, velocity error and orientation error, respectively, of the integrated navigation solution 
are illustrated in Figure 4-96, Figure 4-97 and Figure 4-98. 
In a second simulation run, a constant power scaling = 222N  is used in the code discriminator τd . 
The code discriminator output, range measurement noise and the corresponding autocorrelation are 
plotted in Figure 4-99. It is interesting that the effect of the carrier-to-noise ratio on the code 
discriminator is now contrary to the previous case. This is because the actual signal power at low 
carrier-to-noise ratios is lower than the constant reference power that is used for the scaling. Thus, 
the code discriminator values become larger with decreasing carrier-to-noise ratios compared with the 
variable signal power scaling. The standard deviation of the pseudorange measurement noise now 
seems to be independent of the carrier-to-noise ratio. Moreover, the σ3  bounds are lower than in 
the previous case with variable signal power scaling. The autocorrelation of the range measurement 
noise, however, is increased. When the carrier-to-noise ratio decreases, the correlation increases. 
In a third run, the bandwidths of the tracking loops are increased. The bandwidth of the PLL part is 
set to = 32 HzPB , the bandwidth of the FLL part to = 16 HzFB  and the bandwidth of the DLL to 

= 2 HzCB . The measurement noises are shown in Figure 4-100. Compared to Figure 4-94, the noise 
level is increased now. The correlation of the pseudorange noise is slightly reduced. 
A final remark: as already stated, it cannot be separated between the thermal noise on the signal and 
the oscillator noise. The influence of the oscillator noise on the tracking loops, however, is much 
smaller than that of the thermal noise and does not have to be considered in the tracking loops. The 
estimated C/N0 ratio actually contains the oscillator noise. 

 
Figure 4-90: Assumed carrier-to-noise ratio of PRN 16 

 
Figure 4-91: Prompt in-phase and quadrature phase samples of PRN 16 
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Figure 4-92: In-phase and quadrature phase signals of PRN 16 

 
Figure 4-93: Phase, frequency and code discriminator outputs and 3σ  boundaries (dotted) of PRN 16 

 
Figure 4-94: Carrier phase, rate and range measurement noise and 3σ  boundaries (dotted) of PRN 16 
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Figure 4-95: Autocorrelation of carrier phase, rate and range measurement noise of PRN 16 

 
Figure 4-96: Position error and 3σ  boundaries as predicted by filter (dotted lines) 

 
Figure 4-97: Velocity error and 3σ  boundaries as predicted by filter (dotted lines) 
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Figure 4-98: Orientation error and 3σ  boundaries as predicted by filter (dotted lines) 

 
Figure 4-99: Code discriminator, noise and autocorrelation of PRN 16 with constant power scaling 

 
Figure 4-100: Measurement noises and 3σ  boundaries (dotted) of PRN 16 with increased bandwidths 
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5 Navigation Filter 
Performance Prediction and Stability 

5.1 Steady-State Kalman Filter 

5.1.1 Motivation 

It can often be observed that the navigation error filter achieves steady-state rapidly after the initial 
settling phase. In quasi-stationary flight periods with low dynamics, for example straight and leveled, 
and with aiding measurement noise covariances that vary only slightly, the settled navigation error 
covariance does also not change much. 
It would be nice to be able to appraise the steady-state covariance at least of the nine core navigation 
states (position, velocity and orientation) in advance without large computational effort, providing 
that the presumed process noise and aiding measurement noise covariance matrices are more or less 
constant, that is time-independent, in the foreseeable future. 
The method that will be elaborated in this section can for example be applied in mission planning 
tools where many scenarios under different conditions are tested in parallel and the user quickly gets 
an evaluation of the expected steady-state navigation error statistics. It could also be used in the 
navigation system itself in order to continuously monitor the filter performance by comparing the 
actually estimated covariance of the filter with the predicted one. The navigation system can thus 
quickly react on suspicious deviations. 
In [111], the closed-form solution of the simpler tracking filter problem, which makes use of an 
exponentially correlated acceleration model as described in [112], is derived. In [113], an analytical 
steady-state solution of the navigation filter is searched. The found solution is not purely analytic but 
requires numerically evaluated correction factors. 

5.1.2 Preliminaries 

Mathematically expressed, the steady-state solution ∞P  of the CKF with covariance propagation, 
Kalman gain and covariance update equations (2.11) is searched. In addition, the following 
assumptions are made: 

• The process noise covariance matrix kQ  is constant, that is time-independent 
• The measurement noise covariance matrix kR  is constant, that is time-independent 
• The system matrices Φ , Γ  and H  are constant, that is time-independent 
• The aiding measurement sample time and the covariance propagation time ∆t  are equal, 

meaning that there is an update step after each propagation step. 

If the Kalman filter equations (2.11) are combined in a single equation, we get 
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( )−− − − − −
− − − −= − + +

1T T T T T
1 1 1 1k k k k k k kP P P H R HP H HP QΦ Φ Φ Φ Γ Γ  (5.1) 

The searched steady-state solution ∞P  is obtained by setting − −
−= 1k kP P  

( )−∞ ∞ ∞ ∞ ∞= − + +
1T T T T T

k kP P P H R HP H HP QΦ Φ Φ Φ Γ Γ  (5.2) 

which is a discrete-time algebraic Riccati equation (DARE). The Kalman filter is actually an iterative 
solver for the DARE. Starting from the given initial covariance matrix ( )∈ ,

0
n nP  at time = 0t t , the 

covariance is iteratively adapted until it finally converges to the steady-state covariance ∞P . Because 
of its complicated structure, the analytical solution of the DARE is difficult. 
If one is only interested in the steady-state solution, as we are, the discrete-time difference equation 
(5.1) can alternatively be converted to continuous-time by reducing the discrete-time step ∆t  to the 
differential time step dt , which yields the well-known continuous-time Riccati differential equation 

( ) ( ) ( ) ( ) ( )−= − + + +

T 1 T Tt t t t tP P H R HP FP P F GQ G  (5.3) 

with the continuous-time process noise covariance matrix Q  and measurement noise covariance 
matrix R  related to the discrete time correspondents by 

= ∆ = ∆,k kt tQ Q R R  (5.4) 

[13]. Its steady-state solution is the continuous-time algebraic Riccati equation (CARE) 
−

∞ ∞ ∞ ∞− + + + =T 1 T T 0P H R HP FP P F GQ G  (5.5) 

Now, the powerful and comprehensive theory of continuous-time Riccati differential equations can 
be used to find the steady-state solution ∞P . This way has been chosen in the following. 

5.1.3 Alternative Representation of the Riccati Equation 

As is shown in [114], the quadratic Riccati equation (5.3) can alternatively be represented by a linear 
homogeneous differential equation system if the covariance matrix ( )tP  is decomposed into the 
numerator matrix ( )tN  and denominator matrix ( )tD  

( )
( )

( )
( )

( ) ( ) ( )

T
0 0

T 1 T
0

1

,

:
n

tt
tt

t t t

−

−

        
= =           −      

=

=

N N PN F GQG
D D ID H R H F

P N D

Ψ





  (5.6) 

The coefficient matrix ( )∈ 2 ,2n nΨ  is a Hamiltonian matrix. The properties of Hamiltonian matrices 
can be found in [114]. One property is that all eigenvalues of Ψ  are symmetric to the real as well as 
imaginary axes of the complex plane. The solution of the linear homogeneous representation of the 
Riccati equation (5.6) is 

( )
( )

( )

( ) ( ) ( )

0 0

1

t t

n

t
e

t

t t t

−

−

   
=       
=

N P
D I

P N D

Ψ

 (5.7) 

As will be seen in the next section, the steady-state solution of the Riccati equation (5.5) can be easily 
calculated with the alternative representation (5.6). 
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5.1.4 Solution of the Matrix Exponential 

The question arises how to calculate the matrix exponential ( )− 0t teΨ  in (5.7). We can find a multitude 
of solution approaches in the literature, for example [115]. Most of them comprise numerical solution 
schemes. 
The ODE methods make use of the fact that the matrix exponential is the solution of a matrix 
differential equation if the unit matrix is chosen as initial value 

( ) ( )
( ) ( )0

0 2n

t t

t t

t e −

= =

=

X X X I

X Ψ

Ψ

 (5.8) 

The differential equation is integrated with a numerical scheme like 4th order Runge-Kutta. One 
obtains steady-state if the solution does not change with time anymore. This method does not provide 
any advantages compared to solving the original problem, the continuous-time Riccati equation (5.3), 
with a numerical integrator. 
The eigenstructure decomposition method decomposes the matrix exponential ( )− 0t teΨ  in its 
eigenvector matrix and eigenvalue exponential matrix as 

( ) ( ) ( ) ( )( )λ λ− − − −− −= = 

0 0 1 0 2 01 1diag , , nt t t t t t t te e e eV V V VΨ Λ  (5.9) 

where ( )λ λ= 1 2diag , nΛ  are the eigenvalues and ( )= 1 2, , nV v v  the eigenvectors of Ψ . The 
eigenvalues and eigenvectors of the Hamiltonian matrix Ψ  may be computed analytically or 
numerically. However, the eigenvector matrix V  may be (close to) singular. Then, the inverse −1V  
and consequently the matrix exponential ( )− 0t teΨ  cannot be calculated or only with considerable 
numerical errors. Ψ  is called defective if Ψ  does not have a set of linearly independent eigenvectors. 
This is the case if there are eigenvalues with geometric multiplicity lower than algebraic multiplicity. 
The method is interesting if the eigenvalues and eigenvectors can be calculated analytically. 

5.1.5 Steady-State Solution of the Riccati Equation 

In [114] criteria for the existence of unique and stabilizing solutions of the CARE (5.5) are given. In 
our case we have a dual Hermetian CARE. With T∗ = −BB GQG  and ∗ −= − T 1C C H R H  Lemma 2.4.1 
in [114] says 

( ) ( )

∞ ∞

∞

, , ,

,

, ,
[...]

zz zz zz s

zz

F B C F

P P P
P

Ψ
If  is stabilizable and  is detectable, then
(i) ,  does not have eigenvalues on the imaginary axis.
(ii)  exists, is stabilizing (i.e., = ) and positive semi-definite.
(iv)  Ψis real (symmetric) if  is real.

 (5.10) 

According to the Corollary 2.4.3 in [114] the CARE has a (unique) stabilizing solution ,zz sP  if and only 
if Ψ  has no purely imaginary eigenvalues. 
In the following, the eigenstructure decomposition method (5.9) is used to compute the matrix 
exponential ( )− 0t teΨ  of (5.7). The Hamiltonian matrix Ψ  as defined in (5.6) is first of all decomposed 
into its eigenmodes 

−
    

=     −    

1

11 12 11 12

21 22 21 22

0

0

V V V V
V V V V

Λ
Ψ

Λ
 (5.11) 

Therein, the eigenvalue matrix 
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1 0 0
0 0
0 0 n

λ

λ

 
 =
 
 

Λ   (5.12) 

contains all the unstable eigenvalues ( ) 1, , , Re 0n iλ λ λ > . Consequently, −Λ  contains all the stable 
eigenvalues, which are the unstable ones reflected in the imaginary axis. The eigenvector matrix 

( )λ λ λ

 
= 

 


1 2

11

21

, ,
n

V
v v v

V
 (5.13) 

consists of the eigenvectors that belong to the unstable eigenvalues 1, , nλ λ . The eigenvector matrix 

( )
1 2

12

22

, ,
nλ λ λ− − −

 
= 

 

V
v v v

V
  (5.14) 

is composed of the eigenvectors that are related to the stable eigenvalues 1, , nλ λ− − . Note that since 
we are searching a unique stabilizing solution, the Hamiltonian matrix Ψ  does not have purely 
imaginary eigenvalues. Inserting the eigenmode decomposition (5.11) into the continuous-time 
solution of the linear homogeneous differential equation (5.7) yields 
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P N D
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Λ  (5.15) 

where ( ) ( )−− − −=
1

0 0 1t t t te eV V V VΛ Λ  has been used. Explicitly calculating ( )tN  and ( )tD  gives 
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 (5.16) 

For the approximation →∞t  the matrix exponential ( )− − 0t te Λ  vanishes and ( )tN  and ( )tD  converge 
to 

( ) ( )

( ) ( )
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0

11

21

t t

t t

t e

t e

−

−

→ ∞ =

→ ∞ =

N V A

D V A
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 (5.17) 

with the definition 

( ) ( )− −− − −= − − −
1 11 1 1

11 12 22 21 ,0 11 12 22 21 11 12: zzA V V V V P V V V V V V  (5.18) 

The steady-state solution ∞P  does not depend on the time t  and is 

( ) ( ) ( )
( ) ( )0 0

1

1 1
11 21

1
11 21

t t t t

t t t

e e

−
∞

− − −− −

−

= → ∞ = → ∞ →∞

=

=

P P N D

V A A V

V V

Λ Λ  (5.19) 

The steady-state solution ∞P  is unique, it does not depend on the initial values of N  and D . The 
steady-state solution exists if the eigenvector submatrix 21V  is invertible, that is ( )21det 0≠V . 
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5.1.6 Application to Navigation Error Filter 

The general solution (5.19) is now applied to the navigation error filter. The state vector contains the 
nine core navigation error states, which are the position, velocity and orientation errors. An analytical 
solution will be derived. This is charming because the approach is not iterative, the computing time is 
predictable and thus likewise suitable for offline and online performance predictions of the navigation 
error filter. Starting point is the linearized navigation error ODE in n -frame (2.7). The steady-state 
solution is only little influenced by the matrices 11F , 21F , 22F , 31F , 32F  and 33F  and thus these matrices 
will be set to zero in the following. Furthermore, the following two assumptions are made: 

• The measurements of the accelerometer and gyroscope triads are uncorrelated and have the 
same variance in all directions 

ω ωσ σ= =2 2
3 3,f fQ I Q I  (5.20) 

yielding a diagonal process noise matrix 

ω

 
=  
 

0

0
fQ

Q
Q

 (5.21) 

• The aiding measurement y  is a position measurement with Cartesian error equation 

( )δ δ=


0 0 ny D z

H

 
(5.22) 

with diagonal covariance matrix posR  and isotropic variance 

σ= 2
3pos posR I  (5.23) 

It is a well-known fact that the heading angle error ψ
nn  is not observable in straight and leveled flight. 

Generally spoken for arbitrary flight orientations, the angle error about the current acceleration 
direction b bf f  is not observable [12]. The Hamiltonian matrix Ψ  consequently has two eigenvalues 

0λ = , i.e. two eigenvalues on the imaginary axis. Therefore, according to (5.10), a unique solution 
cannot be found for the nine state problem. A way out is to introduce an auxiliary frame (called o -
frame) whose z -axis is just aligned to the current acceleration measurement. Then, the unobservable 
angle can be clearly separated from the remaining navigation states, which are the position, velocity 
and the two attitude angles ϕob  and ϑob . In the end, the found solution in o -frame has to be 
transformed back to n -frame. The transformation of the state vector δ nz  in n -frame to o -frame is 
accomplished by means of the transformation matrix onT  
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(5.24) 

The latitudinal, longitudinal and height errors are mapped to Cartesian errors in the o -frame. onR  is 
the transformation matrix between the n - and the auxiliary o -frame. It is composed of the o -frame 
basis vectors xe , ye  and ze  specified in n -frame 
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( )=
T

, , ,on x n y n z nR e e e  (5.25) 

The third basis vector points in the opposite direction of the current acceleration 

= −,z n nb b be R f f  (5.26) 

The first basis vector shall be orthogonal to the third one 
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e

R R R e e
 (5.27) 

The vectors ( ) ( ) ( )π π π
3 2 1 ,2 2 2 z nR R R e  and ,z ne  span a plane and the unit vector ,x ne  is normal to that 

plane. The three rotations by π 2  ensure that the two vectors are never co-linear. The second basis 
vector completes the orthonormal right hand system 

×
=

×
, ,

,
, ,
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z n x n

e e
e

e e
 (5.28) 

The navigation error ODE transformed to o -frame with omitted angle error ψ
oo  is 
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Therein, 
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and 
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0 1 0ob obR R  (5.31) 

The Hamiltonian matrix Ψ  of (5.6) is 

( )

( )

ω

−

×

−

−

×

 
 

− 
 
 

=  
 
 −
 
 
 









3

1

3 2

1

3

T
1

3 2

0 0 0 0 0

0 0 veck 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 veck 0

o f

pos

o

I

f Q

Q
R

I

f

Ψ  (5.32) 

Note that now 2
2ω ωσ=Q I . Next, the eigenvalues and eigenvectors of Ψ  are analytically calculated in 

section D.1 in the appendix. The eigenvalues λ −1 16  are according to (D.14) and (D.16) 
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 (5.33) 
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Using the eigenvectors (D.20), the steady-state solution is according to (5.19) 1
, 11 21zz

−
∞ =P V V  with the 

numerator matrix 

1 1 3 3 5 5

7 7 9 9 11 11
3 2 3 2
13 15

2 2 2
1 1 3 3 5 5

11 2 2 2
7 7 9 9 11 11

4 2 4 2
13 15

7 9 11

1 3 5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

f f

f f

A A A

A A A

A A A

A A A

B B B

B B B

λ λ λ
λ λ λ

λ σ λ σ
λ λ λ

λ λ λ
λ σ λ σ

 
 
 
 
 
 =  
 
 
 − − − 
 
 

V  (5.34) 

and the denominator matrix 
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where 

ω ωλ σ σ λ σ= − = 

22 2 2 3 2: , :i i f b i i bA Bf f  (5.36) 

The searched steady-state solution is thus finally 
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5.1.7 Example 

The correctness of the found solution is verified by means of a simulation example. The calculated 
steady-state solution is compared with the predicted covariance of the CKF. For that, a non-
accelerated straight and leveled flight with 100 m/s in northern and eastern directions is considered. 
IMU 2 (Table E-5) provides measurements with 100 Hz sample rate. The measurements are only 
affected by velocity/angular random walk noise N . The inertial navigation solution is aided by 1 Hz 
position measurements with isotropic standard deviation of 2 m. The position error is shown in Figure 
5-1, the velocity error in Figure 5-2 and the orientation error in Figure 5-3. The blue dotted lines are 
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the σ3  boundaries predicted by the CKF. The red dotted lines are the calculated steady-state 
solutions. It can be observed that there is a good coincidence between the CKF solution and the 
calculated steady-state solution at the end of the simulation. 

 
Figure 5-1: Position error and 3σ  boundaries (dotted, blue: filter prediction, red: steady-state) 

 
Figure 5-2: Velocity error and 3σ  boundaries (dotted, blue: filter prediction, red: steady-state) 

 
Figure 5-3: Orientation error and 3σ  boundaries (dotted, blue: filter prediction, red: steady-state) 
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5.2 Kalman Filter Stability 

5.2.1 Motivation 

During the numerous simulations that have been conducted in the context of this thesis cases were 
observed from time to time in which the Kalman filter solution immediately became unstable. The 
computed state covariance matrix quickly diverged although the initial covariance matrix 0P , the 
process noise covariance matrix Q  and the measurement noise covariance matrix R  were well posed, 
symmetric and positive definite. When looking in detail into the concerned algorithms, the reason of 
the instability became clear. In the covariance update equation the transposed covariance matrix TP  
was used instead of the covariance matrix P , ( )+ −= − T

k n k k kP I K H P . When programming the 
algorithm, it seemed to be irrelevant if the covariance matrix P  itself or its transpose is inserted 
because, in theory, the covariance matrix P  is symmetric, that is = TP P . However, it turned out that 
numerical effects like rounding errors led to a gradual desymmetrization of the covariance matrix and 
subsequently to the destabilization of the filter in the case of the transposed covariance matrix, in 
contrast to the normal, non-transposed case where the destabilization could not be observed. The first 
conclusion of the observation was that it is irremissible to use a stability enhancement method to 
mitigate the negative destabilizing effect of numerical errors. A simple but effective method is to 
occasionally add the covariance and its transpose, ( )+ + += + T1

2k k kP P P . Alternatively, but 
computationally more expansive, Joseph’s form of the covariance update equation can be applied, 
which inherently induces symmetry without further measures. At second glance, the interesting 
question arose how this effect can be explained mathematically. In the following, an attempt is made 
to give an answer to this question. The answer is especially important when delayed measurements are 
processed with the measurement prediction or history state update methods. There, a similar effect 
that stems from the same reason occurs in the derived equations nominally. In this case, symmetry 
enhancement is compulsory. In literature, many contributions can be found that deal with the stability 
analysis of Kalman filter, for example with regard to process noise uncertainties or numerical 
approximations as discussed in [116] or [117], but not with this special issue. 

5.2.2 Discrete-Time Kalman Filter Variants to be Analyzed 

Four different Kalman filter variants, defined by 
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Propagation

Update

Variant (1)

Variant (2)

Variant (3)

Variant (4)

Φ Φ Γ Γ=

T

 (5.38) 

shall be analyzed in terms of their stability. The state covariance propagation and the calculation of 
the innovation covariance kS  are the same for all four variants. The four variants vary in the 
calculation of the Kalman gain and the covariance update. The first variant is the CKF (2.11) and 
serves as reference. In the second variant, the a priori covariance matrix −

kP  in the Kalman gain 
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equation is transposed. In the third variant, the a priori covariance matrix −
kP  is transposed in the 

covariance update equation. Finally, in the fourth variant, the a priori covariance matrices in the 
Kalman gain as well as in the covariance update equation are transposed. Other variants are possible 
and have been analyzed but go beyond the scope of this thesis. The destabilization of the filter has 
been observed in the variants (2) – (4). Variant (3) is relevant for the delayed measurement processing. 
In general, it can be assumed that the discrete-time difference equation (5.1) and its continuous-time 
differential correspondent (5.3) have similar dynamic behavior if the time step size of the discrete-
time difference equation ∆t  is sufficiently small. The stability analysis should thus be possible in 
discrete- as well as continuous-time domain. Statements concerning the stability that are made for 
discrete-time filters are likewise valid for continuous-time filters and vice versa. It turned out to be 
advantageous to examine the stability in continuous-time due to the comprehensive theory of Riccati, 
Sylvester and Lyapunov differential equations. Therefore, the four variants are converted from 
discrete-time to continuous-time next. 

5.2.3 Conversion to Continuous-Time Differential Equations 

The continuous-time version of variant (1) is the conventional Riccati equation (5.3). The conversion 
of variant (2) is carried out in the same way as in the case of the CKF. The covariance update equation 
is inserted into the propagation equation. With the discretized system and input matrices 

( )2
n t t= + ∆ + ∆I FΦ  , ( )2t t= ∆ + ∆GΓ   and = ∆k tQ Q  one gets 

( )
( ) ( ) ( )

1 1
T T 2

1 1 1 1

k n k k

n k k n k k t t t

− −
− −

− −
− − − −

= −
 + − + − ∆ + ∆ + ∆ 

P I K H P
F I K H P I K H P F GQ G 

 (5.39) 

The difference quotient is formed 

( ) ( ) ( )T T1 1 1
1 1 1 1

k k k k
n k k n k k t

t t

− − −
− −− − −

− − − −

−
= − + − + − + + ∆

∆ ∆
P P K HP

F I K H P I K H P F GQ G   (5.40) 

With = ∆k tR R  the Kalman gain becomes 

( )−− −
− − −= + ∆ ∆

1T T T
1 1 1k k k t tK P H R HP H  (5.41) 

Inserting the Kalman gain −1kK  into the difference quotient (5.40) and letting the time step size ∆t  
converge against zero yields the differential quotient 

− −
− − − − −−
− − − −∆ →

−
= − + + +

∆
T T 1 T T1

1 1 1 10
lim k k

k k k kt t
P P

P H R HP FP P F GQ G  (5.42) 

which is a Riccati like differential equation but with transposed covariance in the quadratic term 

( ) ( ) ( ) ( ) ( )−= − + + +

T T 1 T Tt t t t tP P H R HP FP P F GQ G  (5.43) 

In variant (3) the combined covariance propagation and update equation is 
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Analogous to the previous case, the difference quotient is formed 
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5 Navigation Filter Performance Prediction and Stability 

256 

With the conventional Kalman gain the differential quotient 
− −

− − − − −−
− − − −∆ →

−
= − + + +

∆
T 1 T T T1

1 1 1 10
lim k k

k k k kt t
P P

P H R HP FP P F GQ G  (5.46) 

leads to the Riccati like differential equation 

( ) ( ) ( ) ( ) ( )−= − + + +

T 1 T T Tt t t t tP P H R HP FP P F GQ G  (5.47) 

In this case the rear covariance in the quadratic term is transposed compared to the conventional 
Riccati equation. 
The conversion of variant (4) is a little bit more complicated because two subsequent time steps are 
involved. In accordance with (5.39) the covariance propagation between time −1kt  and kt  can be 
expressed as 
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Equally, the covariance propagation between −2kt  and −1kt  is 
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Inserting (5.49) in (5.48) and forming the difference quotient yields 
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With the Kalman gains 
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the differential quotient becomes 
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which is a Riccati like differential equation with two superposed quadratic terms 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )− −= − + + + +

T 1 T T T 1 T T1
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The continuous-time differential equations are summarized for the four different variants 
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 (5.54) 

The time argument ( )t  is omitted for convenience. 

5.2.4 Covariance Error Differential Equations 

In this section the covariance error differential equations are derived for the four different variants in 
order to predict the dynamic behavior of errors (for example rounding errors due to limited number 
representation). The true, that is error-free state, process noise and inverse measurement noise 
covariance matrices are split into erroneous and perturbation matrices 

1 1 1

δ

δ

δ− − −

= +

= +

= +

P P P

Q Q Q

R R R







 (5.55) 

Inserting these split matrices into the covariance differential equation (5.3) yields 
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 (5.56) 

The erroneous matrices P , Q  and −


1R  fulfill the Riccati equation exactly 

−= − + + +

     

T 1 T TP PH R HP FP PF GQ G  (5.57) 

The differential equation for the perturbation covariance matrix becomes 
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The same is repeated with variants (2) – (4) 
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Next, the covariance P  as well as the covariance error δP  are split into symmetric and asymmetric 
that is skew-symmetric parts 

δ δ δ= + = +   ,s a s aP P P P P P  (5.60) 
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Since the error-free covariance δ δ δ= + = + + +  

s a s aP P P P P P P  is symmetric, the following relation 
between aP  and δ aP  has to hold 

δ= −

a aP P  (5.61) 

The inverse measurement noise covariance error δ −1R  and the process noise covariance error δQ  
are also parted into symmetric and asymmetric matrices 

δ δ δ δ δ δ− − −= + = +1 1 1 ,s a s aR R R Q Q Q  (5.62) 

Inserting these split matrices into the covariance error differential equation of variant (1) yields 
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 (5.63) 

After using relation (5.61), cancelling double terms and reordering, the differential equation can be 
separated into a differential equation for the symmetric covariance error δ sP  and a differential 
equation for the asymmetric error δ aP . The symmetric differential equation, which contains only 
symmetric terms, is 
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 (5.64) 

The asymmetric differential equation is 
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     (5.65) 

The segmentation of the covariance error differential equation into symmetric and asymmetric 
equations is also done for the variants (2) – (4) in the same manner. The symmetric covariance error 
does not influence the stability of the Kalman filter. The asymmetric covariance error, however, may 
lead to a destabilization of the filter. The instability threat is particularly high if the asymmetric error 
differential equation is unstable or critically stable. The attention is therefore concentrated on the 
asymmetric error differential equations, which are recapitulated for the four variants 
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 (5.66) 

It can be easily observed that the variants (2) – (4) have the same asymmetric error dynamics. Only 
the asymmetric error dynamics of the nominal case (1) differs.  
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5.2.5 Stability Analysis 

In this section it is analyzed if the asymmetric covariance error differential equations (5.66) are stable 
or not. In case of stability asymmetries coming for example from numerical rounding are continuously 
dampened. The solution of the covariance differential equation is hence stable. Otherwise, the 
asymmetric error will continuously grow and finally destabilize the filter solution. A glance on the 
asymmetric covariance error differential equations (5.66) clarifies that the differential equations are 
generally of Riccati type. 
Since the measurement covariance matrix R  and the process noise covariance matrix Q  are often 
given, or can be symmetrized before using in the algorithm, the asymmetrical errors δ −1

aR  and δ aQ  
can be assumed to be zero 
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 (5.67) 

The simplified asymmetric covariance error differential equations (5.67) are then homogeneous 
Lyapunov differential equations 

( ) ( ) ( ) ( )δ δ δ δ δ= + =

T
,0 0,a a a a at t t tP M P P M P P  (5.68) 

with T 1
s

−= −M F P H R H  in variant (1) and =M F  in variants (2), (3) and (4). The unique solution of 
the homogeneous Lyapunov differential equation (5.68) is given with 

( ) ( ) ( )( )δ δ− −= 0 0
T

,0
t t t t

a at e eM MP P  (5.69) 

It can be easily seen that an initial asymmetric covariance error δ ,0aP  decays if the matrix M  is stable. 
M  is stable if the real parts of all eigenvalues of M  are negative, ( )( )λ <Re 0i M . The asymmetric 
error does not grow at least if M  is neutrally stable, that is the real parts of the eigenvalues of the 
matrix M  are negative or zero, ( )( )λ ≤Re 0i M . However, if there are one or more eigenvalues with 
positive real part, ( )( )λ >Re 0i M , the initial asymmetric covariance error δ ,0aP  will continuously 
increase with time. 
If the asymmetric error is stable, the solutions of the differential equations (5.54) are stable and vice 
versa, if the asymmetric error is unstable, the differential equations (5.54) are unstable. The same can 
be stated for the corresponding discrete-time difference equations (5.38). (5.69) describes the principal 
dynamic behavior of asymmetric covariance errors. It is not only valid for the initial error δ ,0aP  at 
time 0t  but for all asymmetries ( )δ a tP  that occur during the runtime of the filter. (5.69) illustrates if 
and how fast numerical asymmetries due to rounding are dampened. Consequently, the eigenvalues 
of the matrix M  have to be analyzed in order to make a statement about the stability of the filter 
equations. Let this be exemplified. Assume that the navigation error filter is set up in e -frame. The 
navigation error ODE is given in (2.6). If the filter receives a position aiding measurement with 
covariance posR , the matrix −T 1H R H  becomes 

− −

−

 ∆
 

=  
 
 

1 1
3 3

T 1
3 3 3

3 3 3

pos postR 0 0
H R H 0 0 0

0 0 0
 (5.70) 

where − −∆1 1
pos postR  takes the relation between the discrete- and continuous-time measurement 

covariance matrices (5.4) into account. ∆ post  is the sample time of the position measurement. It is 
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assumed that the three directions of the position measurement are independent and isotropic and thus 
the measurement covariance matrix is diagonal, σ= 2

3pos posR I . The symmetric navigation error state 
covariance matrix sP  is block-partitioned as follows 

 
 

=  
 
 

  

   

  

11, 12, 13,

21, 22, 23,
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s s s

s s s s

s s s
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 (5.71) 

The matrix M  of variant (1) is hence 

( )
− −

− − − −

− −

 − ∆
 
 = − = − ∆ −
 
 − ∆ − 





  



1 1
11, 3 3

T 1 1 1 1
21, 3

1 1
31, 3

veck
s pos pos

s e s pos pos e

s pos pos ie

t

t

t

P R I 0

M F P H R H P R 0 f

P R 0

Γ

Ω
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and of variants (2), (3) and (4) 

( )−

 
 

= = − 
 − 





3 3 3
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ie
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The eigenvalues λi  of both matrices are obtained by solving the characteristic equation 

( )9det 0λ − =I M  (5.74) 

The characteristic equation of variant (1) is given with 
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which becomes after some conversions 

( ) ( )( )( )( )λ λ λ λ −− − −+ ⋅ − + + − + ∆ =


   

12 1 1 1
3 3 11, 21, 3 31,det det veck 0ie e s s e ie s pos postI I P P f I P RΩ Γ Ω  (5.76) 

If the determinants would be calculated, one would obtain a general 6th order polynomial for the 
eigenvalues of the second determinant, which cannot be solved analytically. Therefore, the eigenvalues 
have to be found by means of simulation. A statement about the stability is thus postponed to the 
numerical evaluation in the following. The situation turns out to be much simpler for the variants (2), 
(3) and (4). Here, the characteristic equation is given with 

( ) ( ) ( )
3 3 3

1 3 1
3 3 3

3 3 3
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ie

λ
λ λ λ λ λ
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− −
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  (5.77) 

Solving the characteristic equation yields the eigenvalues of the variants (2), (3) and (4) 

{ }λ ω ω ω ω ω ω ω ω= − − + + − + + −, , , , 2 , 2 , , , 0s s s s s s ie iei i i i i i  (5.78) 

where ω = 3
s GM r  is the Schuler frequency with the gravity constant GM  and the norm of the 

position vector = er x . It can be observed that seven eigenvalues lie directly on the imaginary axis, 
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one on the negative real axis and one on the positive real axis. This means that there are one stable, 
seven asymptotically stable and one unstable eigenvalue. The unstable eigenvalue arises from the 
unstable height channel. Due to the majority of asymptotically stable and unstable eigenvalues, it 
becomes obvious that asymmetric covariance errors once captured in the covariance matrix are not 
dampened but are even amplified, which quickly leads to the observed destabilization of the filter. 
The found results shall be substantiated by numerical values. Assume the following situation: 

• The navigation system is stationary at the position φ = 0 , λ = 0 , = 0h . 
• The state error covariance P  is directly initialized with the steady-state solution sP . 
• The sample rate of the accelerometer and gyroscope measurements is 100 Hz. The 

measurements are affected by purely white noise with densities of 0.25 mg/ Hz  ( σ1 ) and 
0.3 °/ h  ( σ1 ), respectively. 

• The system is aided by a three dimensional position measurement. The sample rate is 100 Hz. 
The measurement error is white noise with 3 m standard deviation ( σ1 ). The measurement 
error covariance matrix is diagonal and isotropic, σ= 2

3pos posR I . 

At first, the eigenvalues of (5.72) and (5.73) are computed. Then, the solutions of the discrete-time 
covariance Kalman filter equations (5.38), the corresponding continuous-time covariance Riccati 
equations (5.54) and the continuous-time asymmetric covariance error Riccati equations (5.67) are 
analyzed and compared. For that, the initial steady-state covariance matrix is superposed with small 
symmetric and asymmetric error covariances 

δ δ= − −0 s s aP P P P  (5.79) 

The initial covariance error is taken as 

δ =0 0.1P L  (5.80) 

where L  is the lower triangular matrix of sP , with the main diagonal also set to zero. The symmetric 
covariance error matrix is derived as 

( )δ δ δ= + T1
0 02sP P P  (5.81) 

and the asymmetric covariance error as 

( )δ δ δ= − T1
0 02aP P P  (5.82) 

The differential matrix equations are integrated with 8th order Runge-Kutta integration scheme. In the 
following, variant (1) and variant (3), which is representative for the two other variants (2) and (4), are 
analyzed. The eigenvalues of variant (1) at the beginning just after initialization are computed as 
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The eigenvalues of variant (3) are 
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The eigenvalues of variant (1) and variant (3) are illustrated in Figure 5-4. It can be seen that all 
eigenvalues of variant (1) except the zero eigenvalue lie in the left side of the complex plane. The 
asymmetric error dynamics are stable. The eigenvalues of variant (3), except one are, however, unstable 
or asymptotically stable, as predicted in (5.78). The asymmetric error dynamics are unstable. In Figure 
5-5 the asymmetric error of variant (1) and in Figure 5-6 the asymmetric error of variant (3) are plotted 
for the first hundred seconds. The blue curves illustrate the asymmetric error of the solution of the 
continuous-time differential equations (5.54). The red curves represent the asymmetric error of the 
solution of the discrete-time Kalman filter equations (5.38). The green curves are the solutions of the 
asymmetric error differential equations (5.66). In Figure 5-5 it can be seen that there is a good 
coincidence of the blue, red and green curves. This means on the one hand that the initial idea to 
analyze the continuous-time differential equations instead of the discrete-time Kalman filter equations 
is justified and on the other hand that the derived differential equation for the asymmetric covariance 
error represents the actual asymmetric covariance error of the Kalman filter solution well. It can be 
observed that all initial asymmetries are reduced to values near zero in the initial settlement phase. The 
solution of the nominal filter is stable. In Figure 5-6 the green curves lie exactly on the blue curves. 
This means that the continuous-time differential equation and the asymmetric error differential 
equation yield same results. The discrete-time solution and the continuous-time solution slightly 
deviate from each other. However, the trends of all curves are equal. It can be seen that the asymmetric 
error increases and is not dampened as in the case of variant (1). The filter is unstable. 

  

Figure 5-4: Eigenvalues of variant (1) (left) and variant (3) (right) 
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Figure 5-5: Asymmetric covariance error of variant (1) 
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Figure 5-6: Asymmetric covariance error of variant (3) 
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5.2.6 Stability Enhancement 

Measures to enhance the filter stability are given in section D.2 in the appendix. 

5.2.7 Out-of-Sequence Measurement Stability Problem 

A subtleness concerning the stability of the covariance propagation and update that is inherent to all 
presented methods for delayed measurements has to be addressed. For the final update step, when 
the actual measurement value has been arrived, the cross-covariance matrix −

kjP  is required in the 
equations for the Kalman gain and the update of the state error covariance matrix, as derived in (4.125) 
and (4.127), 

( ) 1T T
, 1k kj j j j j k j

k k k j jk

−−
−

+ − −

= +

= −

K P H R H P H

P P K H P
 (5.85) 

Let us consider a simple example to illustrate the stability problem: assume that a navigation filter 
processes only aiding measurements of a single sensor, for example a GNSS receiver. The 
measurement is taken at time −1kt  and delivered to the navigation filter at time kt . There are no further 
interim updates of other sensors. The situation is depicted in Figure 5-7. The covariance at the instant 
of the measurement is −1kP . The covariance propagation from time −1kt  to the current time kt  is 
accomplished by a single propagation step 
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The Kalman gain and the covariance update at time kt  are 
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Following the procedure in section 5.2.3, the covariance update equation is converted from discrete-
time to continuous-time in order to make a statement about the stability of the filter for delayed 
measurements. The combined covariance propagation and update equation is 

+
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1 1 1 1 1 1 1 1 1k k k k k k k k k k kP P Q K H PΦ Φ Γ Γ Φ  (5.88) 

With the discretized system and input matrices ( )2
n t t= + ∆ + ∆I FΦ  , ( )2t t= ∆ + ∆GΓ   and 

= ∆k tQ Q  one gets 
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The difference quotient is formed 
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With = ∆k tR R  and the series expansion of the system matrix the Kalman gain becomes 
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Inserting the Kalman gain into the difference quotient and reducing the time step to infinitesimal size 
yields the differential quotient 

T 1 T
T T1 1 1 1 1

1 1 1 1 1 10
lim k k k k k k

k k k k k kt t t

+ −
− − − − −

− − − − − −∆ →

− −
= + + +

∆ ∆
P P P H R H P

F P P F G Q G  (5.92) 

which is a Riccati like differential equation but with transposed covariance in the quadratic term 

( ) ( ) ( ) ( ) ( )−= − + + +

T 1 T T Tt t t t tP P H R HP FP P F GQ G  (5.93) 

This continuous-time covariance propagation equation exactly corresponds to variant (3). In the 
stability analysis it turned out that variant (3) is unstable. Therefore, it is obligatory to use symmetry 
conserving Joseph’s form for the final covariance update or another stabilizing measure like the 
numerical symmetrization of the covariance matrix from time to time. Otherwise, the filter runs the 
risk to diverge quickly. 

 
Figure 5-7: Single delayed measurement without interim update 

5.2.8 Example 

The General Aviation Aircraft scenario (section E.1.2) is used as example to demonstrate the 
destabilization effect on the navigation state estimation error. IMU 2 (Table E-5) with 100 Hz sample 
rate is selected. The IMU measurements are solely affected by velocity/angular random walk noise N  
and turn-on biases. All other IMU errors are set to zero. A generic GPS receiver provides 1 Hz 
pseudorange measurements to six satellites in view, which are only falsified by white Gaussian noise 
with 2 m standard deviation. 
The position errors of variants (2), (3) and (4) are shown in Figure 5-8, Figure 5-9 and Figure 5-10. It 
is easily observable that variant (2) becomes unstable at second 310, variant(3) at second 322 and 
variant (4) at second 985. 

5.2.9 Conclusion 

The covariance propagation und update becomes unstable if the positive definiteness of the state error 
covariance is violated. This can happen if numerical errors are not adequately counteracted. It has 
been shown that if the transposed covariance matrix is used in the covariance update equations instead 
of the covariance matrix itself, which should make no difference from the mathematical point of view 
due to symmetry, the Kalman filter may get unstable. If measurement prediction or history state 
update methods are applied, the covariance propagation and update equations are innately unstable 
(variant(3)). It can be concluded that stabilization is compulsory in any case, even if the nominal variant 
(1) is implemented. 

kt1kt −

New measurement Measurement available

1k−Φ

t
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Figure 5-8: Position error and predicted 3σ  boundaries with variant (2) 

 
Figure 5-9: Position error and predicted 3σ  boundaries (dotted lines) with variant (3) 

 
Figure 5-10: Position error and predicted 3σ  boundaries (dotted lines) with variant (4) 
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6 Summary 

6.1 Detailed Summary of the Findings 

Reality modeling 

In order to increase the statistical consistency of the navigation solution and to simplify the tuning of 
the navigation filter, which is often understood as more or less heuristic process requiring some expert 
experience, physically motivated models that represent the magnitudes and temporal correlations of 
the sensor measurement and modeling errors correctly have been derived. ARMA models revealed to 
be adequate for all navigation errors throughout the thesis and provide a versatile way to describe the 
errors in a common context. The models are suitable for measurement synthesis in the simulation and 
can likewise be integrated into the navigation filter in a streamlined version. It has been identified 
which errors primarily affect the navigation solution and should be accounted for by the navigation 
filter. Furthermore, it has been analyzed if the character of the single error components is bias-like or 
rather noise-like and whether it is worthwhile to be estimated by the navigation filter or rather only to 
be considered in a statistical sense. It has been discussed what is the minimum number of additionally 
required states to depict the main share of the error but to minimize the extra numerical effort. The 
following errors have been regarded: 

• IMU errors 
The derived accelerometer and gyroscope error models represent turn-on biases, scale factor errors, 
bias and scale factor temperature sensitivities, inter-axis misalignments, velocity/angular random 
walk, bias instabilities, quantization noise and acceleration/angular rate random walk. The 
gyroscope error model additionally accounts for the linear acceleration cross-coupling and triad 
misorientations. The turn-on bias and scale factor errors are constant with time and can thus be 
ideally estimated by the navigation filter and used for in-flight calibration. They are easily integrated 
into the filter as additional scalar states for each axis. The constant misalignment errors, acceleration 
cross-coupling on the angular rates and misorientation angles of the gyroscope triad are generally 
not estimated but have to be considered in any case as supplemental scalar states due to their gross 
influence on the navigation state error. If temperature sensors are available, the constant 
temperature sensitivities can also be included as considered states in the same manner. Bias 
instabilities only have to be considered if the grade of the IMU is low. A first order model for each 
axis is already sufficient to cover the flicker noise character. For measurement synthesis purposes 
for simulation it is reasonable to use bias instability models up to fourth order. It has been 
demonstrated how the bias instability and velocity/angular random walk parameters are estimated 
from Allan deviations of recorded measurements of a stationary IMU. The influence of all other 
colored noise components like quantization noise is comparatively small and does not have to be 
considered in general. In future, the error models should be expanded by non-linearities including 
vibration rectification. 
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• Gravity model error 
By means of an exemplary flight across the Alps, it has been shown that the gravity compensation 
error is in the range of a tenth of a milli-g with correlation lengths of some tens of kilometers if a 
simple normal gravity model like Somigliana is used. This residual gravity error results in larger 
position deviations if the navigation system runs open loop without position aiding for longer 
times. Besides the usage of a higher order EGM2008 model the system designer can apply a 
stochastic model approach. The latter has been pursued by fitting a gravity disturbance model from 
literature to the framework of the integrated navigation system. Model parameters have been 
exemplarily estimated for the Alps region from the EGM2008 model with degree and order 2159. 
It has been revealed that the prediction of the navigation solution accuracy can be improved if the 
five additional states of the stochastic gravity disturbance model are considered in the navigation 
filter. However, this is only necessary if high accuracy is required and longer GNSS outage periods 
are expected, or if the navigation system is purely inertial without any GNSS aiding. Since the 
spatial correlation length of the stochastic process depends on the roughness of the terrain, 
different model parameters for the regions where the system shall be operated have to be estimated 
and stored. The model takes the diminishing influence of the gravity residual error with height into 
account. 

• Random vibration 
A convenient method for applications with strongly and unpredictably changing vibrational noise 
regimes like for example missiles with different sub-/supersonic flight phases with/without 
propulsion and with/without atmospheric disturbances has been presented. It has been described 
how the random vibration model is adapted online according to the current noise floor. The 
vibrational noise is represented by separate AR models per translational/rotational axis whose 
coefficients are estimated online by means of Burg’s method from an adjustable sliding window of 
half a second length, for example. Random vibrational noise is characterized by short correlation 
lengths and negative correlation. It has been revealed that low-order AR models (between third 
and seventh order) already yield satisfying results and that it is advisable to consider the time 
correlation of the noise in the navigation filter. The method has been verified by means of 
exemplary simulations using typical noise power spectra given in MIL-STD-810G. Moreover, it is 
advantageous that other process noise errors with short correlation times like the velocity random 
walk noise of the accelerometer are also automatically covered and hence do not have to be 
separately modeled. The online adaption of the model is not required if the vibrational regime is 
well known and does not change noticeably during operation. In this case, the model parameters 
can be tuned offline by means of records from flight experiments. 

• Satellite clock ephemeris error 
The comparison of 2012’s broadcast and precise GPS clock errors has illustrated that the residual 
clock error is bias-like with correlation times in the range of hours and magnitudes between 0.5 
and 4 meters and increases between subsequent upload cutovers, which occur roughly once per 
day. Smaller changes are experienced at dataset cutovers, taking place every two hours. These bias-
like pseudorange errors cause constant position offsets, especially if only few satellites are used or 
in view. Unsteady second order MIMO models have been proposed to describe the evolution of 
the correction coefficient errors 0faδ  and 1faδ  between upload cutovers. The satellite clock error 
depends on the satellite block type (IIA, IIR-A, IIR-B, IIR-M, IIF) and the activated clock (RB, 
CS). Another model has been derived for the short-term noise-like part of the residual clock error, 



 6.1 Detailed Summary of the Findings 

 271 

which is in the range of a decimeter. Model parameters have been estimated from the GPS clock 
errors in 2012. Simulation results have shown that the predicted position error covariance fits much 
better to the actual position error if the residual clock error models are considered in the navigation 
filter. Unfortunately, the current assignment of satellite and clock type to PRN is not contained in 
the broadcast navigation message and has to be uploaded into the navigation system by the user. 

• Satellite position ephemeris error 
The ephemeris orbit error is smaller than the satellite clock error. The radial error component, 
which primarily influences the pseudorange error, is in the range of a few decimeters. The error 
components feature twelve and two hour period oscillations. A model using the same structure as 
the second harmonic perturbations of GPS has been derived and the model parameters have been 
estimated form the orbit errors of the year 2012. In most cases, the additional expenses of the 
model are however disproportionate to the gain of accuracy. 

• Ionospheric delay 
After eliminating the slant effect, it has been observed that the ionospheric delay is bias-like with 
comparably long correlation lengths of half an hour or longer. Since the ionospheric intersection 
points are located far apart, the vertical ionospheric delays are different for each satellite in view 
but nevertheless strongly correlated. The ionospheric delays of the Klobuchar model with 
broadcast parameters, IGS TEC maps and the NeQuick2 model have been compared. Taken the 
TEC maps as reference, it could be seen that the NeQuick2 model yields more realistic results than 
the Klobuchar model. The NeQuick2 model is particularly suited for space launch applications like 
sounding rockets because it considers the exact signal path through the ionosphere and does not 
replace the ionosphere by a thin substitute shell. Since the NeQuick2 model depends only on one 
scalar input parameter, that is the mean sunspot number 12R , a very slowly changing value, the 
model is perfectly suited for the integration into the navigation filter. The unknown input parameter 
can be modeled as constant and estimated by the integrated navigation filter. In the simulation the 
estimated sunspot number slowly converged against a steady-state value and the predicted 
navigation error covariance coincided with the covariance of the actually realized errors. Since the 
residual ionospheric delay as well as the receiver clock bias primarily have an effect in height 
direction, both errors and the height error are strongly correlated amongst each other in the 
beginning. This correlation decreases only slowly with time due to the change of the satellite 
constellation. Galileo uses the NeQuickG model and broadcasts parameters within the navigation 
message for the calculation of the latitude dependent model input parameter. In this case, the 
ionospheric delay correction can be done completely outside of the navigation filter. 

• Tropospheric delay 
It is common practice to use a combination of zenith delay model like Saastamoinen’s and mapping 
function like Niell’s for the slant effect to compensate the hydrostatic and wet parts of the 
tropospheric delay. The models remove the largest share of the seasonally varying zenith delay. 
The residual tropospheric error in the range of one decimeter and correlation time of about half 
an hour can be represented by a stochastic model. A discrete-time state-space model has been 
derived from the well-known structure functions of small and large scale turbulent fluctuations 
mainly in clouds, basically using Kolmogorov’s turbulence theory. Because of the small magnitude, 
the modeling effort is only recommended for applications requiring highest accuracy. If the 
conventional troposphere models are applied, the residual tropospheric error can be neglected in 
most applications. 
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• Receiver clock bias and drift 
It has been seen that especially the receiver clock bias and the height error as well as the receiver 
clock drift and the downward directed velocity error are negatively correlated. This means that only 
the linear combination of these errors can be observed by the navigation filter and the navigation 
filter struggles to clearly distinguish between these errors. This in turn implies that if the receiver 
clock error uncertainties are simply represented by a large, over-bounded diagonal process noise 
covariance matrix, the predicted height error standard deviation is expected to be large, too, which 
might be problematic for flight guidance. Therefore, a more realistic receiver clock error model is 
necessary to ease the distinction between both errors. A two-state oscillator error model regarding 
the white frequency, flicker frequency and random walk frequency noise of the receiver oscillator 
has been derived. Model parameters have been exemplarily estimated from the PSDs given in the 
datasheets of two typical TCXO that are used in current GNSS receiver designs. 

• Receiver noise 
It is new that the actual tracking loop structure is involved in the calculation of the pseudorange 
and range rate measurement noise covariances. Experience has shown that the time correlation of 
the pseudorange and range rate measurements depends on the tracking loop filter order and the 
chosen bandwidths. Furthermore, the chosen discriminators (for example fixed or variable gain) 
play a decisive role. A tracking loop model of a third order FLL assisted PLL and a first order 
carrier aided DLL has been derived, which outputs the current pseudorange and range rate 
variances and needs the current carrier-to-noise ratio estimate of the receiver as input. The 
consideration of the actual tracking loop structure outperforms the common standard deviation 
assessment formulas, requires however that the user has insight into the tracking filter design. The 
time correlation of the raw measurements is the higher, the larger the bandwidths. Generally, if the 
update rate is 1 Hz, the correlation has not be considered in the integrated navigation filter. If 
higher update rates larger than 10 Hz are used, correlation may be present and should be considered 
in the navigation filter. It is a misleading assumption that higher GNSS pseudorange and range 
update rates provide higher accuracy because if the correlation is not considered, the resulting 
position error might be larger than with a lower update rate where the error is not correlated and 
correlation does not have to be accounted for by the integrated navigation filter. 
 

The used identification methods are however general and can also be applied to other sensors or 
model errors. 
Table 6-1 repeats again the derived reality models and the main facts. The number of additionally 
required states in the simulation on the one hand and in the filter implementation on the other hand 
are given in the ‘Number states’ column. The errors with ‘-’ entries are not generated by ARMA models 
in the simulation but synthesized otherwise. The satellite clock and orbit errors for example result 
because precise ephemeris are applied in the simulation and broadcast ephemeris are used by the GPS 
receiver. The estimate (E) / consider (C) flag gives a recommendation whether the error should be 
estimated by the navigation filter or rather considered only as colored process or measurement noise. 
In the last column the proposed covariance propagation interval of the error models are given. 
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Table 6-1: Overview over derived reality models 
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Efficiently increasing navigation filter consistency 

• Inertial navigation algorithms 
In general, it is assumed that the truncation error of the inertial navigation algorithm is adequately 
small and much smaller than all other errors. In high dynamic situations or under unfavorable 
coning and sculling motion, the numerical error can however have a large influence. A good 
understanding of the error characteristic of the chosen algorithm is essential. For that reason, three 
classes of inertial navigation algorithms with different truncation orders have been thoroughly 
investigated with respect to their numerical error propagation, robustness against noise and 
robustness against vibration. These are the conversion-integration-extrapolation algorithms, the 
newly derived single frequency algorithm and the well-known dual frequency algorithms for 
orientation. Generally, the higher the measurement noise, the less significant is the truncation order 
of the algorithm. Central conversion schemes of integrating IMU measurements in the CIE 
algorithms are more robust against noise and vibration than non-central integration schemes. The 
innovative single frequency approach turned out to be accurate and robust against noise and 
vibration. The dual frequency algorithms revealed even higher accuracy and robustness compared 
to the single frequency approach. In contrast to the single frequency approach the dual frequency 
algorithms provide only an output value every third or fourth input measurement value. Therefore, 
a combination of the dual frequency orientation algorithms, augmented by interim orientation 
extrapolation for example with the single frequency 1st order CIE, together with the position and 
velocity propagation equations of the single frequency approach would be a good possibility. 

• Navigation filter initialization 
The question has been answered how the orientation angles and the corresponding orientation 
error covariance are to be initialized in a statistically consistent manner either stationary before 
take-off or in flight. The focus was amongst others on the influence of the correlation between the 
initial orientation estimate and the IMU errors on the covariance prediction of the integrated 
navigation filter in the initial settlement period. If they are considered, predicted filter statistics are 
coherent from the beginning of the filter runtime. If they are neglected and the filter is initialized 
with a diagonal and over-bounded orientation error covariance matrix, it depends on the 
maneuvers how fast the filter settles to the correct covariances. It is therefore recommended to 
correctly initialize the orientation error covariance and the cross-covariances between orientation 
errors and accelerometer and gyroscope errors. The integrated acceleration measurement enables 
the initialization of orientation during highly accelerated flight sections. Simulations showed good 
performance with respect to accuracy and statistical consistency. 

• Out-of-sequence measurements 
Since the issue of measurement synchronization is central in an integrated navigation filter, which 
has to process measurements with different validity and delivery times, a Kalman filter for delayed 
measurements has been derived, which also copes with out-of-sequence arrivals of measurements. 
Three common techniques from literature, that is the state backward propagation, measurement 
prediction and history state update methods, have been compared and analyzed for their suitability 
in an integrated navigation filter. It has been found that the history state update method is most 
versatile since it can be easily embedded into the integrated navigation filter framework and is able 
to process delayed as well as out-of-sequence aiding measurements correctly from a statistical point 
of view. However, it has been seen that the additional effort is only necessary if the covariance 
changes considerably in the time between the actual measurement and the provision of the 
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measurement value. That might be the case if the measurement delay is long, or if the process noise 
input is large due to a low grade IMU, or in the initialization period, when the filter has not yet 
been settled and covariances still change a lot. If the IMU is high grade or the measurement delays 
are short, the innovation of each new aiding measurement is comparably small and the effect of 
the statistically correct update of the covariance matrix less significant. In this case, the history state 
update functionality can be switched off and it is sufficient to predict the measurement from the 
validity time to the current time with the current navigation state estimate and to use the current 
covariance estimate for the calculation of the innovation. It has been shown that the Kalman filter 
for delayed measurements is potentially unstable and measures to increase stability have to be taken. 

• Navigation filter state augmentation and avoidance of state augmentation for noise-like errors 
In order to make use of the derived error models and to improve filter performance with respect 
to statistical coherence, the integration of these error models into the navigation filter has been 
thoroughly analyzed. Bias-like errors with long correlation times can be estimated by the filter and 
for example used for in-flight calibration of sensor measurements. In this case, the core inertial 
navigation error model is simply augmented by the corresponding error models. For the noise-like 
errors with short correlation times, which are not estimated but only statistically considered, the 
well-known Schmidt-Kalman filter has been prepared for the usage in the context of integrated 
navigation. Templates are given for Schmidt-Kalman filters for process and measurement noise 
models. It is shown how more than one colored noise model in parallel is to be treated. The 
discussion is completed with a Schmidt-Kalman filter for out-of-sequence measurements. 

Navigation filter performance prediction and stability 

• Steady-state Kalman filter 
Analytical formulas for the quick calculation of the expected steady-state navigation accuracy have 
been derived. They can be applied in online integrity monitoring algorithms to assess the coherence 
of the predicted navigation error covariance or in mission planning tools where a large number of 
different scenarios and trajectories shall be quickly analyzed. The given formulas require much less 
computations than the iterative solution of the Kalman filter covariance equations. The formulas 
have been derived by applying a general solution method for DAREs to the integrated navigation 
problem. 

• Kalman filter stability 
It is a well-known fact that the Kalman filter based navigation filter can become unstable due to 
numerical errors violating the positive definiteness of the state error covariance matrix. It has been 
thoroughly analyzed which conditions favor the destabilization and the thesis gives a 
mathematically substantiated answer. In the course of this analysis it has been discovered that the 
Kalman filter equations for delayed measurements of the measurement prediction and history state 
update methods are inherently unstable. Additional stabilization enhancement measures or the use 
of Joseph’s form for the update are compulsory in this case. The analysis gives valuable hints for 
the robust implementation of the integrated navigation filter on an embedded system. 
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6.2 Significant Achievements of the Thesis beyond State-of-the-Art 

Reality modeling 

One of the key aspects of the reality modeling is the uniform and consistent description of the sensor 
and modeling errors of integrated navigation systems in a common mathematical context likewise 
suitable for simulation and real-time algorithms. The commonality and comprehensiveness of the 
presented methods for the analysis of the sensor and modeling data, identification of the model 
structure and estimation of the model parameters are the main achievement of the reality modeling 
chapter and cannot be found in the respective literature in this form to the best of the author’s 
knowledge. 
Moreover, the following models shall be highlighted once again since they are novel and have not 
been published to date in this way: 

• The process noise model which is adapted in real-time to represent the current magnitude and time 
correlation of the process noise for example due to varying random vibration 

• The satellite clock and orbit error models that consider amongst others the upload and dataset 
cutovers of the broadcast navigation messages and the revolution period of the satellites 

• The NeQuick2 model for ionosphere compensation with the estimation of the scalar sunspot 
number parameter by the navigation filter 

• The receiver clock model that considers the white frequency, flicker frequency and random walk 
frequency noise of the local oscillator 

• The pseudorange noise model that does not use the well-known assessment formulas but the actual 
tracking loop structure and discriminators since these have amongst others a large influence on the 
magnitude and correlation of the noise 

Efficiently increasing navigation filter consistency 

• Inertial navigation algorithms 
The single frequency inertial navigation algorithm for integrating IMU is novel. Its performance 
can keep up with the conventional dual frequency algorithms, which do not output a new state 
estimate for each new IMU sample and provide only orientation. The comprehensive comparison 
of the CIE algorithms, the single frequency approach and dual frequency algorithms is helpful for 
system designers. 

• Navigation filter initialization 
In literature, it is most often proposed to initialize the navigation error covariance with a diagonal, 
over-bounded covariance matrix and to let it settle in the initial settlement phase by means of the 
filter. The statistically correct initialization, which regards correlations, and the analysis of the effect 
of the diagonal simplification however provide a new contribution to the effort to increase 
consistency. Furthermore, the in-flight orientation angle estimation by means of the TRIAD 
method and the integrated acceleration observation is a novel approach that has not been published 
up to date. 

• Out-of-sequence measurements 
The three presented methods are in fact individually well described in literature. It is new to present 
them in the same mathematical context and to reveal the commonalities and differences. The 
templates help the system designer to implement the adapted filter algorithms even for a Schmidt-
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Kalman filter with out-of-sequence-measurements. Moreover, to the author’s best knowledge, the 
instability issue of the Kalman filter for delayed measurements has not been addressed in the 
respective literature so far. Furthermore, the judgement of the influence of delays and out-of-
sequence arrivals is helpful. 

• Navigation filter state augmentation and avoidance of state augmentation for noise-like errors 
The Kalman filter and Schmidt-Kalman filter are well-known and widely used estimation tools. 
The thesis describes in detail the application of the general Schmidt-Kalman filter equations to the 
integrated navigation problem and derives the formulas for multiple simultaneous process and 
measurement noises to be statistically considered but not estimated. The focus is on the 
implementation in an embedded system, which is emphasized by the comprehensive templates. 
Interesting side aspects like the distinction of covariance propagation equations with and without 
preceding updates complete the discussion. 

Navigation filter performance prediction and stability 

• Steady-state Kalman filter 
The analytical non-iterative formulas for the fast assessment of the steady-state navigation error 
covariance in quasi-stationary flight phases could not be found in literature during the research, 
but may be very useful for the quick computation of the expected steady-state solution of many 
different scenarios for example in mission planning tools. 

• Kalman filter stability 
Finally, the destabilization mechanisms, which are invoked if transposed covariance matrices are 
used in the Kalman filter equations, have not been analyzed so far in this manner to the author’s 
best knowledge. Very interesting is the connection between this analysis and the Kalman filter 
equations for delayed measurements. 
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A Preliminaries 

A.1 Quaternions 
Quaternions q

  are hyper-complex numbers with three imaginary parts 

( )0 0 1 2 3: ,q q q q i q j q k= = + ⋅ + ⋅ + ⋅q
  (A.1) 

with the real part 0q  and the imaginary parts combined in the vector ( )T

1 2 3q q q=q . The 
mathematician Arthur Cayley found a way to use quaternions as rotation parameters by interpreting 
them as follows 

0 cos
2

sin
2

q α

α

=

= ⋅q n
 (A.2) 

Therein, n  is the unit vector about which the frame has to be rotated with angle α  to obtain the 
target frame. The rotation matrix R  is expressed with the quaternion rotation parameters q

  with 

( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 12 2 2 2

0 1 2 3 2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2
1

2 2

2 2

q q q q q q q q q q q q
q q q q q q q q q q q q q

q q q q
q q q q q q q q q q q q

 + − − − +
 

= + − + − − + + +  − + − − + 

R
  (A.3) 

It is easy to show that ( ) ( )T
3q q⋅ =R R I

   and ( )( )det 1q = +R
  such that the matrix R  actually belongs 

to the special orthogonal group SO(3), and thus fulfills all properties of a rotation matrix. 
The quaternion multiplication, which is for example required in the rotation ODE (2.1), is given with 

( ) ( ) ( )T
0 0 0 0 0 0, , ,q p q p q p q p⋅ = ⋅ = − + + ×q p q p p q q p

   (A.4) 

The quaternion inverse 1q−  is defined such that ( )1 1,q q−⋅ = 0
   

( )1
02 2 2 2

0 1 2 3

1
,q q

q q q q
− = −

+ + +
q

  (A.5) 

A.2 Derivation of the Inertial Navigation Error ODE 
First, the orientation error differential equation is derived. The derivation begins with the direction 
cosine matrix orientation differential equation 

eb eb ib ie eb= −R R Ω Ω R  (A.6) 

with ( )1veckib ib
−=Ω ω  and ( )1veckie ie

−=Ω ω  which is alternative to the quaternion version in (2.1). 
The error-free direction cosine matrix ebR  is split into the small erroneous rotation eeR



 and the 
erroneous rotation ebR



 and the gyroscope measurement ibω  is perturbed 
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,eb ee eb ib ib ibδ= = +R R R Ω Ω Ω
 

  (A.7) 

The Earth rate ieω  is assumed to be perfectly known. (A.6) becomes 

( ) ( )d
d ee eb ee eb ib ib ie ee ebt

δ= + −R R R R Ω Ω Ω R R
     

  (A.8) 

The left hand side can be further expressed as 

( ) ( )d
d ee eb ee eb ee eb ee eb ee eb ib ie ebt

= + = + −R R R R R R R R R R Ω Ω R
          

     (A.9) 

The differential equation (A.8) can thus be written as 

( ) ( )ee eb ee eb ib ib ie ee eb ee eb ib ie ebδ= + − − −R R R R Ω Ω Ω R R R R Ω Ω R
        

    (A.10) 

It is assumed that the erroneous values fulfill (A.6) 

eb eb ib ie eb= −R R Ω Ω R
  

   (A.11) 

such that (A.10) simplifies to 

( )T
ee ee eb ib eb ie ie eeδ= + −R R R Ω R Ω Ω R
    

  (A.12) 

Solving this matrix differential equation explicitly for the derivatives of the three angle errors yields 

( )
( )
( )

, , ,

, ,

, ,

sin tan cos tan
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sin cos
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y z
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 (A.13) 

Next, small angle approximations are applied to the trigonometric functions 

, ,

, ,
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z x
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ib e ie ib eee ee

ee ib e ie ee ib e
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 (A.14) 

and finally the bilinear navigation state and gyroscope error terms are neglected to obtain the linear 
equation 

( )1veckee ie ee eb ibδ−− +Rω ω
  


ψ ψ  (A.15) 

Now, the translational inertial navigation error ODE are derived. For that, the position and velocity 
ODE in (2.1) are perturbed with e e eδ= +x x x , e e eδ= +v v v  and eb ee eb=R R R

 

 

( ) ( ) ( )2

e e e e

e e ee eb e e iee e e eb b

δ δ

δ δδ δδ

+ = +

+ = + + − ×+ ++R R

x x v v

v v γ γ ωx x v vf f
 



  





    

 (A.16) 

As in the rotational case it is assumed that the approximations fulfill the basic equations (2.1) 

( ) 2

e e

e eb b e ie ee

=

= + − ×R

x v

v f γ ω vx




 

 

  

 (A.17) 

and the nonlinear position and velocity error ODE (A.16) become 
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( ) ( ) ( )3 2

e e

e eb b ee eb b e e e ie eee e e e

δ δ

δ δ δ δδ

=

= + + − + − ×− +R R RR I

x v

v f f γ γ γ ω vx x x
  





   

 (A.18) 

The rotation error matrix is substituted by 3 . . .ee ee h o t= + +R I Ψ
 

 in the velocity error equation 

( ) ( )
( ) ( )

3 . . .. . .

2
e eb b ee eb bee

e e e ie ee e e

h o th o tδ δ

δ δδ

= + + ++

+ − + − ×+

R Iv f Ψ R fΨ

γ γ γ ω vx x x
  





  

 (A.19) 

The higher order error terms are neglected to obtain the linearized velocity error ODE and the first 
cross product is flipped 

( ) ( ) ( )1veck 2e eb b ee eb b e e e ie ee e eδ δ δ δδ−− + + − + − ×+Rv f ψ R f γ γ γ ω vx x x
  



   

  (A.20) 

Finally, Earth’s gravity model has to be linearized 

( )( ) ( )
T

2
e

e e
e eb eb b ee eb b e e ie e

e

δ δ δ δ δ
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− × + + − ×+
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γ x
v R f ψ R f x γ ω v
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 ψ  (A.21) 

The error ODE for position, velocity and orientation are written in a linear system 
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 (A.22) 

A.3 Block Matrices of the n-frame Inertial Navigation Error ODE 
In this section the block matrices 11F , 21F , 22F , 31F , 32F  and 33F  of the system matrix in (2.7) are given 
for the sake of completeness without derivation 
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 (A.23) 

where ( )T
, , hφ λ=λ  is a vector with the WGS84 geodetic coordinates, enΩ  is the skew-symmetric 

matrix of the transport rate, ( )1vecken en
−=Ω ω , inω  is the sum of Earth rate and transport rate, 

in ie en= +ω ω ω , and inΩ  is the skew-symmetric matrix of inω , ( )1veckin in
−=Ω ω . 
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B Reality Modeling 

B.1 Autocorrelation Matrix of the Gravity Disturbance Vector 
It can be shown that the autocorrelation function of the gravity disturbance in north direction is the 
negative second derivative of the disturbing gravity potential autocorrelation function (3.75) with 
respect to the north direction nx  

( ) ( ) ( ) ( )
δγ δγ

∂ ∂ ∂ ∂ ∂
= − = − ⋅ − ⋅ ∂ ∂∂ ∂ ∂ 

22 2 2

2 2 2n n

TT TT TT

nn n

R r R r R rr r
R r

x rx r x
 (B.1) 

The autocorrelation function of the gravity disturbance in east direction is accordingly the negative 
second derivative of the disturbing gravity potential autocorrelation function (3.75) with respect to 
the east direction ex  

( ) ( ) ( ) ( )22 2 2

2 2 2e e

TT TT TT

ee e

R r R r R rr r
R r

x rx r xδγ δγ

∂ ∂ ∂ ∂ ∂
= − = − ⋅ − ⋅ ∂ ∂∂ ∂ ∂ 

 (B.2) 

The cross-correlation function of the gravity disturbance in north and east direction is the negative 
partial derivative of the disturbing gravity potential autocorrelation function (3.75) with respect to the 
north and east directions nx  and ex  

( ) ( ) ( ) ( )
δγ δγ

∂ ∂ ∂  ∂ ∂ ∂ ∂
= − = − ⋅ ⋅ − ⋅  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  

2 2

2n e

TT TT TT

n e n e n e

R r R r R rr r r
R r

x x x x r x xr
 (B.3) 

The autocorrelation function of the gravity disturbance in down direction is given by the Vening-
Meinesz formula 

( ) ( ) ( )δγ δγ δγ δγ δγ δγ= +
d d n n e e

R r R r R r  (B.4) 

In [38] the different correlation functions are derived in detail. The spatial autocorrelation function 
matrix of the gravity disturbance vector at height = 0h  is given by 

( )
( ) ( )
( ) ( )

( )
2

2 2 2
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0

0 0

1 cos sin cos 0

sin cos 1 sin 0

0 0 2

n n n e

n n e n e e

d d

r
T

R r R r

r R r R r

R r

r r
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δγ δγ δγ δγ

δ δ δγ δγ δγ δγ

δγ δγ

β

β χ β χ χ
σ β β χ χ β χ

β

−

 
 

=  
  
 

 − −
 

= − − 
 − 

R γ γ

 (B.5) 

where the north and east directions nx  and ex  have been replaced by the radial distance r  and the 
flight track angle χ  

χ
χ

=

=

cos

sin
n

e

x r

x r
 (B.6) 
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With the transformation matrix 

( )
χ χ

χ χ χ

 −
 
 
 
 

3

cos sin 0

sin cos 0

0 0 1

R =  (B.7) 

the spatial autocorrelation function matrix δ δn n
R γ γ  can be expressed with the autocorrelation function 

matrix that is aligned with the along- and cross-track directions of the flight trajectory 

( ) ( ) ( )2 2 T
3 3

1 0 0

0 1 0

0 0 2
n n

r
T

r

r e

r

β
δ δ

β
σ β χ χ

β

−

 −
 

= ⋅ ⋅ ⋅ 
 − 

R R Rγ γ  (B.8) 

 

It can be seen that the along- and cross-track errors are not correlated. 

B.2 Satellite Track Frame 
In this section the satellite track frame ( t -frame) is introduced. The origin tP  of the t -frame is the 
APC of the satellite. As illustrated in Figure B-1, the x -axis unit vector 1t  points into along-track 
direction, that is the direction of the current satellite velocity w.r.t. Earth eV . The y -axis unit vector 

2t  points into cross-track direction, thus orthogonal to the orbit plane, which is spanned by the 
current satellite velocity and position w.r.t. Earth. The z -axis unit vector 3t  in radial direction 
completes the right hand system. The three unit vectors 1t , 2t , 3t  and the corresponding 
transformation matrix between t - and e -frame etR  are 

( ) ( )
( )

 × ××
 = =
 × × × 

1 2 3, , , , e e ee e e
et e

e e e e e e

V V XV V X
R t t t

V V X V V X
 (B.9) 

Note that the z -axis generally coincides neither with the direction of the satellite position vector eX  
nor with the line-of-sight direction between the user and the APC e  but slightly differs. Only in 
apogee and perigee the position vector eX  and the radial unit vector 3t  match. 
Splitting the satellite position error δ eX  into along-track, cross-track and radial directions yields 

( )
( )

δ δ δ δ
× ××

= + +
× × ×

e e ee e e
e a c r

e e e e e e

X X X
V V XV V X

X
V V X V V X

 (B.10) 

The along-track error δ aX  is 
T

T
1,

e e
a e e

e

X
δ

δ δ= =
V X

t X
V

 (B.11) 

The cross-track error δ cX  is 

( )T

T
2,

e e e
c e e

e e

X
δ

δ δ
×

= =
×

V X X
t X

V X
 (B.12) 

The radial error δ rX  is 

( )
( )

T

T
3,

e e e e
r e e

e e e

X
δ

δ δ
 × × = =

× ×

V V X X
t X

V V X
 (B.13) 
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Figure B-1: Definition of the satellite track frame ( t -frame) 

B.3 Ionosphere Error 

B.3.1 Ionospheric Pierce Point 

The Klobuchar model as well as the TEC map model substitute the ionospheric layer with the electron 
density profile over height by a spherical shell of zero height extent in which the whole number of 
free electrons along the vertical path through the ionosphere is imaginarily concentrated. The 
Ionospheric Pierce Point (IPP) where the signal path from the satellite to the user intersects with this 
shell as well as the intersection angle are decisive for the computation of the ionospheric delay with 
one of the models. The height of the substitute shell above the Earth ellipsoid is, for example, chosen 
to be 350 km. The corresponding geometry is illustrated in Figure B-2. 
The IPP can be calculated with 

( ) ( )( ) = + − + − − + 
 

2 2 2T T

iIPP i i e I iR hx x x e x e x e  (B.14) 

where eR  is the mean radius of the Earth, Ih  is the effective height of the ionospheric shell above the 
Earth ellipsoid and ie  is the normalized line-of-sight vector between the user antenna position x  and 
the ith satellite position iX . Alternatively, the position of the IPP can be calculated by means of the 
formulas given in the GPS interface control document [52]. 
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Figure B-2: Ionospheric shell, ionospheric pierce point (IPP) and ionospheric intersection angle ζ  

B.3.2 Obliquity Factor 

The obliquity factor F  is defined as 

ζ
=

1
cos

F  (B.15) 

ζ  is the angle between the line-of-sight and the normal of the local tangent plane at the IPP. F  
describes the prolongation of the signal path through the ionosphere due to the oblique piercing angle 
of satellites that are not in the zenith. The angle ζ  is found from the scalar product of the negative 
line-of-sight vector transformed into the local n -frame at the IPP with the local normal direction 

ζ
 
 = −
 
 

T
,

0
cos 0

1
i ne  (B.16) 

The obliquity factor F  then becomes 

= −
, ,

1

i n z

F
e

 (B.17) 

Alternatively, the obliquity factor F  can be computed by means of 

( )311 16 0.53 iF Eπ −= + −  (B.18) 

given in the GPS interface control document [52] or by 
1

2
cos

1 e i

e I

R E
F

R h

−

 
= −  + 

 (B.19) 

given in the RTCA DO-229D standard [3] where iE  is the elevation angle of the ith satellite at the user 
antenna position x , = 6378.136eR  km is the mean radius of the Earth and = 350Ih  km is the 
ionospheric height. 
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B.4 Troposphere Error 

B.4.1 Zenith Delay Models 

In general, the tropospheric zenith delay ,tropo zρ∆  is caused by the refraction of the air in the 
atmosphere. The refraction N  depends on the partial pressure of the dry air dp , the partial pressure 
of the water vapor e  as well as the temperature T  

0

6
,

1 2 3 2

10 dtropo z
h

d

N h

p e e
N k k k

T T T

ρ
∞

−∆ =

= + +

∫
 (B.20) 

where 0h  is the height of the receiver/antenna and 1k , 2k , and 3k  are the refractivity constants. The 
tropospheric delay tropoρ∆  is composed of the hydrostatic and the wet delay. The mapping functions 
represent the slant effect 

( ) ( ), ,tropo h h z w w zm mρ ζ ρ ζ ρ∆ = ⋅ ∆ + ⋅ ∆  (B.21) 

where ,h zρ∆  is the hydrostatic zenith delay, ,w zρ∆  is the wet zenith delay, ( )ζhm  is the hydrostatic 
mapping function, ( )ζwm  is the wet mapping function and ζ  is the zenith angle. 
Current hydrostatic zenith delay models base upon the same structure 

( ) 6 1
, 10 d

h z
m

k R
p p

g
ρ −∆ =  (B.22) 

The static pressure p  at height h  is the variable input of the function whereas 1k  is a constant, dR  
is the specific gas constant of dry air and mg  is the mean gravity. The available models solely differ in 
the model constants 1k , dR  and mg . The most popular model is certainly the Saastamoinen 
hydrostatic zenith delay model [80], which uses 

−= ⋅ = =
2

2

Km2 J m
1 N kg K s

77.624 10 , 287.04 , 9.784d mk R g  (B.23) 

The zenith hydrostatic delay model proposed by the RTCA standard DO-316 [3] for WAAS receivers 
uses the UNB3 model parameters 

−= ⋅ = =
2

2

Km2 J m
1 N kg K s

77.604 10 , 287.054 , 9.784d mk R g  (B.24) 

A comprehensive essay about the UNB3 model can be found in [118]. The wet part of the 
tropospheric model can be represented by the Saastamoinen wet zenith delay model. It additionally 
depends on the temperature and the partial pressure of water vapor in the air 

( ) ( ) ( )
6 1 3 2

,
11

, 10
11 d

m

d
w z R

m g

k R k k
T e e

g kk T
ρ

λλ β
−

 ′ ∆ = +
 ++ − 

 (B.25) 

The temperature T  in K    and the partial pressure of water vapor e  at the antenna height h  in 
2N m    are the variables. Constants additional to those of the hydrostatic zenith delay model are 



B Reality Modeling 

294 

2

2

2 2

K
m

Km2
2 N

Km
2 2 1 N

K m2
3 N

0.0062

3

64.7 10

0.622

371900 10

k

k k k

k

β
λ

−

−

=   
= −  

 = ⋅  
 ′ = −  
 = ⋅  

Temperature lapse rate

Water vapor lapse rate

Constant

Constant

Constant

  

The WAAS wet zenith delay model has a similar but simpler structure 

( ) ( )
6 2

, , 10
1

d
w z

m d

k R e
T e

g R T
ρ

λ β
−∆ =

+ −
 (B.26) 

It requires only one additional model constant, −= ⋅
2 2K m2

2 N382000 10k . A comprehensive and 
thorough description of different troposphere models can be found in [83]. 

B.4.2 Temperature, Static Pressure and Partial Pressure of Water Vapor 

If the temperature T  and the static pressure p  are not measured, they can be calculated from the 
standard atmosphere (w/o or with considering seasonal variations) or actual meteorological values 
given at mean sea level. Temperature, static pressure and partial pressure of water vapor change with 
height according to 

( ) ( )

0

0 0
0 0

1 1

0 0
0 0

1

1

g g
R R

g g

R R

T T H

T
p p p H

T T

T
e e e H
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β β

λ λ
β β

β

β

β
+ +

= −

   
= = −   

   

   
= = −   

   

 
(B.27) 

where the geopotential height and the gravity are 

2

n

r h
H

r h
r

g g
r h

=
+
 =  + 

 (B.28) 

and = 2
m
s

9.80665ng , = 6356766 mr  and = 2

2
m

K s
287.05287R . The standard atmosphere at mean 

sea level at mid-latitudes of the northern hemisphere is defined in [119] by the parameters 
2 2

0 0 0 0 0
2 2 3

[N/ m ] [K] [N/ m ] [K/ m] [ ]

1013.25 10 288.15 11.7 10 6.50 10

p T e β λ
−

−
⋅ ⋅ ⋅ -

 (B.29) 

Average values at mean sea level for different latitudes are [3] 
2 2

0 0 0 0 0
2 2 3

2 2 3

2 2 3

2 2 3

[N/ m ] [K] [N/ m ] [K/ m] [ ]

15 1013.25 10 299.65 26.31 10 6.30 10 2.77

30 1017.25 10 294.15 21.79 10 6.05 10 3.15

45 1015.75 10 283.15 11.66 10 5.58 10 2.57

60 1011.75 10 272.15 6.78 10 5.39 10 1.81

p T eφ β λ
−

−

−

−

[°] −
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

2 2 375 1013.00 10 263.65 4.11 10 4.53 10 1.55−⋅ ⋅ ⋅

 (B.30) 
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Typical seasonal variations of the standard atmosphere parameters at mean sea level are given with 
2 2

0 0 0 0 0
2 2 3

2 2 3

2 2 3

2 2 3

2

[N/ m ] [K] [N/ m ] [K/ m] [ ]

15 0.00 10 0.00 0.00 10 0.00 10 0.00

30 3.75 10 7.00 8.85 10 0.25 10 0.33

45 2.25 10 11.00 7.24 10 0.32 10 0.46

60 1.75 10 15.00 5.36 10 0.81 10 0.74

75 0.50 10 14

p T eφ β λ
−

−

−

−

[°] ∆ ∆ ∆ ∆ ∆ −
⋅ ⋅ ⋅

− ⋅ ⋅ ⋅
− ⋅ ⋅ ⋅
− ⋅ ⋅ ⋅
− ⋅ 2 3.50 3.39 10 0.62 10 0.30−⋅ ⋅

 (B.31) 

[3]. For a given latitude the average parameters ( )ξ φ0  as well as the seasonal variations ( )ξ φ∆  are 
simply calculated by linear interpolation of the tabulated values 

( ) ( ) ( ) ( ) ( ) { }

( ) ( ) ( ) ( ) ( )

0 1 0
0 0 1

1

1

1

, , , , , ,i i
i i i i

i i

i i
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i i

p T e
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ξ φ ξ φ φ φ ξ β λ φ φ φ
φ φ

ξ φ ξ φ
ξ φ ξ φ φ φ

φ φ

+
+

+

+

+

−
= + − = ≤ ≤

−

∆ − ∆
∆ = ∆ + −

−

 (B.32) 

The interpolated seasonal variation ( )ξ φ∆  is then added to the interpolated average value ( )ξ φ0  using 
a harmonic function and the number of the day in the year d  [ ]−  

( ) ( ) ( ) { }0, cos 2 , , , , ,
365.25

28 0

211 0

min

min

d d
d p T e

d

ξ φ ξ φ ξ φ π ξ β λ

φ
φ

− 
= − ∆ = 

 
≥

= 
<

for 
for 

 (B.33) 

B.4.3 Mapping Functions 

Mapping functions consider the slant effect and provide the oblique factor for the zenith delays. A 
common function for the hydrostatic and wet mapping, which depends on the elevation angle E  and 
the coefficients a , b  and c , is 

( ) { }

1
1

1
, ,

sin
sin

sin

i

i

i
i

i

i

i

a
b

c
m E i h w

a
E

b
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E c

+
+

+
= =

+
+

+

 (B.34) 

The coefficients of the hydrostatic mapping function ha , hb and hc  are composed of a constant and 
a seasonal part 

( ) ( ) ( ) { }ξ φ ξ φ ξ φ π ξ

φ
φ

− 
= + = 

 
≥

= 
<

,0 ,, cos 2 , , ,
365.25

28 0

211 0

min
h h h d

min

d d
d a b c

d
for 
for 

 (B.35) 

The various mapping functions merely differ in the a , b  and c  coefficients. The New Mapping 
Function (NMF) of Niell [81] gets along without current values for the static temperature and static 
pressure but makes use of tabulated average values for the hydrostatic mapping function 
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 (B.36) 

and for the wet mapping function 

4 4 4 4 4

3 3 3 3 3
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5.8021897 10 5.6794847 10 5.8118019 10 5.9727542 10 6.1641693 10
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⋅ ⋅ ⋅ ⋅ ⋅
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 (B.37) 

The WAAS mapping function [3] is 

( ) ( )( )( )2

2

1.001
1 0.015 max 0, 4

0.002001 sin
m E E

E
= ⋅ + ° −

+
 (B.38) 

The WAAS model is valid for satellite elevation angles not less than 2°. 

B.4.4 Atmospheric Turbulence Structure Function 

Structure functions are commonly used to describe random spatial scalar fields ( )z x  

( ) ( ) ( )( ) = + −  
2

, EzD z zx r x r x  (B.39) 

x  is an arbitrary location and r  is the line-of-sight vector between two locations in the field. Structure 
functions describe the correlation of value differences of neighboring locations. In the special case of 
isotropic and ergodic spatial stochastic fields the structure function simplifies to a scalar function, 
which depends only on the relative distance r  between two arbitrary locations in the field and not on 
any absolute position x  

( ) ( )( ) = −  
2

0EzD r z r z  (B.40) 

where ( )= =0 0z z r . The corresponding autocorrelation function is 

( ) ( ) ( ) = + , EzR z zx r x r x  (B.41) 

The relation between the structure function and the autocorrelation function is given with 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

 = + − + + 
    = + − + +    
   = + − +   

2 2

2 2

2 2

, E 2

E 2E E

E 2 , E

z

z

D z z z z

z z z z

z R z

x r x r x r x x

x r x r x x

x r x r x

 (B.42) 

Solving for the autocorrelation function yields 

( ) ( ) ( ) ( )( )   = + + −   
2 21

, E E ,
2z zR z z Dx r x r x x r  (B.43) 
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For isotropic and ergodic spatial stochastic fields the spatial autocorrelation function becomes 

( ) ( ) ( ) ( ) = − = − 
2
0

1 1
E 0

2 2z z z zR r z D r R D r  (B.44) 

The spatial fluctuations of the refractivity N , which are mainly caused by turbulent flow of water 
vapor in the air, cannot be represented by the global deterministic zenith delay models. In turn, they 
can be described by the turbulence theory, which was firstly elaborated by Kolmogorov in 1941 [120]. 
The structure function δND  of turbulent fluctuations follows a power-law 

( )δ δ= 2 p
N ND r C r  (B.45) 

with the coefficient δ
−=

1
30.24 mNC  [121]. In the near field (up to two kilometers), which is dominated 

by the small scale eddies, the exponent is = 5
3p . In the far field (larger than two kilometers) with large 

scale scatter the exponent is = 2
3p  [121]. The refraction fluctuations δN  are converted to a radio 

signal zenith path delay by integrating along the signal path 

δρ δ
∞

−= ∫
0

6
, 10 dtropo z

h

N h  (B.46) 

The structure function of the zenith delay with scaling factor δρ ,

2

tropo z
C  and normalization with the 

effective height of the troposphere H , usually 2 kmH = , is given by 

( )δρ δρ
 =  
 , ,

2

tropo z tropo z

p
r

D r C
H

 (B.47) 

The coefficient δρ ,

2

tropo z
C  is calculated as 

δρ δ
−=

8
3

,

2 12 210
tropo z NC C H  (B.48) 

The spatial structure function is converted into a temporal structure function by applying the frozen 
troposphere model as illustrated in Figure B-3 [122]. The model assumes that the overall turbulent 
structure of the troposphere is isotropic and spatially ergodic. Due to the wind and due to the motion 
of the receiver, the turbulent structures move with respect to the receiver and the spatial correlation 
translates into a correlation with time. The same approach has been used for the stochastic gravity 
error model. Mathematically, the conversion from the spatial random field to the temporal random 
process is accomplished by replacing the lag r  by a product of velocity and time. The aerodynamic 
velocity ,A hv  to be used for that consists of the horizontal wind component and of the horizontal 
velocity of the platform 

( )τ τ= = +,A h W hr v v v  (B.49) 

The horizontal wind velocity Wv  is usually assumed as 10 m/s. This goes quite well with the real data 
in Figure 3-84 for heights up to five kilometers. The horizontal component of the platform velocity 
is given by = +2 2

h n ev v v . The structure function for the tropospheric zenith residual error (B.47) is 
then 

( )δρ δρ

τ
τ

 
=  

 , ,

,2

tropo z tropo z

p

A hv
D C

H
 (B.50) 

Further examples can be found in [123]. 



B Reality Modeling 

298 

 
Figure B-3: Frozen troposphere assumption 
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C Efficiently Increasing 
Navigation Filter Consistency 

C.1 Inertial Navigation Algorithms 

C.1.1 Solution of the Orientation ODE using Laning-Bortz Parameters 

The dual frequency algorithms for orientation base upon the Laning-Bortz parameter representation. 
The Laning-Bortz orientation vector σ  can be interpreted as follows: its norm is the rotation angle 
and its direction represents the rotation axis. The non-linear orientation differential equation in 
Laning-Bortz parameters is 

( ) ( )
 
 = + × + − × ×
 − 



2

sin1 1
1

2 2 1 cos
ib ib

ib ib ib ib ib ib ib
ibib

σ σ
σ ω σ ω σ σ ω

σσ
 (C.1) 

The sin ibσ  and cos ibσ  terms can be expanded in series 

( )

 
 − +

− 
 = ≈

 −  
−  − − + −

    





3
2

22 4

13!sin 6
2 1 cos

12 1 1
122! 4!

ib
ibib ib

ib ib

ib ibib ib

σ σσ σ
σ σ

σ σσ σ
 (C.2) 

The series are truncated after the second element since subsequent terms feature alternating signs. 
The denominator in turn can be expressed as power series, yielding 

( )

2

2 2 4

2

2 4 6 2

1sin 61 1 1 1 1
6 12 1442 1 cos

1
12

12 72 864 12

ib

ib ib ib ib ib

ib ib

ib ib ib ib

−   
   − ≈ − = − − + + +
  −    −

≈ + − + ≈

σ
σ σ σ σ σ

σ σ

σ σ σ σ





 (C.3) 

The first term of the series is positive and all other subsequent terms have alternating signs, which 
justifies the approximation above. The orientation differential equation (C.1) simplifies to 

( )≈ + × + × ×

1 1
2 12ib ib ib ib ib ib ibσ ω σ ω σ σ ω  (C.4) 

According to [98], the two cross product terms can be replaced by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
0

1 1 1
d

2 12 2

t

ib ib ib ib ib ib ib
t

t t t t t tτ τ× + × × ≈ ×∫σ ω σ σ ω ω ω  (C.5) 
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Integration of the differential equation with the simplification yields the orientation solution 

( ) ( ) ( ) ( ) ( )
0 0 0

0

1
d d d . . .

2

t t

ib ib ib ib ib
t t t

t t h o t
ξ

τ τ τ τ ξ ξ= + + × +∫ ∫ ∫σ σ ω ω ω  (C.6) 

The first integral term is just the sum of the integrating gyroscope angle increments. The double 
integral term has to be solved by efficient numerical integration schemes, which have for example 
been developed by Miller [94], Lee [96] or Gusinsky [97]. These algorithms are summarized in 
Template 4-1. 

C.1.2 Derivation of the Single Frequency Approach 

This section is dedicated to the derivation of the single frequency approach, which consists of the 
orientation quaternion difference equation and the velocity and position difference equations. 

Orientation Quaternion Difference Equation 

The orientation quaternion difference equation is derived at first. In continuous time the quaternion 
differential equation in e -frame is according to (2.1) 

( ) ( ) ( ) ( )( ) ( )ω ω= − =
    

 



0

1
02 ,eb eb ib ie eb eb ebq t q t t q t q t q  (C.7) 

It can be decomposed into a differential equation for the orientation of the b -frame with respect to 
the i -frame and a differential equation for the orientation of the e -frame with respect to the i -frame. 
The orientation quaternion ebq  is then obtained by multiplying the inverse of the solution of the latter 
differential equation − 1

ieq  with the solution of the former differential equation ibq  

( ) ( ) ( ) ( )
( ) ( ) ( )
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1
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 (C.8) 

The corresponding orientation difference equations are 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

0

0

0

0
1 1 1

,

,

eb

ib ib b ib ib

ie ie e ie ie
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(C.9) 

Therein, ( )

ep t  and ( )

bp t  are universal “transition” quaternions, which have to be determined next. 
For that, an expression for a general transition quaternion ( )

p t  is derived at first. The Hamilton 
quaternion q  at time + ∆t t  can be expanded in a Taylor series to describe the relation between the 
previous time step t  and + ∆t t  

( ) ( ) ( ) ( ) ( ) ( )
2 3

4

2! 3!
t t

q t t q t q t t q t q t t
∆ ∆

+ ∆ = + ⋅ ∆ + ⋅ + ⋅ + ∆
    

     (C.10) 

The derivatives of the quaternion with time are given by 
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By inserting the derivatives into the Taylor series expansion (C.10) the transition quaternion ( )

p t  can 
be generally expressed by the angular rate quaternion ( )ω t  and its time derivatives 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2
2

3
3 4

1 1 1
1

2 2 2 2!
1 1 1
2 4 2 3!

:

t
q t t q t t t t t

t
t t t t t t t
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ω ω ω

ω ω ω ω ω ω

 ∆ + ∆ = ⋅ + ⋅ ∆ + + ⋅ +  
 

∆ + + + + ⋅ + ∆  
  

=



 
  



     

  





  (C.12) 

where the quaternion ( )1: 1,= 0


. The transition quaternion ep  of the differential equation 
( ) ( )ω=

 


 1
2ie ie ieq t q t  is consequently with the constant Earth rate quaternion ( )0,ie ieω = ω  

( )
2 3

2 3 4

0

1 1 1 1
1

2 4 2! 8 3! ! 2

n

e ie ie ie ie
n

t t t
p t t

n
ω ω ω ω

∞

=

∆ ∆ ∆ = + ⋅ ∆ + ⋅ + ⋅ + ∆ =  
 

∑



     (C.13) 

which is exactly the Taylor series expansion of the exponential function. Thus 

ω ∆

=




2ie
t

ep e  (C.14) 

The transition quaternion ep  can be computed with Euler’s formula that is likewise valid for complex 
and hyper complex numbers 

( )0,
2 cos , sin

2 2
ie ie ie

t
ie

e ie ie
ie

t t
p e

ω ω
ω ω

ω

∆  ∆ ∆   = =     
    

ω ω  (C.15) 

The transition quaternion bp  of the differential equation ( ) ( ) ( )ω=
 



 1
2ib ib ibq t q t t  is with the angular 

rate quaternion ( ) ( )( )0,ib ibt tω = ω  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2

3
3 4

1 1 1
1

2 2 2 2!

1 1 1
2 4 2 3!

b ib ib ib

ib ib ib ib ib ib

t
p t t t t t

t
t t t t t t t

ω ω ω

ω ω ω ω ω ω

∆ = + ⋅ ∆ + + ⋅ + 
 

∆ + + + ⋅ + ∆ 
 




  



     

   
 (C.16) 

The angular rates ( )ωib t  in turn can be obtained from the Taylor series expansions of the angle 
increment measurements θ +∆



ib  and θ −∆


ib  of the integrating gyroscope 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( )

2 3
4

0

2 3
4

d d
2! 3!

d d
2! 3!

t t t

ib ib ib ib ib ib
t t

t tt

ib ib ib ib ib ib
t t t

t t
t t t t t

t t
t t t t t

θ ω τ τ ω τ τ ω ω ω

θ ω τ τ ω τ τ ω ω ω

+∆
+

+ −∆
−

−∆

∆ ∆
∆ = = + ⋅ ∆ + ⋅ + ⋅ + ∆

∆ ∆
∆ = = − = ⋅ ∆ − ⋅ + ⋅ + ∆

∫ ∫

∫ ∫



    

 





    

 





 (C.17) 

In order to express the quadratic, cubic and mixed product terms of the angular rate and its derivatives 
in (C.16), the double products of the integrating gyroscope measurements are additionally required 

( ) ( ) ( ) ( ) ( )( ) ( )
3

2 2 4

2ib ib ib ib ib ib ib

t
t t t t t t tθ θ ω ω ω ω ω+ + ∆

∆ ⋅ ∆ = ⋅ ∆ + + ⋅ + ∆
 

    

     

( ) ( ) ( ) ( ) ( )( ) ( )
3

2 2 4

2ib ib ib ib ib ib ib

t
t t t t t t tθ θ ω ω ω ω ω+ − ∆

∆ ⋅ ∆ = ⋅ ∆ − − ⋅ + ∆
 

    

    (C.18) 

( ) ( ) ( ) ( ) ( )( ) ( )
3

2 2 4

2ib ib ib ib ib ib ib

t
t t t t t t tθ θ ω ω ω ω ω− + ∆

∆ ⋅ ∆ = ⋅ ∆ + − ⋅ + ∆
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( ) ( ) ( ) ( ) ( )( ) ( )
3

2 2 4

2ib ib ib ib ib ib

t
t t t t t t tθ θ ω ω ω ω ω− − ∆

∆ ⋅ ∆ = ⋅ ∆ − + ⋅ + ∆
 

    

     

The triple product of θ +∆


ib  is given with 

( ) ( )3 3 4
ib ib ib ib t t tθ θ θ ω+ + +∆ ⋅ ∆ ⋅ ∆ = ⋅ ∆ + ∆
  

   (C.19) 

The single terms of the transition quaternion bp  are expressed by linearly combining the Taylor series 
of θ +∆



ib  and θ −∆


ib  (C.17), the double products (C.18) and the triple product (C.19) 

( ) ( )2 2 3 4
1 2 3 4 5 6 71b ib ib ib ib ib ib ib ib ibp t a a a a a a a tθ θ θ θ θ θ θ θ θ+ − + + − − + − += + ∆ + ∆ + ∆ + ∆ ∆ + ∆ ∆ + ∆ + ∆ + ∆

         

   (C.20) 

The comparison of the coefficients that are linear in ( )ωib t  and its time derivatives gives 

( )
( )
( )

ω

ω

ω

⋅ ∆ + =
   

⋅ ∆ − = ⇒ =   
  

⋅ ∆ + =











1
1 2 2

1
12 21 1 1

1 22 2 4
23 1 1 1

1 26 6 12

:

:
0

:

ib

ib

ib

t t a a
a

t t a a
a

t t a a

 (C.21) 

The comparison of the coefficients that are quadratic in ( )ωib t  and its time derivatives gives 

( )
( ) ( )
( ) ( )

ω

ω ω

ω ω

⋅ ∆ + + + =   
  ⋅ ∆ − + − = ⇒ = −  

   ⋅ ∆ + − − =    



 



 



2 2 1 1
3 4 5 6 8 3 8

3 1 1 1 1 1 1
3 4 5 6 42 2 2 2 12 48

13 1 1 1 1 1
5 483 4 5 62 2 2 2 24

:

:

:

ib

ib ib

ib ib

t t a a a a a

t t t a a a a a

at t t a a a a

 (C.22) 

The comparison of the coefficients that are cubic in ( )ib tω  gives 

( )ω ⋅ ∆ =3 3 1
7 48:ib t t a  (C.23) 

Inserting the determined coefficients in (C.20) yields 

( ) ( ) ( )2 3 41 1 1 1
1

2 8 48 48b ib ib ib ib ib ib ibp t tθ θ θ θ θ θ θ+ + + − − + += + ∆ + ∆ − ∆ ∆ − ∆ ∆ + ∆ + ∆
       

   (C.24) 

The angle increment quaternion products are explicitly calculated 

( ) ( )
( ) ( )

2 22 3

T T

, , 0,

, , ,

ib ib ib ib ib

ib ib ib ib ib ib ib ib ib ib ib ib

θ θ

θ θ θ θ

+ + + + +

+ − + − + − − + − + − +

∆ = − ∆ ∆ = − ∆ ∆

∆ ∆ = −∆ ∆ ∆ × ∆ ∆ ∆ = −∆ ∆ ∆ × ∆

0θ θ θ

θ θ θ θ θ θ θ θ

 

   

 (C.25) 

and the transition quaternion becomes 

( ) ( ) ( )

( ) ( )

2 24 4

2 24 4

1 1 1 1
1 ,

8 2 24 48
1 1 1 1

1 , 1
8 2 24 48

b ib ib ib ib ib ib

ib ib ib ib ib

p t t t

t t

+ + + − + +

+ + + + −

 = − ∆ + ∆ ∆ − ∆ × ∆ − ∆ ∆ + ∆ 
 
  = − ∆ + ∆ − ∆ ∆ − ∆ × ∆ + ∆  

  

θ θ θ θ θ θ

θ θ θ θ θ

  

 
 (C.26) 

The derivation in [124] comes to the same result. With the derived transition quaternions ep  (C.15) 
and ( )

bp t  the quaternion orientation equation for integrating IMU (C.9) is 

( ) ( )

( ) ( )2 24 4

cos , sin
2 2

1 1 1 1
1 , 1

8 2 24 24

ie
eb ie ie eb

ie

ib ib ib ib ib

t t
q t t q t

t t

ω ω
ω

+ + + + −

 ∆ ∆   + ∆ = − ⋅ ⋅    
    

  − ∆ + ∆ − ∆ ∆ − ∆ × ∆ + ∆  
  

ω

θ θ θ θ θ

 

 
 (C.27) 
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Velocity Difference and Position Difference Equation 

The velocity difference equation is given by the Taylor series expansion of the velocity ev  

( ) ( ) ( ) ( ) ( )
2

3

2!e e e e

t
t t t t t t t

∆
+ ∆ = + ⋅ ∆ + ⋅ + ∆v v v v    (C.28) 

The time derivative of the velocity is just the velocity differential equation of (2.1) and with the 
acceleration bf  replaced by the corresponding “1 left / 1 right” conversion (4.8) 

( ) ( )( ) ( )( ) ( ) ( )22
2

b b
e eb e e ie et q t t t t

t

+ −∆ + ∆
= + − × + ∆

∆
v v

v R x vγ ω


   (C.29) 

The second time derivative of the velocity is then 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

T

2

2
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e e
e eb eb b eb b e ie e

e

b b b b
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e e
e ie e

e

t
t q t t t q t t t t

q t t q t
t t

t
t t t

+ − + −

∂
= + + − ×

∂

 ∆ + ∆ ∆ − ∆
= × + ∆ ∆ 
∂

+ − × + ∆
∂

x
v R Ω f R f v v

x

v v v v
R R

x
v v

x

γ
ω

ω

γ
ω

 



 

 

 

 (C.30) 

Therein, the conversion of the acceleration derivative bf  is from (4.15). The position difference 
equation is given by the Taylor series expansion of the position ex  

( ) ( ) ( ) ( ) ( ) ( )
2 3

4

2! 3!e e e e e

t t
t t t t t t t t

∆ ∆
+ ∆ = + ⋅ ∆ + ⋅ + ⋅ + ∆x x x x x     (C.31) 

or with the position derivatives substituted by the corresponding velocity derivatives 

( ) ( ) ( ) ( ) ( ) ( )
2 3

4

2! 3!e e e e e

t t
t t t t t t t t

∆ ∆
+ ∆ = + ⋅ ∆ + ⋅ + ⋅ + ∆x x v v v    (C.32) 

The rate vector ( )eb tω  is required for the second derivative of the velocity (C.30) 

( ) ( ) ( )T
eb ib eb iet t t= −Rω ω ω  (C.33) 

The angular rate ( )ib tω  is calculated in 1st order accuracy from the measured gyro triad increments 
−∆ ibθ  and +∆ ibθ  with the “1 left / 1 right” conversion (4.8). Inserting into (C.33) yields 

( ) ( ) ( )( ) ( )T 21
2eb ib ib eb iett q t t+ −
∆= ∆ + ∆ − + ∆Rω θ θ ω

   (C.34) 

The equations of the single frequency approach are now readily derived and summarized in Template 
4-3. 
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Template C-1: Single frequency approach (n-frame, 3rd order orientation accuracy 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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C.2 Navigation Filter Initialization 

C.2.1 Orientation Angle Expected Values 

The velocity differential equation in n -frame is given in (2.3) with 

( )2n nb b n ne ie en n= + − + ×v R f R vγ ω ω

 (C.35) 

Stationarity means that 

,0 0n n= =v v  (C.36) 

which yields, when inserted into the velocity differential equation (C.35), 

0 nb b n= +R f γ  (C.37) 

With the transformation matrix nbR  between n - and b -frame 

cos cos sin sin cos cos cos sin cos sin sin
sin cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

nb nb nb nb nb nb nb nb nb nb nb

nb nb nb nb nb nb nb nb nb nb nb nb nb

nb nb nb nb nb

nb

ϑ ψ ϕ ϑ ψ ϕ ϕ ϑ ψ ϕ ψ
ϕ ϑ ψ ϕ ϑ ψ ϕ ψ ϕ ϑ ψ ϕ ψ

ϑ ϕ ϑ ϕ ϑ

− +
+ −

−

 
 =
  
 

R  (C.38) 

and the gravity vector 

0
0n

γ

 
 =   
 

γ

 

(C.39) 

the relation (C.37) solved for bf  becomes 

sin
sin cos
cos cos

nb

b nb nb

nb nb

ϑ
γ ϕ ϑ

ϕ ϑ

− 
 = −   
 

f

 

(C.40) 

The roll angle nbϕ  and the pitch angle nbϑ  are calculated as 

( ) ,, ,atan2 , [ )nb b y b zf fϕ π π= − − ∈ −
 

(C.41) 

,,

2 2
arcsin b x

nb

f π πϑ
γ

 = ∈ −    
(C.42) 

Generally, the angle about the gravity vector direction cannot be observed. Since gravity is pointing 
towards the z -axis of the n -frame, it is just the heading angle nbψ  that is not observable by the 
acceleration measurement bf . 
When stationary, the gyroscope measures only the Earth rate ieω , here transformed to n -frame 

nb ib ne ie=R Rω ω  (C.43) 

The transformation matrix nbR  can be split into the three single rotations about the z -, y - and x -
axes. The attitude angles of the first and second rotations about the roll and the pitch axis have already 
been determined and can be directly used to transform the measured angular rate from the b -frame 
to the leveled h -frame, which is already parallel to the local tangent plane but not yet adjusted to 
north 
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( ) ( ) ( )3 2 1

,:
nb nb nb ib ne ie

ib h

ψ ϑ ϕ ⋅ =
=

R R R Rω ω
ω



 
(C.44) 

Therein, the angular rate transformed to the horizontal h -frame is given with 

, , ,

, , ,

, , ,

cos sin sin sin cos
cos sin
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= − 
 − + + 

ω

 

(C.45) 

(C.44) is further 

,

cos sin 0 cos
sin cos 0 0

sin0 0 1

nb nb

nb nb ib h ie

ψ ψ φ
ψ ψ ω

φ

−   
   ⋅ = ⋅      −  

ω

 

(C.46) 

Only the two first equations contain the searched heading angle nbψ . Considering only these two 
equations and exchanging the angular rate and the trigonometric terms yields 

, , , ,

, , , ,

sin cos
cos 0

ib h y ib h x nb
ie

ib h x ib h y nb

ω ω ψ φω
ω ω ψ
−     ⋅ = ⋅     

     
(C.47) 

Only the north component of the Earth rate vector ieω  and the horizontal components of the 
measured angular rate ibω  are required to observe the heading angle nbψ . The down component is 
aligned to the gravity vector and does not contribute to the observability of the heading angle. The 
angular rate matrix is brought to the right and is expanded 

, ,
2 2

, ,, , , ,

sin cos
cos

ib h ynb ie

nb ib h xib h x ib h y

ωψ ω φ
ψ ωω ω

 − 
= ⋅    −+     

(C.48) 

and the heading angle nbψ  is finally found by calculating the double-argument arctangent 

(
)

, ,

, , ,

atan2 cos sin ,

cos sin sin cos sin [ , )
nb ib y nb ib z nb

ib x nb ib y nb nb ib z nb nb

ψ ω ϕ ω ϕ

ω ϑ ω ϕ ϑ ω ϕ ϑ π π

= − +

+ + ∈ −



 (C.49) 

It is remarkable that only the entries of the measured angular rate vector ibω  are required, but not the 
Earth rate ieω . 

C.2.2 IMU Error Cross-Covariances 

If the IMU turn-on biases, scale factor errors and misalignments shall be estimated or at least 
considered by the navigation error filter, the cross-covariances between the initial orientation error 

nnψ


 and these errors are required rather than the cross-covariances with the overall IMU errors (4.39) 
and (4.40). Return to mind that the acceleration error bδ f  and the angular rate error ibδω  are described 
in section 3.2.2 by (3.42) and (3.47), respectively. The cross-covariances between the orientation error 

nnψ


 and the turn-on biases 0b , scale factor errors 0s  and misalignments m  of the accelerometer and 
gyroscope are given with 

( ) ( )

T T T T
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E E E E
f

nn f f f f nn
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 (C.50) 
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C.2.3 Recursive Averaging 

The influence of the accelerometer and gyroscope measurement noise on the orientation angles is 
reduced by averaging a series of recorded measurement values before doing the stationary 
initialization. Recursive averaging is appropriate for real-time navigation systems since the mean values 
and the corresponding variances are immediately updated as soon as a new measurement is available. 
The algorithm can decide online to stop the averaging when the continuously updated variances of 
the accelerometer and gyroscope measurements drop below predefined thresholds. The mean value 

, 1b k −f  is updated by the new measurement ,b kf  with 

, , 1 ,

1 1
b k b k b k

k
k k−

−
= +f f f  (C.51) 

where k  is the number of collected measurements until now. The mean value is initialized by 

,0 0b =f . The covariance T
, ,E b k b kδ δ  f f  continuously decreases with each new measurement sample 

by 

( )

2
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k k
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− −
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−    =      
−      + + +     

f f f f

f f f f f f
 (C.52) 

Looking at the acceleration error model (3.42) and the angular rate error model (3.47), the recursive 
averaging becomes 

{ }
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       + + + =       f b f s f f m F f f

 (C.53) 

neglecting the bias and scale factor temperature sensitivities as well as the bias instability. The recursive 
cross-covariance propagation equations between averaged accelerometer measurement and single 
random constant accelerometer errors are given with 
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T T T T
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T
,0, E 0b fδ  =  f m

 (C.54) 

The same equations can be applied for the recursive averaging of the angular rate measurements. 
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C.3 Out-of-Sequence Measurements 

C.3.1 State Backward Propagation 

To begin with, the true state propagation between two subsequent time steps −1kt  and kt  is described 
by the discrete-time propagation equation 

− − − −= +1 1 1 1k k k k kz zΦ Γ ω  (C.55) 

with ( ) 0,k kWN Qω . The true state propagation between time jt  and time kt  is 

− −−

== = +

   
= +   

  
=

∑∏ ∏


1 11

1

:

k kk

k i j i l l
l ji j i l

kj

z zΦ Φ Γ ω

Φ

 
(C.56) 

The true state kz  that is back-propagated to time jt  is then 

( )

−
−

+
=

 
= − 

 
∑

1
1

1

k

j kj k l lk l
l j

z zΦ Φ Γ ω  (C.57) 

Analogously, the back-propagated estimated state ,ˆ j kz  that is obtained from the current a priori state 
estimate −ˆ kz  is given with 

− −= 1
,ˆ ˆj k kj kz zΦ  (C.58) 

The estimated state error δ = −, ,ˆj k j j kz z z  is calculated by subtracting (C.57) and (C.58) 

( )δ δ
−

− −
+

=

 
= − 

 
∑

1
1

, 1

k

j k kj k l lk l
l j

z zΦ Φ Γ ω  (C.59) 

The covariance matrix ,j kP  is hence 

( ) ( ) ( ) ( )

T
, , ,

1 1 1
1 T T T T T T T

1 1 1 1

E

E E

j k j k j k

k k k

kj k l l l l l k k l l kjk l k l k l k l
l j l j l j

δ δ

δ δ
− − −

− − − − −
+ + + +

= = =

 =  
 

   = + − −    
 

∑ ∑ ∑

P z z

P Q z zΦ Φ Γ Γ Φ Φ Γ ω ω Γ Φ Φ
 (C.60) 

In the period between the measurement time jt  and the arrival time kt  measurements from other 
sensors are processed. The cross-covariance between the process noise lω  and the state estimate error 
δ −

kz  is thus given with 

( )
1

T

1

E
k

k l i n i i l l
i l

δ
−

−

= +

   = −   ∏z I K H Qω Φ Γ  (C.61) 

It is a reasonable assumption that in most situations the process noise covariance kQ  does not change 
much in the waiting time between the measurement validity time jt  and arrival time kt , meaning 

const j= =Q Q  for ≤ ≤j kt t t . Then, without loss of generality, the covariance matrix ,j kP  simplifies 
to 

( )1 T T T T
,j k kj k kj j kj kj j kj kj j kj kj

− − −= + − −P P Q Q QΦ Γ Γ Γ Γ Γ Γ Φ  (C.62) 

with the definitions of the overall input matrices 
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( )
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I K H

Γ Φ Γ
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 (C.63) 

Finally, the cross-covariance T
,Ejk j k kδ δ− − =  P z z  is derived using (C.59), (C.61) and (C.63) 

( )

( )

1
1 T

1

1 T

E
k

jk kj k l l kk l
l j

kj k kj j kj

δ δ
−

− − − −
+

=

− −

  
= −  

   

= −

∑P z z

P Q

Φ Φ Γ ω

Φ Γ Γ

 (C.64) 

With the covariance propagation from time jt  to time kt  written as 
T T

k kj j kj kj j kj
− −= +P P QΦ Φ Γ Γ  (C.65) 

and with the definition of the transition matrix containing interim updates 

( )
11

:
kk

kj i n i i
l j i l

−−

= =

 
 = −  

 
∑ ∏ I K HΦ Φ  (C.66) 

the cross-covariance −
jkP  can be written alternatively to (C.64) as 

( ) due to symmetry

due to symmetry

1 T T T

1 T

1 T

T

jk kj kj j kj kj j kj kj j kj

kj kj j kj

kj kj j kj
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=

=

P P Q Q
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P

P

Φ Φ Φ Γ Γ Γ Γ

Φ Φ Φ

Φ Φ Φ

Φ

 (C.67) 

With (C.58), (C.62) and (C.64) or (C.67) the required inputs ,ˆ j kz , ,j kP  and −
jkP  for the Kalman filter 

update for delayed measurements according to Template 4-14 are readily available. 
Their calculation in the instant when the measurement value arrives would mean a high computational 
burden. However, if the sensor notifies the filter of a new measurement before the measurement value 
is actually available to the filter, the required matrices −

jkP , kjΦ , kjΓ  and kjΓ  can be already computed 
in parallel looking forward to the arrival of the measurement. The computing time is thus better spread 
and reduced in the moment of the actual measurement processing. 
As soon as the sensor indicates a new measurement or the navigation computer actively polls a 
measurement from a sensor, the cross-covariance − −=jj jP P  can be created and consequently 
propagated and updated, parallel to the regular Kalman filter steps, when other, newer measurements 
arrive. Later, at time kt , when the measurement  jy  is available in the navigation computer, −

kjP  can 
be readily used to compute the Kalman gain and update the state estimate covariance matrix. The 
propagation step between two subsequent time steps is carried out with 

( )
− −
+ =1 i iji jP PΦ  (C.68) 

The interim update of the cross-covariance matrix with newer measurement at time it  is analog to the 
usual state covariance update 

( )+ −= −ij n i i ijP I K H P  (C.69) 
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A final remark about efficiency: since T
kj j
−P H  is required in the Kalman gain equation and its transpose 

in the covariance update equation in Template 4-14, it suffices to propagate and update only T
ij j
−P H  

which is more efficient because of the reduced dimension of ( )×n m  instead of ( )×n n . Therein, n  
is the dimension of state vector and m  the dimension of the measurement vector. In the navigation 
application the dimension of the measurement vector m  is considerably smaller than the dimension 
of the state vector n . In a navigation error filter the state vector is usually of size = 15n  to = 30n , 
whereas, for example, a three-dimensional position measurement vector is of size = 3m . 
The method is summarized in Template 4-15. 

C.3.2 Measurement Prediction 

In the following, a sketch of the derivation in [107] is given. The measurement  jy  is extrapolated to 
the current time kt  using the current state estimate −ˆ kz  and the state estimate −ˆ jz  of time jt . The 
extrapolated measurement ∗



ky  is 
∗ − −= + −  ˆ ˆk j k k j jy y H z H z  (C.70) 

Inserting the observation equation (4.113) and using the definitions of the state estimate errors 
δ − −= − ˆj j jz z z  as well as δ − −= − ˆk k kz z z , the extrapolated measurement ∗



ky  can also be expressed by 

δ δ∗ − −
�= + − +

k k k j j k k jy H z H z H z ν  (C.71) 

Identifying the effective noise of the extrapolated measurement as δ δ∗ − −
�= − +k j j k k jH z H zν ν , an 

observation equation similar to (4.113) is obtained 
∗ ∗= +

k k k ky H z ν  (C.72) 

The innovation ,j ks  of the extrapolated measurement is then 
∗ −= −

, ˆj k k k ks y H z  (C.73) 

and with (C.70) the innovation becomes 
−= +, ˆj k j k ks y H z − −− −ˆ ˆj j k kH z H z
−= − ˆj j jy H z

 (C.74) 

The result is remarkable because the innovation of the predicted measurement ,j ks  is simply the 
innovation js  that would have been valid at time jt  when the measurement  jy  would have been 
immediately available. The measurement prediction method obviously supposes that the later 
corrections of the newer measurements of the other sensors and the dynamic behavior of the state 
estimation error only have minor influence on the innovation. This assumption is certainly justified if 
the Kalman filter is more or less in steady state. Then, the innovation formed with the old state and 
the innovation formed with the newest state incorporating all available information up to now do not 
differ much. It is clear that this method is not optimal and not statistically correct because the state 
information content is not correctly assumed when forming the innovation. From this point of view, 
it would probably have been better to name the prediction measurement method as “history state” 
method in dependence on the “history state update” method that is derived in the next section. 
Comparing the innovation of the Kalman filter for delayed measurements in Template 4-14 with the 
innovation of the measurement prediction (C.74), it can be seen that the involved state ,ˆ j kz equals the 
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state estimate −ˆ jz . Correspondingly, the covariance ,j kP  is just the covariance −
jP . Between two 

subsequent time steps −1kt  and kt  the true state kz , the state estimate ˆ kz  and the state estimate error 
δ kz  propagate according 

δ δ

− − − −

− +
− −

− +
− − − −

= +

=

= +

1 1 1 1

1 1

1 1 1 1

ˆ ˆ
k k k k k

k k k

k k k k k

z z

z z

z z

Φ Γ ω

Φ

Φ Γ ω

 (C.75) 

When measurements from other sensors come in, −ˆ kz  and δ −
kz  are updated, taking (4.113) into 

account, by 

( )
( )

δ

δ δ

+ − −

+ −

= + +

= − −

ˆ ˆk k k k k k

k n k k k k k

z z K H z

z I K H z K

ν

ν
 (C.76) 

Combining all propagation and update steps between jt  and kt  yields the overall evolution of the 
state estimate error δ −

jz  towards δ −
kz  

δ δ
− −

− −

= + =

= − +∑ ∑
1 1

1

k k

k kj j ki i i ki i
i j i j

z z KΦ Φ ν Γ ω  (C.77) 

With (C.77) the estimated state error cross-covariance TEkj k jδ δ− − − =  P z z  is computed 
straightforwardly 

1 1
T

1

1 1
T T

1

E

E E

k k

kj kj j ki i i ki i j
i j i j

k k

kj j ki i i j ki i j
i j i j

δ δ

δ δ

− −
− − −

= + =

− −
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   = − +   

∑ ∑

∑ ∑

P z K z

P K z z

Φ Φ ν Γ ω

Φ Φ ν Γ ω

 (C.78) 

The noise iν  of the other measurements that are newer than the measurement  jy  is not correlated 
with the state estimate −ˆ jz  and thus also not with the previous state estimate error δ −

jz , that is 
TE 0i jδ −  = zν . The same is valid for the process noise iω . The process noise occurring later than 

the measurement time jt  is not correlated with the state estimate and the error, meaning 
TE 0i jδ −  = zω . The cross-covariance −

kjP  between the state error δ −
jz  and the state error δ −

kz  
abbreviates to 

− −=kj kj jP PΦ  (C.79) 

As in the state backward propagation method, the cross-covariance −
kjP  can be calculated in parallel if 

the sensor indicates a new measurement to the navigation computer. 
The computation of T

kj j
−P H  with the measurement prediction method for the case when the 

measurement validity time is already known is recapitulated in Template 4-16. The final update when 
the measurement value is available is done with the Kalman filter update step for delayed 
measurements according to Template 4-14. 

C.3.3 History State Update 

At interim times = it t  the augmented state vector (4.129) is propagated by 
− +

− −
− −

−

    
=           

1 1

, , 1

ˆ ˆ0
ˆ ˆ0

i i i

j i n j i

z z
z I z

Φ
 (C.80) 
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Therein, only the current state estimate +
−1ˆ iz  is propagated with the system matrix −1iΦ . The history 

state −
−, 1ˆ j iz  is not modified. Thus, the distinction between the a priori history state −

,ˆ j iz  and the posterior 
history state +

,ˆ j iz  is omitted in the following. The covariance matrix is analogously propagated 

( )

( )
( )

T
1 11 T11

1 1
, , 11

0 0
0

0 00

i i ji ij i ii
i i

n nji j i j ij i

+ +− −
− −− −−

− −− − + +
−−

        = +                 

P PP P
Q

I IP P P P

Φ ΓΦ
Γ  (C.81) 

Since the history state covariance −
,j iP  is also not modified by the propagation, the minus and plus 

superscripts are left, too. When a measurement of another sensor arrives in the interim time period, 
the innovation is calculated according to the CKF 

( )

( )
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i
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 (C.82) 

The Kalman gain is straightforwardly 

T
1

, 1 0
i iji i

i
i ji j i

− −
−

∗ −
−

    
=           

P PK H
S

K P P
 (C.83) 

and the update of the augmented state vector and the covariance matrix, using the short form of the 
covariance update equation, is given by 

( )
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 (C.84) 

The long, symmetry preserving, Joseph form of the covariance update equation is 

( ) ( )
+ + − −

∗ ∗+ −
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 (C.85) 

As soon as the longingly awaited measurement value, which has initially provoked the state 
augmentation, comes in at the current time kt , the innovation can be computed by 

( )
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 (C.86) 

It can be easily seen that the continuously updated history state estimate ,ˆ j kz  and covariance matrix 

,j kP  can now be directly used for the innovation. The Kalman gain is consequently 

1
T

, 1

0k kjk
k

jk jk j k

− −
−

∗ −
−

    
=           

P PK
S

HK P P
 (C.87) 
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The final update of the state estimate and covariance is 

( )
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or 

( ) ( )
+ + − −
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 (C.89) 

respectively. Obviously, the history state ,ˆ j kz , the history covariance ,j kP  and the cross-covariance +
kjP  

are no longer required after the update. Only the state +ˆ kz  and covariance +
kP  are further processed. 

The augmented states and covariance entries are thus discarded and the original form of the state 
vector and covariance matrix is restored. When the next delayed measurement is announced by the 
sensor, the described procedure starts again. Since the augmented state and covariance are not used 
anymore, it does not make much sense to update them in (C.88). The computational effort can be 
reduced by expanding the block matrix representation and then deleting the non-relevant equations 

ˆ ˆk k k k

k k k j jk

+ −

+ − −

= +
= −

z z K s
P P K H P

 (C.90) 

Joseph’s form (C.89) becomes 
T T T

k k k j jk kj j k k k k
+ − − −= − − +P P K H P P H K K S K  (C.91) 

The same is done with the Kalman gain (C.87) 
T 1

k kj j k
− −=K P H S  (C.92) 

and the innovation (C.86) 
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 (C.93) 

The propagation equations (C.80) and (C.81) are explicitly written in compact form 
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The expanded equations of the interim update for innovation (C.82), Kalman gain (C.83) and state 
and covariance update (C.84) and (C.85), respectively, can be split into those equations that accrue 
anyway, as in the CKF, 
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 (C.95) 

and the additional equations that are required to update the history state ,ˆ j iz , the history covariance 

,j iP  and the corresponding cross-covariance +
ijP  
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The longer forms of the covariance update equations are 
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∗ − − ∗ ∗ ∗
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The history state update method is summarized in Template 4-17. In contrast to the measurement 
prediction method of Template 4-16, the history state ,ˆ j iz  and covariance ,j iP  are additionally updated 
at an interim update step. 

C.4 Filter Augmentation by IMU Biases and Scale Factor Errors 
In this section, it is exemplarily illustrated how to augment the core navigation error state vector by 
states for the accelerometer and gyroscope turn-on biases and scale factor errors to be estimated by 
the navigation filter and to be used for in-flight calibration of the IMU measurements. 
The true, error-free acceleration bf  and the accelerometer measurement error δ bf  are given with 

( )
( )

0, 0,

0, 0, ,

diag

diag
b b f b f b

b f b f N f

δ

δ δ δ

= + + +

= + +

f f b f s f

f b f s b

  





 (C.98) 



0,fb  and  0,fs  are the current estimates of the turn-on biases and scale factor errors that are used for 
the in-flight calibration of the current IMU measurements. They deviate from the actual values 0,fb  
and 0,fs  by residual errors δ 0,fb  and δ 0,fs  that have not been estimated so far. ,N fb  is the white noise 
on the accelerometer measurements. Other errors are neglected to simplify matters. The model 
matrices for both the turn-on bias and scale factor error are 

= = = =
0, 0, 0, 0, 0, 0, 0, 0,/ 3 / / 3 /, 0, , 0

f f f f f f f fb s b s b s b sI H I DΦ Γ  (C.99) 

The model matrices for the white noise are 

= = = =
, , , , 30, 0, 0,

N f N f N f N fb b b bH D IΦ Γ  (C.100) 

The gyroscope error models are analogous to the accelerometer error models. The navigation error 
model and the IMU error model are combined in the augmented system 
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 (C.101) 

The input matrix of the navigation error model kΓ  has been split into the input of the accelerations 

,f kΓ  and the input of the angular rates ω,kΓ  according to ( )ω= , ,k f k kΓ Γ Γ . The output equation is not 
matter of this example and can be considered separately. 

C.5 Schmidt-Kalman Filter for Noise-Like Errors 

C.5.1 Correspondence with Kalman Filter for State Cross-Correlated 
Measurements 

The Schmidt-Kalman filter for time-correlated measurement noise corresponds to a Kalman filter that 
accounts for known cross-correlation between the navigation error state and the measurement error 

T
, Ezy k k kδ δ =  P z y  with the Kalman gain and covariance update equations as follows 

( ) ( )
( )

−− −

+ −

= − + − −

= − +
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k zz k k zy k k zz k k k k zy k yz k k

zz k n k k zz k k yz k
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P I K H P K P
 (C.102) 

Correlation between the current state estimate error and the current measurement can for example 
occur in an aircraft when high frequent aerodynamic disturbances similarly affect the accelerometer 
and gyroscope measurements due to unresolved vibrations and the angle of attack measurement. 
Comparing (C.102) with the equations in Template 4-22 reveals that 

( )ν ν
−

=
= −∑ T

, ,1 i i

r

zy k z ki
P P H  (C.103) 

Therein, the different definition of the measurement error δ ky  and the noise kν  in 

δ= − = +

k k k k k ky y y H z ν  (C.104) 

explains the negative sign in (C.103). This means that the time correlation of the measurement error 
leads to the gradual cross-correlation of the navigation state error and the measurement error. 

C.5.2 Schmidt-Kalman Filter for Out-of-Sequence Measurements 

In order to complete the discussion of delayed measurements of section 4.3, the question how to 
consider colored process and measurement noise shall be answered. The procedure is principally the 
same as in the history state update method. In the instant of the new measurement the state vector, 
which is augmented by the considered states, is extended by a copy of itself. In the sequel the Kalman 
gains of the considered states ω,iK  and ν ,iK  as well as of the history considered states ω

∗
,iK  and ν

∗
,iK  
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are set to zero at interim updates. In Template C-2 the expanded equations that are additionally 
required to the Kalman filter equations for colored process and measurement noise are listed for the 
interim and final updates. For the process noise only the cross-covariance matrix between the current 
process noise states and the history state ωs jzP  is required for the propagation of the covariance matrix 
between the current state and the history state kjP . For the colored measurement noise three additional 
cross-covariance matrices have to be used: ν ,t jzP , ν t jzP  and ν ν ,t t j

P . These are the cross-covariance 
between the current state and the history considered measurement noise state, the cross-covariance 
between the current considered measurement noise state and the history state and the cross-covariance 
between the current and history considered measurement noise states. The distinction between prior 
and posterior matrices is omitted for those matrices that are only propagated but not corrected by the 
interim update. 
It has to be noticed that interim updates are assumed to be other measurements than the delayed 
measurement with other, independent colored measurement noise models. Therefore, the 
measurement noise models that belong to the delayed measurement do not affect the interim update. 
Only the cross-covariances of the considered measurement noise states that are related to the current 
interim measurement have to be considered in the interim update equations. The same is valid for the 
final update: only the cross-covariances that are related to the delayed measurement are to be used in 
the update equations. 
The z -subindex of the only remaining Kalman gain ,z kK  is omitted for convenience, =,z k kK K  in 
the templates and in the following of this chapter. 
In many cases the process noise is in steady-state, that is ω ω = const

s s
P . The bias instability of 

accelerometer and gyroscope measurements are typically stationary process noise errors. The 
covariance has then not to be propagated. The same is valid for the measurement noise. 
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Template C-2: History state update method with colored process and measurement noise 
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D Navigation Filter 
Performance Prediction and Stability 

D.1 Eigenvalues and Eigenvectors of the Hamiltonian Matrix 
In this section, the eigenvalues and eigenvectors of the Hamiltonian matrix Ψ  (5.32) are calculated 
analytically. At first, the rows and columns of Ψ  are permuted to obtain a favorable almost upper 
triangular matrix. This form simplifies the Gauss elimination later on. With the permutation matrix 
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the permuted Hamiltonian matrix is 
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Next, the characteristic equation 

( )λ − =T
16det 0I T TΨ  (D.3) 

which is required for the calculation of the eigenvalues, is derived. λ − T
16I T TΨ  is given with 
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Determinants and therefore the characteristic equation are invariant with respect to Gauss elimination. 
Thus, λ − T

16I T TΨ  is converted to 
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Due to the upper triangular matrix structure the characteristic equation is the product of the 
determinants of the main diagonal set to zero 
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The characteristic equation is in expanded form 
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or becomes with the determinant calculated 
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Solving the characteristic equation (D.8) yields the eigenvalues of the Hamiltonian matrix Ψ . The 
first bracket of (D.8) provides six eigenvalues with algebraic multiplicity two, thus 12 of the 16 
eigenvalues of Ψ  
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With the substitution λ= 2u  the 6th order polynomial is replaced by a cubic equation 
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The solution of this equation can be found with Cardano’s method [103]. p  and q  are defined as 
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Since + >2 3 0q p , there are one real and two complex roots. The three roots of the cubic polynomial 
(D.10) are given with 
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where 
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The eigenvalues λ −7 12  are equal to the eigenvalues λ −1 6 . The second bracket in (D.8) provides the 
remaining four eigenvalues of Ψ  
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Solving for λ  yields the eigenvalues λ −13 16  
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Next, the 16 eigenvectors iv  that correspond to the found eigenvalues λi  are searched. Eigenvalue 
and eigenvector pairs fulfill 

( )λ − =T
16 0i iI T T vΨ  (D.17) 

For that, the matrix λ − T
16i I T TΨ  (D.5) is consulted again. The eigenvectors iv  with 16 elements are 

subdivided into six subvectors, ( )= 

TT T T
,1 ,2 ,6i i i iv v v v . 

The sixth subvectors ,6iv  are chosen as 
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The direction of these vectors is arbitrary as long as the vectors are multiplied by λ5
i . Then, the 

characteristic equation appears again in the last row of (D.5), which is just zero for the eigenvalue λi . 
The other subvectors are, depending on the last subvector ,6iv  
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The vectors ,1iv  and ,2iv  are of size two whereas all others are of size three. Finally, the eigenvectors 

iv  are permuted back to the original order with T
iT v . The back-permuted eigenvectors are explicitly 

written 
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D.2 Kalman Filter Stability Enhancement 
In section 5.2, it has been revealed that an adequate countermeasure against the growth of asymmetric 
errors is indispensable, even if the filter is implemented in the correct way, because numerical errors 
occur in all computing systems. Especially if the units of the navigation states and thus their magnitude 
orders are chosen inappropriately, the rank of the involved matrices is low and the influence of round-
off errors is high. The simplest way is to symmetrize the covariance matrix from time to time by 

( )= + T1
2

P P P  (D.21) 

Alternatively to (D.21) the covariance propagation equation of the discrete-time Kalman filter in (5.38) 
could be extended by α α−TP P  

T T T
1 1 1k k k k kα α− +
− − −= + + −P P Q P PΦ Φ Γ Γ  (D.22) 
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α > 0  is a selectable factor. The corresponding continuous-time differential covariance equation 
(5.54) becomes 

α α−= − + + + + −

T 1 T T TP PH R HP FP PF GQ G P P  (D.23) 

and the decisive matrix M  of the asymmetric covariance error differential equation (5.68) is 

α−= − −

T 1
s nM F P H R H I  (D.24) 

instead of (5.72). The factor α  has to be chosen such that the eigenvalues of M  lie in the left-hand 
side of the complex plane. Then, the asymmetric covariance error differential equation is guaranteed 
stable. 
Independently, the navigation states should always be adequately scaled. The orientation error states 

eeψ  or 
nnψ  should be expressed in mrad instead of rad, thus scaled by the factor 1000, in order to 

get numbers in the range of one, which corresponds well to the expected position and velocity errors. 
If the navigation error equations in n -frame are used, the latitude and longitude errors δφ  and δλ  
should be scaled by the factor 106 to obtain metric like errors in the range of one in lateral direction 
that correspond to the range of the height error δh . 
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E Simulation Scenarios 

E.1 Trajectory 

E.1.1 Generic Lissajous 

For the simulation and analysis of integrated navigation algorithms appropriate reference trajectories 
have to be specified. Analytical curves that can be described by mathematical functions are appealing 
because non-integrating as well as integrating IMU measurements can be easily derived from them. 
So called Lissajous figures provide realistic closed trajectories. The position is represented by harmonic 
functions 
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with amplitudes φA M , ( )λ φ + cosA N h  and hA , frequencies φω , λω , and ωh  and phase offsets 

φϕ , λϕ  and ϕh . Velocities and accelerations with respect to Earth specified in n -frame are calculated 
by derivation of (E.1) with time. 
It is assumed that the angles of attack and sideslip are zero such that the pitch angle ϑnb  is equal to 
the angle of climb and the heading angle ψ nb  corresponds to the track angle 
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The roll angle ϕnb  results from the equilibrium of lateral forces as illustrated in Figure E-1 since it is 
supposed that the aircraft flies coordinated curves 

( )

cos
tan

atan2 cos ,

n nb nb
nb

nb n nb nb

m

m

ϑ ψ
ϕ

γ

ϕ ϑ ψ γ

=

=

v

v





 (E.3) 

The following settings are chosen: 
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Figure E-2 shows the resulting trajectory. The velocity is illustrated in Figure E-3, the orientation 
angles in Figure E-4, the accelerations in Figure E-5 and the angular rates in Figure E-6. 

 
Figure E-1: Lateral equilibrium of forces 

 
Figure E-2: Lissajous trajectory 

 
Figure E-3: Velocity 
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Figure E-4: Orientation 

 
Figure E-5: Acceleration 

 
Figure E-6: Angular rate 
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E.1.2 General Aviation Aircraft 

As second scenario a more realistic flight of a general aviation aircraft from Munich airport (ICAO-
code EDDM) to Oberpfaffenhofen airport (ICAO-code EDMO) has been chosen. The initial 
trajectory has been recorded with the Diamond DA-42 Flight Training Device at the Institute of Flight 
System Dynamics. Analytic curves have been derived by quintic spline interpolation of the position 
and orientation. Quantization steps in the latitude and longitude have been removed before by low-
pass filtering of the recorded trajectory. From the analytic splines IMU measurements with arbitrary 
sample rates can be synthesized. Figure E-7 shows the trajectory. The velocity is plotted in Figure E-8, 
the orientation in Figure E-9, the acceleration in Figure E-10 and the angular rate in Figure E-11. It 
can be seen that the dynamics are comparatively low. 

 
Figure E-7: Trajectory 

 
Figure E-8: Velocity 
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Figure E-9: Orientation 

 
Figure E-10: Acceleration 

 
Figure E-11: Angular rate 
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E.2 Sensors 

E.2.1 IMU 

IMU sensors of four different grades have been chosen for the simulations of this thesis. The first 
device (IMU 1) is an Analog Devices ADIS16488 [125], which incorporates a MEMS gyroscope triad 
and a MEMS accelerometer triad within a compact housing. The second device (IMU 2) is a Northrop 
Grumman LITEF µIMU-IC [34], which also bases upon MEMS technology like the ADIS16488 but 
features better gyroscope performance about one order of magnitude. The third device (IMU 3) is an 
iMAR iIMU-FCAI-E [126], incorporating three fiber optical gyroscopes (FOG) and three quartz 
accelerometers. The fourth device (IMU 4) is a Northrop Grumman LITEF LCI-100C using FOG as 
the FCAI-E but of higher grade. The performance specifications are given in Table E-5. 

Table E-2: Specification of IMU sensors 
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E.2.2 GPS 

For all simulations in this thesis, the same GPS satellite constellation is used. Unless otherwise 
specified, 19:00 (GPS time) at 06/22/2012 is chosen as start time T0 of the simulations. The 
corresponding sky plot at position N47° E11° between T0 and T0+3600 is shown in Figure E-1. The 
squares with the PRN are at the end of the trajectories. The grey shaded area marks the northern polar 
region without satellites. Generally, the satellites in view with the largest elevation angles are used for 
the solution. The minimum elevation is set to ten degree. 

 
Figure E-12: Sky plot at N47° E11°, 06/22/2012, 7pm to 8pm 
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